An Exploration of Kindergarten Students’ Use of Perspective and Computational Thinking

Joseph S. Kozlowski, Hannah Evans, Lise E. Welch
Mentors: Drs. Jessica F. Shumway, Jody Clarke-Midura, & Victor R. Lee
Graduate Student Research Symposium
Utah State University
April 11, 2019
Overview

Theoretical Grounding
- Perspective
- Computational Thinking (CT)
- Mathematics and CT

The Problem
- Limited research on CT
- Even Less in Early Childhood

Research Questions
- Perspectives
- CT Skills

Methodology
- Participants
- Data Sources
- Procedures
- Data Analysis

Results
- Perspectives
- Debugging

Future Direction
- Implications
- Practical
- Research
Overview

Focus

Theoretical Grounding
- Perspective
- Computational Thinking (CT)
- Mathematics and CT

The Problem
- Limited research on CT
- Even Less in Early Childhood

Research Questions
- Perspectives
- CT Skills

Methodology
- Participants
- Data Sources
- Procedures
- Data Analysis

Results
- Perspectives
- Debugging

Future Direction
- Implications
- Practical
- Research
Positioning in the Literature

- Computational thinking (CT) is arguably one of the most critical twenty-first century skills (NRC 2010, 2011; Ioannou & Makridou, 2018; Wing, 2006).

- Common elements of CT are: abstraction, decomposition, algorithms, and debugging (Angeli, 2016; Shute et al., 2017; Weintrop, 2016).

- Limited research on CT in early childhood (Bers et al., 2014).

- The available CT research is focused on middle level, high school, and college aged individuals (Yadav et al., 2018).
Problem and Purpose

- High school students’ ability to transition from allocentric (3rd) to egocentric (1st) perspectives helped guide them in coding tasks (Smith, Berland, & Martin, 2014).

- The field has limited knowledge of how kindergarten students’ perspective is related to their CT skills.

- Better understand kindergarten CT skills as they interact with coding robots.
Operationalizing Perspectives

Egocentric (1st) Perspective
- Crawling behind the robot
- Gestures and body positioning

Allocentric (3rd) Perspective
- Remaining in original position to watch progression

Egocentric Perspective

Allocentric Perspective
Operationalizing one CT Skill

- Identifying and modifying an algorithm in attempt to complete a task.
- Identifying, monitoring steps, adjusting codes in sequence
Research Questions

Research Question #1: How do kindergarten students engage in egocentric and allocentric perspectives when engaged in a coding robot task?

Research Question #2: What computational thinking skills emerge during an allocentric or egocentric perspective?
Methods
Participants

1. 4 Students (Beginning of larger scale study)
2. Small, Private Kindergarten Classroom
3. 5 Years Old
Coding in Kindergarten Progression of Tasks

- Coding Robot Task 1
- Coding Robot Task 2
- Coding Robot Task 3
- Coding Robot Task 4
- Coding Robot Task 5

Our selection for data analysis: Coding Robot Task 5
How do Students use Code-a-Pillar?

Students attach code pieces on the body

Run the code on the grid to complete a challenge
Data Sources

- Video and Audio Recording
- Two Camera Views:
 - Ground Floor View
 - Researcher Held
RQ 1: Frequency counts of perspectives with pivot tables

- Double coded 50%

RQ 2: Qualitative iterative coding process for CT skills

- Determined debugging as *critical event* (Powell, Francisco, & Maher, 2003) emerging within egocentric perspective (1st)
Results
Perspectives

Table 1

Kindergarten Students (N = 4)

<table>
<thead>
<tr>
<th>Student</th>
<th>Egocentric (1<sup>st</sup>)</th>
<th>%</th>
<th>Allocentric (3<sup>rd</sup>)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elizabeth</td>
<td>7</td>
<td>29%</td>
<td>17</td>
<td>71%</td>
</tr>
<tr>
<td>Michelle</td>
<td>13</td>
<td>48%</td>
<td>14</td>
<td>52%</td>
</tr>
<tr>
<td>Jim</td>
<td>5</td>
<td>26%</td>
<td>14</td>
<td>74%</td>
</tr>
<tr>
<td>Tyan</td>
<td>17</td>
<td>71%</td>
<td>7</td>
<td>29%</td>
</tr>
<tr>
<td>Total</td>
<td>42</td>
<td>45%</td>
<td>52</td>
<td>55%</td>
</tr>
</tbody>
</table>
Perspectives

