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Abstract: Protocols to evaluate turfgrass quality rely on visual ratings that, depending on the
rater’s expertise, can be subjective and susceptible to positive and negative drifts. We developed
seasonal (spring, summer and fall) as well as inter-seasonal machine learning predictive models of
turfgrass quality using multispectral and thermal imagery collected using unmanned aerial vehicles
for two years as a proof-of-concept. We chose ordinal regression to develop the models instead of
conventional classification to account for the ranked nature of the turfgrass quality assessments.
We implemented a fuzzy correction of the resulting confusion matrices to ameliorate the probable
drift of the field-based visual ratings. The best seasonal predictions were rendered by the fall (multi-
class AUC: 0.774, original kappa 0.139, corrected kappa: 0.707) model. However, the best overall
predictions were obtained when observation across seasons and years were used for model fitting
(multi-class AUC: 0.872, original kappa 0.365, corrected kappa: 0.872), clearly highlighting the need
to integrate inter-seasonal variability to enhance models’ accuracies. Vegetation indices such as
the NDVI, GNDVI, RVI, CGI and the thermal band can render as much information as a full array
of predictors. Our protocol for modeling turfgrass quality can be followed to develop a library of
predictive models that can be used in different settings where turfgrass quality ratings are needed.

Keywords: turfgrass quality; multispectral imagery; unmanned aerial vehicles; ordinal forests; fuzzy
corrections; remote sensing; predictive modeling

1. Introduction

The development of turfgrasses that have low water requirements is important as they
play significant roles in urban landscaping, recreational areas, erosion control, and other
applications with increasing demands for reductions in water use [1,2]. Oftentimes, turf
grasses are exposed to environmental stresses, particularly drought [3]. Drought stress
can have severe impacts on turf quality, causing wilting, browning, and even death of the
grass, affecting both aesthetics and functionality. Research has demonstrated that selecting
drought-resistant turfgrass cultivars can effectively reduce water use while maintaining
turf quality [4]. Enhancing the drought resistance of turf grasses is essential to ensure their
sustainability and functionality under water-limited conditions. Research has underscored
the importance of improving drought tolerance in cool-season turfgrasses through targeted
breeding efforts and precise drought screening protocols [5]. Identifying and screening
grasses with excellent drought tolerance is a desirable strategy in breeding drought-tolerant
turf cultivars [6]. This highlights the necessity for ongoing research and development to
boost the resilience of turf grasses to water scarcity.

Traditionally, turfgrass quality assessment has relied on visual methods, such as the
National Turfgrass Evaluation Program’s (NTEP) 1 to 9 scale [7], where 1 indicates low-
quality turf, 9 indicates high-quality turf, and 6 is considered the minimum acceptable level
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of turfgrass quality [8]. This visual rating system has been widely adopted by researchers
and turfgrass managers globally for evaluating turfgrasses [9]. Assessing turf quality
through visual ratings offers both advantages and disadvantages. Visual ratings are a
common and cost-effective method used in the turfgrass industry to evaluate the overall
quality of turf based on parameters such as color, density, and uniformity [10]. This method
provides a quick and straightforward way to assess the aesthetic appeal and health of
turfgrass [11]. Visual ratings are subjective but can still offer valuable insights into the
condition of the turf, making them accessible to a wide range of users [12]. One of the key
advantages of using visual ratings is the simplicity and ease of implementation. It does not
require specialized equipment, making it a practical choice for routine assessments of turf
quality. Additionally, visual ratings can provide immediate feedback on the condition of
the turf, allowing for timely interventions to maintain or improve turf quality [13,14]. This
method is also versatile, as it can be applied at different frequencies, such as weekly, bi-
weekly, or monthly, depending on the study or management needs [15]. However, there are
also limitations to assessing turf quality through visual ratings. One of the main drawbacks
is the subjectivity involved in the assessment process. Different individuals may perceive
turf quality differently, leading to potential inconsistencies in ratings. This subjectivity can
be influenced by factors such as lighting conditions, observer experience, and personal bias,
which may affect the reliability of the results. Moreover, visual ratings may not capture
subtle changes in turf quality that could be detected through more objective methods like
digital image analysis [9].

In recent years, the use of unmanned aerial vehicles (UAVs) and digital photogramme-
try has revolutionized the monitoring and assessment of various environmental features,
including turfgrass quality. The high-resolution outputs generated through drone imagery
provide an unprecedented opportunity to move beyond traditional classification systems
and work with spatially explicit continuums of data [16]. Moreover, the integration of
digital image analysis and spectral reflectance techniques has been instrumental in deter-
mining turfgrass quality. In a study in Kansas, USA, canopy spectral reflectance, which
can be measured using normalized difference vegetation index (NDVI), proved to offer an
objective means to evaluate the visual quality of turfgrass [17]. The results of this study
indicated, however, that NDVI can provide precise predictions in plots maintained at the
same mowing height and in experiments with the same species. In another study conducted
in Las Cruces, New Mexico, USA, NDVI was found to be strongly associated with turfgrass
quality, outperforming other digital image analysis outputs in assessing parameters like a
dark green color index or percent green turfgrass coverage [9]. This study emphasized that
replacing visual assessments with digital image analysis may be questionable because vi-
sual ratings can detect aesthetic appeal differences between varieties much more accurately.
Research conducted in northern Italy showed how multispectral radiometry and vegetation
indices like NDVI can provide quantitative and objective evaluations of turfgrass quality
responses to various stresses [18], further strengthening the idea that NDVI may be used to
reduce the subjective nature of visual quality assessments.

