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Abstract: Appropriate water supply is crucial for high-yield and high-quality potato tuber production.
However, potatoes are mainly planted in arid and semi-arid regions in China, where the precipitation
usually cannot meet the water demand throughout the growth period. In view of the actual situation
of water shortage in these areas, to monitor the water status of potato plants timely and accurately
and thus precisely control the irrigation are of significance for water-saving management of potatoes.
Hyperspectral remote sensing has unique advantages in diagnosing crop water stress. In this
paper, the canopy spectral reflectance and plant water content were measured under five irrigation
treatments. The spectral parameters that respond to plant water content were selected, and a
hyperspectral water diagnosis model for leaf water content (LWC) and aboveground water content
(AGWC) of potato plants was established. It was found that potato tuber yield was the highest
during the entire growth period under sufficient irrigation, and the plant water content showed a
downward trend as the degree of drought intensified. The peak hyperspectral reflectance of potato
plant canopies appeared in the red wavelength, where the reflectance varied significantly under
different water treatments and decreased with decreasing irrigation. Six models with sensitive bands,
first-order derivatives, and moisture spectral indices were established to monitor water content of
potato plants. The R2 values of partial least squares regression (PLSR), support vector machine
(SVM), and BP neural network (BP) models are 0.8418, 0.9020, and 0.8926, respectively, between
LWC and hyperspectral data; and 0.8003, 0.8167, and 0.8671, respectively, between the AGWC and
hyperspectral data. These six models can all predict the water content of potato plants, but SVM is
the best model for predicting LWC of potato plants. These results are of great significance for guiding
precision irrigation of potato plants at different growth stages.

Keywords: potato; water diagnosis models; hyperspectral; precision irrigation

1. Introduction

The potato (Solanum tuberosum L.) is the fourth most important global food crop after
rice, corn, and wheat [1]. In 2020, its planting area and total yield reached 16.49 million
hectares and 359.07 million tons, respectively [1]. China is the world’s largest potato
production country, with a planting area of 5.60 million hectares and a total production
of 122.94 million tons in 2020, accounting for 34.24% of the total global production [2]. In
terms of planting area, the northern monoculture area has the largest planting area and
is the main potato-producing area in China, accounting for more than 50% of the total
planting area of potatoes. However, in arid or semi-arid areas, insufficient precipitation
cannot meet the water demand of potatoes throughout their entire growing season. Under
such water-scarce conditions, precision irrigation is crucial for ensuring high yield, high
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quality, and efficient water use of potatoes. Therefore, timely and accurate monitoring
of the water status of potatoes and precise irrigation control based on the obtained soil
moisture information has practical significance for efficient water management of potatoes.

Hyperspectral technology has become a popular approach for evaluating the vegeta-
tion water content due to its fast and convenient operation [3]. When using hyperspectral
reflectance to estimate moisture conditions, it is necessary to determine the sensitive bands
related to moisture due to the unique spectral characteristics of different compounds. In
the original canopy spectral data, the bands at 690 and 740 nm are more suitable for diag-
nosing plant water conditions [4]. Carter [5] demonstrated that the reflectance sensitivity
of leaves to water content is the highest in the spectral bands of 1450, 1950, and 2500 nm.
During drought, the near-infrared spectral reflectance of soybean canopy decreases, and
the optimal wavelength for detecting water stress is 760–900 nm [6].

The internal water condition of leaves directly reflects the water status of the entire
plant [7,8]. Due to the close correlation between leaf water content (LWC) and soil moisture
status, soil moisture status reflects the water and fertilizer retention capacity of plants,
making it an important indicator of crop moisture status [9]. Thomas et al. [10] discussed
the relationship between LWC and infrared spectral reflectance and found a significant
negative correlation between them. Tang et al. [11] also reported similar results and pointed
out that the spectral reflectance of corn leaves decreased continuously with increasing water
content. The relative water content of wheat leaves is positively correlated with the charac-
teristic absorption peak and spectral reflectance area at approximately 1450 nm [12,13]. The
relationship between LWC and hyperspectral reflectance varies greatly among different
crops, even at different growth stages of the same crop. The correlation between LWC and
reflectance in the wavelengths of 810–870 nm and 1480–1650 nm is the highest in the early
stage of wheat growth (combining with the booting stage). However, the correlation coeffi-
cient of the mature stage (heading–filling–maturity) are even higher in the wavelengths
of 1480–1500 and 610–710 nm [14]. Inoue et al. and Yu et al. [15,16] also used reflectance
inversion at different wavelengths to calculate the relative water content of canopy leaves.
In addition, the first derivative of hyperspectral reflectance is related to LWC [17]. The
results of Shibayama and Akiyama [18] showed that the first derivative spectrum at 960 nm
is the most sensitive band for predicting rice water status.

