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ABSTRACT 

 
 

Quantitative Genetic Analysis of Reproduction  
 

Traits in Ball Pythons 
 
 

by 
 
 

Benson Howard Morrill, Doctor of Philosophy 
 

Utah State University, 2011 
 
 
Major Professor: Dr. Lee F. Rickords 
Department: Animal, Dairy and Veterinary Sciences 
 
 

Although the captive reproduction of non-avian reptiles has increased steadily 

since the 1970’s, a dearth of information exists on successful management practices for 

large captive populations of these species. The data reported here come from a captive 

population of ball pythons (Python regius) maintained by a commercial breeding 

company, The Snake Keeper, Inc. (Spanish Fork, UT). Reproductive data are available 

for 6,480 eggs from 937 ball python clutches. The data presented suggest that proper 

management practices should include the use of palpation and/or ultrasound to ensure 

breeding occurs during the proper time of the female reproductive cycle, and that 

maintenance of proper humidity during the incubation of eggs is vitally important. 

Ball python reproduction traits (clutch size, clutch mass, relative clutch mass, egg 

mass, hatch rate, egg length, egg width, hatchling mass, healthy offspring per clutch, 

week laid, and days of incubation) were recorded for the clutches laid during this study. 

For the 937 clutches, the identity of the dam and sire were known for 862 (92%) and 777 
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(83%) of the clutches, respectively. A multivariate model that included nine of the 11 

traits listed above was compiled.  Heritability and genetic and phenotypic correlations 

were calculated from the multivariate analysis. The trait that showed the most promise for 

use in artificial selection to increase reproduction rates was clutch size due to 

considerable genetic variation, high heritability, and favorable genetic correlations with 

other reproduction traits. 

Although large datasets have been published for twinning in avian species, 

relatively few are available for non-avian reptiles. Reported here are 14 sets of twins 

produced from 6,480 eggs from 937 ball python clutches. The survival rate for twins 

during the first 3 months of life in our study was 97%. Interestingly, 11 of the sets of 

twins were identical in sex and phenotype, and additional genetic data suggested the rate 

of monozygotic twinning within this captive population of ball pythons was higher than 

that of dizygotic twinning. Further, using microsatellite analysis we were able to generate 

data that shows three sets of python twins were genetically identical. 

(143 pages) 
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CHAPTER 1 
 

REVIEW OF LITERATURE  

 
The captive-bred reptile industry has been growing consistently around the world 

since the 1970’s (Barker and Barker, 2006; Brant, 2001; Hoover, 1998; Mattioli et al., 

2006; Murphy and McCloud, 2010). As an example of the size of the industry, one 

facility in Florida, USA reported the production of 76,100 captive-bred reptiles, and 

2,000,000 rodents marketed for the feeding of captive reptiles, in the year 2001 alone 

(Brant, 2001). A recent independent economic assessment by Georgetown Economic 

Services on the captive reptile industry in the United States of America reported that 

revenues in 2009 were between $1.0 billon and $1.4 billion for this industry (Andrew 

Wyatt, personal communication). Further, Georgetown Economic Services estimated that 

in 2009 13.6 million reptiles resided in 4.7 million U.S. households. For ball pythons in 

particular, tens of thousands are produced yearly in captivity, they are the most 

commonly kept python species, and among the most commonly kept snake species 

(Barker and Barker, 2006). Also, ball pythons with certain color and pattern mutations 

have been sold for upwards of $175,000 USD for a single animal (Murphy and McCloud, 

2010).  

Interest in python reproduction and natural history has also increased recently 

because of the colonization of Burmese pythons (Python molurus bivittatus) in the 

Everglades of Florida, USA (Barker, 2008; Barker and Barker, 2008a, 2008b, 2010a, 

2010b, 2010c; Cox and Secor, 2007; Krysko et al., 2008; Pyron et al., 2008; Reed and 

Rodda, 2009). The USDA also recently carried out and published research on Burmese 

pythons (Avery et al., 2010). 
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Although the production of captive-bred reptiles has increased in recent decades,  
 

scant information exists on management practices for large production facilities, or on  
 
quantitative genetic analyses of reproduction traits. Knowledge such as this has been used  
 
to significantly increase breeding efficiencies in livestock animals for decades (reviewed  
 
in Hackmann and Spain, 2010; Harris, 1998). In addition, no studies have examined  
 
twinning at a larger-scale except in turtles. Therefore, no information exists on whether  
 
twinning leads to positive or negative overall effects on reproduction rates in any other  
 
reptile species, including pythons. Lastly, no genetic data exists to date that proves  
 
monozygotic twinning to has occurred in any non-avian reptile species. 
 
 
Taxonomic History of Python regius 

The first recorded study of ball pythons was by Albertus Seba (Seba, 1734). 

Seba’s works included two illustrations and a brief description of what would become 

known as the ball python (Seba, 1734, 1735). Fig. 1-1 is one of Seba’s illustrations of a 

ball python. With the use of Seba’s pictures, George Shaw gave the ball python its first 

official name, Boa regia in 1802 (Shaw, 1802). In 1849 the ball python was given the 

name Python Bellii (Gray, 1849). Pythons were separated into the family Pythonoidea 

(Fitzinger, 1826), then given subfamily status within the family Boidae (Boulenger, 

1893) all before finally being classified under the family Pythonidae (Kluge, 1991).  

Also noteworthy, in Europe the common name for P. regius is the royal python. 

Because of the shy, and often perceived as cowardly, nature of ball pythons, Barker and  

Barker (2006) mentioned essentially that this common name could frequently be regarded 

as a misnomer. However, they go on to hypothesize that this common name was likely 
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given to P. regius because of the respect and ophiolatry this species incited from many 

of the cultures in West Africa (Bosman, 1705; Hambly, 1931; Williams, 1932). 

 

 

Fig. 1-1. Color illustration from the first known recorded information on the ball python 
from Seba (1734), plate number 62. 

 

The relationships within the genus Python have not been fully resolved for several 

of the species, including P. regius (Douglas et al., 2010; Schleip and O'Shea, 2010). One 

group of researchers hypothesized that P. regius came from a common ancestor that also 

gave rise to the blood pythons and short-tailed pythons, (Python breitensteini, Python 

brongersmai, and Python curtus) in Asia (Underwood and Stimson, 1990). They further 

hypothesized that the lineage that gave rise to P. regius in Africa split and also led to the 
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speciation of the Angolan python (Python anchietae). In Kluge (1991) some of the 

phylogenetic trees show P. regius and P. anchietae as sister species, while others list P. 

curtus as the sister species with P. regius. Kluge (1991) also showed all the species 

within the genus Python as well-supported independent groups, but did not distinguish 

the relationships within the clade. Additional details on the taxonomic history of P. regius 

and the family Pythonidae can be found in Barker and Barker (2006). 

 
Ball Pythons in the Wild: Natural  
History and Reproduction 
 

Ball pythons are regarded as small to medium snakes at adult snout-vent lengths  
 
that generally range from 70 cm to 170 cm, and masses that generally range from 1 kg to  
 
4 kg (Aubret et al., 2003, 2005b, 2005c; Ellis and Chappell, 1987; Gorzula, 1998; 

Gorzula et al., 1997; Luiselli and Akani, 2002; Luiselli et al., 1998; Schleip and O'Shea, 

2010). When encountered, ball pythons are characteristically non-confrontational and 

will usually coil into a ball which hides and protects the head of the python (Aubret et al., 

2003; Barker and Barker, 2006; Cansdale, 1948; de Vosjoli et al., 1994). The common 

name, “ball python” came from the frequent use of this defensive display. 

 
Distribution and Habitat 
 

The distribution of ball pythons is mainly along a strip of area four to fifteen  

degrees N of the equator which includes north western Uganda and south western Sudan 

west to the coast from Liberia north to Senegal (Aubret et al., 2003, 2005c; Cansdale, 

1948; Gorzula, 1998; Gorzula et al., 1997; Luiselli and Akani, 2002; Luiselli et al., 1998; 

Schleip and O'Shea, 2010). Although their distribution approaches the equator in Uganda, 
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no reports have been given of any ball pythons in the southern hemisphere anywhere 

along their distribution. 

Ball pythons are generally thought to inhabit semidesert and dry grassland areas 

within their range (Aubret et al., 2003, 2005b, 2005c; Barker and Barker, 2006; Gorzula 

et al., 1997; Luiselli, 2006; Luiselli and Angelici, 1998). However, reports have been 

given of them in forested areas (reviewed in Barker and Barker, 2006), and heavily 

altered mangrove habitat (Luiselli and Akani, 2002; Luiselli et al., 1998). 

 
Climate and Activity 
 

Barker and Barker (2006) summarized the climate throughout the range of ball 

pythons as being humid and hot during the day, and temperate and more humid at night. 

Daytime high temperatures frequently reach 32°C throughout the year, and during the 

hottest time of the year temperatures between 40°C and 45°C exist at many localities 

within their range. Although the light cycle and temperature are fairly stable throughout 

the year in this area, distinct dry and wet seasons are experienced (Luiselli and Akani, 

2002; Luiselli, et al. 1998). Great detail on the climate from various localities throughout 

the range of ball pythons is reviewed in Barker and Barker (2006).  

In their native range, ball pythons are rarely encountered above ground during  
 
daylight hours and are therefore thought to be generally nocturnal (Aubret et al., 2003, 
 
2005b, 2005c; Gorzula et al., 1997; Greer, 1994; Luiselli, 2006; Luiselli et al., 1998; 

Sprawls, 1989, 1992). During the day ball pythons can frequently be found in burrows or 

termite mounds (Aubret et al., 2003, 2005b, 2005c; Gorzula, 1998; Gorzula et al., 1997;  
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Luiselli, 2006). Although ball pythons are generally regarded as being terrestrial, 

individuals in some populations, especially juveniles and males, have proven to be at 

least somewhat arboreal (Luiselli, 2006; Luiselli and Akani, 2002; Luiselli and Angelici, 

1998). Higher tree-dwelling ectoparasite loads of males have been attributed to their 

greater utilization of trees (Luiselli, 2006). 

 
Diet 
 

An ontogenetic shift in diet has been shown in wild ball pythons. Individuals less 

than 70 cm were shown to eat mainly bird species while those over 100 cm were shown 

to eat mostly mammalian species (Luiselli and Angelici, 1998). This difference in diet is 

also seen between males and females because males tend to attain smaller adult sizes than 

females (Luiselli, 2006; Luiselli and Angelici, 1998). In addition, Luiselli and Angelici 

(1998) mention that the intersexual difference in diet is likely associated with males 

being more arboreal than females. When hunting, whether on the ground or in trees, ball 

pythons are generally thought to be ambush predators (Van Mierop and Bessette, 1981; 

Waas et al., 2010). 

 
Reproductive Cycles 
 

During the dry season, mid autumn to early spring, ball pythons are generally  

inactive (Aubret et al., 2003; Gorzula, 1998). From November through January pairs and 

small groups of ball pythons can be found together in burrows, and females are found 

brooding clutches from February through March (reviewed in Barker and Barker, 2006). 

Similar brooding behavior has been shown in python species in general (Benedict, 1932; 

Lourdais et al., 2007; Ross, 1977; Van Mierop and Barnard, 1976, 1978; Walsh, 1977). 
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Ball python females are monoestrous, therefore within the time period from February to 

March all reproduction for the given year takes place. With an incubation period of 

approximately 55-65 days, hatching of ball python eggs occurs just before the rainy 

season begins. The rainy season lasts from May to August (Aubret et al., 2003). 

Gorzula (1998) reports the collection of 206 adult ball pythons from 24 sites. 

Among these were 64 adult females of which 45 (72%) were either on eggs or were 

obviously gravid. Female reproductive frequencies in wild python species have been 

reported to be less than annual in general, and as infrequent as every third year in 

diamond pythons (Morelia spilota) (Madsen and Shine, 1996; Slip and Shine, 1988). The 

high percentage of reproductive females reported by Gorzula (1988) would suggest that 

the reproductive frequency of wild ball pythons is less than annual, but also more 

frequent than biannual. 

Although published data are not available on the reproductive cycle of male ball  
 
pythons, it is assumed to be similar to that of other male snakes in that a greater  
 
production of sperm, which can be observed by significantly enlarged testis, occurs in  
 
relative synchrony with the breeding season(s) (Aldridge et al., 1995; Fitch, 1970; 

Graham et al., 2008; Scott et al., 1995; Shine et al., 1998). Specifically, the male ball 

python reproductive cycle is likely similar to that of the mixed type with one period of  

spermiogenesis (Saint Girons, 1982). Data from reticulated pythons (Broghammerus  

reticulatus), blood pythons (Python brongersmai), and short-tailed pythons (Python  

curtus) support this assumption (Shine, 1999; Shine and Harlow, 1999; Shine et al., 

1998). Also noteworthy, male ball pythons have been reported to display male-male 

combat during the breeding season in captivity (Schuett et al., 2001). 
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Reproductive Traits 
 
 Relatively little information exists on the reproductive traits of wild ball pythons.  
 
However, such reports do exist from two separate research groups (Aubret et al., 2003,  
 
2005c; Gorzula et al., 1997). Table 1.1 summarizes the findings from these studies. 
 

In Africa, accounts of tribes keeping pythons in what were described as fetish-

houses or temples date back to the early 1700s (Bosman, 1705; M'Leod, 1820). M’Leod 

(1820) also mentions that the people kept the python temples swept, the pythons well fed, 

and that people would come to worship the captive pythons and be healed. In Europe, 

Albertus Seba (1665-1735) of northwestern Germany was likely among the first to keep 

ball pythons in captivity. Figure 1-1 depicts one of his colored illustrations of a ball 

python (Seba, 1734). 

 
Ball Pythons in Captivity: History of  
Husbandry and Reproduction 
 

Although ball pythons were available in the United States in the mid 1900s, they 

were scarce (Barker and Barker, 2006). Ball pythons were not brought into the United 

States in appreciable numbers until the late 1960s. By the end of the 1980s ball pythons 

were common in the U.S. captive reptile trade (Barker and Barker, 2006). One interesting 

fact about captive ball pythons is that the oldest snake ever recorded was a ball python 

that lived at the Philadelphia Zoo for over 47 years (Conant, 1993).  

 
The First Successful Captive Reproduction  
of Ball Pythons, Logan (1973) 
 

The earliest captive reproduction of ball pythons reported was at the Houston 
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Zoo from 1969 to 1972 (Logan, 1973). During this time period the Houston Zoo had 

three ball pythons, one male and two females. All three were purchased as wild-caught 

adults. The trio was kept in a cage with dimensions of approximately 120 cm long, 100 

cm wide, and 140 cm tall that contained a pool of water large enough to soak in. The 

substrate consisted of an inch thick layer of gravel on top of concrete. Various fake 

plants, logs, and rocks were present in the cage as well. During the summer months the 

substrate temperature was generally between 26.7°C and 29°C. In the winter basking 

spots of 29°C were provided by two infrared lamps. The food offered to the ball pythons 

consisted of adult pre-killed mice. 

 
Table 1-1  
Reproductive data from two research groups on wild ball python populations. 
Descriptions for abbreviations are as follows: CSIZ = clutch size; MAS = post-
oviposition mass of the female; CMAS = clutch mass; RCM = relative clutch mass 
(CMAS/MAS); EMAS = egg mass. All values are means per clutch followed by their 
respective standard deviations in parentheses. All values from Aubret et al. came from 
their 2003 paper except EMAS which came from Aubret et al., 2005c. All masses are 
given in grams. 

Research Group               Gorzula et al., 1997                          Aubret et al., 2003, 2005c 
Location    Ghana           Togo  
CSIZ                                      8.1 (1.7)                                 7.7 (1.7)     

MAS                                   1337 (238)                                      1235 (241)  

CMAS                                     772 (138)                                        646 (174)  

RCM                                    0.55 (0.07)                                       0.52 (0.09)  

EMAS                                    97.9 (16.3)                                       90.0 (10.7) 

 
 
 Logan noted that their ball pythons tended to spend more of their time in the 

cooler areas of their cage as compared to other pythons and boas at the zoo. Specifically, 
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Logan states, “I’ve never seen our regius ‘bask’ under the warm spot…as do other 

Boids.” Logan also noted that the ball pythons began to decrease their food intake in late 

October or early November, and were completely off food for approximately four months 

of the year. Logan further stated that similar fasting among ball pythons had been 

reported by other U.S. zoos. 

Although the male courted both of the females, only one of them was receptive 

and therefore all four clutches reported by Logan were laid by the same female. Clutches 

of eggs were laid on the following dates: March 15, 1969 (six eggs); March 11, 1970 

(nine eggs); April 2, 1971 (nine eggs); and April 15, 1972 (seven eggs). In all instances 

the female laid the eggs during the night and the eggs were strongly adhered in a single 

mass when found the next morning.  

Clutches were placed within plastic containers lined with moist paper towels. The 

eggs were covered with moist paper towels within the plastic container, and the container 

was sealed. The container was opened weekly and the eggs were checked to ensure they 

were not drying out. Two eggs, one from each of the 1969 and 1972 clutches, ruptured 

about two weeks after being laid and much of their albumen was lost. This was attributed 

to the eggs swelling during incubation and “weak areas on the shell” giving way to 

ruptures. In both cases the embryos developed to term and hatched, but were significantly 

smaller than the other hatchlings. Also, these hatchlings emerged about a week after their 

clutchmates. 