The aforementioned techniques enable a more comprehensive and accurate assessment
of turfgrass quality compared to traditional visual methods such as the NTEP. Furthermore,
the use of UAVs in conjunction with thermal and multispectral imagery has shown promise
in estimating actual evapotranspiration over irrigated turfgrass surfaces. Studies have
highlighted the efficacy of models like the Two-Source Energy Balance (TSEB) model in
utilizing drone imagery to estimate spatial variations of daily actual evapotranspiration.
The TSEB is valuable for landscape irrigation management, especially under drought
conditions [19]. The combination of drone technology and advanced modeling techniques
enhances the precision and efficiency of assessing turfgrass quality parameters related to
water management and environmental conditions.

Here we report on the development of a novel method to predict turf grass quality
using imagery collected by multispectral sensors onboard UAVs over the span of two years
(2022 and 2023) over 300 plots containing multiple varieties of a widely used turf grass:
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Kentucky Bluegrass (KBG; Poa pratensis). Our objectives were twofold: (a) evaluate the
feasibility of fitting seasonal and global models to predict turfgrass quality in semiarid
landscapes, and (b) quantify the impact of implementing fuzzy accuracy assessment ap-
proaches on the overall model fit. We expect that the development of transparent and
repeatable models such as the ones presented in this paper will gradually contribute to
obtaining more objective predictions of turf quality across different grass species, ecological
conditions, and other physical modifiers across the country.

2. Materials and Methods
2.1. Study Area

This study was conducted at the Utah State University (USU) Greenville Research
Farm (41◦45′56.41′′ N, 111◦48′37.42′′ W) in Logan, UT, USA. The site is at 1409 m above
sea level with a mean daily temperature of 9.2 ◦C and an average annual precipitation
of 479 mm [20]. The experiment included 100 different KGB varieties, replicated three
times in a 1 m × 1 m plot, totaling 300 units. This experiment uniformly irrigated weekly
throughout the season. The plots’ size and spatial arrangement, as well as the distances
between repetitions of this field experiment, followed the NTEP guidelines. Figure 1 shows
the location of the experiment as well as the distribution of the KBG varieties.
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Figure 1. Layout of the repetitions and experimental units used in this study, overlaid on natural
color UAV images collected on 16 August 2022. Inset map provides a close-up representation of the
KBG plots and their randomization within each repetition.

2.2. Collection of Turf Grass Quality Ratings

Each one of the 300 plots was visually assessed and given a quality rating (from 1 to
9) using the standardized NTEP norms [7] on the same dates as UAV imagery acquisition
(Table 1). Since quality ratings and UAV imagery needed to be acquired on the same day for
predictive modeling, the selection of the dates was dictated by weather conditions optimal
for UAV flights outlined below.
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Table 1. List of dates and associated season when the 300 plots were rated using the NTEP methodology.

Year Date Season

2022 28 July Summer
2022 16 August Summer
2022 20 September Fall
2023 28 April Spring
2023 16 May Spring
2023 30 June Summer
2023 31 August Summer
2023 25 September Fall
2023 23 October Fall

The ratings were conducted on clear days and were performed by three turfgrass
quality raters from both USU and the US. Department of Agriculture, Agricultural Research
Service (USDA/ARS) Forage and Range Research Lab (FRRL) personnel with proper
training on the NTEP norms to assign turf grass quality. To collect the best quality imagery,
the UAV must be flown within one hour of solar noon, under clear and sunny days,
and when winds do not exceed the aircraft’s maximum tolerances. The ratings were
conducted during the dates shown above to track changes between seasons and to explore if
seasonal models would perform differently. The selection of the specific dates was arbitrary
and depended on a combination of clear weather conditions, visual raters’ availability,
and resource logistics. The start of the project was contemplated to be in the spring of
2022. However, numerous logistic difficulties (i.e., inability to fully integrate UAV and
multispectral sensors and insufficient UAV pilot training) prevented us from collecting
data during that season. Once these limitations were overcome, data collection formally
started in the summer of 2022 until the fall of 2023.

2.3. UAV Imagery Acquisition

A Matrice 600 Pro (Shenzhen DJI Sciences and Technologies Ltd., Shenzhen, Guang-
dong, China) hexacopter UAV was used, with a multispectral Micasense Altum (AgEagle
Aerial Systems Inc., Wichita, KS, USA) sensor. The Altum collected imagery in six bands
of the electromagnetic spectrum. A sample schematic of the research plots and the UAV
utilized during this research is in Figure 2.
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The band name designation, along with the center wavelength for this sensor, is
provided in Table 2.
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Table 2. Band names, center wavelength and bandwidth of the Altum sensor used in the study.

Band Name and File Order 1 Center Wavelength (nm 2) Band Amplitude (nm)

Blue B—1 475 32
Green G—2 560 27

Red R—3 668 14
Red Edge RE—4 717 12

Near Infrared NIR—5 842 57
Longwave Infrared LWIR—6 11,000 (11.0 µ) 6000 (6.0 µ)

1 Letters in bold are abbreviations to be used throughout the text. Numbers indicate the sequence in which band
files are stored. 2 nm—nanometers~1/1000 microns µ.

