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Abstract 

W_e consider the use of detector arrays in scanning 
m1c_roscol?es and. show that confocal operation may be 
ach1~ved 1.n a variety of ways. We base our analysis on a 
cons1derat1on of the form of the optical transfer function or 
transmission cross coefficient. This reveals that the Fourier 
transforrn of the detector sensitivity function is the function of 
importance . It is not necessary that this function be constant 
over ~he wh~le sl?ace and hence a variety of detector sensitivity 
functions will give fully confocal imaging . The traditional 
method _ of a limiting point-like detector is a special case, but 
one which has advantages in the rejection of scattered and flare 
light from the image. 
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Introduction 

The only difference between conventional scanning 
microscope and a confocal one lies in the form of the detecto r 
[Wilson and Sheppard , 1984]. The conventional arrangment 
uses a large area detector whereas the confocal employs a point 
like detector. The development and commercial availability of 
photodetector arrays cause us to re-examine the role of the 
detector geometry. In this paper we will consider a system 
employing a point source of light , but with a detector of 
arbitrary intensity sensitivity, D, Figure 1. We shall begin by 
describing the optical image fom1ation in terms of an optical 
transfer function and discuss how the form of the detector 
modifies this function and hence the spatial coherence of the 
imaging. We will then go on to discuss the optical sectioning 
properties of systems with arbitrary detector sensitivity 
funcnons and show that the traditional method of realising a 
confocal microscope is just a special case of a more general 
distribution function. 

Theoretical Considerations 

We consider the geometry of Figure 1 and assume that 
the object is sufficiently thin that it may be described by an 
amplitude transmittance (or reflectance) t(x,y). 

Point 
Source 

Objective 
Lens 

Scanned 
Object 

Collecto r 
Lens 

Detector 
D(x.y) 

Fig . I. The optical system of a scanning microscope 
consisting of a point source and a large area incoherent 
detector of arbitrary intensity sensitivity, D. 



We introduce the Fourier transform (or spectrum) of this 
object, T(m,n) via: 

+-

T(m, n) =ff t(x, y)exp- 2nj(rnx + ny)dxdy (1) 

and 
+-

T* (p, q) = ff t * (x, y)exp2nj(px + qy)dxdy (2) 

where m, n, p and q are spatial frequencies and the asterisk 
denotes the complex conjugate. We can now write the image 
intensity as [Sheppard and Wilson, 1978): 

+-

I(x,, Ys) =ff ff C(m, n;p, q)T(m, n)T * (p, q) 

exp2nj {(m - p)x, + (n - q)y.} dmdndpdq (3) 

where C(m,n;p,q) is the partially coherent transfer function or 
transmission cross coefficient. It depends only on the form of 
the optical system. If we assume that the lenses in Figure 1 

have pupil functions P(~,T]) where (~,T]) are variables in the 
pupil plane and that the detector sensitivity, D(x ,y) has a 
Fourier transform, F0 , given by: 

+-

fb(m, n) =ff D(x, y)exp - 2nj(rnx + ny)dxdy (4) 

then, for a unity magnification system, we can write: 
+-

C(m, n;p, q) =ff ff P(s,, T/1 )P * (s:, r,l )P(Afm- s,, A.fn - T/1) 

p * (Afp- sL A.fq-r,l )Fb[ sl;/' 'Tll;fT/1] 

ds1 dr,1 <ls: dr,l (5) 

where A is the wavelength and f is the distance between the 
objective and the object. The traditional confocal case arises 

when Fo = 1 and the conventional when Fo(a,~)=o(a)o(~) 

where o(-) is a Dirac delta function and a, ~ are dummy 
variables. The fact that Fo = 1 in traditional confocal 
microscopy is overly restrictive as the pupil functions P are 
themselves only non-zero over a limited range. Our basic 
contention, which we will explore further, is that in order to 
achieve confocal operation we need Fo to be unity only over 
the space in which the product of the pupil functions in 
equation (5) is non-zero . 

