
Utah State University Utah State University

DigitalCommons@USU DigitalCommons@USU

All Graduate Theses and Dissertations Graduate Studies

12-2011

Evaluation of an Incompressible Energy-Vorticity Turbulence Evaluation of an Incompressible Energy-Vorticity Turbulence

Model for Fully Rough Pipe Flow Model for Fully Rough Pipe Flow

Doug F. Hunsaker
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/etd

 Part of the Mechanical Engineering Commons

Recommended Citation Recommended Citation
Hunsaker, Doug F., "Evaluation of an Incompressible Energy-Vorticity Turbulence Model for Fully Rough
Pipe Flow" (2011). All Graduate Theses and Dissertations. 1068.
https://digitalcommons.usu.edu/etd/1068

This Dissertation is brought to you for free and open
access by the Graduate Studies at
DigitalCommons@USU. It has been accepted for
inclusion in All Graduate Theses and Dissertations by an
authorized administrator of DigitalCommons@USU. For
more information, please contact
digitalcommons@usu.edu.

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F1068&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/293?utm_source=digitalcommons.usu.edu%2Fetd%2F1068&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/1068?utm_source=digitalcommons.usu.edu%2Fetd%2F1068&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

EVALUATION OF AN INCOMPRESSIBLE ENERGY-VORTICITY

TURBULENCE MODEL FOR FULLY ROUGH PIPE FLOW

by

Douglas F. Hunsaker

A dissertation submitted in partial fulfillment

of the requirements for the degree

of

DOCTOR OF PHILOSOPHY

in

Mechanical Engineering

Approved:

Dr. Warren F. Phillips Dr. Robert E. Spall

Major Professor Committee Member

Dr. Christine Hailey Dr. Steve L. Folkman

Committee Member Committee Member

Dr. Jan J. Sojka Dr. Mark R. McLellan

Committee Member Vice President for Research and

 Dean of the School of Graduate Studies

UTAH STATE UNIVERSITY

Logan, Utah

2011

ii

Copyright © Douglas F. Hunsaker 2011

All Rights Reserved

iii

ABSTRACT

Evaluation of an Incompressible Energy-Vorticity

Turbulence Model for Fully Rough Pipe Flow

by

Douglas F. Hunsaker, Doctor of Philosophy

Utah State University, 2011

Major Professor: Dr. Warren Phillips

Department: Mechanical and Aerospace Engineering

 Traditional methods of closing the Boussinesq-based Reynolds-averaged Navier-Stokes equations

are considered, and suggestions for improving two-equation turbulence models are made. The traditional

smooth-wall boundary conditions are shown to be incorrect, and the correct boundary conditions are

provided along with sample solutions to traditional models. The correct boundary condition at a smooth

wall for dissipation-based turbulence models is that which forces both the turbulent kinetic energy and its

first derivative to zero. Foundations for an energy-vorticity model suggested by Phillips are presented along

with the near-smooth-wall behavior of the model. These results show that at a perfectly smooth wall, the

turbulent kinetic energy may approach the wall at a higher order than is generally accepted. The

foundations of this model are used in the development of a k-λ model for fully rough pipe flow. Closure

coefficients for the model are developed through gradient-based optimization techniques. Results of the

model are compared to results from the Wilcox 1998 and 2006 k-ω models as well as four eddy-viscosity

models. The results show that the Phillips k-λ model is much more accurate than other models for

predicting the relationship between Reynolds number and friction factor for fully rough pipe flow.

However, the velocity profiles resulting from the model deviate noticeably from the law of the wall.

(445 pages)

iv

ACKNOWLEDGMENTS

 First I would like to sincerely thank my major professor, Dr. Warren F. Phillips, for his time and

dedication to this work and also for his commitment to my learning. His one-on-one mentoring has been

priceless and his expectations have required me to reach beyond my original aspirations. I will never forget

the hours spent in his office drinking from his great well of knowledge and experience. I thank him for

requiring genuine accomplishment and understanding from me throughout the learning process.

 Although I cannot list all of the many students who have been of support here at USU, I’d like to

mention just a few by name. I would like to thank Kyle Horne for his continual flow of computational

support and fresh perspectives, Emilie Garbi for her hard work and dedication to this research, Michal

Hradisky for being a sounding board of ideas, Zhuorui Song for his mathematical expertise, and many

others for their friendship and support. I’d like to especially thank Nick Alley who encouraged me to

pursue this opportunity without even knowing me. I would also like to extend special thanks to Dr. Deryl

Snyder who believed in me enough to make this opportunity possible in the first place. Finally, I’d like to

thank my supportive and loving family members and close friends who have encouraged and stood by me

throughout the process.

Douglas F. Hunsaker

v

CONTENTS

Page

ABSTRACT .. iii

ACKNOWLEDGMENTS ... iv

LIST OF TABLES .. xiii

LIST OF FIGURES ... xiv

LIST OF ACRONYMS .. xx

NOMENCLATURE ... xxi

CHAPTER

 1. TRADITIONAL TURBULENCE MODELING ... 1

 I. Introduction .. 1

 II. Governing Equations of Fluid Motion ... 5

 A. Conservation of Mass: The Continuity Equation .. 6

 B. Conservation of Momentum: Newton’s Second Law ... 6

 C. Conservation of Energy: First Law of Thermodynamics ... 8

 D. Application of Newtonian and Continuum Assumptions ... 9

 III. The Reynolds-Averaged Navier-Stokes Equations .. 11

 IV. Traditional Turbulence Closure ... 14

 A. Reynolds Stress Modeling ... 14

 B. The Boussinesq Hypothesis .. 15

 C. Turbulent Kinetic Energy Transport ... 18

 D. Turbulent Dissipation Transport ... 20

 E. Length and Velocity Scales ... 21

 F. Resulting Energy-Dissipation Turbulence Models ... 23

 1. The k-ε Model ... 23

 2. The k-ω Model ... 24

 3. The k-ζ Model .. 25

 V. Closure Coefficient Evaluation .. 26

 A. The Log Layer ... 27

 B. Homogeneous, Isotropic Turbulence .. 29

 C. The Log Layer at Separation ... 30

 D. Shear-Free Mixing Layer .. 30

 VI. Common Turbulence Model Evaluation Cases ... 30

vi

 A. Boundary Layer Flow .. 31

 B. Fully Developed Channel Flow .. 33

 C. Fully Developed Pipe Flow ... 34

 D. Plane Jet Flow ... 36

 E. Round Jet Flow .. 38

 VII. Summary and Conclusions .. 39

 2. POSSIBLE IMPROVEMENTS IN RANS-BASED TURBULENCE MODELING 41

 I. Introduction .. 41

 II. Traditional Smooth-Wall Boundary Conditions .. 42

 III. Turbulent Energy Transport ... 43

 IV. Turbulent Length Scale ... 47

 V. Phillips Energy-Vorticity Model ... 48

 A. RMS Turbulent Vorticity Closure: A k-ω~ Model .. 49

 B. Solenoidal Dissipation Closure: A k-εˆ Model ... 50

 C. DNS Solenoidal Dissipation Closure: A k-εˆ Model .. 51

 D. General Enstrophy Closure: A k-ζ Model .. 51

 E. Robinson Enstrophy-Transport Closure: A k-ζ Model .. 52

 F. Mean Vortex Wavelength Closure: A k-λ Model .. 53

 VI. Closing Transport Equations ... 54

 VII. Rough-Wall Turbulence Modeling .. 55

 VIII. Summary and Conclusions .. 57

 3. OUTLINE OF THE PRESENT WORK .. 58

 4. COMPUTATIONAL FLUID DYNAMICS METHODS ... 60

 I. Introduction .. 60

 II. One-Dimensional Finite-Difference Formulation ... 60

 III. One-Dimensional Finite-Volume Formulation .. 62

 IV. Two-Dimensional Finite-Volume RANS Solver ... 63

 A. Coordinate System ... 63

 B. Transport Equation Discretization ... 64

 C. Pressure Coupling .. 64

 D. Solution Procedure ... 65

 E. Code Validation .. 66

 1. Laminar Lid-Driven Cavity .. 66

 2. Order of Convergence .. 69

 3. Turbulent Fully Developed Channel Flow ... 70

 V. One-Dimensional Runge-Kutta Direct Integration ... 72

 VI. Summary and Conclusions .. 73

 5. SMOOTH-WALL BOUNDARY CONDITIONS FOR DISSIPATION-BASED MODELS 74

 I. Introduction .. 74

vii

 II. Physics of Smooth-Wall Boundary Conditions ... 75

 III. Smooth-Wall Boundary Conditions for the k-ε Model .. 76

 A. The Launder-Sharma k-ε Model ... 77

 B. The Lam-Bremhorst k-ε Model .. 80

 IV. Numerical Results from CFD Algorithms ... 87

 V. Smooth-Wall Boundary Conditions for the k-ω Model .. 94

 VI. Comments on CFD Algorithms and Solutions .. 99

 VII. Summary and Conclusions .. 101

 6. PHILLIPS TWO-EQUATION MODEL CHARACTERISTICS ... 102

 I. Introduction .. 102

 II. RMS Turbulent Vorticity Closure: A k-ω~ Model ... 102

 A. Homogeneous, Isotropic Turbulence ... 104

 B. Smooth-Wall Behavior ... 104

 C. A Closed-Form Analog .. 110

 III. Enstrophy Closure: A k-ζ Model ... 115

 A. Homogeneous, Isotropic Turbulence ... 116

 B. Smooth-Wall Behavior ... 116

 C. A Closed-Form Analog .. 119

 1. Perfectly Smooth Wall ... 119

 2. Rough Wall .. 123

 IV. Summary and Conclusions .. 124

 7. DEVELOPMENT OF THE PHILLIPS k-λ MODEL FOR FULLY ROUGH PIPE FLOW ... 126

 I. Introduction .. 126

 II. Rough Pipe Flow .. 127

 A. Fundamental Relations and Definitions ... 127

 B. Mixing-Length Theory ... 129

 C. The Nikuradse Number .. 130

 D. The Colebrook Equation .. 133

 E. Velocity Profile .. 138

 F. Turbulent Eddy Viscosity .. 139

 III. The Phillips k-λ Model for Fully Rough Pipe Flow .. 144

 A. Core Reynolds Number .. 145

 B. Mean Vortex Wavelength Distribution .. 146

 C. Model Summary ... 147

 D. Solution Process ... 149

 E. Initial Results .. 151

 IV. Summary and Conclusions .. 153

viii

 8. PHILLIPS k-λ MODEL CLOSURE COEFFICIENT EVALUATION 155

 I. Introduction .. 155

 II. The Influence of
λ

C for Fully Rough Pipe Flow ... 155

 III. Computer Optimization .. 157

 A. Model Fitness ... 158

 B. Common Optimization Algorithms .. 160

 C. Broyden-Fletcher-Goldfarb-Shanno Update Method .. 162

 D. An Example Optimization Run .. 164

 E. Resulting Closure Coefficients .. 166

 IV. Summary and Conclusions .. 173

 9. PHILLIPS k-λ MODEL RESULTS AND CONCLUSIONS... 175

 I. Introduction .. 175

 II. Model Results at Points of Interest .. 175

 A. Low Value on the Flat: 10.σ
k
= ... 175

 B. High Value on the Flat: 4=
k

σ .. 177

 C. Point of Interest on the Flat: 750.σ
k
= .. 179

 D. Point of Minimum % RMS Error ... 182

 III. Comparison to Other Models ... 185

 A. Wilcox k-ω Model .. 185

 B. Eddy-Viscosity Models .. 187

 IV. Summary and Conclusions .. 192

REFERENCES .. 195

APPENDICES ... 202

 A. MATHEMATICAL IDENTITIES ... 203

 I. Vector Identities ... 203

 II. Ensemble Averaging Identities .. 203

 III. Flowfield Properties ... 203

 B. TRADITIONAL TURBULENCE MODELS .. 205

 I. The k-ε Model ... 205

 A. The General k-ε Model Equations .. 205

 B. Fully Developed Channel Flow ... 206

 C. Fully Developed Pipe Flow .. 207

 D. Sample Models ... 209

 1. The Launder-Sharma k-ε Model ... 209

 2. The Lam-Bremhorst k-ε Model .. 214

ix

 II. The k-ω Model .. 221

 A. The General k-ω Model Equations ... 221

 B. Fully Developed Channel Flow ... 222

 C. Fully Developed Pipe Flow .. 223

 D. Sample Models ... 225

 1. The Traditional k-ω Model .. 225

 2. The Wilcox 1998 k-ω Model ... 229

 C. COMMON CASE STUDIES .. 235

 I. Boundary Layer Flow over an Infinite Flat Plate .. 235

 A. Case Description ... 235

 B. Laminar Flow .. 237

 C. Turbulent Flow .. 239

 II. Fully Developed Channel Flow ... 239

 A. Case Description ... 239

 B. The Continuity and RANS Equations ... 241

 C. Laminar Flow .. 244

 D. Turbulent Flow .. 245

 III. Fully Developed Pipe Flow ... 246

 A. Case Description ... 246

 B. The Continuity and RANS Equations ... 247

 C. Laminar Flow .. 251

 D. Turbulent Flow .. 253

 IV. Plane Jet Flow .. 253

 A. Case Description ... 253

 B. Laminar Flow .. 256

 V. Round Jet Flow .. 260

 A. Case Description ... 260

 B. Laminar Flow .. 261

 D. ONE-DIMENSIONAL FINITE-DIFFERENCE FORMULATIONS 266

 I. A Second-Order Formulation ... 266

 II. Higher-Order Formulations .. 273

 A. Motivation ... 273

 B. An nth-Order First Derivative Approximation .. 274

 C. An nth-Order Second Derivative Approximation .. 275

 D. Uniform-Grid Tabulated Approximations .. 278

 E. Example Results .. 282

x

 III. Sample Code ... 289

 E. ONE-DIMENSIONAL FINITE-VOLUME FORMULATION ... 299

 I. Governing Equations .. 299

 II. Coordinate Transformation ... 299

 III. Discretization .. 300

 IV. Transport Equations .. 303

 A. x-Momentum ... 303

 B. Turbulent Kinetic Energy .. 305

 C. Second Turbulence Variable, h ... 307

 V. Solution Procedure .. 310

 VI. Sample Results .. 310

 A. Laminar Flow .. 310

 B. A Second-Order Test Case ... 311

 C. A Closed-Form k-ε Analogy .. 311

 VII. Sample Code ... 312

 F. COORDINATE TRANSFORMATIONS IN CARTESIAN COORDINATES 321

 I. Transformation Definitions .. 321

 II. Scalar Transport Coordinate Transformations ... 323

 A. General Scalar Transport .. 323

 B. Source Terms .. 323

 1. Continuity ... 324

 2. x-Momentum .. 325

 3. y-Momentum .. 325

 4. Strain-Rate Tensor .. 325

 5. Rotation Tensor .. 326

 G. COORDINATE TRANSFORMATIONS IN CYLINDRICAL COORDINATES 327

 I. Transformation Definitions .. 327

 II. Scalar Transport Coordinate Transformations ... 329

 A. General Scalar Transport .. 329

 B. Source Terms .. 330

 1. Continuity ... 330

 2. Momentum ... 330

 3. Strain-Rate Tensor .. 332

 H. FINITE-VOLUME DISCRETIZATION ... 333

 I. Domain Discretization ... 333

 II. Discretization Schemes .. 336

xi

 A. Differencing ... 336

 1. Cell Centers .. 337

 2. Cell Faces .. 338

 B. Integration .. 340

 C. Approximations in Two Dimensions ... 340

 1. Cell Centers .. 340

 2. Cell Faces .. 341

 3. Integration .. 344

 I. FINITE-VOLUME METHOD IN CARTESIAN COORDINATES ... 345

 I. General Scalar Transport ... 345

 II. Boundary Condition Implementation .. 347

 A. The Dirichlet Boundary Condition ... 348

 B. The Neumann Boundary Condition ... 349

 C. Velocity Inlet .. 352

 D. Outlet .. 352

 E. Smooth, No-Slip Wall .. 353

 F. Symmetry ... 353

 G. Pressure .. 354

 III. Transport Equations ... 355

 A. Momentum ... 355

 B. Turbulent Kinetic Energy ... 357

 C. Dissipation .. 358

 D. Dissipation Frequency .. 358

 J. FINITE-VOLUME METHOD IN CYLINDRICAL COORDINATES 359

 I. General Scalar Transport ... 359

 II. Boundary Condition Implementation .. 361

 A. The Dirichlet Boundary Condition ... 362

 B. The Neumann Boundary Condition ... 363

 III. Transport Equations ... 368

 K. THE SIMPLE ALGORITHM IN CARTESIAN COORDINATES .. 371

 I. Development of the SIMPLE Algorithm ... 371

 II. Boundary Treatment .. 375

 L. THE SIMPLE ALGORITHM IN CYLINDRICAL COORDINATES 376

 I. Development of the SIMPLE Algorithm ... 376

 II. Boundary Treatment .. 380

 M. VORTICITY TRANSPORT .. 381

xii

 I. Laminar Flow Algorithm ... 381

 II. Turbulent Flow Algorithm ... 382

 A. The Ensemble Average Vorticity Transport Equation ... 382

 B. The RANS Ensemble Average Vorticity Transport Equation 383

 N. ONE-DIMENSIONAL DIRECT INTEGRATION METHOD ... 385

 I. The k-ε Model Equations ... 385

 II. The k-ω Model Equations .. 387

 O. CODE FOR SOLVING THE PHILLIPS k-λ MODEL ... 391

 P. OPTIMIZATION CODE .. 403

 Q. CLOSURE COEFFICIENT EVALUATION ON THE FLAT .. 410

CURRICULUM VITAE .. 411

xiii

LIST OF TABLES

Table Page

8.1 Sample results for the Phillips k-λ fully rough pipe flow model

 given a set of non-optimal model constants ... 159

8.2 Example optimization iterations using the BFGS update method ... 165

D.1 Second-order approximation for the first derivative ... 278

D.2 Second-order approximation for the second derivative ... 278

D.3 Fourth-order approximation for the first derivative ... 279

D.4 Fourth-order approximation for the second derivative .. 279

D.5 Sixth-order approximation for the first derivative ... 280

D.6 Sixth-order approximation for the second derivative .. 280

D.7 Eighth-order approximation for the first derivative ... 281

D.8 Eighth-order approximation for the second derivative .. 282

F.1 Transport equation terms ... 324

xiv

LIST OF FIGURES

Figure Page

1.1 Boundary layer case description .. 32

1.2 Fully developed channel flow case description ... 33

1.3 Fully developed pipe flow case description ... 35

1.4 Plane jet flow case description ... 37

1.5 Round jet flow case description ... 38

2.1 Correlation between friction coefficient and roughness Reynolds number

 by Nikuradse [59] .. 56

4.1 Grid convergence results for Wilcox 1998 k-ω model for fully developed pipe flow 61

4.2 Grid-converged results of codes written by Hunsaker and Wilcox

 for the Wilcox 1998 k-ω model for fully developed pipe flow ... 61

4.3 Grid-converged results of four models for the case of fully developed pipe flow 62

4.4 ICESS grid refinement results of the x-velocity profile along the

 vertical centerline of the lid-driven cavity at a Reynolds number of 100. 66

4.5 Fluent grid refinement results of the x-velocity profile along the

 vertical centerline of the lid-driven cavity at a Reynolds number of 100. 67

4.6 OpenFOAM grid refinement results of the x-velocity profile along the

 vertical centerline of the lid-driven cavity at a Reynolds number of 100. 68

4.7 Richardson extrapolation results for the x-velocity profile along the

 vertical centerline of the lid-driven cavity. .. 68

4.8 Finite volume algorithm RMS error as a function of average cell size squared 69

4.9 Grid resolution for the mean velocity predicted by the Wilcox 1998 k-ω model

 using the one-dimensional finite-volume method ... 70

4.10 Grid resolution for the mean velocity predicted by the Wilcox 1998 k-ω model

 using the two-dimensional finite-volume method ... 71

4.11 Comparison of results from the one- and two-dimensional finite-volume methods and a

 finite-difference method for the mean velocity predicted by the traditional k-ω model. 71

4.12 Comparison of results from the one- and two-dimensional finite-volume methods and a

 finite-difference method for the mean velocity predicted by the Wilcox 1998 k-ω model. 72

xv

5.1 Solutions to Eq. (5.31) with randomly selected wall boundary conditions 86

5.2 Solutions to Eq. (5.31) with no slip and no dissipation gradient at the wall. 87

5.3 Grid resolution for the mean velocity predicted from the Launder-Sharma k-ε model. 88

5.4 Grid resolution for the turbulent energy predicted from the Launder-Sharma k-ε model 89

5.5 Grid resolution for the turbulent dissipation predicted from the Launder-Sharma k-ε model 89

5.6 Effects of wall boundary conditions on turbulent energy

 predicted from the Lam-Bremhorst model. ... 90

5.7 Effects of wall boundary conditions on turbulent energy

 predicted from the Launder-Sharma model. .. 90

5.8 Effects of wall boundary conditions on near-wall dissipation

 for Launder-Sharma model. ... 92

5.9 Effects of wall boundary conditions on the mean velocity

 predicted from the Launder-Sharma model ... 92

5.10 Effects of wall boundary conditions on turbulent energy

 predicted from the Wilcox 1998 k-ω model .. 99

5.11 Effects of wall boundary conditions on the turbulent dissipation

 frequency predicted from the Wilcox 1998 k-ω model ... 99

6.1 Numerical solution for k in the closed-form analog to the k-ω~ model ... 114

6.2 Numerical solution for ω~ in the closed-form analog to the k-ω~ model .. 115

7.1 Nikuradse number as a function of roughness Reynolds number for

 experimental data of Nikuradse [59] ... 132

7.2 Nikuradse number as a function of roughness Reynolds number ... 134

7.3 The Moody chart with experimental data from Nikuradse and Shockling, et al. 137

7.4 Velocity profiles in rough pipes at high Reynolds numbers .. 139

7.5 Eddy-viscosity profiles in fully developed pipe flow .. 141

7.6 Initial velocity profile results for the Phillips k-λ model ... 152

7.7 Initial eddy-viscosity profile results for the Phillips k-λ model ... 152

7.8 Initial friction factor results for the Phillips k-λ model .. 153

8.1 Sample friction factor results for the Phillips k-λ fully rough pipe flow model

 given a set of non-optimal model constants ... 160

8.2 Friction factor results for the Phillips k-λ fully rough pipe flow model

xvi

 with a set of optimal model constants given in Eq. (8.24) .. 165

8.3 % RMS error over a range of values for 1r
C and k

σ ... 166

8.4 Optimal value for 2r
C as a function of k

σ ... 168

8.5 Optimal value for 2r
a as a function of k

σ ... 169

8.6 Optimal value for 3r
C as a function of k

σ ... 169

8.7 Optimal value for 3r
a as a function of k

σ ... 170

8.8 Optimal value for 4r
a as a function of k

σ ... 170

8.9 % RMS error as a function of k
σ .. 171

8.10 % RMS error of the final model using coefficients evaluated

 from the flat over a range of values for 1r
C and k

σ .. 172

9.1 Friction factor results for the Phillips k-λ model on the flat with 1.0=
k

σ 176

9.2 Velocity results for the Phillips k-λ model on the flat with

 1.0=
k

σ and 1000=

+

s
k .. 176

9.3 Eddy-viscosity results for the Phillips k-λ model on the flat with

 1.0=
k

σ and 1000=

+

s
k .. 177

9.4 Friction factor results for the Phillips k-λ model on the flat with 4=
k

σ 178

9.5 Velocity results for the Phillips k-λ model on the flat with

 4=
k

σ and 1000=

+

s
k .. 178

9.6 Eddy-viscosity results for the Phillips k-λ model on the flat with

 4=
k

σ and 1000=

+

s
k .. 179

9.7 Friction factor results for the Phillips k-λ model on the flat with 75.0=
k

σ 179

9.8 Velocity results for the Phillips k-λ model on the flat with

 75.0=
k

σ and 1000=

+

s
k ... 180

9.9 Eddy-viscosity results for the Phillips k-λ model on the flat with

 75.0=
k

σ and 1000=

+

s
k ... 180

9.10 Friction factor results for the Phillips k-λ model at the point of

 minimum % RMS error ... 182

9.11 Velocity results for the Phillips k-λ model at the point of

 minimum % RMS error with 1000=

+

s
k .. 183

9.12 Eddy-viscosity results for the Phillips k-λ model at the point of

 minimum % RMS error with 1000=

+

s
k .. 183

9.13 Friction factor results for the Wilcox 1998 k-ω model .. 186

xvii

9.14 Friction factor results for the Wilcox 2006 k-ω model .. 186

9.15 Nikuradse number results of the Phillips k-λ model

 with optimum model constants .. 187

9.16 Velocity results for the eddy-viscosity model given

 in Eq. (7.35) with 1000=

+

s
k .. 188

9.17 Velocity results for the eddy-viscosity model given

 in Eq. (7.36) with 1000=

+

s
k .. 188

9.18 Velocity results for the eddy-viscosity model given

 in Eq. (7.42) with 1000=

+

s
k .. 189

9.19 Velocity results for the eddy-viscosity model given

 in Eq. (7.43) with 1000=

+

s
k .. 189

9.20 Friction factor results for the eddy-viscosity model given

 in Eq. (7.35) ... 190

9.21 Friction factor results for the eddy-viscosity model given

 in Eq. (7.36) ... 191

9.22 Friction factor results for the eddy-viscosity model given

 in Eq. (7.42) ... 191

9.23 Friction factor results for the eddy-viscosity model given

 in Eq. (7.43) ... 192

B.1 Nondimensional mean velocity results from the Launder-Sharma model 211

B.2 Nondimensional turbulent kinetic energy results from the Launder-Sharma model..................... 212

B.3 Nondimensional dissipation results from the Launder-Sharma model ... 212

B.4 Nondimensional mean velocity results from the Lam-Bremhorst model 217

B.5 Nondimensional turbulent kinetic energy results from the Lam-Bremhorst model 217

B.6 Nondimensional dissipation results from the Lam-Bremhorst model ... 218

B.7 Nondimensional mean velocity results from the traditional k-ω model .. 227

B.8 Nondimensional turbulent kinetic energy results from the traditional k-ω model 228

B.9 Nondimensional dissipation frequency results from the traditional k-ω model 228

B.10 Nondimensional mean velocity results from the Wilcox 1998 model .. 232

B.11 Nondimensional turbulent kinetic energy results from the Wilcox 1998 model 232

B.12 Nondimensional dissipation frequency results from the Wilcox 1998 model 233

xviii

C.1 Boundary layer case description .. 236

C.2 Grid resolution results from ICESS for the laminar boundary layer ... 237

C.3 Grid resolution results from Fluent for the laminar boundary layer .. 238

C.4 Grid-resolved results from ICESS and Fluent for the laminar boundary layer 238

C.5 Fully developed channel flow case description ... 240

C.6 Normalized velocity profile for fully developed channel flow ... 245

C.7 Fully developed pipe flow case description ... 247

C.8 Normalized velocity profile for fully developed pipe flow ... 252

C.9 Plane jet flow case description ... 254

C.10 Numerical results for the nondimensional x-velocity profile for the plane laminar jet 258

C.11 Numerical results for the nondimensional plane laminar jet centerline velocity 259

C.12 Numerical results for the nondimensional plane laminar jet spread rate 259

C.13 Round jet flow case description ... 261

C.14 Numerical results for the nondimensional z-velocity profile for the round laminar jet 264

C.15 Numerical results for the nondimensional round laminar jet centerline velocity 264

C.16 Numerical results for the nondimensional round laminar jet spread rate 265

D.1 Near-wall results of a second-order finite-difference algorithm ... 283

D.2 Second-order results using double-precision computations .. 284

D.3 Second-order results using quad-precision computations ... 284

D.4 Fourth-order results using double-precision computations ... 285

D.5 Fourth-order results using quad-precision computations .. 285

D.6 Eighth-order results using double-precision computations ... 286

D.7 Eighth-order results using quad-precision computations .. 287

D.8 Eighth-order results of a tenth-order near-wall equation using quad-precision computations 287

D.9 Eighth-order finite-difference RMS error as a function of grid spacing 288

D.10 Negative near-wall results of an eighth-order approximation

 to a tenth-order near-wall solution ... 289

xix

E.1 Comparison of physical and transformed domains ... 301

H.1 Physical domain discretization and nomenclature ... 334

H.2 Computational domain discretization and nomenclature .. 334

H.3 Physical domain of an example rectilinear grid with logarithmic spacing 335

H.4 Computational domain of an example rectilinear grid with logarithmic spacing 335

xx

LIST OF ACRONYMS

BFGS Broyden-Fletcher-Goldfarb-Shanno

CFD Computational Fluid Dynamics

DNS Direct Numerical Simulation

ICESS Incompressible Computational Enstrophy Structured Solver

LES Large Eddy Simulation

RANS Reynolds-averaged Navier-Stokes

RMS Root-Mean-Square

SIMPLE Semi-Implicit Method for Pressure-Linked Equations

xxi

NOMENCLATURE

A = acceleration vector

A = transport equation discretization coefficient

A = coefficient array

A = arbitrary constant

+

A = empirical constant dependent on wall roughness

∞−0
A = Taylor-series expansion constants

21−
A = closed-form analog model coefficients

k
A = constant defined in Eq. (7.75)

a = arbitrary constant

1
a = empirical constant, 15.0

1
=a

41 rr
a

−

 = turbulence model closure coefficients

B = coefficient array

B = arbitrary constant

∞−0
B = Taylor-series expansion constants

21−
B = closed-form analog model coefficients

k
B = constant defined in Eq. (7.75)

b = arbitrary constant

C = coefficient array

C = arbitrary constant

∞−0
C = Taylor-series expansion constants

51−
C = constants of integration

71−
C = turbulence model closure coefficients

fC = friction coefficient defined in Eq. (1.115)

21 kk
C

−

 = closed-form analog model coefficients

xxii

0l
C = constant used in mixing-length-theory eddy-viscosity model, 345.0

0
≈

l
C

31 rr
C

−

 = turbulence model closure coefficients

21 εε −

C = turbulence model closure coefficients

4ˆ1ˆ εε −

C = turbulence model closure coefficients

61 ζζ −

C = turbulence model closure coefficients

λ
C = turbulence model closure coefficient

µ
C = turbulence model closure coefficient

ν
C = turbulence model closure coefficient

21 ωω −

C = turbulence model closure coefficients

4
~

1
~

ωω −

C = turbulence model closure coefficients

v
c = constant volume specific heat

D = discretization coefficient

h
D = hydraulic diameter

E = turbulence model damping function dependent on the model

+

E = wall-scaled damping function,
62

τ
ν uEE ≡

+

e = specific energy, defined in Eq. (1.13)

F = force vector

F = arbitrary function

L
F = deferred correction lower-order approximation

H
F = deferred correction higher-order approximation

ε
F = change of variables as in Eq. (5.33)

f = force vector per unit volume

b
f = body force vector per unit volume

s
f = surface force vector per unit volume

f = arbitrary function

21−
f = turbulence model damping function dependent on the model

xxiii

D
f = Darcy friction factor

0h
f = near-wall approximation for h, dependent on the turbulence model

31 hh
f

−

 = turbulence model damping functions dependent on the model

k
f = turbulence model damping function dependent on the model

31 kk
f

−

 = turbulence model functions dependent on the model

u
f = x-momentum source term in one-dimensional finite-volume method

0ε
f = near-wall approximation for ε, dependent on the turbulence model

21 εε −

f = turbulence model functions dependent on the model

0ω
f = near-wall approximation for ω, dependent on the turbulence model

21 ωω −

f = turbulence model functions dependent on the model

µ
f = turbulence model damping function dependent on the model

ν
f = turbulence model damping function dependent on the model

'''

φG = transport property production rate per unit volume

o
g = acceleration of gravity at standard sea level

H

v

v

 = Hessian matrix

H = nondimensional length

h = arbitrary second variable in a two-equation turbulence model

+

h = wall-scaled second turbulence variable

0
h = near-wall approximation for h, dependent on the turbulence model

J

v

v

 = Jacobian tensor of a vector field defined in Eq. (1.61)

J = coordinate transformation scalar,
xyyx

J
,,,,

ηξηξ −≡

K = specific axial momentum flux per unit width for plane jet

K = specific axial momentum flux for round jet

k = turbulent kinetic energy per unit mass defined in Eq. (1.55)

+

k = wall-scaled dimensionless turbulent-kinetic-energy, 2

τ
ukk ≡

+

0
k = value for k at the wall

xxiv

r
k = relative roughness,)2(Rkk

sr
≡

s
k = equivalent surface-roughness height

+

s
k = wall-scaled dimensionless surface-roughness height, ν

τ
ukk
ss

≡

+

t
k = thermal conductivity

kˆ = closed-form analog model variable

L = flat plate length

L = channel half-width

l = channel half-width

+

l = wall-scaled dimensionless channel half-width, ν
τ

lul ≡

+

l = mixing length

+

l = wall-scaled mixing length, ν
τ
ull ≡

+

c
l = periodic wave length scale,

ccc
Vl ω≡

k
l = turbulent energy characteristic length defined in Eq. (2.21)

t
l = turbulent characteristic length

M = total momentum flux

x
M = specific x-momentum flux defined in Eq. (1.123)

m = mass

m = arbitrary integer

m& = average volume flux

h
m = number of nodes implementing near-wall approximation of second transport equation

N

v

v

 = direction matrix used in optimization algorithm

i
N = Nikuradse number defined in Eq. (7.24)

n = arbitrary integer

O = on the order of

P = array of coefficients for pipe-flow algorithm

p = thermodynamic pressure

xxv

+

p = wall-scaled dimensionless pressure gradient,))(ˆ(3

τ
ρν udxpdp ≡

+

pˆ = pseudo mean pressure defined in Eq. (1.52)

p̂ = pseudo hydrostatic pressure defined in Eq. (2.1)

p̂ = mean pseudo hydrostatic pressure defined in Eq. (2.5)

p
~

ˆ = fluctuating pseudo hydrostatic pressure defined in Eq. (2.6)

p

)

~ = term defined in Eq. (1.49)

Q = volume flow rate

o
Q = volume flow rate at physical origin of round jet

+

Q = change of variables

q = heat flux vector defined in Eq. (1.20)

+

q = change of variables

R = pipe radius

c
R = ratio of closure coefficients given in Eq. (6.76)

c
R = length scale in core region of pipe flow defined in Eq. (7.51)

e
R = Reynolds number

ce
R = core Reynolds number defined in Eq. (7.52)

L
R = Reynolds number based on plate length, defined in Eq. (1.114)

t
R = turbulent Reynolds number, νε

2
kR

t
≡ for k-ε models, νωkR

t
≡ for k-ω models

x
R = Reynolds number based on x-position

y
R = cell Reynolds number, νkyR

y
≡

z
R = Reynolds number based on z-position

τ
R = shear Reynolds number, ν

ττ
LuR ≡ for channel flow, ν

ττ
RuR ≡ for pipe flow

r = radial coordinate measured normal to z-axis

+

r = wall-scaled radial coordinate, ν
τ

rur ≡

+

%1
r = radial coordinate of round jet at which axial velocity is 1% of the centerline velocity

h
r = radial coordinate of round jet at which axial velocity is 50% of the centerline velocity

xxvi

r̂ = pipe-scaled radial coordinate, Rrr ≡ˆ

o
r̂ = outer root of Eq. (7.41)

S

v

v

 = strain rate tensor defined in Eq. (1.19)

S = transport equation source term

Sˆ = integral form of transport equation source term

c
S = deferred correction source term

2

V
S = squared magnitude of the strain-rate tensor,)()(2

VSVS

v

v

v

v

⋅≡
V

S

s

v

 = search direction used in optimization algorithm

s = arbitrary scalar

T = thermodynamic temperature

T = diagonal in tridiagonal matrix

t = time

U = arbitrary vector

U = magnitude of U

eU
'''

 = volumetric heating per unit volume

u = x-component of velocity

+

u = wall-scaled dimensionless velocity,
τ
uVu

x
≡

+

+

bulk
u = wall-scaled bulk velocity,

τ
uVu

bulkbulk
≡

+

+

c
u = wall-scaled centerline velocity,

τ
uVu

cc
≡

+

+

max
u = wall-scaled maximum velocity,

τ
uVu

maxmax
≡

+

e
u = specific internal energy

τ
u = friction velocity, ρτ

τ w
u ≡

û = closed-form analog model variable

V = velocity vector

V = velocity magnitude

∞
V = freestream velocity

xxvii

bulk
V = bulk velocity

c
V = periodic wave velocity scale

c
V = centerline velocity

max
V = maximum average velocity

t
V = turbulent flow field characteristic velocity

ηV = contravariant velocity component defined in Eq. (4.5)

ξV = contravariant velocity component defined in Eq. (4.5)

w = span of a plane jet in the third dimension

x

v

 = vector of design variables in optimization algorithm

x = coordinate measured along the x axis

21−
x = example design variables

y = coordinate measured along the y axis

+

y = wall-scaled dimensionless distance, ν
τ

yuy ≡

+

%1
y = normal coordinate of plane jet at which axial velocity is 1% of the centerline velocity

h
y = normal coordinate of plane jet at which axial velocity is 50% of the centerline velocity

ŷ = closed-form analog model variable

Z = geopotential altitude

z = coordinate measured along the z axis

o
z = physical origin of round jet

ẑ = axial position relative to physical origin of round jet

α = transport equation under-relaxation variable

p
α = pressure under-relaxation variable

β = grid-stretching factor used in coordinate transformations

β = blending factor

r
β = Bradshaw’s constant, 30.0=

r
β

Γ = diffusivity coefficient

xxviii

Γ = blending factor

γ
v

v

 = tensor defined in Eq. (1.45)

γ
v

 = vector used in optimization algorithm, defined in Eq. (8.12)

γ = similarity variable

γ = Nikuradse constant, traditionally 0334.0≈γ

k
γ = trace of γ

v

v

, defined in Eq. (1.57)

δ
v

v

 = Kronecker delta

ε

v

v

 = tensor defined in Eq. (1.46)

k
ε = trace of ε

v

v

, defined in Eq. (1.58)

o
ε = turbulence model damping function dependent on the model

ε = approximate turbulent kinetic energy dissipation rate defined in Eq. (1.64)

ε
~ = exact turbulent kinetic energy dissipation rate defined in Eq. (2.11)

ε̂ = solenoidal dissipation defined in Eq. (2.16)

εˆ = closed-form analog model variable

+

ε = wall-scaled dimensionless dissipation, 4

τ
ενε u≡

+

+

o
ε = wall-scaled damping function, 4

τ
νεε u
oo

≡

+

ζ = turbulence enstrophy defined in Eq. (1.84)

ζ = turbulent Jacobian magnitude defined in Eq. (1.85)

+ζ = wall-scaled turbulence enstrophy,
42

τ
ζνζ u≡

+

η = computational domain coordinate

θ = azimuthal coordinate in cylindrical coordinate system

+

θ = change of variables

κ = von Kármán constant, traditionally 40.0≈κ

λ = coefficient of bulk viscosity

λ = mean vortex wavelength defined in Eq. (2.47)

+

λ = wall-scaled mean vortex wavelength, νλλ
τ
u≡

+

xxix

µ = dynamic viscosity

t
µ = dynamic eddy viscosity

ν = kinematic viscosity, ρμν ≡

νˆ = pipe-scaled kinematic viscosity,)(ˆ Ru
τ

νν ≡

t
ν = kinematic eddy viscosity, ρμν

tt
≡

t
νˆ = pipe-scaled kinematic eddy viscosity,)(ˆ Ru

tt τ
νν ≡

+

ν = wall-scaled dimensionless viscosity, ννν
t

≡

+

ξ = computational domain coordinate

π

v

v

 = tensor defined in Eq. (1.48)

k
π = trace of π

v

v

, defined in Eq. (1.60)

ρ = fluid density

σ

v

v

 = fluid stress tensor defined in Eq. (1.9)

σ = stress

h
σ = turbulence model closure coefficient

k
σ = turbulence model closure coefficient

ε
σ = turbulence model closure coefficient

ε
σ

ˆ

 = turbulence model closure coefficient

ζσ = turbulence model closure coefficient

ω
σ = turbulence model closure coefficient

ω
σ ~ = turbulence model closure coefficient

ς = arbitrary scalar

τ

v

v

 = Reynolds stress tensor defined in Eq. (1.41)

xy
τ = Reynolds shear stress,

yxxy VV
~~

ρτ −≡

w
τ = wall shear stress

φ = arbitrary transport property

χ
v

v

 = tensor defined in Eq. (1.47)

xxx

k
χ = trace of χ

v

v

, defined in Eq. (1.59)

ψ = arbitrary scalar

k
ψ = turbulence model damping function

+

ψ = change of variables

ϕ = arbitrary scalar

Ω

v

v

 = rotation tensor defined in Eq. (A.11)

Ω = curl of the velocity vector, VΩ ×∇≡

Ω = magnitude of Ω

Ω = relaxation factor

2

V
Ω = squared magnitude of the rotation tensor,)()(2

VΩVΩ

v

v

v

v

⋅≡
V

Ω

ω = turbulence dissipation frequency defined in Eq. (1.78)

+

ω = wall-scaled turbulent dissipation frequency, 2

τ
ωνω u≡

+

c
ω = periodic wave angular velocity

t
ω = turbulent flow field characteristic angular velocity

ω
~ = turbulent fluctuating vorticity defined in Eq. (2.14)

+

ω
~ = wall-scaled turbulent fluctuating vorticity, 2~~

τ
νωω u≡

+

ωˆ = closed-form analog model variable

Superscripts

* = (star) guessed value

′ = (prime) correction factor

T = transpose

o = previous solution

Subscripts

0 = initial condition or value at the wall

xxxi

D = center diagonal

E = cell to the east of the current cell

e = east face of current cell

h = associated with the turbulence variable, h

i = index variable

j = index variable

k = associated with the turbulence variable, k

L = lower diagonal

N = cell to the north of the current cell

n = north face of current cell

nb = neighboring boundaries

NE = cell to the north-east of the current cell

NW = cell to the north-west of the current cell

old = previous solution

P = current cell

r = associated with the r-component or axis

S = cell to the south of the current cell

s = south face of current cell

SE = cell to the south-east of the current cell

SW = cell to the south-west of the current cell

U = upper diagonal

u = associated with the x-velocity variable, u

W = cell to the west of the current cell

w = west face of current cell

x = associated with the x-component or axis

y = associated with the y-component or axis

xxxii

z = associated with the z-component or axis

ε = associated with the turbulence variable, ε

θ = associated with the θ-component

ω = associated with the turbulence variable, ω

Other notation

, = (comma) denotes differentiation

- = (overbar) ensemble-averaged value

~ = (tilde) fluctuating value

. = (dot) denotes differentiation with time

′ = (prime) denotes differentiation

bold = denotes an array or vector

1

CHAPTER 1

TRADITIONAL TURBULENCE MODELING

I. Introduction

 Fluid mechanics has been a topic of study for hundreds of years and has fascinated many of the

greatest minds of history. Many applications today are dependent on correctly understanding and predicting

the motion of fluids and much research has been conducted to that end. The laws that govern fluid motion

have been understood since the mid 1800s and the vector mathematics needed to fully analyze three-

dimensional fluid mechanics was sufficiently understood only a few decades later. See for example the

work of Navier [1], Stokes [2], Hamilton [3–5], and Boyer and Merzback [6]. Since that time, these laws of

motion and mathematical properties have been studied by countless researchers, and much progress in the

physical understanding of both laminar and turbulent flows has been achieved. However, the complexity

presented in completely understanding and correctly predicting fluid mechanics leaves room for much

improvement.

