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Abstract 24 

Anthropogenic activities can induce major trophic shifts in aquatic systems, yet we have 25 

an incomplete understanding of the implication of such shifts on ecosystem function, and on 26 

primary production in particular. In recent decades, phytoplankton biomass and production in the 27 

Laurentian Great Lakes have declined in response to reduced nutrient concentrations and 28 

invasive mussels. However, the increases in water clarity associated with declines in 29 

phytoplankton may have positive effects on benthic primary production at the ecosystem scale. 30 

Have these lakes experienced oligotrophication (a reduction of algal production), or simply a 31 

shift in autotrophic structure with no net decline in primary production? Benthic contributions to 32 

ecosystem primary production are rarely measured in large aquatic systems, but our calculations 33 

based on productivity rates from the Great Lakes indicate that a significant proportion (up to one 34 

half, in Lake Huron) of their whole-lake production may be benthic. The large declines (5 to 35 

45%) in phytoplankton production in the Great Lakes from the 1970s to 2000s may be 36 

substantially compensated by benthic primary production, which increased by up to 190%. Thus, 37 

the autotrophic productive capacity of large aquatic ecosystems may be relatively resilient to 38 

shifts in trophic status, due to a redirection of production to the nearshore benthic zone, and large 39 

lakes may exhibit shifts in autotrophic structure analogous to the regime shifts seen in shallow 40 

lakes. 41 

 42 

 43 

 44 

 45 

 46 
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Introduction 47 

External stressors such as invasive species and nutrient loading frequently alter the 48 

structure of aquatic ecosystems (Scheffer et al., 1993; Folke et al., 2004). When an ecosystem’s 49 

autotrophic (photosynthesizing community) structure is reconfigured from one dominated by 50 

algae suspended in the water column (phytoplankton) and turbid conditions to one of attached 51 

algae and large submerged plants with clear water conditions, it is said to undergo a regime shift 52 

(Scheffer et al., 1993). The net effect of such regime shifts on whole-lake areal primary 53 

production is difficult to predict. Shallow, turbid lakes dominated by phytoplankton can 54 

sometimes be less productive per unit area than clear-water lakes with higher rates of benthic 55 

primary production (PP; Blindow et al., 2006; Vadeboncoeur et al., 2008; Genkai-Kato et al., 56 

2012; Brothers et al., 2013). Whether large lakes (>500 km
2
) are capable of undergoing 57 

analogous shifts in autotrophic structure with similar effects on whole-ecosystem primary 58 

production is unknown. 59 

North America’s Laurentian Great Lakes are among the largest freshwater lakes on Earth. 60 

These lakes have experienced an increase in water clarity in recent decades due to reductions in 61 

phosphorus loading combined with increased filtration by invasive mussels (Dreissena spp.) 62 

(Dobiesz & Lester, 2009; Chapra & Dolan, 2012; Dove & Chapra, 2015). Contemporaneous 63 

declines in nutrient concentrations and phytoplankton PP have been interpreted as a gradual 64 

process of oligotrophication (Kerfoot et al., 2010; Evans et al., 2011) because phytoplankton 65 

dominate whole-lake PP dynamics in large lakes (Vadeboncoeur et al., 2008). However, food 66 

web analyses consistently demonstrate that higher trophic levels integrate both benthic and 67 

planktonic PP in the Great Lakes (Rennie et al., 2009; Rush et al., 2012; Sierszen et al., 2014; 68 

Turschak et al., 2014), and changes in water clarity resulting from a reduced phytoplankton 69 
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biomass have increased the importance of littoral relative to pelagic biogeochemical pathways 70 

(Fahnenstiel et al., 1995b; Hecky et al., 2004; Rennie et al., 2009; Higgins & Vander Zanden, 71 

2010; Rush et al., 2012; Turschak et al., 2014). We assessed the capacity for benthic PP, which 72 

is strongly light limited (Vadeboncoeur et al., 2014), to compensate for losses in planktonic 73 

production at the whole-lake scale in the Great Lakes. If expansion of the littoral zone and 74 

increases in benthic PP offset losses of planktonic PP at the whole-lake scale, then the 75 

restructuring of the autotrophic basis of the Great Lakes would be better characterized as a 76 

structural shift (Brothers et al., 2013) rather than a decline in whole-lake production, as implied 77 

by oligotrophication.  78 

We used published data and established PP models (Fee, 1973; Vadeboncoeur et al., 79 