Table 1

Kindergarten Students (N = 4)

<table>
<thead>
<tr>
<th>Student</th>
<th>Egocentric (1st)</th>
<th>%</th>
<th>Allocentric (3rd)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elizabeth</td>
<td>7</td>
<td>29%</td>
<td>17</td>
<td>71%</td>
</tr>
<tr>
<td>Michelle</td>
<td>13</td>
<td>48%</td>
<td>14</td>
<td>52%</td>
</tr>
<tr>
<td>Jim</td>
<td>5</td>
<td>26%</td>
<td>14</td>
<td>74%</td>
</tr>
<tr>
<td>Tyan</td>
<td>17</td>
<td>71%</td>
<td>7</td>
<td>29%</td>
</tr>
<tr>
<td>Total</td>
<td>42</td>
<td>45%</td>
<td>52</td>
<td>55%</td>
</tr>
</tbody>
</table>

Perspectives

<table>
<thead>
<tr>
<th>Student</th>
<th>Egocentric (1<sup>st</sup>)</th>
<th>%</th>
<th>Allocentric (3<sup>rd</sup>)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elizabeth</td>
<td>7</td>
<td>29%</td>
<td>17</td>
<td>71%</td>
</tr>
<tr>
<td>Michelle</td>
<td>13</td>
<td>48%</td>
<td>14</td>
<td>52%</td>
</tr>
<tr>
<td>Jim</td>
<td>5</td>
<td>26%</td>
<td>14</td>
<td>74%</td>
</tr>
<tr>
<td>Tyan</td>
<td>17</td>
<td>71%</td>
<td>7</td>
<td>29%</td>
</tr>
<tr>
<td>Total</td>
<td>42</td>
<td>45%</td>
<td>52</td>
<td>55%</td>
</tr>
</tbody>
</table>
Perspectives

Table 1: Kindergarten Students (N = 4)

<table>
<thead>
<tr>
<th>Student</th>
<th>Egocentric (1st)</th>
<th>%</th>
<th>Allocentric (3rd)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elizabeth</td>
<td>7</td>
<td>20%</td>
<td>17</td>
<td>71%</td>
</tr>
<tr>
<td>Michelle</td>
<td>13</td>
<td>48%</td>
<td>14</td>
<td>52%</td>
</tr>
<tr>
<td>Jim</td>
<td>5</td>
<td>26%</td>
<td>14</td>
<td>74%</td>
</tr>
<tr>
<td>Tyan</td>
<td>17</td>
<td>71%</td>
<td>7</td>
<td>29%</td>
</tr>
<tr>
<td>Total</td>
<td>42</td>
<td>45%</td>
<td>52</td>
<td>55%</td>
</tr>
</tbody>
</table>
Emergence of CT Skill within Egocentric (1st) Perspective

- From coding perspectives, debugging emerged as a critical event while students were engaged in an egocentric (1st) perspective.

- Examples will illustrate this CT skill while students interact with the coding robot.
Shift from Allocentric to Egocentric

- Student tries to code [straight, rotate left, straight].
- Figure 1 is initial code.
- Figure 2 is debug while maintaining allocentric perspective.
- Figure 3 is debug while shifting into egocentric perspective.
Egocentric Helped Debug

- This student engaged in egocentric (1st) by crawling behind the robot and looking straight down his line-of-sight.
- Doing this with her initial incorrect code, she proceeded to successfully debug and create an accurate sequence.
A student attempted to complete a puzzle with a correct sequence of [straight, right turn, straight] while maintaining an allocentric (3rd) perspective. She kept her body in her original position as the robot completed the sequence as well as when she put a new code on the robot.
Summary

A Practical Take-Away:
Kindergarteners’ ability to engage in an egocentric (1st) person perspective may help with debugging of coding robots

Future Directions

| Increase Sample Size | Quantify Effect of Perspective on Debugging | Other CT or Mathematical Skills |
Questions?

If you have any further questions, please feel free to contact us at jkozlowski@aggiemail.usu.edu.

In addition, please see other work by the Coding in Kindergarten (CIK) research team, funded by a USU Research Catalyst grant.

References