After confirming the correlation between plant water status and spectral reflectance
using spectral indices and spectral parameters, a hyperspectral-based plant water status
monitoring model was constructed. Previous studies have shown that the Normalized
Difference Water Index (NDWI) based on the spectral reflectance at 860 nm and 1240 nm
wavelengths better reflects plant water content than the NDVI (Normalized Difference
Vegetation Index) [19]. NDWI is a normalized ratio index based on the green band and
the near-infrared band. It is generally used to get the water body information in images
with good effect. Yet, its limitation lies in extracting water bodies with a lot of building
backgrounds, such as in cities, while NDVI is closely related to the transpiration of plants,
the interception of sunlight, photosynthesis, and the net primary productivity of the
surface, etc. It is mainly used to detect the growth status of vegetation, the vegetation
coverage, and eliminate some radiation errors, etc. Compared with NDVI, NDWI can
effectively obtain the water content information of the vegetation canopy. When the
vegetation canopy is under water stress, the NDWI can respond in a timely manner, which
is of great significance for monitoring drought. The NDWI and Simple Ratio Index (SR)
are also positively correlated with LWC [20]. In addition, Jin et al. [21] found that the
Moisture Stress Index (MSI) and Mid-Infrared Vegetation Index (MSVI1) have a close
and stable correlation with LWC. The Normalized Difference Spectral Index (NDSI) and
Difference Spectral Index (DSI) can predict LWC [22]. Su et al. [23] constructed an optimal
monitoring model for plant water content and LWC using the water index (WI), NDWI,
MSI, and water band index (WBI). The ratio of WI to NDVI can predict the water contents
of the plant and leaves, significantly improving the accuracy of monitoring models [24].
Song [25] conducted nine data transformations on the original spectrum, and then combined
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multiple stepwise regression (SMLR), principal component regression (PCR), and partial
least squares regression (PLSR) methods to establish a prediction model for LWC of Populus
euphratica. The PLSR model constructed from the logarithmic reflectance and LWC after
the first-order differential change of the original spectrum has the highest accuracy and
the best prediction effect. Moreover, Wang et al. [26] constructed an LWC quantitative
inversion model for winter wheat based on PLSR by screening the characteristic sensitive
bands and calculating spectral indices (NDVI 800 nm, 680 nm; PWI 900 nm, 970 nm; RVI
810 nm, 460 nm, etc.). The neural network method has good predictive ability for crop
water content [27]. However, there are relatively few studies that adopt hyperspectral
remote sensing and machine learning to study a method to monitor the water status of
potato plants in real time.

At present, the hyperspectral estimation of crop LWC is mainly based on a single
reflectance index and traditional vegetation indices, and further research is needed to
diagnose the multiple combinations of hyperspectral reflectance, derivatives, and moisture
index. It is difficult to accurately establish a leaf water monitoring model for the entire
growth period of crops using a single vegetation index, and the sensitivity of single-band
or fixed-wavelength vegetation indices to crop LWC varies by region, which requires
the universality, accuracy, and adaptability of crop water monitoring models. This re-
quires screening the full hyperspectral reflectance band of crop canopy and establishing
an estimation model for crop moisture using multiple characteristic parameters such as
sensitive bands, derivatives, and water spectral indices. Thus, we conducted research to
firstly construct a potato moisture diagnosis model based on hyperspectral characteristic
parameters. We carried out experiments with different irrigation amounts during the entire
growth period of potatoes. The water status of potato plants was characterized by the water
content of leaves. The up-to-date advanced hyperspectral instrument SVC-1024i was used
to obtain the hyperspectral data of potato canopies. The characteristic spectral parameters
were screened based on the variation patterns of the characterization parameters of plant
water content and canopy spectral reflectance during the entire growth period of potatoes.
The sensitive bands, the first-order derivative bands, and the water-sensitive index were
combined to establish a real-time monitoring model of plant water status during the tuber
formation period of potatoes, which is composed of multiple estimation factors. This study
is expected to provide a solid and reliable theoretical basis and technical support for the
construction of a hyperspectral water diagnosis system for high-yield and efficient potatoes.

2. Materials and Methodologies
2.1. Plant Materials and Field Experiment under Rainproof Shelters

The experiments were conducted under rain shelters in Nanshebiya village, Saihan
District, Hohhot, Inner Mongolia, China (41◦27′ N, 112◦63′ E, 1050 m) in 2020–2021. The
field soil is chestnut soil (Chinese classification) [28], which contains 15.6 g/kg organic mat-
ter, 0.72 g/kg total nitrogen, 38.5 mg/kg available phosphorus (Olsen-P), and 193.7 mg/kg
potassium (exchangeable potassium) in 0–60 cm soil layer with a pH of 8.1. The field water
capacity (0–60 cm) is 0.2864 g/g. The soil is sandy loam soil; the bulk density and the field
water capacity of each soil layer are shown in Table 1.

Table 1. The bulk density and water-holding capacity of soil at different depths before sowing.