 Many analytical solutions exist for problems with simple geometries because the governing equations

can be simplified and analytically applied. However, for more complex geometries and flow fields, the

boundary conditions and vector equations are more complex and numerical means must be employed.

Computational Fluid Dynamics (CFD) is a method of fluid flow calculation that uses a gridded domain to

predict the flow field in or about a given geometry. This solution method has grown in popularity as

computing power has increased, making solutions to complex flow problems more readily achievable.

However, even with modern computational power, accurate solutions to flow problems can take days or

weeks to converge.

 The difficulty of modeling fluid mechanics is greatly increased when turbulent flow is considered.

Indeed, the most intriguing and complex flow solutions are those for turbulent flow fields. Analytical

2

solutions for turbulent flow fields are much more difficult to develop than those for laminar flow fields.

Therefore, turbulent flow modeling is left almost entirely to numerical methods.

 The governing principles of mass and momentum conservation apply to turbulent flow and can be

employed directly through CFD methods. However, the grid refinement required to capture the small scales

of turbulence using CFD techniques is so extreme that solutions based on this technique can be fairly

computationally expensive. Such CFD techniques are called Direct Numerical Simulation (DNS) methods

and are currently employed mainly for simple domains and relatively low Reynolds numbers in which the

small scales of turbulence are large in comparison to the grid element size of the domain of interest. For a

review of DNS, see Moin and Mahesh [7].

 In order to model the turbulent characteristics of larger geometries without the grid refinement required

for DNS, additional relationships are commonly combined with the governing equations of fluid motion.

These additional relationships should be based on the physics of turbulent motion to provide accurate

simulations. The physical characteristics of turbulence have been studied in detail during the past century.

Much of our current understanding of turbulence has been constructed through the results of countless

experiments performed in the past two centuries. Although these findings have greatly expanded our

understanding of turbulent flow characteristics, they are somewhat preliminary in nature and have not

proven to be fully representative of turbulent behavior. In other words, there is still much to be learned

about turbulence. To this extent, notable authors have commented.

“I am an old man now, and when I die and go to Heaven there are two matters on which I hope

for enlightenment. One is quantum electrodynamics, and the other is the turbulent motion of

fluids. And about the former I am really rather optimistic.” -Sir Horace Lamb [8]

“Turbulence…[was] probably invented by the Devil on the seventh day of Creation (when the

Good Lord wasn't looking).” -P. Bradshaw [9]

“… less is known about the fine scale of turbulence … than about the structure of atomic nuclei.

Lack of basic knowledge about turbulence is holding back progress in fields as diverse as

3

cosmology, meteorology, aeronautics and biomechanics. Understanding the hierarchically

organized complexity of turbulence may well provide a paradigm for understanding a variety of

problems at the frontiers of physics research.” -U. Frisch and S. Orszag [10]

“Turbulence is the last great unsolved problem of classical physics. Remarks of this sort have

been variously attributed to Sommerfeld, Einstein, and Feynman, although no one seems to know

precise references, and searches of some likely sources have been unproductive. Of course, the

allegation is a matter of fact, not much in need of support by a quotation from a distinguished

author. However, it would be interesting to know when the matter was first recognised.” -P.J.

Holmes, G. Berkooz, and J.L. Lumley [11]

 Although the physical phenomenon of turbulence is not fully understood, the basic features of

turbulent motion are known. First, turbulence is caused by inertial forces overpowering viscous forces

within a fluid. At low Reynolds numbers, viscous forces dominate producing laminar flow. However, as the

Reynolds number increases, the inertial forces of the fluid increase and eventually overcome the viscous

forces. At this point, velocity and pressure fluctuations develop and the flow becomes irregular. This leads

to the second most fundamentally understood characteristic of turbulence. Turbulent flow is comprised of

fluctuations in pressure, velocity, and temperature making it impossible to reproduce the exact fluctuations

from consecutive experiments although the average flow field is recreated.

 A definition for turbulence commonly accepted today was given by Hinze [12]:

“Turbulent fluid motion is an irregular condition of flow in which the various quantities show a

random variation with time and space coordinates, so that statistically distinct average values can

be discerned.”

A definition that is perhaps more mathematically precise is that given by Phillips [13]:

“Turbulent fluctuations are irregular variations in certain quantities of a flow field (such as

pressure, temperature and velocity) that are not predictably repeatable from one experiment to

another.”

4

 The definition by Phillips is more accurate for two reasons. First, his definition specifies the averaging

method required to correctly deduce statistical information about a turbulent flow field. It can be shown and

is well understood that ensemble averaging must be used instead of spatial and temporal averaging in order

to accurately distinguish the average flow field from turbulent fluctuations in common unsteady turbulent

flow fields. For a detailed discussion on averaging see Phillips [13] or Wilcox [14]. Second, Phillips uses

the term “irregular” as opposed to “random” in referring to the flow fluctuations. Strictly speaking,

although the fluctuations may appear to be random, they must at all times satisfy the governing equations

of fluid flow. Therefore, the term “irregular” is a more correct way of describing the flow fluctuations.

 The complex nature of turbulent flow is not yet fully understood. However, research conducted during

the past century has allowed for certain properties of mean turbulent flow to be quantified, and traditional

governing equations of mean turbulent flow have been developed. The challenge of forming equations truly

representative of mean turbulent flow has inspired much research that has resulted in varying degrees of

success. The most widely used models for internal flows include the k-ε model based on the development

of Jones and Launder [15], and variations of the k-ω model originally developed by Kolmogorov [16].

Commonly used aerodynamic (external) flow models include models developed by Spalart and Allmaras

[17] and Baldwin and Barth [18]. Although these models are widely used, correct turbulence modeling is

anything but a closed subject at this point in computational fluid dynamics and several concerns about the

traditional methods have been identified.

 Retracing the derivations of traditional turbulence modeling equations reveals seemingly minor yet

possibly significant assumptions which may have hindered the validity of the models in the past. Recent re-

examination of these equations by Phillips [13] has led to alternative developments of the well-known and

explored k-ε, k-ω, and k-ζ turbulence models. It is possible that the adjusted equations will produce more

accurate results for turbulent flow calculations.

 Durbin [19] expressed concerns about the implementation of smooth-wall boundary conditions for

dissipation-based turbulence models nearly 20 years ago. However, even today many of the

implementations of these models lack the correct boundary conditions. This discrepancy has not been

5

widely acknowledged in the literature likely because Durbin’s warning has not been well understood by the

traditional CFD community. If significant improvements in turbulence modeling are to be made, the correct

boundary conditions for traditional models must be understood.

 Additionally, most turbulence models are developed to model the flow about smooth surfaces while

few models are capable of modeling the effects of rough walls. In reality, there is no such thing as a

perfectly smooth surface, and what we term a “smooth” or “hydraulically smooth” surface is a surface for

which the roughness effects are seemingly negligible. The fact that no surface is perfectly smooth may shed

some light as to why traditional models have had difficulty matching experimental data over a wide range

of Reynolds numbers.

 This dissertation focuses on addressing a few identifiable concerns with traditional turbulence

modeling including the correct implementation of smooth-wall boundary conditions for dissipation-based

turbulence models, the modeling of rough-wall flows, and the implementation of a turbulent-kinetic-energy

equation suggested by Phillips [13]. To set this work in perspective to previous work, an overview of

traditional turbulence model development and evaluation is included here.

II. Governing Equations of Fluid Motion

 The Eulerian study of fluid mechanics is accomplished by understanding the basic laws and

relationships that govern the motion of a differential fluid element. Such a fluid element, that is large

enough for the molecular structure and the molecular motions to be ignored, can be studied by

understanding its transport properties. A general transport equation for any transportable property can be

written as

 ''')(
)(

φφρ
ρφ

G
t

=⋅∇+
∂

∂
V (1.1)

where φ is the property of transport per unit mass, and '''

φG is the production rate per unit volume of the

transport property. Three fundamental laws of physics can be applied to the fluid element by specifying

three different transport properties in Eq. (1.1). These three laws are the conservation of mass, the

6

conservation of momentum, and the conservation of energy and comprise the governing equations of fluid

mechanics.

A. Conservation of Mass: The Continuity Equation

 The conservation of mass equation (the continuity equation) is developed from Eq. (1.1) by defining

mass as the property of transport. Since mass per unit mass is unity, φ is unity. Assuming Newtonian

physics, the mass of the continuum cannot be created nor destroyed and the generation term is zero.

Therefore, the continuity equation is written as

 0)(=⋅∇+
∂

∂
Vρ

ρ

t

 (1.2)

For incompressible flow, the first term can be dropped and the equation simplifies to

 0=⋅∇ V (1.3)

B. Conservation of Momentum: Newton’s Second Law

 The conservation of momentum equation is developed from Eq. (1.1) by defining momentum as the

property of transport. In this case, φ is the velocity vector since momentum per unit mass is velocity. The

generation of momentum per unit volume is the sum of the forces per unit volume acting on the differential

element. Therefore, the conservation of momentum equation is written as

sb
ffVV

V
+=⋅∇+

∂

∂
)(

)(
ρ

ρ

t

 (1.4)

where
b
f and

s
f are the body and surface forces respectively. It is important to note that the conservation of

momentum equation is the same as Newton’s second law which states that force exerted on an object is

equal to its mass times the acceleration of the object. Multiplying Eq. (1.4) by volume simplifies to the

familiar expression

 AF m= (1.5)

 Because velocity is a vector, the conservation of momentum equation is a set of three scalar equations.

The vector product VV is a tensor and can be written

7

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

≡

zzyzxz

zyyyxy

zxyxxx

VVVVVV

VVVVVV

VVVVVV

VV (1.6)

Using the vector identity given in Eq. (A.1) and applying the chain rule and the continuity equation, the

left-hand side of Eq. (1.4) can be written as

VV
V

VVVVV
V

VV
V

)(

)]([)()(
)(

∇⋅+
∂

∂
=

⋅∇+
∂

∂
+∇⋅+

∂

∂
=⋅∇+

∂

∂

ρρ

ρ
ρ

ρρρ
ρ

t

ttt
 (1.7)

 The surface forces can be written as the divergence of the fluid stress tensor

 σf
s

v

v

⋅∇= (1.8)

where the tensor, σ
v

v

, includes both viscous normal and shear stresses.

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

≡

zzzyzx

yzyyyx

xzxyxx

σσσ

σσσ

σσσ

σ

v

v

 (1.9)

The components of the fluid stress tensor are written in the form
ij

σ where the subscript i represents the

direction normal to the surface on which the stress is acting, and the subscript j represents the direction of

the stress. It is important to note that compressive pressures included in the fluid stress tensor would have a

minus sign as tensile stress is denoted positive.

 The body forces include all other external forces (ie. gravitational and electromagnetic forces). If

gravity is the only body force, this term can be written as

 Zg
o
∇−= ρ

b
f (1.10)

where
o

g is the acceleration of gravity at standard sea level and Z is the geopotential altitude.

 Using Eqs. (1.7), (1.8), and (1.10) in Eq. (1.4) gives a common form of the conservation of momentum

equation for fluid mechanics

 Zg
t

o
∇−⋅∇=⎥

⎦

⎤
⎢
⎣

⎡
∇⋅+

∂

∂
ρρ σVV

V v

v

)((1.11)

8

C. Conservation of Energy: First Law of Thermodynamics

 The conservation of energy equation is developed from Eq. (1.1) by defining energy as the property of

transport. The generation of energy per unit volume can result from heat, work done on the fluid element

from the fluid stress tensor, or other volumetric heating resulting from nuclear or chemical reactions.

Therefore, the conservation of energy can be written as

 eUe
t

e
''')()(

)(
+⋅⋅∇+⋅−∇=⋅∇+

∂

∂
VσqV

v

v

ρ
ρ

 (1.12)

where e is the specific energy, q is the heat flux vector, and eU
''' includes any other volumetric heating. The

energy per unit mass is

 ZgVue
oe

++≡
2

2

1
 (1.13)

where
e

u is the specific internal energy and V is the magnitude of the velocity vector of the fluid element.

Using Eq. (1.13) in Eq. (1.12), applying the vector identities in Eqs. (A.2) and (A.3) as well as the

continuity equation, and realizing that the geopotential altitude is not a function of time, the conservation of

energy equation can be written in the form

 e
oee

UZgVuVu
t

'''2

2

12

2

1
)()())(()(+⋅∇⋅+∇⋅+⋅−∇=⎥

⎦

⎤
⎢
⎣

⎡
++∇⋅++

∂

∂
σVVσqV
v

v

v

v

ρ (1.14)

 A less cumbersome transport equation can be obtained by first developing the mechanical energy

equation. Taking the dot product of the conservation of momentum equation, Eq. (1.11), with the velocity

vector and applying the vector identity in Eq. (A.4) to the left-hand side gives

 ZgVV
t

o
)()())(()(2

2

12

2

1
∇⋅−⋅∇⋅=⎥

⎦

⎤
⎢
⎣

⎡
∇⋅+

∂

∂
VσVV ρρ

v

v

 (1.15)

This can be rearranged to yield the well-known mechanical energy equation

)())(()(2

2

12

2

1
σVV
v

v

⋅∇⋅=⎥
⎦

⎤
⎢
⎣

⎡
+∇⋅+

∂

∂
ZgVV

t
o

ρ (1.16)

Subtracting Eq. (1.16) from Eq. (1.14) yields a transport equation often called the thermal energy equation

 e
e

e

Uu
t

u
''')()(+∇⋅+⋅−∇=⎥

⎦

⎤
⎢
⎣

⎡
∇⋅+

∂

∂
VσqV

v

v

ρ (1.17)

9

D. Application of Newtonian and Continuum Assumptions

 Assuming Newtonian physics, the continuity equation, Newton’s second law, and the thermal energy

equation represent the general Eulerian equations of motion for a reference frame with only a single

gravitational potential.

 0)(=⋅∇+
∂

∂
Vρ

ρ

t

 (1.2)

 Zg
t

o
∇−⋅∇=⎥

⎦

⎤
⎢
⎣

⎡
∇⋅+

∂

∂
ρρ σVV

V v

v

)((1.11)

 e
e

e

Uu
t

u
''')()(+∇⋅+⋅−∇=⎥

⎦

⎤
⎢
⎣

⎡
∇⋅+

∂

∂
VσqV

v

v

ρ (1.17)

These equations provide a system of five scalar equations and 17 scalar unknowns. The unknowns are the

three components of the heat transfer vector, the three components of the fluid velocity vector, the nine

components of the fluid stress tensor, the specific internal energy of the fluid, and the fluid density. To

complete the system of equations, additional relationships are needed.

 At this point, two assumptions are applied. First, we assume that the fluid can be treated as a

continuum (ie. the length scales are large compared to the molecular mean-free path). Second, we assume

that the fluid is a Newtonian fluid. These assumptions allow the stress tensor to be related to the element

deformation

)(2)(VSδVσ

v

v

v

vv

v

μλ +−⋅∇= p (1.18)

where p is the thermodynamic pressure, δ
v

v

 is the Kronecker delta, λ is the coefficient of bulk viscosity, µ

is the dynamic viscosity, and S
v

v

 is the strain-rate tensor defined as

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎠

⎞
⎜
⎝

⎛

∂

∂
+

∂

∂
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
+

∂

∂
⎟
⎠

⎞
⎜
⎝

⎛

∂

∂
+

∂

∂

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
+

∂

∂
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
+

∂

∂
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
+

∂

∂

⎟
⎠

⎞
⎜
⎝

⎛

∂

∂
+

∂

∂
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
+

∂

∂
⎟
⎠

⎞
⎜
⎝

⎛

∂

∂
+

∂

∂

≡

z

V

z

V

z

V

y

V

z

V

x

V

y

V

z

V

y

V

y

V

y

V

x

V

x

V

z

V

x

V

y

V

x

V

x

V

zzyzxz

zyyyxy

zxyxxx

2

1
(V)S
v

v

 (1.19)

10

 Fourier’s law of thermal diffusion is commonly used to express the heat flux vector in terms of the

thermodynamic temperature, T , as

 Tk
t
∇−≡q (1.20)

For incompressible liquids and ideal gases, the specific internal energy can be related to the temperature

through the thermodynamic property

 dTcdu
ve

= (1.21)

where
v
c is the constant volume specific heat. These relations allow the Eulerian equations of motion to be

written for Newtonian fluids as

 0)(=⋅∇+
∂

∂
Vρ

ρ

t

 (1.22)

 () ρμλρρ ∇+⋅∇+⋅∇−+−∇=⎥
⎦

⎤
⎢
⎣

⎡
∇⋅+

∂

∂
ZgZgp

t
oo

)](2[)(VSVVV
V

v

v

 (1.23)

 etv
UpTkT

t

T
c '''2)()(2)()()(+⋅+⋅∇+⋅∇−∇⋅∇=⎥

⎦

⎤
⎢
⎣

⎡
∇⋅+

∂

∂
VSVSVVV

v

v

v

v

μλρ (1.24)

 The three components of Eq. (1.23) are called the Navier-Stokes equations after Navier [1] and Stokes

[2] who developed the equations independently. To complete the formulation from this point, the fluid

properties ρ , λ , µ ,
v
c , and

t
k must be known functions of pressure and temperature. An approximation

commonly used for λ was suggested by Stokes and is μλ)32(−= . Note that for incompressible fluids, the

value of λ is inconsequential in light of the incompressible continuity equation, Eq. (1.3). For

incompressible Newtonian flow, Eqs. (1.22)–(1.24) can be simplified to

 0=⋅∇ V (1.25)

)](2[)/()(VSVV
V

v

v

νρ ⋅∇++−∇=∇⋅+
∂

∂
Zgp

t
o

 (1.26)

vet
cUTkT

t

T
/]/)()(2/)([)('''

ρνρ +⋅+∇⋅∇=∇⋅+
∂

∂
VSVSV

v

v

v

v

 (1.27)

where ν is the kinematic viscosity, ρμ . Careful examination of Eqs. (1.25)–(1.27) reveals that for

incompressible Newtonian flow, the dependence of viscosity on temperature is the only term that couples

11

the Navier-Stokes equations to the thermal energy equation. Therefore, if the viscosity of the fluid is

assumed independent of temperature, or the temperature gradients are small enough that the dependence

can be ignored, the thermal energy equation can be decoupled from the other four equations and solved

separately after the four equations, consisting of the continuity equation and the Navier-Stokes equations,

have been solved.

 The continuity equation and the Navier-Stokes equations provide a system of four equations and four

unknowns and must be satisfied at every point in the flow. For laminar flow, these governing equations

have been applied with much success both analytically and numerically. However, turbulent flow has

irregular fluctuations in the flow velocity vector at extremely small scales which complicates the analytical

solutions and requires extremely fine grid refinement for accurate CFD solutions. Direct Numerical

Simulation relies on a gridded domain with elements fine enough to capture the smallest turbulent

fluctuations. As a result, DNS simulations are commonly used to better understand the physics of the small

scales of turbulence. In order to model larger turbulent flow fields, other means are often used that

incorporate turbulent flow properties into the general equations of motion. The most common methods, and

the method of choice for this research, are based on the Reynolds-averaged Navier-Stokes (RANS)

equations.

III. The Reynolds-Averaged Navier-Stokes Equations

 Turbulence models based on the RANS equations attempt to model the average fluid motion rather

than trying to capture every fluctuation within the flow. By definition, at any given point and time, the

continuity and the Navier-Stokes equations must be satisfied regardless of whether the flow is turbulent or

laminar. Additionally, because the continuity equation is linear, it must be satisfied for the mean flow. The

velocity and pressure at any given time in a turbulent flow can be expressed as the sum of the ensemble

average of the property at that point and the fluctuating component. In the following notation, the over-bar

and tilde represent the ensemble averages and fluctuating components respectively. Using this notation, the

velocity vector and pressure scalar at a point in the flow can be written

12

 VVV
~

+= (1.28)

 ppp
~

+= (1.29)

It is important to note that the average of the fluctuating component is zero by definition. (See Appendix A

for properties of ensemble averaging.)

 0
~~
≡≡ pV (1.30)

 Fluctuations in density can be ignored for flows which do not have high supersonic mean Mach

numbers. Although the fluctuations in density due to turbulence are ignored, changes in the average density

with time and space are retained.

 Taking the ensemble average of the continuity equation yields

 0)(=⋅∇+
∂

∂
Vρ

ρ

t

 (1.31)

which can be simplified by using rules of ensemble averaging to

 0)(=⋅∇+
∂

∂
Vρ

ρ

t

 (1.32)

Using Eq. (1.28) in Eq. (1.2) gives

 0)
~

()()]
~

([=⋅∇+⋅∇+
∂

∂
=+⋅∇+

∂

∂
VVVV ρρ

ρ
ρ

ρ

tt

 (1.33)

Applying Eq. (1.32) to Eq. (1.33) gives a form of the continuity equation for the fluctuations

 0)
~

(=⋅∇ Vρ (1.34)

 Taking the ensemble average of the strain rate tensor and applying rules of ensemble averaging gives

)V(S(V)S
v

v

v

v

= (1.35)

Using the approximation given by Stokes for λ in Eq. (1.23) and taking the ensemble average gives

 ρμρρ ∇+⋅∇+⋅∇++∇−=⎥
⎦

⎤
⎢
⎣

⎡
∇⋅+

∂

∂
ZgµZgp

t
oo

]2[)()(
3

2
(V)SVVV

V v

v

 (1.36)

Applying rules of ensemble averaging and simplifying yields

13

 ρμρρ ∇+⋅∇+⋅∇++−∇=⎥
⎦

⎤
⎢
⎣

⎡
∇⋅+

∂

∂
ZgµZgp

t
oo

]2[)()(
3

2
)V(SVVV

V
v

v

 (1.37)

Using Eqs. (1.28) and (1.30) and applying rules of ensemble averaging, the second term on the left-hand

side of Eq. (1.37) can be written

VVVV

VVVVVV

~
)

~
()(

)
~

)]()
~

[()(

∇⋅+∇⋅=

+∇⋅+=∇⋅
 (1.38)

Thus the RANS equations can then be written

 VV)V(SVVV
V ~

)
~
(]2[)()(

3

2
∇⋅−∇+⋅∇+⋅∇++−∇=⎥

⎦

⎤
⎢
⎣

⎡
∇⋅+

∂

∂
ρρμρρ ZgµZgp

t
oo

v

v

 (1.39)

 Notice that the last term on the right-hand side is the only term that involves the turbulent fluctuations.

All other terms depend only on the average flow field. Using the vector identity in Eq. (A.1), this

fluctuation term can be expanded to

)]
~

([
~

)
~~

(
~
)

~
(VVVVVV ρρρ ⋅∇−⋅∇=∇⋅ (1.40)

The second term on the right-hand side in this equation is identically zero from the turbulent fluctuation

continuity equation given in Eq. (1.34). The first term on the right-hand side introduces the symmetric

Reynolds stress tensor first suggested by Osborn Reynolds [20]

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−=−≡

zzyzxz

zyyyxy

zxyxxx

VVVVVV

VVVVVV

VVVVVV

~~~~~~

~~~~~~

~~~~~~

~~

ρρ VVτ

v

v  (1.41) 

thus 

 τVV

v

v

⋅−∇≡∇⋅
~
)

~
(ρ  (1.42) 

Using Eq. (1.42) in Eq. (1.39), the RANS equations can then be written as 

 ρμρρ ∇++⋅∇+⋅∇++−∇=⎥
⎦

⎤
⎢
⎣

⎡
∇⋅+

∂

∂
ZgµZgp

t
oo

]2[)()(
3

2
τ)V(SVVV

V v

v

v

v

 (1.43) 

 Combining the continuity equation given in Eq. (1.32) with this general expression of the RANS 

equations provides four equations that contain ten unknowns. The unknowns include the three components 



14 

of the average velocity vector, the average pressure, and the six unknown terms in the symmetric Reynolds 

stress tensor. More relationships are needed to close this system of equations. This represents what is 

known as the turbulence closure problem and has resulted in a great deal of research. An overview of the 

most common approaches to the turbulence closure problem is discussed in the following section. 

 

 IV.  Traditional Turbulence Closure 

 Two general methods are typically used to close the turbulence equations. The first method is referred 

to as Reynolds stress modeling and consists of modeling the Reynolds stress tensor in a tensor transport 

equation based on the mean flow. The second method relies on the Boussinesq hypothesis to relate the 

Reynolds stress tensor to the mean-strain-rate tensor. Only a brief overview of the Reynolds stress 

modeling method is included here as it is not studied in this work. The Boussinesq hypothesis method is 

discussed in more detail. 

 

A.  Reynolds Stress Modeling 

 The Reynolds stress tensor can be modeled by looking at the transport of the components of the tensor 

with the average flow. This transport equation is developed by first taking a moment of the Navier-Stokes 

equations by multiplying the equations by the fluctuating velocity. Taking the ensemble average of the 

result gives the Reynolds-stress-transport equation. The Reynolds-stress-transport equation can be written 

 )~,
~
()

~
(

~~
)

~
()

~
,(

~~
)(

~~
2

p
t

VπVχVVVεVVγVVV
VV v

v

v

v

v

v

v

v

−−∇+−−=∇⋅+
∂

∂
νν  (1.44) 

where 

 T}{ ])
~

[(
~

])
~

[(
~

)
~
,( VVVVVVVVγ ∇⋅−∇⋅−≡

v

v

 (1.45) 

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∇⋅∇∇⋅∇∇⋅∇

∇⋅∇∇⋅∇∇⋅∇

∇⋅∇∇⋅∇∇⋅∇

≡

)
~
()

~
()

~
()

~
()

~
()

~
(

)
~
()

~
()

~
()

~
()

~
()

~
(

)
~
()

~
()

~
()

~
()

~
()

~
(

2)
~
(

zzyzxz

zyyyxy

zxyxxx

VVVVVV

VVVVVV

VVVVVV

vvv

vvv

vvv

v

v

Vε  (1.46) 



15 

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⋅∇⋅∇⋅∇

⋅∇⋅∇⋅∇

⋅∇⋅∇⋅∇

≡

)
~~~

()
~~~

()
~~~

(

)
~~~

()
~~~

()
~~~

(

)
~~~

()
~~~

()
~~~

(

)
~
(

VVV

VVV

VVV

Vχ

zzyzxz

zyyyxy

zxyxxx

VVVVVV

VVVVVV

VVVVVV
v

v

 (1.47)

 VVVVVVπ
~~

)
~

(~~1~~1
)~,

~
(][⋅∇−∇+∇≡

T
ppp
)

)v

v

ρρ
 (1.48)

and VV
~~

 is the negative of the specific Reynolds stress tensor, ρ/τ
v

v

. In Eq. (1.48) we have used the

definition

 V
~

~~

3

1
⋅∇−≡ µpp

)

 (1.49)

This approach to turbulence modeling requires knowledge of the new scalar terms in the tensors on the

right-hand side of Eq. (1.44). These terms are correlations of the velocity and pressure fluctuations and are

unknown. More transport equations for these unknown scalar terms could be developed, but this repeated

process would never produce enough equations to match the number of unknowns. At some point, the

subsequent scalar terms obtained from modeling the stress transport must be related to the mean flow in

order to “close” the formulation. The method of introducing transport equations for the Reynolds stress

tensor has not shown to produce better results than relating the Reynolds stress tensor to the mean flow and

will not be discussed further.

B. The Boussinesq Hypothesis

 The most direct and commonly employed approach to relating the Reynolds stress tensor to the mean

properties of the flow is based on an analogy between molecular and turbulent transport first suggested by

Boussinesq [21]. Application of the Boussinesq hypothesis suggests that the Reynolds stress tensor might

be modeled as a linear function of the mean-strain-rate tensor just as the total molecular stress tensor is

modeled as a linear function of the total-strain-rate tensor. The Boussinesq hypothesis can be expressed as

 δV)V(Sτ
v

v

v

vv

v

)(2
3

2
⋅∇+−=

tt
µkµ ρ (1.50)

where
t
µ is the dynamic eddy viscosity, k is the turbulent kinetic energy per unit mass, and δ

v

v

 is the

Kronecker delta. The dynamic eddy viscosity and turbulent kinetic energy per unit mass will be discussed

16

in more detail at a later point. Notice how Eq. (1.50) compares to Eq. (1.18). It should be noted that in the

literature, this is often called the Boussinesq approximation. However, it is not actually an approximation.

It is better termed the Boussinesq hypothesis or assumption. Applying the Boussinesq hypothesis to the

RANS equations given in Eq. (1.43) yields

 ρμμρρρ ∇++⋅∇+⋅∇++++−∇=⎥
⎦

⎤
⎢
⎣

⎡
∇⋅+

∂

∂
ZgµµkZgp

t
otto

])(2[])[)((
3

2

3

2
)V(SVVV

V v

v

 (1.51)

A pseudo mean pressure can be defined by combining like terms on the right-hand side

 V⋅∇++++≡)ˆ (
3

2

3

2
to

kZgpp μμρρ (1.52)

and the Boussinesq RANS equations can be written as

 ρρ ∇++⋅∇+−∇=⎥
⎦

⎤
⎢
⎣

⎡
∇⋅+

∂

∂
Zgµµp

t
ot

])(2[)ˆ()()V(SVV
V v

v

 (1.53)

 In order to close the formulation with the Boussinesq hypothesis, the dynamic eddy viscosity,
t
µ , and

the turbulent kinetic energy per unit mass, k , must be related to the other flow properties. Several methods

have been suggested for closing the formulation based on the Boussinesq hypothesis, and can be classified

as zero, one, or two equation turbulence models.

 Most zero-equation models (also known as algebraic models) are based on a hypothesis first made by

Ludwig Prandtl [22]. This hypothesis is referred to as mixing-length theory. Prandtl hypothesized that the

turbulence characteristics were related to a characteristic length and velocity scale associated with the

turbulent fluctuations. Thus, the closing equations are simply algebraic relationships between the turbulent

parameters based on characteristics of the flow known a priori. Zero-equation models are classified as

incomplete models because they require properties of the turbulent flow field to be known a priori.

 Most one-equation models are based on a subsequent hypothesis by Prandtl [23]. In this development,

Prandtl hypothesized that the eddy viscosity was proportional to the product of the square root of the

turbulent kinetic energy per unit mass and a characteristic length scale.

 klµ
tt

∝ (1.54)

17

Prandtl used a modeled version of a turbulent kinetic energy transport equation and related the eddy

viscosity to the turbulent kinetic energy algebraically. The length scale was also calculated algebraically

from the mean flow. The distinguishing factors of most one-equation models is that they model the

turbulent kinetic energy per unit mass by a differential equation, they express the eddy viscosity as a

function of the turbulent kinetic energy per unit mass, and they calculate some type of length scale from the

mean fluid velocity. Many one-equation models have been proposed including those by Emmons [24],

Glushko [25], and Wolfshtein [26]. Bradshaw, Ferriss, and Atwell [27] also proposed a one-equation model

based on the turbulent kinetic energy, but do not use the Boussinesq hypothesis. Other one-equation models

that are based on some transport property other than turbulent kinetic energy include models by Nee and

Kovasznay [28], Sekundov [29], Baldwin and Barth [18], Spalart and Allmaras [17], and Menter [30].

 Most two-equation turbulence models are based on a method first suggested by Kolmogorov [16].

Kolmogorov proposed using a differential equation to model the turbulent kinetic energy per unit mass as

Prandtl had. However, Kolmogorov also suggested using a supplementary differential transport equation

for a scalar quantity known as the specific dissipation rate. This quantity represents a characteristic

frequency related to the turbulent kinetic energy dissipation and was given the symbol ω . Algebraic

relationships are then developed on the basis of dimensional analysis to calculate a length scale and express

the eddy viscosity as a function of the two modeled variables and the length scale. Two-equation

formulations are called complete models because they allow the mean turbulent flow to be modeled without

any characteristics of the flow being known a priori. Much attention has been given to this method and

several two-equation models have consequently been developed. The most common two-equation models

can be classified as either k-ε or k-ω models where ε is the turbulent kinetic energy dissipation rate per unit

mass. These models will be discussed in more detail in a subsequent section. Two-equation models that are

based on transport properties other than ε or ω include models suggested by Rotta [31], Rotta [32],

Zeierman and Wolfshtein [33], and Speziale, Abid, and Anderson [34].

18

C. Turbulent Kinetic Energy Transport

 The turbulent kinetic energy is a measure of the kinetic energy of the fluid resulting from the turbulent

fluctuations that are generated from velocity gradients in the flow. Turbulent kinetic energy is transported

with the mean flow and is dissipated through molecular viscosity. The specific turbulent kinetic energy is

commonly denoted as k and is defined to be one-half the mean square magnitude of the velocity

fluctuations. This is equal to one-half the trace of the negative of the specific Reynolds stress tensor.

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=⎟

⎠
⎞

⎜
⎝
⎛

++==⋅≡
ρ

τ
VV

v

v

trace
~~~~~~

2

1
222

2

12

2

1

2

1

zyx
VVVVk  (1.55) 

Because of the relation of the turbulent kinetic energy to the Reynolds stress tensor, a transport equation for 

the turbulent kinetic energy can be taken from the Reynolds-stress-transport equation. Taking the trace of 

the Reynolds-stress-transport equation given in Eq. (1.44) gives  

 
kkkk
πχkεγk

t

k
−−∇+−=∇⋅+

∂

∂ 2)( ννV  (1.56) 

where the subscript k  represents one-half the trace of the tensor. A close look at these terms reveals that 

they can each be written as functions of alternate quantities. The trace terms on the right-hand side of 

Eq. (1.56) can be written 

 )(VJ
τ

v

v

v

v

⋅≡

ρ
k
γ  (1.57) 

 )
~
()

~
( VJVJ

v

v

v

v

⋅≡
k

ε  (1.58) 

 V
~~

2

1 2
V

k
⋅∇≡χ  (1.59) 

 ⎥
⎦

⎤
⎢
⎣

⎡
∇⋅+⋅∇−⋅∇≡ ρ

ρ
π VVV

~~

2

1
)

~
(~)

~
(~

1 2
Vpp

k

))

 (1.60) 

where the tensor J
v

v

 is the Jacobian tensor and can be expressed in Cartesian coordinates for an arbitrary 

flow field, V , as 



19 

 

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂

∂

∂

∂

∂

∂
∂

∂

∂

∂

∂

∂
∂

∂

∂

∂

∂

∂

≡

z

V

y

V

x

V

z

V

y

V

x

V

z

V

y

V

x

V

zzz

yyy

xxx

)(VJ

v

v

 (1.61) 

Using Eqs. (1.49) and (1.57)–(1.60) in Eq. (1.56) gives the turbulent-kinetic-energy transport equation per 

unit mass 

 

⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ ⋅∇−+⋅∇−∇+

⋅∇−⋅∇+⋅−⋅=∇⋅+
∂

∂

VVVV

VVVJVJVJ
τ

V

~
)

~
(

~~~~1

)
~

()
~

(~
1

)
~
()

~
()()(

3

12

2

12

2

3

1

μρ
ρ

ν

ν
ρ

ν
ρ

pVk

pk
t

k v

v

v

v

v

v

v

v

 (1.62)

 Each of the terms on the right-hand side of Eq. (1.62) represents physical aspects of the turbulent-

kinetic-energy transport. The first term on the right-hand side of Eq. (1.62) is the production term and is the

rate that specific kinetic energy is transferred from the mean flow to the turbulent fluctuations. Using the

Boussinesq hypothesis given in Eq. (1.50), the production term can be written

VV)V(S)V(S

)V(JδV)V(J)V(SVJ
τ

⋅∇⋅∇+−⋅=

⋅⋅∇+−⋅=⋅

)(2

)(2)(

3

2

3

2

tt

tt

k

k

νν

νν
ρ

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

 (1.63)

where
t

ν is the kinematic eddy viscosity, ρμ
t

. Notice that the second term on the right-hand side of Eq.

(1.63) is zero for incompressible flow. The second term on the right-hand side of Eq. (1.62) is often

understood to represent the dissipation of k , or the rate that the kinetic energy of the turbulent fluctuations

is dissipated to thermal energy through viscosity. It is commonly called the dissipation per unit mass and

has been modeled in many different ways. For now, it is simply denoted as

)
~
()

~
(VJVJ

v

v

v

v

⋅=≡ ννεε
k

 (1.64)

The third and fourth terms on the right-hand side of Eq. (1.62) are called the dilation terms and represent

the exchange of energy between the turbulent kinetic energy and the thermal energy of the fluid resulting

from fluid compression or expansion. For compressible flow the dilation terms are usually small and often

neglected in modeling. For incompressible flow the dilation terms are identically zero.