2008) to quantify changes in planktonic and benthic PP from the 1970s to 2000s for all basins of 80 

the Great Lakes. Measured rates of maximum benthic productivity (BPmax) in the Great Lakes are 81 

rare, but range from 30 mg C m
-2

 h
-1

 (Saginaw Bay, Lake Huron; Lowe & Pillsbury, 1995) to 82 

430 mg C m
-2

 h
-1

 (Lake Superior; Stokes et al., 1970). Previous estimates (Vander Zanden et al., 83 

2011) of the relative contribution of benthic PP to total primary production in the Great Lakes 84 

have been made assuming BPmax values of 30 mg C m
-2

 h
-1

. However, BPmax rates are typically 85 

higher in oligotrophic waters (McCormick et al., 1998; Vadeboncoeur et al., 2008), and 30 mg C 86 

m
-2

 h
-1

, rather than being representative of the Laurentian Great Lakes, is the lowest rate reported 87 

(Lowe & Pillsbury, 1995). We calculated the whole-lake benthic PP by making benthic 88 

photosynthesis a unimodal function of depth (accounting for the negative effects of wave 89 

disturbance on benthic biomass and productivity), with maximum productivity rates (BPmaxZ50) 90 

occurring at 50% of surface light intensity (Stokes et al., 1970; Vadeboncoeur et al., 2014). We 91 

applied three light-saturated productivity rates (BPmaxZ50 = 30, 150, or 400 mg C m
-2

 h
-1

) derived 92 
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from historical measurements (Stokes et al., 1970; Duthie & Jones, 1989; Lowe & Pillsbury, 93 

1995; Davies & Hecky, 2005; Malkin et al., 2010a). By quantifying planktonic and benthic PP 94 

from the 1970s to 2000s, we assessed whether the positive response of benthic PP to increasing 95 

water clarity could compensate for declines in phytoplankton. On a broader scale, we wished to 96 

explore whether the benthic-pelagic shifts in primary production described for shallow aquatic 97 

ecosystems may also occur in large, deep ecosystems. 98 

 99 

Materials and Methods 100 

 Due to high variability between basins within the Great Lakes, we collected data 101 

whenever possible from individual basins, following standard basin classifications from the 102 

literature (Dobiesz & Lester, 2009; Chapra & Dolan, 2012). Although food web studies 103 

frequently only consider algal standing stock (biomass) measurements, it is algal production 104 

(carbon fixation) that determines the rate at which basal resources become available to secondary 105 

consumers.  We calculated the areal gross primary production (PP) of each basin using 106 

established models for planktonic (Fee, 1973) and benthic (Vadeboncoeur et al., 2008) PP. The 107 

planktonic model (Fee, 1973) has been widely used and tested in the Great Lakes, and derives 108 

areal water column PP rates of phytoplankton from chlorophyll a (Chl a) concentrations (μg L
-1

), 109 

light attenuation (Kd, m
-1

), the light-saturated rate of photosynthesis (P
b

max, g C g Chl a
-1

 h
-1

) and 110 

the initial slope of the photosynthesis-irradiance curve (ɑ, g C m
2
 g Chl a

-1
 mol

-1
). The benthic 111 

model (Vadeboncoeur et al., 2008; Devlin et al., 2015) was derived from the planktonic model 112 

(Fee, 1973), but uses only light attenuation (m
-1

) and the maximum productivity of benthic 113 

periphyton (attached algae), BPmax (mg C m
-2

 h
-1

), because benthic algal biomass and 114 
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productivity are often decoupled, and benthic algal chlorophyll is a poor metric of benthic algal 115 

biomass (Baulch et al., 2009).  116 

We applied the mean calculated phytoplankton Chl a and Kd values for each decade 117 

(1970s, 1980s, 1990s, and 2000s) based on available data from published literature and the 118 

United States’ Environmental Protection Agency’s (EPA) Great Lakes Environmental Database 119 