Soil Depth (cm)

0–20 20–40 40–60

Bulk density (g/cm3) 1.47 1.50 1.53
Water-holding capacity (g/g) 0.36 0.28 0.21

Two very popular local potato (Solanum tuberosum L.) varieties, Kexin No.1 (drought-
resistant) and Spunta (drought-sensitive), were planted in 2020 and 2021, respectively.
The seed potatoes of the two potato varieties were both provided by Inner Mongolia
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Minfeng Seed Industry Co., Ltd. (China). The sowing dates were 10 May 2020, and 12 May
2021. Fertilizer [N (535.65 kg/ha), P2O5 (375 kg/ha), and K2O (750 kg/ha)] was applied
during sowing. On June 26, plants were top-dressed with urea (488.85 N kg/ha), single
superphosphate (P2O5, 300 kg/ha), and K2SO4 (K2O, 687.6 kg/ha). The experiment was
irrigated by drip irrigation, and the irrigation amount was controlled manually. The drip
irrigation tape was double-hole with a spacing of 20 cm. Each treatment was a separate
plot. Each plot had an independent water meter and switch, which enabled the irrigation
amount to be strictly controlled manually. The five irrigation treatments were as follows:
(1) excessive irrigation (EI: 75%, 85%, 95%, and 80% relative soil water content (RSWC) in
the seedling, tuber initiation, bulking, and maturation stages, respectively); (2) adequate
irrigation (AI: 65%, 75%, 85%, and 70% RSWC, respectively, during the seedling, tuber
initiation, bulking, and maturity stages); (3) moderate dehydration (MD: 50%, 60%, 70%,
and 55% RSWC, respectively, during the seedling, tuber initiation, bulking, and maturity
stages); (4) severe dehydration (SD: 35%, 45%, 55%, and 40% RSWC, respectively, during
the seedling, tuber initiation, bulking, and maturation stages); and (5) extreme dehydration
(ED: 25%, 35%, 45%, and 30% RSWC, respectively, in the seedling, tuber initiation, bulking,
and maturation stages).

RSWC (%) = (Soil fresh weight − Soil dry weight)/Soil dry weight × 100% (1)

The seedling, tuber initiation, bulking, and maturation stages occur <20 days after
emergence (DAE), 20–37 DAE, 38–73 DAE, and >74 DAE, respectively. A completed
randomized block design was used with three replicates. The plot size was 6.0 m × 5.6 m,
with a row spacing of 0.70 m and a plant spacing of 0.20 m. A two-meter-wide buffer area
has been established between the plots to prevent boundary effects and water leakage. Each
row was equipped with a drip irrigation pipe, and a solenoid (Hebei YouMite Instrument
Manufacturing Co., Ltd., Zhangjiakou, China) was used for irrigation control during each
treatment [29]. In all treatments, sufficient water was provided to ensure uniform seedling
emergence. After 80% of seedlings appeared, the RSWC was monitored every three days
through the oven-drying method. This included sampling the soil at 4:00 pm, oven-drying
it overnight, and calculating the irrigation amount for irrigation the next morning. The
allowable deviation of RSWC for each treatment was 2% (i.e., the target RSWC for the
seedling stage was 75%; if the test value for the 0–60 cm soil layer is less than 73–75%,
the irrigation water can reach 77% RSWC). The irrigation quota was calculated as follows
based on a previous report [30]:

I = 0.6×A × (Raim − Rtest) × ρb (2)

where I represents the irrigation quota (t); A represents the irrigated area (m2); Raim
represents the RSWC (%); Rtest represents the tested RSWC (%); and ρb represents the soil
bulk density (g/cm3). Under the five water treatments, except for the different irrigation
amounts, other soil fertility conditions, soil structure, and fertilization amounts were all
the same.

2.2. Sampling and Measurements

During the seedling, tuber initiation, tuber bulking, and maturation stages of potato
plants, six plants were harvested from each plot for analysis. After measuring the hyper-
spectral reflectance of the canopy, leaves, aboveground stems, underground stems, roots,
and tubers were separated from the plants, and their fresh weights were measured. Then,
the dry weights were measured after they were dried at 105 ◦C for 30 min and subsequently
at 80 ◦C until they reached a constant weight.

The LWC and AGWC were calculated.

AGWC (%) = (LFW + AGSFW) − (LDW + AGSDW)/(LFW + AGSFW) (3)
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In Equation (3), LFW represents total leaf fresh weight (g); LDW represents total leaf
dry weight (g); AGSFW represents aboveground stem fresh weight; AGSDW represents
aboveground stem dry weight.