20

 0)
~

()
~

(~
1 2

3

1
=⋅∇−⋅∇ VV ν

ρ
p (1.65)

The fifth term on the right-hand side of Eq. (1.62) comes from molecular diffusion and is commonly

understood to account for the diffusion of turbulent kinetic energy resulting from the fluid’s molecular

transport properties. Finally, the remaining terms on the right-hand side of Eq. (1.62) are usually referred to

as the turbulent transport terms. These terms include the transport of turbulent kinetic energy caused by the

turbulent fluctuations. The turbulent transport term is often modeled as a gradient diffusion process

 kpV
kt
∇−=⋅∇−+)(

~
)

~
(

~~~~
3

12

2

1
σμμρ VVVV  (1.66) 

where 
k

σ  is a closure constant. Using Eqs. (1.63)–(1.66) in Eq. (1.62) gives a version of the turbulent-

kinetic-energy-transport equation commonly used for modeling. 

 ])[()(2)(
3

2
kkk

t

k

kttt
∇+⋅∇+−⋅∇⋅∇+−⋅=∇⋅+

∂

∂
σννενν VV)V(S)V(SV

v

v

v

v

 (1.67) 

 Combining Eq. (1.67) with the mean continuity equation and the RANS equations provides a system of 

five equations with seven unknowns. The unknowns are the three components of the mean velocity vector, 

the mean pressure, and the three turbulence variables, 
t

ν , k , and ε . In order to complete the system, we 

must provide additional relations between these variables. As stated previously, most one-equation models 

accomplish this by relating the turbulence variables through an algebraic expression. Most complete 

turbulence models, however, employ an additional transport equation and relate the kinematic eddy 

viscosity, 
t

ν , algebraically. 

 

D.  Turbulent Dissipation Transport 

 The modeled transport equation for the turbulent dissipation, ε , is usually developed by analogy with  

Eq. (1.67), and can be written as 

 ])[(2)(
2

21
εσνν

εε

νε

ε

εεε
∇+⋅∇+−⋅=∇⋅+

∂

∂

tt

k
C

k
C

t
)V(S)V(SV

v

v

v

v

 (1.68) 

where 
1ε

C , 
2ε

C , and 
ε

σ  are closure constants. Note that the turbulent dissipation transport equation is 

traditionally constructed by dimensional analysis and is not developed rigorously from the Navier-Stokes 



21 

equations. Wilcox [35] makes mention of this concern and gives what he terms an “exact” equation for the 

turbulent dissipation, ε , by taking a moment of the Navier-Stokes equation using the definition of the 

turbulent dissipation given in Eq. (1.64). However, the resulting equation is extremely complicated and 

Wilcox submits that closure coefficients for the resulting differential equation are all but impossible to 

measure at this point. Thus the modeled version of the dissipation transport given in 

Eq. (1.68) is traditionally used for lack of a useful version of a more rigorously derived equation. 

 

E.  Length and Velocity Scales 

 The Boussinesq hypothesis allows the Reynolds stress tensor to be written in terms of two unknowns, 

the kinematic eddy viscosity and the specific turbulent kinetic energy. By definition, the specific turbulent 

kinetic energy is related to the Reynolds stress tensor, allowing a transport equation for the specific 

turbulent kinetic energy to be developed. This provides an additional equation but also introduces an 

additional unknown, the turbulent dissipation. By analogy to the turbulent kinetic energy transport 

equation, a transport equation for the turbulent dissipation can be found. In order to complete the closure of 

the Boussinesq RANS equations, a relation must be found that relates one of these unknowns to other 

parameters. This is accomplished by observing the length and velocity scales of turbulence. 

 The kinematic eddy viscosity is a diffusivity coefficient and can be better understood by first looking 

at the diffusivity coefficient resulting from the kinetic theory of gases, molecular viscosity. All kinematic 

diffusivity coefficients have units of length times velocity. Molecular viscosity has been shown to be 

proportional to the product of the molecular mean free path and the square root of the total specific 

molecular kinetic energy. This leads to the obvious claim that the kinematic eddy viscosity can be modeled 

as a product of a turbulent length scale and a turbulent velocity scale. These scales are not properties of the 

fluid, but properties of the flow. Perhaps the seemingly most natural velocity scale of a flow is the average 

velocity of the fluid. This relation was first used by Prandtl who hypothesized that the characteristic length 

and velocity of a turbulent flow could be related to the characteristic velocity and length of the average 

flow. However, it is important to note that the turbulent kinetic energy is independent of the average fluid 



22 

velocity. Rather, the turbulent kinetic energy is a measure of the energy contained in the velocity 

fluctuations where the average of the fluctuations is zero. Obviously, there is neither a single length scale 

nor a single velocity scale that is fully representative of turbulent fluctuations. Turbulence is the 

superposition of a myriad of velocity fluctuations each with differing characteristic lengths and energies. 

However, spectral analysis of turbulent fluctuations provides insight into velocity and length scales for a 

turbulent flow. Geoffrey I. Taylor [36] was the first to present such an analysis. Taylor developed a 

mathematical relation between the velocity fluctuations and the turbulence energy spectrum. Thus, a 

characteristic length of the flow could be found from some type of weighted average of the various eddy 

lengths of the turbulent flow. For a detailed discussion on the energy spectrum, see Hinze [37]. 

 Prandtl [23] suggested that the square root of the specific kinetic energy of the fluctuating velocity 

field offers a valuable velocity scale for the flow field. 

 2/1
kV

t
=  (1.69) 

Realizing that periodic waves can be characterized by an angular velocity, 
c

ω , and a translational velocity, 

c
V , provides a relationship for a characteristic length scale, 

c
l . These two velocity scales of a periodic wave 

are related to the length scale of the wave through 

 
c

c

c

V
l

ω

≡  (1.70) 

Therefore, the turbulent characteristic length scale should be proportional to the turbulent characteristic 

velocity divided by a turbulent characteristic angular velocity.  

 
t

t

t

V
l

ω

∝  (1.71) 

The characteristic angular velocity is often taken to be proportional to the approximate dissipation divided 

by the specific kinetic energy 

 
k

t

ε

ω ∝  (1.72) 

It is important to note that this definition links the characteristic length of the turbulent flow field to the 

characteristic length of turbulent dissipation, not to the characteristic length of the eddies in which the most 



23 

energy is found. This is an item of concern and will be addressed later. Using Eqs. (1.69), (1.71), and (1.72) 

to represent the kinematic eddy viscosity yields 

 εν
μ

2
kC

t
=  (1.73) 

where 
µ

C  is a closure constant. This relationship finally closes the first turbulence model of interest, known 

as the k-ε model. The other two models presented in the subsequent section can be constructed through a 

change of variables from the k-ε model as will be shown. 

 

F.  Resulting Energy-Dissipation Turbulence Models 

 Many two-equation turbulence models have been proposed on the basis of transport equations for the 

turbulent kinetic energy and the dissipation. In this section, three traditional models are presented that are 

based on these two transport equations. The purpose of this section is to provide the fundamental equations 

to these traditional models, not to provide a catalog of existing models. The models presented here are often 

thought to be fundamentally different. However, it will be shown that these models are all based on the 

transport of dissipation, and can be derived through a change of variables from the other models. For each 

of the models presented in this section, incompressible flow is assumed. 

 

1.  The k-ε Model 

 Combining Eqs. (1.67), (1.68), and (1.73) gives the traditional k-ε model first made popular by Jones 

and Launder [15].  

 ])[(2)( kk
t

k

ktt
∇+⋅∇+−⋅=∇⋅+

∂

∂
σννεν )V(S)V(SV

v

v

v

v

 (1.74) 

 ])[(2)(
2

21
εσνν

εε

νε

ε

εεε
∇+⋅∇+−⋅=∇⋅+

∂

∂

tt

k
C

k
C

t
)V(S)V(SV

v

v

v

v

 (1.75) 

 εν
μ

2
kC

t
=  (1.76) 

The most widely used closure coefficients are attributed to Launder, Morse, Rodi, and Spalding [38] who 

suggested very similar coefficients after significant computer optimization. The commonly used 

coefficients are 



24 

 3.1,0.1,92.1,44.1,09.0
21

=====
εεεμ

σσ
k

CCC  (1.77) 

The k-ε model in its general form cannot be integrated to the wall. Generally wall functions or damping 

functions are incorporated into the model for near-wall treatment. For more detail and example results for 

the k-ε model, see Appendix B. 

 

2.  The k-ω Model 

 Using the relationship given in Eq. (1.72), the k-ε model can be reparameterized in terms of the 

turbulent dissipation frequency, ω , rather than the turbulent dissipation rate, ε . Note that ω  is sometimes 

called the specific dissipation rate in the literature. Using 
µ

C  as the proportionality constant gives 

 
VV

VJVJ
~~

)
~
()

~
(2

⋅

⋅
=≡

μ
μ

νε

ω

CkC

v

v

v

v

 (1.78) 

Solving for ε  and substituting the result into Eq. (1.73) gives 

 

)
~
()

~
(4

~~ 2

VJVJ

VV

v

v

v

v

⋅

⎟
⎠
⎞⎜

⎝
⎛ ⋅

==
ν

ω

ν

µ
C

k
t

 (1.79) 

Using Eq. (1.78) in Eq. (1.67) gives the traditional k-ω model first attempted by Kolmogorov [16] and 

revised by many others. See for example Wilcox [39,40], Speziale, Abid, and Anderson [34], Menter [41], 

Peng, Davidson, and Holmberg [42], Kok [43], and Hellsten [44]. Thus, the turbulent-energy-transport 

equation is given by 

  ])[(2)( kkCk
t

k

ktt
∇+⋅∇+−⋅=∇⋅+

∂

∂
σννων

µ
)V(S)V(SV

v

v

v

v

 (1.80) 

Through dimensional analysis and analogy with Eq. (1.80), the dissipation-frequency-transport equation is 

given by 

 ])[(2)( 2

21
ωσννω

ω

νω

ω

ωωω
∇+⋅∇+−⋅=∇⋅+

∂

∂

tt
C

k
C

t
)V(S)V(SV

v

v

v

v

 (1.81) 

The algebraic relationship to close the system is 

 
ω

ν

k

t
=  (1.82) 



25 

Many values for the closure coefficients have been suggested as the model has evolved over time. 

Currently, the following coefficients are commonly used  

 0.2    ,0.2    ,072.0    ,52.0    ,09.0
21

=====
ωωωμ

σσ
k

CCC  (1.83) 

It is also not uncommon for a form of wall damping functions to be applied to this model. The wall 

damping functions of Wilcox [45] are perhaps the most widely used to date. For more detail and example 

results for the k-ω model, see Appendix B. 

 

3. The k-ζ Model 

 A less-common turbulence model based on enstrophy was first presented by Robinson, Harris, and 

Hassan [46] and further developed by Robinson and Hassan [47]. Enstrophy, ζ , is traditionally defined as 

the mean square magnitude of the fluctuating vorticity 

 )
~

()
~

( VV ×∇⋅×∇≡ζ  (1.84) 

However, in their model, Robinson et al. defined an approximate turbulent energy dissipation term, ζνε ≡ . 

This is simply a change of variables defining the turbulent Jacobian magnitude 

 )
~
()

~
( VJVJ

v

v

v

v

⋅=≡

ν

ε
ζ  (1.85) 

Using this in Eqs. (1.74) and (1.76) gives the turbulent-energy-transport equation 

 ])3[(2)( kk
t

k

ktt
∇+⋅∇+−⋅=∇⋅+

∂

∂
σνννζν )V(S)V(SV

v

v

v

v

 (1.86) 

and the closing algebraic equation 

 
νζ

ν
µ

2
k

C
t
=  (1.87) 

The turbulent-enstrophy-transport equation used in the model is 

 

])[()(])[(

}][2{)(4

)(33

(][)(

2

3

1

6

3

1

5

2

43

3

2

3

2

2

2

1

ζσννζν

νν

ζνζνΩζνΩν

ΩζννΩνΩζζ
ζ

ζζ

ζζζζ

ζζζ

∇+⋅∇+∇×∇⋅−⋅+

∇+⋅∇⋅×∇−⋅−

⋅+−++

⋅−−=∇⋅+
∂

∂

tt

tt

tt

tt

ΩkkC

k

kCkCCC

kCkCC
t

ΩΩ)V(S

)V(SΩ)Ω(S)Ω(S

)V(S)V(S

)ΩΩ)V(SV

v

v

v

v

v

v

v

v

v

v

v

v

v

v

 (1.88) 



26 

where the definitions VΩ ×∇≡  and ΩΩ ⋅≡

2
Ω  are used and the closure coefficients are 

 
46.1/1,8.1/1,20.9,70.0

,37.2,84.0,40.0,50.1,09.0

65

4321

====

=====

ζζζ

ζζζζμ

σσ
k

CC

CCCCC

 (1.89) 

It should be noted that although Robinson et al. claim that their definition of ζ  has the physical significance 

of enstrophy, their development does not support that claim mathematically. Rather, their definition of the 

enstrophy term is simply a change of variables which comes from dividing the dissipation term by the 

kinematic viscosity. 

 The k-ε, k-ω, and k-ζ  models are often thought of as being fundamentally different. However, a close 

look at these models shows that they are not fundamentally different. Rather they differ through a change 

of variables and the closing differential equation for the chosen turbulence parameter. 

 

V. Closure Coefficient Evaluation 

 Once the fundamental equations for a turbulence model have been developed, closure coefficients can 

be adjusted to allow the developer to tune the model. In general, closure coefficients are chosen which 

allow the turbulence model to match experimental results. A wide range of experimental data is available 

for many flow scenarios. The model developer is free to choose the actual flow scenarios used to evaluate 

the closure coefficients. However, the resulting model will be tuned to produce more accurate solutions for 

flows similar to those flow scenarios. 

 In the ideal situation, the coefficients could be evaluated by isolating each term of the equations and 

comparing the isolated terms to physical aspects of a given flow scenario. The terms in the governing 

equations do not appear in a completely isolated form in nature, so empirical relations are often developed 

by conducting wind tunnel tests, DNS simulations, Large Eddy Simulations (LES), or other computational 

methods that simulate isolated characteristics of turbulent flow.  Once an estimate for the closure 

coefficients has been obtained for a given flow scenario, computer optimization is often used to refine the 

final values. Closure coefficients are often altered as new flow scenarios are studied. 



27 

 Common methods for evaluating model coefficients are based on examination of the behavior of the 

model in the log layer and the behavior of the model in decaying homogeneous isotropic turbulence. Other 

flow scenarios sometimes used include vortex stretching, flow separation, and shear-free mixing. A brief 

overview of a few of these approaches is given here. The discussion will focus on how closure coefficients 

for the k-ω model could be obtained. 

 

A. The Log Layer 

 The log layer is the portion of flow near a wall that is close enough to the wall for the velocity term 

normal to the wall to be ignored, but far enough from the wall that the molecular viscosity is negligible 

compared to the turbulent eddy viscosity.  Extensive experimental data has shown that in the log layer, the 

nondimensional velocity profile satisfies what is known as the law-of-the-wall 

 Cyu
u

V
x

+= )ln( ν

κ
τ

τ  (1.90) 

where the value of the constants are generally accepted as 41.0=κ  and 0.5=C , and ρτ
τ w
u ≡  is the 

conventional friction velocity. From the definition of the friction velocity and the assumption of the 

constant-stress layer, 

 2

τ
ν u

y

V
x

t
≅

∂

∂
 (1.91) 

Experimental data by Townsend [48] indicate that in the log layer, 

 2

1

~~~

VaVV
yx

xy
≅−=

ρ

τ
 (1.92)

where 15.0
1
=a is the empirical constant. From the definition of the turbulent-kinetic-energy given in

Eq. (1.55), Eq. (1.92) can be written as

 kkaVV
ryx

β=≅−
1

2
~~

 (1.93)

where 30.0=
r

β is often called Bradshaw’s constant from Bradshaw, Ferris, and Atwell [27]. Applying the

near-wall approximations to the Boussinesq hypothesis used to define eddy viscosity in Eq. (1.50) gives a

definition for the eddy viscosity in the near-wall region

28

y

V
VV x

tyx
∂

∂
≡− ν

~~

 (1.94)

Using Eqs. (1.91), (1.93) and (1.94) gives the relation

30.0

22

ττ

β

uu
k

r

=≅ (1.95)

This relationship suggests a constant nondimensional value for the turbulent-kinetic-energy in the log layer

3.0

1

2
≅≡

+

τ
u

k
k (1.96)

This relationship can also be used to calibrate a turbulence model.

 Applying the log-layer approximations to the k-ω model gives the equations for
x

V , k, and ω

 2

τ
ν u

y

V
x

t
≅

∂

∂
 (1.97)

 ων

σ

ν

µ
kC

y

V

y

k

y

x

t

k

t −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂

∂

∂
−

2

 (1.98)

 2

2

2

1
ω

ω

ν

ω

σ

ν

ωω

ω

C
y

V

k
C

yy

x

t

t −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂

∂

∂
− (1.99)

where the turbulent eddy viscosity is

ω

ν

k
t
= (1.100)

We wish the solution of this model to match Eq. (1.90). From Eq. (1.90) we find

y

u

y

V
x

κ

τ
=

∂

∂
 (1.101)

Using Eqs. (1.95), (1.100), and (1.101) in Eq. (1.98) gives

μ

τ

κ

ω

Cy

u
= (1.102)

Using Eqs. (1.100), (1.101), (1.102), and (1.95) in Eq. (1.97) gives

 09.0)30.0(22
===

r
C β
µ

 (1.103)

Using these same expressions along with Eq. (1.103) in Eq. (1.99) gives the relation

29

)09.0(

683.0

)(
1212

2

ωωωμω

ω
β

κ
σ

CCCCC
r

−

≅

−

= (1.104)

An almost identical development can be followed for the k-ε model to develop relationships for the closure

coefficients. Methods for applying the law of the wall to find closure coefficients are presented by Durbin

and Pettersson Reif [49] and Wilcox [35].

B. Homogeneous, Isotropic Turbulence

 Applying the properties of homogeneous isotropic turbulence to the governing equations is another

commonly used tool for finding closure coefficients. Experiments show that the decay of turbulent kinetic

energy can be expressed in the form

1)(

 ,
)(+

+
−=

∂

∂

+
=

aa

Bt

aC

t

k

Bt

C
k (1.105)

where 25.02.1 ±=a . Notice the considerable range in the data. For homogeneous, isotropic flow, there are

no spatial gradients of any of the mean flow properties. Applying this assumption to the traditional k-ω

model allows Eqs. (1.80) and (1.81) to be reduced to

2

2
ω

ω

ω

ω

μ

C
t

kC
t

k

−=
∂

∂

−=
∂

∂

 (1.106)

These equations can be solved to yield

tC

tk
CC

2

1

2

ω

ω

ωμ

=

=

−

 (1.107)

Applying this result to Eq. (1.105) gives the relationship aCC =
2ωμ

. Using a value of 2.1=a and

applying Eq. (1.103) gives

 075.0
2
=

ω
C (1.108)

Note that the traditional value is 072.0
2
=

ω
C . Using Eq. (1.108) in Eq. (1.104) gives

1

833.

683.0

ω

ω
σ

C−
≅ (1.109)

30

Applying the traditional closure coefficient 52.0
1
=

ω
C gives 18.2=

ω
σ . Applying the traditional closure

coefficient 0.2=
ω

σ gives 49.0
1
=

ω
C .

C. The Log Layer at Separation

 The log layer for differential pressure boundary layers can also be examined. Measurements [48]

indicate that near separation, the law of the wall is replaced by

dx

dpy
V
x

ρ24.0

1
→ (1.110)

as 0→y . Additionally, measurements from Clark [50] and Laufer [51] suggest that empirical relationships

can be used to approximate the kinetic energy and velocity near the center of a channel. Zeierman and

Wolfshtein [33] use this information in the development of closure coefficients for a turbulence model.

D. Shear-Free Mixing Layer

 Another approach to calculating closure coefficients is that used by Briggs, Ferziger, Koseff, and

Monismith [52] by examining LES results of a shear-free mixing layer. In this scenario, diffusion terms

offset dissipation terms in the governing equations. The authors conclude that the asymptotic behavior of k

and
t

ν can be described as

 45.2
~

−

ayk (1.111)

 42.0
~

−

by
t

ν (1.112)

as ∞→y where a and b are constants.

 It has been shown here that there are several possible methods for evaluating closure coefficients. The

method of choice is generally dependent on the purpose of the turbulence model. During the development

of any turbulence model, benchmarking cases are used to evaluate the accuracy of the model. This is the

topic of the following section.

31

VI. Common Turbulence Model Evaluation Cases

 Common cases used for evaluating a turbulence model include the cases of boundary layer flow,

channel flow, pipe flow, plane-jet flow, and round-jet flow. This set of flow scenarios allows a model to be

tested for both wall-bounded and free-shear flows. An overview of these testing scenarios is given here. For

a more in-depth discussion of each of these flow scenarios as well as sample computations from a CFD

algorithm, see Appendix C.

A. Boundary Layer Flow

 Boundary layer flow is often one of the first scenarios considered for evaluating a turbulence model.

The test case consists of an infinite flat plate placed in-line with the velocity vector of a uniform flow. As

the flow advances along the plate, the momentum deficit from the skin drag on the plate causes a boundary

layer to develop. The profile of this boundary layer has been studied in great detail and much experimental

data exists for this case. Experimental results show that the boundary layer profile is self-similar and a

function of the skin friction along the plate.

 Because of the behavior of the boundary layer profile, certain approximations can be applied to the

RANS equations and the resulting simplified equations can be written in a similarity form. The nature of

the boundary layer equations allows a solution to be obtained by directly integrating the equations in space.

This solution method allows for the effect of turbulence model closure coefficients to be quickly assessed

because any one solution requires only a matter of seconds to compute with modern computers. However,

this method suffers from the fact that approximations about the flowfield must be assumed in order to

develop the boundary layer equations.

 The boundary layer flow case in a two-dimensional CFD solver can be constructed on a rectangular

domain as shown in Fig. 1.1. On the west side of the domain a velocity inlet boundary condition is

specified. At this boundary condition, all freestream properties of the flow must be specified. In this case,

uniform properties of the flow are specified across the inlet boundary. Along the south side of the domain,

a no-slip wall boundary condition is specified. Along the north and east sides of the domain, pressure outlet

32

boundary conditions are specified. Once the solution has reached a converged state, there should be no flow

entering the domain from the north and east boundaries.

Fig. 1.1 Boundary layer case description.

 Two of the most significant parameters of interest in flat-plate boundary layer flow are the prediction

of the skin friction along the plate, and the prediction of the nondimensional velocity profile. According to

convention,
x

R is defined as the Reynolds number at any x-position along the plate where the x-position is

measured from the leading edge of the plate along the direction of flow. This Reynolds number can be

expressed as

 νxVR
x ∞
≡ (1.113)

Here we define
L

R as the Reynolds number based on the length of the plate, L, which can be expressed as

 νLVR
L ∞
≡ (1.114)

The friction coefficient is defined as

)(2 2

∞
≡ VC wf ρτ (1.115)

Plots of the nondimensional velocity profile, +

u , as a function of +

y where
τ
uVu

x
≡

+ and ν
τ

yuy ≡

+ in

comparison with experimental data are often included. There is a wealth of experimental data for boundary

33

layer flows. For example, results of boundary layer flow can be compared to experimental data by

Klebanoff [53], Bradshaw [54], Marusic and Hutchins [55], and Guala, Metzger, and McKeon [56].

B. Fully Developed Channel Flow

 Fully developed flow in a channel is a common case for evaluating a turbulence model. This case is a

two-dimensional flow which is identical to the three-dimensional flow between two infinite flat plates. As

flow enters a channel, a boundary layer develops on each channel wall. As the flow moves downstream, the

two boundary layers eventually meet, and the flow reaches the fully developed state.

 This flow case in two dimensions can be constructed on a rectangular domain as shown in Fig. 1.2.

Along the south side of the domain, a no-slip wall boundary condition is applied. Because this case is

symmetrical along the centerline of the channel, only half of the channel is modeled, and a symmetry

boundary condition is applied along the north side of the domain. The east and west sides of the domain are

then specified as periodic boundary conditions. This boundary condition forces the properties of the flow

exiting one side of the domain to be equal to those entering the other side of the domain. The use of

periodic boundary conditions requires either a pressure drop across the domain to be specified, or a mass

flux across the periodic boundary to be specified.

Fig. 1.2 Fully developed channel flow case description.

 For fully developed channel flow, gradients in the flow properties with respect to the flow direction

disappear, and the profiles of flow properties become dependent only on the coordinate normal to the wall.

Therefore, the governing equations can be simplified to a one-dimensional problem and the solution can be

34

obtained numerically very quickly on modern computers. The formulation can be discretized into a banded

system of equations and solved quite rapidly where the full two-dimensional problem may take a

significantly longer amount of time. Therefore, this one-dimensional test case is ideal for the optimization

process of closure coefficients.

 The most significant parameters of interest for the channel flow case are the ability of a model to

predict the correct relation between flow Reynolds number and the friction coefficient, and the ability of

the model to predict the correct nondimensional velocity profile. The channel Reynolds number is defined

as

 ν
he

DVR
bulk

≡ (1.116)

where

 ∫
=

≡

L

y
xdyV

L
V

0
bulk

1
 (1.117)

 is the bulk velocity, and

 LD
h

4= (1.118)

is the hydraulic diameter based on the channel half-width, L. The Fanning friction factor is defined as

)(2 2

bulk
VC wf ρτ≡ (1.119)

Results of fully developed channel flow can be compared to experimental data by Laufer [57] and Zanoun,

Durst, and Nagib [58].

C. Fully Developed Pipe Flow

 The fully developed pipe flow case is very closely related to the fully developed channel flow case. As

flow enters a pipe, a boundary layer develops along the pipe wall. As the flow moves downstream, the

boundary layer eventually fills the entire pipe, and the flow reaches the fully developed state. In this state,

there are no gradients in the azimuthal direction of the pipe, and the case can be simplified to a two-

dimensional flow in cylindrical coordinates.

35

 This flow case in two dimensions can be constructed on a rectangular domain as shown in Fig. 1.3.

Along the north side of the domain, a no-slip wall boundary condition is applied. Because this case is

symmetrical along the centerline of the pipe, only half of the pipe is modeled, and a symmetry boundary

condition is applied along the south side of the domain. This side of the domain is also the axis of rotation

of the pipe. The east and west sides of the domain are then specified as periodic boundary conditions where

either a pressure drop across the domain or a mass flux across the periodic boundary must be specified.

Fig. 1.3 Fully developed pipe flow case description.

 For fully developed pipe flow, gradients in the flow properties with respect to the flow direction

disappear, and the profiles of flow properties become dependent only on the coordinate normal to the axis

of symmetry. Therefore, the governing equations can be simplified to a one-dimensional problem. Because

solutions to this case can be quickly obtained, this test case is often used for evaluating closure coefficients.

 The most significant parameters of interest for the pipe flow case are the ability of a model to predict

the correct relation between flow Reynolds number and the friction coefficient, and the ability of the model

to predict the correct nondimensional velocity distribution. The pipe Reynolds number is defined as

ν
he

DVR
bulk

≡ where

 ∫
=

≡

R

r
z
rdrV

R

V
0

2bulk

2
 (1.120)

 is the bulk velocity, and

 RD
h

2= (1.121)

36

is the hydraulic diameter based on the pipe radius, R. Again, the Fanning friction factor is defined as

)(2 2

bulk
VC wf ρτ≡ . Results of fully developed pipe flow can be compared to experimental data by

Nikuradse [59], Laufer [60], and Shockling, Allen, and Smits [61].

D. Plane Jet Flow

 The plane jet flow case is a valuable case for testing the ability of the model to predict shear flows. The

case consists of a two-dimensional jet of fluid entering a quiescent fluid. As the jet of fluid advances into

the quiescent fluid, the momentum of the jet is diffused outward normal to the jet axis. The jet centerline

velocity decreases as the flow moves downstream, and the width of the jet grows. Eventually, the core of

the jet profile becomes self-similar. The boundary layer equations are often applied to this case in order to

develop a similarity solution for the jet profile. However, these equations are based on the assumption that

the fluid velocity normal to the jet axis is much smaller than the fluid velocity in the direction of the jet

axis. This assumption holds near the center of the jet, but is obviously not correct far from the jet

centerline. In fact, in the regions far from the jet centerline, the fluid velocity normal to the axis of the jet is

much greater than the fluid velocity in the direction of the jet axis. This is caused from the fluid

entrainment surrounding the jet. The fact that the boundary layer equations don’t hold far from the jet

centerline is seldom mentioned in the literature, and the similarity solution for the jet is often used to

evaluate the performance of a turbulence model for the plane jet case. The advantage of using the similarity

solution is that it provides a system of equations that can be quickly solved compared to a full two-

dimensional CFD model.

 This flow case in two dimensions can be constructed on a rectangular domain as shown in Fig. 1.4.

Along the west side of the domain, an initial profile for the jet is specified along with inlet conditions for

any flow parameters. This initial profile can be taken from the similarity solution for the jet or from

experimental data. Along the south side of the domain, a symmetry boundary condition is applied. The east

and north sides of the domain are specified as pressure boundary conditions. Figure 1.4 shows the setup for

this case in Cartesian coordinates.

37

Fig. 1.4 Plane jet flow case description.

 Two of the most significant parameters of interest in plane jet flow are the prediction of the jet velocity

along the centerline of the jet, and the prediction of the spread rate of the jet. Here we define
x

R as the

Reynolds number at any x-position measured along the centerline of the jet. This Reynolds number can be

expressed as

31

2

36

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≡

ν

xM
R

x

x
 (1.122)

where
x

M is the specific x-momentum flux initiated in the quiescent fluid from the jet and is defined as

 ∫
∞

∞−

≡ dyVM
xx

2 (1.123)

This value must remain constant across each x cross section of the flow. In order to define a spread rate for

the jet, the width of the jet must be defined. Here we define the jet width,
h
y , as the y-coordinate at which

the velocity in the direction of the jet centerline is equal to half the velocity along the jet centerline

)0,(5.0),(xVyxV
xhx

= (1.124)

The spread rate can then be evaluated by plotting the jet width as a function of distance along the jet

centerline. Results for the plane jet can be compared to data by Bradbury [62] and Heskestad [63].

38

E. Round Jet Flow

 The round jet flow case is very similar to the plane jet, but examines an axisymmetric jet rather than a

two-dimensional jet. Just like the plane jet, as the jet of fluid advances into the quiescent fluid, the

momentum of the jet is diffused outward normal to the jet axis. The jet centerline velocity decreases as the

flow moves downstream, and the radius of the jet grows. Eventually, the core of the jet profile becomes

self-similar. Because the jet is axisymmetric, the case can be simplified to a two-dimensional problem in

cylindrical coordinates. The boundary layer equations are often applied to this case in order to develop a

similarity solution for the jet profile. However, just like the case of the plane jet, these equations do not

hold far from the jet centerline.

 This flow case in two dimensions can be constructed on a rectangular domain as shown in Fig. 1.5.

Along the west side of the domain, an initial profile for the jet is specified along with inlet conditions for

any flow parameters. This initial profile can be taken from the similarity solution for the jet or from

experimental data. Along the south side of the domain, a symmetry boundary condition is applied. The

south side of the domain is the axis of rotation for the case. The east and north sides of the domain are

specified as pressure boundary conditions. Figure 1.5 shows the setup for this case in cylindrical

coordinates.

Fig. 1.5 Round jet flow case description.

39

 Two of the most significant parameters of interest in plane jet flow are the prediction of the jet velocity

along the centerline of the jet, and the prediction of the spread rate of the jet. Here we define
z

R as the

Reynolds number at any z-position measured along the centerline of the jet. Results of a turbulence model

sometimes include plots of the centerline velocity,
c

V , as a function of
z

R . In order to define a spread rate

for the jet, the width of the jet must be defined. Again we define the jet width,
h
r , as the radial coordinate at

which the velocity in the direction of the jet centerline is equal to half the velocity along the jet centerline

)0,(5.0),(zVrzV
zhz

= (1.125)

The spread rate can then be evaluated by plotting the jet width as a function of distance along the jet

centerline. Results for the round jet can be compared to data by Wygnanski and Fiedler [64] and Rodi [65].

 Many turbulence models predict that the round jet spreads more quickly than the plane jet. However,

this goes against the measured physical characteristics of the jets. The tendency towards this error in

turbulence models is known as the round-jet/plane-jet anomaly. Some have tried to correct this anomaly in

current turbulence models. For example, Pope [66] suggested a modification to the dissipation equation

which alleviates this shortcoming in the k-ε model. The round-jet/plane-jet anomaly is an important

assessment of a turbulence model.

VII. Summary and Conclusions

 Although the laws of Newtonian fluid motion have been understood for quite some time, turbulence

modeling is still an unsolved problem. The fundamental equations for laminar flow are the continuity and

Navier-Stokes equations which can be extended to the RANS equations for turbulent flow. The RANS

equations cannot be closed without modeling the unknown components of the Reynolds stress tensor, and

this difficulty presents what is known as the turbulence closure problem. Various methods for closing the

RANS equations have been proposed, and the discussion included in this chapter focused on those closure

methods that are based on the Boussinesq hypothesis. The Boussinesq hypothesis assumes the Reynolds

stress tensor can be modeled as a function of the turbulent kinetic energy and the eddy viscosity of the

flow. This replaces the six unknowns in the Reynolds stress tensor with only two unknowns. A transport

40

equation for the turbulent kinetic energy is traditionally developed from the Reynolds-stress-transport

equation. This transport equation introduces one additional unknown, the dissipation of turbulent kinetic

energy. Energy-dissipation turbulence models solve for the dissipation using a transport equation that is

developed by direct analogy to the turbulent-kinetic-energy equation. The turbulent kinetic energy and

dissipation are then related algebraically to the turbulent eddy viscosity, closing the system of equations.

The most popular dissipation-based models are the k-ε, k-ω, and k-ζ models.

 Closure coefficients for turbulence models have traditionally been developed by tuning the model to

match experimental data for specific flow scenarios. Perhaps the most widely used experimental data sets

used for this purpose are data sets taken in the log layer and data taken on the decay of turbulent kinetic

energy. Once initial estimates for closure coefficients are developed, models are commonly tested for a

wide range of flow cases including free-shear flows and wall-bounded flows. These cases allow the

versatility of the model to be tested and closure coefficients to be refined.

 Although energy-dissipation models such as the k-ε and k-ω models have been widely used for many

years, it is well known that these models are sometimes inconsistent and are often unable to capture the true

behavior of turbulent flow. This can likely be attributed to the fact that these models have only partially

been developed from fundamental physical phenomenon and have been patched and tuned over time to

exhibit the proper behavior for specific flows. Several concerns with the development of the traditional

energy-dissipation models have been noted by turbulence model developers. These concerns and some

possible remedies for these concerns are the topic of the following chapter.

41

CHAPTER 2

POSSIBLE IMPROVEMENTS IN RANS-BASED TURBULENCE MODELING

I. Introduction

 Even though RANS-based turbulence modeling has been a topic of research for many years, it is

anything but a closed subject. Several concerns with traditional turbulence modeling have been identified

by various researchers, and many concerns have yet to be fully addressed. Some of the most significant

concerns with the mathematics and fundamentals of turbulence modeling are listed here along with

references to researchers who have noted these concerns.

 1. The traditional smooth-wall boundary conditions implemented for dissipation-based models are

mathematically incorrect [19,67].

 2. The dissipation per unit mass used in the traditional turbulence models is not the true dissipation of

turbulent kinetic energy per unit mass [13,35].

 3. The traditional dissipation per unit mass actually includes a portion of the total molecular transport

term. Therefore, the molecular transport term in the traditional turbulent-kinetic-energy equation

neglects a portion of the molecular transport of turbulent kinetic energy [13].

 4. Because a portion of the molecular transport is neglected in the traditional turbulent-kinetic-energy

equation, subsequent application of Boussinesq’s analogy between turbulent and molecular

transport results in neglecting a portion of the turbulent transport of turbulent kinetic energy [13].

 5. The length scale used to close traditional turbulence models is a dissipation-based length scale

associated with the smaller turbulent eddies which have higher strain rates. However, the larger

turbulent eddies carry more energy and are primarily responsible for the transport of momentum

and energy in a fluid [9,13,35].

 6. The dissipation-based length scale used in the development of Eqs. (1.76), (1.82), and (1.87) results

in a modeled Reynolds stress tensor that is inversely proportional to the fluid molecular viscosity.

42

However, the modeled version of the Reynolds stress tensor should not be directly dependent on

molecular viscosity, as seen by the definition given in Eq. (1.41) [13].

 7. The closing transport equations given by Eqs. (1.75), (1.81), and (1.88) were developed by simple

analogy and dimensional analysis and were not developed rigorously from the Navier-Stokes

equations [13,35].

 8. Few turbulence models are capable of modeling turbulence near a rough wall. However, it is

impossible to manufacture a perfectly smooth wall. Therefore, no experimental data exists for

perfectly smooth walls, and the use of a model that has been designed for perfectly smooth-walls in

the analysis of a real-life scenario is questionable.

The following sections discuss a few of these concerns in more detail and present some preliminary work

by others to address them. Note that in subsequent chapters and sections, these concerns may be referenced

as a concern number ranging from Concern #1 to Concern #8.

II. Traditional Smooth-Wall Boundary Conditions

 The smooth-wall boundary conditions commonly employed on traditional dissipation-based turbulence

models are mathematically incorrect. Durbin [19] was the first to point this out and stated, “These

conditions must violate the energy balance…” However, this statement has seldom been acknowledged in

the literature perhaps because it has not been well understood. Today, 20 years later, even commercial

implementations of k-ε, k-ω, and k-ζ turbulence models still employ smooth-wall boundary conditions that

are mathematically incorrect and do not enforce energy conservation. Failure to impose proper wall

boundary conditions results in an indeterminate system of equations with an infinite number of solutions.

Results obtained for dissipation-based turbulence models using the traditional smooth-wall boundary

conditions are dependent on the numerical algorithms used to implement the equations. Such solutions can

be highly implementation dependent.

 Perhaps the most fundamental flaw in the development of traditional smooth-wall boundary conditions

is the extraction of a boundary condition from the differential equation itself. Many of the most widely

43

implemented models including those of Lam and Bremhorst [68], Launder and Sharma [69], and Wilcox

[45] derive boundary conditions for the second turbulence variable, ε or ω, by examining the near-wall

behavior of the differential equations. Such an approach is mathematically incorrect because a boundary

condition can never be developed from the differential equation itself. A boundary condition is a condition

that is imposed on a differential equation. No amount of analysis will ever result in a boundary condition

being derived from the differential equation. The near-wall approximation of any transport equation is valid

and can be used as an expression appropriately close to a wall. However, it is not a boundary condition and

should not be used as such.

 This common mistake has lead to the implementation of many turbulence models in an indeterminate

form because what is referred to as a boundary condition is actually a near-wall approximation of the

differential equations. This misconception must be understood by the CFD community if correct turbulence

modeling is to be achieved.

III. Turbulent Energy Transport

 The turbulent-kinetic-energy transport equation has traditionally been derived from the specific

Reynolds stress tensor. In contrast to the traditional development, the turbulent-energy transport equation

can also be developed from the mechanical energy equation which is formed by taking the dot product of

the velocity vector with the Navier-Stokes equations. This approach alleviates a few of the concerns

mentioned regarding the traditional turbulent-kinetic-energy equation and was first taken by Phillips [13].

This new development of the turbulent-kinetic-energy equation has not previously been implemented in a

turbulence model. Because this equation forms the foundation of the turbulence model presented in this

work, an overview of the development of this equation is included here.