(GLENDA) (Supplementary Dataset). Means from each decade were used to calculate PP in a 120 

single theoretical year, with PP rates calculated half-hourly for each basin of each lake. A higher 121 

resolution annual analysis was not feasible due to large gaps in the available databases for these 122 

lakes and their individual basins. Our analysis targets long-term inter-decadal shifts rather than 123 

interannual variability. Although there are limitations to this approach (e.g., the arrival of 124 

invasive mussels does not align with decadal classifications), the decadal approach is appropriate 125 

for providing a reasonable first order approximation of the changes that occurred between the 126 

1970s and 2000s. To minimize potential errors due to the variability of Chl a and Kd values 127 

between individual sampling years, seasons, and methods, we tried to use single studies or 128 

databases to describe changing conditions from one decade to the next. Monthly trends of Chl a 129 

and Kd were fixed to the mean values of each decade. Although direct Kd measurements were 130 

applied when possible (roughly 13% of available values), light attenuation was typically only 131 

available from Secchi depth measurements (Zsecchi). These were converted to Kd using a standard 132 

equation (Poole & Atkins, 1929) Kd = 1.7 / ZSecchi, developed for marine environments but also 133 

validated in turbid lakes (Idso & Gilbert, 1974). Surface light availability (as photosynthetically 134 

active radiation) and day length were calculated for each day using the mean latitude of each 135 

basin (Fee, 1990 and references therein) and applying a 70% cloud cover correction factor for all 136 

months and decades. Surface loss by reflection was excluded to avoid the varying effect it might 137 
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have across the broad latitudinal gradient of the study lakes. We assumed that all lakes had full 138 

ice coverage from December to February, and set PP to zero during this period. This assumption 139 

provides conservative PP calculations for these lakes, which cover a relatively large latitudinal 140 

gradient, and may be experiencing shortening periods of ice cover due to climate change (Assel 141 

et al., 2003; O’Reilly et al., 2015). However, we opted to standardize the ice cover period so as 142 

to focus on the specific effects of water clarity and bathymetry on whole-lake PP.  143 

We assumed a uniform vertical distribution of Chl a in the water column during spring 144 

(March, April, May) and fall (September, October, November) turnover periods. Lakes were 145 

considered to feature a subsurface chlorophyll maximum (SCM) during the summer (June, July, 146 

August), the depth and shape of which was calculated from the literature (Barbiero & Tuchman, 147 

2001) using summer Kd values for each basin (Table S1). Basin-specific P
b

max and ɑ values for 148 

phytoplankton were derived from the literature (Tables S2-S6), and were constant among 149 

decades. Annual (ice-free) mean values for P
b

max and ɑ were applied for all lakes except Lake 150 

Erie, for which only May-August means were available. Although phytoplankton P
b

max responds 151 

to temperature and nutrient changes in the water column (Staehr & Sand-Jensen, 2006), the range 152 

and mean phytoplankton P
b

max values in the Great Lakes can vary from year to year without 153 

displaying temperature dependence (Lohrenz et al., 2004). Thus, there are insufficient data to 154 

determine the degree to which the effects of long-term declines in pelagic nutrients (Dove & 155 

Chapra, 2015) would be counteracted by long-term increases in temperature in these systems 156 

(O’Reilly et al., 2015). 157 

The importance of light in the benthic productivity model captures the well-documented 158 

increase in attached algal production in the Great Lakes in response to dreissenid invasions 159 

(Lowe and Pillsbury 1995; Higgins et al. 2008). It is plausible that long-term reductions in 160 
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phosphorus could cause reductions in periphyton production similar to changes in phytoplankton, 161 

yet the data do not support this. Rather, the highest rates of periphyton productivity have been 162 

reported for oligotrophic Lake Superior (Stokes et al. 1970) and there is strong evidence that the 163 

increase in water clarity caused by dreissenid invasions in the lower Great Lakes has been 164 

accompanied by a phosphorus shunt to benthic primary producers (Hecky et al. 2004; Higgins et 165 

al. 2008). Furthermore, the inclusion of a nutrient response to modeled periphyton production 166 

has little effect on whole-lake benthic primary production (Vadeboncoeur et al., 2008). Several 167 

sensitivity analyses for estimating whole-lake benthic primary production demonstrate that our 168 

approach of incorporating depth-specific variations of Pmax, Ik, and actual lake bathymetry yields 169 

the most accurate estimates of whole-lake benthic primary production (Genkai-Kato et al., 2012; 170 