The 1969 clutch was incubated at 26.7°C. Logan noted that several of the eggs 

contained weak areas on their shells. Five of the six hatchlings from the 1969 clutch 
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emerged from their eggs on day 97 of incubation. The sixth hatchling, from a ruptured 

egg, hatched out on day 105.  

Given the perfect hatch rate from the 1969 clutch, the eggs from the 1970 clutch 

were also incubated at 26.7°C. Logan noted that this clutch had the best appearance of all 

the clutches because very few weak areas could be seen on the shells of the eggs. 

However, only two of the nine eggs produced healthy hatchlings. These two eggs hatched 

on day 102 of incubation. The other seven eggs contained fully-formed embryos that 

were dead in the egg. 

Worried that the low hatch rate for the 1970 clutch could have been due to an 

excessively long incubation period, the 1971 clutch was placed in a different incubator at 

a higher temperature. Unfortunately, the thermostat for this incubator was poor and the 

eggs reached temperatures over 37.8°C. The embryos within all nine eggs expired before 

hatching. 

The 1972 clutch was incubated at 26.7°C. Once again, several of the eggs had 

weak areas on their shells, and one ruptured on day 14 of incubation. After 90 days the 

eggs began hatching and young emerged from 4 of the 7 eggs. On day 91 two more 

hatchlings were observed with their heads protruding from their eggs, as is common just 

prior to emergence from eggs. The following day both these young were found dead with 

their heads still protruding through their shells. The last egg to hatch was the one that had 

ruptured early in incubation. A small but healthy hatchling emerged from this egg on day 

95 of incubation. 

Among the various observations that Logan reported from these captive-bred 

clutches and offspring was that the female was seen twitching her muscles while 
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incubating her eggs. Such shivering during incubation had been shown in P. molurus 

to increase brooding temperatures above that of the ambient temperature (Hutchison et 

al., 1966; Vinegar et al., 1970), and has subsequently been shown to occur in other 

python species (Harlow and Grigg, 1984). Also, the presence of an egg tooth was 

mentioned. Further, Logan reported that the egg tooth was lost before the first ecdysis. 

Logan also noted that the young nearly always took multiple days to complete the 

hatching process. During the hatching process they were frequently observed with their 

heads protruding through their shells, which they would usually retract defensively when 

disturbed. 

The most commonly observed circumstance in which this pair copulated over the  
 
years was just after the female was removed from her eggs. The other frequent time at  
 
which this pair copulated was just after the female shed her skin. Logan concluded that  
 
some odor must be emitted from the female during these processes that stimulated  
 
breeding behavior in the male. The duration of such copulation periods for this pair was  
 
reported to be several days in length. 
 
 
The First Successful Captive Hatching of  
Ball Pythons by Maternal Incubation 
 
 Van Mierop and Bessette (1981) reported the first hatching of ball pythons that 

had been maternally incubated in captivity. They reported on two maternally incubated 

clutches from two different females; one oviposited in June 1978, the other in March 

1979. The female that maternally incubated the clutch in 1978 was considerably smaller 

than the one in 1979 (980 g versus 2010 g). The smaller female was placed in a 60 cm X 

30 cm X 30 cm glass tank for the duration of the maternal incubation period. The glass 
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aquaria contained a 3 cm layer of damp sphagnum moss on top of a 2 cm layer of 

damp peat moss, and a piece of driftwood was present. The larger female was placed in a 

90 cm X 38 cm X 30 cm glass cage with similar interior components. Incandescent bulbs 

were used to control the heating within the cages. The relative humidity was maintained 

above 90 percent throughout the incubation periods by misting within the cages 

frequently. 

 No matings with the smaller female were observed. She became noticeably more 

irritable and aggressive just prior to laying her eggs. She also began to lay sideways or 

upside-down under the basking light during this time. She laid four eggs on June 19, 

1978. The mean coil temperature for the duration of incubation was 30.6°C. Van Mierop 

and Bessette report observing this female leave her eggs almost daily to bask in the hot 

spots within the cage. Coil temperatures were elevated up to 2°C above ambient 

temperatures after such basking behavior. This female was offered small pre-killed rats 

on four occasions when she was off her eggs and she ate three of those times. After two 

weeks of incubation, two of the eggs began to degrade. At 63 days of incubation the other 

two eggs began to hatch, with emergence from the egg two days later. After their first 

shed the hatchlings fed on live newborn rats. After one year the young had increased in 

mass by six-fold. 

 The second pair was observed mating on several occasions. The behaviors of the 

second female prior to oviposition and during maternal incubation were similar to those 

described above for the first female. However, the second female refused to take any food 

items while incubating her eggs. This female laid her clutch of seven eggs on 7 May 

1979. One of the eggs was excluded from her coils and was thus artificially incubated in 
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a glass container with damp sphagnum and peat moss. The overall average coil 

temperature for this clutch was 30.1°C. Four days prior to hatching the eggs were no 

longer adherent and the female was then unable to coil around them. The eggs were then 

placed in an artificial incubator. After 67 days of incubation the young began the 

hatching process, including the one in the egg that was artificially incubated for the entire 

incubation period. After three additional days all seven young had emerged from their 

shells. 

 Contrary to the report by Logan (1973) of muscle twitching in a female when she 

was brooding her eggs, Van Mierop and Bessette (1981) did not observe any such 

behaviors by their females. They therefore concluded that as long as ball pythons are 

provided with ample temperature choices while they are maternally incubating their 

clutches, they are able to regulate the temperature of their eggs behaviorally by basking 

during the warmest portions of the day when needed. 

 
Current Captive Husbandry and  
Reproduction of Ball Pythons 
 
 Multiple works provide the details currently accepted to be ideal for the captive 

husbandry and reproduction of ball pythons (Barker and Barker, 2006; de Vosjoli et al., 

1994; McCurley, 2005; Seward et al., 2001). Although the majority of the following 

information comes from Seward et al. (2001) and additional personal communication 

with Dan and Colette Sutherland of The Snake Keeper, Inc. (Spanish Fork, UT), much of 

it is similar to that presented in Barker and Barker (2006), de Vosjoli et al. (1994) and 

McCurley (2005). 
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Breeder ball pythons are typically housed within rack systems with individual 

cages measuring approximately 81 cm L x 43 cm W x 18 cm H. Various types of chipped 

wood bedding are used as the substrate in the cages. Whole prey items are offered each 

week and water is available ad libitum. From March to October, the rodents offered are 

typically about 95 g, and during the breeding season (November to February) they are 

smaller (approximately 65 g). The ambient temperature of the breeding facility is 

controlled to prevent it from exceeding 29.5°C from March to October, and from 

dropping below 21°C from November to February. Throughout the year, a temperature 

gradient is maintained in each cage by providing a hot spot that is 32°C during the day 

and 29.5°C at night. Humidity is usually maintained in the breeding facility at 

approximately 60% year round using various types of humidifiers.  

During the breeding season, females over 1500 g are placed in the cages of males 

over 500 g for one to two days and any observed breeding activity is recorded. Pairs are 

put together at regular intervals in an attempt to ensure that each female is bred at least 

once each month during this time. Once females are gravid, they are no longer placed 

with males. 

Females known to be gravid are checked daily for eggs once they are 30 days past 

their post-ovulation shed. Eggs are removed immediately from each female, weighed as a 

clutch, counted, separated, weighed individually, measured (length and width), notated if 

they were infertile egg masses, and placed into an incubation container that is then placed 

in the incubation room. Each female is also weighed at this time, and a relative clutch 

mass (RCM) is calculated by dividing the mass of the clutch by the post-oviposition mass 

of the female. The ages of the sire and dam at the time of oviposition, when known, are 
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also recorded. Also from these data, number of consecutive clutches laid by the female 

prior to and including each clutch is recorded. 

The containers used for incubation are frequently Styrofoam shipping containers 

that measure approximately 28.5 cm L x 39 cm W x 18 cm H externally and are 2.4 cm 

thick. The medium used for incubation in these containers is a mixture of one part perlite 

and two parts vermiculite. Then, five parts incubation medium is mixed with one part 

water by volume and the container is placed in the incubation room several days prior to 

incubating eggs in order to allow the contents of the box to reach incubation 

temperatures. The top of each incubation box is covered with a 1 cm thick pane of glass. 

The incubation room is thermostatically controlled by a Helix DBS 1000 (Helix Control 

Systems, Inc, Vista, California) or similar to stay between 31°C and 31.7°C. 

Data are also collected per egg on whether the egg is infertile, died during  
 
incubation, contained a fully formed embryo that was dead in the egg, embryo was live  
 
but deformed, or contained a healthy hatchling. For the eggs that hatched, the hatch date  
 
is recorded for each egg and each hatchling is weighed. After hatching, a hatch rate is  
 
calculated for each clutch.  
 

History of Quantitative Genetic Studies  
on Reptile Reproduction Traits 

 Although published studies on reproductive data from wild populations of snake  
 
species are widely available (Brown and Shine, 2007; Farrell et al., 2009; Luiselli et al.,  
 
1996; Madsen and Shine, 1996; Slip and Shine, 1988), comparatively few publications  
 
have presented reproductive data from large populations of captive snakes over multiple  
 
years. Specifically in pythons, the studies that have been published on captive  
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populations have generally been on small sample sizes (N < 30 clutches), and have been  
 
limited to reporting averages and ranges for reproductive traits (Barker and Barker, 2006;  
 
de Vosjoli et al., 1994; Ross and Marzec, 1990). The larger sample sizes and correlative  
 
data generated in studies on wild snake populations have provided researchers with the  
 
ability to study various aspects of reproduction such as: optimal clutch size (Aubret et al.,  
 
2003; Brown and Shine, 2007), repeatability of reproductive traits (Brown and Shine,  
 
2007; Farrell et al., 2009; Ford and Seigel, 2006), nonlinear correlation between female  
 
size and snout-vent-length (Brown and Shine, 2007; Luiselli et al., 1996; Madsen and  
 
Shine, 1996), and female reproductive frequency (Farrell et al., 2009; Madsen and Shine,  
 
1996; Slip and Shine, 1988). 
 
 
Calculation of Heritabilities  
and Correlations 
 

Even though the captive reproduction of reptiles has increased significantly 

over the last few decades, little research has focused on reproductive traits in any captive 

non-avian reptiles. Among the diminutive body of such research is a series of papers 

from data collected at the Janamba Croc Farm (Northern Territory, Australia) on 

saltwater crocodiles (Crocodylus porosus) in which they studied reproduction traits 

(Isberg et al., 2005a), age at slaughter (Isberg et al., 2005b), juvenile survival (Isberg et 

al., 2006a), and number of scale rows (Isberg et al., 2006b) in relation to skin production. 

Although sample numbers were sizeable for the reproduction traits studied (30 pairs of 

breeders and 190 clutches), the researchers were unable to calculate heritabilities (h2) 
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because they did not know the pedigrees of their breeding adults (all but one pair were 

wild caught).  

A select few smaller studies on wild snake populations and small captive 

populations have been able to calculate repeatabilities (R) and phenotypic correlations 

(rP), and in fewer still, genetic correlations (rG) and h2 (Bronikowski and Arnold, 1999; 

Brown and Shine, 2007; Farrell et al., 2009; Ford and Seigel, 2006). Unfortunately, these 

studies generally relied on small sample sizes and were plagued with high error values. 

One trend that seems to exist in most snake species is a moderate to strong correlation 

between snout-vent length and age (Baron et al., 2010; Farrell et al., 2009; Ford and 

Seigel, 1994). Another trend that exists in reptiles in general, and specifically in snakes, 

is the trade-off between clutch size and egg mass (Bonnet et al., 2001; Brown and Shine, 

2007; Ford and Seigel, 2006; Garner et al., 2002; Gregory and Skebo, 1998; King, 1993; 

Li-xin et al., 2006). 

To date, it has been common practice to include measurements for all eggs in  
 
snake clutches when calculating R, h2, rG, and rP even though it has been documented  
 
that snake clutches often contain some infertile egg masses, frequently referred to as  
 
“slugs,” that are discolored and smaller than the other eggs (Barker and Barker, 2006;  
 
Gorzula et al., 1997; Madsen and Shine, 1996; Ross and Marzec, 1990). Similarly, a 

recent quantitative study on porcine reproductive traits raised concerns about using 

average values from litters that include values from stillborns (Wittenburg et al., 2011). 
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Use of Restricted Maximum Likelihood  
in Animal Breeding Genetics 

 
The Use of Ordinary Least Squares Versus  
Restricted Maximum Likelihood 
 

The use of ordinary least squares (OLS) to estimate variance components that 

can be used to calculate values important in animal breeding genetics such as 

repeatability (R), heritability (h2), and phenotypic correlation (rP) is relatively simple and 

straightforward. Historically, OLS was the main method by which researchers calculated 

R, h2, and rP for their study populations (Akesson et al., 2007; Falconer and Mackay, 

1996; Galton, 1889; Lynch and Walsh, 1998; Mousseau and Roff, 1987; Provine, 1971). 

However, several assumptions are made about data when OLS is used. These 

assumptions include the following: random mating; no directional or stabilizing selection 

on the traits being studied (natural or artificial); no linkage disequilibrium between the 

traits and/or factors, no epistasis between traits and/or factors; no covariances of traits 

and/or factors with environmental effects (Falconer and Mackay, 1996). Such strict 

assumptions are easily violated among many wild populations of animals, and frequently 

violated within captive populations (Akesson et al., 2008; Falconer and Mackay, 1996; 

Lynch and Walsh, 1998). Lastly, OLS is also sensitive to unbalanced datasets (Falconer 

and Mackay, 1996; Lynch and Walsh, 1998).  

Restricted maximum likelihood (REML) provides researchers with a statistical 

framework by which they can study animal breeding genetics when their study 

populations severely violate the assumptions of OLS (Akesson et al., 2008; Falconer and 

Mackay, 1996; Lynch and Walsh, 1998). With REML researchers are able to utilize 
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pedigree information from their population in order to calculate more accurate values 

for h2, rP, and rG. Therefore, REML is much less sensitive to unbalanced datasets, and 

more efficiently utilizes whatever data are available.  

In recent years, REML has been widely used to study traits within wild and  
 
captive populations of animals (Akesson et al., 2008; Gilmour et al., 2009; Isberg et al.,  
 
2005a, 2005b, 2006a, 2006b; Shaat and Mäki-Tanila, 2009; Su et al., 1997; Wilson et al., 

2007, 2009; Wittenburg et al., 2011). Akesson et al. (2008) specifically tested the use of 

OLS versus REML on a wild population of great reed warblers (Acrocephalus 

arundinaceus) to see if REML would provide superior estimates of h2 and rP. They 

concluded that REML produced more accurate (lower standard error) h2 and rP values 

than did OLS for the traits reviewed in their study. 

 
ASReml as a Statistical Software Package for  
Analyzing Animal Breeding Genetics Data 
 
 Several statistical software packages are available that have been designed 

specifically for use in analysis of animal breeding genetics data using REML. The 

following are such software packages, followed by their associated websites in 

parentheses: ASReml (http://www.vsni.co.uk/software/asreml/); ASReml-R 

(http://www.vsni.co.uk/software/asreml/); DMU (http://www.dmu.agrsci.dk/); 

WOMBAT (http://didgeridoo.une.edu.au/km/homepage.php); and VCE 

(http://vce.tzv.fal.de/software). At the present all the above software packages are 

available for free download and use except the ASReml packages. For detailed 

information regarding the above software packages, including extensive tutorials on the 

use of ASReml, ASReml-R, and WOMBAT, see Wilson et al. (2009). 
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 ASReml runs faster and is therefore capable of higher throughput than the other  
 
software packages. A convenient and helpful highlighter for ASReml coding is available  
 
within the freeware text-editor ConTEXT (Wilson et al., 2009). Also of importance, in  
 
ASReml researchers are able to calculate significance levels for fixed effects (Gilmour et 

al., 2009). Such a capability is vital to testing the importance of fixed effects on traits  

within studies and is a severe disadvantage to the use of the freeware programs. ASReml  

also allows for the independent assignment of fixed and random effects for all traits in  
 
multivariate analyses. Thus, ASReml allows for the calculation of all significant fixed  
 
and random effects independently for every trait within a multivariate model (Wilson et  
 
al., 2009). Such a complex multivariate model is frequently desired for studying animal  
 
breeding genetics in wild and captive populations. 
 

History of Reptilian Twinning Studies 

 Large datasets are available on twinning rates for avian species (Byerly and 

Olsen, 1934; Sittmann et al., 1971; Thorogood and Ewen, 2006). Extensive datasets on 

twinning in non-avian reptile species are mostly limited to chelonian species (Eckert, 

1990; Hildebrand, 1938; Tucker and Janzen, 1997; Yntema, 1970, 1971). Reports of 

twinning in the remaining non-avian reptile groups consist mainly of accounts of single 

occurrences of twinning (Aucone and Branham, 2005; Blomberg, 1979; Carpenter and 

Yoshida, 1967; Clark and Tytle, 1983; Curtis, 1950; Gudynas and Gambarotta, 1981; 

Hartdegen and Bayless, 1999; Mackness et al., 1998; Marion, 1980; Reese, 1906; Shaw, 

1954; Shuette, 1978).  
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From the large turtle and bird datasets, reports have shown twinning to be 

reproductively disadvantageous due to low survival rates experienced by the twins. 