 Defining a pseudo hydrostatic pressure that includes the static pressure, hydrostatic head, and viscous

normal stresses,

 V⋅∇++≡ μρ
3

2
ˆ Zgpp

o
 (2.1)

the Navier-Stokes equations can be written in vector form as

44

 ρμρ ∇+⋅∇+−∇=⎥
⎦

⎤
⎢
⎣

⎡
∇⋅+

∂

∂
Zgp

t
o

]2[ˆ)((V)SVV
V v

v

 (2.2)

Taking the dot product of the velocity vector with the Navier-Stokes equations, rearranging, and using

mathematical identities gives the mechanical energy equation for a Newtonian fluid

(V)S(V)SV

VVV

v

v

v

v

⋅−∇−∇⋅−

∇⋅+∇⋅∇=⎥
⎦

⎤
⎢
⎣

⎡
∇⋅+

∂

∂

μρ

μρ

2]ˆ[

]})()([{)()(2

2

12

2

12

2

1

Zgp

VVV
t

o

 (2.3)

Applying Eq. (1.28) and Eq. (1.29) to this general form of the mechanical energy equation and taking the

ensemble average of the resulting formulation gives

]
~~

[2
~
ˆ

~
]ˆ[

]}
~
)

~
()()([{

)
~

(
~

)
~

(
~

)()(

2

2

1

2

2

12

2

12

2

1

)V(S)V(S)V(S)V(SVV

VVVV

VVVVV

v

v

v

v

v

v

v

v

⋅+⋅−∇⋅−∇−∇⋅−

∇⋅+∇⋅++∇⋅∇=

⎥
⎦

⎤
⎢
⎣

⎡
∇⋅+⋅∇⋅++∇⋅++

∂

∂

μρ

μ

ρ

pZgp

kV

VkVkV
t

o

 (2.4)

where k is defined from Eq. (1.55) as the specific turbulent kinetic energy and the two pressure terms are

the mean and fluctuating hydrostatic pressure terms respectively

 V⋅∇++≡ μρ
3

2
ˆ Zgpp

o
 (2.5)

 V
~~

~

ˆ
3

2
⋅∇+≡ µpp (2.6)

 Using these definitions for pressure terms, the RANS equations in vector form can be written as

 ρμρ ∇+⋅∇+−∇=⎥
⎦

⎤
⎢
⎣

⎡
∇⋅+∇⋅+

∂

∂
Zgp

t
o

]2[ˆ
~
)

~
()()V(SVVVV

V v

v

 (2.7)

Taking the dot product of the mean velocity vector with this form of the Reynolds-averaged Navier-Stokes

equations, rearranging, and using mathematical identities gives the mean mechanical energy equation for a

Newtonian fluid

)V(S)V(SV

VVVVVV

v

v

v

v

⋅−∇−∇⋅−

∇⋅+∇⋅∇=⎥
⎦

⎤
⎢
⎣

⎡
∇⋅⋅+∇⋅+

∂

∂

μρ

μρ

2]ˆ[

]})()([{
~
)

~
()()(2

2

12

2

12

2

1

Zgp

VVV
t

o

 (2.8)

45

Applying mathematical identities to this equation, subtracting the result from Eq. (2.4), and applying more

mathematical identities gives an alternate form of the turbulent-kinetic-energy-transport equation

]
~
)

~
(

~~~~
[)(

)
~

(~])
~

(
~~

[2)()(

3

22

2

1

2

3

1

VVVVτ

VV)V(S)V(SVJτV

⋅∇++⋅∇−⋅∇−∇⋅∇+

⋅∇+⋅∇−⋅−⋅=⎥
⎦

⎤
⎢
⎣

⎡
∇⋅+

∂

∂

μρνμ

μρ

pVk

pk
t

k

v

v

v

v

v

vv

v

 (2.9) 

 A close look at this equation reveals that the terms on the right-hand side are the true volumetric 

production, viscous dissipation, pressure dilation, molecular transport, and the volumetric turbulent 

transport of turbulent kinetic energy. Note that the only approximation used to develop this equation was 

that for a Newtonian fluid. Also note that the assumption of constant dynamic viscosity was not made in the 

development of this governing equation as was done in the development of Eq. (1.62). Applying the 

Boussinesq hypothesis to this equation gives the Boussinesq-based turbulent-energy-transport equation. 

 

)]})([2)(){((

)
~

(~])
~

(
~~

[2

)(2)(

3

2

2

3

1

3

2

VSV

VV)V(S)V(S

VV)V(S)V(SV

v

v

v

v

v

v

v

v

v

v

ttkt

tt

kk

p

kk
t

k

μμρρσνν

μ

μρμρ

⋅∇−⋅∇+∇+∇+⋅∇+

⋅∇+⋅∇−⋅−

⋅∇⋅∇+−⋅=⎥
⎦

⎤
⎢
⎣

⎡
∇⋅+

∂

∂

 (2.10) 

 Defining ε~  as the exact dissipation per unit mass, 

 ])
~

(
~~

[2~ 2

3

1
V)V(S)V(S ⋅∇−⋅≡

v

v

v

v

νε  (2.11) 

and neglecting the pressure dilation term 

 0)
~

(~ ≅⋅∇ Vp  (2.12) 

gives a version of the turbulent-energy-transport equation that can be used in a traditional RANS-based 

turbulence model. 

 

)]})([2)(){((~

)(2)(

3

2

3

2

VSV

VV)V(S)V(SV

v

v

v

v

v

v

ttkt

tt

kk

kk
t

k

μμρρσννερ

μρμρ

⋅∇−⋅∇+∇+∇+⋅∇+−

⋅∇⋅∇+−⋅=⎥
⎦

⎤
⎢
⎣

⎡
∇⋅+

∂

∂

 (2.13) 

Note that the dissipation term used in this differential equation represents the exact dissipation per unit 

mass. However, this equation can be used interchangeably with other turbulence models that include a 



46 

modeled dissipation term. A close look at Eq. (2.13) reveals that the molecular transport term is not simply 

a pure gradient diffusion process as is assumed with traditional developments. Therefore, it is probable that 

this version of the turbulent-energy-transport equation will be more accurate than the traditional equation. 

 Before leaving the topic of turbulent-energy transport, it is important to note that the turbulent-energy-

transport equation can alternatively be written in another significant form. The square of the root-mean-

square (RMS) fluctuating vorticity is defined as 

 )
~

()
~

(~2
VV ×∇⋅×∇≡ω  (2.14) 

A change of variables can be applied to express the exact dissipation term in terms of the RMS fluctuating 

vorticity 

 

))]}([)({(4~

])
~

(
~~

[2~

3

12

2

3

1

ρμμρνων

νε

VSV

V)V(S)V(S
v

v

v

v

v

v

tt
k ⋅∇−⋅∇+∇⋅∇+=

⋅∇−⋅≡

 (2.15) 

The first term on the second line of the left-hand side of Eq. (2.15) is known as the solenoidal dissipation 

and will be given the symbol 

 2~
ˆ ωνε ≡  (2.16) 

Huang, Coleman, and Bradshaw [70] have shown that the dilatational terms in Eq. (2.15) are negligibly 

small for mean velocities under Mach three. Neglecting the dilatational terms, the turbulent-energy-

transport equation can be written in terms of the RMS fluctuating vorticity as 

 

)]})([2)(){((

))]}([)({(4~

)(2)(

3

2

3

12

3

2

VSV

VSV

VV)V(S)V(SV

v

v

v

v

v

v

v

v

ttkt

tt

tt

kk

k

kk
t

k

μμρρσνν

ρμμρμωμ

μρμρ

⋅∇−⋅∇+∇+∇+⋅∇+

⋅∇−⋅∇+∇⋅∇−−

⋅∇⋅∇+−⋅=⎥
⎦

⎤
⎢
⎣

⎡
∇⋅+

∂

∂

 (2.17) 

 Phillips submits that the advantage of applying this change of variables is two-fold. First, vorticity is a 

well-understood transportable property of a fluid flow field while the turbulent dissipation is not. Second, 

the divergence of the vorticity of any flow field is always zero. This mathematical property could be 

beneficial in the development of a vorticity-based-transport equation which is not available in the 

development of a turbulent-dissipation-transport equation. 



47 

 A significant difference between traditional two-equation turbulence models and the Phillips 

turbulence model can be seen in the differences in the modeled turbulent-kinetic-energy equation. The 

traditional turbulent-kinetic-energy transport equation can be written for steady, incompressible flow as 

 ])[(2)( kk
ktt
∇+⋅∇+−⋅=∇⋅ σννεν )V(S)V(SV

v

v

v

v

 (2.18) 

The Phillips turbulent-kinetic-energy transport equation can be written for steady-state, incompressible 

flow in terms of the RMS fluctuating vorticity as 

 

)]})([2){((

)]})([{4~(2)(

3

5

3

12

VS

VS)V(S)V(SV
v

v

v

v

v

v

v

v

tkt

tt

k

kk

νσνν

νωνν

⋅∇−∇+⋅∇+

⋅∇−∇⋅∇+−⋅=∇⋅

 (2.19) 

It is instructive to note that the traditional turbulent-kinetic-energy equation was developed by taking the 

trace of the Reynolds stress transport equation. In that development, the fluid viscosity is assumed constant, 

which puts use of the Boussinesq hypothesis in question. On the other hand, Phillips’s equation was 

derived with only the assumption of a Newtonian fluid and includes terms that are neglected in the 

traditional development on grounds that they were small for molecular transport. It is also important to note 

that the dissipation term in the Phillips development is directly proportional to the fluid viscosity. However, 

the dissipation term in the traditional development is modeled as being independent of the fluid viscosity. It 

seems intuitive that the dissipation of turbulent kinetic energy should physically be directly related to the 

fluid viscosity. These two insights into the differences of the two modeled versions of the turbulent-kinetic-

energy equation suggest that the Phillips equation should model the physical aspects of turbulent flow 

better than the traditional equation.  

 

IV.  Turbulent Length Scale 

 As mentioned in Chapter 1, the length scale commonly employed in the development of traditional 

turbulence models is that associated with the turbulent dissipation. However, the larger energy-bearing 

eddies are primarily responsible for the majority of the transport of turbulent energy in a flow. An alternate 

length scale suggested by Phillips [13] is formulated by examining the fluctuating vorticity of a flow field. 



48 

It is important to note that the angular velocity of a fluid element is one-half the local vorticity. For a 

fluctuating flowfield with a mean velocity of zero, the mean kinetic energy per unit mass is equal to one-

half the mean square of the translational velocity. Phillips suggests that the mean kinetic energy per unit 

mass for this scenario can also be defined as one-half the mean square of the angular velocity multiplied by 

the square of some length scale. This gives the relation 

 2

4

1

2

1

2

1
])

~
()

~
([

~~
k
lk VVVV ×∇⋅×∇=⋅≡  (2.20) 

where k
l  is the energy-weighted length scale. This length scale should be an important length scale 

associated with the turbulent energy. From the definition of the fluctuating vorticity, )
~

()
~

(~2
VV ×∇⋅×∇≡ω , 

Phillips defines this length scale as 

 
ω
~

8k
l
k
≡  (2.21) 

This approach to the important length scale of turbulent flow could provide a significant improvement to 

the accuracy of a turbulence model. The use of the symbol ω~  in these relations should not be confused with 

the ω used for the traditional k-ω model. Note that ω is related to the dissipation as shown in Eq. (1.78) 

whereas ω~  is the fluctuating vorticity defined in Eq. (2.14). These symbols cannot be used interchangeably. 

 

V.  Phillips Energy-Vorticity Model 

 From the development of Eqs. (2.19) and (2.21), Phillips [13] constructs the core of an energy-vorticity 

turbulence model. Using Eq. (2.21) as the length scale in the definition of the turbulent eddy viscosity, and 

combining this new definition of turbulent eddy viscosity with Eq. (2.19) gives the two fundamental 

equations of Phillips’ energy-vorticity model 

 
ω

ν
ν
~

k
C

t
=  (2.22) 

 

)]})([2){((

)]})([{4~(2)(

3

5

3

12

VS

VS)V(S)V(SV

v

v

v

v

v

v

v

v

tkt

tt

k

kk
t

k

νσνν

νωνν

⋅∇−∇+⋅∇+

⋅∇−∇⋅∇+−⋅=∇⋅+
∂

∂

 (2.23) 

where 
ν

C  and k
σ  are closure constants. 



49 

 The most important contributions of the Phillips development are first, the inclusion of the last term in 

Eq. (2.23) and second, the proposition of using the local energy-weighted turbulent length scale found in 

Eq. (2.21) to define the eddy viscosity. These contributions have not been included in other turbulence 

models and could potentially improve the accuracy of RANS-based turbulence modeling. 

 The reader may note that the model proposed by Phillips lacks a closing relation for the RMS 

fluctuating vorticity. For most two-equation turbulence models, the final closing equation is developed by 

analogy with the turbulent-kinetic-energy transport equation but is not rigorously developed from physics. 

Several options exist for closing the Phillips k-vorticity model, and a short explanation of some of these 

methods is included here.  

 

A.  RMS Turbulent Vorticity Closure: A k-ω~  Model 

 Perhaps the simplest approach to closing the Phillips vorticity model is to model the RMS turbulent 

vorticity in terms of the mean fluid velocity, the specific turbulent kinetic energy, and the turbulent eddy 

viscosity. The RMS fluctuating vorticity is defined by Eq. (2.14). By analogy with Eq. (2.23), a turbulent-

vorticity transport equation can be obtained. This results in a model defined by 

 
ω

ν
ν
~

k
C

t
=  (2.24) 

 

)]})([2){((

)]})([{4~(2)(

3

5

3

12

VS

VS)V(S)V(SV

v

v

v

v

v

v

v

v

tkt

tt

k

kk
t

k

νσνν

νωνν

⋅∇−∇+⋅∇+

⋅∇−∇⋅∇+−⋅=∇⋅+
∂

∂

 (2.25) 

 ]~)[(~
~

2~
~

~
2

2
~

1
~ ωσννω

ω

νω

ω

ωωω
∇+⋅∇+−⋅=∇⋅+

∂

∂

tt
C

k
C

t
)V(S)V(SV

v

v

v

v

 (2.26) 

where 
ν

C , k
σ , 

1
~
ω

C , 
2

~
ω

C , and 
ω

σ ~  are the closure constants for the model and need to be evaluated. 

 This formulation can be directly recast in terms of enstrophy. The enstrophy is equal to the square of 

the fluctuating vorticity. 

  2~ωζ ≡  (2.27) 

Using this change of variables, the formulation can be written 



50 

 21ζν
ν
kC

t
=  (2.28) 

 

)]})([2){((

)]})([{4(2)(

3

5

3

1

VS

VS)V(S)V(SV

v

v

v

v

v

v

v

v

tkt

tt

k

kk
t

k

νσνν

νζνν

⋅∇−∇+⋅∇+

⋅∇−∇⋅∇+−⋅=∇⋅+
∂

∂

 (2.29) 

 

ζζζσννζσνν

ζ
ζ

νζ
ζ

ωω

ωω

∇⋅∇+−∇+⋅∇+

−⋅=∇⋅+
∂

∂

)(])[(

24

~
2

1
~

23

2
~

1
~

tt

t
C

k
C

t
)V(S)V(SV

v

v

v

v

 (2.30) 

where the closure coefficients are the same as those needed for Eqs. (2.24) – (2.26). 

 

B.  Solenoidal Dissipation Closure: A k-εˆ Model 

 Another approach to closing the formulation is to model the solenoidal dissipation by relating it to the 

enstrophy. A modeled version of the turbulent dissipation is given in Eq. (1.68). By direct analogy with this 

traditional turbulent dissipation equation, a transport equation for the solenoidal dissipation can be written 

 ]ˆ)[(
ˆˆ

2ˆ
ˆ

ˆ

2

2ˆ1ˆ
εσνν

εε

νε

ε

εεε
∇+⋅∇+−⋅=∇⋅+

∂

∂
tt

k
C

k
C

t
)V(S)V(SV

v

v

v

v

 (2.31) 

The enstrophy is related to the solenoidal dissipation through the relation 

 νζε =ˆ  (2.32) 

Using this relation, the solenoidal dissipation transport equation can be recast in terms of the enstrophy. 

This results in the model 

 21ζν
ν
kC

t
=  (2.33) 

 

)]})([2){((

)]})([{4(2)(

3

5

3

1

VS

VS)V(S)V(SV

v

v

v

v

v

v

v

v

tkt

tt

k

kk
t

k

νσνν

νζνν

⋅∇−∇+⋅∇+

⋅∇−∇⋅∇+−⋅=∇⋅+
∂

∂

 (2.34) 

 ])[(2
2

21
ζσνν

ζ
ν

ζ
νζ

ζ
ζζζ ∇+⋅∇+−⋅=∇⋅+

∂

∂

tt

k
C

k
C

t
)V(S)V(SV

v

v

v

v

 (2.35) 

where 
ν

C , k
σ , 

1ζC , 
2ζC , and ζσ  are the closure constants for the model and may need to be reevaluated 

from those used in the traditional dissipation transport equation because the solenoidal dissipation, εˆ , 

differs from the traditional definition of dissipation, ε . 

 



51 

C.  DNS Solenoidal Dissipation Closure: A k-εˆ Model 

 Another possibility to closing the Phillips vorticity-based model is to use the results of a recently 

developed DNS-based solenoidal-dissipation model by Kreuzinger, Friedrich, and Gatski [71] that has 

provided good agreement with DNS results. The solenoidal-dissipation-transport equation for 

incompressible flow is given in this study as 

 

]ˆ)[()(}]))[(()({

]})[{4ˆ(
1ˆ

2ˆ
ˆ

ˆ

2

4ˆ

2

3ˆ

2

3

1

2ˆ1ˆ

εσνννν

ννε

ε

νε

ε

εεε

εε

∇+⋅∇+∇⋅∇⋅∇+∇−

⋅∇−∇⋅∇+−⋅=∇⋅+
∂

∂

tt

tt

kkCC

k
k

C
k

C
t

VVV

)V(S)V(S)V(SV
v

v

v

v

v

v

 (2.36) 

This equation can be recast using the change of variables from solenoidal dissipation to enstrophy, and the 

resulting formulation is written as 

 21ζν
ν
kC

t
=  (2.37) 

 

)]})([2){((

)]})([{4(2)(

3

5

3

1

VS

VS)V(S)V(SV

v

v

v

v

v

v

v

v

tkt

tt

k

kk
t

k

νσνν

νζνν

⋅∇−∇+⋅∇+

⋅∇−∇⋅∇+−⋅=∇⋅+
∂

∂

 (2.38) 

 

])[()(}]))[(()({

]})[{4(2

2

4

2

3

2

3

1

21

ζσννν

νζ
νζ

νζ
ζ

ζζζ

ζζ

∇+⋅∇+∇⋅∇⋅∇+∇−

⋅∇−∇⋅∇+−⋅=∇⋅+
∂

∂

tt

tt

kkCC

k
k

C
k

C
t

VVV

)V(S)V(S)V(SV
v

v

v

v

v

v

 (2.39) 

where 
ν

C , k
σ , 

1ζC , 2ζC , 3ζC , 4ζC  and ζσ  are the closure constants for the model and need to be evaluated. 

The closure coefficients 
1ζC , 2ζC , 3ζC , 4ζC  and ζσ  could possibly be taken from those given in the study. 

 

D.  General Enstrophy Closure: A k-ζ Model 

 A close look at the previous three closure methods suggests a general model which would encompass 

the three models. This formulation is written  

 21ζν
ν
kC

t
=  (2.40) 

 

)]})([2){((

)]})([{4(2)(

3

5

3

1

VS

VS)V(S)V(SV

v

v

v

v

v

v

v

v

tkt

tt

k

kk
t

k

νσνν

νζνν

⋅∇−∇+⋅∇+

⋅∇−∇⋅∇+−⋅=∇⋅+
∂

∂

 (2.41) 



52 

 

ζζζσννζσνν

ν

νζ
ν

ζ
ζ

νζ
ζ

ζζ ∇⋅∇+−∇+⋅∇+

∇⋅∇⋅∇+∇−

⋅∇−∇⋅∇+−

−⋅=∇⋅+
∂

∂

)(])[(

)(}]))[(()({

]})[{(

7

2

6

2

5

2

3

1

43

23

21

tt

t

t

t

C

kkCC

kC
k

C

C
k

C
t

VVV

)V(S

)V(S)V(SV

v

v

v

v

v

v

 (2.42) 

where 
ν

C , k
σ , ζσ , and 

1
C  through 

7
C  are the closure constants for the model and need to be evaluated. 

Notice that Eq. (2.30) is a special case of Eq. (2.42) when 
1

~
1

4
ω

CC = , 
2

~
2

2
ω

CC = , 5.0
7
=C , ωζ σσ ~= , and 

0
6543
==== CCCC . Equation (2.35) is a special case of Eq. (2.42) when 

11
2 ζCC = , 

23 ζCC = , and 

0
76542
===== CCCCC . Equation (2.39) is a special case of Eq. (2.42) when 

11
2 ζCC = , 

23 ζCC = ,  

0.4
4
=C , 

35 ζCC = , 
46 ζCC = , and 0

72
== CC . 

 

E.  Robinson Enstrophy-Transport Closure: A k-ζ Model 

 Another approach to closing the vorticity-based model is to implement the closing formulation given 

by Robinson et al. [46,47]. Using Eq. (1.88) as the closing equation gives the model 

 21ζν
ν
kC

t
=  (2.43) 

 

)]})([2){((

)]})([{4(2)(

3

5

3

1

VS

VS)V(S)V(SV

v

v

v

v

v

v

v

v

tkt

tt

k

kk
t

k

νσνν

νζνν

⋅∇−∇+⋅∇+

⋅∇−∇⋅∇+−⋅=∇⋅+
∂

∂

 (2.44) 

 

])[()(])[(

}][2{)(4

)(33

(][)(

2

3

1

6

3

1

5

2

43

3

2

3

2

2

2

1

ζσννζν

νν

ζνζνΩζνΩν

ΩζννΩνΩζζ
ζ

ζζ

ζζζζ

ζζζ

∇+⋅∇+∇×∇⋅−⋅+

∇+⋅∇⋅×∇−⋅−

⋅+−++

⋅−−=∇⋅+
∂

∂

tt

tt

tt

tt

ΩkkC

k

kCkCCC

kCkCC
t

ΩΩ)V(S

)V(SΩ)Ω(S)Ω(S

)V(S)V(S

)ΩΩ)V(SV

v

v

v

v

v

v

v

v

v

v

v

v

v

v

 (2.45) 

where 
ν

C , k
σ , 

1ζC , 2ζC , 3ζC , 4ζC , 5ζC , 6ζC , and ζσ  are the closure constants for the model and would 

need to be evaluated. The closure coefficients in the turbulent-enstrophy-transport equation may initially be 

taken from those given in the published model but would likely need to be tuned to the current model. 

 



53 

F.  Mean Vortex Wavelength Closure: A k-λ Model 

 Another possible approach to closing the Phillips energy-vorticity model is based on the analogy 

between turbulent diffusion and molecular diffusion. Just as the molecular mean-free path is used to model 

molecular viscosity, a mean vortex wavelength can be used to model the turbulent eddy viscosity. 

Experimental research by Anderson, Kays, and Moffat [72] has shown that the turbulent mixing length 

varies nearly linearly in the near-wall region of a flow, and is nearly constant in the bulk flow region for 

pipe flow. Therefore, for the case of pipe flow, an algebraic expression for the mean vortex wavelength 

could be developed which varies linearly near a wall and reaches a constant in the bulk flow region. In a 

sense, this closure method is similar to that taken by Prandtl in the development of his mixing-length 

model. Prandtl hypothesized that the mixing length was proportional to the distance from the wall, and this 

hypothesis led to a very successful model for near-wall turbulence that has been widely used. 

 Using the mean vortex wavelength, λ, as the length scale in the turbulent eddy viscosity gives 

 k
t

λν =  (2.46) 

Setting this relationship equal to that given in Eq. (2.22) gives a relationship between the mean vortex 

wavelength and the RMS fluctuating vorticity 

 
)

~
()

~
(2

~~

~
VV

VV

×∇⋅×∇

⋅
=≡

νν

ω
λ C

k
C  (2.47) 

Using this relationship in Eq. (2.23) gives the turbulent kinetic energy equation in terms of λ  

 

)]})([2){((

)]})([{4(2)(

3

5

3

12

VS

VS)V(S)V(SV

v

v

v

v

v

v

v

v

tkt

tt

k

kkCk
t

k

νσνν

νλνν
λ

⋅∇−∇+⋅∇+

⋅∇−∇⋅∇+−⋅=∇⋅+
∂

∂

 (2.48) 

where 
λ

C  is a closure coefficient. For the case of pipe flow, a closing relation for the mean vortex 

wavelength could take an algebraic form 

 )(yf=λ  (2.49) 

Such a method is described in more detail in Chapter 7. 

 



54 

VI.  Closing Transport Equations 

 It is widely acknowledged that the closing transport equations given in Eqs. (1.75), (1.81), and (1.88) 

are not derived rigorously from the Navier-Stokes equations. Instead, closing equations are generally 

developed by analogy with the turbulent-kinetic-energy equation and/or by dimensional analysis. In the 

ideal case, a turbulence model would be written entirely in terms of turbulence properties for which the 

governing equations were known and well understood. However, this has not yet been achieved, and a 

second equation must generally be developed in order to close a RANS-based turbulence model. Energy-

dissipation models such as the traditional k-ε, k-ω, and k-ζ models relate the turbulent eddy viscosity to the 

dissipation of turbulent kinetic energy algebraically, and then attempt to model the dissipation property as a 

transport property of the flow. Because a transport equation for the dissipation would be difficult at best to 

develop, this closing equation is generally developed by dimensional analysis with the turbulent-kinetic-

energy equation. This presents two drawbacks. First, the equation used to close the model is not rigorously 

derived from physics. Second, because dissipation is not a transportable property, attempting to model the 

dissipation using a transport equation that is analogous to the transport of turbulent kinetic energy is a 

grievous error. 

 Although the work of Phillips presented in the previous sections does not circumvent the difficulty in 

developing a closing equation for the second turbulence variable, the models suggested by Phillips attempt 

to model transportable properties with transport equations. In other words, the closing transport equations 

suggested by Phillips are no more rigorously derived from physics than those used in the traditional 

dissipation-based models. However, the turbulent parameters which the transport equations are designed to 

model can be expected to behave according to a transport equation. Therefore, from a physical standpoint, 

the models suggested by Phillips are likely more viable than traditional dissipation-based models. 

 



55 

VII.  Rough-Wall Turbulence Modeling 

 It appears that most turbulence models have been developed initially for smooth walls and that the 

rough-wall case has traditionally been seen as a more difficult case to which the model could be extended 

once the smooth-wall behavior of the model was well understood. In practice, the smooth-wall equations 

and constants considered to be the fundamental model are commonly modified to match experimental data 

for roughened walls. However, it may be that this approach has hindered fundamental understanding of 

turbulence near a wall. 

 Nikuradse [59] conducted a phenomenal amount of experimental research exploring the effects of 

roughness on pipe flow. He correlated his results according to a relation which will be called the Nikuradse 

number, fs CkR 41)4.7(log0.2N
10i

−≡ , in this work. The Nikuradse number is a function of the 

friction coefficient, fC , and roughness height, 
s
k , and was correlated with a parameter called the roughness 

Reynolds number,  ν
τ

/
ss

kuk ≡

+

. It was shown that at low roughness Reynolds numbers, the experimental 

data for the Nikuradse number asymptotically approaches a logarithmic relationship with the roughness 

Reynolds number. At high roughness Reynolds numbers, the Nikuradse number is independent of 

roughness Reynolds number. Figure 2.1 shows a plot of his experimental data along with lines representing 

the asymptotes at low and high roughness Reynolds numbers. 

 These results show that for nearly smooth walls or flows at low Reynolds numbers, the friction 

coefficient is a strong function of Reynolds number and roughness, while for very rough walls or flows at 

high Reynolds numbers, the friction coefficient is independent of the Reynolds number. This is also easily 

observed in the well-known Moody diagram, which was based on the findings of Nikuradse [59] and 

Colebrook [73]. 



56 

10-1 100 101 102 103 104

-1.00

0.00

1.00

2.00

3.00

N
i

 

Fig. 2.1  Correlation between friction coefficient and roughness Reynolds number by Nikuradse [59]. 

 With this information on the effects of roughness in mind, the case for first developing a model 

capable of modeling roughness at high roughness Reynolds numbers and approaching a model that can 

handle a smooth wall may be more intuitive. A more robust turbulence model may be developed by 

focusing on the model behavior for high roughness Reynolds numbers where at least the friction coefficient 

(if not other flow properties) is independent of Reynolds number. Once the model is robust in this region, 

transition to lower roughness Reynolds numbers can be considered, with the “smooth” or “hydraulically 

smooth” wall being an asymptote or a special case of the rough wall. To the author’s knowledge, this 

approach has not been taken before in the development of a turbulence model. 

 From a physical point of view, a rough wall is the more general case and what is termed a “smooth” or 

“hydraulically smooth” wall is simply the asymptotic behavior of the wall as the roughness height 

approaches zero. In reality, a perfectly smooth wall has never been manufactured. Therefore, all 

experimental data that has been taken near walls is inherently data taken for a rough wall. This may provide 

some justification for starting with the general case of a rough wall and working towards a model capable 

of correctly predicting flow near a hydraulically smooth wall. 

 



57 

VIII.  Summary and Conclusions 

 Several significant concerns with traditional RANS-based turbulence modeling have been identified 

and were listed at the beginning of this chapter along with researchers who have mentioned the concerns. 

These concerns include the fact that the traditional smooth-wall boundary conditions used for dissipation-

based turbulence models are incorrect, the traditional turbulent-kinetic-energy equation derivation assigns 

definitions and makes assumptions that are incorrect or unnecessary, the length scale used for traditional 

RANS-based modeling is the length scale associated with the dissipation of turbulent kinetic energy rather 

than the transport of turbulent kinetic energy, the second transport equation used in traditional energy-

dissipation models is not derived rigorously from the Navier-Stokes equations, and few turbulence models 

are capable of modeling rough-wall effects. Each of these concerns was discussed in some detail 

throughout the chapter. The fact that these concerns are rooted deeply in fundamental physical and 

mathematical laws suggests that sufficiently addressing these concerns may result in significant 

improvements in RANS-based turbulence modeling. 

 Many of these fundamental concerns of turbulence modeling have been acknowledged for some time 

and past work has been initiated to address them. Durbin [19] mentioned the inconsistency related to the 

smooth-wall boundary conditions used for traditional turbulence models roughly 20 years ago. Phillips [13] 

performed extensive work in developing an alternate transport equation for the turbulent kinetic energy, 

which alleviates the concerns related to the development and definitions used in the traditional equation. 

Additionally, he has suggested an alternate length scale that is related to the energy-bearing eddies rather 

than those eddies associated with the dissipation. These fundamental developments of Phillips can be 

combined to form the basis of an energy-vorticity model which can be closed in terms of a k-εˆ , k-ω~ , k-ζ, or 

k-λ model. This previous work forms the foundation of the work of this dissertation. 



58 

CHAPTER 3 

OUTLINE OF THE PRESENT WORK 

 Several significant concerns with current turbulence models were discussed in the previous chapter. 

Some of the most notable concerns are that 1) the smooth-wall boundary conditions for traditional 

turbulence models are incorrect, 2) most turbulence models are incapable of modeling turbulent flow near 

rough walls, 3) the dissipation per unit mass used in the traditional turbulence models is not the true 

dissipation per unit mass, and 4) the length scale used in traditional models is the length scale associated 

with dissipation, not the length scales of the larger eddies which cause most of the momentum and energy 

transport. The work of this dissertation builds on the work of Durbin and Phillips to more fully address the 

concerns mentioned here. More specifically, the work of this dissertation includes: 

 1. implementing the correct smooth-wall boundary conditions suggested by Durbin [19] for 

dissipation-based turbulence models, 

 2. evaluating the behavior of the Phillips energy-vorticity model in the presence of perfectly smooth 

walls, 

 3. implementing one possible k-λ closure of the Phillips energy-vorticity model for fully rough pipe 

flow, 

 4. determining appropriate values for the closure constants of the Phillips k-λ model, and 

 5. comparing numerical results of the Phillips k-λ model to numerical results of other models as well as 

experimental data. 

Each of these items is addressed in detail in the following chapters. Chapter 4 gives an overview of the 

numerical methods used for the research which include finite-difference, finite-volume, and direct 

numerical integration methods as well as one-dimensional and two-dimensional implementations.  

Chapter 5 discusses the smooth-wall boundary conditions for dissipation-based turbulence models and 

includes a discussion on the mathematical implications of applying incorrect boundary conditions. It also 



59 

presents results from traditional turbulence models once the correct boundary conditions have been applied. 

Chapter 6 presents the characteristics of two possible closure methods for the Phillips energy-vorticity 

model in the presence of a perfectly smooth wall, and discusses the physical implications of the models. 

Chapter 7 gives a detailed development of the Phillips k-λ model for fully rough pipe flow and preliminary 

results of the model. Chapter 8 presents the optimization techniques used to evaluate the closure 

coefficients for the Phillips k-λ model. The results of the model are shown in Chapter 9 and compared to 

experimental  results and empirical relations. Chapter 9 also includes the conclusions of the work and 

suggests area for future work. 

 



60 

CHAPTER 4 

COMPUTATIONAL FLUID DYNAMICS METHODS 

I. Introduction 

 Turbulent fluid flow is commonly modeled using numerical algorithms called computational fluid 

dynamics (CFD) methods. In general, CFD codes use discretization methods to divide up the flow domain 

into what are termed “cells” or “elements” to which the flow equations can be applied. Many CFD codes 

have been developed by various researchers and organizations. For example, Fluent is a commercial CFD 

solver sold by Ansys, CFL3D is a CFD code developed using government funding which can be used by 

approved citizens of the United States, and OpenFOAM is an open-source CFD code that has recently 

gained popularity. The work of this dissertation could have been performed by altering public or open-

source codes. However, the author chose to write CFD codes from the ground up rather than attempting to 

alter more traditional codes so that the fundamentals of the code would be understood and could readily be 

changed. Several CFD codes were written during the course of this work in order to test and implement 

various models and flows. These codes include a one-dimensional finite difference solver, a one-

dimensional finite-volume solver, a two-dimensional finite-volume solver, and a one-dimensional Runge-

Kutta integration solver. This chapter gives a brief overview of these codes and includes sample results. 

 

II. One-Dimensional Finite-Difference Formulation 

 A one-dimensional finite-difference method was written to model fully developed flow in a pipe or 

channel. The original version of this method was second order and is detailed in Appendix D. Also 

included in the appendix are methods for developing higher-order differencing algorithms. The finite-

difference methods used in this work can be used on non-uniform grids, and a second-order version has 

been used to obtain solutions to the k-ω model of Wilcox [45] for the case of fully developed pipe flow. 

Figure 4.1 shows results of a grid convergence study for this case. 



61 

 0.0

 5.0

10.0

15.0

20.0

 0.1  1.0 10.0 100.0

y+

u+

law of th
e wall

u+=y+

51 nodes
101 nodes
201 nodes

 

Fig. 4.1  Grid convergence results for Wilcox 1998 k-ω model for fully developed pipe flow. 

 Figure 4.2 shows the grid-converged results of the code for the case described above and includes the 

results of the same case using code written by Wilcox. Note that Wilcox’s code required considerably more 

nodes to reach grid convergence. This is largely because his code is not second order. 

 

 0.0

 5.0

10.0

15.0

20.0

 0.1  1.0 10.0 100.0

y+

u+

law of th
e wall

u+=y+

Hunsaker 201 nodes
Wilcox 801 nodes

 

Fig. 4.2  Grid-converged results of codes written by Hunsaker and Wilcox for the Wilcox 1998 k-ω 

model for fully developed pipe flow. 



62 

 A sixth-order code was required to model the near-smooth-wall behavior of Phillips’s energy-vorticity 

model. The method for developing a sixth-order finite difference code is included in Appendix D along 

with sample code for the algorithm. 

 

III. One-Dimensional Finite-Volume Formulation 

 Finite-volume codes are commonly employed in the CFD solution methods of two- or three-

dimensional problems. In order to work out some inconsistencies in a two-dimensional finite-volume 

solver, a one-dimensional finite-volume code was developed for the case of fully developed channel flow. 

The details of this algorithm are included in Appendix E. Four two-equation turbulence models were 

incorporated into the one-dimensional finite-volume code including the k-ε model by Lam and Bremhorst 

[68], the k-ε model by Launder and Sharma [69], the traditional k-ω model, and the k-ω model of Wilcox 

[45]. A comparison of the grid-converged results of these models for the case of fully developed channel 

flow is shown in Figure 4.3. 

 

 0.0

 5.0

10.0

15.0

20.0

 0.1  1.0 10.0 100.0

y+

u+

law of th
e wall

u+=y+

Lam−Bremhorst
Launder−Sharma

Wilcox 1998
Standard k−ω

 

Fig. 4.3  Grid-converged results of four models for the case of fully developed pipe flow. 



63 

IV. Two-Dimensional Finite-Volume RANS Solver 

 The two-dimensional RANS solver is a more complex solver and was developed using the 

programming language C++. It will often be referred to here as an Incompressible Computational 

Enstrophy Structured Solver (ICESS). The code is capable of solving two-dimensional axisymmetric flows. 

The following sections give a brief overview of the methods employed in the two-dimensional code as well 

as initial results validating the code. The details of this code are included in Appendices F through L. 

 

A. Coordinate System 

 Complex geometries are often modeled using a body-fitted coordinate system known as curvilinear 

coordinates. In two dimensions, this coordinate system is created by assuming that a computational domain 

(ξ ,η) can be defined by a transformation of the physical domain (x,y) where ),( yxξξ =  and ),( yxηη = . 

This type of transformation allows the governing equations to be discretized and solved in the 

computational domain. This method has been widely used for CFD. See for example the work of Rhie [74] 

or Shyy, Udaykumar, Rao, and Smith [75]. In this work, the grids are confined to orthogonal, rectilinear 

grids. Therefore,  

 
)(

)(

η

ξ

yy

xx

=

=

 (4.1) 

and 0
,,

==
xy

ηξ . Partial derivatives of any continuously differentiable scalar, φ , in the physical domain 

can be written as partial derivatives in the computational domain according to 

 

η

ξ

ξ

η

∂

∂
=

∂

∂

∂

∂
=

∂

∂

,

,

Jx
y

Jy
x

 (4.2) 

where J  is the Jacobian scalar of the coordinate transformation and is defined as 

 
yx

y

x

yx
J

,,

,

,

0

0

),(

),(
ηξ

η

ξηξ
==

∂

∂
≡  (4.3) 



64 

 A scalar equation can be transformed from the physical domain to the computational domain by 

applying the properties of the transformation above. In this way, the two-dimensional steady-state general 

scalar transport equation can be written in curvilinear coordinates as 

 
J

S
JxJy

VV
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂
Γ

∂

∂
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂
Γ

∂

∂
=

∂

∂
+

∂

∂

η

φ

ηξ

φ

ξη

φ

ξ

φ
ξη

ηξ 2
,

2
,

)()(
 (4.4) 

where Γ is the diffusion coefficient, S  represents the source terms and 

 
y

x

VxV

VyV

ξη

ηξ

,

,

≡

≡
 (4.5) 

are the contravariant velocity components in the curvilinear coordinate plane. More details on the 

coordinate transformation in Cartesian and cylindrical coordinates can be found in Appendices F and G. 

 

B. Transport Equation Discretization 

 The transport equations for all scalar transport properties are solved using the finite-volume method. 

This method is applied by integrating Eq. (4.4) about a control volume referred to here as a cell. The 

resulting integral is then discretized using second-order discretization schemes. A collocated grid 

arrangement is used and all flow properties are defined at the cell centers. Therefore, for any given cell, P, 

the flow properties of neighboring cells are defined at the E, W, N, and S (east, west, north, and south 

respectively) cell centers. The convection terms are discretized to allow deferred correction between first-

order upwinding and second-order upwinding. All other terms in the equations are discretized in the 

computational domain using second-order differencing methods. For work by others using similar solution 

methods, see Rhie [74], Versteeg and Malalasekera [76], Ferziger and Peric [77]. Details on the general 

discretization can be found in Appendix H. Details on the finite-volume discretization for the transport 

equations can be found in Appendix I for Cartesian coordinates and Appendix J for cylindrical coordinates. 

 

C. Pressure Coupling 

 To complete the solution process, the continuity equation must be coupled with the momentum 

equations. This is done by implementing a well-known algorithm known as the Semi-Implicit Method for 



65 

Pressure-Linked Equations (SIMPLE) algorithm. The method was first suggested by Patankar and Spalding 

[78], and can be found in many CFD books. See for example Versteeg and Malalasekera [79]. The method 

solves for the pressure distribution using a combination of the continuity equation and momentum 

equations in a guess-and-correct manner. The method was originally suggested for staggered-grid 

arrangements and can induce extreme pressure oscillations in collocated grid arrangements. Rhie and Chow 

[80] suggest a correction to the way velocities are interpolated to cell faces in order to smooth out pressure 

fluctuations. This correction method is implemented in the current code. Details on this method in 

Cartesian coordinates is included in Appendix K. Details in cylindrical coordinates are included in 

Appendix L. 

 Other methods for coupling the continuity equation to the transport equations exist. For example, the 

fluid vorticity can also be evaluated and a vorticity transport equation can form the closing link between the 

continuity equation and the transport equations. A short overview of such a method is included in Appendix 

M which could prove useful in two dimensions. However, vorticity transport methods are difficult at best to 

implement in three dimensions, and seem to be waning in popularity in two dimensions. 

 

D. Solution Procedure 

 The transport equations and SIMPLE algorithm are solved in an iterative manner. Inner loop iterations 

on each of the transport equations are performed within an outer loop. The outer loop sweeps through each 

of the transport equations in the following order: x-momentum, y-momentum, pressure (SIMPLE), 

turbulent kinetic energy, second differential equation (ε , ω , ζ , etc.). The pressure correction equation must 

be solved to a higher degree of accuracy than the transport equations during each outer iteration. Therefore, 

the default in the code employs 100 inner iterations on the pressure equation to every 10 inner iterations on 

each of the transport equations. Before repeating the outer iteration, the turbulent eddy viscosity is updated 

based on the new turbulence parameters. Iterations of the outer loop are repeated until the residuals of each 

equation stop changing. The number of outer and inner iterations as well as the values of relaxation factors 

can be specified by the user to speed convergence. 

 



66 

E. Code Validation 

 

1. Laminar Lid-Driven Cavity 

 A case often used for testing the initial phases of a CFD code is the lid-driven cavity case. Figure 4.4 

shows the results from ICESS for the x-velocity along the vertical centerline of the lid-driven cavity at a 

Reynolds number of 100. The Richardson extrapolation presented by Richardson [81] and Richardson and 

Gaunt [82] has been used to estimate the results for a fully grid-converged solution from the solutions of 

coarse, medium, and fine grids. The Richardson extrapolation method followed in this work is the method 

presented in the Journal of Fluids Engineering “Statement on the Control of Numerical Accuracy” 

(http://journaltool.asme.org/Content/JFENumAccuracy.pdf). In this case, uniform grids of sizes 2500, 

10000, and 40000 cells were used for the coarse, medium, and fine grids respectively. 

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

−0.4 −0.2  0.0  0.2  0.4  0.6  0.8  1.0

Vx

y coarse grid
medium grid

fine grid
Richardson extrapolation

 

Fig. 4.4  ICESS grid refinement results of the x-velocity profile along the vertical centerline of the lid-

driven cavity at a Reynolds number of 100. 

 Grid refinement studies for the lid-driven cavity case at a Reynolds number of 100 were also 

conducted in the Fluent and OpenFOAM software packages using the same grids as those used for the grid-

refinement study in the author’s code. Figures 4.5 and 4.6 show the grid refinement results from Fluent and 



67 

OpenFOAM respectively for the x-velocity profile along the vertical centerline of the lid-driven cavity 

case. Notice that at 64.0=y , the Richardson extrapolation in Figure 4.5 seems inconsistent with the 

solutions from the coarse, medium, and fine grids. This is likely caused by the low precision at which the 

data from Fluent was reported. Although Fluent calculated the solution using double precision numbers, the 

results were reported to less than single precision accuracy. The Richardson extrapolation is very sensitive 

to differences between solutions. When the differences between solutions are small and the solutions are 

reported only to low precision, the differences calculated in the Richardson algorithm are very similar 

between the coarse and medium solutions and the medium and fine solutions. This similarity in differences 

causes the Richardson extrapolation to estimate that the grid is still far from converged, and the final grid- 

resolved solution to lie significantly outside of the reported results. This result is perhaps even more 

apparent when the Richardson extrapolation results of each of the software packages are compared. 

 

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

−0.4 −0.2  0.0  0.2  0.4  0.6  0.8  1.0

Vx

y coarse grid
medium grid

fine grid
Richardson extrapolation

 

Fig. 4.5  Fluent grid refinement results of the x-velocity profile along the vertical centerline of the lid-

driven cavity at a Reynolds number of 100. 



68 

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

−0.4 −0.2  0.0  0.2  0.4  0.6  0.8  1.0

Vx

y coarse grid
medium grid

fine grid
Richardson extrapolation

 

Fig. 4.6  OpenFOAM grid refinement results of the x-velocity profile along the vertical centerline of 

the lid-driven cavity at a Reynolds number of 100. 

 Figure 4.7 shows the extrapolated results from each of the software packages. The results suggest that 

the laminar portion of the author’s code is working correctly. 

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

−0.4 −0.2  0.0  0.2  0.4  0.6  0.8  1.0

Vx

y Fluent
OpenFOAM

ICESS

 

Fig. 4.7  Richardson extrapolation results for the x-velocity profile along the vertical centerline of the 

lid-driven cavity. Comparison of results from Fluent, OpenFOAM, and ICESS. 



69 

2. Order of Convergence 

 In order to ensure that the discretization schemes used in this work are second order, an order of 

convergence test was conducted. This is done by examining the error of the solution as the cell size 

approaches zero. In order to calculate the error of a solution, the exact solution of the case must be known. 

The exact solution for laminar, fully developed channel flow is 

 ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−= Ly

y

dx

pd
V
x

2

ˆ1
2

µ
 (4.6) 

where L is the channel half-width and y is measured outward normal to the wall. The fully developed 

channel flow case was run in ICESS where 001.=µ , 1.=ρ , 5.0=L , and 2.7ˆ
−=dxpd . Variable grid sizes 

ranging from 25 to 800 cells in the y-direction were run with cells clustered near the wall using logarithmic 

clustering. Once the solution was fully converged, the RMS error of the solution was calculated.  

Figure 4.8 shows the RMS error with respect to the average cell size squared, 2
yΔ . A line passing through 

the data points obtained from the two finest grids is superimposed on the plot. The fact that the error is 

nearly linear with 2
yΔ  shows that the solution method is nearly second order. 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0.0e+00 1.0e−04 2.0e−04 3.0e−04 4.0e−04

R
M

S 
E

rr
or

Δ y2

 

Fig. 4.8  Finite volume algorithm RMS error as a function of average cell size squared. 



70 

3. Turbulent Fully Developed Channel Flow 

 Turbulent fully developed flow in a channel is a common case for testing solution algorithms. The 

traditional k-ω model and the Wilcox [45] k-ω model were coded into ICESS. Figures 4.9 and 4.10 show 

the results of a grid resolution study of the predicted mean velocity from the Wilcox 1998 model using the 

one-dimensional and two-dimensional finite-volume algorithms where 001.=µ , 1.=ρ , 5.0=L , and 

2.7ˆ
−=dxpd . It was found that using 200 cells in the y-direction with logarithmic clustering near the wall 

produced grid-resolved results for each of the models. 

 0.0

 5.0

10.0

15.0

20.0

 0.1  1.0 10.0 100.0

y+

u+

law of th
e wall

u+=y+

25 cells
50 cells

100 cells
200 cells

 

Fig. 4.9  Grid resolution for the mean velocity predicted by the Wilcox 1998 k-ω model using the one-

dimensional finite-volume method. 

 The results of the one-dimensional and two-dimensional codes are compared here to results from a 

one-dimensional finite-difference code. Figures 4.11 and 4.12 show the predicted mean velocity from the 

traditional k-ω and Wilcox 1998 models using the one- and two-dimensional finite-volume codes compared 

with the finite-difference results. The results for these figures were obtained using 200 cells with 

logarithmic clustering near the wall in each of the algorithms. 

 



71 

 0.0

 5.0

10.0

15.0

20.0

 0.1  1.0 10.0 100.0

y+

u+

law of th
e wall

u+=y+

25 cells
50 cells

100 cells
200 cells

 

Fig. 4.10  Grid resolution for the mean velocity predicted by the Wilcox 1998 k-ω model using the 

two-dimensional finite-volume method. 

 

 0.0

 5.0

10.0

15.0

20.0

 0.1  1.0 10.0 100.0

y+

u+

law of th
e wall

u+=y+

Finite Difference
1D Finite Volume
2D Finite Volume

 

Fig. 4.11  Comparison of results from the one- and two-dimensional finite-volume methods and a 

finite-difference method for the mean velocity predicted by the traditional k-ω model. 



72 

 0.0

 5.0

10.0

15.0

20.0

 0.1  1.0 10.0 100.0

y+

u+

law of th
e wall

u+=y+

Finite Difference
1D Finite Volume
2D Finite Volume

 

Fig. 4.12  Comparison of results from the one- and two-dimensional finite-volume methods and a 

finite-difference method for the mean velocity predicted by the Wilcox 1998 k-ω model. 

 The results presented in this section show that the two-dimensional finite-volume code, ICESS, written 

for this research is second-order accurate and able to correctly implement current two-equation turbulence 

models. 

 

V. One-Dimensional Runge-Kutta Direct Integration 

 One-dimensional flows can also be solved using a direct numerical integration method. In general, the 

second-order transport equations can be written as a set of first-order equations and directly integrated 

using a high-order integration method. For example, in one dimension, the Boussinesq-RANS equation 

simplify to a first-order differential equation and two-equation turbulence models can be written as a 

system of two second-order equations. Each second-order equation can be rearranged to yield two first-

order equations. In this way, a two-equation turbulence model can generally be written for a one-

dimensional flow scenario as a series of five first-order equations. These can be directly integrated to yield 

the turbulence model solution. Details on how this is can be done for traditional k-ε and k-ω models is 

included in Appendix N. 



73 

VI.  Summary and Conclusions 

 Turbulence models are generally solved using computational methods known as CFD methods. In 

order to evaluate boundary conditions and turbulence models, a computational framework is necessary. 

Although the work of this dissertation could have been accomplished using previously written CFD 

algorithms, the author chose to write the CFD algorithms for this work from the ground up. This provided 

the author with the freedom to alter the code in any way desired and allowed the greatest flexibility for 

implementing and testing the model properties as needed. Several codes were written for this work 

including finite-difference, finite-volume, and direct integration codes. An overview of these codes has 

been included here, and details for the algorithms are included in the appendices. 



74 

CHAPTER 5 

SMOOTH-WALL BOUNDARY CONDITIONS FOR DISSIPATION-BASED MODELS 

I.  Introduction 

 Many of the most-widely used turbulence models are based on the Boussinesq hypothesis and can be 

termed two-equation dissipation-based models. These models include the k-ε, k-ω, and k-ζ models and their 

development was discussed in Chapter 1. The correct smooth-wall boundary conditions for these models 

are commonly misunderstood and are therefore often implemented incorrectly. This chapter discusses the 

misconception and explains the correct implementation of smooth-wall boundary conditions giving 

examples from the k-ε and k-ω models. A meeting paper has been published on the subject [83]. 

 In general, a turbulence model is a set of mathematical relations that are developed to model the 

physical phenomenon known as turbulence. Once these equations have been constructed, the laws of 

mathematics must be followed during the solution process to ensure a correct solution has been obtained. 

Most dissipation-based turbulence models are called two-equation models because they model two 

turbulent properties using second-order differential transport equations. The branch of mathematics known 

as differential equations has long been understood, and specific rules exist for the application of boundary 

conditions to such equations. A misconception in these boundary conditions is the fundamental flaw in the 

way many dissipation-based two-equation turbulence models are implemented today. 

 Durbin [19] was the first to point this out when he stated, “These conditions must violate the energy 

balance…” Although this statement was made about 20 years ago, it has apparently not been well-

understood. The fundamental flaw in traditional smooth-wall boundary conditions can be seen by 

considering the physical characteristics of turbulence near a smooth wall.  

 



75 

II.  Physics of Smooth-Wall Boundary Conditions 

  Most dissipation-based turbulence models are based on two second-order differential transport 

equations, one for the turbulent kinetic energy, and one for a second turbulence property. The turbulent 

kinetic energy per unit mass, k, is a measure of the kinetic energy of the fluid resulting from turbulent 

fluctuations in the flow and is defined as one-half the mean square magnitude of the velocity fluctuations 

 ⎟
⎠
⎞

⎜
⎝
⎛

++=≡ 222

2

12

2

1
~~~