The determination time of hyperspectral reflectance is consistent with the water
content of the plants. The sampling dates for Kexin No. 1 and Spunta were 18, 37, 52, 73, and
90 DAE. Before sampling, the hyperspectral reflectance of the plant canopy was measured
using an SVC-1024i Ground Spectrometer (Spectra Vista Corporation, Poughkeepsie, NY,
USA) with a working range of 337–2521 nm (Figure 1). On a sunny day with little or no
wind, the reflectance at a height of 40–60 cm above the potato plant canopy was measured
at 10:00 a.m. and 14:00 p.m. To obtain representative canopy reflectance, five sampling
points were selected for each treatment, and 10 spectra images were collected from each
sampling point. Then, 50 spectra images were processed and averaged. In addition, during
the measurement process, a standard whiteboard was used to promptly correct the “before”
and “after” observation results for each group of targets.
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During the sampling period and each watering period, soil samples were taken using
a soil core (diameter: 2.5 cm) at a depth of 0–60 cm to measure RSWC. After drying the soil
samples to a constant weight at 105 ◦C, the RSWC was calculated. RSWC represents the
actual soil water content (in percentage), thereby indicating the field water capacity [31].
Soil samples were collected from the midpoint between two seedlings in the planting row,
in triplicate for each treatment. Kexin No. 1 and Spunta underwent yield harvesting on
15 September 2020 and 10 September 2021, respectively. The edge row was removed from
each processed treatment plot, and the yield was measured using a randomly selected
unsampled area of 2 m2.

2.3. Hyperspectral Data Processing and Model Construction

Using MATLAB 2018a (Math Works, Inc., Natick, MA, USA, 2006) (https://www.
mathworks.com/products/matlab.html (accessed on 31 May 2024)), the characteristic
spectrum of the original band was screened by the successive projections algorithm (SPA).
SPA is a forward variable selection algorithm that minimizes collinearity in vector space. Its
additional advantage is to extract several characteristic wavelengths of the entire spectrum
while eliminating redundancy in the original spectral matrix. The number of selected
characteristic bands using SPA is 5–30. The specific steps are as follows: the matrix X (NS,
G) is used to represent the most original data, where NS represents the number of samples
and G is the dimension of each sample. Initialization: set the number N of variables to
be screened; select any column xg from the G column vectors in the matrix as the initial
iterative vector. The positions of the unselected column vectors are recorded in the set

https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
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M, which can be expressed as Equation (4); calculate the projection of xg on the vectors
included in the set T (Equation (5)). Select the column vector with the largest projection as
the new projection vector xk (n) and delete it from the set M. Judge the number of selected
column vectors at this time. If the number is less than N, it is returned to the second step;
otherwise, the calculation is stopped. Set different xk (0) and N, and to obtain circularly
different variable sets. Select the best xk (0) and N through the root mean square error
(RMSE) of the error analysis graph obtained from the operation.

M = {g, 1 > g > G, g {k (0), . . .,k (n), . . ., k (N − 1)}} (4)

Pxg = xg − [xTgxk (n)] xk (n) [xTk (n) xk (n)] − 1 (5)

Through correlation analysis, the first-order derivative of reflectance related to the
LWC and shoot water content was screened. In addition, 17 spectral indices that are highly
sensitive to the plant canopy structure and its water status were selected, and the selected
band reflectance, first derivative, and moisture index were combined to form a modeling
index library. The main several water spectral indices and their calculation formulas are
shown in Table 2.

Table 2. Several spectral indices and their algorithm formulas applied in modeling.

Spectral Index Formula

MSI (Moisture Stress Index) R1599/R819
NDII (Normalized Difference Infrared Index) (R819 − R1649)/(R819 + R1649)

PSRI (Plant Senescence Reflectance Index) (R680-R500)/R750
EVI (Enhanced Vegetation Index) 2.5 × (R800 − R680)/(R800 + 6 × R680 − 7.5R450 + 1)

ρr The minimum band reflectance within the wavelength range of
650 to 690 nm

ρg The maximum band reflectance within the wavelength range of
510 to 560 nm

SDr/SDy (Red-edge area/yellow-edge area) (R780 − R680)/(R640 − R560)

When building the model, the Kennard–Stone algorithm is used to select training
set samples, because the algorithm treats all samples as candidate samples and then
sequentially selects them for the training set. First, the two samples with the farthest
Euclidean distance were selected as the training set. Then, the Euclidean distance from
each remaining sample in the training set to each known sample was calculated, and
the candidate samples with the maximum and minimum distances were selected. These
samples were then placed into the training set and continued until the required number
of samples were reached. PLSR, SVM, and back-propagation neural network (BPNN)
methods were used for modeling. The model creation referred to the algorithms and steps
reported by Wang et al. [32], Qian et al. [33], and Cheng et al. [34], respectively. A total
of 150 sets of hyperspectral data and the corresponding 150 water content data of potato
canopy leaves were extracted in this study. The data set was divided into the training set
and the test set at a ratio of 7:3. The specific sample division results are shown in Table 3.
The accuracy and universality of the constructed model are tested by determining the
coefficient (R2) and root mean square error (RMSE). Linear regression on both predicted
and measured values was performed, and the slope of the regression model was calculated.

Table 3. The sample size of the modeling set and the validation set of PLSR, SVM, and BP regres-
sion models.