In turtles, a major contributor to the low survival rates observed was that a high 

percentage, estimated to be approximately 80%, of the twins found were 

asymmetrical and the smaller twin died in the egg (Tucker and Janzen, 1997; 

Yntema, 1970, 1971). Studies including 4,943 red-eared slider (Trachemys scripta) 

and over 6,000 common snapping turtle (Chelydra serpentina) eggs reported 

survival rates of twins to be between 40% and 50% (Tucker and Janzen, 1997; 

Yntema, 1970, 1971). Survival rates below 50% were reported in three-toed box 

turtle (Terrapene carolina triunguis) and eastern box turtle (Terrapene carolina 

triunguis) populations as well (Cohen, 1986; Messinger and Patton, 1995). 

Hildebrand (1938) reported finding only one set of completely separate twins from 

100,000 diamond-back terrapin (Malaclemmys centrata) eggs, and they both died 

shortly after being found. From a study that consisted of approximately 40,000 

leatherback sea turtle (Dermochelys coriacea) eggs it was concluded that all twins 

perished before hatching (Eckert, 1990). Likewise, studies on multiple avian species 

reported 0% survival rates for twinned embryos (Munro, 1965; Sittmann et al., 

1971). 

A higher occurrence of conjoined twinning in comparison to complete 

twinning has been reported in the turtle and bird literature (Byerly and Olsen, 1934; 

Crooks and Smith, 1958; Hildebrand, 1938; Sittmann et al., 1971; Yntema, 1970, 

1971). Also, reports of twin eggs being larger than the other eggs from the same 

clutches have come from several reptilian taxonomic groups including the 
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following: avian (Alley and Berry, 2002; Bassett et al., 1999); crocodilian (Blomberg, 

1979); lizard (Carpenter and Yoshida, 1967; Hartdegen and Bayless, 1999); and 

colubrid snake (Singh and Thapliyal, 1973). 

In two different turtle studies, attempts were made to investigate potential 

differences between twinning and non-twinning clutches and females (Eckert, 1990; 

Tucker and Janzen, 1997). Eckert (1990) found no differences in female size, clutch 

size, incubation period, or year associated with twin-bearing clutches compared to 

those without twins. Conversely, she did find that twin-bearing clutches had a 

significantly higher percent of yolked eggs than non-twinning clutches, and females 

that produced two or more twins in a single year were 17 times more likely to twin 

again the following year than by chance alone. Tucker and Janzen (1997) reported 

that twinning females were larger in plastron length and mass, and laid larger 

clutches than non-twinning females.  

Studies on the effects of environmental conditions on the prevalence of 

developmental anomalies have shown that decreases in temperature or oxygen 

concentration can significantly increase twinning rates (Newman, 1923; Sittmann et 

al., 1971; reviewed in Hildebrand, 1938; Landauer, 1967). Newman (1923) reported 

specifically on how crowding of starfish eggs led to increased twinning rates 

presumably due to increased CO2 and decreased O2 levels among the eggs. The 

higher percent yolked eggs and larger clutch sizes that Eckert (1990) and Tucker 

and Janzen (1997) among twinning clutches could have led to such crowded 

conditions. 



 24 
In mammals, the rate of monozygotic twinning is generally lower than that for 

dizygotic twinning (reviewed in Aston et al., 2008; Gleeson, 1994; although see 

Blickstein and Keith, 2007 for a notable exception). In the turtle literature more 

researchers have surmised that the twinning they have observed has been dizygotic 

(Crooks and Smith, 1958; Yntema, 1970, 1971) than those concluding observed 

twins were monozygotic (Hildebrand, 1938). Conversely, among snake species 

more researchers have concluded observed twinnings were monozygotic (Curtis, 

1950; Mackness et al., 1998; Manimozhi et al., 2006) than dizygotic (Marion, 

1980).  

To date, no studies have reported genetic data showing monozygotic 
 

twinning to have occurred in any non-avian reptile species. However,  
 
microsatellites have been designed and tested for several genera within the family  
 
Pythonidae (Jordan et al., 2002; Taylor, 2005). Further, tested protocols are in place  
 
that could be used to extract DNA from shed skins (Fetzner, 1999) and use 

fragment length analysis to compare twins to each other and their parents (Jordan et 

al., 2002; Schuelke, 2000; Taylor, 2005). Such a study would provide an 

opportunity to test whether monozygotic twinning was occurring or not. 

 
Summary 

 The captive breeding of reptiles has increased substantially in recent years.  
 
Although some commercial reptile breeders have reported annual captive  
 
production numbers in the tens of thousands for some reptile species, a dearth of  
 
information exists on reproduction traits and management practices for these  
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species. Among the few such reports that have been published are studies in which  
 
either sample sizes were too small to calculate heritabilities without prohibitively  
 
large standard errors, or the pedigree information was too limited to calculate  
 
heritabilities at all. A recent study on pig quantitative genetics of reproduction traits  
 
called into question the use of measurements from stillborns in the calculation of  
 
litter averages. To date, infertile egg masses that were discolored and smaller than  
 
the fertile eggs have been included in all snake quantitative genetic studies. Finally,  
 
although studies with large sample sizes have been published on twinning rates and  
 
the effects of twinning on overall reproduction rates in turtle species, no such  
 
studies have been carried out on any other non-avian reptile taxonomic group.  
 

Research Goals and Possible  
Applications of Project 

 
First Objective 
 

The first objective of my research was to analyze extensive reproduction data  
 
from a commercial ball python breeding company over several years and multiple  
 
generations in order to be able to identify management practices that were important for  
 
high efficiency of reproduction in ball pythons. From this analysis three main suggestions  
 
are given to those who wish to reproduce ball pythons efficiently: 1) Become proficient 

in techniques such as follicle palpation and ultrasound in order to assess the reproductive 

stages of females throughout the year; 2) Understand that the reproductive frequency of 

python females in captivity may be every other year, or even every third year and not to 

overly focus on getting females to reproduce every year; 3) Make provisions in breeding 
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procedures to decrease the risk of subjecting eggs to desiccation at any time during 

incubation. Such information could also aid in the improvement of successful captive 

reproduction of rare and/or difficult to breed python species such as the black python 

(Morelia boeleni; Austin et al., 2010). 

 
Second Objective 

Objective two of this project was to perform quantitative genetic analysis on ball 

python reproduction traits from nine years of reproduction data that included 6480 eggs 

laid in 937 clutches. Given the superb pedigree knowledge within this population, the 

identity of the dam and sire were known for 862 (92%) and 777 (83%) of the clutches 

respectively, heritability (h2) along with genetic (rG) and phenotypic (rP) correlations 

were calculated. I was also able to test whether measurements from infertile egg masses 

should be included or excluded from quantitative genetic analyses. 

 Maximization of healthy offspring per clutch (HOFF) was deemed to be the main 

goal in developing selection strategies. Estimates from the multivariate analysis for h2 

ranged from 0.21 to 0.60, and coefficient of variation (CV, measurement of genetic 

variation) ranged from 0.06 to 0.44. Although the highest CVs were for HOFF and hatch 

rate (HR), they were only of moderate heritability (0.24 and 0.28, respectively). While 

the heritability for egg mass (EMAS) was the highest of all the traits (0.60), CV for 

EMAS was only 0.13. Further, the rG and rP for EMASS and HOFF were -0.13 and 

0.009, respectively. Therefore, although HOFF, HR, and EMAS were deemed important 

for use in creating selection criteria, they were not ideal due to lower heritability or 

genetic variation. Conversely, heritability for clutch size (CSIZ) was high (0.44), and the 
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estimate of CV for CSIZ was among the highest for all the traits (0.26). Also, rG and 

rP between CLSIZE and HOFF were both 0.54. Given the above data, CSIZ appeared to 

be the most ideal trait to focus on when setting up selection criteria for our captive 

population of ball pythons. 

Past researchers have suggested that egg width, and perhaps egg length, could  
 
provide an indication of the volume within the oviduct available for eggs (Ford and  
 
Seigel, 1989; Pizzatto et al., 2007). Due to the fact that snakes do oviposit some infertile  
 
masses among their clutches that are smaller (Barker and Barker, 2006; Gorzula et al.,  
 
1997; Madsen and Shine, 1996; Ross and Marzec, 1990), I hypothesized that the 

inclusion of the measurements for these infertile, smaller egg masses would decrease the  

correlations between these traits and their explanatory factors because these smaller  

masses would be poor indicators of oviductal space. Further, I hypothesized that averages  

for egg width and perhaps egg length that included measurements from infertile egg  

masses would lead to lower h2 estimates. The data presented herein provide evidence  

that it would likely be beneficial for researchers to exclude measurements from infertile  

egg masses when they are calculating mean egg lengths and widths for use in developing  

breeding selection programs for ball pythons, and perhaps other snake species as well.  

 
Third Objective 
 
 The final objective was to review the twinning data from the captive population of 

ball pythons and determine: 1) If twinning generally increases or decreases reproductive 

efficiencies; 2) If any reproductive traits correlate with higher occurrences of twinning; 

and 3) If monozygotic twinning has occurred among this, and other, study populations. 
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Although twinning in turtle species has been reported to decrease overall reproductive 

efficiencies because survival rates for twins are below 50%, the survival rate for twins in 

our captive population of ball pythons was 97%. As for reproductive traits that positively 

correlate with twinning, RCM was found to be significantly higher in twinning clutches 

than non-twinning clutches. Lastly, we present the first genetic data showing that 

monozygotic twinning has occurred in pythons. 
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CHAPTER 2 

EFFECTS OF CAPTIVITY ON FEMALE REPRODUCTIVE  

CYCLES AND EGG INCUBATION IN BALL  

PYTHONS (PYTHON REGIUS)1 

Introduction 

Although published studies on reproductive data from wild populations of snake 

species are widely available (Brown and Shine, 2007b; Farrell et al., 2009; Luiselli et al., 

1996; Madsen and Shine, 1996; Slip and Shine, 1988), comparatively few publications 

have presented reproductive data from large populations of captive snakes over multiple 

years. Specifically in pythons, the studies that have been published on captive 

populations have generally been on small sample sizes (N < 30 clutches), and have been 

limited to reporting averages and ranges for reproductive traits (Barker and Barker, 2006; 

de Vosjoli et al., 1994; Ross and Marzec, 1990). The larger sample sizes and correlative 

data generated in studies on wild snake populations have provided researchers 

with the ability to study various aspects of reproduction such as: optimal clutch size  
 
(Aubret et al., 2003; Brown and Shine, 2007b), repeatability of reproductive traits 

(Brown and Shine, 2007b; Farrell et al., 2009; Ford and Seigel, 2006), nonlinear 

correlation between female size and snout-vent-length (Brown and Shine, 2007a; Luiselli 

et al., 1996; Madsen and Shine, 1996), and female reproductive frequency (Farrell et al., 

2009; Madsen and Shine, 1996; Slip and Shine, 1988). Comparable research in captive  
 
populations could provide a foundation for the development of captive breeding 
________________________ 
1Published in Herpetological Review 42(2): 226-23 (2011). Benson H. Morrill, Lee F. 

Rickords, Colette Sutherland, Justin G. Julander. 
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programs with higher reproductive efficiencies. Knowledge such as this has been used 

to significantly increase breeding efficiencies in livestock animals for decades (reviewed 

in Hackmann and Spain, 2010; Harris, 1998). Moreover, an enhanced understanding of 

python reproductive traits and the correlations between them could increase success in 

reproducing endangered species, and other species that have been problematic to breed in 

captivity; such as the black python (Morelia boeleni) (Austin et al., 2010). 

A commercial reptile breeding company, The Snake Keeper, Inc. (Spanish Fork, 

Utah) has been breeding ball pythons in captivity for over 20 years. Since 2002 they have 

been collecting reproductive data on their ball python breeding colony. During this time 

they have collected data on 5,344 eggs from 783 clutches. A review of these extensive 

data provides novel information about ball python reproduction and how various 

reproductive traits are associated with each other. Data presented in the present study on 

the duration of reproductive events in ball pythons are similar to data that have been 

published previously (Barker and Barker, 2006; de Vosjoli et al., 1994; Ross and Marzec, 

1990). Novel data presented in this study supply information about age at first 

reproduction, frequency of female reproduction, effects of desiccation on hatch rate, and 

optimal clutch size. A correlation matrix for reproductive traits is also provided. These 

data provide a foundation for the design of future experiments, and for enhancing 

efficiencies of current and future breeding programs. 

Materials and Methods 

Adult ball pythons were housed in individual cages measuring 81 cm L x 43 cm 

W x 18 cm H with mesh tops within rack systems (Fig. 2-1). The substrate used in the 
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caging was chipped aspen bedding. Water was available ad libitum and whole prey 

was offered each week. During the warm months (March to October), the rodents offered 

were approximately 95 g, and during the breeding season (November to February) they 

were approximately 65 g. The ambient temperature is controlled from March to October 

to prevent it from exceeding 29.5°C, and November to February from dropping below 

21°C. Throughout the year, a hot spot is available in each cage that is 32°C during the 

day and 29.5°C at night. Humidity is maintained in the breeding facility at approximately 

60% year round by a Humidifirst MP15 ultrasonic humidifier (Humidifirst, Inc., Boynton 

Beach, Florida).  

 

 
 
Fig. 2-1. Rack system used to house adult ball pythons. Photo by Dan Sutherland.  
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From November to June, females that were over 1,500 g were placed in the 

cages of males that were over 500 g for one to two days and any observed breeding 

activity was recorded. An attempt was made to ensure that each female was bred at least 

once each month during this time. Once females were gravid, they were no longer placed 

with males. The date was also recorded for the following reproductive events when they 

were observed: ovulation, post ovulation shed, oviposition, and hatching.  

Gravid females were checked daily for eggs once they were 30 days past their 

post-ovulation shed. Eggs were removed immediately from each female, weighed as a 

clutch, counted, separated, weighed individually, measured (length and width), and 

placed into an incubation box that was then placed in the incubation room. Each female 

was also weighed at this time, and a relative clutch mass (RCM) was calculated by 

dividing the mass of the clutch by the post oviposition mass of the female. The age of the 

sire and dam at the time of oviposition, when known, was also recorded. From these data, 

the age at first reproduction was recorded for all the breeders that first reproduced in 

2003 or later. In addition, for each female that laid two or more clutches between 2003 

and 2009, the number of years between reproductive events (inter-oviposition interval) 

was recorded as the female reproductive frequency.  

The incubation boxes used were Styrofoam shipping containers that measured 

28.5 cm L x 39 cm W x 18 cm H externally and were 2.4 cm thick. The incubation 

medium used in these boxes was a mixture of one part perlite and two parts vermiculite. 

Five parts incubation medium to one part water by volume was then mixed, and the box 

was placed in the incubation room several days prior to incubating eggs in order to allow 

the contents of the box to reach incubation temperatures. The top of each incubation box 
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was covered with a 1 cm thick pane of glass. The incubation room was temperature 

controlled by a Helix DBS 1000 (Helix Control Systems, Inc, Vista, California) to stay 

between 31.4°C and 31.7°C from 2002–2005, and between 30.9°C and 31.1°C from 

2006–2009.  

Data were also collected per egg on whether the egg was infertile, died during 

incubation, contained a fully formed embryo that was dead in the egg, embryo was live 

but deformed, or contained a healthy hatchling. For the eggs that hatched, the hatch date 

was recorded for each egg and each hatchling was weighed. After hatching, a hatch rate 

was calculated for each clutch. For the calculation of average oviposition and hatch dates 

over the years, both oviposition date and hatch date are reported as number of weeks of 

the year. 

GraphPad Prism 5.0 was used for all statistical analyses performed in this study.  

All traits were analyzed for normality and homoscedasticity and transformations were 

made when needed. Female mass and clutch mass were log-transformed prior to use in 

any statistical analyses. 

 
Results 

 
From 2002-2009, data were collected on 5,344 eggs from 783 ball  

 
python clutches. Novel information from these data include sire and dam age at first  
 
reproduction, dam reproductive frequency, and duration from last copulation to  
 
oviposition. A comprehensive summary of clutch, breeder, reproductive event, and egg  
 
data is presented in Table 2-1.  
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Table 2-1 
Mean, standard error (SE), minimum, maximum, and sample sizes for the data collected. 

Clutch Info Mean SE Min  Max N 
Clutches/Year 97.88 22.73 34 192 8 
Week Laid 23.90 0.19 4 52 708 
Clutch Size 6.83 0.06 3 14 783 
Clutch Mass (g) 604.61 6.69 91 1270 775 
Female Mass (g) 1464.97 11.29 830 2874 759 
RCM 0.42 0.004 0.07 0.71 758 
        
Breeder Info (yrs)           
M Age 4.30 0.08 1 13 605 
M Age at 1st Rep 2.25 0.04 1 6 354 
F Age 6.08 0.09 2 18 771 
F Age at 1st Rep 3.96 0.06 2 8 321 
F Rep Frequency 1.97 0.05 1 6 251 
        
Reproduction Events (days)           
Last Copulation to Oviposition 97.18 1.06 46 174 558 
Ovulation to Shed 19.64 0.29 12 32 125 
Shed to Clutch 31.36 0.25 15 46 321 
Ovulation to Oviposition 51.52 0.48 37 78 155 
Shed to Hatch 90.35 0.31 78 111 285 
Oviposition to Hatch 58.87 0.07 53.25 66 582 
Ovulation to Hatch 110.84 0.58 99.71 137 139 
        
Egg Info           
Egg Length (mm) 75.71 0.24 42.08 99.8 759 
Egg Width (mm) 45.39 0.14 24.15 54.4 757 
Week Hatched 32.37 0.18 19 51 597 
Hatchling Weight (g) 62.20 0.31 27.25 90.2 685 
Infertile/Clutch 0.77 0.06 0 10 783 
Egg Died/Clutch 0.35 0.03 0 7 783 
Dead in Egg/Clutch 0.10 0.03 0 12 783 
Deformed/Clutch 0.13 0.02 0 4 783 
Healthy Offspring/Clutch 5.49 0.09 0 12 783 
Hatch Rate 0.81 0.01 0 1 783 

 

During this study, 27 clutches (3.4%) were recorded as having been found late (> 

24 hrs post oviposition). The clutch mass, RCM, number of healthy offspring, hatch 



 52 
rate, egg length, egg width, and hatchling mass averages were compared between these 

27 clutches and averages from all the clutches from this study (Table 2-2). Student’s t-

test was used on all data except hatch rate for which Mann Whitney test was used due to 

extreme non-normality.  