~

zyx
VVVVk (5.1)

The turbulent-kinetic-energy transport equation has traditionally been developed by taking the trace of the

specific Reynolds-stress-transport equation and can be written for incompressible flow as

])[(2)(kk
t

k

ktt
∇+⋅∇+−⋅=∇⋅+

∂

∂
σννεν)V(S)V(SV

v

v

v

v

 (5.2)

where ε is the dissipation of turbulent kinetic energy. The dissipation of turbulent kinetic energy is defined

as

)
~
()

~
(VJVJ

v

v

v

v

⋅≡νε (5.3)

Most two-equation models apply a second-order differential equation to model the dissipation as a transport

property and relate these two properties to the turbulent eddy viscosity algebraically. Examples can be seen

in Chapter 1.

 At a perfectly smooth, no-slip wall, the turbulent fluctuations must be exactly zero just as the mean

velocity is exactly zero. This provides the widely acknowledged and implemented boundary condition

 0 ,0 == yk (5.4)

where y is the distance from the wall measured normal to the wall. Traditionally, a boundary condition is

also imposed on the second transport equation by specifying the dissipation at a smooth surface. However,

we see from Eq. (5.3) that the dissipation is a function only of the derivatives of the velocity fluctuations.

Because physics imposes no constraints on these derivatives at a smooth wall, it is incorrect to apply a

boundary condition on the dissipation at a smooth wall. We will see in subsequent sections that the laws of

mathematics require an additional boundary condition to be applied in order to ensure a unique solution to

76

the turbulence model. The additional boundary condition is obtained by taking the gradient of the turbulent-