Flight missions for each date (Table 1) were prepared using the UgCS software (https:
//www.sphengineering.com/flight-planning/ugcs, accessed on 10 May 2022) version
5.3.0. Missions were flown at an altitude of 34.8 m, which rendered a pixel resolution
of 1.5 cm for the multispectral bands (B, G, R, RE, and NIR) and 23.2 cm for the LWIR.
The missions were planned so that the flight lines were flown from east to west and
west to east, and the speed of the UAV was kept consistent to ensure that image frames
had a minimum overlap (front and side) of 75%. Immediately before the launch and
at landing, image frames of the calibrated reflectance panels were collected. This was
done to create reflectance-compensated image outputs during post-processing. All the
flights were conducted during solar noon, under clear and sunny conditions with low
wind speeds. The sensor always pointing at the nadir (i.e., perpendicular to the ground).
Ground control points (GCPs) were placed strategically throughout the flight mission
area for georectification of orthomosaics during image processing (see below). The GCPs’
real-world coordinates (i.e., Latitude, Longitude and elevation) were collected using Emlid
RS2+ (https://emlid.com/reachrs2plus/, accessed on 3 March 2022) receivers.

2.4. UAV Imagery Processing
2.4.1. Conversion to Reflectance

We used a modified version of the Micasense image processing scripts (https://github.
com/micasense/imageprocessing, accessed on 10 October 2023) that utilized the calibrated
reflectance panels with accompanying imagery to control the radiometric workflow that
converts raw digital numbers into reflectance information. In addition, the different bands
or files (Table 2) are co-registered such that features in the imagery are geometrically aligned
from band to band. The conversion to reflectance was carried out for the B, G, R, RE, and
NIR bands. Since the information collected on the LWIR band is of emitted (not reflected)
radiation, there was no radiometric conversion, and the algorithm ensured that the LWIR
bands were co-aligned with other reflective bands. The Micasense scripts were modified to
(1) utilize the ORB [21] algorithm instead of the SIFT [22] algorithm for feature detection,
decreasing processing time per capture by a factor of 10; (2) implement parallel processing
to reduce processing time; (3) streamline the workflow into a single wrapper script executed
by command as opposed to Jupyter notebooks; and (4) output individual band layers, the
required downstream input, instead of stacked images.

2.4.2. Stitching the Images into Georectified Orthophotomaps

Individual reflectance image frames were stitched together into orthophotos using the
Open Drone Map (ODM) software version 3.1.7 [23]. The GCPs collected at the field were
used as reference points within the ODM workflow to generate orthomosaics that were
georectified or geometrically corrected to a spatial grid—Universal Transverse Mercator
UTM Zone 12 North. Orthomosaics that have been georectified using the GCPs allow for a
full correspondence or digital alignment of an aerial image with other images taken over
the same area or with other maps that are in the same spatial grid.

https://www.sphengineering.com/flight-planning/ugcs
https://www.sphengineering.com/flight-planning/ugcs
https://emlid.com/reachrs2plus/
https://github.com/micasense/imageprocessing
https://github.com/micasense/imageprocessing
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2.4.3. Extraction of Vegetation Indices (VIs)

We calculated several different VIs (Supplementary Material—Table S1) using custom
Python scripts from the light reflectance intensities detected by the multispectral bands
of the Altum sensor (Table 2). The single-band TIFF files were read in as arrays using the
Rasterio version 1.3.9 [24] package, and the calculations were done using the GeoWombat
version 2.1.0 [25] package. The GeoWombat package allows on-the-fly geographic transfor-
mations, automatic data alignment, and flexible data writing over parallel tasks. Using the
GeoWombat package significantly improved the calculation speeds of the VIs.

2.5. Preparation of the Modeling Matrix
2.5.1. Zonal Statistics

To simplify our analysis, we computed zonal statistics, which are representative values
(i.e., mean, median, mode, etc.) for all the pixels that are completely contained within
a plot’s polygon. With a ground sample distance of 1.5 cm and an average plot size of
1 m2, approximately 4445 pixels per plot were captured. We focused on median values
and extracted zonal statistics for all the remote sensing bands (B, G, R, RE, NIR, and LWIR)
and all the subsequently derived vegetation indices (i.e., NDVI, RVI, NDRE). For this
process, we used the Python package exactextract version 0.2.0 [26], which accounts for
partial coverage of pixels. This package is rapid, reduces computational time, and provides
more accurate estimates.

2.5.2. Modeling Matrix

We prepared a matrix for modeling purposes where the rows represent the individ-
ual observations (300 KGB plots × 9 visual ratings (Table 1) for each plot for a total of
2700 rows or observations), and the columns can be described as (a) the response vari-
able that was to be predicted: visual ratings with values ranging from 1–9 as previously
(Section 2.1) described, and (b) the median value (i.e., zonal statistics) for all the bands and
vegetation indices that were derived.

2.6. Modeling
2.6.1. Selection of the Modeling Algorithm

The response variable values (1–9 turf quality ratings) follow an incremental order
such that plots with a visual rating of 1 are of lesser quality than the plots with a visual
rating of 2, plots with a visual rating of 2 are of lesser quality than the plots with a visual
rating of 3, and so forth. In this context, we conducted the modeling of the response
variable using ordinal regression (OR) [27]. OR can manage multiple ordered categories in
the response variable, such as in the case of the visual ratings, and is particularly useful in
studies where plot status is classified into categories that function like qualitative gradients,
such as poor—moderate—good—exceptional [28].

2.6.2. Implementation of the Ordinal Regression

We conducted the fitting of our models using the R ordinalForest version 2.4-4 pack-
age [29]. The variable importance byproduct was extracted from each model that was fitted
and used to rank predictors according to their overall impact on the model’s performance.
This R package can also conduct the prediction of ordinal response variables in statistical
problems with few (low-dimensional) as well as many (high-dimensional) predictors in the
dataset [29].