L~t us . now c~nside! the image_ of some specific objects. 
We begm with a pomt obJect, for which we can write: 

I(t, w) = jh(v)J2 { lh(t, w)l2 ® D(t, w)} (6) 

where v2 = t2 + w2, the symbol ® denotes the convolution 
operatio_n and t, w are normalised optical co-ordinates, related 
to real distance x and y via relationships like: 

2n . 
t = T . x . sma (7) 

where sina is the numerical aperture. The function h is the 
ampl_itude point spread function of the lens, given by the 
Founer transform of its pupil function . 
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We have chosen to write equation (6) in a form using t 
and w to emphasise that, because h is circularly symmetric, the 
image of a point object will not, itself, be circularly symmetric 
unless D is also circularly symmetric. As an example, if a slit 
shaped detector is used an asymmetric image results [Wilson 
and Hewlett, 1990]. We will concentrate on circularly 
symmetric detectors in the following. In doing this we need to 
recall the mathematical relationship that: 

a® b = a (8) 

provided the Fourier transform of bis constant (unity) over the 
extent of the Fourier transform of a. This implies that we can 
write equation (6) as: 

I(v) = lh(v)l4 (9) 

provided that the Fourier transform of D is constant over the 
extent of the Fourier transform of lh(v)l2. It is usual to define 
the pupil functions as: 

P(p) = exp~jup2 lpl ~ I 
= 0 otherwise (10) 

where the term in u denotes the degree of defocus and p is a 
normalised radial coordinate in the pupil plane. We will return 
to this term later. In the absence of defocus, (u=O), equation 
(9) becomes: 

I(v) = (2J~(v)y (11) 

where JI is a first order Bessel function of the first kind . 

It is clear that the Fourier transform of 1h12 has an extent 
to 2.0 normalised units. This suggests that if the detector 
sensitivity were, say: 

D(v) = 2J 1 (av) 
av 

(12) 

then as long as a ~ 2 the image of a point object would be 

given by equations (9) and (11). We note that a ➔ 0 gives 

D(v) = constant (conventional operation) and a ➔ 00 gives 

D(v) = o(v) (traditional confocal operation). 

One of the main advantages of confocal microscopy 
concerns the ability to reject detail outside the focal plane. A 
useful metric of this optical sectioning property is to consider 
the signal as a perfect reflector is scanned axially through 
focus . If we model this object via t(x,y) = 1 or T(m,n) = 

o(m)o(n) we find from equation (3) that: 

l(u) = C(0,0;0,0) (13) 

and 
+-

C(0, 0;0, 0) = ff fffb ( S1 - s:, T/1 - r,l)P 2(s, , T/1) 

p *2 ( s:, r,l )<ls, dr,, <ls: dr,l (14) 

when we have assumed that the pupil functions are even 
functions. 



Again we need Fo to be constant over the region where 
the product of the pupil functions are non-zero. We can recast 
equation (14) as: 

I(u) = [ jh(2u, v)j
2
D(v)vdv (15) 

which can be thought of as a special case of a convolution 
when the convolution variable is zero . The condition is the 
same as we discussed previously . If we can take a 2': 2 in our 
detector of equation (12) then: 

I(u) = ih(2u, 0)12 (16) 

or [Wilson and Sheppard, 1984]: 

) (
sinu/2) 2 

I(u = --
u/2 

where u is related to real axial distance z via: 

Sn . 2 / u= T. z . sm a 2 

(17) 

(18) 

We plot, in Figure 2, the optical sectioning as given by 
equation (15) for the case of the Bessel function shaped 
detector. As we have already said any value of a 2': 2 gives 
ideal confocal behaviour and hence values of a < 2 give 
correspondingly poor sectioning until the effect disappears 
altogether when a = 0. The latter case corresponds, of course, 
to the conventional microscope . 