kinetic-energy at a smooth wall. By definition,

 VVVk
~~~2

2

1
∇=⎟

⎠
⎞⎜

⎝
⎛∇≡∇  (5.5) 

Because the velocity fluctuations at a smooth wall must be zero at a smooth wall ( 0
~
=V ), we see that Eq. 

(5.5) requires the gradient of k to also be zero. 

 0      ,0 ==∇ yk  (5.6) 

This is the correct second boundary condition at a smooth wall, and any boundary condition other than this, 

as Durbin states, “must violate the energy balance…” In a subsequent publication, Durbin [67] also makes 

the statement, “These two conditions on k suffice to determine the solution for the coupled system of 

equations; there is no need to impose conditions of ε at the wall – indeed, it would be incorrect to do so.” 

Hence, we see that a no-slip wall imposes two boundary conditions on k and none on ε. There is no need to 

impose a wall boundary condition on ε, and it is incorrect to do so. The value of ε at a smooth wall is that 

required to satisfy both Eqs. (5.4) and (5.6), as was originally pointed out by Durbin roughly 20 years ago. 

A better understanding of the mathematics of the problem can be seen by considering examples of the k-ε 

and k-ω models for the simple case of fully developed flow in a channel. 

 

III.  Smooth-Wall Boundary Conditions for the k-ε Model 

 The case of fully developed channel flow can be constructed in Cartesian coordinates where x is the 

ordinate in the direction of flow, and y is the ordinate normal to the channel wall as outlined in Appendix 

C. For this case, there are no gradients in the mean flow transport properties in the x-direction. This 

formulation is sometimes called the parallel-flow approximation because it assumes that the gradients of 

the flow properties with respect to x are negligible compared to the gradients with respect to y. This is 

nearly true very close to a wall even for flow that is not in a fully developed state. The formulation 

including the continuity, RANS, turbulent-kinetic-energy, and dissipation-transport equations can be 

written in nondimensional form as 



77 

 

+++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+++

+

+

+

+

+

+

+

++

+

+

=

−⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−+=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+

=
+

+
=

εν

ε

ν

εε

σν

νεεσν

ν

μμ

εεε

2

2

11

2

22

2

)1(

)1(

0      ,
1

1

kfC

E
dy

du

k
fC

k
fC

dy

d

dy

d

dy

du

dy

dk

dy

d

dy

dpyp

dy

du

ok

 (5.7) 

where 
k

σ , 
ε

σ , 
µ

C , 
1ε

C , and 
2ε

C  are model-dependent constants, and 
µ
f , 

1
f , 

2
f , +

E , and 
+

o
ε  are the model-

dependent wall damping functions. For a detailed development of these equations, see Appendices B and 

C. 

 In order to close this sixth-order formulation, the damping functions and six boundary conditions must 

be specified. Three obvious conditions come from the channel centerline. At the centerline of the channel, 

the flow property gradients must be zero. These conditions can be written as 

 0)()()( ===

+

+

+

+

+

+

τττ

ε

R
dy

d
R

dy

dk
R

dy

du
 (5.8) 

Applying the first of these boundary conditions to Eq. (5.7) gives 

 
+

+

+

+

+

+

−
=−=

ν

τ

τ

1

1
      ,1

Ry

dy

du
Rp  (5.9) 

The traditional no-slip boundary conditions are  

 0)0()0( ==

++

ku  (5.10) 

The final boundary condition has been a topic of some confusion and has typically been chosen as a 

relationship for the dissipation at the wall. Various researchers have taken different approaches to this final 

condition, and therefore, the condition has traditionally differed with the model. However, this final 

condition should be model independent, and be a property of the physical aspects of the flow.  

 

A.  The Launder-Sharma k-ε Model 

 The Launder-Sharma [69] model is a special case of Eq. (5.7) where the wall-damping functions are 



78 

 

3.1    ,0.1    ,92.1    ,44.1    ,09.0

,2    ,
2

1
    ,

),exp(3.01    ,0.1    ,])501(4.3exp[

21

2

2

2
22

2

21

2

=====

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
=⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
==

−−==+−=

+

+

++

+

+

+

+

+

+

εεεμ

μ

σσ

νε

ε

k

ot

tt

CCC

y

u
E

y

k

k

k
R

RffRf

 (5.11) 

Using Eqs. (5.9) and (5.11) in Eq. (5.7) gives 

 

3.1    ,0.1    ,92.1    ,44.1    ,09.0

),exp(3.01    ,])501(4.3exp[

    ,

2)1(

2

1
)1(

1

1
      ,1

21

2

2

2

2

2

2

2

2
2

1

2

22

22

=====

−−=+−=

≡=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
−⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
−=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
+=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+

+

−
=−=

+

+

+++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

εεεμ

μ

μμ

μμεεε

τ

τ

σσ

ε

εν

ν

εε

σν

νεσν

ν

k

tt

t

k

CCC

RfRf

k
RkfC

y

u

dy

du
kfCC

k
fC

dy

d

dy

d

dy

du

y

k

kdy

dk

dy

d

Ry

dy

du
Rp

 (5.12) 

The near-wall behavior of this model can be observed by considering the Taylor-Series expansions 

 

L

L

+

″

+
′

+=

+

″

+
′

+=

+

+

+++++

+

+

+++++

2

2

2

)0(
)0()0()(

2

)0(
)0()0()(

yyy

y
k

ykkyk

ε

εεε

 (5.13) 

Launder and Sharma suggest a final boundary condition at the wall of  

 0)0( =

+

ε  (5.14) 

Applying this boundary condition along with Eq. (5.10) to Eq. (5.13) gives the near-wall approximations 



79 

 

LL

L

L

L

L

+=+−=

+
′

′
−=≡

+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

′

″′
−

′

″′
+

′

′
=≡

+
″

+
′

=

+
″

+
′

=

+

+

+

+++

+

+

++

+

++

+

+

+

+

+

+

+

++++

+

+

++++

7.0    ,)4.3exp(

)0(

)0(
)4.3exp(

)0(2

)0()0(

)0(

)0()0(

)0(

)0(

2

)0(
)0()(

2

)0(
)0()(

2

2

2

2

2

222

2

2

ff

y
k

CkfC

y
kkk

y
kk

R

yyy

y
k

ykyk

t

µ

µµµ

ε

εν

ε

ε

εε
ε

ε

εε

 (5.15) 

Using these near-wall expansions in the k-transport equation in Eq. (5.12) gives 

 L+

′

=
+

+

+

+

y

k

dy

kd )0(
2

2

 (5.16) 

which is obviously indeterminate at the wall. On the other hand, if we apply the physically correct 

boundary condition 0)0( =
′+

k  and treat )0(+ε  as an unknown, the near-wall expansion for the k-transport 

equation becomes 

 L+
″

+=
++

+

+

)0()0(
2

2

k
dy

kd
ε  (5.17) 

which naturally requires 0)0( =

+
ε . Thus we see that referring to 0)0( =

+
ε  as a boundary condition is 

incorrect. Enforcing 0)0( =

+
ε  does not require the true boundary condition 0)0( =

′+
k  to hold, while 

forcing 0)0( =
′+

k  requires 0)0( =

+
ε  by virtue of the differential equations. Therefore, using 0)0( =

+
ε  as a 

near-wall approximation for +

ε  is appropriate if and only if 0)0( =
′+

k  is also enforced. With the full no-

slip boundary condition enforced, the near-wall expansions for the Launder-Sharma damping function and 

eddy viscosity are 



80 

 

LL

L

L

L

L

+=+−=

+
′

″
−=≡

+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

′

″″
−

′

″′″
+

′

″
=≡

+
″

+
′

+=

+
″′

+
″

=

+

+

+

+++

+

+

++

+

++

+

+

+

+

+

+

+

+++++

+

+

+

+

++

7.0    ,)4.3exp(

)0(2

)0(
)4.3exp(

)0(8

)0()0(

)0(6

)0()0(

)0(4

)0(

2

)0(
)0()0()(

6

)0(

2

)0(
)(

2

3

2

2

4

2

2

3

22

2

32

ff

y
k

CkfC

y
kkk

y
kk

R

yyy

y
k

y
k

yk

t

µ

µµµ

ε

εν

ε

ε

εε
ε

ε

εεε

 (5.18) 

Thus we see the complete model given in Eq. (5.12) requires the correct no-slip wall boundary conditions 

0)0( =

+
u , 0)0( =

+
k , and 0)0( =

′+
k  along with the centerline boundary conditions 0)( =

′+

τ
Rk  and 

0)( =
′+

τ
ε R  to yield a solution that is mathematically determinate. 

 

B.  The Lam-Bremhorst k-ε Model 

 The Lam-Bremhorst [68] model is a special case of Eq. (5.7) where the wall-damping functions are 

 

3.1    ,0.1    ,92.1    ,44.1    ,09.0

,0    ,0    ,    ,

),exp(1    ,)05.0(1    ),20.5(1)]0165.0exp(1[

21

2

2

2

3

1

2

=====

====

−−=+=+−−=

++++

+

+

εεεμ

μμ

σσ

ε

ε

k

oyt

tty

CCC

EkyR
k

R

RfffRRf

 (5.19) 

Using Eqs. (5.9) and (5.19) in Eq. (5.7) gives the model and boundary conditions 

 

0)(    ,0)(    ,0)0(    ,0)0(

3.1    ,0.1    ,92.1    ,44.1    ,09.0

),exp(1    ,)05.0(1    ),20.5(1)]0165.0exp(1[

    ,    ,

)1(

)1(

1

1
      ,1

21

2

2

3

1

2

2

2

11

2

22

2

=
′

=
′

==

=====

−−=+=+−−=

===

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+

+

−
=−=

++++

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

ττ

εεεμ

μμ

μμ

εεε

τ

τ

ε

σσ

ε

ν

ε

ν

εε

σν

νεσν

ν

RRkku

CCC

RfffRRf

kyR
k

RRfC

dy

du

k
fC

k
fC

dy

d

dy

d

dy

du

dy

dk

dy

d

Ry

dy

du
Rp

k

tty

ytt

k

 (5.20) 



81 

As the final boundary condition in addition to Eqs. (5.8) and (5.10), Lam and Bremhorst suggest the 

relation 

 )0()0(
″

=
++

kε  (5.21) 

Although this boundary conditions is commonly accepted in the literature as being the appropriate smooth-

wall boundary condition for this model, it is in fact mathematically incorrect. There are an infinite number 

of solutions to Eq. (5.20) that also satisfy Eq. (5.21). This relation can be derived directly from the 

differential equations and therefore cannot be termed a boundary condition. This relation will be satisfied 

independent of the boundary condition and thus yields an infinite number of solutions to the system of 

equations.  

 To see why Eq. (5.21) is not a viable boundary condition for Eq. (5.20), consider Eq. (5.20) in the limit 

as +
y  approaches zero. In this limit, both 

t
R  and 

y
R  go to zero and the wall damping functions and eddy 

viscosity near a smooth wall reduce to 

 

2

4

263
63

3
3

1

2
2

2
2

    ,
)0165.0()5.20(

)05.0(
1

,)0165.0(5.20    ,
)0165.0(5.20

    ,0

+

+

++

+

+++

+

++

+

=+=

==→

εε

ν

ε

µµ

k
f

y

k
f

ykC
k

y
fy

 (5.22) 

Using these limiting relations in the differential equation from Eq. (5.20) produces the near-wall system of 

equations, which applies in the limit as +
y  approaches zero, 

 
42

42

3

1

3

2

2

2

2

)0165.0()5.20(

)05.0(
    ,    ,1    ,0

++

+

+

+

+

+

+

+

+

+
−

===→

y

kCC

dy

d

dy

kd

dy

du
y

ε

ε

ε
εμ

 (5.23) 

Thus we see that Eq. (5.21) is satisfied independent of the final boundary condition. Therefore, Eq. (5.21) 

does not provide the additional information required to obtain a unique solution to the indeterminate system 

of equations. 

 As a further demonstration of why Eq. (5.21) is not a viable boundary condition for completing the 

indeterminate system in Eq. (5.20), consider the similar system and boundary conditions 



82 

 

0)1(ˆ)1(ˆ)0(ˆ)0(ˆ

ˆ

ˆ
ˆˆ

ˆ

ˆ
     ,

ˆ

ˆ
ˆˆ

ˆ

ˆ
     ,ˆ1

ˆ

ˆ
2

26

2

2
2

4

2

2

=′=′==

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=−=

ε

ε

ε

kku

yd

ud
yy

yd

d

yd

ud
y

yd

kd
y

yd

ud

 (5.24) 

Equation (5.24) is simple enough to obtain a closed-form solution. The general solution is 

 

56

ˆ

30

ˆ

10

ˆ

12

ˆ
ˆˆ 

5040

ˆ

1680

ˆ31

420

ˆ21

360

ˆ13

6

ˆ

2

ˆ
ˆˆ     ,

2

ˆ
ˆˆ

8654

54

108763

5

2

4

32

2

1

yyyy
yCC

yyyyyCyC
yCCk

y
yCu

+−+−+=

+−+−+++=−+=

ε

 (5.25) 

The boundary conditions in Eq. (5.24) can be used to eliminate four of the five arbitrary constants 

 

840

ˆ15ˆ28ˆ84ˆ70ˆ92
ˆ 

5040

ˆˆ93ˆ252ˆ182ˆ92ˆ338

2

ˆ2ˆˆ     ,
2

ˆ
ˆˆ

86542

4

1087632

4

2

yyyyy
C

yyyyyyyy
Ck

y
yu

+−+−−
+=

+−+−−
+

−
=−=

ε

 (5.26) 

As should be expected, there are an infinite number of solutions to any indeterminate fifth-order system of 

differential equations with only four boundary conditions. However, if the mathematical logic presented by 

Lam and Bremhorst is correct, then we should be able to reduce Eq. (5.26) to a single unique solution by 

simply applying a boundary condition obtained from the second differential equation in Eq. (5.24) 

evaluated at 0ˆ =y . If we accept this logic, then our final boundary condition for Eq. (5.24) is 

 )0(ˆ)0(ˆ ″= kε  (5.27) 

However, applying this “boundary condition” yields the result 
44

CC = . Clearly, applying this boundary 

condition yields a system of equations with an infinite number of solutions. It is a simple law of 

mathematics that a boundary condition cannot be derived directly from the differential equations 

themselves. It is apparent here that such a process can result in a system of equations with an infinite 

number of solutions. 

 Patel, Rodi, and Scheuerer [84] suggest a “more convenient boundary condition” for the Lam-

Bremhorst model 

 0)0( =

+

+

dy

dε
 (5.28) 



83 

However, this boundary condition is also incorrect because physics dictates no boundary condition on the 

dissipation of turbulent kinetic energy as outlined at the beginning of this chapter. The boundary condition 

for Eq. (5.26) that is analogous to the physically based condition given in Eq. (5.6) is 0)0(ˆ =′k . Applying 

this to Eq. (5.26) gives the unique solution 

 

2520

ˆ45ˆ84ˆ252ˆ210ˆ276169
ˆ 

5040

ˆˆ93ˆ252ˆ182ˆ92ˆ169ˆ     ,
2

ˆ
ˆˆ

8654

10876322

yyyyy

yyyyyy
k

y
yu

+−+−−
=

+−+−−
=−=

ε

 (5.29) 

and results in a nonzero result for both εˆ  and ε ′ˆ . The boundary condition analogous to Eq. (5.28) is 

0)0(ˆ =′ε . Applying this boundary condition to Eq. (5.26) gives 0210/23 =−  which may cause some 

concern with regard to using Eq. (5.28) as a boundary condition for Eq. (5.20). 

 Examination of the incomplete fifth-order system given by Eq. (5.24) has revealed that using Eq. 

(5.27) as the fifth boundary condition results in an infinite number of solutions. On the other hand, Eq. 

(5.24) has no solution if Eq. (5.28) is used as the fifth boundary condition. It can be shown that the 

incomplete fifth-order system in Eq. (5.20) exhibits very similar behavior. However, solutions to Eq. (5.20) 

must be obtained numerically. 

 Because fully developed flow is one dimensional, a solution to Eq. (5.20) combined with Eq. (5.6) can 

be obtained by direct numerical integration. This permits the use of efficient high-order numerical methods 

such as the fourth-order Runge-Kutta algorithm. Because such solutions can be obtained quickly on very 

fine grids, fully developed channel flow provides an excellent benchmark for testing more computationally 

intensive CFD algorithms.  

 To facilitate direct numerical integration, the two second-order equations in Eq. (5.20) can be 

converted to four first-order equations by using the change of variables 

 

+

+

++

+

+

++

+−≡

+−≡

dy

d

dy

dk
q

k

ε
σνθ

σν

ε
)1(

)1(

 (5.30) 



84 

Combining Eq. (5.20) with Eq. (5.6), applying the change of variables given in Eq. (5.30), and eliminating 

+

ν  by direct substitution provides the complete one-dimensional fifth-order formulation 

 

0)(,0)(

,0)0(,0)0(,0)0(

,)(exp1,)05.0(1,

,5.201,)]0165.0(exp1[

,,

)(

)1(

)1(

2

2

3

121

2

2

1

212

2

2

2

1

2

22

22

2

2

21

==

===

−−=+==

+=−−=

≡≡

−=

+

−≡

−

+

−

=

+

−≡

≡

+

−
=

++

+++

++++

+

+

++

+

+

++

++

+

+

+

++

+++

+

+

++

++

+

+

+

++

++

+

+

ττ

μμμμ

μμ

μμ

μμε

ε

μμ

τμμ

μμ

μμ

τ

θ

ε

εθ

εσ

εθσε

ε
ε

ε

εσ

εσ

ε

ε

εε

RRq

qku

Rffffff

RfRf

ykRkR

k
fCukfCfC

dy

d

kfCdy

d

kfC

RykfC

dy

dq

kfC

q

dy

dk

u
kfC

Ry

yd

du

t

ty

yt

k

k

'

'

 (5.31) 

 It should be noted that the new variable +q  is a dimensionless form of  the total diffusive flux of  

turbulent kinetic energy k, which includes both molecular and turbulent diffusion. Similarly, +θ  is a 

dimensionless diffusive flux for ε . This brings to light another physical interpretation of  the boundary 

condition given in Eq. (5.6), which led directly to the equivalent boundary condition in Eq. (5.31), i.e., 

0)0( =
+q . With this interpretation, Eq. (5.6) can be viewed as a mathematical statement of  the simple fact 

that turbulent kinetic energy cannot be diffused through a solid wall. The formulation for fully developed 

flow that is given by Eq. (5.31) requires that +q  vanish at the wall and at the centerline. Thus, all of the 

turbulent kinetic energy that is generated within this steady flow must also be dissipated within the flow. If  

a boundary condition obtained from either Eq. (5.21) or Eq. (5.28) is used in place of  that obtained from 

Eq. (5.6), this energy balance is not enforced. This is the origin of  Durbin’s statement that, “These 

conditions must violate the energy balance,” [19]. 

 A numerical solution to the five first-order differential equations given in Eq. (5.31) can be obtained 

using fourth-order Runge-Kutta integration combined with an appropriate numerical root-finding method. 



85 

Because only three of  the five boundary conditions are given at 0=
+y , the solution for )0(+ε  and )0(+θ  

must be obtained from the differential equations. The process is started with initial estimates for )0(+ε  and 

)0(+θ . From these initial estimates, fourth-order Runge-Kutta integration can be used to obtain )(
τ

Rq+  and 

)(
τ

θ R
+ . The initial estimates are then refined using an appropriate numerical method until the solution is 

found, which corresponds to the correct centerline values 0)( =
+

τ
Rq  and 0)( =

+

τ
θ R . 

 A few words of  caution may be in order here. Some of  the terms in Eq. (5.31) are numerically 

indeterminate if  0=

+k  and/or 0=
+ε . Notice that a division by zero occurs in the definition of  Rt for 0=

+ε . 

Thus, depending on the compiler, conditional relations may be required to enforce 12 =µf  and 12 =f  for 

0→+ε . For most compilers, Eq. (5.31) is numerically indeterminate for 0=

+k . In this limit, both Rt and Ry 

go to zero and the eddy viscosity and wall damping functions reduce to 

 

42

23

22
1

3
2

2
22

)0165.0()5.20(8

)0()05.0(
)0165.0(5.20

,,)0165.0(5.20,0

++

+++

+

+

+

++++

+=

==→

y
ykff

k
k

fykCk

ε

ε

ε
ν

µ

µ

 (5.32) 

Hence, for the limit 0→
+k , the formulation given in Eq. (5.31) should be conditionally replaced with its 

near-wall asymptote 

 

42

23

22

22

32

2

)0165.0()5.20(8

)0()05.0(
)0165.0(5.20

,)0165.0(5.20

1

1
,0

21

++

++

+++

++

+

+

+

+

+

+

+++

+

+

+

+

+

+

+

+

+

+

+

+

+≡

=

−=

+

−≡

−=

+

−≡

≡

+

−
=→

y
yF

ykC

kCuFCC
dy

d

dy

d

u
dy

dq

q

dy

dk

u
Ry

yd

du
k

'

'

'

k

k

ε
ε

ν

θ

νσ

θσε

εν

νσ

σ

ν

ε

μ

εμ

ε

ε

τ

εε

 (5.33) 

 To demonstrate that Eq. (5.21) is not a valid boundary condition for completing the formulation given 

in Eq. (5.20), the results shown in Fig. 5.1 were obtained from Eq. (5.31) using randomly selected wall 



86 

boundary conditions. The no-slip wall boundary conditions were used for both +u  and ,
+k  but the wall 

boundary conditions for ,
+q  ,

+ε  and ,
+θ  as well as the wall-scaled dimensionless half width 

τ
R  were 

generated as listed in Fig. 5.1 using the “rand()” function, which generates a random number between 0.0 

and 1.0. From the results presented in Fig. 5.1, it can be concluded that Eq. (5.21) is enforced directly by 

Eq. (5.20), completely independent of  the boundary conditions. 

 
 

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

)0(''k +

)0(+

()rand1000)0(
1()rand2)0(

()rand)0(
1()rand2)0(

0)0()0(

=

−=

=

−=

==

+

+

+

++

Rτ

q

ku

 ε

ε
θ

 

Fig. 5.1  Solutions to Eq. (5.31) with randomly selected wall boundary conditions. 

 To demonstrate that Eq. (5.28) is not a valid boundary condition for completing the formulation given 

in Eq. (5.20), the results shown in Fig. 5.2 were obtained from Eq. (5.31) using the no-slip wall boundary 

conditions for ,
+u  ,

+k  and ,
+q  with the wall boundary conditions for +θ  obtained from Eq. (5.28). For 

several values of  ,
τ

R  the computed value for +q  at the centerline is plotted as a function of  the remaining 

wall boundary condition )0(+ε . Valid solutions to Eq. (5.20) could only correspond to those points where 

these curves intersect the axis 0)( =
+

τ
Rq . From the results presented in Fig. 5.2, it can be seen that there is 

only one solution to Eq. (5.20) that satisfies Eq. (5.28) and the no-slip wall boundary conditions. That is the 

trivial laminar solution 

 0,)2(2
====−=

+++++++ θε
τ

qkRyyu  (5.34) 



87 

0.00 0.05 0.10 0.15
-0.6

-0.4

-0.2

0.0

  = 1
  = 5

Rτ
  = 10 25 50 100

200

)(+q

400

)0(+

0)0()0()0()0( ==== ++++ qku

 ε

Rτ

θ

Rτ

Rτ

 

Fig. 5.2  Solutions to Eq. (5.31) with no slip and no dissipation gradient at the wall. 

There is no turbulent flow solution to Eq. (5.20) that satisfies Eq. (5.28) and the no-slip wall boundary 

conditions. 

 Examination of  the numerical results shown in Figs. 5.1 and 5.2 reveals that Eq. (5.20) exhibits 

behavior very similar to that demonstrated analytically for the hypothetical fifth-order system given by Eq. 

(5.24). Using )0()0( ''k ++
=ε  as the fifth boundary condition for Eq. (5.20) results in an infinite number of  

solutions. On the other hand, Eq. (5.20) has no valid turbulent flow solution if  0)0( =
+'ε  is used as the fifth 

boundary condition. This underscores the critical importance of  always using the correct no-slip boundary 

conditions 0)0()0()0( ===

+++ 'kku . 

 

IV.  Numerical Results from CFD Algorithms 

  Because the zero-gradient boundary condition for k in Eq. (5.6) is not explicitly enforced in many 

commonly implemented k-ε  turbulence models, solutions obtained from these models are not unique. To 

demonstrate this fact, the RANS formulations for fully developed channel flow for the Launder-Sharma 

and Lam-Bremhorst models were solved numerically using a second-order finite difference algorithm with 

successive underrelaxation. Solutions were obtained on the domain extending from the wall to the channel 

centerline, and grid points were clustered near the wall using logarithmic clustering. To ensure that all 



88 

results were fully converged, the successive underrelaxation was allowed to continue until the observed 

changes were reduced to within the double-precision machine accuracy. 

 To ensure that all results were grid resolved, the grids were uniformly refined until no significant 

changes were observed with additional grid refinement. For a given axial pressure gradient, the Launder-

Sharma model required a somewhat finer grid than was required for the Lam-Bremhorst model. Results of  

an example grid-resolution study for the Launder-Sharma model are shown in Figs. 5.3–5.5. All results 

shown in these figures were obtained using the fixed axial pressure gradient, which yields a value of +y  at 

the centerline equal to 300. For the grid refinements shown in Figs. 5.3–5.5, the four grids produced 

channel Reynolds numbers (based on the channel width and mean velocity) that were equal to 10,009, 

10,653, 10,832, and 10,878, respectively. An additional refinement of  the grid to 401 nodes, which is not 

shown in Fig. 5.3, produced a channel Reynolds number of 10,889. From these and other similar results, it 

was concluded that for Reynolds numbers on the order of 10,000, the 201-node grid used for  

Figs. 5.3–5.5 produced adequate grid resolution with both the Lam-Bremhorst and Launder-Sharma 

turbulence models. 

 

 

 

0.1 1 10 100
0

5

10

15

20 26 nodes

51 nodes
101 nodes
201 nodes

u + = y +

y+

u+

law of th
e w

all

 
 

Fig. 5.3  Grid resolution for the mean velocity predicted from the Launder-Sharma k-ε model. 



89 

 
0.1 1 10 100

10-4

10-3

10-2

10-1

100

101

26 nodes

51 nodes
101 nodes
201 nodes

y+

k+

lea
di

ng
-o

rd
er

 so
lu

tio
n, 

Eq. 
(5

.18
)

 
 

Fig. 5.4  Grid resolution for the turbulent energy predicted from the Launder-Sharma k-ε model. 

 

0.1 1 10 100
10-4

10-3

10-2

10-1

26 nodes

51 nodes
101 nodes
201 nodes

y+

+

lea
ding-order 

solutio
n, E

q. (5
.18)

 

ε

 

Fig. 5.5  Grid resolution for the turbulent dissipation predicted from the Launder-Sharma k-ε model. 

 To demonstrate that solutions obtained from commonly implemented k-ε  turbulence models are not 

unique, the second-order successive underrelaxation algorithm was implemented using a slight variant of  

the wall boundary conditions specified in Eq. (5.6), which allows the user to specify an arbitrary value for 

the gradient of  k at the wall. Figures 5.6 and 5.7 show converged and grid-resolved results obtained from 

this algorithm using three different gradient boundary conditions for k at the wall: 0.0)0( =

+'k , 1.0)0( =

+'k , 

and 0.1)0( =

+'k . 

 To demonstrate that traditional implementations of  these turbulence models do not necessarily 

converge to the solution that yields 0)0( =

+'k , Figs. 5.6 and 5.7 also include results obtained from the same 



90 

algorithm, turbulence models, and grid, but with a traditional implementation of  the wall boundary 

conditions, which uses only 0)0( =
+u  and 0)0( =

+k  together with an asymptotic relation obtained from the 

differential equations, i.e., )0()0( ''k ++
=ε  for the Lam-Bremhorst model and 0)0( =

+
ε  for the Launder-

Sharma model. For additional comparison, Figs. 5.6 and 5.7 also show results from the general-purpose 

finite-volume CFD solver FLUENT [85], which were obtained using the same turbulence models and grid 

with only the traditional wall boundary conditions implemented. 

 

0.1 1 10 100
10-4

10-3

10-2

10-1

100

101

k 
+'(0) = 1.0000

k 
+'(0) = 0.1000

k 
+'(0) = 0.0000

No k 
+'(0) BC: k 

+'(0) = 0.0211

FLUENT   k 
+'(0) = 0.0704

y+

k+

lea
di

ng
-o

rd
er

 so
lu

tio
n, 

fro
m E

q. 
(5

.23
)

 
 

Fig. 5.6  Effects of  wall boundary conditions on turbulent energy predicted from the Lam-Bremhorst 

model. 

 

0.1 1 10 100
10-4

10-3

10-2

10-1

100

101

k 
+'(0) = 1.0000

k 
+'(0) = 0.1000

k 
+'(0) = 0.0000

No k 
+'(0) BC: k 

+'(0) = 0.0009

FLUENT   k 
+'(0) = 0.1142

y+

k+

lea
di

ng
-o

rd
er 

so
lu

tio
n, 

Eq. 
(5

.18
)

 
 

Fig. 5.7  Effects of  wall boundary conditions on turbulent energy predicted from the Launder-

Sharma model.  



91 

 The results shown in Figs. 5.6 and 5.7 clearly demonstrate that when the natural boundary condition 

0)0( =

+'k  is not enforced, solutions obtained from commonly implemented k-ε  turbulence models are not 

unique. When the boundary condition 0)0( =

+'k  is omitted, solutions obtained from the resulting 

indeterminate formulation are implementation dependent. Notice from Fig. 5.6 that for the Lam-Bremhorst 

model with traditional implementation of  the wall boundary conditions, the finite-difference algorithm 

converged to a different solution from that obtained using the finite-volume algorithm with the same 

indeterminate boundary conditions. Neither of  these solutions agrees with that obtained from the finite-

difference algorithm with the boundary condition 0)0( =

+'k  enforced. Similarly, we see from Fig. 5.7 that 

these finite-difference and finite-volume implementations of  the Launder-Sharma model converge to 

different solutions with traditional implementations of  the wall boundary conditions. However, for the 

particular implementation used to obtain the results shown in Fig. 5.7, the indeterminate finite-difference 

algorithm converged to a solution that is very close to that obtained when the complete set of  smooth-wall 

boundary conditions was enforced. This should not be viewed as an endorsement for implementing the 

Launder-Sharma turbulence model with mathematically incomplete boundary conditions. 

 From the near-wall expansions of  the Launder-Sharma model given in Eqs. (5.16) and (5.17), it was 

shown that enforcing 0)0( =′+k  requires 0)0( =

+
ε , whereas enforcing 0)0( =

+
ε  does not require 0)0( =′+k . 

This can also be demonstrated numerically by examining the near-wall behavior of ε  obtained from 

numerical solutions using different gradient boundary conditions for k at the wall. Such results are shown in 

Fig. 5.8, which were obtained from converged and grid-resolved solutions for the same channel flow that 

was used to obtain the results shown in Fig. 5.7. Notice that, although )0(′+k  does affect the near-wall 

behavior of ,

+
ε  all of  these solutions satisfy 0)0( =

+
ε . Only the solution corresponding to 0)0( =′+k  also 

satisfies the physically correct no-slip condition at the smooth wall. 



92 

0 2 4 6 8 10
0.00

0.06

0.12

0.18

y+

+

k 
+'(0) = 4.0

2.0
1.0

0.4
0.1

0.0

 

ε

 

Fig. 5.8  Effects of  wall boundary conditions on near-wall dissipation for Launder-Sharma model. 

 Because the wall damping functions for the Lam-Bremhorst model decay rapidly with increasing ,
+y  

the wall boundary condition 0)0( =

+'k  has little impact on the velocity profiles predicted from this 

turbulence model. On the other hand, the wall damping functions for the Launder-Sharma model decay 

slower and have a more significant effect on the predicted mean velocity farther from the wall. This can be 

seen in Fig. 5.9, which displays the velocity profiles for the same solutions that were used to obtain the 

turbulent energy profiles displayed in Fig. 5.7. It may be worth reiterating that all of  the solutions shown in 

Fig. 5.9 satisfy the traditional wall boundary conditions 0)0( =
+u  and 0)0( =

+k  together with the 

asymptotic relation obtained from the differential equations, 0)0( =
+

ε . 

 

0.1 1 10 100
0

5

10

15

20 k 
+'(0) = 1.0

k 
+'(0) = 0.1

k 
+'(0) = 0.0

No k 
+'(0) BC

FLUENT 

y+

u+

law of th
e w

all

u + = y +

 
 

Fig. 5.9  Effects of  wall boundary conditions on the mean velocity predicted from the Launder-

Sharma model. 



93 

 Anyone who has taken time to compare results obtained from different CFD algorithms and different 

k-ε  turbulence models will likely have noticed that there is often a greater difference between the results 

obtained from two different implementations of  the same turbulence model than there is between the 

results obtained from the same implementation of  two different turbulence models . The results shown in 

Fig. 5.9 may shed some light on the reason for this phenomenon. We should not be too surprised to learn 

that results obtained from commonly used k-ε  turbulence models are implementation dependent, if  we 

recognize that these models are all short one boundary condition, and thus are mathematically 

indeterminate. 

 Because the CFD community has not traditionally implemented two wall boundary conditions on k and 

none on ε , implementation of  the correct smooth-wall boundary conditions first proposed by Durbin [19] 

has been less than enthusiastically embraced. The actual implementation of  these boundary conditions is 

dependent on the numerical method being used to solve the system of  differential equations. However, this 

implementation should not be difficult using well-known methods in either finite-difference or finite-

volume algorithms. For example, results presented in this section were obtained from a finite-difference 

algorithm. To implement the no-slip wall boundary conditions, the k-transport equation at any wall node 

was replaced with the boundary condition 0)0( =k . At the first node off  the wall, the k-transport equation 

was replaced with a second-order finite-difference approximation for the boundary condition 0)0( =′+k . 

Because there is no wall boundary condition on ε , the ε-transport equation at any wall node was replaced 

with the asymptotic relation obtained from the differential equations, i.e., )0()0( ''k ++
=ε  for the Lam-

Bremhorst model and 0)0( =
+

ε  for the Launder-Sharma model. The implementation of  the ε-transport 

equation is identical to that of  the traditional formulation. The error in the traditional formulation is not that 

the transport equation for ε  is incorrectly implemented. Rather, the error is in assuming that the near-wall 

asymptote obtained from the differential equations can be used to replace the final boundary condition 

required at the wall. 

 As scientists and engineers, we do not have the luxury of  choosing boundary conditions for ease of  

numerical implementation. Boundary conditions are dictated by physics. It is our obligation to understand 



94 

and implement them correctly if  we hope to achieve mathematical formulations that correctly model 

physics. The fundamental mathematical error of  deriving a so called boundary condition directly from the 

differential equations is not unique to the classical k-ε  turbulence models that have been considered here. It 

is also an important concern for many other turbulence models developed more recently. 

 

V.  Smooth-Wall Boundary Conditions for the k-ω Model 

 The k-ω model formulation for fully developed channel flow is presented in Appendix B. The 

formulation including the continuity, RANS, turbulent-kinetic-energy, and dissipation-transport equations 

can be written in nondimensional form as 

 

+

+

+

+

+

+

+

++

+

+

+

+

+

+++

+

+

+

+

+

+

+

++

+

+

=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂

∂
+

∂

∂

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+

=
+

+
=

ω

ν

ω

νω

ω

σν

νωσν

ν

μ

ωωω

μ

k
f

dy

du

k
fCfC

yy

dy

du
kfC

dy

dk

dy

d

dy

dpyp

dy

du

kk

2

11

2

22

2

)1(

)1(

0      ,
1

1

 (5.35) 

where 
k

σ , 
ω

σ , 
µ

C , 
1ω

C , and 
2ω

C  are model-dependent constants, and 
µ
f , 

1
f , 

2
f , and 

k
f  are the model-

dependent wall damping functions. Just as with the k-ε model, in order to close this sixth-order formulation, 

the damping functions and six boundary conditions must be specified. Again, three conditions come from 

the channel centerline 

 0)()()( ===
+

+

+

+

+

+

τττ

ω

R
dy

d
R

dy

dk
R

dy

du
 (5.36) 

Applying the first of these conditions to Eq. (5.30) gives 

 
+

+

+

+

+

+

−
=−=

ν

τ

τ

1

1
      ,1

Ry

dy

du
Rp  (5.37) 

To close the formulation, three additional boundary conditions are needed. Two of these are the no-slip 

boundary conditions traditionally used for dissipation-based models  



95 

 0)0()0( ==

++

ku  (5.38) 

This leaves one boundary condition to be specified.  

 A version of the k-ω model that is commonly implemented is the Wilcox 1998 model [45]. The closure 

coefficients and wall-damping functions for this model are 

 

0.2    ,0.2    ,072.0    ,52.0    ,09.0

    ,    ,0.1    ,
)95.21(

95.291

,
0,

4001

6801

0,1

)8(1

)8(154
    ,

61

6024.0

21

321

2

2

4

4

=====

=
∇⋅∇

==
+

+
=

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

>
+

+

≤

+

+
=

+

+
=

ωωωμ

μ

μ

σσ

νωω

ω
ψ

ψ

ψ

ψ

ψ

k

tk

t

t

k

k

k

k

t

t

k

t

t

CCC

k
R

k
f

Rf

R
f

R

R
f

R

R
f

 (5.39) 

Using Eqs. (5.37) and the nondimensional form of Eq. (5.39) in Eq. (5.35) gives the model for fully 

developed flow in a channel 

 

0)()()0()0(

0.2    ,0.2    ,072.0    ,52.0    ,09.0

    ,
1

    ,0.1    ,
)95.21(

95.291

,
0,

4001

6801

0,1

)8(1

)8(154
    ,

61

6024.0

)1(

)1(

1

1
      ,1

21

3
21

2

2

4

4

2

11

2

22

2

=
′

=
′

==

=====

===
+

+
=

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

>
+

+

≤

+

+
=

+

+
=

=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂

∂
+

∂

∂

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+

+

−
=−=

++++

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+++

+

+

+

+

+

+

+

+

+

ττ

ωωωμ

μ

μ

μ

ωωω

μ

τ

τ

ω

σσ

ω

ω

ω

ψ

ψ

ψ

ψ

ψ

ν

ω
νω

ω
σν

νωσν

ν

RRkku

CCC

k
R

dy

d

dy

dk
f

Rf

R
f

R

R
f

R

R
f

Rf

dy

du

k
fCfC

yy

dy

du
kfC

dy

dk

dy

d

Ry

dy

du
Rp

k

tk

t

t

k

k

k

k

t

t

k

t

t

t

kk

 (5.40) 

 As in the case of  Eq. (5.20), one additional boundary condition is needed to complete the fifth-order 

formulation expressed in Eq. (5.40). In the presentation of  his 1998 k-ω  model Wilcox [45] states, “The 

final condition follows from examination of  the differential equations for k and ω  approaching the 

surface.” For a smooth wall in the limit 0→+y , the boundary condition 0)0( =

+k  requires 0)0( =tR  and 

0)0( =
+ν . Thus, the differential equation for +u  and the ω-transport equation given in Eq. (5.40) reduce to 



96 

 
9

,1,0 1

2
2

2

2
ω

ω ω
ω C

C
dy

d

dy

du
y −==→ +

+

+

+

+

+  (5.41) 

Let the leading-order term in the solution for +
ω  be written as 

 L+= +++
ayAy )(ω  (5.42) 

where A and a are as yet unknown constants. Using Eq. (5.42) in the near-wall approximation for the ω-

transport equation given by Eq. (5.41) yields 

 9)1( 12

222
ωω CyACyAaa aa

−≅− +
−

+  (5.43) 

Equating the exponents and coefficients of  +y  in the leading-order terms, this near-wall relation requires 

 
22

6)1(
,2

ωω CC

aa
Aa =

−
=−=  (5.44) 

Hence, after using Eq. (5.44) in Eq. (5.42), the leading-order solution for +
ω  yields 

 
2

0

lim
2

6
)(

+

→

++

+

=

yC
y

y ω

ω  (5.45) 

To minimize numerical truncation error associated with the singularity, Wilcox [86] suggests that  

Eq. (5.45) should be used in place of  the ω-transport equation “for the first 7 to 10 grid points above the 

surface.” Wilcox also points out that the grid must be fine enough so that “these grid points must lie below 

5.2=
+y  …” In practice, Eq. (5.45) is often used as the final boundary condition by applying this relation 

only at the first grid point off  the wall. 

 Because the leading-order solution given by Eq. (5.45) follows exclusively from the ω-transport 

equation with application of  only the single boundary condition 0)0( =

+k , all solutions to Eq. (5.40) will 

exhibit this asymptotic behavior, completely independent of  the fifth boundary condition that is required to 

obtain a unique solution to this system of  equations. Equation (5.45) is certainly a valid asymptote for the 

ω-transport equation in Eq. (5.40) near a smooth wall. Thus, Eq. (5.45) can be used as an alternative to the 

ω-transport equation for +y  approaching zero, provided that it is combined with five appropriate boundary 

conditions. However, Eq. (5.45) cannot be used as a substitute for one of the five required boundary 

conditions. 

 To further exhibit this point, consider the similar system and boundary conditions 



97 

 

0)1(ˆ)1(ˆ)0(ˆ)0(ˆ

ˆ

ˆ

ˆ

1

ˆ

ˆ
     ,

ˆ

ˆ
ˆˆˆ

ˆ

ˆ
     ,ˆ1

ˆ

ˆ
2

42

2
2

42

2

2

=′=′==

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=−=

ω

ω

ω

kku

yd

ud

yyd

d

yd

ud
yy

yd

kd
y

yd

ud

 (5.46) 

The general solution to this system of equations is 

 

12

ˆˆ4ˆ6
ˆ

ˆ6

1
ˆ 

10080

ˆ195ˆ560ˆ504ˆ840

20

ˆ

12

ˆ
ˆˆ     ,

2

ˆ
ˆˆ

432

542

87625

5

4

4

32

2

1

yyy
yCC

y

yyyyyCyC
yCCk

y
yCu

−+−
+++=

−+−
++++=−+=

ω

 (5.47) 

The boundary conditions in Eq. (5.38) can be used to eliminate four of the five arbitrary constants. This 

gives 

 

12

ˆˆ4ˆ6ˆ8

ˆ6

1
ˆ 

10080

ˆ195ˆ560ˆ504ˆ336ˆ840ˆ2696

12

ˆ4ˆˆ     ,
2

ˆ
ˆˆ

432

42

876524

4

2

yyyy
C

y

yyyyyyyy
Ck

y
yu

−+−
++=

−+−++−
+

−
=−=

ω

 (5.48) 

Again as should be expected, there are an infinite number of  solutions to any indeterminate fifth-order 

system of  differential equations with only four boundary conditions. The remaining constant of  integration 

C4 can be evaluated only by applying a mathematically appropriate boundary condition. No amount of  

analysis applied to the differential equations, no matter how sophisticated, will ever yield a result from 

which the remaining arbitrary constant in Eq. (5.48) can be determined. 

 Notice from Eq. (5.47) that, analogous to the result obtained from Eq. (5.40), the general solution for ω̂ 

approaches y = 0 in proportion to 2−
y . From examination of  either Eq. (5.47) or Eq. (5.48), it should be 

clear that none of  the integration constants could ever be obtained by using the asymptotic behavior of ω̂ 

for 0→y  as the fifth boundary condition for Eq. (5.46). In fact, because the behavior of ω̂ for 0→y  

depends only on the differential equations in Eq. (5.46), no boundary condition for ω̂ can be applied to Eq. 

(5.46) at y = 0. Likewise, because the near-wall behavior of  +
ω  depends only on the differential equations 

in Eq. (5.40), no wall boundary condition for +
ω  can be applied to Eq. (5.40). The remaining boundary 

condition for Eq. (5.46) at y = 0 must be applied to kˆ. Similarly, the remaining wall boundary condition for 

Eq. (5.40) must be applied to +k . 



98 

 At a smooth wall the correct no-slip boundary condition for completing the fifth-order formulation 

presented in Eq. (5.40) is 0)0( =

+'k . The analogous boundary condition for Eq. (5.46) is 0)0(ˆ =′k . It is 

easily shown that applying this wall boundary condition to the solution of  Eq. (5.46) that is given in Eq. 

(5.48) yields 4203374 −=C , and the complete unique solution is 

 

420

35140210280337

6

1
ˆ

,
10080

195560504336674840ˆ,
2

ˆ

432

2

8765422

yyyy

y

yyyyyy
k

y
yu

−+−+−
+=

−+−+−
=−=

ω

 (5.49) 

Hence, we see that imposing two wall boundary conditions on kˆ and none on ω̂  is sufficient to determine a 

unique solution to the coupled fifth-order system of  differential equations given in Eq. (5.46). There is no 

need to impose a wall boundary condition on ω̂, and it is incorrect to do so. 

 It can be shown numerically that the Wilcox 1998 k-ω  formulation given in Eq. (5.40) exhibits 

behavior similar to that shown analytically for Eq. (5.46).  For example, Figs. 5.10 and 5.11 show +k  and 

+
ω  for five solutions, which all satisfy both Eqs. (5.40) and (5.45). These converged and grid-resolved 

solutions were obtained using the same second-order successive underrelaxation algorithms that were used 

to obtain the k-ε  solutions shown in Figs. 5.6 and 5.7. These results demonstrate that it is mathematically 

incorrect to use Eq. (5.45) as the sole substitute for the remaining boundary condition, which is required to 

obtain a unique solution to Eq. (5.40). Neither Eq. (5.45) nor any other relation obtained solely from the 

differential equations can be used to obtain a unique solution from the indeterminate k-ω  formulation given 

in Eq. (5.40).  

 Like the Lam-Bremhorst k-ε  model, the wall damping functions for the Wilcox 1998 k-ω  model decay 

rapidly with increasing ,
+y  so the wall boundary condition 0)0( =

+'k  has little impact on the predicted 

velocity profiles.  

 



99 

0.1 1 10 100
10-4

10-3

10-2

10-1

100

101

k 
+'(0) = 1.0000

k 
+'(0) = 0.1000

k 
+'(0) = 0.0000

No k 
+'(0) BC: k 

+'(0) = 0.0063

FLUENT   k 
+'(0) = 0.0051

y+

k+

lea
di

ng
-o

rd
er

 so
lu

tio
n

 
 

Fig. 5.10  Effects of  wall boundary conditions on turbulent energy predicted from the Wilcox 1998 k-

ω model. 

 

0.1 1 10 100
10-2

10-1

100

101

102

103

104

k 
+'(0) = 1.0

k 
+'(0) = 0.1

k 
+'(0) = 0.0

No k 
+'(0) BC

FLUENT  

y+

+

leading-order solution, Eq. (5.45)

 

ω

 

Fig. 5.11  Effects of wall boundary conditions on the turbulent dissipation frequency predicted from the 

Wilcox 1998 k-ω model. 

VI.  Comments on CFD Algorithms and Solutions 

 The reader may wonder how CFD algorithms have continued to obtain repeatable solutions for so 

many years if these traditional dissipation-based turbulence models have been implemented in such a way 

that many models are indeterminate. To this, the author wishes to make three comments. 

 First, CFD algorithms do not ensure that a unique solution is obtained. The CFD codes are usually 

written such that the computer is seeking one solution which satisfies the system of equations. Once a 



100 

solution is found, the algorithm exits. If multiple solutions exist for a given system of equations, the CFD 

algorithm will end once any one of the solutions is found, and will generally not report that other solutions 

exist. It is up to the user to ensure that the solution is unique. Therefore, solutions to these models have 

been reported for several years, although some have noted that there is often more difference between two 

different implementations of the same model than between two different models using the same 

implementation [87]. 

 Second, most CFD algorithms seek to minimize the error in the system of equations rather than to find 

a solution that satisfies the equations perfectly. In fact, in most commercial codes, the user is able to specify 

a tolerance for the error at which the algorithm will consider the solution to be acceptable. This is likely the 

reason that solutions to the Lam-Bremhorst model have been obtained in the past. It has been shown that 

there is no solution to the Lam-Bremhorst model for turbulent flow that also satisfies the correct smooth-

wall no-slip boundary conditions. However, solutions to this model have been obtained for many years by 

CFD algorithms. This is most probably due to the fact that most CFD algorithms seek only to minimize the 

error using finite-difference or finite-volume approaches. 

 Third, the wall-damping functions used by most models are designed in such a way as to force the 

turbulence properties near a wall to behave in a certain way. Therefore, these damping functions can curb 

the effects of indeterminate boundary conditions. For example, it has been shown that a deviation in the 

first derivative of k at the wall has a much more profound effect on the Launder-Sharma model than it does 

on the Lam-Bremhorst or Wilcox 1998 models. This is mainly due to the nature of the wall-damping 

functions used for each model. Therefore, the damping functions of dissipation-based models have likely 

reduced the effects of attempting to solve a system of equations that is short one boundary condition. 

 Even if a particular implementation or set of damping functions forces a CFD algorithm to converge to 

a solution that is close to the unenforced boundary condition, this is no excuse for implementing a model 

that is mathematically indeterminate. A full set of boundary conditions must always be enforced and it is 

incorrect to omit a boundary condition because it is difficult to enforce, or to choose an arbitrary condition 



101 

based on ease of implementation. Such neglectful behaviors have likely hindered progress that could have 

been made years ago in turbulence modeling.  

 

VII.  Summary and Conclusions 

 It has been shown that the traditional smooth-wall boundary conditions for dissipation-based 

turbulence models are incorrect. Traditional models generally enforce a boundary condition on the second 

turbulence variable, ε or ω, that is either physically incorrect or that can be directly derived from the 

differential equations. Because physics imposes two boundary conditions on the turbulent kinetic energy at 

a smooth wall and no boundary conditions on the dissipation at a smooth wall, it is incorrect to enforce a 

boundary condition on the second turbulence variable. In order for the solution to be unique, both boundary 

conditions required by physics at a smooth wall must be enforced on the turbulent kinetic energy. The near-

wall behaviors developed from the differential equations are perfectly valid equations for ε and ω near the 

wall. However, it is incorrect to refer to these expressions as boundary conditions because they are derived 

directly from the differential equations. It is emphasized yet again that a boundary condition can never be 

developed from the differential equations themselves. A boundary condition is a condition that is imposed 

on the differential equations. 

 The algorithms commonly used to solve turbulence models are based on finite-difference or finite-

volume CFD methods which attempt to minimize the error in a solution. These algorithms do not ensure 

that a unique solution has been found, nor do they ensure that a solution exists. This is likely the reason that 

solutions to traditional models have been obtained for years even when the correct boundary conditions 

have not been fully implemented. Even if a CFD algorithm converges to a solution near the correct solution 

without enforcing the correct boundary conditions, this is no excuse for not implementing the correct 

physically based boundary conditions for smooth walls. 

 The discussion of smooth-wall boundary conditions included here has focused on traditional models. 

Evaluating the performance of the Phillips energy-vorticity model in the presence of a smooth wall brings 

even more insight into the physics of turbulence near a perfectly smooth wall. 



102 

CHAPTER 6 

PHILLIPS TWO-EQUATION MODEL CHARACTERISTICS 

I.  Introduction 

 Phillips has proposed several closure methods for his energy-vorticity model and a few of these are 

included in Chapter 2. Here we consider two closure methods and focus on their near-wall behavior for 

perfectly smooth walls. The near-wall behavior of any turbulence model is an important property of the 

model because this behavior determines the model prediction for the wall shear stress as well as the heat 

transfer at a wall. Traditionally, turbulence models have been developed for the case of perfectly smooth 

walls, and a select few have subsequently been modified to model rough walls. Because it is customary to 

evaluate the performance of a turbulence model for smooth walls before considering rough walls, the near-

wall behavior of Phillips’s energy-vorticity model was considered for perfectly smooth walls. This analysis 

presents interesting insight into the difference between smooth wall and rough wall turbulence 

characteristics. 

 

II.  RMS Turbulent Vorticity Closure: A k-ω~  Model 

 The Phillips energy-vorticity turbulence model could be closed as an RMS turbulent vorticity model, 

or k-ω~  model, including an expression for the kinematic eddy viscosity 

 ων
ν

~

kC
t
=  (6.1) 

the turbulent-kinetic-energy equation 

 
( )

)]}([){(2])[(

)]}([{4~2)(

3

5

2

3

42

VS

VS)V(S)V(SV

v

v

v

v

v

v

v

v

tktkt

tt

k

kk
t

k

νσννσνν

νωνν

⋅∇+⋅∇−∇+⋅∇+

⋅∇⋅∇−∇+−⋅=∇⋅+
∂

∂

 (6.2) 

and a model version for the RMS-fluctuating-vorticity transport equation 



103 

 

( )
)]}([){(

~
]~)[(

)]}([{4~
~~

2~
~

4
~~

3
~

2

3

42

2
~

1
~

VS

VS)V(S)V(SV

v

v

v

v

v

v

v

v

tktt

tt

k
CC

k
k

C
k

C
t

νσνν

ω

ωσνν

νω

ω

ν

ω

νω

ω

ωωω

ωω

⋅∇+⋅∇−∇+⋅∇+

⋅∇⋅∇−∇+−⋅=∇⋅+
∂

∂

 (6.3) 

 When the gradients in the flow are normal to the mean flow velocity vector, these equations can be 

greatly simplified. This simplified formulation is a good approximation for boundary layer flows, and holds 

exactly for fully developed flow in a pipe or channel. Applying this simplification gives what will be called 

the Phillips boundary-layer flow k-ω~  model 

 

]~)[()~(
~~

2~
~

])[()~(2)(

~

~
3

~
2

3

42

2
~

1
~

3

52

3

42

ωσννω

ω

ν

ω

νω

ω

σννωνν

ων

ωωωω

ν

∇+⋅∇+∇+−⋅=∇⋅+
∂

∂

∇+⋅∇+∇+−⋅=∇⋅+
∂

∂

=

tt

ktt

t

Ck
k

C
k

C
t

kkk
t

k

kC

)V(S)V(SV

)V(S)V(SV

v

v

v

v

v

v

v

v

 (6.4) 

 This model addresses several of the concerns with current turbulence modeling techniques discussed in 

Chapter 2. The correct smooth-wall boundary conditions can be used on the model, the turbulent kinetic 

energy equation alleviates a few of the concerns associated with the definition of dissipation, and the length 

scale is that associated with the energy-bearing eddies. In fact, this model alleviates all of the concerns 

mentioned at the beginning of Chapter 2 except for those numbered 7 and 8. The rough-wall characteristics 

of this model (Concern #8) is addressed in a later chapter, but will not be included in this section. The 

major concern with this formulation is that the RMS-fluctuating-vorticity transport equation given in Eq. 

(6.3) is no more rigorously derived than the second differential transport equations used in traditional 

models (Concern #7). Equation (6.3) was developed by analogy to Eq. (6.2) and was not derived rigorously 

from physical phenomenon. Such a method for developing transport equations for ε, ω, or ζ is commonly 

used in other two-equation turbulence models. However, this differential equation is likely an improvement 

over those equations used in other models because it can be expected that the transport of RMS fluctuating 

vorticity could be modeled using a differential transport equation. Dissipation-based models attempt to 

model the transport of dissipation with a differential transport equation, which is somewhat absurd because 

dissipation is not a transportable property of the flow. On the other hand, the RMS fluctuating vorticity is a 



104 

transportable property, and its transport could possibly be modeled by an equation similar to that given in 

Eq. (6.3). 

 

A.  Homogeneous, Isotropic Turbulence 

 Experiments show that the decay of turbulent kinetic energy can be expressed in the form 

 
1)(

      ,
)( +

+
−=

∂

∂

+
=

aa

Bt

aC

t

k

Bt

C
k  (6.5) 

where 25.02.1 ±=a . For the case of decaying homogeneous turbulence, all gradients in the flow are zero, 

and the model transport equations reduce to the form 

 2~
ων−=

∂

∂

t

k
 (6.6) 

 
k

C
t

3

2
~

~~

ω

ν

ω

ω
−=

∂

∂
 (6.7) 

Applying Eq. (6.5) to Eq. (6.6) gives 

 
2)3(21

2121

2)1(21

2121

)(2

)1(~
      ,

)(

~
++

+

+
−=

+

=
aa

Bt

Caa

dt

d

Bt

Ca

ν

ω

ν

ω  (6.8) 

Using Eqs. (6.5) and (6.8) in Eq. (6.7) gives 

 
a

a
C

2

1

2
~

+

=
ω

 (6.9) 

Using 2.1=a  gives an initial estimate of 92.0
2

~ =
ω

C . 

 

B. Smooth-Wall Behavior 

 The model can be written in Cartesian coordinates for steady, fully developed channel flow including 

the continuity, RANS, turbulent-kinetic-energy, and RMS-turbulent-vorticity equations as 

 

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

dy

dk

dy

d

k
C

dy

Vd

k
C

dy

d
C

dy

d

dy

dk

dy

d

dy

Vd

dy

dk

dy

d

dx

pd

dy

Vd

dy

d

x

t

t

x

t

k

t

x

t

3

4~
~~~

3

4~

3

5

ˆ1
)(

2

2
~

2

1
~

3
~

~

2

2

ω
ω

ν
ω

ν
ω

σ

ν
ν

ωνν
σ

ν
ν

ρ
νν

ωωω

ω

 (6.10)

105

with boundary conditions

 0)(
~

 ,0)(,0)(,0)0(,0)0(,0)0(====== L
dy

d
L

dy

dk
L

dy

Vd

dy

dk
kV x

x

ω
 (6.11)

where L is the channel half-width. Applying the nondimensional definitions

dx

pd

u
p

Lu
R

uu

k
k

u

V
u

yu
y

τ

tx

ˆ
 , ,

~
~

 , , , ,
322

τ

τ

τττ

τ

ρ

ν

ν

νω
ω

ν

ν
ν

ν
≡≡≡≡≡≡≡

++++++ (6.12)

the model equations can be written as

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−−⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+−⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+−

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+=

+

+

++

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

++

+

+

dy

dk

dy

d

kC

C

kC

C

dy

du

C

CC

dy

d

dy

d

dy

dk

dy

d

dy

du

dy

dk

dy

d

p
dy

du

dy

dk
C

k

ωωω

σ

ν

ων

σ

ν

ν

ω

ν

ω

ω

ω

ω

ω

ων

ω

ν

~

3

4~~
1

5

4~

5

3

5

3
1

)1(,~

3
~

2
~

3

3
~

2
~

2

3
~

1
~

~

2

2

 (6.13)

with boundary conditions

 0)(
~

 ,0)(,0)(,0)0(,0)0(,0)0(======

+

+

+

+

+

+

+

+

++

τττ

ω

R
dy

d
R

dy

dk
R

dy

du

dy

dk
ku (6.14)

Near the channel wall, the Boussinesq-RANS equations reduce to the differential equation

 2)(
τ

νν u
y

V
x

t
=

∂

∂
+ (6.15)

or in nondimensional form,

 1)1(=
∂

∂
+

+

+

+

y

u
ν (6.16)

As 0→
+

y , 1<<
+

ν , and 1→
++

dydu and the k and ω~ equations can be simplified to

3
~

1
~

2

2

3
~

2
~

3

3
~

2
~

2

2

2

2

2

~

3

4
~~

3
~

3

ω

ων

ω

ω

ω

ω

ν

ωωω

ω

ω

C

CC

dy

kd

kC

C

kC

C

dy

d

k
C

dy

kd

−+=

−=

+

+

+

+

+

+

+

+

+

+

+

+

+

 (6.17)

The leading-order term in the Taylor series expansion of the solution at the wall can be expressed for the

two transport variables as

106

LLL

LLL

+−=
″

+=
′

+=

+−=
″

+=
′

+=

−
++

−
+++++

−
++

−
+++++

21

21

)1(~ ,~ ,)(~

)1(, ,)(

bbb

aaa

ybBbBbyByy

yaAakAaykAyyk

ωωω

 (6.18)

where the prime represents differentiation with respect to +

y . Using Eq. (6.18) in Eq. (6.17) gives

3
~

1
~2

3
~

2
~3

3

3
~

2
~2

2
2

2

)1(
3

4
)1(

33)1(

ω

ων

ω

ω

ω

ω

ν

C

CC
yaBa

C

C
y

A

B

C

C
ybBb

By

Ay
CyByaAa

babb

b

a

ba

−−+=−

−=−

−
+

−
+

−
+

+

+

+
−

+

 (6.19)

Equating the exponents gives

 baba −==− 22 (6.20)

which can be solved to yield

 2 ,6 == ba (6.21)

Using this in Eq. (6.19) gives the relations

)25(2

)205()25(8

)(

10

3
~

2
~

2
~

1
~

3
~

2
~

1
~

2

3
~

2
~

3

2
~

1
~

23

ωω

ωων

ωωωωω

ωων

ν

CC

CCC
B

CCCCC

CCC

CB

B
A

−

−
=

−+−

−
=

+

=

 (6.22)

Using Eqs. (6.21) and (6.22) in (6.18) gives the leading order terms

L

L

+

−

−

=

+

−+−

−

=

+++

+++

2

3
~

2
~

2
~

1
~

6

3
~

2
~

1
~

2

3
~

2
~

3

2
~

1
~

2

)25(2
)(~

)205()25(8

)(
)(

y
CC

CCC
y

y
CCCCC

CCC
yk

ωω

ωων

ωωωωω

ωων

ω

 (6.23)

From this solution, the leading order relationship for the nondimensional turbulent eddy viscosity can be

expressed as

 L+

−+−

−

==
+

+

+

+
4

3
~

2
~

1
~

3
~

2
~

2

2
~

1
~

2

)205)(25(4

)(
~ y

CCCCC

CCCk
C

ωωωωω

ωων

ν

ω

ν (6.24)

Equation (6.24) shows that the turbulent eddy viscosity approaches the wall as
4

+
y .

 Prandtl’s mixing length theory suggests that the eddy viscosity can be written in terms of a mixing

length, l, which can be used in Eq. (6.15) to give

107

 22

τ
ν u

y

V

y

V
xx =

∂

∂
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
+ l (6.25)

or in nondimensional form

 11
2

=
∂

∂
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
+

+

+

+

+

+

y

u

y

u
l (6.26)

where ν
τ
ull ≡

+

. Van Driest [88] proposed a near-wall empirical correlation for the mixing length which

matches experimental data very well

)]exp(1[++++

−−= Ayyκl (6.27)

where κ is the von Kármán constant, generally accepted to be 0.41, and +

A is a constant that depends on

the wall roughness. For a smooth wall, +

A is about 26. Using this along with Eq. (6.26) gives the Van

Driest expression for the turbulent eddy viscosity

+

+

+++

+

+

++

∂

∂
−−=

∂

∂
=

y

u
Ayy

y

u 22
2

2

)]exp(1[κν l (6.28)

As 0→
+

y , 1→∂∂
++

yu , and the near-wall expansion of Eq. (6.28) simplifies to

4

2

2

+

+

+

= y

A

κ

ν (6.29)

Therefore, the Van Driest equation also suggests that the eddy viscosity approaches the wall as
4

+
y .

Equating the constants in Eqs. (6.24) and (6.29) provides a relation for estimating closure coefficients

2

~
1

~

21

3
~

2
~

1
~

3
~

2
~)]205)(25[(

2
ωω

ωωωωω

ν

κ

CC

CCCCC

A
C

−

−+−
=

+
 (6.30)

Note that the product within the radical in the numerator must be positive. This can be accomplished in one

of four ways:

2
~

3
~

2
~

1
~

2
~

1
~

3
~

2
~

1
~

2
~

1
~

3
~

2
~

1
~

2
~

3
~

2
~

1
~

25 and 4)

or

205 and 3)

or

205 and 2)

or

25 and 1)

ωωωω

ωωωωω

ωωωωω

ωωωω

CCCC

CCCCC

CCCCC

CCCC

><

+<<

+>>

<>

 (6.31)

108

These constraints are further confined by the constraint that A and B in Eq. (6.22) must both be positive. By

inspection, if B is positive, A must also be positive. Therefore the constraints apply

2
~

3
~

2
~

1
~

2
~

3
~

2
~

1
~

25 and 2)

or

25 and 1)

ωωωω

ωωωω

CCCC

CCCC

><

<>

 (6.32)

These are the true constraints for the coefficients because these constraints are more confining than those in

Eq. (6.31).

 It is important to note that if the constraints given in Eq. (6.32) are adhered to, this k-ω~ model predicts

that k approaches the wall as 6
y and ω~ approaches the wall as 2

y . This differs from the traditional

dissipation-based turbulence models, which predict that k approaches the wall as 2
y . Note, however, that

both dissipation-based models and this model predict that the turbulent eddy viscosity approaches the wall

as 4
y . Because k is a turbulence quantity that can be measured experimentally, it may be insightful to

consider how each of these predictions for k compares with the physics of the flow. It is commonly

accepted that k approaches a smooth wall as 2
y for two main reasons. First, it can be shown analytically

that the lowest order at which k could approach a smooth wall is 2
y . Second, experimental data seems to

support this 2
y claim. Each of these seeming supporting evidences is discussed here.