2.6.3. Description of Model Structures

We tested if using all available observations taken throughout the year would yield
a strong predictive model. We did that by splitting the dataset into training (70% of
observations) and test (the remaining 30%) sub-datasets. We named this model “Total”.
We also tested seasonal model variations. Each turf growing season was split into three
sections: spring (April–June), summer (June–August), and fall (September–October). We
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tested if observations collected in the Spring season as a training sub-dataset would predict
Summer and Fall turf quality scores. In this case, the Summer and Fall seasons served as
validation sub-datasets. We named this model “Spring”. Likewise, the “Summer” and
“Fall” models were tested. Finally, we were also interested in assessing if a simpler model
would yield relatively acceptable predictions. We fitted a reduced version of the “Total”
model but with a subset of the most important predictors as per our assessment of the top
five predictors based on the rank probability scores (RPS) as described [29]. We named this
model “FiveTotal”.

2.7. Assessment of the Goodness of Fit

We organized the results from the different validations into confusion matrices (CM)
to assess the goodness of fit [30] of each model. We utilized the R caret version 6.0-94 pack-
age [31,32] with the function confusionMatrix to extract the overall statistics, namely overall
accuracy and the Kappa statistic for each model. To account for the drift in observations
caused by different individual raters, we implemented a fuzzy accuracy assessment [33,34]
on each one of the validation datasets. Any values that fell outside of the diagonal (i.e., im-
properly predicted visual rating values) were moved to the diagonal of the matrix (Figure 3)
with customized R scripts. This was done, however, only if there was a positive or negative
drift of one unit. For instance, if the originally observed value was 4 and the predicted value
was 3 (negative drift) or 5, then the values were moved from the cell outside (i.e., prediction
errors) the diagonal of the matrix to the cells in the diagonal (i.e., accurate predictions) of
the matrix. However, if the originally observed value was 4 and the predicted value was 2
or 6, then those values remained in their cells and thus were included as prediction errors.
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Comparison Across Models

We computed the numeric value of the area under the receiver operating characteristic
(ROC) or area under the curve (AUC) for each one of the five model structures that we tested.
Given that this research problem dealt with nine ordinal classes, a regular two-classes AUC
computation does not apply in this case; rather, a multi-class AUC approach [35] was
utilized. A multi-class AUC is a mean of several two-classes AUC (i.e., the comparison of
visual rating 1 with visual rating 2, or the comparison of visual rating 1 and visual rating 3,
and so on). Given the nature of this multi-class AUC, it cannot be plotted, and only the area
can be computed. We utilized the multiclass.roc function from the package pROC version
1.18.5 [36] to obtain multi-class AUC for each of the five model structures tested.
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3. Results
3.1. Distribution of Visual Ratings per Season of Collection

As described (Section 2.2), we collected visual ratings during five seasons in the years
2022 and 2023. The lowest mean visual ratings were observed in the summer season
(average values of 4.23 and 4.4), which was expected with the visual quality of the plots
being degraded due to the summer high temperatures and corresponding heat stress on
the plants. The highest ratings were recorded in the autumn of 2023. The distribution of the
visual ratings per year/season is provided in the following figure (Figure 4). Interestingly,
there were very few to no low visual ratings (i.e., ratings below 3) for the fall season
of 2023.
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More interesting are the seasonal transitions that have been observed for these plots
during the observational period. We present a Sankey plot (Figure 5) that shows how the
turf quality ratings have transitioned from one season to the next. For the sake of simplicity,
we have collapsed the visual ratings into groups of three, denoting low quality (1, 2, 3),
mid-quality (4, 5, 6) and high quality (7, 8, 9) ratings. The strata (vertical bars) indicate the
proportion of each group of ratings per season, and the size of the flows between vertical
bars indicate the proportion of each stratum that either (a) stayed in the same group or
(b) transitioned to a different group. In general, there were no big transitions observed from
high or mid-quality ratings to the low-quality group except from the spring of 2023 to the
summer of 2023, which is quite understandable with all the stress that higher temperatures
can bring about on the plants. In general, the transitions to the fall season represent a flow
of recovery from the summer and stability within mid and high groups, as well as a flow
from low to mid and from mid to high-quality ratings.
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3.2. Covariate Rankings—Variable Importance Across Models

For each one of the model variants that we fitted (Section 2.6.3), we extracted the
rank probability scores (RPS). The RPS provides a reasonable indication of how important
each predictor is within each model structure. Across all models, the green normalized
difference vegetation index GNDVI was always among the five top predictors. Interestingly,
the ratio vegetation index RVI, the normalized difference vegetation index NDVI and the
chlorophyll index-green CIG, in addition to the GNDVI, were included in the top four
predictors for both the Fall and the Total model structures (Figure 6). The thermal band
shows as having significant importance in the “Summer” model (top five predictors) and in
the top eight predictors for the “Fall” and “Total” model structures. This variable, however,
showed a very low importance for the “Spring” model. Conversely, the dark green color
index DGCI and the chlorophyll vegetation index CVI consistently ranked among the
predictors with the lowest rank probability scores.



Agronomy 2024, 14, 2575 10 of 21Agronomy 2024, 14, x FOR PEER REVIEW 11 of 22

Figure 6. Variable importance plots for the model structures that were fitted in this research. Yel-

low = Spring Model, Green = Summer Model, Orange = Fall Model, Grey = Total Model.

3.3. Models’ Performance—Uncorrected and Corrected Confusion Matrices

3.3.1. The “Spring” Model Structure

The overall accuracy for the Spring model was 0.207 for the uncorrected confusion 

matrix and 0.646 for the fuzzy-corrected confusion matrix. The kappa values were calcu-

lated as 0.0556 for the uncorrected matrix and 0.5758 for the fuzzy-corrected version. We 

also provide the following figure (Figure 7) that shows the original and the fuzzy corrected 

confusion matrices for this model structure. We include the per-class sensitivity values on 

the diagonal of each confusion matrix. It is clear that very poor per-class sensitivity values 

were obtained with the original (uncorrected) matrix. While the fuzzy-corrected matrix 

shows an improvement across all classes, it is noticeable that this model struggled with 

the prediction of the visual rating “4” (sensitivity of 8%), as well as with the visual rating 

“3” (sensitivity of 37%). The predictions of this model for the highest ratings (8 and 9) 

were moderate, with sensitivities in the 50% range.