Sample Size Purpose

Training set 105 modeling
Test set 45 verify



Horticulturae 2024, 10, 811 7 of 18

2.4. Statistical Analyses

The data obtained in this experiment were processed using Microsoft Excel 2013
(Microsoft, Redmond, WA, USA). The analysis of variance was conducted using SPSS18.0
(International Business Machines Corporation, Armonk, NY, USA). Model construction and
mapping were performed by self-programming with Matlab 2016 software (Math Works,
Natick, MA, USA).

3. Results
3.1. Yield Response to Different Irrigation Amounts

The maximum yield of Kexin No.1 and Spunta potatoes at harvest reached 82.65 and
58.53 t/ha (Figure 2a,b), respectively. The yield of adequate irrigation (AI) treatment was
significantly greater than that of moderate dehydration (MD) treatment throughout the
growth stages. However, excessive irrigation (EI), serious dehydration (SD), and extreme
dehydration (ED) at the critical growth stage resulted in a decreased potato tuber yield,
which is significantly lower than the MD treatment in both cultivars.
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irrigation treatments. In (a,b), EI: excessive irrigation treatment, AI: adequate irrigation treatment,
MD: moderate dehydration treatment, SD: severe dehydration treatment, ED: extreme dehydration
treatment. The tubers with a diameter >0.5 cm were included. The sampling dates are 15 September
and 10 September, respectively. Different letters denote statistically significant differences at p < 0.05.

3.2. Leaf Water Content and Aboveground Water Content

The leaf water content (LWC) of potatoes was reduced under water stress conditions
throughout the growth stages. The greater the water stress, the more LWC decreased
(Figure 3). The LWC of MD, SD, ED treatments was significantly lower than that of EI and
AI treatments. This phenomenon was seen in both cultivars. However, leaf water content
under EI treatment was not significantly different from that under AI treatment at 37, 73,
and 90 DAE. The consistent results were observed in both Kexin No.1 and Spunta potatoes.

Similar results were observed in aboveground water content (AGWC) of potato plants
(Figure 4). Throughout the growth stages, the AGWC was proportional to the soil water
content. The AGWC in EI treatment was the highest, followed by AI treatment, although
there was no significant difference at 18 and 37 DAE. The AGWC in MD treatment was
significantly greater than that in SD treatment, except for 73 and 90 DAE. The AGWC in
ED treatment was the lowest in both cultivars.
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spectral reflectance of Kexin No. 1 and Spunta varieties at various growth stages reached 
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Figure 3. The leaf water content of two potato varieties at 18, 37, 52, 73, and 90 days after emergence
(DAE) under five irrigation treatments. For the Kexin No.1 (left) and Spunta (right), EI: excessive irri-
gation treatment, AI: adequate irrigation treatment, MD: moderate dehydration treatment, SD: severe
dehydration treatment, ED: extreme dehydration treatment. (Different lowercase letters in the same
column indicate significant differences at the 0.05 level).
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Figure 4. The aboveground water content of two potato varieties at 18, 37, 52, 73, and 90 days after
emergence (DAE) under five irrigation treatments. For the Kexin No.1 (left) and Spunta (right), EI: ex-
cessive irrigation treatment, AI: adequate irrigation treatment, MD: moderate dehydration treatment,
SD: severe dehydration treatment, ED: extreme dehydration treatment. (Different lowercase letters in
the same column indicate significant differences at the 0.05 level).

3.3. Changes in Hyperspectral Reflectance

Figure 5a,b show the spectral reflectance of potato plant canopies at different growth
stages under water treatments. Although the changes in the spectral reflectance of two
potato varieties were consistent under different water treatments, there were variations
in spectral reflectance at different growth stages. The spectral reflectance of potato plant
canopies in the visible wavelength (400–700 nm) increased initially and then decreased.
However, in the 700–1350 nm wavelength, the canopy reflectance significantly increased
with increasing irrigation. At 18 and 37 DAE, the spectral reflectance decreased with
increasing water stress. In addition, at 52, 73, and 90 DAE, the spectral reflectance of Kexin
No. 1 under ED treatment was lower than that of other treatments, whereas the spectral
reflectance of ED and SD treatments were lower than that of EI, AI, and MD treatments.
In addition, the spectral reflectance of high irrigation treatments was also greater in the
1350–2521 nm wavelength. From Figure 5a,b, it was observed that under water treatments,
the spectral reflectance of Kexin No. 1 and Spunta varieties at various growth stages
reached their peak values in the red-border region.
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spectral reflectance at 337–2521 nm 37 DAE; (3) High spectral reflectance at 337–2521 nm 52 DAE;
(4) High spectral reflectance at 337–2521 nm 73 DAE; (5) High spectral reflectance at 337–2521 nm
90 DAE. In (a,b), EI: excessive irrigation treatment, AI: adequate irrigation treatment, MD: moderate
dehydration treatment, SD: severe dehydration treatment, ED: extreme dehydration treatment.

