Gene expression profiles of immune cells under the influence of bovine trophoblast cell derived extracellular vesicles

Ana C. Silva¹, Kira P. Morgado¹, Christopher J. Davies¹,², Irina A. Polejaeva¹ and Heloisa M. Rutigliano¹,²

¹Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT
²School of Veterinary Medicine, Utah State University, Logan, UT
Embryonic and Early Foetal Losses in Cattle and Other Ruminants

MG Diskin and DG Morris

Teagasc, Animal Production Research Centre, Mellows Campus, Athlone, Co. Galway, Ireland
Embryonic loss is an important problem in the cattle industry.

Review article

Pivotal periods for pregnancy loss during the first trimester of gestation in lactating dairy cows

Milo C. Wiltbank, Giovanni M. Baez, Alvaro Garcia-Guerra, Mateus Z. Toledo, Pedro L.J. Monteiro, Leonardo F. Melo, Julian C. Ochoa, José E.P. Santos, Roberto Sartori

Departments of Dairy Science, University of Wisconsin–Madison, Madison, Wisconsin, USA
Department of Animal Science, University of São Paulo, Piracicaba, SP, Brazil
Department of Animal Sciences, University of Florida, Gainesville, Florida, USA
Embryonic loss is an important problem in the cattle industry. Understanding of mechanisms that regulate placental and embryonic development is relevant to this industry. Immune regulatory interactions between placental and maternal immune cells. Fetal-maternal cross-talk → Release and uptake of EVs.
Embryonic loss is an important problem in the cattle industry.

Understanding of mechanisms that regulate placental and embryonic development is relevant to this industry.

Immune regulatory interactions between placental and maternal immune cells.

Fetal-maternal cross-talk \(\rightarrow\) Release and uptake of EVs.

Mongojo-Tortajada et al., 2014
Hypothesis

Changes in the gene expression profile of maternal immune cells

- IL-1
- IL-2
- IL-4
- IL-5
- IL-6
- IL-8
- IL-10
- IL-12
- IL-13
- IL-15
- IL-17
- IL-18
- IL-23
- IFN-γ
- TNF-α
- TGF-β
- GM-CSF
- FoxP3
- T-bet
- GATA
- GATA-3
- CD25
- CD28
- CD152

- CD4+ γδ TCR+
- CD8+
- CD14+
- γδ TCR+
- CD14+
- CD14+
- CD14+
Methods

Goal: Determine *gene expression profile* of immune cells under influence of placental EV

- Isolation and culture of trophoblast cells
- EV isolation from conditioned media*

- Isolation of immune cells from blood
- Flow cytometry
 - Staining and sorting
 - Specific cell populations

- Culture with EVs
 - 48h

- Quantitative RT-PCR

*Théry et al., 2006
Experimental Design

CD4+/CD25+ Cells

- Trophoblast-derived EVs
- Whole supernatant
- Supernatant without EVs
- Negative control

CD4+/CD25- Cells

- Trophoblast-derived EVs
- Whole supernatant
- Supernatant without EVs
- Negative control

CD8+ Cells

- 1 Animal

Monocytes

γ/δ-T cell
Results

Gata3 Gene Expression

<table>
<thead>
<tr>
<th>Condition</th>
<th>CD4+CD25-</th>
<th>CD4+CD25+</th>
<th>CD8+</th>
</tr>
</thead>
<tbody>
<tr>
<td>no EV</td>
<td>-0.091</td>
<td>-0.32</td>
<td>-0.53</td>
</tr>
<tr>
<td>EV</td>
<td>-1</td>
<td>-0.8</td>
<td>-0.6</td>
</tr>
<tr>
<td>no EV</td>
<td>0.11</td>
<td>0.35</td>
<td>0.11</td>
</tr>
</tbody>
</table>

Foxp3 Gene Expression

<table>
<thead>
<tr>
<th>Condition</th>
<th>CD4+CD25-</th>
<th>CD4+CD25+</th>
<th>CD8+</th>
</tr>
</thead>
<tbody>
<tr>
<td>no EV</td>
<td>0.35</td>
<td>-0.28</td>
<td>0.66</td>
</tr>
<tr>
<td>EV</td>
<td>-1.5</td>
<td>-1</td>
<td>1.41</td>
</tr>
<tr>
<td>no EV</td>
<td>-1.5</td>
<td>-1</td>
<td>1.41</td>
</tr>
</tbody>
</table>

Suppress cell-mediated immunity

<table>
<thead>
<tr>
<th>Condition</th>
<th>CD4+CD25-</th>
<th>CD4+CD25+</th>
<th>CD8+</th>
</tr>
</thead>
<tbody>
<tr>
<td>no EV</td>
<td>Downregulated</td>
<td>Downregulated</td>
<td>Upregulated</td>
</tr>
</tbody>
</table>
Results

Suppress cell-mediated immunity

<table>
<thead>
<tr>
<th></th>
<th>CD4+CD25-</th>
<th>CD4+CD25+</th>
<th>CD8+</th>
</tr>
</thead>
<tbody>
<tr>
<td>no EV</td>
<td>Downregulated</td>
<td>Downregulated</td>
<td>No change</td>
</tr>
<tr>
<td>EV</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Results

Stimulate cell-mediated immunity

<table>
<thead>
<tr>
<th></th>
<th>CD4+CD25-</th>
<th>CD4+CD25+</th>
<th>CD8</th>
</tr>
</thead>
<tbody>
<tr>
<td>No change</td>
<td></td>
<td>Downregulated</td>
<td>Upregulated</td>
</tr>
</tbody>
</table>

IL2 Gene Expression

IL17 Gene Expression
Summary

Trophoblast-derived EVs modulate immune cells gene expression.

Trophoblast-derived EVs are potentially related to shift from a stimulant to a suppressive immune response.

Trophoblast-derived EVs most likely are important agents to regulate a successful pregnancy.

Perform quantitative RT-PCR of four more animals.

If results are consistent, design and perform *in vivo* experiment.

Future directions
Acknowledgements

Committee
P.I. Heloisa Rutigliano, DVM, PhD
S. Clay Isom, PhD
Mirella Meyer-Ficca, PhD
John Stevens, PhD
Zhongde Wang, PhD

Collaborators
Christopher Davies, DVM, PhD
Irina Polejaeva, PhD
Kira Morgado, MS

This project was funded by Utah Agricultural Experiment Station - USU
Gene expression profiles of immune cells under the influence of bovine trophoblast cell derived extracellular vesicles

Ana C. Silva¹, Kira P. Morgado¹, Christopher J. Davies¹,², Irina A. Polejaeva¹ and Heloisa M. Rutigliano¹,²

¹Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT
²School of Veterinary Medicine, Utah State University, Logan, UT

STSS Student Research Symposium
April 11th, 2019