Quantifying and Visualizing Agricultural Land Use Rate of Change along the Wasatch Front, Utah

ANTHONY WHALEY
2019 USU SRS
10 APRIL 2019
Outline for Today

• Brief historical **Context**.
• Purpose and Objectives for this **Project**.
• **Methods** to completing this project.
• A selection of **Results**.
Why Agriculture Matters to Utahns

Survey participants were asked to allocate 100 points across these outcomes based on which they considered most important.

- **23%** Improving Utah's food self-sufficiency
- **20%** Ensuring Utahns can eat locally grown food
- **19%** Maintaining the open space provided by farms and ranches
- **17%** Improving rural Utah's economy
- **12%** Maintaining Utah's agricultural heritage
- **8%** Allowing agricultural land and water to convert through market forces to higher-paying uses like houses and businesses

Threats to Agricultural Land

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rank</td>
<td>County</td>
<td>Change</td>
</tr>
<tr>
<td>1</td>
<td>Wasatch County</td>
<td>4.6%</td>
</tr>
<tr>
<td>2</td>
<td>Utah County</td>
<td>3.2%</td>
</tr>
<tr>
<td>3</td>
<td>Morgan County</td>
<td>2.8%</td>
</tr>
<tr>
<td>4</td>
<td>Washington County</td>
<td>2.7%</td>
</tr>
<tr>
<td>5</td>
<td>Iron County</td>
<td>2.5%</td>
</tr>
<tr>
<td>6</td>
<td>Cache County</td>
<td>2.5%</td>
</tr>
<tr>
<td>7</td>
<td>Piute County</td>
<td>2.4%</td>
</tr>
<tr>
<td>8</td>
<td>Juab County</td>
<td>2.3%</td>
</tr>
<tr>
<td>9</td>
<td>Davis County</td>
<td>1.9%</td>
</tr>
<tr>
<td>10</td>
<td>Tooele County</td>
<td>1.7%</td>
</tr>
</tbody>
</table>

Source: U.S. Census Bureau; DemographyUTAH Population Committee

Why the Wasatch Front?

Represents:

- 95% of fruit production in Utah.
- 92% of vegetable production in Utah.
- 94% of high value irrigated land in Utah.
Purpose for Project

• **Quantify** and **Visualize** land **capability** for agricultural systems:
 • Orchards
 • Vegetables
 • Forages

• **Calculate** rate of change for each system.

• **Create** and **store** dataset for future ecosystem service study.
Objectives for Project

1) Determine specific biophysical variables that best describe where cropping systems are located along the Wasatch Front.

2) Calculate rate of change of specific cropping systems.

3) Develop models within ArcGIS Pro to automate geoprocessing workflow.

4) Use ESRI Story Maps and Google Earth to visualize the extent of these cropping systems and land use change along the Wasatch Front and Cache Valley.
Data Collection
All data is publicly available.

<table>
<thead>
<tr>
<th>AgName</th>
<th>Cropping System</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORCHARD</td>
<td>Orchard, Vineyard, Orchard unspecified, Peaches, Grapes, Apricots, Cherries, Apples</td>
</tr>
<tr>
<td>FORAGE</td>
<td>Alfalfa, Dry Alfalfa, Dry Grain, Dry Grain/Seeds, Dry Oats, Grain, Grass Hay, Grass Hay - Sub-Irrigated, Idle-Irrigated Pasture, Oats, Pasture, Pasture Sub-Irrigated, Sorghum, Idle Pasture,</td>
</tr>
<tr>
<td>VEGFRUIT</td>
<td>Beans, Berries, Corn, Dry Safflower, Melon/Pumpkin, Squash, Onions, Other Horticulture, Other Vegetables, Potatoes, Safflower, Tomatoes, Vegetables, Melon, Pumpkins, Horticulture, Watermelons, Potato, Speltz, Onion, Mustard, Sugarbeets, Soybeans,</td>
</tr>
<tr>
<td>GRAIN</td>
<td>Barley, Spring Wheat, Winter Wheat, Grain Seeds/unspecified, Triticale, Rye, Canola, Durum Wheat, Flaxseed, Sunflower</td>
</tr>
<tr>
<td>SURFWATER</td>
<td>Open Water, Riparian, Sewage Lagoon, Water, Wet Flats</td>
</tr>
<tr>
<td>DEVELOPED</td>
<td>Urban, Urban Grass, Urban Grass/Parks, Urban/Urban Idle</td>
</tr>
<tr>
<td>OTHER</td>
<td>Dry Land, Fallow Irrigated Ag, Fallow Irrigated Land, Idle-Irrigated Ag, Idle-Irrigated Land, Turf Farms, Dry Land/Other, Idle, Turfgrass, Fallow</td>
</tr>
</tbody>
</table>

Source: Utah AGRC
Automating Workflow

ESRI’s ArcGIS Pro allows for easier ways to share data and workflows with non-GIS users by sharing Projects.

Source: ESRI
Developed Models

Run the model in sequence.

For any Study Area.
Using each Model

The user can input their own parameters into each model!
Methods
Results
Conclusion

• Developing models allows for a more streamlined workflow.

• Visualizing in Google Earth allows for anyone to access to data.

• More work needed to finalize objectives.
 • Develop and visualize selected areas for cropping systems.
 • Compare rate of change of specific cropping systems to NASS data.
Thank you!

TIME FOR QUESTIONS