----8 0.5 

0 2 4 6 8 12 
u 

Fig.2. The variation of I(u) against u for a variety of Bessel 
function detector sensitivities. Note that for all values of a 2': 2 
that I(u) is given by equation (17). 

A property of confocal systems is that the imaging is 
coherent such that we can write C(m;n;p,q) = c(m,n)c*(p,q) . 
It is clear from the geometry of equation (5) that this is 
achieved for our Bessel function detector if a 2': 2. 
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Noise 

One of the main side results of confocal microscopy is 
that the use of a limiting pinhole-type aperture serves to reduce 
the amount of flare and scattered light present in an image . In 
an attempt to quantify these effects we consider a transmitted 
light system with no object, but with a detector sensitivity 
given by equation (12). This permits us to write the detected 
signal as: 

-J~(2J 1 (v))
2

2J 1(av) d 
Idet - -- --- • V V 

o v av 
(19) 

which is, as we have seen before, constant for a 2': 2. If we 
further assume that the intensity of the flare and scattered light 
is simply proportional to the area of the detector we can write: 

J
~ 2J 1 (av) 

Inare = --- vdv (20) 
o av 

which is inversely proportional to a2 . This permits us to 
derive an expression for signal to flare ratio as a function of a. 
It is clear that although confocal operation may be achieved for 
a 2': 2 that the signal to flare ratio is considerably enhanced if a 
is made as large as possible. Indeed the ratio is proportional to 
a-2 for a 2': 2. We recall that a ➔ oo reverts to the case of a 
traditional point confocal detector. 

Conclusions 

We have discussed the image formation in scanning 
microscopes with arbitrary detector sensitivity functions and 
have shown that the traditional method of achieving confocal 
operation is merely a very special case although one which has 
advantages from the point of view of signal to noise ratio. The 
case of fluorescence confocal microcsopy may be treated 
similarly. Here it is also found that a detector of the form of 
equation (12) will give confocal operation . However in this 
case the value of a may be scaled by the ratio of the fluorescent 
to excitation radiation wavelengths. 
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Discussion with Reviewers 

R.W . Wijnaendts van Resandt : You have shown that a 
variation of the detector geometry and sensitivity can be used 
to optimise the system response function. Is it in principle 
possible using a detector array to extract both phase and 
amplitude of a transmission confocal microscope? 

Author : I think it would be difficult to extract phase 
information with a detector placed as shown in Figure I. It is 
however possible, by the use of suitable beam splitters and 
infinity tube length objectives, to place a detector array at an 
equivalent position to the pupil of the second lens. It is then 
easy to obtain differential phase contrast information by using 
the array to mimic a quadrant detector. In this way phase and 
amplitude information can be obtained simultaneously. 



V.K. Chen: Would you comment on how optical sectioning 
or depth response is changed by detector shape and detector 
sensitivity distribution? 

Author: The general rule is that the smaller the detector the 
better is the sectioning. It is also true that the detector should 
ideally be circular in order to image all object features equally. 
An obvious attraction of a detector array is that we may mimic 
the following situation . Circular detectors of two different 
radii have two different sectioning strengths. If we subtract a 
fraction of the signal from one detector from the signal from 
the other detector we can tune the sectioning to be arbitrarily 
sharp . The price we pay is that the I(u) function may go 
negative for certain values of u. In practice with an array this 
could be achieved with a central circular detector together with 
a surrounding annular ring. Of course, the larger the detector 
the more noise related problems we are likely to run into. 

A further attraction of a line or slit shaped detector array lies in 
the speed of image acquisition in that we need only scan the 
object or light beam in one direction . The sectioning 
properties with slit detectors whilst not as good as true 
confocal point detectors are still quite acceptable for many 
applications. The asymmetry in the image in the case of a slit 
detector is found to be far less pronounced in the case of 
fluorescence imaging. The asymmetry becomes more 
noticeable as the difference between excitation and 
fluorescence wavelengths becomes greater. 
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