Oviposition anomalies, such as exclusion of eggs from the dam’s coils (Fig. 2-2) 

or early laying of eggs, occasionally occur during the laying season. Excluded eggs or 

early eggs were found in 15 (1.9%) and 7 (0.89%) of the clutches, respectively. The 

RCM, female mass, and clutch mass averages from clutches with one or more eggs found 

outside the coils of the female and those laid > 24 hrs prior to the rest of the clutch were 

compared to the averages from all the clutches from this study (Student’s t-test) (Table 2-

3). Fig. 2-3 presents the hatch rates calculated for: eggs that were found outside the 

female’s coils (OE), clutches that had eggs pushed outside the coils (OC), eggs that were 

inside the coils from outside egg clutches (OC - OE), eggs that were laid early (EE), 

clutches with eggs that were laid early (EC), the eggs that were laid with the majority of 

the clutch from laid early clutches (EC - EE), and all clutches in this study (ALL). 

Statistical differences were calculated using the Mann-Whitney test due to extreme non-

normality. 

 
Table 2-2  
P-values for comparisons between clutches found >24 hrs after being laid 
and all clutches from this study. 

CMAS            RCM             HOFF            HRa              EL              EW              FMAS         

0.003             0.009             0.002            0.002           0.057          0.038              0.409 

P-values in bold were significant at the P < 0.05 level. 
aMann-Whitney test used due to extreme non-normality, all other P-values were 
calculated using the Student’s t-test. 
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Fig. 2-2. Female ball python with her newly oviposited clutch in which one of the eggs 
was excluded from her coils. Photo by Dan Sutherland. 
 

Table 2-3 
P-values for reproductive traits from clutches with eggs laid early or not within the coils 
of the dam compared to all clutches. 

       Trait Outside Coils        Laid Early 
       Relative Clutch Mass       0.004            0.012 

       Female Mass       0.3            0.199 

       Clutch Mass       0.179            0.01 

P-values in bold were significant at the P < 0.05 level. 

 
In order to analyze relationships between the reproductive traits measured in this 

study, a Pearson correlation matrix was generated (Table 2-4). Strengths of phenotypic 

correlations (rP) are termed as follows: 0.0 to 0.2, negligible; 0.2 to 0.4, weak; 0.4 to 0.7, 

moderate; 0.7 to 0.9, strong. Among the 28 correlations, 25 (89%) were significant at the 

P < 0.05 level, and 16 (57%) were above negligible strength (rP > 0.2). 
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Fig. 2-3. Hatch rates for clutches and eggs in which laying anomalies such as early laying 
or exclusion of eggs from the coils of the female compared to the hatch rate for all 
clutches. Specifically, hatch rates for eggs that were found outside the female’s coils 
(OE), clutches that had eggs pushed outside the coils (OC), eggs that were inside the coils 
from clutches with some eggs laid outside the coils (OC - OE), eggs that were laid early 
(EE), clutches with eggs that were laid early (EC), eggs that were laid with the majority 
of the clutch from clutches where some eggs were laid early (EC - EE), and all clutches 
in this study (All) are analyzed. Asterisks denote hatch rates that are significantly 
different from the overall hatch rate for all clutches from this study (Mann-Whitney test). 
Bars above columns represent the standard errors of the means. 
 

Discussion 
 
Information regarding reproductive traits of captive snakes is sparse. Published 

reports on pythons are limited to small sample sizes, and to discussing averages and 

ranges for reproductive traits. Previous studies specifically on ball pythons have reported 

average clutch sizes, duration from ovulation to post-ovulation shed, duration from post-

ovulation shed to oviposition, RCM, egg length, egg width, egg mass, and duration of 

incubation (Barker and Barker, 2006; de Vosjoli et al., 1994; Ross and Marzec, 1990; 

Van Mierop and Bessette, 1981). These data have been widely used by private and 
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professional python breeders in order to increase breeding efficiencies. Similar data 

presented in this study (Table 2-1) provide larger sample sizes for these traits, and the 

results are similar to those published previously (Barker and Barker, 2006; de Vosjoli et 

al., 1994; Ellis and Chappell, 1987; Ross and Marzec, 1990). In addition, this  

study provides data on the time duration from last copulation to oviposition. 

 
Table 2-4  
Pearson correlation matrix of reproductive traits. Traits include number of healthy 
offspring per clutch (Healthy Offspring), post-oviposition mass of each female (Female 
Mass), age of the female at time of oviposition (Age), number of eggs per clutch (Clutch 
Size), mass of each clutch (Clutch Mass), relative clutch mass (RCM), egg length (EL), 
and egg width (EW). Strengths of correlations are termed as follows: 0.0 to 0.2, 
negligible; 0.2 to 0.4, weak; 0.4 to 0.7, moderate; 0.7 to 0.9, strong. 

  MAS Age CSIZ CMAS RCM EL EW 

HOFF 0.18 -0.01 0.53 0.72 0.69 0.11 0.60 

MAS  0.38 0.56 0.50 -0.14 -0.09 0.27 

AGE   0.13 0.12 -0.12 0.05 0.05 

CSIZ    0.73 0.50 -0.46 0.27 

CMAS     0.76 0.17 0.81 

RCM      0.17 0.67 

EL             0.48 

Correlations in bold were significant at the P < 0.05 level. 

 
For the 783 clutches studied from 2002 to 2009, an average of 97.88 clutches 

were laid per year. Although ball pythons in this study appeared to generally be pulse 

breeders, clutches were laid during all weeks of the year except the first 3 weeks in 

January (Table 2-1). Further, preliminary data suggest that the week of the year a ball 
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python female lays her eggs in captivity is heritable and is significantly affected by 

both maternal and permanent environmental effects (unpublished data). Reproduction 

throughout the majority of the year in captive ball pythons is in stark contrast to what has 

been reported to occur in nature. Wild ball pythons in southern Togo, Africa generally lay 

their eggs during one month of the year (Aubret et al., 2003). The fact that female ball 

pythons can proceed through their reproductive cycles at almost any time during the year 

in captivity could have important implications for those trying to reproduce other python 

and snake species. Methods such as follicle palpation and ultrasound may significantly 

enhance success in reproducing these species in captivity by helping to identify times 

during which males should be introduced to females for copulation (Fig. 2-4 and 2-5). 

This would be especially important in situations in which keepers are attempting to breed 

multiple females with single males.   

The age at first reproduction (age when oviposition of first clutch occurs) for 

males in this study varied from 1 to 6 years (average 2.25 years), and for females it varied 

from 2 to 8 years (average 3.96 years) (Table 2-1). The average reproductive frequency 

for females was 1.97 years. Although no data has been published on captive or wild ball 

pythons for these traits, reproductive frequency has been studied and discussed for other 

python species. Captive reticulated pythons (Python reticulatus) and diamond pythons 

(Morelia spilota spilota) have been shown to reproduce every other year (Fitch, 1970; 

Harlow and Grigg, 1984). Slip and Shine (1988) provided evidence that the reproductive 

frequency of wild diamond pythons was also likely to be every other year, or potentially 

even longer. In wild water pythons (Liasis fuscus) reproductive frequency is closer to 
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being yearly (Madsen and Shine, 1996). Therefore, a reproductive frequency of every 

other year in captive ball pythons is similar to that found in other python species.  

Aubret et al. (2005) incubated ball python clutches from wild-bred females by 

three different methods: maternal brooding until hatching (N = 10), maternal brooding for 

the first 15 days of incubation followed by artificial incubation (N = 10), and artificial 

incubation only (N = 10). They observed that the more time clutches were artificially 

incubated, the more desiccated they became, and hatching success decreased. They 

concluded that artificial incubation led to desiccation and decreased hatching success. 

During the current study, 27 clutches were not found until they had been laid for 24 hrs or 

more. When the eggs were found, the dam was brooding them. They were then removed 

from the females and artificially incubated for the remainder of the incubation period. 

Statistical analysis on averages for clutch mass, RCM, healthy offspring, hatch rate, egg 

length, egg width, and hatchling mass between these 27 clutches and all the clutches from 

this study showed evidence for desiccation and decreased hatching success in the clutches 

that were found late (Table 2-2). All the traits measured were statistically lower (P < 

0.05) in the clutches that were found late, except egg length and hatchling mass. Data that 

suggested desiccation had occurred in clutches that were found late include decreased 

clutch mass, decreased RCM, and decreased egg width. The decreased hatch rate and 

number of healthy offspring per clutch suggest lower hatching success in these clutches. 

In assessment of Aubret et al. (2005), Barker and Barker (2006) suggested that 

desiccation itself, independent of incubation type, is the cause of decreased hatching 

success. Because clutches that were found late in this study were desiccated and suffered 
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decreased hatching success even though they were artificially incubated for the 

majority of the incubation period, these data support the assessment of Barker and Barker 

(2006). 

 

 
 
Fig. 2-4.  Ultrasound is being used to determine the stage of follicular growth in this 
female ball python. 
 
 
  A previous study by Aubret et al. (2003) assessed optimal clutch size in ball 

pythons. In their study, wild-bred gravid females were caught and brought to a holding 

facility. Then, ten unmanipulated clutches, nine artificially enlarged clutches (added eggs 

to increase initial clutch size by 50%), and nine artificially reduced clutches (removed 

eggs to decrease initial clutch size by 42%) were set up for maternal incubation. Hatching 

success and hatchling fitness were assessed for the clutches in these three groups. For the 
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clutches that were artificially decreased in size, no benefit to the dam or offspring was 

detected. However, artificially increasing clutch sizes did significantly decrease hatching 

success. Therefore, the data from this study suggest that a female’s ability to cover her 

entire clutch is important to hatching success. During the current study, clutch sizes were 

reduced by the dam when one or more eggs were laid early, or one or more eggs were 

excluded from the dam’s coils during brooding. Although the female mass average from 

females that produced these reduced clutches was not significantly different from the 

overall female mass average from all clutches laid in this study, clutch mass was 

significantly higher in clutches that were laid early, and RCM was significantly higher in 

both types of reduced clutches (Table 2-3). Therefore, clutches were reduced in size 

when they were large in comparison to female mass (higher RCM), which would 

potentially lead to females experiencing difficulty in covering the proportionately larger 

clutches. Also, the hatch rate for clutches that had eggs laid early was significantly lower 

than the hatch rate for all clutches in this study, but the hatch rate for these same clutches 

once they were reduced (i.e. not including eggs that were laid early) was not significantly 

different than the overall average (Fig. 2-3). 

Many conclusions can be drawn from the correlations presented in Table 2-4, but 

a few we find particularly interesting. Age was correlated at the level of rP > 0.2 only 

with female mass; while female mass was also correlated at rP > 0.2 with clutch size, 

clutch mass, and EW. This suggests that the mass of the female is more important than 

age for predicting reproductive output. Further, because female mass was correlated at rP 

> 0.2 with clutch size and clutch mass, but not RCM, it seems that the proportion of 

energy allocated to a clutch is independent of the mass of the female even though both 
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the mass of the clutch and the number of eggs in the clutch are moderately correlated 

with the mass of the female (0.50 and 0.56, respectively). Also of interest, EW was 

correlated at rP > 0.2 with all traits in the matrix except age. Therefore, EW could be a 

useful predictor of reproductive output. Lastly, the moderate negative correlation between 

EL and clutch size, and the weak positive correlation between EW and clutch size 

support previous research suggesting that as clutch sizes get larger, the eggs get smaller 

and more round in shape (Brown and Shine, 2007b; Ford and Seigel, 1989; Madsen and 

Shine, 1996). 

 

 
 
Fig. 2-5.  Ultrasound screen image used to count and measure follicles prior to  
ovulation. 
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The large sample sizes attained in this study have allowed us to study certain  

 
aspects of ball python captive reproduction. Novel data presented in this study provide a  
 
foundation for the design of future studies, and for the development of more efficient  
 
breeding plans for propagating captive pythons. In addition, some specific information  
 
presented here can be of immediate use for python propagation. Results from this study  
 
suggest that female ball pythons in captivity ovulate in all months of the year. Also,  
 
during this study the female reproductive frequency was every other year. Our results  
 
also show that desiccation, even for periods of time as short as only a few days, at the  
 
beginning of incubation may significantly decrease hatching success. Taking these  
 
findings into account, those attempting to propagate pythons in captivity should do the  
 
following: 1) Become proficient in techniques such as follicle palpation and ultrasound in  
 
order to assess the reproductive stages of females throughout the year; 2) Understand that  
 
the reproductive frequency of python females in captivity may be every other year, or  
 
even every third year and not push females to reproduce every year; 3) Make provisions  
 
in breeding procedures to decrease the risk of subjecting eggs to desiccation at any time  
 
during incubation. With further study of some of the correlations presented in this study  
 
(e.g. EW correlations), additional information regarding selection parameters to increase  
 
breeding efficiencies may be derived as well. Such knowledge will likely lead to  
 
increased success in breeding endangered and otherwise rare and difficult to breed python  
 
species in captivity. 
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CHAPTER 3 

 
QUANTITATIVE GENETIC ANALYSIS OF BALL PYTHON  

(PYTHON REGIUS) REPRODUCTION TRAITS 
 
 

Abstract 
 

Ball python reproduction traits (clutch size, clutch mass, relative clutch mass, egg  
 
mass, hatch rate, egg length, egg width, hatchling mass, healthy offspring per clutch,  
 
week laid, and days of incubation) were recorded for 6480 eggs laid in 937 clutches from  
 
2002 to 2010. For the 937 clutches, the identity of the dam and sire were known for 862  
 
(92%) and 777 (83%) of the clutches, respectively. Univariate analysis allowed for the  
 
calculation of repeatability and heritability for these traits. Also, with the use of  
 
univariate models we tested whether the inclusion of infertile egg masses when  
 
calculating the average egg length and width per clutch was beneficial. Following the  
 
construction of the univariate models, a multivariate model that included nine of the  
 
eleven traits listed above was compiled.  Heritability and genetic and phenotypic  
 
correlations were calculated from the multivariate analysis. The statistical significance of  
 
various fixed and random explanatory factors were tested in both the univariate and  
 
multivariate analyses. The data comparing the use of length and width measurements  
 
from all eggs versus all eggs minus infertile egg masses suggested that the use of  
 
measurements from infertile egg masses decreased the correlation between these traits  
 
and their statistically significant explanatory factors, and yielded lower heritability scores  
 
for these traits. The trait that showed the most promise for use in artificial selection to  
 
increase reproduction rates was clutch size due to considerable genetic variation, high  
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heritability, and favorable genetic correlations with other reproduction traits. 
 

Introduction 

The captive-bred reptile industry has been growing consistently around the world 

since the 1970’s (Barker and Barker, 2006; Brant, 2001; Hoover, 1998; Mattioli et al., 

2006; Murphy and McCloud, 2010). As an example of the size of the industry, one 

facility in Florida, USA reported the production of 76,100 captive-bred reptiles, and 

2,000,000 rodents marketed for the feeding of captive reptiles, in the year 2001 alone 

(Brant, 2001). A recent independent economic assessment by Georgetown Economic 

Services on the captive bred reptile industry in the United States reported that revenues in 

2009 were between $1.0 billon and $1.4 billion (Andrew Wyatt, personal 

communication). Further, Georgetown Economic Services estimated that in 2009 13.6 

million reptiles resided in 4.7 million U.S. households. For ball pythons in particular, tens 

of thousands are produced yearly in captivity, and they are the most commonly kept 

python species (Barker and Barker, 2006). Also, ball pythons with certain color and 

pattern mutations have been sold for upwards of $175,000 USD for a single animal 

(Murphy and McCloud, 2010). 

Although the captive reproduction of reptiles has increased significantly over the 

last few decades, little research has focused on reproduction traits in any captive non-

avian reptiles. Among the diminutive body of such research is a series of papers from 

data collected at the Janamba Croc Farm (Northern Territory, Australia) on saltwater 

crocodiles (Crocodylus porosus) in which they studied reproduction traits (Isberg et al., 

2005a), age at slaughter (Isberg et al., 2005b), juvenile survival (Isberg et al., 2006a), and 
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number of scale rows (Isberg et al., 2006b) in relation to skin production. Although 

sample numbers were sizeable for the reproduction traits studied (30 pairs of breeders 

and 190 clutches), the researchers were unable to calculate heritabilities (h2) because they 

did not know the pedigrees of their breeding adults (all but one pair were wild caught).  