3.4. Hyperspectral Feature Parameters in Relation to Changes in Plant Moisture Status

Error analysis and sensitive wavelength selection for LWC and AGWC are shown
in Figure 6a and 6b, respectively, using the SPA operation program in MATLAB. In the
13th iteration of LWC, when RMSE tends to be stable, 13 sensitive bands including R 725,
856, 1000, 1899, 1915, 1923, 2464, 2473, 2479, 2485, 2490, 2494, and 2499 nm were selected.
Among them, there were three bands in the near-infrared wavelength (700–1300 nm) and
10 in the infrared wavelength (1300–2500 nm). In addition, when RMSE tend to be stable
in the 16th iteration of AGWC, 16 sensitive bands including R 688, 1001, 1828, 1894, 1901,
1914, 1922, 2282, 2447, 2466, 2475, 2481, 2486, 2491, 2495, and 2498 nm were selected. There
were two in the near-infrared wavelength (700–1300 nm) and 14 in the infrared wavelength
(1300–2500 nm).
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Figure 6. The final number of sensitive bands selected when the RMSE value tends to be stable
(the curves represent the RMSE value when different numbers of bands were selected): (a) LWC,
and (b) AGWC. The red squares represented the final number of selected variables 13 (a) and
16 (b) respectively.

Using correlation analysis, we screened the first-order derivatives of reflectance and
then selected the first-order derivative with higher correlation coefficients at a probability
level of 0.01. The results are shown in Table 4. In addition, we also selected the 17 spectral
indices (WBI, NDWI, MSI, NDII, SR, mSR705, PSRI, VOG1, VOG2, VOG3, EVI, NDVI,
NDVI705, ρr, ρg, NDρg_ρr, SDr/SDy; among them, NDρg_ρr = (ρg − ρr)/(ρg + ρr), where
SDr/SDy represents the ratio of the red-edge area (SDr) and yellow-edge area (SDy)). They
are extremely sensitive to the plant water status and together form the indicator basis for
establishing the model.

Table 4. Correlation analysis between the plant water content index and the first derivative of reflectance.

Plant Water
Content Index

First Derivative
of Reflectance

Correlation
Coefficient

Plant Water
Content Index

First Derivative
of Reflectance

Correlation
Coefficient

LWC
(%)

D521 0.4849 ** AGWC
(%)

D564 −0.5870 **
D555 −0.5731 ** D566 −0.5605 **
D570 −0.5307 ** D580 −0.4638 **
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Table 4. Cont.

Plant Water
Content Index

First Derivative
of Reflectance

Correlation
Coefficient

Plant Water
Content Index

First Derivative
of Reflectance

Correlation
Coefficient

LWC
(%)

D521 0.4849 **

AGWC
(%)

D564 −0.5870 **
D707 0.5488 ** D603 −0.4869 **
D716 0.5953 ** D712 0.5977 **
D720 0.5482 ** D1437 −0.6087 **
D1519 0.6823 ** D1464 0.6615 **
D1550 0.6242 ** D1562 0.5755 **
D1600 0.5629 ** D1600 0.5623 **
D1810 0.4531 ** D1810 0.5732 **
D2104 0.4426 ** D2109 0.5116 **

**: Represented the first derivative has a higher correlation coefficient at the 0.01 level.

3.5. Moisture Monitoring Models
Partial Least Squares Regression (PLSR)

(1) The regression equation of the spectrum and LWC estimation model is shown as follows:

Y = −76.96 X1 + 0.9047 X2 − 0.4825 X3 − 0.2585 X4 − 0.0063 X5 + 0.0897 X6 + 0.0454 X7 − 0.1167 X8 −
0.1668 X9 + 0.0698 X10 − 0.0522 X11 + 0.0801 X12 − 0.0343 X13 − 0.0171 X14 − 37.6423 X15 − 90.3575 X16 +

33.0464 X17 + 3.05611 X18 − 4.0546 X19 + 3.0272 X20 + 69.1098 X21 + 18.1561 X22 + 83.2275 X23 +
24.1908 X24 − 7.7997 X25 + 20.8407 X26 + 80.5652 X27 + 9.9670 X28 − 31.1268 X29 + 0.9602 X30 −

21.5350 X31 − 152.5497 X32 + 77.5729 X33 + 1418.7156 X34 − 1087.3456 X35 − 16.8388 X36 +
71.3621 X37 + 45.8248 X38 + 0.590187 X39 + 0.5798 X40 − 16.1681 X41

where X1 — X13, X14 — X24, and X25 — X41 represent the sensitive bands, first derivatives,
and spectral indices of the indicator library, respectively.

When we extracted 41 components, the ratio of the explanatory dependent variables
was 85.21% (Figure 7a), and the modeling effect is better. The R2 = 0.8418, RMSE = 13.0667,
and the test set prediction results R2 = 0.6506 of the above PLSR model (Figure 7b).