Higgins et al., 2014; Devlin et al., 2015) and provides the most accurate comparison of 171 

planktonic and benthic PP (Vadeboncoeur et al., 2008, 2014; Vander Zanden et al., 2011). The 172 

bathymetry (sediment surface area per 1 m depth below the lake surface) of each lake was 173 

calculated using data published online by the National Oceanic and Atmospheric Association 174 

(NOAA). 175 

Productivity rates for periphyton in the Great Lakes are rare and have not been measured 176 

regularly in any of the lakes, but maximum light-saturated photosynthesis rates range from 30 to 177 

400 mg C m
-2

 h
-1

 (Stokes et al., 1970; Duthie & Jones, 1989; Lowe & Pillsbury, 1995; Davies & 178 

Hecky, 2005; Malkin et al., 2010a). Within a lake, light-saturated productivity rates are maximal 179 

at intermediate depths due to wave disturbance negatively affecting periphyton biomass at very 180 

shallow depths, and progressively strong light limitation below the zone of disturbance (Stokes et 181 

al., 1970; Vadeboncoeur et al., 2014). Maximum light-saturated benthic photosynthesis rates 182 

(BPmaxZ50) are usually observed at a depth corresponding to 50% of the surface 183 
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photosynthetically active radiation (I0) (Stokes et al., 1970; Vadeboncoeur et al., 2014). We 184 

calculated whole-ecosystem benthic PP for three BPmaxZ50 values (30, 150, and 400 mg C m
-2

 h
-1

) 185 

that represent the range of light-saturated periphyton productivities measured in the Great Lakes. 186 

To approximate the shape of the relationship between depth and periphyton production (mg C m
-

187 

2
 h

-1
) observed in the literature (Stokes et al., 1970; Vadeboncoeur et al., 2014), we applied one 188 

of two formulas for light-saturated depth-specific benthic productivity (BPmaxZ) at each 1 m 189 

depth interval (Z, m) depending on whether light at that depth interval was > 50% surface light 190 

or < 50% surface light. The first formula was empirically derived (Stokes et al., 1970; 191 

Vadeboncoeur et al., 2014) and assumed that light-saturated productivity increased linearly with 192 

depth from the lake edge to a maximum value BPmaxZ50 at the depth of 50% I0. Light-saturated 193 

productivity at the lake edge was assigned a value of half the rate at 50% of surface light: 194 

 195 

BPmaxZ = ((0.5 x BPmaxZ50) * (Z/Z50)) + (0.5 x BPmaxZ50)     [1] 196 

 197 

Below 50% I0, BPmax was calculated to decline with diminishing light levels based on a 198 

measured rate of declining periphyton production with light in Saginaw Bay, Lake Huron (Lowe 199 

& Pillsbury, 1995) following the equation:  200 

 201 

BPmaxZ = BPmax x ((2 x PARz) – 0.1)         [2] 202 

 203 

Where PARz represents the fraction of I0 at a given depth. Together, these equations provided a 204 

unimodal relationship between benthic PP and light (Fig. S1) and provide an analogue of the 205 

effect of fetch at a given basin coastline, clearer waters being associated with larger systems and 206 
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greater shoreline wave activity. Benthic PP was calculated at 1 m depth intervals to the depth of 207 

0.5% I0, below which no net photosynthesis was considered possible. We used the light-saturated 208 

photosynthesis rates derived for each depth (BPmaxZ) to calculate productivity as a function of 209 

light over the course of a day. Daily benthic PP rates at each 1 m depth were calculated as the 210 

sum of half-hourly values within each day period: 211 

 212 

BPZ = Σ{BPmaxZ x tanh[(I0,t) x sin(π x (t / day length)) x e^(-Kd x Z)/Ik]}/2   [3] 213 