A select few smaller studies on wild snake populations and small captive 

populations have been able to calculate repeatabilities (R) and phenotypic correlations 

(rP), and in fewer still, genetic correlations (rG) and h2 (Bronikowski and Arnold, 1999; 

Brown and Shine, 2007; Farrell et al., 2009; Ford and Seigel, 2006). Unfortunately, these 

studies generally relied on smaller sample sizes and were plagued with higher error 

values. 

We recently reported data on ball python reproduction traits from a commercial 

captive breeding facility, The Snake Keeper, Inc. (Utah, USA), that included means, 

ranges, standard errors, and rP values calculated using least squares (see Chapter 2). Due 

to the substantial violation of assumptions for the use of least squares to calculate h2 on 

this captive population, primary of which was that of random breeding (Akesson et al., 

2008; Falconer and Mackay, 1996), we were unable to report h2 in this initial study. 

In the current study we were able to add reproduction data from 2010 and utilize 

restricted maximum likelihood (REML) to calculate R, h2, rG, and rP on reproduction 

traits. The data used in the REML analyses came from 6,480 eggs laid in 937 clutches 

from 2002 to 2010. For the 937 clutches, the identity of the dam and sire were known for 

862 (92%) and 777 (83%) of the clutches respectively. To our knowledge, this is the first 

report on reproduction traits using REML on any non-archosaurian (crocodilians and 
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birds) reptile species, and the first calculation of h2 using REML for reproduction traits 

for any non-avian reptile species. 

To date, it has been common practice to include measurements for all eggs in  
 
snake clutches when calculating R, h2, rG, and rP even though it has been documented  
 
that snake clutches often contain some infertile egg masses, frequently referred to as  
 
“slugs,” that are discolored and smaller than the other eggs (Barker and Barker, 2006;  
 
Gorzula et al., 1997; Madsen and Shine, 1996; Ross and Marzec, 1990). We hypothesized  
 
that because egg width and length could provide some indication of the female’s  
 
oviductal space available for reproduction (Ford and Seigel, 1989; Pizzatto et al., 2007),  
 
that the inclusion of infertile egg mass measurements would decrease the correlations  
 
between these observations and their explanatory factors, and perhaps decrease  
 
heritability for these traits. Therefore, using univariate models we calculated rP estimates  
 
between average egg length and width including infertile egg masses (EL+ and EW+)  
 
and average egg length and width excluding infertile egg masses (EL and EW) and their  
 
statistically significant explanatory factors. We also calculated heritability for EL+, EL,  
 
EW+, and EW. 
 

Materials and Methods 
 
 
Feeding and Environment 
 

Breeder ball pythons were housed within rack systems (Fig. 3-1 and 3-2) in 

individual cages measuring 81 cm L x 43 cm W x 18 cm H with mesh tops. Chipped 

aspen bedding was used as the substrate in the cages (Fig 3-3). Whole prey was offered 

each week and water was available ad libitum. From March to October, the rodents 
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offered were approximately 95 g, and during the breeding season (November to 

February) they were approximately 65 g. The ambient temperature of the breeding 

facility was controlled to prevent it from exceeding 29.5°C from March to October, and 

from dropping below 21°C from November to February. Throughout the year, a 

temperature gradient was maintained in each cage by providing a hot spot that was 32°C 

during the day and 29.5°C at night. Humidity was constrained in the breeding facility to 

approximately 60% year round by a Humidifirst MP15 ultrasonic humidifier 

(Humidifirst, Inc., Boynton Beach, Florida, USA) (Fig. 3-4).  

 

 
 
Fig. 3-1.  View of the rack systems used for caging in the python production  
facility. Up to 800 adults and 1000 hatchlings are housed throughout the year in this 
facility. 
 

 



 70 

 

Fig. 3-2.  Another view of the rack systems in the python production facility. 
 

Breeding and Reproduction 

During the breeding season, females over 1500 g were placed in the cages of 

males over 500 g for one to two days and any observed breeding activity was recorded. 

An attempt was made to ensure that each female was bred at least once each month 

during this time. Once females were gravid, they were no longer placed with males. 

Females known to be gravid were checked daily for eggs once they were 30 days 

past their post-ovulation shed. Eggs were removed immediately from each female, 

weighed as a clutch, counted, separated, weighed individually, measured (length and 

width), notated if they were infertile egg masses, and placed into an incubation container 

that was then placed in the incubation room. Each female was also weighed at this time, 
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and a relative clutch mass (RCM) was calculated by dividing the mass of the clutch by 

the post-oviposition mass of the female. The ages of the sire and dam at the time of 

oviposition, when known, were also recorded. Also from these data, number of 

consecutive clutches laid by the female prior to, and including, each clutch was recorded. 

 

 

Fig. 3-3. Ball python in tub of rack system. Photo by Dan Sutherland. 
 

Incubation and Hatching 

The containers used for incubation were Styrofoam shipping containers that 

measured 28.5 cm L x 39 cm W x 18 cm H externally and were 2.4 cm thick. The 

medium used for incubation in these containers was a mixture of one part perlite and two 

parts vermiculite. Then, five parts incubation medium was mixed with one part water by 

volume and the container was placed in the incubation room (Fig. 3-5) several days prior 

to incubating eggs in order to allow the contents of the box to reach incubation 
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temperatures. The top of each incubation box was covered with a 1 cm thick pane of 

glass. The incubation room was temperature controlled by a Helix DBS 1000 (Helix 

Control Systems, Inc, Vista, California) to stay between 31.4°C and 31.7°C from 2002–

2005, and between 30.9°C and 31.1°C from 2006–2010.  

 

 
 
Fig. 3-4.  A Humidifirst MP15 ultrasonic humidifier is used to maintain the humidity at 
levels needed for efficient production. 
 
 

For the eggs that hatched, the hatch date was recorded for each egg and each 

hatchling was weighed. After hatching, a hatch rate was calculated for each clutch. Also, 

the number of hatchlings that hatched and did not suffer from any physical abnormalities, 

such as spinal kinking or eye malformations, was recorded as healthy hatchlings per 
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clutch. For the calculation of average oviposition dates over the years, oviposition 

dates were reported as number of weeks of the year. 

 

 
 
Fig. 3-5.  A view of the incubation room at the python production facility.  On average, 
700 eggs are incubated in this room each year. 
 

 
Statistical Methods 

The identity of the dam and sire were known for 862 (92%) and 777 (83%) of the 

clutches, respectively, for the 937 clutches recorded in this study. Univariate and 

multivariate analyses were carried out on the data using ASReml 3.0 (Gilmour et al.,  

2009). Explanatory factors were removed from univariate and multivariate models by  
 
backward elimination when p > 0.05. Significance levels for random effects were  
 
calculated by running the model with and without the factor and then multiplying the  
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absolute difference between the resulting log-likelihoods by two. This test statistic was  
 
assumed to follow a Chi square distribution with one degree of freedom (Gilmour et al.,  
 
2009; Pinheiro and Bates, 2000). Repeatability, h2, and their associated standard errors  
 
were calculated first using the univariate models for each trait. Then, a multivariate  
 
model was constructed that included nine of the eleven traits. ASReml 3.0 allows for the  
 
removal of nonsignificant explanatory factors independently for all traits in the  
 
multivariate model. The resulting multivariate model was then used to calculate h2, rG,  
 
and rP for the nine traits in the model. For clutch mass (CMAS) and individual post- 
 
oviposition mass (MAS), the data were log-transformed in all statistical analyses. 
 
 
Univariate Modeling 
 

Table 3-1 contains names, abbreviations, and descriptions for the traits and factors 

below. The initial univariate model used to evaluate all eleven traits was the following 

Y ijklm = µ + YRk + BAi + AGEik + MASik + CCLik + FACik + ITijk + PEi + MAT il + YBNi 

+ � ijklm, 

where Yijklm is an observation on CMAS, CSIZ, EL, EW, EL+, EW+, EMASS, HMAS, 

HOFF, HR, WKLD, INCD, or RCM; µ is the overall mean; YRk is the fixed effect of the 

kth year; BAi is the fixed effect of beneficial alleles of the ith individual; AGEik is the 

fixed effect of the age of the ith individual in the kth year; MASik is the fixed effect of the 

mass of the ith individual in the kth year; CCLik is the fixed effect of consecutive clutches 

for the ith individual in the kth year; FACik is the fixed effect of the facility location of 

the ith individual in the kth year; ITijk is the fixed effect of incubation temperature on the 

clutch from the ith individual and jth sire in the kth year; PEijk is the random effect of 
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permanent environment on the ith individual; MATil is the random effect of the lth 

dam of the ith individual; YBNi is the random effect of the year the ith individual was 

born; and � ijklm is the random residual effect. 

 
Infertile Egg Masses 
 

Correlations were calculated between EL+, EL, EW+, and EW and their 

statistically significant explanatory factors, except YR because we failed to see any 

biological reason to test whether the correlations between these traits and YR were 

affected by inclusion of infertile egg mass measurements. GraphPad Prism 5.0 was used 

to calculate these correlations. Further, h2 was calculated for each of these traits using 

their univariate models in ASReml 3.0. 

 
Multivariate Modeling 
 

In order to construct a multivariate model that would converge, WKLD and 

INCDYS were dropped out of the model. Explanatory factors that were not significant for 

each individual trait were removed from the multivariate model as described above. 

Table 3-2 displays the explanatory factors that were used in the univariate and 

multivariate models. 

 
Genetic Parameter Estimates 
 

Repeatability, h2, rG, and rP were calculated as described in Wilson et al. (2009). 

Briefly, variance components calculated in ASReml 3.0 were used as follows 

Repeatability 

R = VI/VP  
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where VI is the individual variance and VP is the phenotypic variance; 

Heritability 

h2 = VA/VP  

where VA is the additive genetic variance and VP is the phenotypic variance; 

Genetic correlation 

rG = VA1,A2/ A2A1 V *V  

where VA1,A2 is the additive genetic covariance of traits 1 and 2, VA1 is the additive 

genetic variance of trait 1, and  VA2 is the additive genetic variance of trait 2. 

Phenotypic correlation 

rP = VP1,P2/ P2P1 V *V  

where VP1,P2 is the phenotypic covariance of traits 1 and 2, VP1 is the phenotypic variance  
 
of trait 1, and  VP2 is the phenotypic variance of trait 2; 
 

Results 
 
 
Univariate Analyses 
 

The univariate models that included the fixed and random explanatory factors 

displayed in Table 2-2 were used to estimate R, h2, and their associated standard errors 

(Table 3-3). The factor YR was a significant addition to the univariate models for all 

traits except WKLD. Further, the univariate model for WKLD was the only model that 

had any random effects fitted to it. The following factors were only fitted to one of the 

models: CCL was fitted to the CSIZ model, FAC was fitted to the EW model, and IT was 

fitted to the INCD model. The estimates for R and h2 for each trait, except WKLD, were 

nearly identical. 



 77 
Table 3-1 
Names, abbreviations, and descriptions for traits and fixed and random explanatory 
factors used in this study. 
 
   Names         Abbreviations Descriptions 
 
Traits 
   Week Laid          WKLD Week of the year the clutch was laid 
   Hatchling Mass        HMAS  Mean hatchling mass per clutch 
   Egg Mass          EMAS  Mean egg mass per clutch 
   Egg Length          EL  Mean egg length per clutch 
   Egg Width          EW  Mean egg width per clutch 
   Egg Length Plus  EL+  Mean egg length per clutch, including 

infertile masses 
   Egg Width Plus  EW+  Mean egg width per clutch, including 

infertile masses  
   Relative Clutch Mass RCM  Mass of the clutch divided by the post- 

oviposition mass of the female 
   Clutch Mass   CMAS  Mass of the clutch 
   Clutch Size   CSIZ  Number of eggs (fertile and infertile) per 

clutch 
   Healthy Offspring  HOFF  Number of healthy offspring per clutch 
   Hatch Rate   HR  Number of offspring hatched per clutch    
   Incubation Days  INCD  Number of days of incubation per clutch 
 
Fixed Factors 
   Year    YR  Year clutch was laid 
   Dam Age   AGE  Age of dam when clutch was laid 
   Dam Mass   MAS  Post-ovulation mass of dam 
   Consecutive Clutches CCL  Number of consecutive years female has laid 

eggs 
Beneficial Alleles  BA  Number of color and pattern alleles that 

increase the value of the female 
   Facility   FAC  Facility where reproduction took place 
   Incubation Temperature IT  Temperature at which clutch was incubated 
 
Random Factors 
   Permanent Environment PE  Permanent environmental effects on the dam 
   Maternal Effect  MAT  Maternal effect of the maternal grand dam 

on the dam 
   Year Born   YBN  Year the female was born 
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Table 3-2  
Fixed and random explanatory factors that were significant additions to the univariate and 
multivariate models. Fixed effects were chosen by backwards elimination when p > 0.05, 
and random effects were chosen using the likelihood test ratio explained above. Levels of 
significance are as follows: 0.01 < p < 0.05 (*); 0.001 < p < 0.01 (**); p < 0.001 (***); 
and a dash (-) denotes factors that were not significant. A superscript M denotes traits that 
remained significant in the multivariate model. Table 3-1 displays the abbreviations and 
descriptions for the traits and effects. 
  ______Fixed Terms______________________        Random Terms____ 

Trait  YR BA AGE MAS CCL FAC IT PE MAT YBN 

CMAS            ***M  ** M    - *** M    -    -  -  -     -    - 

CSIZ            ***M   *    - *** M    *    -  -  -     -    - 

EL            ***M    - *** M     -    -    -  -  -     -    - 

EMAS            ***M    -   ** *** M    -    -  -  -     -    - 

EW            ***M    -    - ***M    -  *** M  -  -     -    - 

HMAS            ***M    -    * *** M    -    -  -  -     -    - 

HOFF            ***M *** M    -     -    -    -  -  -     -    - 

HR            ***M    -    -     -    -    -  -  -     -    - 

RCM            ***M    *    -    **    -    -  -  -     -    - 

INCD              ***  ***    -     -    -    -      ***  -     -    - 

WKLD               -    *    *     -    -    -  -  *     *    - 

 
 

The rP between EL and AGE was higher than the rP for EL+ and AGE (0.13 and 

0.08, respectively; Table 3-4). Similarly, the rP between EW and MAS was higher than 

the rP for EW+ and MAS (0.53 and 0.35, respectively; Table 3-4). The rP estimates 

between FAC and both EW and EW+ were not significant (p > 0.2). Lastly, the h2 
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estimates for egg length and width were higher when infertile egg masses were 

excluded from the calculation of clutch averages for these traits (0.45 versus 0.35; Table 

3-4). 

 
Table 3-3  
Repeatability, heritability, and their associated standard errors calculated using univariate 
models. 
     Trait   R                 SER                       h2                SEh2 

     CMAS           0.25                 0.05                     0.25                 0.05 

     CSIZ           0.43                 0.05                     0.43                 0.05 

     EL                        0.48                  0.05                     0.48                 0.05 

     EMAS           0.57                 0.05                     0.57                         0.05 

     EW                       0.45                 0.05                     0.45                         0.05 

     HMAS           0.45                 0.06                     0.45                         0.05 

     HOFF           0.29                 0.05          0.29                         0.05 

     HR                       0.31                 0.05                     0.31                         0.05 

     RCM             0.31                 0.05                     0.31                         0.05 

     INCD                   0.25                 0.06                     0.25                         0.06 

     WKLD           0.35                 0.10                     0.12                         0.15 

 

In the multivariate analysis, YR was a significant factor for all nine traits within 

the model. The number of beneficial alleles that a female had (adjusting for preferential 

treatment of females of greater worth) was a significant factor only for CMAS and 

HOFF. Post-oviposition mass of the female was a significant factor for five traits 
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(CMAS, CSIZ, EMAS, EW, and HMAS), while AGE was only a significant factor for 

EL (Table 3-3). The factor FAC remained significant for EW. 

 
Table 3-4  
Comparison of phenotypic correlations between EL+ and EL, and EW+ and EW and the 
significant explanatory factors in their respective univariate models, and their 
heritability estimates. Correlations followed by an asterisk (*) were significant at a 0.01 < 
P < 0.05; (***) were significant at a p < 0.001; and (NS) were not significant (P > 0.05). 
Factors that were not selected for use in the univariate model of a given trait are denoted 
by NA. Heritability estimates are followed by their standard errors in parentheses. 

    Trait                     AGE                MAS                       FAC                       h2 (SE) 
    EL+                    0.08*      NA                        NA                     0.47 (0.05) 

    EL                      0.13***                 NA                        NA                     0.48 (0.05) 

    EW+          NA                       0.35***                   0.04NS                  0.35 (0.05) 

    EW                      NA                       0.53***                   0.01NS                  0.45 (0.05) 

 
 

The sample size, minimum value, maximum value, mean, standard error of the 

mean, and coefficient of variation (standard deviation divided by the mean) are provided 

for each trait from the multivariate analysis in Table 3-5. Table 3-6 displays the h2, rG, 

and rP for each of the traits in the multivariate analysis along with their associated 

standard errors. From the multivariate model, estimates of h2 ranged from 0.21 to 0.60; 

positive and negative rG values ranged from negligible (0.002, -0.006) to strong (0.96,     

-0.71). 