(2) The regression equation of the spectrum and AGWC estimation model is as follows:

Y = 7.0164 − 4.7752 X1 − 0.2611 X2 + 0.0500 X3 + 0.8632 X4 − 0.7566 X5 − 0.1395 X6 − 0.0188 X7 −
0.4253 X8 + 0.0009 X9 − 0.1100 X10 − 0.0567 X11 + 0.1212 X12 + 0.0365 X13 + 0.0657 X14 + 0.0280 X15 −

0.0357 X16 + 41.4394 X17 − 125.7316 X18 + 113.6233 X19 + 58.7286 X20 + 2.5184 X21 + 6.4340 X22 +
33.8752 X23 − 15.3368 X24 + 52.1277 X25 + 1.9704 X26 + 12.0724 X27 − 0.6198 X28 + 89.3110 X29 +
23.6743 X30 − 19.3636 X31 − 0.3763 X32 + 7.1523 X33 − 103.3082 X34 + 59.9540 X35 + 1.1573 X36 +

133.4231 X37 − 11.4335 X38 + 89.1469 X39 − 119.7034 X40 + 8.9216 X41 − 0.0983 X42 +
31.8028 X43 − 17.1274 X44

Among them, X1 — X16, X17 — X27, and X28 — X44 represent the sensitive bands, the
first derivatives, and the spectral indices of the indicator library, respectively.

When we extracted the 44 components, the ratio of the explained dependent variables
was 80.03% (Figure 8a). R2 = 0.8003, RMSE = 10.3801, and the test set prediction results
R2 = 0.5972 of the above PLSR model (Figure 8b).

3.6. Support Vector Machine (SVM)

The results of the SVM-based LWC prediction model are as follows: The training set
was trained, and the training results are shown in Figure 9a. The training set R2 is 0.9020,
and the test set R2 is 0.6432. The results of the SVM-based AGWC prediction model are as
follows: The training set was trained, and the training results are shown in Figure 9b; the
training set R2 is 0.8167 and the test set R2 is 0.6876.
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Figure 9. Fitting hyperspectral reflectance with leaf water content (LWC) and aboveground water
content (AGWC) using SVM (support vector machine) regression models: (a) LWC, prediction results
of training set (top left) and test set (top right); (b) AGWC, prediction results of training set (bottom
left) and test set (bottom right).

3.7. Back-Propagation Neural Network

A range of 8–16 hidden nodes were selected for the experiment. Table 5 shows that
LWC and AGWC have the best model fit, with 12 hidden nodes. For this hidden node, the
model fit R2 of the BP neural network regression model between the spectrum and LWC is
0.8926, while that of R2 between the spectrum and AGWC is 0.8671 (Figure 10a,b).

Table 5. The R2 values of different hidden nodes screened by the back-propagation neural network
models of leaf water content (LWC) and aboveground water content (AGWC).

Plant Water
Content Index

Number of
Hidden Nodes R2 Plant Water

Content Index
Number of

Hidden Nodes R2

LWC (%)

8 0.8499

AGWC (%)

8 0.7393
9 0.8395 9 0.7264

10 0.8707 10 0.7484
11 0.7620 11 0.7964
12 0.8926 12 0.8671
13 0.8466 13 0.6822
14 0.8453 14 0.7532
15 0.8338 15 0.6901
16 0.7959 16 0.8303

In summary, through comparative analysis, PLSR, SVM, and BP models have a higher
model fit on LWC than on AGWC, with R2 values reaching 0.8418, 0.9019, and 0.8926,
respectively. This indicates that the potato LWC monitoring model based on hyperspectral
data has high accuracy for prediction. When using three models to predict potato LWC, the
R2 values were as high as 0.8193, 0.9192, and 0.7538 (Figure 11). This further indicates that
using SVM based on hyperspectral data to estimate potato LWC is the best choice.
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Figure 10. Fitting hyperspectral reflectance with the LWC and AGWC of potato plants using back-
propagation neural network regression models. (a) LWC, the training set (top left), the test set
(bottom left), the validation set (top right), and the overall result (bottom right); (b) AGWC, the
training set (top left), the test set (bottom left), the validation set (top right), and the overall result
(bottom right).
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Black straight lines represent the linear relationship between the predicted leaf water content and the
measured leaf water content.
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4. Discussion

As a result of global climate change and population growth, freshwater shortage has
become increasingly serious. Agriculture is a major water consumer, so water conservation
from irrigation in agriculture has great potential. Precision irrigation, recognized as a
superior method to traditional irrigation in recent years, aims to achieve precise control
and supply of water through scientific management and technical means according to the
actual needs of crop growth. Among these methods, drip irrigation directly delivers water
to the roots of crops through pipelines, achieving a high water utilization rate. This saves
water resources and reduces weed growth. To accelerate the promotion and application
of precision irrigation technology, the Chinese government has taken a series of measures.
For example, the government supports scientific research institutes and enterprises in the
research and development of precision irrigation technology. It also encourages farmers
to adopt precision irrigation technology by increasing investment in technology research
and development, providing government guidance, and offering financial subsidies. In
Xinjiang, for example, the local government has vigorously promoted precision irrigation
technology, achieving remarkable results. The adoption of drip irrigation in cotton planting
not only saves water resources but also improves yield and quality.