 214 

Where I0,t is the surface irradiance (μmol m
-2

 s
-1

) of each basin at time t (the same being applied 215 

to planktonic PP estimates), t is represented in intervals of 0.5 h across the full day length 216 

beginning at dawn (t = 0). Ik, the irradiance at the onset of saturation, was calculated following 217 

the equation: 218 

 219 

Ik = 334.5 x e^(-Z x Kd) + 68         [4] 220 

 221 

The formula for Ik was determined from direct measurements (Y. Vadeboncoeur, 222 

unpublished) of algal growth on sediments in another large lake (Lake Tanganyika, Africa). 223 

Although the substrate type in the Great Lakes (rocks, sand, or mud) is highly variable and can 224 

influence benthic periphyton biomass and productivity (Vadeboncoeur et al., 2003; Barton et al., 225 

2013), this was not considered in the present study due to a lack of available data. The theoretical 226 

full-year PP for each decade was calculated as the sum of all daily PP rates, across all months 227 

and all depths within the photic zone. Whole-lake PP was calculated as the weighted average (by 228 
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surface area) of PP from the basins of each lake. Statistical tests were made using JMP (version 229 

7; SAS Institute, Cary, NC, U.S.A.).  230 

 231 

Results 232 

 Planktonic PP declined between the 1970s and 2000s in all of the Great Lakes, and 233 

benthic PP increased in all lakes but Lake Erie (Table 1). During the same period, the relative 234 

contribution of benthic PP to whole-lake PP increased in all lakes (Table 2). At the lower limit of 235 

our tested range (BPmaxZ50 = 30 mg C m
-2

 h
-1

), benthic PP represented 1 to 8% of whole-lake PP 236 

in the Great Lakes, while at the upper limit (BPmaxZ50 = 400 mg C m
-2

 h
-1

) it represented 8 to 53% 237 

(Table 2). Mean lake depth was not a significant predictor of the relative importance of benthic 238 

PP to whole-lake PP (P = 0.31 at BPmaxZ50 = 150 mg C m
-2

 h
-1

). Instead, there is a strong positive 239 

relationship between the fraction of a lake’s sediments within the euphotic zone (I0 at the 240 

sediments > 0.5% lake surface values) and the relative contribution of benthic PP to whole-lake 241 

PP (r
2
 = 0.54, P = 0.0002; Fig. 1). When BPmaxZ50 = 150 mg C m

-2
 h

-1
, the relationship between 242 

the fraction of sediments in the photic zone and the relative contribution of periphyton to whole-243 

lake production approached 1:1. 244 

 245 
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 246 

Figure 1. Fraction of lake sediments in euphotic zone (0.5% I0) vs. benthic fraction of whole-lake 247 

PP. Dotted line represents 1:1 ratio. Data points and central regression line (Benthic PP (%) = 248 

0.02 + (0.79 x Euphotic Zone (%))) are provided for BPmaxZ50 = 150 mg C m
-2

 h
-1

, with 249 

alternative regression lines provided for BPmaxZ50 = 30 and 400 mg C m
-2

 h
-1

. Stars = Lake 250 

Huron, triangles (point up) = Lake Superior, triangles (point down) = Lake Erie, squares = Lake 251 

Michigan, and circles = Lake Ontario. 252 

 253 

Table 1. Change in planktonic, benthic, and whole-lake (planktonic + benthic) PP from 1970s to 254 

2000s. 255 

 Planktoni

c (g C m
-

2
 y

-1
) 

Benthic 

at 

BPmaxZ5

0 = 30 

mg C 

m
-2

 h
-1

 

Benthic 

at 

BPmaxZ5

0 = 150 

mg C 

m
-2

 h
-1

 

Benthic 

at 

BPmaxZ5

0 = 400 

mg C 

m
-2

 h
-1

 

Whole-

lake at 

BPmaxZ5

0 = 30 

mg C 

m
-2

 h
-1

 

Whole-

lake at 

BPmaxZ5

0 = 150 

mg C 

m
-2

 h
-1

 

Whole-

lake at 

BPmaxZ5

0 = 400 

mg C 

m
-2

 h
-1

 

BPmaxZ50 

necessary 

for full 

benthic 

compensatio

n (mg C m
-2
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(g C m
-

2
 y

-1
) 

(g C m
-

2
 y

-1
) 

(g C m
-

2
 y

-1
) 

(g C m
-

2
 y

-1
) 

(g C m
-

2
 y

-1
) 