 It can be shown analytically that it is possible for k to approach a smooth wall as 2
y . This is

commonly shown by first acknowledging that the fluctuating velocities must be zero at a smooth wall, just

as the average velocities go to zero. In other words, at a no-slip wall 0
~~~

===
zyx

VVV  just as 

0===
zyx

VVV . The continuity equation for the fluctuating velocities can be written as 

 0

~~~

=++

dz

Vd

dy

Vd

dx

Vd
zyx (6.33)

If y is the ordinate normal to the wall and x and z lie in the plane of the wall, gradients with respect to x and

z will be much smaller than gradients with respect to y and the continuity equation can be simplified to

 0

~

≅

dy

Vd
y

 (6.34)

109

Therefore, the Taylor series expansion for each of the velocity fluctuation terms near the wall is assumed to

take the form

)(),,(
~

)(),,(
~

)(),,(
~

2

32

2

yOyzyxfV

yOyzyxfV

yOyzyxfV

zz

yy

xx

+=

+=

+=

 (6.35)

where
x
f ,

y
f , and

z
f satisfy the governing equations of fluid motion and have an ensemble average of

zero. Using these Taylor series expansions in the definition for the turbulent kinetic energy gives a near-

wall approximation for k

)(
~~~ 3222

2

1222

2

1
yOyffVVVk

yxzyx
+⎟

⎠
⎞

⎜
⎝
⎛ +=⎟

⎠
⎞

⎜
⎝
⎛ ++≡  (6.36) 

which shows that the leading-order term is proportional to 2
y . The oversight of this analysis is that it does 

not prove that k must approach the wall as 2
y . This analysis shows that it must approach the wall at a 

power of y of at least two but it does not show that it can’t approach the wall at a higher power of y. In 

other words, this analysis puts a lower bound on the power of y but does not provide an upper bound. 

Therefore, k could approach a smooth wall as a higher power, although it could not approach a smooth wall 

as a lower power. 

 Some have cited experimental data that suggest that k approaches a wall as 2
y . The difficulty in 

justifying this asymptotic behavior of k on experimental data is twofold. First, it is difficult to get accurate 

measurements of the fluctuating components of velocity near a wall. Because of the nature of conducting 

experiments extremely close to a wall and the size of the instruments required for such measurements, very 

near-wall measurements for the fluctuating components of velocity are extremely difficult to obtain, and 

measurements are susceptible to considerable error. In order to claim near-wall asymptotic behavior, 

accurate measurements would be needed for 1<<
+

y . However, such data is virtually non-existent in the 

literature. For example, Laufer [57,60] published results down to 1≅
+

y , Metzger and Klewicki [89] 

published results down to 1≅
+

y , and Marusic, McKeon, Molnkewitz, Nagib, Smits, and Sreenivasan [90] 

published results down to 7≅
+

y . Second, although the experimental results that have been obtained are 

often reported as “smooth-wall” measurements, no measurements have ever been conducted on a perfectly 



110 

smooth wall. Those that report “smooth-wall measurements” generally mean “hydraulically smooth-wall 

measurements” for which it is assumed that roughness effects are negligible. It is true that roughness effects 

decay asymptotically as the wall roughness height approaches zero, and therefore, “hydraulically smooth” 

is a perfectly valid term for this region of wall roughness. However, although the fluctuating components of 

velocity become very small at a hydraulically smooth surface, they only go to exactly zero at a perfectly 

smooth surface. Therefore, the turbulent kinetic energy, k, cannot be exactly zero at a surface unless that 

surface is a perfectly smooth surface. Because no physical surface is perfectly smooth, although k may be 

very small at a hydraulically smooth surface, it must be a nonzero constant for every physical experiment 

ever conducted. 

 Based on the discussion presented here, it is the opinion of the author that there is insufficient evidence 

to claim that k approaches the wall as 2
y  for a perfectly smooth surface. The behavior of k near a smooth 

wall as predicted by this k-ω~  model is just as plausible as the behavior of k predicted by dissipation-based 

models. More insight into the near-wall behavior of k can be gleaned from examining a system of equations 

that is analogous to this k-ω~  model. 

 Before continuing this discussion, it may be worth mentioning that if the near-wall solution of this 

model is to be numerically evaluated, a sixth-order algorithm must be used in order to capture the correct 

behavior of k . Most CFD algorithms in use today are second-order accurate and would therefore be 

incapable of correctly implementing this model. Traditional dissipation-based turbulence models show that 

k  approaches the wall as 2
y , and therefore, second-order CFD implementations are capable of capturing 

the near-wall behavior of k  for such models. 

 

C.  A Closed-Form Analog 

 Much can be learned about the behavior of the system of equations given in Eq. (6.13) by studying a 

system of equations that has similar characteristics in the limit as 0→y . Consider the system of equations 

 
2

2

12

2

2

2

2

4

12

2

2

2 ~

        ,
~

        ,1 B
dy

du
B

dy

d
A

dy

du
yA

dy

kd

dy

ud
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=−=

ω

ω  (6.37) 



111 

where 
1
A , 

2
A , 

1
B , and 

2
B  are the model constants. The boundary conditions that are analogous to the fully 

developed channel or pipe flow boundary conditions are 

 0)1(
~

        ,0)1(        ,0)1(        ,0)0(        ,0)0(        ,0)0( ======

dy

d

dy

dk

dy

du

dy

dk
ku

ω
 (6.38) 

We wish to determine constants for this system of equations such that this system has similar near-wall 

behavior as the k-ω~  model given in Eq. (6.13). Integrating the u  equation and applying the boundary 

conditions 0)0( =u  and 0)1( =dydu  gives 

 y
dy

duy
yu −=−= 1      ,

2

2

 (6.39) 

Integrating the ω~  equation and using the solution for u  gives 

 
112

2

1

31 )(
3

~
CyBByBy

B

dy

d
+−++−=

ω
 (6.40) 

Applying the boundary condition 0)1(~
=dydω  gives 

 
2

1

1
3

B
B

C −=  (6.41) 

We wish the solution for ω~  to have a lowest order of 2
y . This requires 

 
21

3BB =  (6.42) 

Using this relation and integrating again gives 

 
2

23

2

4

2
4

1~ CyyByB +−+−=ω  (6.43) 

Squaring ω~  and using it in the k equation gives 

 

( )

2

22

2

222

3

222

4

1

2

22222

5

1

2

22

6

1

2

22

2

22

72

22

82

222

2

22
2

1

22
2

1

2

1

48

1

CAyBCAyBCAyABACBA

yABAyABABAyBAyBA
dy

kd

+−+⎟
⎠

⎞
⎜
⎝

⎛
−+−+

+−+⎟
⎠

⎞
⎜
⎝

⎛
−++−=

 (6.44) 

Integrating gives 

 

( )

3

2

22

3

222

4

222

5

1

2

22222

6

1

2

22

7

1

2

22

2

22

82

22

92

22

3

2

2

1

2

1

5

1

22
6

1

2

1

7

1

16

1

432

1

CyCAyBCAyBCAyABACBA

yABAyABABAyBAyBA
dy

dk

++−+⎟
⎠

⎞
⎜
⎝

⎛
−+−+

+−+⎟
⎠

⎞
⎜
⎝

⎛
−++−=

 (6.45) 



112 

Applying the boundary condition 0)0( =dydk  gives 

 0
3
=C  (6.46) 

Applying the boundary condition 0)1( =dydk  gives 

 
90

7

3

7

8
18014412

21

2

12

2

2

22

2

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−±

=
A

A
BBB

C  (6.47) 

Because we wish the solution for ω~  to have a lowest order of 2
y , the relation 

 
90

7

3

7

8
18014412

0

21

2

12

2

2

22

2

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−±

==
A

A
BBB

C  (6.48) 

must hold. This is possible only if 

 
2

12

2
8

3

A

A
B =  (6.49) 

However, this condition is not sufficient to force 0
2
=C . Even if the condition in Eq. (6.49) is met, there are 

two solutions for 
2

C  

 
222

15

4
or        ,0 BCC ==  (6.50) 

Using the solution 0
2
=C  in Eq. (6.45) and integrating gives 

 

( )
4

6

1

2

22222

7

1

2

22

8

1

2

22

2

22

92

22

102

22

2

1

30

1
22

42

1

2

1

56

1

144

1

4320

1

CyABACBAyABA

yABABAyBAyBAk

+⎟
⎠

⎞
⎜
⎝

⎛
−+−++−+

⎟
⎠

⎞
⎜
⎝

⎛
−++−=

 (6.51) 

Applying the boundary condition 0)0( =k  gives 

 0
4
=C  (6.52) 

Choosing 

 1     ,3     ,3     ,8
2121

−=−=−=−= BBAA  (6.53) 

gives the system of equations 

 13

~

        ,
~

38        ,1

2

2

2

2

2

4

2

2

2

2

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=−=

dy

du

dy

d

dy

du
y

dy

kd

dy

ud ω

ω  (6.54) 



113 

with the solution 

 

432

109876

2

4

1~

480

1

48

1

16

1

21

5

6

1

2

yyy

yyyyyk

y
yu

+−=

−++−=

−=

ω

 (6.55) 

However, this is not a unique solution. Using the second solution from Eq. (6.50), 154154
22

−== BC  

gives 

 

432

109876542

2

4

1

15

4~

1440

1

48

1

16

1

21

5

50

9

25

2

15

2

75

8

2

yyy

yyyyyyyyk

y
yu

+−−−=

−++−+−+−=

−=

ω

 (6.56) 

Thus, the system of differential equations has two solutions, and a computer algorithm may tend to favor 

one solution over the other. Note that the solution in Eq. (6.56) results in negative values for k  and ω~  near 

the wall. A similar anomaly may be exhibited by the system of equations given in Eq. (6.13). However, the 

correct solution to that system cannot have negative values for k  or ω~ . Therefore, only one viable solution 

should exist for that system of equations even if it also exhibits the characteristic of having a higher-order 

solution that is positive across the entire domain and a lower-order solution that is negative over some 

portion of the domain. 

 Note that the relationship between the closure coefficients given in Eqs. (6.42) and (6.49) are vital to 

creating a system of equations that exhibits the correct asymptotic behavior near a smooth wall. A similar 

characteristic here can also observed in Eq. (6.23) for the k-ω~  model. For example, if 
2

~
1

~
ωω

CC = , the order 

at which k  and ω~  approach the wall changes. Therefore, just like this closed-form example, the near-wall 

results of the k-ω~  turbulence model are sensitive to the closure coefficients chosen for the model. 

 Using an eighth-order finite-difference algorithm, the system of equations given in Eq. (6.54) with 

boundary conditions given in Eq. (6.38) was solved. The algorithm employs successive under-relaxation in 

an iterative manner until convergence was reached. In order to ensure that the solution given in Eq. (6.55) 



114 

was obtained rather than that in Eq. (6.56), the solutions for k  and ω~  were limited to positive numbers 

following each iteration. Uniform grid spacing was used for grids with 51, 101, and 201 nodes. The results 

for k  and ω~   are shown in Figs. 6.1 and 6.2. 

  The results are shown here on log-log plots so that the near-wall asymptotic behavior of k  and ω~  

can be observed. The exact solution given in Eq. (6.55) is included to demonstrate that the eighth-order 

algorithm used for the solution procedure is capable of capturing the high-order phenomenon near the wall. 

Note that even with a relatively coarse grid, the algorithm is capable of solving for the near-wall behavior 

of the solution. Similar near-wall behavior would be expected for the solution of the k -ω~  model, and 

therefore a high-order algorithm similar to that used for this solution would be needed to solve the k -ω~  

model in the presence of a perfectly smooth wall. High-order characteristics of the Phillips energy-vorticity 

model near a perfectly smooth wall are exhibited even with other closure methods. Another promising 

closure method, the k-ζ  model, is included here. 

 

 

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

10−2 10−1 100

y

k

51
101
201

k exact

 

Fig. 6.1  Numerical solution for k in the closed-form analog to the k-ω~  model. 

 



115 

10−5

10−4

10−3

10−2

10−1

100

10−2 10−1 100

y

ω~

51
101
201

ω~ exact

 

Fig. 6.2  Numerical solution for ω~  in the closed-form analog to the k-ω~  model. 

III.  Enstrophy Closure: A k-ζ  Model 

 The Phillips energy-vorticity turbulence model could be closed as an energy-enstrophy model, or k-ζ  

model, including an expression for the kinematic eddy viscosity 

 ζν
ν
kC

t
=  (6.57) 

the turbulent-kinetic-energy equation 

 
( )

)]}([){(2])[(

)]}([{42)(

3

5

2

3

4

VS

VS)V(S)V(SV

v

v

v

v

v

v

v

v

tktkt

tt

k

kk
t

k

νσννσνν

νζνν

⋅∇+⋅∇−∇+⋅∇+

⋅∇⋅∇−∇+−⋅=∇⋅+
∂

∂

 (6.58) 

and a model version for the enstrophy transport equation 

 

( )
)]}([){(])[(

)]}([{42

43

2

3

4

21

VS

VS)V(S)V(SV

v

v

v

v

v

v

v

v

tktt

tt

k
CC

k
k

C
k

C
t

νσνν
ζ

ζσνν

νζ
ζ

ν
ζ

νζ
ζ

ζζζ

ζζ

⋅∇+⋅∇−∇+⋅∇+

⋅∇⋅∇−∇+−⋅=∇⋅+
∂

∂

 (6.59) 

 Applying the assumption that the gradients in the flow are normal to the mean flow velocity vector 

gives what will be called the Phillips boundary-layer flow k-ζ  model 



116 

 

])[()(2

])[()(2)(

3

2

3

4

21

3

52

3

4

ζσννζ
ζ

ν
ζ

νζ
ζ

σννζνν

ζν

ζζζζ

ν

∇+⋅∇+∇+−⋅=∇⋅+
∂

∂

∇+⋅∇+∇+−⋅=∇⋅+
∂

∂

=

tt

ktt

t

Ck
k

C
k

C
t

kkk
t

k

kC

)V(S)V(SV

)V(S)V(SV

v

v

v

v

v

v

v

v

 (6.60) 

Again, this model alleviates all of the concerns mentioned in Chapter 2, except concerns number 7 and 8. 

The second transport equation used in this model is, again, not derived rigorously from physical 

phenomenon. However, because enstrophy is a transport property, it can be expected that its transport could 

be modeled in a form similar to that given in Eq. (6.59). This closure method will be considered here in 

terms of its behavior near a perfectly smooth wall but could be extended to rough walls at a later date. 

 

A.  Homogeneous, Isotropic Turbulence 

 For the case of decaying homogeneous turbulence, all gradients in the flow are zero, and the model 

transport equations reduce to the form 

 νζ−=
∂

∂

t

k
 (6.61) 

 
k

C
t

2

2

ζ
ν

ζ
ζ−=

∂

∂
 (6.62) 

Applying Eq. (6.5) to Eq. (6.61) gives 

 
21 )(

)1(
      ,

)( ++

+

+
−=

+
=

aa
Bt

aaC

dt

d

Bt

aC

ν

ζ

ν
ζ  (6.63) 

Using Eqs. (6.5) and (6.63) in Eq. (6.62) gives 

 1
2

+= aCζ  (6.64) 

Using 2.1=a  gives the initial estimate 2.2
2
=ζC . 

 

B. Smooth-Wall Behavior 

 The model can be written in Cartesian coordinates for steady, fully developed channel flow including 

the continuity, RANS, turbulent-kinetic-energy, and RMS-turbulent-vorticity equations as 



117 

 

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+−

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

dy

dk

dy

d

k
C

dy

Vd

k
C

dy

d
C

dy

d

dy

dk

dy

d

dy

Vd

dy

dk

dy

d

dx

pd

dy

Vd

dy

d

x

t

t

x

t

k

t

x

t

3

4

3

4

3

5

ˆ1
)(

2

2

13

2

ζ
ζ

ν
ζ

ν
ζ

σ

ν
ν

ζνν
σ

ν
ν

ρ
νν

ζζζ
ζ

 (6.65) 

with boundary conditions 

 0)(        ,0)(        ,0)(        ,0)0(        ,0)0(        ,0)0( ====== L
dy

d
L

dy

dk
L

dy

Vd

dy

dk
kV x

x

ζ
 (6.66) 

Applying the nondimensional definitions given in Eq. (6.12) along with the definition 

 
4

2

τ

ζν
ζ

u
≡

+  (6.67) 

the model equations for fully developed flow can be written as 

 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+−⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+−⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+−

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+=

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+++

dy

dk

dy

d

kC

C

dy

du

C

CC

dy

d

dy

d

dy

dk

dy

d

dy

du

dy

dk

dy

d

p
dy

du

dy

d
kC

k

3

4
1

3

4

5

3

5

3
1

)1(      ,

3

2

2

3

1

2

ζ
ζ

ζ
ζ

σ

ν

ζν
σ

ν

νζν

ζ

ζ

ζ

ζν

ζ

ν

 (6.68) 

with boundary conditions 

 0)(        ,0)(        ,0)(        ,0)0(        ,0)0(        ,0)0( ======

+

+

+

+

+

+

+

+

++

τττ

ζ
R

dy

d
R

dy

dk
R

dy

du

dy

dk
ku  (6.69) 

 The leading-order solutions for +

k  and +ζ  can be helpful in evaluating closure coefficients. The 

leading-order term in the Taylor series expansion of the solution at the wall can be expressed for the two 

transport variables as 

 

⎟
⎠
⎞

⎜
⎝
⎛+−=

″
⎟
⎠
⎞

⎜
⎝
⎛+=

′
⎟
⎠
⎞

⎜
⎝
⎛+=

⎟
⎠
⎞

⎜
⎝
⎛+−=

″
⎟
⎠
⎞

⎜
⎝
⎛+=

′
⎟
⎠
⎞

⎜
⎝
⎛+=

−
+

−
+++

−
++

+
++++

−
+

−
+++

−
++

+
++++

1211

1211

)1(    ,    ,)(

)1(    ,    ,)(

bbbbbb

aaaaaa

yOybBbyOBbyyOByy

yOyaAakyOAaykyOAyyk

ζζζ

 (6.70) 



118 

where the prime represents differentiation with respect to +

y . Near the channel wall, 0→
+

y , 

1→
++

dydu , and 1<<
+

ν , and the k  and ζ  equations can be simplified to 

 

+

+

+

+

+

+

+

+

+

+

+

+

+

+

−+≅

−≅

ζ
ζζζ

ζ
ζ

ζ

ζν

ζ

ζ

ζ

ζ

ν

3

1

2

2

3

2

2

3

2

2

2

2

2

3

4

33

C

CC

dy

kd

kC

C

kC

C

dy

d

k
C

dy

kd

 (6.71) 

Using the leading-order terms from Eq. (6.70) in Eq. (6.71) gives 

 

2/
2/1

3

12

3

2

2
2

3

22

2/
2/1

2

)1(
3

4
)1(

33)1(

ba

a

b

a

b

b

b

a

ba

yB
C

CC
yaAa

Ay

By

C

C

Ay

yB

C

C
ybBb

yB

Ay
CByyaAa

+
−

+

+

+

+

+
−

+

+

+

+
−

+

−−+=−

−=−

ζ

ζν

ζ

ζ

ζ

ζ

ν

 (6.72) 

Equating the exponents gives 

 
2/22

2/2

babb

baba

=−=−

−==−

 (6.73) 

which can be solved to give 

 4     ,6 == ba  (6.74) 

Using this in Eq. (6.72) gives the relations 

 

2

2

2

2

)10(

)10(

−

=

−

=

C

CC

R

C
B

RR

C
A

ν

ν

 (6.75) 

where 

 
)(

)101240(

21

132

ζζ

ζζζ

CC

CCC
R
C

−

+−

≡  (6.76) 

Using Eqs. (6.75) and (6.76) in (6.70) gives the leading order terms 

 

⎟
⎠
⎞

⎜
⎝
⎛+

−
=

⎟
⎠
⎞

⎜
⎝
⎛+

−
=

++++

++++

54

2

2

76

2

2

)10(
)(

)10(
)(

yy
R

C
y

yy
RR

C
yk

C

CC

O

O

ν

ν

ζ

 (6.77) 



119 

Note that this form of the energy-vorticity model also predicts that k approaches a perfectly smooth wall as 

6
y . From this solution, the leading order relationship for the nondimensional turbulent eddy viscosity can 

be expressed as 

 L+

−

==
+

+

+

+
4

2

)10(
y

RR

Ck
C

CC

ν

ν

ζ
ν  (6.78) 

Equation (6.78) shows that the turbulent eddy viscosity approaches the wall as a constant multiplied by 

4
+

y , just as the Van Driest equation suggests. Equating the constants in Eqs. (6.78) and (6.29) provides a 

relation for estimating closure coefficients 

 )10( −=

+ CC
RR

A
C

κ

ν
 (6.79) 

The near-wall behavior of this model can perhaps be better understood by considering a closed-form 

system of equations that is analogous to this turbulence model. 

 

C.  A Closed-Form Analog 

 

1.  Perfectly Smooth Wall 

 Consider the three second-order differential equations that are analogous to Eq. (6.68) 

 2

2

2

2

12

2

2

2

4

12

2

2

2

        ,        ,1 yC
dy

du
yC

dy

d
C

dy

du
yC

dy

kd

dy

ud
kk ζζ

ζ
ζ +⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=−=  (6.80) 

These equations are similar to the k-ζ  turbulence model and require six boundary conditions to ensure a 

unique solution. In keeping with the similarity of the turbulence model, let us apply the following boundary 

conditions 

 0)1(        ,0)1(        ,0)1(        ,0)0(        ,0)0(        ,0)0( ======

dy

d

dy

dk

dy

du

dy

dk
ku

ζ
 (6.81) 

This can be analytically integrated to yield 



120 

 

21

2

1214125161

2

21

2

123212

6

1

1227

1

12812

1

2

20

3

84

1

105

1

33012

)(

1030

20

3

84

1

105

1

23306

12

)(

30

1
2

1042

1

3056

1

2

ζζ
ζζζζζζ

ζζ
ζζ

ζζζζ

ζ CC
C

C
y

CC
y

CC
y

C
y

C

yCC
C

CC
y

CCC

yC
CCC

yC
CC

y
CC

Ck

y
yu

k

k

k

kkk

k

k

k

kk

k

+−+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

−
++−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−=

−=

 (6.82) 

If we desire a solution where ζ  approaches the wall as 4
y  and k approaches the wall as 6

y , the relations 

must hold 

 
2

1

221
13

4
      ,10

k

k

C

C
CCC −== ζζζ  (6.83) 

From this we see that the constants must be related not only to each other in the ζ  equation, but the 

constants between the two transport equations must also be related if a solution is desired that matches the 

near-wall behavior of the k-ζ  model. This can also be shown through a near-wall order analysis as follows. 

 Beginning with the equations 

 2

2

2

2

12

2

2

2

4

12

2

2

2

        ,        ,1 yC
dy

du
yC

dy

d
C

dy

du
yC

dy

kd

dy

ud
kk ζζ

ζ
ζ +⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=−=  (6.84) 

Integrating the u-equation and applying the boundary condition 0)1( =dydu  gives the set of equations 

 

4

1

3

1

2

122

2

2

6

1

5

1

4

12

2

2)(

2        ,1

yCyCyCC
dy

d

CyCyCyC
dy

kd
y

dy

du
kkkk

ζζζζ

ζ

ζ

−+−=

+−+−=−=

 (6.85) 

Near the wall, these equations have the solution 

 

L

L

L

+++=

+++=

+++=

2

210

2

210

2

210

)(

)(

)(

yCyCCyu

yByBBy

yAyAAyk

ζ  (6.86) 

Applying the wall boundary conditions 

 0)0(        ,0)0(        ,0)0( ===

dy

dk
ku  (6.87) 

gives the near-wall solution 



121 

 

L

L

L

+++=

+++=

+++=

3

3

2

21

2

210

4

4

3

3

2

2

)(

)(

)(

yCyCyCyu

yByBBy

yAyAyAyk

ζ  (6.88) 

Using Eq. (6.87) in the u-equation and equating exponents gives  

 
2

1
     ,11)2(

2121
−==→−=++ CCyyCC L

 (6.89) 

This gives the new near-wall solution 

 

2

2

210

4

4

3

3

2

2

2

1
)(

)(

)(

yyyu

yByBBy

yAyAyAyk

−=

+++=

+++=

L

L

ζ  (6.90) 

with the differential equations 

 

4

1

3

1

2

122

2

2

6

1

5

1

4

12

2

2)(

2

yCyCyCC
dy

d

CyCyCyC
dy

kd
kkkk

ζζζζ

ζ

ζ

−+−=

+−+−=

 (6.91) 

Using Eq. (6.90) in Eq. (6.91) gives 

 
4

1

3

1

2

1232

102

6

1

5

1

4

132

2)()62(

)(2)62(

yCyCyCCyBB

yBBCyCyCyCyAA
kkkk

ζζζζ −+−=++

+++−+−=++

L

LL

 (6.92) 

This yields 

 0    ,0    ,
6

    ,
2

321

2

30

2

2
==== BBB

C
AB

C
A

kk  (6.93) 

and gives the near-wall solution 

 

L

L

+++=

+++=

4

410

4

4

3

1

22

0

2

)(

62
)(

yByBBy

yAyB
C

yB
C

yk kk

ζ

 (6.94) 

Repeating this process will never tell us anything about 
0

B  and 
1

B . However, the process can be repeated 

to yield  

 

4

1

3

1

2

12

4

6

3

5

2

4

6

6

5

5

4

4102

6

1

5

1

4

1

6

8

5

7

4

6

3

5

2

41202

2)()302012(

)(2                  

)5642302012(

yCyCyCCyByByB

yByByByBBCyCyCyC

yAyAyAyAyAyBCBC

kkkk

kk

ζζζζ −+−=+++

++++++−+−

=+++++++

L

L

L

 (6.95) 



122 

This gives 

 

0    ,
30

    ,
10

    ,
12

)(

0    ,
3056

1

10
2

42

1
    ,

12

)(

30

1
    ,0    ,0

7

1

6

1

5

12

4

9

12

18

12

171

122

654

=−==
−

=

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−
===

∞−

∞−

B
C

B
C

B
CC

B

A
CC

CA

CC
CAC

CCC
AAA

k

k

k

kk

k

ζζζζ

ζ

ζζζ

 (6.96) 

with the solution 

 

6151412

10

812

1

712

1

6

1

1223

1

22

0

2

301012

)(
)(

3056

1

10
2

42

1

12

)(

30

1

62
)(

y
C

y
C

y
CC

yBBy

y
CC

Cy
CC

C

yC
CCC

yB
C

yB
C

yk

k

k

k

k

k

kkk

ζζζζ

ζζ

ζζ

ζ −+
−

++=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
++=

 (6.97) 

The final two constants, 
0

B  and 
1

B , are found by applying the two boundary conditions at the centerline 

 0)1(        ,0)1( ==

dy

d

dy

dk ζ
 (6.98) 

Taking the first derivative of Eq. (6.97) and applying Eq. (6.98) gives 

 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

+−=

2

1

1

21

2

1

0

103

1

20

3

84

1

105

1

ζ
ζ

ζζ

C
C

B

CC
C

C
B

k

k

 (6.99) 

which gives the complete solution 

 

6151412

2

1

21

2

1

812

1

712

1

6

1

122

3

2

122

21

2

12

2

301012

)(

103

1

20

3

84

1

105

1

3056

1

10
2

42

1

12

)(

30

1

101820

3

84

1

105

1

2

2

y
C

y
C

y
CC

yC
C

CC
C

C

y
CC

Cy
CC

CyC
CCC

yC
CC

yCC
C

CC
k

y
yu

k

k

k

k

k

kk

k

k

k

kk

ζζζζ
ζ

ζ
ζζ

ζζζζ

ζ
ζ

ζζ

ζ −+
−

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−++−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−=

−=

 (6.100) 

Again we find that if we desire a solution where ζ  approaches the wall as 4
y  and k approaches the wall as 

6
y , the relations given in Eq. (6.83) must hold. It is interesting to note also that the same set of closure 



123 

coefficients that would cause k to approach the wall at a different power also cause ζ  to approach the wall 

at a different power. As was the case with the previous closed-form system of equations given in Eq. 

(6.37), the behavior of this closed-form system can be very sensitive to the closure coefficients chosen for 

the model. Changing the closure coefficients can change the fundamental characteristics of the model near 

the wall. 

 

2.  Rough Wall 

 An alternate solution to this system of equations can be developed by applying a different set of 

boundary conditions that may be more appropriate for a rough-wall turbulence model. Such an exercise 

may provide insight into the behavior of the k-ζ  model for rough walls. Consider the three second-order 

differential equations 

 2

2

2

2

12

2

2

2

4

12

2

2

2

        ,        ,1 yC
dy

du
yC

dy

d
C

dy

du
yC

dy

kd

dy

ud
kk ζζ

ζ
ζ +⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=−=  (6.101) 

Again, these equations require six boundary conditions to ensure a unique solution. In keeping with the 

similarity of a rough-wall turbulence model, let us apply the following boundary conditions 

 0)1(        ,0)1(        ,0)1(        ,)0(        ,)0(        ,0)0(
00

======

dy

d

dy

dk

dy

du
kku

ζ
ζζ  (6.102) 

This system can be solved to yield 

 

02

14125161

0021

2

1

2

2023

2

12

6

1

1227

1

12812

1

2

103

1

12

)(

1030

20

3

84

1

105

1

21018

12

)(

30

1
2

1042

1

3056

1

2

ζζ

ζ
ζ

ζ
ζζζζζ

ζζζ
ζ

ζζζζ

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

−
++−=

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+−++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−=

−=

yC
C

y
CC

y
C

y
C

kyCC
C

C
Cy

C
yC

CC

yC
CCC

yC
CC

y
CC

Ck

y
yu

k

k

k

kk

k

k

k

kk

k

 (6.103) 

 This solution differs from that given in Eq. (6.100) only by the boundary conditions that were applied. 

For the smooth-wall solution given in Eq. (6.100), two boundary conditions were applied to the k equation 



124 

at the wall, and none were applied to the ζ  equation at the wall. If the second boundary condition is 

removed on k in favor of a wall boundary condition for ζ , the solution shown in Eq. (6.103) results.  

 Expressing the solution in the form shown in Eq. (6.103) allows some interesting characteristics of the 

solution to be observed. For example, it can be seen that even if 0
0
=k  and 0

0
=ζ , certain combinations of 

closure coefficients can cause the solutions for k and ζ  to approach the wall at various powers of y. If a 

solution is desired that is analogous to the system of equations given in Eq. (6.68) near a perfectly smooth 

wall, the relations must hold exactly 

 
2

1

22100
13

4
    ,10    ,0    ,0

k

k

C

C
CCCk −==== ζζζζ  (6.104) 

Additionally if the closure coefficients are chosen to satisfy Eq. (6.83), any nonzero value for 
0

ζ  results in a 

solution for k that has components proportional to 1
y  and 2

y . Thus we see that the solution of these 

equations near a perfectly smooth wall is sensitive to the closure coefficients chosen for the model. On the 

other hand, for rough walls, 0
0
≠k  and 0

0
≠ζ , and the solution very near a wall becomes less sensitive to 

the closure coefficients. If this behavior is indicative of the behavior of the k-ζ  model for rough walls, it 

may be beneficial to study the k-ζ  model in the presence of rough walls before attempting to develop the 

model coefficients for perfectly smooth walls. 

 

IV.  Summary and Conclusions 

 Two formulations of Phillips energy-vorticity model have been discussed in this chapter. These include 

the k-ω~  and k-ζ  formulations which each address all the concerns presented at the beginning of Chapter 2 

except for concerns numbered 7 and 8. Both of these formulations predict that k approaches the wall as 6
y , 

which goes against mainstream acceptance that k should approach a smooth wall as 2
y . It has been shown 

that the analysis and experimental data often cited in support of this mainstream assertion is insufficient to 

prove the 2
y  behavior, and therefore, these models could give insight into the true behavior of k near a 

perfectly smooth wall. 



125 

 Two closed-form systems of equations that are analogous to the turbulence model formulations were 

also presented in this chapter. These closed-form solutions exhibit behaviors that suggest why solutions to 

the k-ω~  and k-ζ  models for perfectly smooth walls may be difficult to obtain. It has been shown that 

multiple solutions exist for the closed-form analog to the k-ω~   model and that solutions to both closed-form 

systems can be highly sensitive to the closure coefficients chosen. These closure coefficients can determine 

the order at which the models approach a perfectly smooth wall. Additionally, application of boundary 

conditions similar to those that would be used at a rough wall may alleviate some of the difficulties 

associated with the turbulence models near a wall. 

 Because this near-wall region for the turbulence models presented in this chapter seem to be highly 

sensitive to closure coefficients and can even be sensitive to solution algorithms, the work from this point 

on focuses on the behavior of turbulence models in the presence of rough walls rather than perfectly 

smooth walls. Such an approach will address Concern #8 mentioned in Chapter 2. The analysis in this 

chapter suggests that developing a turbulence model for rough walls and extending it to hydraulically 

smooth walls by looking at its asymptotic behavior as  0
0
→k  may be more straight forward than 

developing a turbulence model for perfectly smooth walls and extending the model to handle surface 

roughness. Extending this concept one step further, it may make even more sense to develop a turbulence 

model for high roughness Reynolds numbers where certain flow properties become independent of 

roughness Reynolds number (as shown in Fig. 2.1) and extend the model to lower roughness Reynolds 

numbers as the model matures. This is the philosophy pursued in the following chapter where a turbulence 

model for fully rough pipe flow is presented that is based on the Phillips energy-vorticity model. 

 

 



126 

CHAPTER 7 

DEVELOPMENT OF THE PHILLIPS k-λ MODEL FOR FULLY ROUGH PIPE FLOW 

I.  Introduction 

 It has been shown in previous chapters that modeling turbulent behavior near perfectly smooth walls 

can present significant numerical difficulties. Additionally, because there is no such thing as a perfectly 

smooth wall, all experimental data available has been taken near walls with some degree of roughness. 

Furthermore, because certain flow properties become independent of roughness Reynolds number at high 

roughness Reynolds numbers, the argument has been made that developing a model for fully rough flow 

may be more straight forward than developing a model that exhibits the correct behavior near a perfectly 

smooth wall. Such a model could then be extended to lower roughness Reynolds numbers, perhaps even to 

the hydraulically smooth wall asymptote. The first step in this process is to develop a turbulence model that 

is consistent for high roughness Reynolds numbers. 

 Many wall-bounded flows including channel, boundary layer, and pipe flows have been used to 

evaluate the effects of surface roughness. However, fully developed flow in a pipe has historically been the 

foundational case and has been studied in great detail. This flow scenario makes an ideal case for 

evaluating the effects of surface roughness because the bulk flow properties such as the mass flow rate and 

wall shear stress are easily measured in an experimental setting. A wealth of experimental data exists for a 

range of wall roughness values from which empirical relations have been developed. Because flow in a 

pipe is so well understood and established, any viable turbulence model should be capable of predicting the 

bulk flow properties for this flow scenario. This scenario was chosen as the beginning point in the 

development of the Phillips k-λ model. The following sections present an overview of some of the 

fundamental work on rough pipe flow, and conclude with the development of one possible closure for the 

Phillips k-λ model. 

 



127 

II.  Rough Pipe Flow 

A.  Fundamental Relations and Definitions 

 Fully developed pipe flow is one of the best-understood turbulent flow cases. As flow enters a pipe, a 

boundary layer develops along the pipe wall. As the flow moves downstream, the boundary layer 

eventually fills the entire pipe, and the flow reaches the fully developed state. In this state, the gradients of 

the mean turbulent properties are zero in both the azimuthal and axial directions of the pipe, and the case 

can be simplified to a one-dimensional flow as a function of pipe radius. The governing equations for fully 

developed flow in a pipe are developed in detail in Appendix C. A few of the most important relations are 

included here. 

 The Boussinesq-RANS equations for fully developed pipe flow can be simplified to a single equation 

and the no-slip wall boundary condition 

 0)(           ,
)(

2

=

+

−= RV
R

ru

dr

Vd
z

t

z

νν

τ  (7.1) 

It can be shown that the wall shear stress is related to the pressure drop in the pipe according to 

 
dz

pdR

dr

Vd

Rr

z

w

ˆ

2
−=−≡

=

μτ  (7.2) 

The pressure drop can easily be measured along the length of a pipe and the wall shear stress directly 

computed. The wall shear stress is generally expressed in terms of the Darcy friction factor 

 
2

bulk

8
4  

V
CfactorfrictionDarcy w

f
ρ

τ
≡≡  (7.3) 

where fC  is the Fanning friction factor also called the skin-friction coefficient and the bulk velocity is 

defined as 

 ∫
=

≡

R

r
z
rdrV

R

V
0

2bulk

2
 (7.4) 

The bulk Reynolds number is defined as 

 ν
h

DV
bulke

R ≡  (7.5) 



128 

where 

 RD
h

2=  (7.6) 

is the hydraulic diameter based on the pipe radius, R. Experimentally, the bulk velocity can be measured 

from the mass flow rate or volume flow rate through the pipe. The friction velocity is defined as  

 ρτ
τ w
u ≡  (7.7) 

and is commonly used to nondimensionalize many flow properties. The following nondimensional 

definitions are useful for pipe flow 

 

ττ

τ

ττ

τ

ττ

τ

τ

τ

νν

ρ

ν

νν

ν

RRuR

u

uudz

pd
p

rR
RrRurRu

y

u

V
u

Ru
R

R

r
r z

222ˆ

),ˆ1(
)1()(

,    ,    ,ˆ

2

33
−=−=−=≡

−=

−

=

−

≡

≡≡≡

+

+

+

 (7.8) 

Using these definitions, the Boussinesq-RANS equation including the no-slip wall boundary condition can 

be written in nondimensional forms as 

 

0      ,
)1(

)1(

0          ,
)1(

ˆ

ˆ

0

1ˆ

=

+

−
=

=

+

−=

=

+

+

+

+

+

=

+

+

+

+
y

r

u
Ry

dy

du

u
rR

rd

du

ν

ν

τ

τ

 (7.9) 

and the bulk velocity, bulk Reynolds number, and Darcy friction factor can be expressed as 

 
2

bulk

bulke

1

0ˆ

bulk

bulk
)(

8
4      ,2R      ,ˆˆ2

+

+

=

++

≡≡≡≡ ∫
u

CRurdru
u

V
u f

r
τ

τ

 (7.10) 

 One of the most well-established properties of fully developed turbulent pipe flow is the relation 

between the wall shear stress, the bulk Reynolds number, and the wall roughness. The wall roughness is 

commonly characterized in terms of the ratio of the equivalent sand grain roughness to the pipe diameter. 

Here we define this ratio as 

 
R

k
k

s

r

2
≡  (7.11) 



129 

This is commonly termed the relative roughness. Modern notation has elected to express the relative 

roughness as Dk
r

ε=  where ε denotes the surface roughness and D is the pipe diameter. Although this 

notation has gained popularity and is used in several modern fluid mechanics books, the classical notation 

shown in Eq. (7.11) will be used throughout this work to avoid confusion with the notation for dissipation 

which is nearly universally given the symbol ε. The roughness Reynolds number is defined as 

 
τ

τ

ν

Rk
ku

k
r

s

s
2=≡

+  (7.12) 

Equation (7.12) can be rearranged to yield a convenient expression for evaluating the shear Reynolds 

number, 
τ

R , as a function of the relative roughness and roughness Reynolds number. 

 
r

s

k

k
R

2

+

=
τ

 (7.13) 

It is easily shown that combining Eqs. (7.10) and (7.12) gives an expression for the roughness Reynolds 

number as a function of the relative roughness, Reynolds number, and friction factor 

 84R
e frs Ckk =

+  (7.14) 

These terms are used throughout this work, although modern convention deviates somewhat from these 

original definitions. 

 

B.  Mixing-Length Theory 

 The foundational theory from which turbulent flow in pipes was originally studied is the mixing-length 

theory of Prandtl [22]. This theory is built on a semi-empirical relation that the turbulent eddy viscosity can 

be expressed as  

 
dy

Vd
z

t

2
l=ν  (7.15) 

where l  is called the mixing length. Applying the definitions given in Eq. (7.8) along with ννν
t

≡

+  and 

ν
τ
ll u≡

+ , Eq. (7.15) can be written 

 
rd

du

Rdy

du

ˆ

2

2
++

+

+

++

==

τ

ν

l
l  (7.16) 



130 

The mixing length cannot be measured directly, and therefore is estimated from experimental results for the 

velocity profile. Using Eq. (7.16) in Eq. (7.9) gives 

 0      ,11
0

2

=−=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+

=

+

+

+

+

+

+

+

+
y

u
R

y

dy

du

dy

du

τ

l  (7.17) 

Mixing-length theory formed the foundation for much of the historical work on flows in smooth and rough 

pipes. This theory is still respected as a central part of turbulence modeling and will be referred to in the 

following pages. 

 

C.  The Nikuradse Number 

 Much of what is understood today about rough pipe flow is based on the foundational research of one 

of Ludwig Prandtl’s students, Johann Nikuradse [59], who performed an immense amount of experimental 

work on pipes with roughened walls. Nikuradse roughened the walls of several pipes with sand grains of 

specific sizes and was careful to minimize the variation in the sand grain size within a given pipe. These 

pipes were tested over a range of Reynolds numbers to produce a substantial set of experimental data for 

study and correlation. From this set of data, Nikuradse found relations for the eddy viscosity and mixing 

length. Near the wall, where measurements for the mixing length are most accurate, Nikuradse found that 

the mixing length was a function of both the distance from the wall and the roughness height 

 )(
s

ky γκ +=l  (7.18) 

Given values for the two constants κ  and γ , Eq. (7.18) can be used in Eq. (7.17) and integrated to yield a 

velocity distribution. However, an analytical solution to this integral does not exist and numerical methods 

were not practical at the time of Nikuradse. Therefore, two assumptions were made by Nikuradse to 

simplify Eq. (7.17). First, it was assumed that the turbulent eddy viscosity is much greater than the 

molecular viscosity over the entire pipe. This will be referred to here as the fully rough flow approximation. 

This assumption is generally true in the bulk-flow region of turbulent pipe flow, but is also true near the 

wall for fully rough flows. In the near-wall region, 
τ

Ry
+  is small compared to unity. Applying this 



131 

assumption over the entire flow drastically simplifies the problem, and forms the second assumption 

applied by Nikuradse. Applying these two assumptions to Eq. (7.17) yields 

 0      ,1
0

==

=

+

+

+

+

+
y

u
dy

du
l  (7.19) 

which is strictly true only in the fully rough near-wall region of the flow. However, applying Eq. (7.18) to 

Eq. (7.19) gave an expression that could be analytically integrated to yield a velocity profile. This 

expression was then matched to experimental results for the velocity profile to yield the historical values 

for the constants 400.0=κ  and 0334.0=γ . 

 Once the velocity profile was obtained, it could be analytically integrated to yield the bulk velocity. 