Figure 6. Variable importance plots for the model structures that were fitted in this research.
Yellow = Spring Model, Green = Summer Model, Orange = Fall Model, Grey = Total Model.

3.3. Models’ Performance—Uncorrected and Corrected Confusion Matrices
3.3.1. The “Spring” Model Structure

The overall accuracy for the Spring model was 0.207 for the uncorrected confusion
matrix and 0.646 for the fuzzy-corrected confusion matrix. The kappa values were calcu-
lated as 0.0556 for the uncorrected matrix and 0.5758 for the fuzzy-corrected version. We
also provide the following figure (Figure 7) that shows the original and the fuzzy corrected
confusion matrices for this model structure. We include the per-class sensitivity values on
the diagonal of each confusion matrix. It is clear that very poor per-class sensitivity values
were obtained with the original (uncorrected) matrix. While the fuzzy-corrected matrix
shows an improvement across all classes, it is noticeable that this model struggled with the
prediction of the visual rating “4” (sensitivity of 8%), as well as with the visual rating “3”
(sensitivity of 37%). The predictions of this model for the highest ratings (8 and 9) were
moderate, with sensitivities in the 50% range.
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3.3.2. The “Summer” Model Structure

This model exhibited the poorest results across all models. The overall accuracy for
the “Summer” model was 0.189 for the uncorrected confusion matrix and 0.513 for the
fuzzy-corrected confusion matrix. The kappa values were calculated as 0.0551 for the
uncorrected matrix and 0.4311 for the fuzzy-corrected version. Similarly to the “Spring”
model, the “Summer” model performed poorly with the middle (3, 4, 5) visual ratings,
rendering sensitivity values lower than 40% (Figure 8).
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3.3.3. The “Fall” Model Structure

This model exhibited the best results from the seasonal models. The overall accuracy
was 0.287 for the uncorrected confusion matrix and 0.757 for the fuzzy-corrected confusion
matrix. The kappa values were calculated as 0.1397 for the uncorrected matrix and 0.707 for
the fuzzy-corrected version. While the model performed relatively well across all classes,
it was not able to correctly discern the lowest visual rating: 1, with a sensitivity value of
4%. Further (Figure 9), and quite like the Spring model structure, this model achieved
weak predictions for the upper visual ratings 8 and 9 with sensitivity values of 33% and
47%, respectively.
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3.3.4. The “Total” Model Structure

The best predictions were obtained when a model was built using visual rating
observations drawn from the three seasons considered. This is the Total model structure. The
overall accuracy was 0.463 for the uncorrected confusion matrix and 0.892 for the fuzzy-corrected
confusion matrix. The kappa values were calculated as 0.3651 for the uncorrected matrix and
0.8726 for the fuzzy-corrected version. This model performed well (Figure 10) across all classes,
with the lowest sensitivity value (71%) found for the lowest visual rating (1).
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3.3.5. The “FiveTotal” Model Structure

Based on our assessment of the rank probability scores RPS (Section 3.2, Figure 4), we
chose to keep the following predictors for the simpler model structure—vegetation indices:
RVI, NDVI, GNDVI, CIG, and the thermal (LWIR) band. The overall accuracy was 0.42
for the uncorrected confusion matrix and 0.845 for the fuzzy-corrected confusion matrix.
The kappa values were calculated as 0.3129 for the uncorrected matrix and 0.8167 for the
fuzzy-corrected version. This simpler model structure performed (Figure 11) extremely
well—comparable to the Total model that utilized the entire array of predictors, but with a
much more parsimonious structure.
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3.3.6. Inter-Model Comparison

We present the multi-class area under the curve AUC values for the different model
structures in the following table (Table 3), along with the computed Kappa values previously
reported. The multi-class AUC values confirm our previous statement that the “Summer”
model structure rendered the worst predictions across all models and that the Fall model
was the best model across seasonal structures. It is quite interesting that the reduced model
(i.e., the Five-Total), which only used the top five predictors based on the rank probability
scores, was highly comparable to the best overall model. The best model (i.e., Total) holds
a positive difference of 0.016 AUC units over the Five-Total model, but the latter uses
21 fewer variables.

Table 3. Multi-class AUC (range 0.0–1.0) and Kappa values for the original and fuzzy-corrected
confusion matrices for the model structures tested in this study.

Model Multi-Class AUC Kappa (Original) Kappa (Fuzzy-Corrected)

Spring 0.759 0.056 0.576
Summer 0.673 0.055 0.431

Fall 0.774 0.139 0.707
Total 0.872 0.365 0.872

Five-Total 0.856 0.313 0.817
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4. Discussion
4.1. On Selecting an Ordinal Regression Algorithm Instead of a Classification Approach