(g C m
-

2
 y

-1
) 

h
-1

) 

Lake 

Superior 

-6 1 6 16 -5 0 9 161 

Lake 

Michiga

n 

-35 2 8 21 -34 -28 -14 690 

Lake 

Huron 

-115 1 6 17 -114 -109 -98 2680 

Lake 

Erie 

-160 -3 -16 -44 -164 -177 -204 NA 

Lake 

Ontario 

-12 2 10 26 -10 -2 15 184 

 256 

 257 

The BPmaxZ50 rates required for a full compensation of planktonic PP losses by benthic PP 258 

gains varied greatly between lakes, from 161 mg C m
-2

 h
-1

 in Lake Superior to 2680 mg C m
-2

 h
-1

 259 

in Lake Huron (Table 1). These values were within our tested range of BPmaxZ50 rates in Lake 260 

Superior and Lake Ontario, indicating that whole-lake PP may have been stable or even 261 

increased in these lakes during the study period (Table 1). In Lake Superior (Fig. 2a,b; Table S2), 262 

the compensation point (BPmaxZ50 = 161 mg C m
-2

 h
-1

) occurs below half of the maximum 263 

benthic productivity rates for this lake (Stokes et al., 1970), while in Lake Ontario (Fig. 2c,d; 264 

Table S3) the compensation point (BPmaxZ50 = 184 mg C m
-2

 h
-1

) is roughly in the same range as 265 



14 
 

measured rates of Cladophora production alone in an urbanized area of this lake (~120 mg C m
-2

 266 

h
-1

) (Malkin et al., 2010a). Lake Michigan (Fig. 3a,b; Table S4) and Lake Huron (Fig. 3c,d; 267 

Table S5) both featured large planktonic PP declines (Evans et al., 2011), and required the 268 

highest BPmaxZ50 rates for full benthic PP compensation (Table 1). BPmax rates approaching 1000 269 

mg C m
-2

 h
-1

 have been documented (McCormick et al., 1998), but not in the Great Lakes. We 270 

found no data for benthic productivity in Lake Michigan and the few data for Lake Huron 271 

(Duthie & Jones, 1989) indicate local BPmax rates of 140 mg C m
-2

 h
-1

. 272 

 273 

 274 

Figure 2. Lake Superior (a and b) and Lake Ontario (c and d) Chl a concentrations (filled circles) 275 

and light attenuation values (empty squares; a and c), as well as benthic (squares, at BPmaxZ50 = 276 

150 mg C m
-2

 h
-1

), planktonic (circles), and total (triangles) PP values (b and d). Dashed lines 277 



15 
 

represent plankton PP-only regression, and solid lines represent total PP regression, at BPmaxZ50 = 278 

150 mg C m
-2

 h
-1

. Total PP values are provided using BPmaxZ50 = 150 mg C m
-2

 h
-1

, with upper 279 

and lower limits representing BPmaxZ50 = 400 mg C m
-2

 h
-1

 and 30 mg C m
-2

 h
-1

, respectively. 280 

 281 

Table 2. Contribution of benthic to whole-lake PP for each study decade. 282 

 Lake Superior 

(%) 

Lake 

Michigan (%) 

Lake Huron 

(%) 

Lake Erie (%) Lake Ontario 

(%) 

BPmaxZ

50 (mg 

C m
-2

 

h
-1

) 

30 150 400 30 150 400 30 150 400 30 150 400 30 150 400 

1970s 2 10 23 1 6 14 2 11 25 3 14 29 1 3 8 

1980s 3 14 30 2 8 19 5 20 40 4 17 35 2 7 18 

1990s 4 18 36 2 9 22 6 22 44 4 18 38 2 9 21 

2000s 4 17 36 3 12 27 8 30 53 4 17 35 2 9 22 

 283 
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 284 

Figure 3. Lake Michigan (a and b) and Lake Huron (c and d) Chl a concentrations (filled circles) 285 

and light attenuation values (empty squares; a and c), as well as benthic (squares, at BPmaxZ50 = 286 

150 mg C m
-2

 h
-1

), planktonic (circles), and total (triangles) PP values (b and d). Dashed lines 287 

represent plankton PP-only regression, and solid lines represent total PP regression, at BPmaxZ50 = 288 