 
Discussion 
 
 
Significant Explanatory Factors 
 

Year was a significant factor for all traits in both the univariate and multivariate 
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analyses, except for WKLD. The post-ovulation mass of the female was a significant 

factor in the multivariate model for CMAS, CSIZ, EMAS, EW, and HMAS. Surprisingly, 

AGE was only a significant factor in the multivariate model for EL. This is especially 

interesting because the multivariate analysis suggests that in our population MAS is a 

significant factor for EW, while AGE is a significant factor for EL. This could be due to 

the fact that we did not adjust MAS for SVL and likely, due to indeterminant growth, 

AGE and SVL are positively correlated, as has been shown in many reptiles, including 

several snake species (Baron et al., 2010; Farrell et al., 2009; Ford and Seigel, 1994). 

Therefore, age would likely have a higher correlation with SVL than mass would. Thus, 

as a female gets longer with age, the eggs in her reproductive tract may be able to be 

more elongate. On the other hand, EW was affected more by MAS, which could mean 

that heavier females were able to allocate more resources to their eggs, and given the 

allometric constraints described by Ford and Seigel (1989), those eggs likely would 

become wider and shorter. This is supported by findings in multiple snake species in 

which increased food intake caused significant increases in EW (Brown and Shine, 2002; 

Ford and Seigel, 1994; Seigel and Ford, 1991). 

 
Multivariate Analysis 
 

The only trait that the change in facilities from California (CA, USA) to Utah 

(UT, USA) affected was EW. Best linear unbiased estimators for the factor FAC showed 

that EW was higher for UT clutches than for CA clutches (unpublished data). Research in 

wild and captive snakes has shown that females that have higher food intake have 

significantly wider eggs (Brown and Shine, 2002; Ford and Seigel, 1994; Seigel and 
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Ford, 1991). Because we did not record food intake and were thus unable to adjust for 

it, an average increase in food intake for females in UT in comparison to those in CA 

may be a viable explanation for increased average EW for clutches produced in UT. 

 
Table 3-5  
Sample size (N), minimum value (Min), maximum value (Max), mean (Mean), standard 
error of the mean (SEM), and coefficient of variation (CV) for each of the traits used in 
the multivariate model. Clutch mass has been log transformed. All other masses are given 
in grams. Lengths and widths are given in millimeters. 
Trait            N        Min       Max               Mean       SEM      CV 
CMAS          822               1.96       3.10                2.76        0.01      0.06 

CSIZ             830          3                    14                  6.92        0.06      0.26 

EL                 722        58                   100               77.58        0.22      0.08 

EMAS           645        48                   135               94.46        0.47      0.13 

EW           722               35                    54                46.74        0.10      0.06 

HMAS           667               27                    90                62.59        0.32      0.13 

HOFF           749                 0                    12                  5.52        0.09      0.44 

HR           749                 0                     1                   0.81        0.01      0.36 

RCM             830                 0                   0.71                0.41                < 0.01      0.26 
 

Female frequency of reproduction is often discussed among ball python breeders. 

Barker and Barker (2006) suggested that limiting females to breeding every other year 

may increase overall production. In our univariate model we did detect a significant 

effect of consecutive clutches (females laying clutches in two or more consecutive years) 

on clutch size (Table 3-3). Although in the multivariate model this effect was not 

significant (Table 3-5). We were unable to find any convincing evidence from our data to 

suggest that breeders should purposely limit their females to breeding every other year.
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Table 3-6  
Estimates of h2, rP, and rG and their associated standard errors for the traits used in the multivariate analysis. Estimates of h2 are 
bolded and displayed along the diagonal; estimates of rG are given above the diagonal; and estimates of rP are given below the 
diagonal. Each estimate of h2, rG and rP is followed by its standard error in parentheses. Table 3-1 provides the names and 
descriptions for the abbreviations of the traits. 

               CSIZ             CMAS               RCM             EMAS                   HR                   EL                   EW             HMAS               HOFF 

CSIZ      0.44 (0.05)       0.40 (0.11)       0.46 (0.09)     -0.61 (0.07)      -0.25 (0.12)     -0.71 (0.06)      -0.29 (0.11)     -0.61 (0.08)       0.54 (0.09) 

CMAS      0.50 (0.03)       0.21 (0.05)      0.96 (0.02)       0.30 (0.11)       0.61 (0.11)       0.08 (0.14)       0.55 (0.10)       0.35 (0.11)       0.77 (0.08) 

RCM      0.60 (0.03)       0.87 (0.01)      0.24 (0.05)       0.27 (0.11)       0.49 (0.11)     -0.01 (0.13)        0.57 (0.09)       0.29 (0.11)       0.70 (0.08) 

EMAS     -0.40 (0.04)      0.26 (0.04)       0.24 (0.04)       0.60 (0.04)       0.42 (0.09)      0.88 (0.03)        0.81 (0.05)       0.96 (0.01)     -0.13 (0.12) 

HR      0.02 (0.04)       0.57 (0.03)      0.57 (0.03)       0.31 (0.04)       0.28 (0.05)       0.40 (0.12)       0.43 (0.11)       0.54 (0.09)       0.65 (0.08) 

EL     -0.63 (0.03)     -0.10 (0.04)     -0.15 (0.04)       0.79 (0.02)       0.13 (0.04)       0.46 (0.05)       0.49 (0.10)       0.79 (0.05)      -0.23 (0.12) 

EW      0.14 (0.04)       0.59 (0.03)      0.62 (0.03)       0.63 (0.03)       0.37 (0.04)       0.17 (0.04)       0.39 (0.05)       0.86 (0.05)       0.14 (0.13) 

HMAS     -0.34 (0.04)       0.34 (0.04)      0.32 (0.04)       0.89 (0.01)       0.42 (0.03)      0.67 (0.02)        0.63 (0.03)       0.51 (0.04)       0.00 (0.12) 

HOFF      0.54 (0.03)       0.66 (0.02)      0.73 (0.02)       0.01 (0.04)       0.79 (0.02)     -0.23 (0.04)        0.34 (0.04)       0.13 (0.04)       0.24 (0.05)
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Egg Length and Width and the Inclusion  
of Infertile Egg Masses 

We hypothesized that egg width, and perhaps egg length, could provide an 

indication of the volume within the oviduct available for eggs, as has been discussed by 

other researchers (Ford and Seigel, 1989; Pizzatto et al., 2007). Due to the fact that 

snakes do oviposit some infertile masses among their clutches that are smaller (Barker 

and Barker, 2006; Gorzula et al., 1997; Madsen and Shine, 1996; Ross and Marzec, 

1990), we hypothesized that the inclusion of the measurements for these infertile, smaller 

egg masses would decrease the correlations between these traits and their explanatory 

factors because these smaller masses would be poor indicators of oviductal space. 

Further, we hypothesized that averages for egg width and perhaps egg length that 

included measurements from infertile egg masses would lead to lower h2 estimates. 

 Our data provide evidence that it would likely be beneficial for researchers to  
 
exclude measurements from infertile egg masses when they are calculating mean egg  
 
lengths and widths for use in developing breeding selection programs for ball pythons  
 
(Table 3-4), and perhaps other snake species as well. Heritability for egg width increased  
 
from 0.35 to 0.45 (Table 3-6) when infertile egg mass measurements were removed, and  
 
the correlation between egg width and its explanatory factor MAS was higher when  
 
infertile egg masses were removed as well (0.35 versus 0.53; Table 3-6). Although the  
 
increase in h2 for egg length was less dramatic (0.47 to 0.48; Table 3-6), the correlation  
 
with its explanatory factor AGE was also increased (0.08 to 0.13; Table 3-6). Given these  
 
results, we used the egg length and width means that did not include measurements from  
 
infertile egg masses in the multivariate model. Moreover, we suggest that other  
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researchers working with ball pythons, and perhaps other snake species, do the same. 
 
 
Evaluation of Traits for Use 
 in Selection Criteria 
 

Maximization of HOFF was deemed to be our main goal. Estimates from the 

multivariate analysis for h2 ranged from 0.21 to 0.60 (Table 3-6), and for CV ranged from 

0.06 to 0.44 (Table 3-5). Although the highest CVs were for HOFF and HR, they were 

only of moderate heritability (0.24 and 0.28 respectively). While the heritability for 

EMASS was the highest of all the traits (0.60), CV for EMAS was only 0.13. Further, the 

rG and rP for EMASS and HOFF were -0.13 and 0.009, respectively. Therefore, although 

HOFF, HR, and EMAS were deemed important for use in creating selection criteria, they 

were not ideal due to lower heritability or genetic variation. Conversely, heritability for 

CSIZ was high (0.44), and the estimate of CV for CSIZ was among the highest for all the 

traits (0.26). Also, rG and rP between CLSIZE and HOFF were both 0.54. Given the 

above data, CSIZ appeared to be the most ideal trait to focus on when setting up selection 

criteria for this captive population of ball pythons. 

A trade-off between clutch size and egg size has been shown in many species, 

including several snake species (Bonnet et al., 2001; Brown and Shine, 2007; Ford and 

Seigel, 2006; Garner et al., 2002; Gregory and Skebo, 1998; King, 1993; Li-xin et al., 

2006). For captive ball pythons this trade-off seems to exist as well. The rG estimates 

between CSIZ and EMAS, EL, and EW were -0.61, -0.71, and -0.29, respectively. The rP 

estimates between CSIZ and EMAS, EL, and EW were -0.40, -0.63, and 0.14, 

respectively. Therefore, if selection pressure is applied to produce larger clutch sizes, 

breeders should pay attention to potential decreases in EMAS because increasingly 
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smaller egg masses will likely decrease hatch rates (rG = 0.42 between EMAS and 

HR) and potentially lead to decreased HOFF (rG = 0.65 between HOFF and HR). 

Comparison of reproduction data from wild populations of ball pythons and our 

captive population suggest that improvements in clutch size are feasible (Table 3-7). Data 

from two different research groups on wild ball python reproduction traits report values 

for average clutch size that are significantly higher than that found in our captive 

population (Aubret et al., 2003, 2005c; Gorzula et al., 1997). Further, both research 

groups report estimates for RCM in the wild populations they studied that were 

significantly higher than that found in our captive population. The females in our study 

were, on average, higher in mass but produced clutches of lower mass than those in either 

of the two wild populations. Therefore, improvement in clutch size and female 

reproductive efficiency should be achievable through artificial selection. 

 
Conclusions 

Clutch size was identified as the best candidate for use in selection programs for 

the study population of ball pythons. Other traits that deserve attention in developing 

selection criteria include hatch rate, healthy offspring per clutch, and egg mass. Our data 

provide evidence that researchers should exclude measurements from infertile egg masses 

when calculating mean egg lengths and widths for use in ball python selection programs. 
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Table 3-7  
Comparison of reproduction data between our captive population and data from studies 
on wild populations. All values are means per clutch followed by their respective 
standard deviations in parentheses. Student’s t-tests were used to compare means between 
the two wild populations and our captive population. Means from wild populations that 
were significantly different from the means calculated from our captive population at a 
level of 0.01< p < 0.05 are denoted by an asterisk (*), or three asterisks (***) when p < 
0.001. All values from Aubret et al. came from their 2003 paper except EMAS which 
came from Aubret et al. 2005. All masses are given in grams. Lengths and 
widths are given in millimeters. 

Traits            Current Study            Gorzula et al., 1997              Aubret et al., 2003, 2005         

CSIZ                 6.9 (1.8)                 8.1 (1.7)***            7.7 (1.7)***     

MAS              1487 (322)                   1337 (238)*                            1235 (241)***  

CMAS                609 (196)                772 (138)***                  646 (174)*  

RCM               0.41 (0.11)               0.55 (0.07)***                 0.52 (0.09)***  

EMAS               94.5 (11.8)               97.9 (16.3)                  90.0 (10.7)*  
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CHAPTER 4 

TWINNING IN REPTILES: EVIDENCE OF RELATIVELY HIGH R ATES  

OF MONOZYGOTIC TWINNING AND SURVIVAL OF  

TWINS IN SNAKE SPECIES 

 
Abstract 

Although large datasets have been published for twinning in avian species, 

relatively few are available for non-avian reptiles. Such reports, to date, have been 

restricted mostly to chelonian species. From the chelonian and avian data it has 

been generally concluded that twinning is reproductively disadvantageous because 

of high mortality rates experienced by twins (usually over 50%). Also, conjoined 

twinning rates in chelonian and avian species are generally higher than rates for 

complete twinning, and some reports mention the size of the twin-bearing egg being 

larger than the other eggs in the clutch. A paucity of research has focused on the 

differences in reproductive traits between females that produce twinning and non-

twinning clutches, and no reports have been published that provide genetic evidence 

of monozygotic twinning in any non-avian reptile species. We report that 14 sets of 

twins were produced from 6,480 eggs from 937 ball python (Python regius) 

clutches. The survival rate for twins during the first 3 months of life in our study 

was 97%. Further, we did not observe any instances of conjoined twinning in the 

6,480 ball python eggs studied, nor did we detect any difference between the sizes 

of twin- and non-twin-bearing eggs. We also tested for differences in reproductive 

traits between twinning and non-twinning clutches (age of female, clutch size, 
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female mass, clutch mass, relative clutch mass, and incubation period) and found that 

relative clutch mass for twinning clutches was significantly higher than for non-

twinning clutches. Interestingly, 11 of the sets of twins were identical in sex and 

phenotype, and we present additional genetic data that further suggests the rate of 

monozygotic twinning within our captive population of ball pythons was higher 

than that of dizygotic twinning. Further, using microsatellite analysis we were able 

to generate data that shows three sets of python twins were genetically identical. 

 
Introduction 
 

Large datasets are available on twinning rates for avian species (Byerly and 

Olsen, 1934; Sittmann et al., 1971). Extensive datasets on twinning in non-avian 

reptile species are mostly limited to chelonian species (Eckert, 1990; Hildebrand, 

1938; Tucker and Janzen, 1997; Yntema, 1970, 1971). Reports of twinning in the 

remaining non-avian reptile groups consist mainly of accounts of single occurrences 

of twinning (Aucone and Branham, 2005; Blomberg, 1979; Carpenter and Yoshida, 

1967; Clark and Tytle, 1983; Curtis, 1950; Gudynas and Gambarotta, 1981; 

Hartdegen and Bayless, 1999; Mackness et al., 1998; Marion, 1980; Reese, 1906; 

Shaw, 1954; Shuette, 1978).  

From the large turtle and bird datasets, reports have shown twinning to be 

reproductively disadvantageous due to low survival rates experienced by the twins. 

In turtles, a major contributor to the low survival rates observed was that a high 

percentage, estimated to be approximately 80%, of the twins found were 

asymmetrical and the smaller twin died in the egg (Tucker and Janzen, 1997; 
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Yntema, 1970, 1971). Studies consisting collectively of 4,943 red-eared slider 

(Trachemys scripta) and over 6,000 common snapping turtle (Chelydra serpentina) 

eggs reported survival rates of twins to be between 40% and 50% (Tucker and 

Janzen, 1997; Yntema, 1970, 1971). Hildebrand (1938) reported finding only one 

set of completely separate twins from 100,000 diamond-back terrapin 

(Malaclemmys centrata) eggs, and they both died shortly after being found. From a 

study that consisted of approximately 40,000 leatherback sea turtle (Dermochelys 

coriacea) eggs it was concluded that all twins perished before hatching (Eckert, 

1990). Likewise, studies on multiple avian species reported 0% survival rates for 

twinned embryos (Munro, 1965; Sittmann et al., 1971). 

A higher occurrence of conjoined twinning in comparison to complete 

twinning has been reported in the turtle and bird literature (Byerly and Olsen, 1934; 

Crooks and Smith, 1958; Hildebrand, 1938; Sittmann et al., 1971; Yntema, 1970, 

1971). Also, reports of twin eggs being larger than the other eggs from the same 

clutches have come from several reptilian taxonomic groups including the 

following: avian (Alley and Berry, 2002; Bassett et al., 1999); crocodilian 

(Blomberg, 1979); lizard (Carpenter and Yoshida, 1967; Hartdegen and Bayless, 

1999); and colubrid snake (Singh and Thapliyal, 1973). 

In two different turtle studies, attempts were made to investigate for 

potential differences between twinning and non-twinning clutches and females 

(Eckert, 1990; Tucker and Janzen, 1997). Eckert (1990) found no differences in 

female size, clutch size, incubation period, or year associated with twin-bearing 

clutches compared to those without twins. Conversely, she did find that twin-
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bearing clutches did have a significantly higher percent of yolked eggs than non-

twinning clutches, and females that produced two or more twins in a single year 

were 17 times more likely to twin again the following year than by chance alone. 

Tucker and Janzen (1997) reported that twinning females were larger in plastron 

length and mass, and laid larger clutches than non-twinning females. We were 

unable to find any similar studies on any other non-avian reptile taxonomic groups. 

In mammals the rate of monozygotic twinning is generally lower than that  
 
for dizygotic twinning (reviewed in Aston et al., 2008; Gleeson, 1994; although see  
 
Blickstein and Keith, 2007 for a notable exception). In the turtle literature more  
 
researchers have surmised that the twinning they have observed has been dizygotic  
 
(Crooks and Smith, 1958; Yntema, 1970, 1971) than those concluding  
 
observed twins were monozygotic (Hildebrand, 1938). Conversely, among snake  
 
species more researchers have concluded observed twinnings were monozygotic  
 
(Curtis, 1950; Mackness et al., 1998; Manimozhi et al., 2006) than dizygotic  
 
(Marion, 1980). However, to date no studies have reported genetic data showing  
 
monozygotic twinning to have occurred in any non-avian reptile species. 
 