When presented with a research problem trying to fit a model for an ordinal or ranked
variable, ordinal regression (OR) is a valued method with several advantages over tradi-
tional classification. A crucial strength of ordinal regression algorithms is the ability to
identify significant predictor variables that influence the ordinal outcome, as OR allows for
a detailed analysis of the direction and strength of these (i.e., predictors and response ordi-
nal variable) relationships [37,38]. We were able to observe this advantage in our analysis.
The chance to identify the five most important variables (Section 3.2) based on OR outputs
(Figure 4) provided us with the ability to fit a reduced model (i.e., the Five-Total Model)
that efficiently fitted the data and generated comparable AUC values to the Total model
that used all the available predictors. Moreover, unlike standard classification methods that
may overgeneralize the prediction assignment by regarding all ranks, ratings or classes as
independent entities, OR considers the ordered nature of the outcome variable, which is in-
dispensable for tasks where the relative ordering of classes carries valuable information [39].
This essentially applies to our research problem where the turf quality ratings are not just
different from each other, but the rankings matter (i.e., the rating “3” is better than the
rating “2” and inferior to the rating “4”). Further, OR acknowledges that the classes have
a meaningful order and that the differences between adjacent classes are not necessarily
equal. It has also been reported that the incorporation of this ordinal information into the
modeling process delivers more accurate predictions and better captures the underlying
structure of the data [39]. Modeling approaches that discard the ordinal information or as-
sume equal spacing between adjacent ranks or classes may lead to poor performances when
dealing with ordinal variables, which is not the case of OR that are designed to address the
unique characteristics of ordinal data [40]. Furthermore, because OR explicitly accounts
for the ordered nature of the classes, it can identify complex relationships and patterns in
the data that traditional classification modeling approaches may ignore. This flexibility
allows ordinal regression models to adapt to a wide range of ordinal prediction tasks and
deliver more accurate and reliable results [41,42]. We considered the advantages of OR over
classification methods in our selection of the modeling algorithm for our research analysis
of turf quality visual ratings.

4.2. Seasonality and Its Impact on the Quality of Predictions from UAV-Multispectral Models

Our modeling performance results indicated that the model developed for the Fall
season outperformed the other two seasons (Spring and Summer, Figures 7 and 8, re-
spectively). Nevertheless, the “Fall” model only produced relatively acceptable results
for the higher ratings (8 and 9), with an extremely poor performance for the lowest (1)
visual rating. The fact that data used for the Spring model was collected only in one year
while the Summer and Fall models’ data were observed for two years contributed to the
Spring model’s accuracy being inferior with fewer observations and thus reduced temporal
variability. The fall season is central for assessing turf quality, marking the transition
period from summer recuperation to active growing to winter dormancy, thus making
it a decisive time to evaluate the health and condition of the turf grasses. It has been
suggested [14] that visual ratings during the fall provide valuable information into the
overall performance (i.e., color, density, uniformity) of the turf as well as the responses of
the grass to environmental stressors. Additionally, the fall season is a critical period for
assessing the impact of environmental factors on turf quality, such as temperature, light
availability, and nutrient availability [43]. Visual ratings collected during this time can
help researchers understand how these factors influence turfgrass health and performance,
providing valuable information for refining predictive models. The incorporation of visual
ratings collected in the fall can improve the accuracy of predictive models as it allows the
ability to integrate the response of turf grass to changing environmental conditions [43].

Based on the observed inter-seasonal transitions at our research site, the collection
of visual ratings during the fall season becomes very important for understanding the
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seasonal dynamics of turf quality, as they appear to give a baseline that can be used to
compare ratings from other seasons. In our case, we were able to observe that the fall is a
foundational season that acts as a bridge for recovery after the hot summer season and a
path to either stability or improvement in overall quality to the spring after the dormancy
in the winter. The type of predictive modeling that we propose in this paper seems to have
benefited from this longitudinal (i.e., inter-seasons and years) data collection approach as it
allowed robust predictions that account for seasonal variations in turfgrass performance.
Still, in scenarios where field data collection must be limited to one season, our results
seem to suggest that data from the fall can efficiently be used to model this ordinal variable.
Based on our findings (Sections 3.3.3 and 4.1), by assessing turf quality during the fall,
investigators can capture the seasonal dynamics of turfgrass performance.

4.3. Comparison Across Tested Model Structures and the Importance of Predictors

The best predictions (Table 3) for turf quality were obtained when a random sample
was obtained to fit a model that included data across seasons and years (Section 3.3.4,
Figure 10). This was the “Total” model. There was more data availability to be used for
model fit, and this allowed the capture of the full seasonal variations (Figure 5) in both
visual ratings and in the spectral and thermal signals obtained from the UAV imagery.
Algorithms such as Random Forest or Ordinal Forest benefit from large amounts of samples
available for model fitting. The best seasonal model was the “Fall” model structure, albeit
this model rendered a poorer performance than the reduced “FiveTotal” model. This clearly
suggests that to achieve the best accuracies in prediction, there is no need to separate the
seasons. As discussed before (Section 4.2), the fall represents a bridge between turfgrass
recovery and then dormancy, and this benefits the predictive modeling that was presented
in this paper.