150 mg C m
-2

 h
-1

. Total PP values are provided using BPmaxZ50 = 150 mg C m
-2

 h
-1

, with upper 289 

and lower limits representing BPmaxZ50 = 400 mg C m
-2

 h
-1

 and 30 mg C m
-2

 h
-1

, respectively. 290 

 291 

 Lake Erie (Fig. 4a,b; Table S6) experienced the greatest decline in planktonic PP of the 292 

five lakes, but was the only lake to also feature a net decline in benthic PP (Table 1). The weak 293 

relationship between planktonic and benthic PP reflected differing trends in water clarity among 294 
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the three basins, high interannual variability in water clarity, and a poor relationship between 295 

areal rates of planktonic PP and Chl a concentrations (Porta et al., 2005). Our analysis used 296 

literature values derived from direct measurements, which indicated that the shallow West Basin 297 

had experienced an increase in water clarity. However, remote sensing evidence over the same 298 

period suggests that water clarity has decreased (Binding et al., 2007). BPmaxZ50 rates of 138 mg 299 

C m
-2

 h
-1

 would be necessary for benthic PP to fully compensate for planktonic PP losses in the 300 

West Basin, which is within the range of BPmax rates measured on rocky substrates in the East 301 

Basin of Lake Erie (Davies & Hecky, 2005) (the only basin for which reference values are 302 

available). Water clarity in the Central Basin has declined over the past four decades (see 303 

Supplementary Dataset), reducing both benthic and planktonic PP. Declines in Chl a 304 

concentrations in the East Basin were small relative to increases in water transparency 305 

(Supplementary Dataset), producing a net increase in both planktonic and benthic PP. Because of 306 

the uncoupled responses of individual basins, calculations of a BPmaxZ50 rate necessary for a 307 

whole-lake PP compensation between the water column and benthic zone could not be made for 308 

Lake Erie (Table 1).  309 
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  310 

Figure 4. Lake Erie decadal shifts in Chl a concentrations and light attenuation values (a), as well 311 

as benthic (at BPmaxZ50 = 150 mg C m
-2

 h
-1

), planktonic, and total PP values (b). Dashed lines 312 

represent plankton PP-only regression, and solid lines represent total PP regression, at BPmaxZ50 = 313 

150 mg C m
-2

 h
-1

. Total PP values are provided using BPmaxZ50 = 150 mg C m
-2

 h
-1

, with upper 314 

and lower limits representing BPmaxZ50 = 400 mg C m
-2

 h
-1

 and 30 mg C m
-2

 h
-1

, respectively. 315 

 316 

Discussion 317 

 This study demonstrates that the near-shore benthic zone of large aquatic ecosystems can 318 

be an important source of autochthonous production at the whole-ecosystem scale. Our finding 319 

that the Laurentian Great Lakes have all experienced an increase in the relative contribution of 320 

benthic PP to whole-ecosystem production from the 1970s to 2000s is consistent with studies 321 
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showing that benthic PP is an increasingly important resource for local fish populations (Rennie 322 

et al., 2009; Rush et al., 2012; Turschak et al., 2014). Surprisingly, shallow basins did not have 323 

the highest relative contributions of benthic PP, because they had the lowest water clarity. Thus, 324 

a complex interaction between basin morphometry and water clarity determines the degree to 325 

which benthic periphyton can compensate for phytoplankton declines (Fig. 1).  326 

Our calculated values of phytoplankton production were within the range of previously 327 

reported values in the Great Lakes (Table S7). However, direct comparisons for each decade 328 

were impossible due to the broad range of methods adopted by previous studies, large time gaps 329 

between published measurements, and a reporting bias towards summertime measurements in 330 

eutrophic basins (which in some cases exhibited daily values ranging two orders of magnitude). 331 

Although we calculated a net decline in planktonic PP in all systems, this was not always 332 

associated with local increases in water clarity and benthic PP. Specifically, linear regressions 333 

between Chl a concentrations and Kd values were significant in all lakes except Lake Erie (P = 334 

