Nitrogen Fertilizer Needs of Small Grains After Alfalfa

Collin Pound1, Matt Yost1, Earl Creech1, and Grant Cardon1
1Utah State University, Logan, UT, and 2Colorado State University, Fort Collins, CO

Jody Gale1, Deric Despain1, Kevin Heaton1, Boyd Kitchen1, Mike Pace1, Steven Price1, Chad Reid1, Matt Palmer1, Mark Nelson1, and Kathleen Russell2
Three main ideas

Return
On
Investment

Prediction: Bad ⊗
Good ⬤
Alfalfa Nitrogen Credits

“N credit”

1. Alfalfa residue
2. N deposition
3. Soil quality improvements
Literature

Lin and Putnam, 2013
Literature

- 2001, Kelling and Speth, Wisconsin - 50 lb N ac\(^{-1}\)
- 1989, Badaruddin and Meyer, North Carolina - 130 lb N ac\(^{-1}\)
- 1987, Bulman and Smith, Eastern Canada - 90 lb N ac\(^{-1}\)
2018

- 18 farms
- 13 forage - Green
- 9 grain - Blue
- Three 2nd year sites
- 15 1st year sites
Plot design

<table>
<thead>
<tr>
<th></th>
<th>30</th>
<th>120</th>
<th>120</th>
<th>150</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>150</td>
<td>60</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>60</td>
<td>90</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>90</td>
<td>120</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>30</td>
<td>90</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>60</td>
<td>0</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>
Soil Sampling

[Image of a person taking soil samples]

[Image of a soil sampling tool with dimensions 12 inch and 6 inch]
Fertilizer application

AMMONIUM NITRATE
BASED FERTILIZER
34.4% N

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL NITROGEN (N)</td>
<td>34.4%</td>
</tr>
<tr>
<td>NITRIC NITROGEN (N)</td>
<td>17.2%</td>
</tr>
<tr>
<td>AMMONIACAL NITROGEN (N)</td>
<td>17.2%</td>
</tr>
</tbody>
</table>

500 KG NET
Harvest
Forage yield results

Forage yield

Small grain forage yield (tons DM ac⁻¹)

N fertilizer rate (lb N ac⁻¹)

23%
Grain yield results

Grain Yield

Small grain yield (bu DM ac\(^{-1}\))

N fertilizer rate (lb N ac\(^{-1}\))

Farm 1
Farm 2
Farm 3
Farm 4
Farm 5
Farm 6
Farm 7
Farm 13
Farm 18

44%
Application timing
Is split N worth it?

Extra 30 lbs N in fall

![Graph showing small grain yield vs. spring fertilizer rate (lb N / acre)]
Is split N worth it?

Extra 30 lbs N in fall

No Benefit of fall N application

Small grain yield (bu/acre)

Spring fertilizer rate (lb N / acre)
Is late N application beneficial?

Grain yield (bu/acre)

<table>
<thead>
<tr>
<th></th>
<th>4 Farms</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>A</td>
</tr>
<tr>
<td>Late 60</td>
<td>A</td>
</tr>
</tbody>
</table>
Predicting response to N
Soil nitrate levels (top 12 inch)

Optimum N rate (lb N ac\(^{-1}\))

Soil Nitrate in top 12 inch (ppm)
Soil nitrate levels (top 12 inch)

Optimum N rate (lb N ac$^{-1}$)

Soil Nitrate in top 12 inch (ppm)

58%

Needed N

Needed no N
Leaf Chlorophyll data

Optimum N rate (lb N ac⁻¹)

Percent difference in SPAD

- Grain
- Forage

Leaf Chlorophyll data
Optimum N rate (lb N ac$^{-1}$)

- **Leaf Chlorophyll data**

Percent difference in SPAD

- **Grain**
- **Forage**

Optimum N rate (lb N ac$^{-1}$)

Needed N

65%

No N needed

Utah State University
Preliminary Conclusions

1st year
- Added Nitrogen

Soil Nitrate SPAD
- Limited accuracy
Additional analysis

Protein
Next step

- 15 fall sites set up for 2019
- At least 8 spring sites
- 2020
Thank you

Questions?