The “FiveTotal” structure (Section 3.3.5), which allowed to obtain the second-best
prediction accuracies (Table 3), is based on five predictors: RVI, NDVI, GNDVI, CGI, and
the thermal (LWIR) band, which have been documented to facilitate turf quality predictions.
We found ample evidence of how these indices have been used in predictive modeling
of turfgrass quality. Samples of research [9,44] have shown that the RVI and the NDVI
can effectively differentiate between healthy and stressed turfgrass, making them reliable
indicators for turf management practices. RVI has demonstrated a strong correlation
with visual quality ratings, suggesting its utility in non-destructive assessments of plant
health [45]. This correlation is particularly important for turfgrass species, where RVI
has been used to monitor responses to environmental stressors like drought [46]. The
GCI has emerged as a valuable tool for predicting turfgrass quality, primarily through
its correlation with chlorophyll content, which is essential for photosynthesis and overall
plant health. Studies [1] have documented that higher chlorophyll concentrations correlate
with improved aesthetic quality, as chlorophyll is responsible for the vibrant green color of
turfgrass, which is a key quality metric. The GNDVI has also been utilized in research [47]
that has demonstrated strong correlations between UAV-derived GNDVI and ground-based
assessments of turfgrass quality, with high R2 values indicating reliable predictions. The
use of thermal bands in UAV imagery has emerged as a significant method for assessing
turfgrass quality. Thermal imaging allows for the detection of early drought stress in
turfgrass, which is critical for effective management practices, particularly in environments
like golf courses where maintaining quality is quite important. Research indicates [48]
that thermal measurements can correlate with traditional visual assessments of turfgrass
quality, providing a more objective means of evaluation. Furthermore, the integration of
thermal imaging with other spectral data, such as NDVI, enhances the predictive capability
of UAV-based imagery regarding turfgrass health and stress responses. While data for
the spring was only collected in one year, we do not anticipate that this would impact the
“FiveTotal” model as this model includes observations across seasons and years, and the
only difference with the “Total” model is its utilization of a reduced, more parsimonious
subset of predictors.
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This multi-layered (thermal + spectral) approach not only aids in monitoring turf qual-
ity but also assists in optimizing turf management applications, thus promoting sustainable
turf management practices. Overall, the combination of thermal and spectral data from
UAVs presents a powerful tool for turfgrass managers aiming to maintain high-quality turf
while minimizing resource inputs [47–49].

4.4. The Implications of Implementing Fuzzy Corrections on the Validation Datasets

Our implementation of a fuzzy correction (Section 2.7 Figure 3) to the resulting con-
fusion matrices greatly impacted the original accuracies (i.e., overall, kappa) that were
obtained from the different model structures. Proportionally speaking, the seasonal model
structures (Spring, Summer and Fall) observed the highest increments in kappa (Table 3),
where there were enhancements of 10-fold for the Spring model, 8-fold for the “Summer”
model, and 5-fold for the Fall model structure. This was not the case with the Total and
the Five-Total models, where the improvements in kappa were less than 3-fold, denot-
ing that these model structures did not benefit as much as the seasonal models from the
fuzzy corrections.

One significant advantage of using fuzzy corrections in confusion matrices is the
ability to capture and deal with uncertainty and vagueness inherent in classification tasks
or ordinal regression, as it was presented here. Traditional confusion matrices operate on
precise and distinct classes, ranks or ratings. As we have explained throughout the text,
this was not our case, as there can be inherent drift (positive or negative) in the visual
ratings by different evaluators and across seasons. Operating on confusion matrices that
use this assumption of unambiguity can lead to a loss of information regarding the degree
of membership of instances to different classes [50]. By employing fuzzy logic, researchers
can maintain this membership information, allowing for a more subtle understanding
of classification or regression performance. It has been shown [50] that fuzzy confusion
matrices could effectively address uncertainties in mapping grassland plant communities,
thereby improving the accuracy of classification results. This capability of maintaining class
membership information is particularly beneficial in remote sensing applications, where
the boundaries between classes are often not well-defined [51], as was clearly our case.

In addition, it has been suggested [52] that the dynamic adjustment process of classes
in the confusion matrices can lead to more reliable predictions, particularly where class
distributions are imbalanced or when certain ranks or classes are challenging to predict,
such as in the case of the Fall model with the higher (“8” and “9”) quality ratings. However,
the utilization of fuzzy corrections on confusion matrices is not without risks or challenges.
One of those challenges is the reliance on expert knowledge about the magnitude of
the corrections. Recall that in our fuzzy correction strategy (Section 2.7), we defined
the positive or negative drift to be corrected to only one unit (i.e., just one level up or
down of the diagonal of the matrix). This dependence on expert knowledge to define fuzzy
membership functions can introduce subjectivity into the classification or regression process.
This subjectivity can lead to inconsistencies in classification or ordinal regression results,
as highlighted by the challenges faced in applying fuzzy logic in various domains [53].
Another potential disadvantage in the utilization of fuzzy corrections is the potential
for ambiguity [54] in the interpretation of fuzzy-corrected confusion matrices. While
the corrected matrices provide a relatively more transparent view of the performance of
the ordinal regression, the nature of the results can make it challenging to draw clear-
cut conclusions, as would be the case of the original non-corrected confusion matrices.
This can impact the decision-making process and thus requires knowledge transfer to
the final users for proper interpretation. We did not provide a thorough description of
how to implement fuzzy corrections as it was out of the scope of this paper. However,
comprehensive examples for the implementation of fuzzy corrections in the realm of land
cover/land use classification can be found on [33] and also in [55].
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4.5. The Opportunity to Complement Visual Ratings of Turf Quality with UAV Multispectral Imagery