 
Materials and Methods 
 
 
Study Animals 
 
 Ball pythons were housed by commercial breeders, The Snake Keeper, Inc.  
 
(UT, USA). Captive husbandry for the ball pythons was as described previously  
 
(see Chapter 2). Briefly, females were checked daily for eggs. Once eggs were 

found they were removed from the female, counted, and weighed both individually 
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and as a clutch. Individual egg lengths and widths were also recorded. Also, the age 

and post-oviposition mass of the females were recorded. In all cases, clutches of 

eggs were artificially incubated individually in insulated containers containing a 

perlite, vermiculite, and water mixture. The containers were then placed within a 

temperature controlled incubation room until hatching. At hatching, all instances of 

twinning were recorded. The mass, sex, and color/pattern of all hatchlings were also 

recorded. Twins were regarded as asymmetrical if the mass of the smaller twin was 

less than 80% of the larger twin. In addition, it was noted which eggs the twins 

came from so initial egg mass, egg length, and egg width were known for twinning 

versus non-twinning eggs. All eggs that did not hatch were manually pipped and the 

contents were investigated for additional twins. All live twins were housed, fed, and 

observed for at least three months before leaving the facility. 

 
Microsatellite Data 

 
 Shed skins were collected from the sire, dam, and both twins of one and two 

sets of ball python and carpet python (Morelia spilota) twins respectively. The shed 

skins were allowed to dry at room temperature and were subsequently placed in 

Ziplock® bags and stored at room temperature until DNA was extracted. Extraction 

of DNA was carried out as described in Fetzner (1999), which mostly follows the 

protocol provided in the Puregene® DNA isolation kit. 

Amplicons for fragment length analysis of microsatellites were produced 

using a one-step nested PCR method (Schuelke, 2000). The microsatellite primers 

used in this study were specifically developed for use on python samples with this 
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nested PCR method (Jordan et al., 2002). Jordan et al. (2002) report the sequences for 

the primers utilized in the current study under the same names. Polymerase chain 

reactions consisted of 12.5 µl Promega GoTaq® Master Mix, 0.7 µl of forward and 

reverse primer mix (5.6 pmol M13-labeled primer, 8.4 pmol non-labeled primer), 

0.5 µl of 6FAM-labeled M13 (8.4 pmol), and 500 ng of template DNA and water to 

a final volume of 25 µl. The PCR cycling parameters used were as follows: 95°C 

for 9 min; then 94°C for 45 sec, annealing at 65°C for 45 sec, and 72°C for 1 min 

was repeated 15 times with a 1°C decrease in annealing temperature for each 

subsequent cycle; 94°C for 45 sec, 50°C for 45 sec, and 72°C for 1 min was 

repeated 20 times; 72°C for 10 min (Taylor, 2005). Samples were then submitted 

directly to the Center for Integrated Biosystems Genomics Core at Utah State 

University for fragment length analysis. An ABI 3730 DNA Analyzer was used to 

generate the fragment length analysis data. 

 
Data Analysis 
 

 Female mass and clutch mass were log-transformed prior to use in any  
 
statistical analyses. Student’s t-tests and paired t-tests were analyzed using  
 
GraphPad Prism 5.0. The microsatellite data were analyzed using STRand version  
 
2.4.55. 

 
 

Results 
 

Of the 6,480 ball python eggs examined in this study, 14 contained sets of 

twins. The eggs came from 14 clutches sired by 14 different males and laid by 13 

different females. One female laid two clutches that contained sets of twins, one in 
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2003 and another in 2007. These were the only two years this female laid eggs during 

the study. Table 4-1 displays sample size, percent twins per egg, percent twins per 

clutch, and percent of females that produced twins from our study and other studies 

on bird and turtle species in which sample sizes were of 800 eggs or more. 

 
Table 4-1 
Twinning rates from studies consisting of more than 800 eggs. 

 
Species 

 
Source 

Number 
of eggs 

% of eggs 
with twins 

% of clutches 
with twins 

% of females 
producing twins 

Avian      

Gallus gallus 1 122,362 0.002 - - 

 2 1,376 0 - - 

Coturnix coturnix 2 2,403 0.92 - - 

Notiomystis cincta 3 830 0.12 0.5 - 

Chelonian      

Dermochelys coriacea 4 40,000 0.03 2.6 10.8 

Chelydra serpentina 5 5,074 0.63 19 19 

 6 1,289 0.16 6.9 6.9 

Trachemys scripta 6 4,943 0.20 2.4 2.4 

Malaclemmys centrata 7 100,000 0.001 - - 

Terrapene carolina 8 826 0.12 0.4 0.4 

Ophidian      

Python regius 9 6,480 0.22 1.5 2.5 

Sources: (1) Byerly and Olsen, 1934; (2) Sittmann et al., 1971; (3) Thorogood and 
Ewen, 2006; (4) Eckert, 1990; (5) Yntema, 1970; (6) Tucker and Janzen, 1997; (7) 
Hildebrand, 1938; (8) Messinger and Patton, 1995; (9) current study 
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Table 4-2 provides reproductive, egg, and hatchling traits associated with the 

14 twin-bearing clutches. Paired t-tests were used to test for differences between 

twinning and non-twinning egg length, egg width, and egg mass. All P-values from 

these t-tests were insignificant (P > 0.25). A similar paired t-test that was estimated 

to investigate for potential differences between the combined hatchling mass of 

twins and the average mass of their non-twin siblings also yielded an insignificant 

P-value (P > 0.50). 

Student’s t-tests yielded insignificant P-values for differences between 

twinning and non-twinning clutches for age of the female, post-oviposition mass of 

the female, clutch size, clutch mass, and incubation period (P > 0.05) (Table 4-3). 

Conversely, relative clutch mass (clutch mass divided by post-oviposition mass) for 

twinning clutches was significantly higher than that for non-twinning clutches (P = 

0.02). 

The sex of both individuals was recorded for 11 sets of twins that were 

suspected to be monozygotic twins by their identical color/pattern phenotypes that 

are known to be genetically inherited (Barker and Barker, 2006). In all 11 cases 

both individuals were of the same sex. The probability of observing 11 sets of same 

sex pairs under the null hypothesis that none of the 11 sets were monozygotic twins 

would be 2.4 X 10-7 (Table 4-4). Further, including the knowledge of modes of 

inheritance for color/pattern morphs and the phenotypes of the adults and twins, the 

probability of observing 11 sets of twins of the same sex and phenotype as we 

found if none of the sets of twins were monozygotic would be 3.1 X 10-17 (Table 4-

4). 
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Table 4-2 
Reproductive, egg, and hatchling traits for twins and siblings from 14 twinning clutches. Egg and hatchling traits for twins are in bold. 
TWCL = twin clutch number; YR = year that the clutch was laid; AGE = age of the dam at the time the clutch was laid; MAS = post-
oviposition mass of the dam; CSIZ = clutch size (number of eggs in the clutch, including infertile egg masses); CMAS = clutch mass; 
RCM = relative clutch mass (CMAS divided by MAS); INCD = number of days eggs were incubated; EMAS = mass of fertile eggs; 
EL = egg length; EW = egg width; HMAS = hatchling mass; SEX = sex of both twins; F = female; M = male. All measurements of 
mass are in grams, length and width measurements are in millimeters, and dam age is in years. An asterisk (*) denotes sets of twins 
that were regarded as being asymmetrical. The mass of the second twin from TWCL 13 is missing because this individual died early 
in development. 

TWCL YR AGE MAS CSIZ CMAS RCM INCD EMAS EL EW HMAS SEX 
1 2003 7 1353 8 689 0.51 - - 71 47 25/23 - 
       - - 77 46 54  
2 2005 5 1238 7 702 0.57 59 107 88 46 38/32 F 
       59 98 78 47 68  
3 2007 7 1384 8 737 0.43 58 92 79 45 33/31 F 
       59 91 79 45 61  
4 2007 7 1460 8 759 0.52 58 88 74 46 33/23* M 
       58 95 76 49 61  
5 2007 6 1781 10 975 0.55 59 92 69 52 34/29 M 
       60 97 74 51 63  
6 2007 6 1485 9 804 0.54 56 - 74 47 41/20* M 
       55 - 73 47 63  
7 2007 4 986 6 558 0.57 58 84 79 45 29/25 M 
       58 93 79 46 60  
8 2007 4 1384 6 570 0.41 59 98 79 45 35/33 M 
       59 93 74 47 63  
9 2007 10 1481 5 498 0.34 57 103 91 44 38/27* M 
       57 97 83 45 64  

10 2007 3 1089 6 473 0.43 55 74 59 46 33/31 M 
       55 80 70 46 56  

11 2008 4 1795 6 584 0.33 57 93 71 50 28/22* M 
       56 97 75 47 65  

12 2010 7 1852 6 805 0.43 60 130 96 49 48/42 F 
       59 120 84 54 84  
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Table 4-2 (continued) 

TWCL YR AGE MAS CSIZ CMAS RCM INCD EMAS EL EW HMAS SEX 
13 2010 7 1666 8 846 0.51 63 103 80 49 23/-* - 
       64 106 76 52 64  

14 2010 8 1850 9 954 0.52 61 104 80 52 41/19* M 
       61 106 78 52 76  
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Table 4-3 
Comparison of female reproductive traits between twinning and non-twinning clutches. 
Female age is given in years. Values for female mass and clutch mass are log-
transformed. Student’s t-test was used to calculate the P-values displayed. 

 
 

Given the above observations of identical sex and color/pattern morphs in 

11 sets of twins we decided to use a molecular assay to see if we could produce the 

first genetic evidence of monozygotic twinning in a non-avian reptile species. The 

microsatellite data from one set of ball python twins and two sets of carpet python 

twins are presented in Table 4-5. Probabilities, under the null hypothesis that each 

of the individual sets of twins were not monozygotic, that combined microsatellite,  

color/pattern, and sex data for the set of ball python twins and the two sets of carpet  
 
python twins were 9.8 X 10-4, 6.1 X 10-5, and 3.4 X 10-5, respectively (Table 4-5).  
 
Therefore, the probability that none of these three sets of twins were monozygotic  
 
would be 2.0 X 10-12. 
 
 
Discussion 

The majority of twinning data published to date for reptilian species come  

Trait All Clutches Twinning Clutches P-value 

Female Age   6.19 (2.53) 6.07 (1.90) 0.86 

Female Mass 3.16 (0.09) 3.16 (0.08) 0.93 

Clutch Size   6.92 (1.77) 7.29 (1.49) 0.44 

Clutch Mass   2.76 (0.16) 2.84 (0.10) 0.05 

RCM   0.42 (0.10) 0.48 (0.08) 0.02 

Incubation Days 59.09 (1.88) 59.67 (2.24) 0.27 
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from bird and turtle species. Datasets of tens of thousands to over one hundred 

thousand eggs are available for these taxa (Byerly and Olsen, 1934; Eckert, 1990; 

Hildebrand, 1938). Twinning reports from other taxa consist almost exclusively of 

single twinning events (Aucone and Branham, 2005; Blomberg, 1979; Carpenter 

and Yoshida, 1967; Clark and Tytle, 1983; Curtis, 1950; Gudynas and Gambarotta, 

1981; Hartdegen and Bayless, 1999; Mackness et al., 1998; Marion, 1980; Reese, 

1906; Shaw, 1954; Shuette, 1978). We present data from 6,480 eggs from 937 ball 

python clutches in which 14 cases of twinning were observed.  

Reported rates for complete twinning events per egg in bird species range 

from 0% to 0.12% (Byerly and Olsen, 1934; Sittmann et al., 1971; Thorogood and 

Ewen, 2006) (Table 4-1). Complete twinning rates for turtle species range from 

0.001% to 0.63% per egg, and the percent of females that produce twinning 

clutches range from 0.4% to 19%. In our ball python dataset the twinning rate per 

egg was 0.22%, and the percent of females that produced twinning clutches was 

2.5%. Therefore, the twinning rates we observed were higher than rates published 

for avian species, but fell within the ranges published for chelonian species (Table 

4-1). 

The majority of avian data show that survival of twins is extremely low. 

Sittmann et al. (1971) and Munro (1965) report survival rates of 0%. For one case 

in which both the twins did survive, assistance was necessary during hatching 

(Bassett et al., 1999). In chelonian species the survival rates appear to be higher, but 

are still reported around 50% or below (Cohen, 1986; Eckert, 1990; Hildebrand, 

1938; Messinger and Patton, 1995; Tucker and Janzen, 1997; Yntema, 1971). 
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Among our 14 sets of twins, only one individual perished during our study (Table 4-

2). This individual, from twin clutch number 13, apparently perished in the egg 

early on in development. All other twins from this study were alive and feeding out 

to at least three months after hatching, giving us a 97% survival rate for twins in our 

study.  

 
Table 4-4 
Calculation of probabilities for 11 sets of twins with matching color/pattern morphs and 
sex under the null hypothesis that none of the sets were monozygotic. Color/pattern 
probability calculations are based on the modes of inheritance published for the 
associated color and pattern morphs described in Barker and Barker (2006).  Probabilities 
that are at P < 0.05 are in bold.  Color/pattern morphs as described in Barker and Barker 
(2006): a = pastel; b = albino; c = axanthic; d = mojave; e = ghost; f = caramel-albino; g 
= piebald; h = spider; i = calico; j = spotnose; k = lesser; l = pinstripe; and w = wild-type.  
 
TWCL 

 
Sire 

 
Dam 

 
Twin 

Color/Pattern 
Probability 

Sex 
Probability 

Combined 
Probability 

2 - - - 1 0.25 0.25 

3 aa aw aw 0.25 0.25 0.0625 

4 bw, cw bb, cw bb, cw or ww 0.1406 0.25 0.0352 

5 dd, ew dw, ew dd, ee 0.0156 0.25 0.0039 

6 ff fw fw 0.25 0.25 0.0625 

7 aw, gw gg aw, gw 0.0625 0.25 0.0156 

8 hw, ew ee, dw dw 0.0156 0.25 0.0039 

9 iw ww ww 0.25 0.25 0.0625 

10 jw aa aw 0.25 0.25 0.0625 

12 kw dw dk 0.0625 0.25 0.0156 

14 lw aa aw 0.25 0.25 0.0625 

   Totals 1.3 X 10-10 2.4 X 10-7 3.1 X 10-17 
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Table 4-5 
Probabilities of matching microsatellite, color/pattern, and sex for one set of ball python (BP) twins and two sets of carpet python (CP) 
twins under the null hypothesis that the sets were not monozygotic. Microsatellites MS4, MS5, MS9, MS13, and MS16 are from 
Jordan et al. (2002). Genotype calculations are based on the modes of inheritance for the associated color and pattern morphs 
published in Barker and Barker (2006) for the ball python twins, and Julander et al. (2011) for the carpet python twins. Genotypes as 
described in Barker and Barker (2006): a = spider, and w = wild-type. Genotypes as described in Julander et al. (2011): b = jaguar, c = 
granite, and w = wild-type. 
                      MS4                    MS5                    MS9                   MS13                   MS16              Color/Pattern        Same Sex        Total   _ 

BP sire                   454/470               393/409                                          249/265                                    aw 

BP dam                  454/454        393/393                                     265/265                                               ww 

BP twins                454/454        393/393                                     265/265                                 ww 

Probability              0.25           0.25                            0.25                                0.25                      0.25         9.8 X 10-4 

 

CP1 sire                 414/418                359/359                                          179/191                362/390                  bw 

CP1 dam                430/430                371/371                                          213/223                366/390                  ww 

CP1 twins              418/430                359/371                                          179/213                362/366                  bw 

Probability              0.25             1                           0.0625                  0.0625                  0.25                     0.25         6.1 X 10-5 

 

CP2 sire                 410/410                351/351              194/202              203/219                386/390                   cw 

CP2 dam                410/426                351/367              194/202              203/219                386/386                   cw 

CP2 twins              410/410                351/351              194/202              203/203                386/390             cw or ww 

Probability              0.25                      0.25                    0.25                   0.0625                    0.25                  0.5625                     0.25         3.4 X 10-5 
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Our data also differed from the chelonian data in the rate at which twins were 

asymmetric, and the proportion of incomplete twinning to complete twinning. 

While the percentage of twins that were asymmetrical in turtle species have been 

reported to be approximately 80% (Tucker and Janzen, 1997; Yntema, 1970, 1971), 

only 6/14 (43%) of the sets of twins in our study were asymmetrical. Perhaps even 

more surprising is the fact that although bird and turtle studies almost exclusively 

report higher conjoined twinning rates than complete twinning rates (Byerly and 

Olsen, 1934; Crooks and Smith, 1958; Hildebrand, 1938; Sittmann et al., 1971; 

Yntema, 1970, 1971), we did not observe a single occurrence of conjoined twinning 

in the 6,480 ball python eggs we studied. 