Potatoes require significant water during the growth period, so research on their
precise irrigation is crucial.

Studies have shown that drought inhibits potato growth leading to yield reduction.
Water stress decreases plant height and tuber yield by reducing the number of stolons per
plant [35,36]. With increased stress, the growth rate of potatoes significantly decreases,
affecting leaf expansion, plant elongation, and overall crop yield. The responses of potatoes
to water deficit varies at different growth periods. Water stress during the tuber expansion
period significantly reduces potato yield to 28,633.3 kg/hm2, 18.93% lower than under full
irrigation [37]. However, appropriate water stress can improve water use efficiency and
potato quality, ensuring minimal yield reduction and supporting sustainable agriculture.

The regulation of water conditions directly affects the quality and yield of potato tubers.
Therefore, it is essential to monitor the water content of potato leaves or aboveground parts
quickly and accurately. Canopy hyperspectral measurement is a simple, fast, nondestructive
method with a wide range of spectral indicators, making it suitable for quickly estimating
field water content. The quantitative relationship between canopy spectral reflectance
and LWC and AGWC shows improved correlation in the near-infrared region, which is
consistent with the results of Carter [5] and Cibula et al. [38]. In this study, the 400–2500 nm
band was selected for analysis. The sensitive wavelengths extracted through the SPA
method, which reduces data dimension and improves modeling speed, align with those
proposed by previous researchers [39]. Based on this, the feasibility of using hyperspectral
parameters to diagnose potato water status was assessed, leading to the development of
three water diagnosis models, PLSR, SVM, and BP, for precise water management during
the critical growth period.

Due to strong reflection on fresh leaves and structural influences, estimating crop
water status using a single spectral reflectance is challenging. However, constructing
spectral indices enhances the utilization of effective spectral information on vegetation,
reduces external influences, and improves the accuracy of prediction models [40]. Peñuelas
and Inoue [24] improved the prediction accuracy of LWC by establishing spectral indices
such as WI (900, 970) and WI to NDVI ratio index (900, 680). Yu et al. [16] proposed the
spectral index RSI (2200, 1430) for monitoring the water status of grasses and woody plants.
In this study, we applied the previously proposed water sensitivity spectral index [41–43],
combined with sensitivity bands and first derivatives, to establish an LWC diagnosis
model. The results showed that expanding the spectral index range and introducing mixed
characteristic spectral parameters improved the prediction performance of crop LWC, with
R2 > 0.6. The hyperspectral prediction model of potato LWC also showed good stability.

Although potato canopy hyperspectral data were used in this study, selecting sensitive
bands, the first derivative of reflectance, and spectral indices, and then establishing esti-
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mation models of potato leaf and aboveground water content based on machine learning
algorithms using combined characteristic parameters, can achieve good prediction results.
However, there are still shortcomings: the sensitive bands and indices of potato leaf water
content may vary at different growth stages, and the characteristic spectral parameters
of the constructed model may change. Further canopy leaf water and hyperspectral data
collection at each growth stage is necessary to verify and correct the potato water estimation
model, improving the universality and practicality.

5. Conclusions

Adequate water supply throughout the growth period is necessary to achieve a high
yield of potato tubers. The LWC and AGWC were higher under treatments with larger
irrigation amounts compared to water stress treatments. Under different water supply
conditions, the hyperspectral reflectance trends of these two potato varieties over the
two years are similar. It is worth noting that the reflection peaks appeared at 700, 1800,
and 2400 nm, with significant differences in the hyperspectral reflectance between different
irrigation treatments in the ranges of 700–1100 nm, 1800–1950 nm, and 2400–2500 nm. This
suggests that estimating the water content of potato plants using hyperspectral methods is
feasible. The accuracy of the PLSR, SVM, and BP prediction models established between
LWC and hyperspectral characteristic parameters was higher than that of AGWC. Among
these, the SVM model had the highest prediction accuracy for leaf moisture content, with
an R2 value of 0.9020.

In subsequent studies, selecting the optimal spectral monitoring parameters for char-
acterizing LWC at different stages of potato growth will be the preferred method. Based
on this, high-precision monitoring models for leaf water content of potatoes at various
growth periods will be further established. Additionally, this study was conducted in the
Inner Mongolia region of China, which has a temperate continental climate. The soil type
in the potato planting area is sandy loam. The gradient treatment of irrigation amounts
involved different percentages of the maximum field capacity of water during each growth
period of potatoes, representing varying degrees of drought, sufficiency, and waterlogging.
It is necessary to expand the water content range of potato plants for specific climate areas
to enhance the monitoring adaptability of the model. Both Kexin No. 1 and Spunta are
medium-late maturing potato varieties. Further research on the normalized water diagnosis
of potato varieties with different maturity periods is required to validate the practicality of
the established model.
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