While visual turfgrass quality ratings offer a quick and cost-effective method for
evaluating turf quality, there are limitations that need to be considered. As mentioned
earlier [9], there is the potential for intrinsic subjectivity as different evaluators may in-
terpret and score turf quality differently, leading to inconsistencies in ratings. Further,
relying solely on visual ratings may not deliver an ample evaluation of turf health as
these visual assessments may not always detect issues such as nutrient deficiencies [10] or
diseases. In situations like this, spectral and thermal information collected using UAVs may
serve as complementary assessment methods to ensure an all-inclusive understanding of
turfgrass conditions. UAVs can capture high-resolution multispectral images that provide
a more objective measure of turfgrass quality, as this approach allows for the simultaneous
assessment of various parameters such as color, density, and uniformity [47,56]. In addition,
UAVs can cover relatively large tracks of land in a matter of minutes, where conducting
visual assessments may be impractical for larger projects. Additionally, UAV imagery can
facilitate the monitoring and comparison of turfgrass health or quality ratings through
time. Our research covered field data collection through several seasons across two years,
which required significant resources. The imagery collected in this period has shown strong
predictive ability with visual assessments, indicating that UAVs can effectively capture
subtle changes [49] in turf quality that may not be easily observable through visual ratings
alone. Continuous monitoring is essential in turfgrass management in semiarid or arid
lands to track improvements or deterioration due to high temperatures, drought or other
factors. Visual ratings may not always capture the gradual changes effectively. Such a
limitation of the visual ratings highlights the necessity of incorporating measurement
tools such as UAVs and multispectral and thermal imagery to complement visual assess-
ments for a more thorough evaluation of turf performance. Nevertheless, the digital signal
from UAV imagery alone cannot provide meaningful information about turfgrass quality,
and it completely depends on proper calibration that can only be obtained from field
visual ratings.

4.6. Practical Applications and Limitations of the Developed Models in Turfgrass Management

Our research provides a foundation for the development of multiple models that
can be trained in time (such as the inter-seasonal collection of data presented in this
paper) or in space (where visual ratings are collected at different locations) to assemble
a library of predictive models of turfgrass quality. Such a library can then be used at
locations and/or times with no visual ratings, but with UAV imagery only, and in this
case, predictions of turfgrass quality can be obtained faster and more efficiently. Further,
the integration of machine learning models, such as our ordinal forests implementation
with UAV data, may allow for dynamic adjustments in fertilizer applications [57] based
on real-time turfgrass performance metrics, such as turfgrass quality. This can potentially
optimize growth conditions and resource use. Similarly, the application of UAVs could
hypothetically extend to irrigation management. It has been discussed [58] how UAV-based
models can set standards to set up irrigation schedules. For instance, rapid turfgrass quality
mapping and monitoring may pinpoint how turf is responding to different irrigation
regimes. In this context, UAVs can facilitate the development of decision support tools
that optimize water use while ensuring turfgrass quality is maintained. This application
becomes relevant as harsher changes in the climate continue to impact water availability.
Nevertheless, there are limitations in the utilization of the models that we presented here.
The training and validation datasets were derived from a specific set of predictors in a single
location over two years on a single turfgrass species and would have to be retrained to be
applicable to other turfgrass quality evaluations. Research indicates that separate models
may be necessary for different grass species to accurately predict turfgrass quality, as the
relationships between UAV-derived data and ground measurements can vary significantly
among species [47]. This species-specific variability greatly confounds the construction of a
universal model that could be applicable across diverse turfgrass species. Another major
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constraint is the complexity and expenses associated with implementing UAV technology
in rapid turfgrass quality assessments. The initial investment in UAV systems, sensors,
and data processing software can be relatively high. Further, the operation of UAVs
requires specialized training that may not be available to all turfgrass managers and related
stakeholders. These financial and technical obstacles can limit the accessibility of UAV
technology, predominantly for smaller operations or where resources are limited [59]. In
addition, while UAVs can collect imagery with exceptional spatial high-resolution, the
frequency of data collection is severely limited by weather conditions (as explained in
Section 2.3) and by restrictions dominated by airspace regulations [60]. These practical
limitations can delay the ability to monitor turfgrass quality in near real-time, which
is essential for managers as it drives timely interventions in turf management. Most
of these limitations for implementing a UAV program were observed in this research
project. As annotated earlier, we had contemplated starting the project in the spring of 2022.
Nevertheless, our low level of technical proficiency in UAV-Sensor integration and the fact
that UAV pilots were still being trained posed insuperable challenges for data collection
during the spring season of 2022, and that is the main reason why data for this season was
included only once in this research.

5. Conclusions

We have developed and validated seasonal as well as inter-seasonal predictive models
of turf grass quality using ordinal regression for Kentucky Blue Grass. While the fall season
model produced the best predictions from the individual seasonal models, it was clear that
the inter-seasonal model that uses training data across seasons (spring, summer and fall)
and years greatly outperforms the seasonal models, implying that more robust predictions
can be obtained when seasonal and annual variations are included for model training.
Further, our analysis of predictors’ importance from the ordinal forest algorithm outputs
pointed to the selection of five independent variables—four vegetation indices: NDVI,
GNDVI, CGI, and RVI, and one of the original bands: the thermal band, which together
in a model structure can rival the accuracy of the inter-seasonal model that utilizes the
full array of predictors. We also implemented a fuzzy correction of the original confusion
matrices to account for the positive and negative drift that may accompany the field-
based turfgrass quality visual ratings. The fuzzy correction greatly impacted the original
accuracies of the seasonal models (i.e., from 5-fold to 10-fold improvements), but this
impact was not as significant for the inter-seasonal models, suggesting that even without
these fuzzy corrections, the inter-seasonal (full and reduced) models generated relatively
acceptable accuracies.

While visual ratings of turf quality are valuable in turfgrass management, they have
limitations such as subjectivity, potential for bias, insensitivity to subtle changes, time-
consuming nature, and variability in interpretation. On the other hand, the raw signals
from UAV multispectral and thermal imagery cannot render turfgrass quality prediction
by themselves, and they require quality data for training of predictive models. We have
developed a methodological approach that can initiate the development of a predictive
model library that can mature in the future to provide turfgrass predictions at times
and places where only UAV imagery is available. This underscores the importance of
complementing visual assessments with objective measurement techniques to ensure a
more accurate and holistic evaluation of turf performance.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/agronomy14112575/s1. Table S1. List of vegetation indices used in
this research.
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