Several reports on reptile twinning events have made note that the size of 

twin-bearing eggs were larger than the other eggs in the clutch. This has been noted 

among various taxa including avian (Alley and Berry, 2002; Bassett et al., 1999), 

crocodilian (Blomberg, 1979), lizard (Carpenter and Yoshida, 1967), and colubrid 

snakes (Singh and Thapliyal, 1973). In addition, Gorzula et al. (1997) mentioned 

that exporters had alluded that ball python twins usually came from extra-large 

eggs. Analysis of our twinning data failed to show any significant differences 

between the sizes of twinning and non-twinning eggs. In fact, P-values for 

comparisons between twinning and non-twinning eggs in egg mass, egg length, and 

egg width were all at P > 0.25 when analyzed using paired t-tests. Further, the 

combined masses of sets of twins in comparison to their siblings were also 

insignificant (P > 0.50). Therefore our data do not provide any evidence for 

differences in egg size between twinning and non-twinning eggs. 
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Eckert (1990) found that twinning clutches had a significantly higher 

percentage of yolked eggs in comparison to non-twinning clutches. Tucker and 

Janzen (1997) found that twinning females were larger in plastron length and laid 

larger clutches than non-twinning females. Among our data we found differences 

between twinning and non-twinning clutches to be marginally insignificant for 

clutch mass (P = 0.05) and significant for relative clutch mass (P = 0.02) (Table 4-

3). Studies on the effects of environmental conditions on the prevalence of 

developmental anomalies have shown that decreases in temperature or oxygen 

concentration can significantly increase twinning rates (Newman, 1923; Sittmann et 

al., 1971; reviewed in Hildebrand, 1938; Landauer, 1967). Newman (1923) reported 

specifically on how crowding of starfish eggs led to increased twinning rates 

presumably due to increased CO2 and decreased O2 levels among the eggs. We 

propose that higher proportions of eggs being yolked, larger clutches sizes, and 

especially larger clutch masses in relation to the size of the female (RCM) in 

twinning versus non-twinning clutches could possibly lead to a higher rate of 

metabolism occurring within the given oviductal space of the females, which could 

lead to higher CO2 levels among the eggs. Although we do not provide any direct 

evidence for such a relationship, we submit that the evidence from these larger-

scale twinning studies in reptiles warrant further testing to see if such larger 

clutches/clutch masses do indeed experience more hypoxic conditions. 

Twinning in mammals is generally predominated by dizygotic twinning 

(reviewed in Aston et al., 2008; Gleeson, 1994; although see Blickstein and Keith, 

2007 for a notable exception). Among reptiles, more turtle researchers have 
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concluded that the instances of twinning they have observed have been dizygotic 

(Crooks and Smith, 1958; Yntema, 1970, 1971), but more snake researchers have 

concluded that they observed monozygotic twinning (Curtis, 1950; Mackness et al., 

1998; Manimozhi et al., 2006). All 12 sets of twins for which sex was recorded in 

our dataset were of the same sex (Table 4-2). One of these sets of twins was of 

different color/pattern phenotypes that are known to be dominant traits (Barker and 

Barker, 2006) and thus was determined to be a pair of dizygotic twins. The other 11 

sets of twins were all of identical color/pattern morphs. The probability of having 

11 sets of same sex pairs without any of the pairs being monozygotic twins would 

be 2.4 X 10-7, and the probability with both same sex and color/pattern morphs 

given the known modes of inheritance of the morphs (Barker and Barker, 2006) 

would be 3.1 X 10-17. Therefore we concluded that both dizygotic and monozygotic 

twinning had occurred in our ball python population and that likely more of the sets 

of twins were monozygotic than dizygotic.  

We then used microsatellite analysis on DNA from one set of ball python 

twins and two sets of carpet python twins to determine whether monozygotic 

twinning had indeed occurred. We present the first molecular data showing 

monozygotic twinning to have occurred in a non-avian reptile species. Probabilities 

of the observed microsatellite, same sex, and same color/pattern morph data for the 

one ball python and two carpet python sets of twins if each pair individually was 

not monozygotic was 9.8 X 10-4, 6.1 X 10-5, and 3.4 X 10-5, respectively (Table 4-

5). Further, under the null hypothesis that none of these three sets of twins were 

monozygotic the probability would be 2.0 X 10-12. 
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We conclude that the overall complete twinning rate we observed in our ball  

 
python population was comparable to what has been shown in turtle species.  
 
Further, we found that twinning was not as disadvantageous in our ball python  
 
population as has been reported in turtle species given that the survival rate for ball  
 
python twins was 97%. We provide evidence that relative clutch mass is  
 
significantly higher for twinning than non-twinning clutches. Also, we observed  
 
occurrences of both dizygotic and monozygotic twinning and conclude that  
 
monozygotic twinning occurs at a higher rate in our ball python population than  
 
dizygotic twinning does. Lastly, we present the first molecular data showing  
 
monozygotic twinning to have occurred in a non-avian reptile species. 
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CHAPTER 5 

          SUMMARY 

Information regarding reproduction traits of captive reptiles is sparse. Published 

reports on python species are limited to small sample sizes, and to discussing averages 

and ranges for reproductive traits. Further, little published information exists that 

discusses management practices for larger-scale snake reproduction. Breeding programs 

working with captive populations of reptiles frequently violate the assumptions 

associated with the use of ordinary least squares (OLS) to calculate breeding genetics 

values such as repeatability (R), heritability (h2), and genetic (rG) and phenotypic (rP) 

correlations. Restricted maximum likelihood (REML) does not have such associated 

limiting assumptions and lends itself nicely to use with captive breeding data. To date, no 

studies have used REML to calculate breeding genetics values in any non-archosaurian 

reptiles. Further, although studies on turtle populations have shown that twinning is 

generally detrimental to reproductive efficiencies, to date no such analysis has been 

carried out on any other non-avian reptile species.   

Although ball pythons in this study appeared to generally be pulse breeders, 

clutches were laid during all weeks of the year except the first 3 weeks in January. 

Further, the above data suggest that the week of the year a ball python female lays her 

eggs in captivity is heritable and is significantly affected by both maternal and permanent 

environmental effects. Reproduction throughout the majority of the year in captive ball 

pythons is in stark contrast to what has been reported to occur in nature. Wild ball 

pythons in southern Togo, Africa generally lay their eggs during one month of the year. 



 

 

116 
The fact that female ball pythons can proceed through their reproductive cycles at 

almost any time during the year in captivity could have important implications for those 

trying to reproduce other python and snake species. Methods such as follicle palpation 

and ultrasound may significantly enhance success in reproducing these species in 

captivity by helping to identify times during which males should be introduced to females 

for copulation. This would be especially important in situations in which keepers are 

attempting to breed multiple females with single males.   

 During the current study, clutch sizes were reduced by the dam when one or more 

eggs were laid early, or one or more eggs were excluded from the dam’s coils during 

brooding. Although the female mass average from females that produced these reduced 

clutches was not significantly different from the overall female mass average from all 

clutches laid in this study, clutch mass was significantly higher in clutches that were laid 

early, and RCM was significantly higher in both types of reduced clutches. Therefore, 

clutches were reduced in size when they were large in comparison to female mass (higher 

RCM), which would potentially lead to females experiencing difficulty in covering the 

proportionately larger clutches. Also, the hatch rate for clutches that had eggs laid early 

was significantly lower than the hatch rate for all clutches in this study, but the hatch rate 

for these same clutches once they were reduced (i.e. not including eggs that were laid 

early) was not significantly different than the overall average. 

Female frequency of reproduction is often discussed among ball python breeders. 

The suggestion has been made in the past that limiting females to breeding every other 

year may increase overall production. In our univariate model we did detect a significant 

effect of consecutive clutches (females laying clutches in two or more consecutive years) 
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on clutch size. However, in the multivariate model this effect was not significant. We 

were unable to find any convincing evidence from our data to suggest that breeders 

should purposely limit their females to breeding every other year. 

We hypothesized that egg width, and perhaps egg length, could provide an 

indication of the volume within the oviduct available for eggs, as has been discussed by 

other researchers. Due to the fact that snakes do oviposit some infertile masses among 

their clutches that are smaller, we hypothesized that the inclusion of the measurements 

for these infertile, smaller egg masses would decrease the correlations between these 

traits and their explanatory factors because these smaller masses would be poor indicators 

of oviductal space. Further, we hypothesized that averages for egg width and perhaps egg 

length that included measurements from infertile egg masses would lead to lower h2 

estimates. 

 Our data provide evidence that it would likely be beneficial for researchers to 

exclude measurements from infertile egg masses when they are calculating mean egg 

lengths and widths for use in developing breeding selection programs for ball pythons, 

and perhaps other snake species as well. Heritability for egg width increased from 0.35 to 

0.45 when infertile egg mass measurements were removed, and the correlation between 

egg width and its explanatory factor MAS was higher when infertile egg masses were 

removed as well (0.35 versus 0.53). Although the increase in h2 for egg length was less 

dramatic (0.47 to 0.48), the correlation with its explanatory factor AGE was also 

increased (0.08 to 0.13). Given these results, we used the egg length and width means 

that did not include measurements from infertile egg masses in the multivariate model. 



 

 

118 
Moreover, we suggest that other researchers working with ball pythons, and perhaps 

other snake species, do the same. 

Maximization of healthy offspring per clutch (HOFF) was deemed to be our main 

focus in designating selection criteria. Although HOFF, hatch rate (HR), and egg mass 

(EMAS) were deemed important for use in creating selection criteria, they were not ideal 

due to lower heritability or genetic variation. Conversely, heritability for CSIZ was high 

(0.44), and the estimate of genetic variation for CSIZ was among the highest for all the 

traits (coefficient of variation = 0.26). Also, rG and rP between CSIZ and HOFF were 

both 0.54. Given the above data, CSIZ appeared to be the most ideal trait to focus on 

when setting up selection criteria for our captive population of ball pythons. 

A trade-off between clutch size and egg size has been shown in many species, 

including several snake species. For captive ball pythons this trade-off seems to exist as 

well. The rG estimates between CSIZ and EMAS, EL, and EW were -0.61, -0.71, and -

0.29 respectively. The rP estimates between CSIZ and EMAS, EL, and EW were -0.40, -

0.63, and 0.14 respectively. Therefore, if selection pressure is applied to produce larger 

clutch sizes, breeders should pay attention to potential decreases in EMAS because 

increasingly smaller egg masses will likely decrease hatch rates (rG = 0.42 between 

EMAS and HR) and potentially lead to decreased HOFF (rG = 0.65 between HOFF and 

HR). 

The majority of twinning data published to date for reptilian species came 

from bird and turtle species. Most of the avian data show that survival of twins is 

extremely low, usually at or near 0%. In turtle species the survival rates appear to 

be higher, but are still reported around 50% or below. Among our 14 sets of twins, 
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only one individual perished during our study. This individual apparently perished in 

the egg early on in development. All other twins from this study were alive and 

feeding out to at least three months after hatching, giving us a 97% survival rate for 

twins in our study.  

Among the above data we found differences between twinning and non-

twinning clutches to be marginally insignificant for clutch mass (P = 0.05) and 

significant for relative clutch mass (P = 0.02). Studies on the effects of 

environmental conditions on the prevalence of developmental anomalies have 

shown that decreases in temperature or oxygen concentration can significantly 

increase twinning. One such report noted specifically that crowding of starfish eggs 

led to increased twinning rates presumably due to increased CO2 and decreased O2 

levels among the eggs. We propose that larger clutch masses in relation to the size 

of the female (RCM) in twinning versus non-twinning clutches could possibly lead 

to a higher rate of metabolism occurring within the given oviductal space of the 

females, which could lead to higher CO2 levels among the eggs. Although we do 

not provide any direct evidence for such a relationship, we submit that the evidence 

from larger-scale twinning studies in reptiles warrant further testing to see if such 

larger clutches/clutch masses do indeed experience more hypoxic conditions. 

We present the first molecular data showing monozygotic twinning to have 

occurred in a non-avian reptile species. Probabilities of the observed microsatellite, 

same sex, and same color/pattern morph data for the one ball python and two carpet 

python sets of twins if each pair individually was not monozygotic was 9.8 X 10-4, 
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6.1 X 10-5, and 3.4 X 10-5 respectively. Further, under the null hypothesis that none of 

these three sets of twins were monozygotic the probability would be 2.0 X 10-12. 

The large sample sizes attained in this study have allowed us to study certain 

aspects of ball python captive reproduction that have not been previously analyzed. 

Novel data presented in this study provide a foundation for the design of future studies, 

and for the development of more efficient breeding plans for propagating captive 

pythons. For individuals and commercial breeders that wish to maximize breeding 

efficiencies in ball pythons we suggest that they do the following: 1) Utilize palpation 

and/or ultrasound of follicles in order to ensure females have opportunities to breed with 

males when ready; 2) Make provisions in breeding procedures to decrease the risk of 

subjecting eggs to desiccation at any time during incubation; 3) Use clutch size as a 

primary trait for selection, along with healthy offspring per clutch and hatch rate; 4) As 

clutch sizes increase, monitor egg masses and adjust selection criteria so as to minimize 

the negative effects of small egg size on hatch rate and healthy offspring per clutch; 5) 

Exclude measurements from infertile egg masses when calculating average egg widths 

and egg lengths for clutches; 6) Perform additional research on twinning in ball pythons 

and potentially put selection criteria in place that would increase twinning in their 

populations. 
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Moderate Experience in: 
 

·  Working with Biosafety Level 2 blood born pathogens 
 

·  Producing transgenic mammalian cells via viral transduction and transfection 
using both lipid-based delivery systems and electroporation 

 
·  Conducting reproductive hormone treatments in mice to induce 

superovulation, and collection of oocytes and preimplantation stage embryos 
 

·  Assisting in porcine surgeries in which the purpose is to remove oocytes or 
preimplantation stage embryos 

 
·  Collection of immature porcine oocytes 

 
·  In vitro maturation of porcine oocytes 

 
·  Gas chromatography mass spectrometry (MS) and limited experience with 

liquid chromatography MS; from sample prep and runs to instrument 
maintenance and data analysis using Waters machines and software 

 
·  Basic veterinary techniques in reptiles, including blood draws and 

euthanization 
 

·  Heat detection in pigs 
 

·  Artificial insemination in pigs 
 

Limited Experience in:  
 

·  Bovine oocyte collection and IVF embryo production 
 



 

 

129 
·  Cryopreservation of bovine semen 
 
·  Protein techniques including extraction and purification, quantification, 

western blots, and 2D-gels 
 
 

Presentations at Scientific Meetings 
 

2004 Poster Presentation, Phylogeography of lowland species of Bufo across the 
eastern end of the Trans-Mexican Neovolcanic Belt, Norman, OK, 
American Society of Ichthyologists and Herpetologists.  

 
2008 Poster Presentation, Primate sequence length polymorphisms within the 

Amelogenin and Amelogenin-like genes: Usefulness in sex determination, 
Kona, HI, Society for the Study of Reproduction. 

 
2008 Poster Presentation, Metabolomic effects of Eastern Cottonmouth venom 

on mammalian kidney cells, San Francisco, CA, American Society for 
Cell Biology. 

 
2009 Oral Presentation, Metabolomic effects of pitviper venoms on mammalian 

kidney cells, Logan, UT, Intermountain Graduate Research Symposium. 
 
2009 Poster Presentation, Metabolomic profile shifts in mammalian kidney cells 

caused by pitviper venoms, Albuquerque, NM, Venom Week, Third 
International Scientific Symposium. 

 
2010 Oral Presentation, Generation of induced pluripotent stem cells in 

livestock species, Logan, UT, Intermountain Graduate Research 
Symposium. 

 
2010 Poster Presentation, A combined approach to foster undergraduate 

research in biotechnology and systems biology at Utah State University, 
Ogden, UT, Council on Undergraduate Research 19th National 
Conference. 

 
2010 Oral Presentation, Python reproductive traits: Maximizing breeding 

success and efficiencies, Tucson, AZ, International Herpetological 
Symposium. 

 
 

Publications 
 

Mulcahy, D. G., Morrill   B. H., Mendelson J. R., 2006.  Historical biogeography 
of lowland species of toads (Bufo) across the Trans-Mexican Neovolcanic 
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Belt and the Isthmus of Tehuantepec. Journal of Biogeography, 33, 
1889-1904. 

 
Morrill, B. H. , Rickords  L. F., Shafstall H. J., 2008.  Sequence length 

polymorphisms within primate Amelogenin and Amelogenin-like genes: 
Usefulness in sex determination.  American Journal of Primatology, 70, 
976-985. 

 
Morrill, B. H. , Rickords  L. F., Shafstall H. J., 2009. Sequence length 

polymorphisms within cervid AmelogeninX and AmelogeninY genes: Use 
in sex determination.  Wildlife Biology in Practice, 5(2), 89-95.  

 
Morrill, B. H. , Rickords L. F., Sutherland C., Julander J. G., 2011. Effects of 

captivity on female reproductive cycles and egg incubation in ball pythons 
(Python regius). Herpetological Review, 42(2), 226-231. 

 
 
Currently Preparing for Submission in 2011 
 

Morrill, B. H. , Rickords L. F., French S. S., Sutherland C., Julander J. G. 
Quantitative genetic analysis of ball python (Python regius) reproduction 
traits. Will submit to Journal of Animal Breeding and Genetics. 

 
Morrill, B. H. , Rickords L. F., French S. S., Sutherland C., Julander J. G. Should 

egg widths and lengths from obviously infertile eggs be removed from 
quantitative genetic analyses on reproductive traits? Will submit to 
Copeia. 

 
Morrill, B. H. , Rickords L. F., Sutherland C., Julander J. G. Twinning in reptiles: 

evidence of relatively high rates of monozygotic twinning and survival of 
twins in snake species. Will submit to Herpetologica. 