0.38) and Lake Ontario (P = 0.09). Water clarity and Chl a concentrations in the Great Lakes 335 

may be decoupled due to resuspended inorganic particulates (Makarewicz et al., 1999; Burns et 336 

al., 2005; Porta et al., 2005), calcite precipitation events (Barbiero et al., 2006), and dissolved 337 

organic carbon dynamics (Biddanda & Cotner, 2002).  338 

These results indicate that future research into the biogeochemistry or food web dynamics 339 

of the Great Lakes and other large aquatic ecosystems should include both benthic and water-340 

column processes. The mean depths of the Great Lakes’ littoral (photic) zones were estimated to 341 

range from 8 m in Lake Erie to 43 m in Lake Superior (Table S8). Although we did not include 342 

submerged macrophyte communities in our analysis, increasing water clarity from the 1970s to 343 

2000s likely had a positive effect on macrophyte productivity (Chambers & Kalff, 1985; 344 
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Knapton & Petrie, 1999). The primary production rates of submerged macrophytes are often 345 

minor relative to benthic algal productivity (e.g., Brothers et al., 2013), but macrophyte 346 

abundance is positively linked to fish production in the Great Lakes (Randall et al., 1996), and 347 

can have direct and indirect negative effects on phytoplankton productivity, even in large lakes 348 

(Blindow et al., 2014; Sachse et al., 2014). The results of this study also make it clear that more 349 

data are needed on the natural range of periphyton BPmax rates, and the relative influence of 350 

temperature, nutrient availability, and water clarity on periphyton in the Great Lakes. Periphyton 351 

BPmax rates appear to be highest in clear-water systems. Thus, it is plausible that BPmax rates have 352 

increased in the Great Lakes during our study period, and the compensatory responses of 353 

periphyton to increased water clarity are higher than we have estimated.  354 

The net increases in water clarity and declines in nutrient concentrations since the 1970s 355 

are associated with broad changes to ecological communities and a reconfiguration of energy and 356 

mass channeling pathways (Higgins & Vander Zanden, 2010). Although these trends are 357 

typically characterized as oligotrophication (implying declines in whole-ecosystem primary 358 

production) our results demonstrate that declines in planktonic PP may be substantially offset by 359 

increases in benthic PP. The recent increases in water clarity in the Great Lakes have led to 360 

higher rates of benthic PP, and thus signal a shift in autotrophic structure towards a greater role 361 

for the near-shore benthic zone. This compensatory variation in autotrophic structure may be 362 

analogous to regime shifts and whole-lake PP in shallow lakes (Blindow et al., 2006; Brothers et 363 

al., 2013), indicating that nutrient load reductions to large aquatic ecosystems such as the Great 364 

Lakes may not necessarily confer a decline in primary (or, potentially, secondary) production, 365 

but rather a spatial shift from offshore resource reliance towards a greater role for basal near-366 

shore resources. This conclusion further lends weight to the ‘near-shore shunt’ hypothesis 367 
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proposed by Hecky et al. (2004), who suggested that a decline in offshore nutrient concentrations 368 

in the Great Lakes might begin with reduced anthropogenic nutrient loading, but could be 369 

reinforced and exacerbated by an increase in the utilization of nutrients in near-shore zones, 370 

effectively starving the pelagic zone. Despite this potential lake-wide productive resilience, 371 

anthropogenic stressors affecting the Great Lakes are concentrated in the same near-shore zones 372 

which are becoming increasingly important to the food webs (Vadeboncoeur et al., 2011; Allan 373 

et al., 2013). In light of this, the energetic base of the Great Lakes’ food webs may be more 374 

vulnerable to anthropogenic stressors than it was forty years ago. 375 
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Supporting Information Captions 637 

Brothers_SuppInfo_1 (Word). This file contains eight supplementary tables including details on 638 

the calculations of summertime Chl a concentrations (S1), as well as general applied lake 639 

characteristics for the five lakes (S2 to S6), a comparison between phytoplankton PP rates 640 

calculate by this study and the literature (S7), and mean calculated littoral zone depths and their 641 

irradiance (S8). This file furthermore contains a figure (S1) showing a sample calculation of the 642 

applied relationship between benthic periphyton primary production and light availability. 643 

Brothers_SuppInfo_2 (Excel). This file contains a complete dataset including applied Chl a and 644 

light attenuation values from all lake basins, as well as information on sources and assumptions. 645 
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