Using this in Eq. (7.10) gives a relation for the friction factor 

 2

10
]68.1)(log04.2[4 −

+= sf kRC  (7.20) 

However, after comparing these results to his experimental results for the friction factor, Nikuradse 

suggested altering the coefficients slightly to 

 2

10
]74.1)(log00.2[4 −

+= sf kRC  (7.21) 

Equation (7.21) was later rearranged slightly and written in a form with coefficients accurate to only two 

significant digits 

 

2

10
)2(

7.3
log0.24

−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

Rk
C

s
f  (7.22) 

Equation (7.22) forms the foundation of what is understood today about fully rough flows. In fact, it is 

commonly used to define a surface roughness. Following the work of Schlichting [91], the equivalent sand-

grain roughness for a set of data is usually defined to be the roughness that satisfies Eq. (7.22) at high 

roughness Reynolds numbers. 

 Using a similar method to the development of Eq. (7.22), Nikuradse developed an expression that 

matches the smooth-wall asymptote of the experimental data 

 ( ) 8.04Rlog0.2
4

1
e10

−= f

f

C

C

 (7.23) 



132 

Nikuradse plotted his experimental results over a range of roughness Reynolds numbers as a deviation from 

Eq. (7.22). Although he left this expression unnamed, it will be called the Nikuradse number in this work 

 

fr Ck
numberNikuradse

4

17.3
log0.2N 

10i
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
≡≡  (7.24) 

In the fully rough limit, the Nikuradse number is zero. However, in the limit as the roughness approaches 

zero, the Nikuradse number approaches a result obtained from Eq. (7.23) which can be rearranged to yield 

the smooth wall limit in terms of the Nikuradse number 

 
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

+

s
k8

294.9
log0.2N

10i
 (7.25) 

Figure 7.1 shows results for the Nikuradse number as a function of roughness Reynolds number for several 

relative roughness data sets taken by Nikuradse. The plot includes lines representing the asymptotes for the 

fully rough and smooth-wall limits. At low roughness Reynolds numbers, which can occur at low relative 

roughness values or low Reynolds numbers, the Nikuradse number approaches a linear function of the 

roughness Reynolds number. At high roughness Reynolds numbers, which can occur at high relative 

roughness values or high Reynolds numbers, the Nikuradse number is zero and is independent of the 

roughness Reynolds number. 

 

10-1 100 101 102 103 104

-1.00

0.00

1.00

2.00

3.00

Ni

Smooth-Wall Limit

Fully-Rough Limit

 

Fig. 7.1  Nikuradse number as a function of roughness Reynolds number for experimental data of 

Nikuradse [59]. 



133 

 The data of Nikuradse in conjunction with the smooth-wall and fully rough limits included in the plot 

suggest three significant flow regions. It may have been Schlichting [92,93] who was the first to suggest 

that the data of Nikuradse deviate from the smooth-wall asymptote at about 0.5≈

+

s
k  and from the fully 

rough asymptote at about 0.70≈
+

s
k . Thus, flow with roughness Reynolds numbers 0.5<

+

s
k  have 

traditionally been termed “hydraulically smooth” because roughness effects appear to be negligible in this 

region, and flows with roughness Reynolds numbers 0.70>
+

s
k  are traditionally termed “fully rough” flows 

because the friction factor appears to be independent of the roughness Reynolds number in this region. The 

region for 0.700.5 ≤≤
+

s
k  is traditionally called the transition region where the properties of the flow 

transition from the smooth-wall asymptote to the fully rough asymptote. 

 The work of Nikuradse has long been viewed as the definitive work on pipe roughness. As stated 

earlier, today the relative roughness values of experiments are often determined by forcing the data to 

match the data of Nikuradse for high roughness Reynolds numbers. The roughness of a surface is 

commonly reported as an equivalent sand grain roughness in the literature to suggest that it would match 

the work of Nikuradse for an equivalent sand grain size. For example, see the work of Shockling, Allen, 

and Smits [61].  

 

D.  The Colebrook Equation 

 The work of Colebrook [73] has also had a profound influence on how pipe flow results are now 

tabulated. Colebrook correlated data for many sets of experiments on commercial pipe. Because a 

measurement of the roughness on commercial pipe was difficult to obtain, the results were matched to 

Nikuradse’s results in the fully rough region, and the equivalent sand grain roughness for each 

experimental data set was estimated. Following Nikuradse, Colebrook plotted experimental data as a 

deviation from Eq. (7.22) in the same form as shown in Fig. 7.1. Figure 7.2 includes the data sets of both 

Nikuradse and Colebrook. Although there is considerable scatter in the commercial pipe data, Colebrook 

developed the empirical relation 



134 

10-1 100 101 102 103 104

Roughness Reynolds Number

-1.00

0.00

1.00

2.00

3.00

N
ik

u
ra

d
se

N
u

m
b

er

Nikuradse
Shockling et al
Colebrook

Colebrook Equation

Smooth-Wall
Asymptote

Fully-Rough
Asymptote

 

Fig. 7.2  Nikuradse number as a function of roughness Reynolds number. 

 
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+=−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
≡

+

sfr kCk 8

287.9
1log0.2

4

17.3
log0.2N

1010i
 (7.26) 

which runs roughly through the mean of these data. Equation (7.26) will be referred to here as the 

Colebrook equation. Results obtained from this equation are also included in Fig. 7.2. Using Eq. (7.14), 

Colebrook rearranged Eq. (7.26) to express the friction factor in terms of the bulk Reynolds number 

 

2

e

10

4R

51.2

7.3
log0.24

−

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+−=

f

r
f

C

k
C  (7.27) 

which spans the smooth-wall and fully rough regions. This relationship is implicit because an iterative 

process is required to solve for the friction factor given the Reynolds number and relative roughness.  

 The fully rough limit for the Colebrook equation can be obtained by taking the limit of Eq. (7.26) as 

+

s
k  approaches infinity. This yields 

 0N
lim

i
∞→

+

=

s
k

 (7.28) 

Likewise, the smooth-wall limit can be obtained by taking the limit of Eq. (7.26) as +

s
k  approaches zero. 

This yields 

 
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

+
→

+

s
k ks 8

287.9
log0.2N

10
0lim

i
 (7.29) 



135 

which matches the smooth-wall limit of Nikuradse given in Eq. (7.25) to three significant digits. Figure 7.2 

shows the Colebrook equation in conjunction with the experimental results used to obtain the Colebrook 

equation. The experimental results of Nikuradse [59] and Shockling, Allen, and Smits [61] are also 

included as well as the fully rough and smooth-wall limits. Note the considerable scatter in the data used to 

generate the Colebrook equation. 

 Several significant characteristics of this plot should be mentioned. First, note that the data used by 

Colebrook does not match the data taken by Nikuradse nor that taken by Shockling et al. in the transition 

region between the fully rough and smooth-wall asymptotes. This reveals a fundamental difference in the 

characteristics of pipe roughness of the various experimental setups. In order to understand this difference, 

it must be understood that it is impossible to create a surface with perfectly uniform roughness, just as it is 

impossible to manufacture a perfectly smooth wall. Therefore, a surface roughness could more accurately 

be reported as having a mean relative roughness and a standard deviation in relative roughness. Those 

surfaces with very uniform roughness elements would be characterized as having a low standard deviation 

in relative roughness, and those surfaces with a wide variety of roughness element shapes or sizes would be 

characterized as having a high standard deviation in relative roughness. It has been argued that because the 

standard deviation in surface roughness for any given commercial pipe is greater than the standard 

deviation in sand-grain sizes used in Nikuradse’s pipes, the transition from smooth-wall to fully rough flow 

for commercial pipes is much more gradual than the transition shown by the experimental data of 

Nikuradse. The Colebrook equation does in fact match the experimental data from which it was derived to 

within the scatter of the experimental datasets themselves, and therefore is a viable equation for flow in 

commercial pipes. This variation in the transition region noted between different experimental setups 

suggests that if the standard deviation of relative roughness is small, the transition between the smooth-wall 

region and fully rough regions is more abrupt than if the standard deviation of relative roughness is large. 

Note that the smooth-wall and fully rough asymptotes are independent of the standard deviation of relative 

roughness while the transition region is a function of both the mean relative roughness and the standard 

deviation of relative roughness. 



136 

 The dependence of the transition region on the standard deviation of relative roughness is further 

demonstrated by the data of Shockling, Allen, and Smits [61] also included in Fig. 7.2. Shockling et al. 

used drawn pipe that had been honed in their experimental setup, and therefore, it can be expected that the 

standard deviation in relative roughness along the pipe wall was somewhere between that of commercial 

pipe and that of Nikuradse’s pipes. This explains why the data of Shockling et al. falls between the 

Colebrook equation and the data taken by Nikuradse in the transition region. 

 Second, note that the transition region suggested by the Colebrook equation is significantly larger than 

the traditional region of 0.700.5 ≤≤
+

s
k  suggested by the data from Nikuradse. The data from which the 

Colebrook equation was obtained suggests that the transition region for commercial pipes may be more 

accurately defined as 0.1002.0 ≤≤
+

s
k . The variation from the findings of Nikuradse in the definition of the 

lower limit of the transition region can also be justified on the grounds of a difference in relative roughness 

standard deviation for the two experimental data sets. For a given mean relative roughness, roughness 

effects would be more pronounced for a surface with a large standard deviation of relative roughness than 

for a surface with a small standard deviation of relative roughness. Therefore, roughness effects would be 

more pronounced at low roughness Reynolds numbers for pipes with high relative roughness standard 

deviations than those with low relative roughness standard deviations. Likewise, at high roughness 

Reynolds numbers, pipes with low relative roughness standard deviations would approach the fully rough 

region before those with high relative roughness standard deviations. 

 The results of Fig. 7.2 also show that the smooth-wall and fully rough asymptotes of the Colebrook 

equation match all of the experimental data sets very well. Therefore, the smooth-wall and fully rough 

limits of the Colebrook equation given in Eqs. (7.28) and (7.29) can be used for pipes with any given 

variation in roughness provided that the roughness Reynolds number is within the smooth-wall or fully 

rough regions. However, the Nikuradse number in the transition region predicted by the Colebrook 

equation should be used with caution because this region is sensitive to the standard deviation in relative 

roughness of the pipe. 



137 

 The fact that the Colebrook equation is so widely used today is partly due to the work of Moody [94] 

who plotted the Colebrook equation in a form that could easily be used by engineers. In his abstract, 

Moody states, “The object of this paper is to furnish the engineer with a simple means of estimating the 

friction factors to be used in computing the loss of head in clean new pipes and in closed conduits running 

full with steady flow.” Moody used the Colebrook equation to plot the friction factor as a function of the 

bulk Reynolds number over a range of relative roughness values. The famous Moody chart is shown in Fig. 

7.3 along with the data from Nikuradse and Shockling, et al. 

103 104 105 106 107 108

Reynolds Number

0.01

0.10

D
ar

cy
F

ri
ct

io
n

F
ac

to
r

0.02

0.04

0.06

0.08

0.00001
0.00002

0.00005

0.0001

0.0002

0.0005

0.001

0.002

0.005

0.01

0.02

0.05

= 0.034, Nikuradse
= 0.016, Nikuradse
= 0.0083, Nikuradse
= 0.0039, Nikuradse
= 0.0020, Nikuradse
= 0.00098, Nikuradse
= 0.000058, Shockling et al

R
el

at
iv

e 
R

ou
gh

ne
ss

 

Fig. 7.3  The Moody chart with experimental data from Nikuradse and Shockling, et al. 

 This figure without the experimental data can be found in many fluid mechanics text books and is 

perhaps the most widely used engineering chart in fluid mechanics. The chart allows the engineer to 

estimate the head losses of a pipe if an estimate for the surface roughness and bulk flow rate are known. 

Note that at very low Reynolds numbers, the flow becomes laminar and follows the well-known and easily 

verified relation 

 
e

R

64
4 =fC  (7.30) 

However, the transition between laminar and turbulent flow is difficult to predict, and remains a vague 

region of the Moody chart. This transition region is denoted by a dotted line in the figure. 



138 

 It has been shown that the most widely accepted correlations for pipe flow are all fundamentally based 

on the work of Nikuradse. Further, it has been shown that Nikuradse’s work on the fully rough limit forms 

the basis for determining the roughness of a given surface. Because the fully rough relation developed by 

Nikuradse and included here as Eq. (7.22) forms the foundation for rough-wall flow measurements, any 

turbulence model claiming to be capable of modeling surface roughness must match this relation between 

the friction factor and surface roughness in the limit as the flow becomes fully rough. 

 

E.  Velocity Profile 

 A wealth of experimental data has shown that the velocity profile follows the law of the wall in the 

near-wall region. An empirical correlation from Nikuradse’s data that includes roughness effects is  

 5.8ln5.2 +⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

+

+

+

s
k

y
u  (7.31) 

In the near-wall region of fully rough flows, an analytical approximation for the velocity profile can be 

developed using mixing-length theory.  Using Eq. (7.18) in Eq. (7.19) and integrating subject to the no-slip 

boundary condition gives the near-wall fully rough relation 

 
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+=

+

+

+

1ln
1

s
k

y
u

γκ
 (7.32) 

Figure 7.4 shows the relations given in Eqs. (7.31) and (7.32) along with the experimental velocity profile 

data of Nikuradse. Note that the analytical approximation given in Eq. (7.32) only deviates from the 

empirical relation given in Eq. (7.31) in the near wall region where the wall coordinate is on the same order 

as the roughness. Because this region of the flow is so minute compared to the bulk flow, the integral of  

Eq. (7.32) yields a value very close to the bulk velocity. This is the approach taken by Nikuradse in the 

development of his relation between bulk Reynolds number, friction factor, and roughness. Also note from 

the figure that the experimental data matches the relation given in Eq. (7.32) very well over the entire 

region of the flow. Thus, although Eq. (7.32) was derived using the near-wall approximations from mixing-

length theory, it can be used across the entire flow, and lacks only in its ability to satisfy the centerline 

symmetry boundary condition. 



139 

 The existence of the law of the wall for turbulent flows has been substantiated by many sets of data. 

Therefore, any viable turbulence model should be capable of predicting this flow profile for rough flows. 

 

0.01 0.1 1 10 100 1000

u+

0

5

10

15

20

25

R/ks = 15

R/ks = 30.6

R/ks = 60

R/ks = 126

R/ks = 252

R/ks = 507

Eq. (7.32)

Eq. (7.31)

y ks/  
 

Fig. 7.4  Velocity profiles in rough pipes at high Reynolds numbers. 

F.  Turbulent Eddy Viscosity 

 Equation (7.9) is the Boussinesq-based RANS equation for fully developed flow in a pipe, and holds 

independent of any turbulence model. It can be rearranged to yield 

 0)1(      ,
)ˆˆ(

ˆ

ˆ
=

+

−=
+

+

u
r

rd

du

t
νν

 (7.33) 

where )(ˆ Ru
τ

νν ≡ , )(ˆ Ru
tt τ

νν ≡ , and Rrr ≡ˆ . The goal of any RANS-based turbulence model is to 

correctly model the turbulent eddy viscosity such that Eq. (7.33) can be integrated to yield a velocity profile 

that matches experimental data. Therefore, Eq. (7.33) can also be seen as a definition for the turbulent eddy 

viscosity if a velocity profile is known. Given a velocity profile, the eddy viscosity as a function of radius 

can be calculated from 

 νν ˆ

ˆ

ˆ

ˆ −−=

+

rddu

r
t

 (7.34) 



140 

In the core region of the pipe where the velocity gradient is small, this method for estimating the turbulent 

eddy viscosity becomes very sensitive to small errors in the velocity gradient measurements. As the axis of 

the pipe is approached, both r̂  and rddu ˆ

+

 approach zero, and Eq. (7.34) is indeterminate. Applying 

L’Hospital’s rule, it can be shown that at the pipe centerline, the eddy viscosity is related to the second 

derivative of the velocity profile according to  

 
22

0ˆlim ˆ

1
ˆ

rdudr
t +

→

−=ν   

Therefore, accurate estimates for the eddy viscosity at the center of a pipe are dependent on accurate 

estimates for the second derivative of the velocity profile in that region. Because these measurements are 

difficult to obtain near the pipe centerline, estimates for the eddy viscosity are more accurate near the pipe 

wall than near the pipe centerline. 

 It can be shown that mixing-length theory predicts a turbulent eddy viscosity for fully rough pipe flow 

of 

 2/14

0

2

00
ˆ]ˆ)5.0(ˆ)5.02(2[ˆ rrCrCkC

rt lll
−−−−+= γκν  (7.35) 

where 
0l

C  is about 0.345. This matches the experimental data of Nikuradse [59] very well over the entire 

pipe cross section. Figure 7.5 shows the experimental results of Nikuradse as well as the analytical relation 

from mixing-length theory. Note that mixing-length theory predicts a turbulent eddy viscosity of identically 

zero at the pipe centerline. This comes as a direct result of the model assumption that the eddy viscosity is 

directly proportional to the velocity gradient as can be seen in Eq. (7.16). The symmetry boundary 

condition requires that the change in eddy viscosity with respect to radius be zero at the center of the pipe. 

In contrast, Eq. (7.35) has an infinite gradient at the pipe centerline. Therefore, this relation cannot be used 

in the center of the pipe. 

 Reichardt [95] correlated sets of experimental data and suggested a simple relation that could be used 

to model the eddy-viscosity distribution for a pipe with smooth walls 

 )ˆ2ˆ1(
6

ˆ 42
rr

t
−+=

κ

ν   



141 

Applying Nikuradse’s near-wall results, this relation can be modified to account for roughness effects 

 )ˆ21)(ˆ1)(2ˆ1(
6

ˆ 2
rrkr

rt
+++−= γ

κ
ν  (7.36) 

This relation along with Reichardt’s eddy-viscosity data is also included in Fig. 7.5. 

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.02

0.04

0.06

0.08

0.10

R/ks = 15

R/ks = 30.6

R/ks = 60

R/ks = 126

R/ks = 252

R/ks = 507

Reichardt

y R/

Eq. (7.42)

Eq. (7.35)

Eq. (7.43)

Eq. (7.36)

uτ R
__νt

 

Fig. 7.5  Eddy-viscosity profiles in fully developed pipe flow. 

 Note that Eq. (7.36) stays fairly constant over the core of the pipe. Based on this observation, Kays and 

Crawford [96] suggest using “a simpler and adequate alternative” which uses a constant value of 6ˆ κν =
t

 

over the central region of the pipe combined with an approximation from mixing-length theory near the 

wall. A similar formulation that applies to rough walls can be developed as follows. 

 Near the wall of fully rough flow, the mixing length is a function of the distance from the wall and the 

wall roughness 

 ])ˆ1([)( ++++

+−=+=
ss

krRky γκγκ
τ

l  (7.37) 

Using this in Eq. (7.16) gives 

 
rd

du

R

krR

dy

du
ky s

s

ˆ

])ˆ1([
)(

22

22

++

+

+

+++
+−

=+=

τ

τ
γκ

γκν  (7.38) 

Combining this with Eq. (7.9) and solving for +

ν  gives an expression for the eddy viscosity near the wall 



142 

 ])ˆ1([     ,
2

1
ˆ

4

1 2 ++

+−=−+=
s

krRFrF γκν
τ

 (7.39) 

Although the experimental data in the fully rough limit is limited, assuming that the eddy viscosity is a 

constant in the central region of the pipe yields the expression 

 ])ˆ1([      ,
1ˆˆ,

2

1
ˆ

4

1

ˆˆ0,)6(

2

++ +−=
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

≤≤−+

≤≤

=
s

o

o

krRF
rrrF

rrR

γκ

κ

ν
τ

τ

 (7.40) 

where 
o
r̂  is the outer root of  

 ])ˆ1([      ,)6(
2

1
ˆ

4

1 2 +

+−==−+
s

krRFRrF γκκ
ττ

 (7.41) 

Equation (7.40) can alternately be written as 

 ])ˆ1([      ,
1ˆˆ,

2

1
ˆ

4

11

ˆˆ0,6

ˆ
2

++−=
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

≤≤−+

≤≤

=
s

o

o

t
krRF

rr
R

rF
R

rr

γκ

κ

ν
τ

ττ

 (7.42) 

The relation given in Eq. (7.42) provides a simple approximation for the turbulent-eddy-viscosity profile 

and is also shown in Fig. 7.5. Values of 404.0=κ , 0341.0=γ , and 27=

+

A  give results that match 

experimental data very well. 

 One additional method that can be used to estimate the eddy-viscosity profile is through the use of the 

empirical correlation to Nikuradse’s velocity profile data. Differentiating Eq. (7.32), using it in Eq. (7.33), 

and assuming 
t

νν ˆˆ <<  gives the fully rough turbulent eddy viscosity that will match the velocity profile of 

Nikuradse’s data 

 )2ˆ1(ˆˆ
rt

krr γκν +−=  (7.43) 

This relation is also included in Fig. 7.5 for comparison. Any eddy-viscosity distribution that matches this 

relation will yield the velocity profile given in Eq. (7.32) for high roughness Reynolds numbers. 

 Equations (7.35), (7.36), (7.42), and (7.43) give relations for what could be termed eddy-viscosity 

models for fully rough pipe flow.  These can be used directly in Eq. (7.33) and integrated to yield a velocity 

profile, bulk velocity, and friction factor. The velocity profiles that results from these models will be 

presented in Chapter 9 for comparison with the results of the energy-vorticity model in consideration. 



143 

 Because estimates for the eddy viscosity are strong functions of the velocity gradient and 

measurements for the velocity gradient near the pipe centerline are difficult to accurately obtain, the exact 

behavior of the eddy viscosity near the central region of fully rough pipe flow is not well established. 

Equations (7.35), (7.36), (7.42), and (7.43) provide four approximations for the eddy viscosity that have 

been presented in the literature. The approximations based on the findings of Nikuradse given in Eqs. 

(7.35) and (7.43) are not viable in the central region because it is impossible for the eddy viscosity to go to 

zero at the centerline, and for the derivative of the eddy viscosity to have a finite slope at the centerline. 

The work of Kays and Crawford presented in Eq. (7.42) is used as a reference in the subsequent 

development of the Phillips k-λ model. This was a viable option because it provides a model for the 

viscosity which matches most closely the assumptions that were inherent in the development of the velocity 

profile given in Eq. (7.32). Because Eq. (7.32) matches experimental data so well, it was expected that an 

eddy-viscosity profile similar to that given in Eq. (7.42) would yield results for the velocity profile and 

friction factor very near experimental data. However, the work of Reichardt presented in Eq. (7.36) may 

also be worth consideration in a future edition of a fully rough turbulence model. 

 Before leaving the topic of eddy viscosity, it is insightful to consider one additional aspect of mixing-

length theory. Recall that a fundamental approximation for fully rough flow is that the molecular viscosity 

is negligible compared to the turbulent eddy viscosity. The mixing length near a wall is very accurate and is 

expressed in Eq. (7.37). Using Eq. (7.37) and (7.19) in Eq. (7.16) gives the ratio of turbulent eddy viscosity 

to molecular viscosity at the wall 

 )(
0

0

++

=
=

+

+=≡
+ s

y

t

y
ky γκ

ν

ν
ν   

For fully rough flow, this ratio at the wall must be much greater than unity. Using the suggested values of 

404.0=κ  and 0341.0=γ  for the accepted value of fully rough flow 0.70=

+

s
k , this yields 96.0=

+

ν  at the 

wall. This result shows that at 0.70=

+

s
k , the molecular viscosity is about the same order of magnitude as 

the turbulent eddy viscosity at the wall. Using 0.100=

+

s
k  gives 4.1=

+

ν . Based on this mixing-length 



144 

approximation, it is suggested that a better lower limit for fully rough pipe flow is about 1000=

+

s
k  which 

yields a viscosity ratio of 14=

+

ν  at the wall. 

 

III.  The Phillips k-λ Model for Fully Rough Pipe Flow 

 The foundational equations for the Phillips k-λ model for steady, incompressible, fully rough pipe flow 

include the continuity equation 

 0=⋅∇ V  (7.44) 

The Boussinesq-RANS equations 

 ])(2[)ˆ(
1

)( )V(SVV
v

v

t
p νν

ρ
+⋅∇+∇−=∇⋅  (7.45) 

an algebraic relation for the eddy viscosity 

 k
t

λν =  (7.46) 

and the turbulent-kinetic-energy equation in terms of the mean vortex wavelength 

 

)]})([2){((

)]})([{4(2)(

3

5

3

12

VS

VS)V(S)V(SV
v

v

v

v

v

v

v

v

tkt

tt

k

kkCk

νσνν

νλνν
λ

⋅∇−∇+⋅∇+

⋅∇−∇⋅∇+−⋅=∇⋅

 (7.47) 

Several possible closing equations for the mean vortex wavelength are included in Chapter 2. In general, 

the closing relation for the mean vortex wavelength could take the form of a transport equation similar to 

the turbulent-kinetic-energy equation. However, for fully rough pipe flow, it has been found that an 

algebraic relation may suffice based on the results of mixing-length theory mentioned in the previous 

section. An initial estimate for the mean vortex wavelength distribution was developed for fully rough pipe 

flow by combining the algebraic relation for the eddy viscosity given in Eq. (7.42) with the model 

equations given in Eqs. (7.44) – (7.47). This provided a complete model that could be solved to yield the 

mean vortex wavelength distribution given a relative roughness and roughness Reynolds number. After 

correlating several mean vortex wavelength distributions over a range of Reynolds numbers and relative 

roughness values, a general algebraic relation for the mean vortex wavelength was developed. It was found 



145 

that the algebraic relation could be a function of a bulk flow parameter that will be termed the core 

Reynolds number. 

 

A.  Core Reynolds Number 

 The velocity profile in the pipe is a function of the pressure gradient and eddy viscosity and can be 

written as 

 r
dz

pd

dr

Vd
z

t

ˆ

2

1
)(

ρ
νν =+  (7.48) 

It has been shown that experimental data suggests that the eddy viscosity in the central region of the pipe is 

nearly constant. Assuming that the eddy viscosity is constant near the centerline of the pipe, Eq. (7.48) can 

be integrated from the pipe centerline to an arbitrary point in the constant-eddy-viscosity core 

 2

0

ˆ

)(4

1
r

dz

pd
VV

t
r

z
rr

z

ννρ +

+=
==

 (7.49) 

Note that the velocity profile in this central region of the pipe is parabolic. Dividing this expression by the 

velocity at the centerline, )0(
max z

VV ≡  gives the nondimensional equation 

 2

maxmax

ˆ

)(4

1
1

)(
r

dz

pd

VV

rV

t

z

ννρ +

+=  (7.50) 

The pressure gradient is constant and negative in fully developed flow. Therefore, Eq. (7.50) yields an 

important length scale associated with the core region of the flow 

 +

+=+−≡
maxmax

)ˆˆ(2
ˆ

)(4 uR
dz

pd
VR

ttc
ννννρ  (7.51) 

This will be called the core radius of the flow. The centerline velocity and the core radius are the important 

velocity and length scales in the core region of the pipe. These can be used to form what will be referred to 

here as the core Reynolds number 

 
ν

c

c

RV
max

e

2
R ≡  (7.52) 



146 

The turbulent properties in the core region of the pipe should also depend on the velocity and length scales 

used to develop the core Reynolds number. Therefore, the turbulent kinetic energy and mean vortex 

wavelength at the center of the pipe should be a function of the core Reynolds number. 

 

B.  Mean Vortex Wavelength Distribution 

 At the wall of a fully rough flow, the turbulent eddy viscosity can be evaluated from Eq. (7.42). 

Applying Eq. (7.12) gives 

 )()2()( 22 ++

=

−+=
srrsr

Rr

t
kkkkk

Ru
γκ

ν

τ

 (7.53) 

which can alternately be written as 

 )2(1)()2(1 22 ++

=

−+=
ss

Rrs

t
kk

ku
γκ

ν

τ

 (7.54) 

Therefore, the turbulent eddy viscosity at the wall is independent of the pipe radius. Also from Eq. (7.42), 

the turbulent eddy viscosity at the center of the pipe is assumed independent of the wall effects 

 6

0

κ

ν

τ

=

=r

t

Ru
 (7.55) 

Note that the eddy viscosity is proportional to 
s

ku
τ

 at the wall and Ru
τ

 at the centerline. 

 In general we can expect the mean vortex wavelength to be a function of both the core Reynolds 

number and the roughness Reynolds number. Results from this model compared to experimental results 

suggest that the mean vortex wavelength at the centerline is only a function of the core Reynolds number 

and the pipe radius 

 RC r
a

cr
r

1

e10
R=

=

λ  (7.56) 

where 
1r

C  and 
1r

a  are model constants. At the wall, experimental data and results from this model suggest 

that the mean vortex wavelength is only a function of the surface roughness and roughness Reynolds 

number 

 
s

a

srRr
kkC

r 2

2

+

=
=λ  (7.57) 



147 

where  
2r

C  and 
2r

a  are model constants. In the transition region, agreement with experimental data can be 

obtained by using the transition function 

 43 )(R
e3

rr
aa

crRr
rRC −+=

=

λλ  (7.58) 

where  
3r

C , 
3r

a , and 
4r

a  are model constants. Combining Eqs. (7.56) – (7.58) gives the general algebraic 

relation for the mean vortex wavelength 

 ])1(R   ,Rmin[ 43
2

1

e32e1
RRrCkkCRC rr

r
r

aa

crs

a

sr

a

cr
−+=

+

λ  (7.59) 

where 
1r

C , 
1r

a , 
2r

C , 
2r

a , 
3r

C , 
3r

a ,  and 
4r

a  are closure coefficients. Equation (7.59) forms the final equation 

for the Phillips k-λ model for fully rough pipe flow. 

 Combining Eqs. (7.46), (7.53), and (7.59) and solving for the value of the turbulent kinetic energy at 

the wall gives the fully rough-wall boundary condition on k 

 

2

2

22

2
2

2

1)2()1(

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡ −+
=

+

++

=

r
a

sr

ss

Rr kC

kk

u

k κγ

τ

 (7.60) 

which applies in the limit as 
+

s
k  approaches infinity. Note that the wall boundary condition on k is 

independent of the pipe radius. 

 

C.  Model Summary 

 The Phillips k-λ model for fully rough pipe flow in dimensional form comprises the following 

equations: the Boussinesq-RANS equation including the no-slip wall boundary condition 

 0           ,
)(

2

=

+

−=
=Rr

z

t

z
V

R

ru

dr

Vd

νν

τ  (7.61) 

the turbulent-kinetic-energy transport equation and associated boundary conditions 

 

2

2

2

22

0

2

2

2

2

1)2()1(
    ,0

3

4
)(

3

5

τ

λ

κγ

λ
ννσνν

u

kC

kk
k

dr

dk

dr

dk
r

dr

d

r

k
C

r

V

dr

dk
r

dr

d

r

r
a

sr

ss

Rr

r

z

tkt

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡ −+
==

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛
+−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂
=⎥

⎦

⎤
⎢
⎣

⎡
+−

+

++

=

=

 (7.62) 

an algebraic expression for the mean vortex wavelength 



148 

 ])1(R   ,Rmin[ 43
2

1

e32e1
RRrCkkCRC rr

r
r

aa

crs

a

sr

a

cr
−+=

+

λ  (7.63) 

and an algebraic expression for the turbulent eddy viscosity 

 k
t

λν =  (7.64) 

with definitions for the core Reynolds number 

 
ττ

νν

ν u

V

Ru
R

V
ztz

c

)0()0(
22

)0(
R

e

+
=  (7.65) 

and the roughness Reynolds number 

 ν
τ ss
kuk ≡

+  (7.66) 

 Applying the nondimensional definitions 

 

ν

ν
ν

ν

λ
λ

νν

τ

τ

τ

τ

τ

τ

t

s

s

z

u

u

k
k

ku
k

u

V
u

Ru
R

R

r
r

≡≡≡

≡≡≡≡

+++

++

    ,    ,

    ,    ,    ,ˆ

2

 (7.67) 

this model with the associated boundary conditions can be written in nondimensional form in terms of the 

independent variable r̂  as 

 

2123
e

e3

)1(

2e1

2

2

2

)]}0(1[{)]0(2[R

])ˆ1(R   ,Rmin[

ˆ
ˆ

ˆˆ3

4

ˆˆ
ˆ)1(

ˆˆ3

5

)1(

ˆ

ˆ

43
2

1

++

+++

+
++

+

+

++

+

+

+

+

+

+=

=

−+=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+−⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+−

+
−=

ν

λν

λ

λ

νσν

ν

τ

ττ

λτ

τ

Ru

k

RrCkCRC

rd

dk
r

rd

d

r

k
CR

r

u

rd

dk
r

rd

d

r

rR

rd

du

c

aa

cr

a

sr

a

cr

k

rr
r

r  (7.68) 

with boundary conditions 

 

2

2

22

1ˆ

0ˆ
1ˆ 2

2

1)2()1(
    ,0

ˆ
    ,0

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡ −+
===

+

++

=

+

=

+

=

+

r
a

sr

ss

r

r

r

kC

kk
k

rd

dk
u

κγ
 (7.69) 

where the model constants 
k

σ , 
λ

C , 
1r

C , 
1r

a , 
2r

C , 
2r

a , 
3r

C , 
3r

a ,  and 
4r

a  are as of yet unknown. Note that 

0ˆ =r  is the value at the centerline and 1ˆ =r  is the value at the wall. 

 



149 

D.  Solution Process 

 A Fortran code to solve this model is included in Appendix O. The solution process is developed as 

follows. Combining like terms, the k-transport equation in the model can be rearranged to yield 

 r
k

CRr
r

u

rd

dk
r

rd

d

k

ˆˆ
ˆˆ

ˆ
3

5

3

1

ˆ 2

2

2

+

++

+

++

−⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+−

λ

ν
σ

ν
λτ

 (7.70) 

Defining 

 
rd

dk
rQ

k
ˆ

ˆ
3

5

3

1
++

+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+−≡

σ

ν

 (7.71) 

and using this definition along with the Boussinesq-RANS relation for the velocity gradient in Eq. (7.70), 

the second-order k-transport equation can be written as two first order transport equations with its 

associated boundary conditions 

 

0     ,ˆˆ
)1(ˆ

2

1)2()1(
     ,

ˆ
3

5

3

1ˆ

0ˆ2

2

3

2

2

2

2

22

1ˆ 2

=−
+

=

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡ −+
=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+

−=

=

+

+

+

+

++

+

++

=

+

+

++

r

a

sr

ss

r

k

Qr
kRC

r
R

rd

dQ

kC

kk
k

r

Q

rd

dk

r

λν

ν

κγ

σ

ν

τλτ

 (7.72) 

This gives a version of the model that can be solved using a direct numerical integration scheme such as the 

fourth-order Runge-Kutta method and comprises the set of algebraic and first-order equations with the 

appropriate boundary conditions 

 

2123
e

e3

)1(

2e1

0ˆ2

2
3

2

2

2

2

22

1ˆ

1ˆ

)]}0(1[{)]0(2[R

])ˆ1(R   ,Rmin[

0     ,ˆˆ
)1(ˆ

2

1)2()1(
     ,

ˆ
3

5

3

1ˆ

0     ,
)1(

ˆ

ˆ

43
2

1

2

++

+++

+
++

=

+

+

+

+

++

+

++

=

+

+

++

=

+

+

+

+=

=

−+=

=−
+

=

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡ −+
=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+

−=

=
+

−=

ν

λν

λ

λν

ν

κγ

σ

ν

ν

τ

ττ

τλτ

τ

Ru

k

RrCkCRC

Qr
kRC

r
R

rd

dQ

kC

kk
k

r

Q

rd

dk

u
rR

rd

du

c

aa

cr

a

sr

a

cr

r

a

sr

ss

r

k

r

rr
r

r

r

 (7.73) 



150 

Note that the expression for the first derivative of k is singular at the centerline where 0ˆ =r . In this region, 

the turbulent eddy viscosity can be assumed constant, and the Taylor series expansion for +

k  gives 

 L++
−

−
−

−+=

+++

+++ )ˆ(ˆ
9

)]0(2)[0(
ˆ

2

)0(
ˆ)0()0()ˆ( 86

32

4

3

22

rOr
kABkA

r
kAB

rkAkrk
kkkkk

k
 (7.74) 

where 

 
2

2

2

2

)1)(5(8

3
      ,

)5(4

3
++

+

++ ++

≡

+

≡

ννσ

νσ

ννσ

σ
ττλ

k

k

k

k

k

k

R
B

RC
A  (7.75) 

Thus, the first derivative of +

k  can be approximated at the centerline as 

 L++
−

−−−=

++

++

+

)ˆ(ˆ
3

)]0(2)[0(
2ˆ)]0([2ˆ)0(2)0(

ˆ

75

32

332

rOr
kABkA

rkABrkA
rd

dk kkk

kkk
 (7.76) 

In the case that 0=

+

ν , Eq. (7.76) can be conditionally replaced with 0)0(ˆ =

+

rddk . Note that in order to 

use Eq. (7.76), estimates for +

k  and +

ν  at the centerline must be known. Additionally, the mean vortex 

wavelength is a function of the core Reynolds number, which is not known until a solution is obtained. For 

this purpose, initial estimates for +

k  and +

ν  at the centerline and the core Reynolds number can be obtained 

from 

 

078.1

e

2

158.0

26.21R

)0(

205.0)0(

τ

τ

τ

ν

R

RC

Rk

c
≅

≅

≅

+

+

l
 (7.77) 

where the shear Reynolds number can be evaluated from the known case parameters 

 
r

s

k

k
R

2

+

=
τ

 (7.78) 

Because two of the three boundary conditions for the model are specified at the wall, and one is specified at 

the centerline, a shooting method is used in conjunction with an integration scheme to obtain the solution to 

the system of equations. For such an approach, an initial estimate for +

Q  at the wall is needed. A useful 

initial estimate is 

 152.04.9)1( −+

≅
r
kQ  (7.79) 



151 

 The solution procedure implemented in this work is as follows. Given case values for 
r
k  and +

s
k  along 

with model constants, 
τ

R  is evaluated from Eq. (7.78). Using the estimates given in Eqs. (7.77) and (7.79), 

a fourth-order Runge-Kutta integration scheme is used to integrate the first-order model equations from the 

wall ( 1ˆ =r ) to the centerline ( 0ˆ =r ). Near the centerline, ie. 002.0ˆ <r , Eq. (7.76) is used instead of the 

model equation for +

k  given in Eq. (7.73). Once the integration is complete, estimates for the centerline 

values for +

Q , +

k , +

ν , and the core Reynolds number are updated. This integration process is repeated 

using a secant method until the centerline boundary condition 0)0( =

+

Q  is adequately satisfied and the 

centerline values for +

k  and the core Reynolds number have stopped changing. It should be noted that a 

negative solution to any one of the case variables is non-physical, and a constraint to that end can also be 

applied during the solution process. 

 

E.  Initial Results 

 Initial estimates for the closure coefficients that match the velocity and eddy-viscosity profiles of 

mixing length theory are 

 
0.1   ,0753.0   ,072.1   ,1039.0

   ,0383.0   ,0735.0   ,185.0   ,0004.0C   ,01.0

4332

211

=−==−=

=−====

rrrr

rrrk

aaCa

CaC
λ

σ

 (7.80) 

Figure 7.6 shows the velocity profiles for 1000=

+

s
k  over the range of relative roughness values reported 

by Nikuradse and Figure 7.7 shows the corresponding eddy-viscosity profiles. Note the velocity profiles 

resemble the relations given in Eqs. (7.31) and (7.32). Additionally, the eddy-viscosity distributions over 

this range closely resemble the relation give in Eq. (7.42). Even though the velocity and turbulent-eddy-

viscosity profiles have the correct trends, the friction factors for high roughness Reynolds numbers do not 

consistently match the Colebrook equation. This can be seen in Fig. 7.8 which shows the results of the 

model using these coefficients over a range of relative roughness values and Reynolds numbers. If the 

model were correct, the black dots would fall directly on the black lines. Note that the model results are 

significantly lower than the results predicted by the Colebrook equation, and that the model predictions get 

worse at lower relative roughness values. The experimental data of Nikuradse and Shockling et al. is 

included in the plot for comparison. 



152 

   0

   5

  10

  15

  20

  25

10−2 10−1 100 101 102 103

u+

y/ks

Eq. (7.32)

Eq. (7.31)

Model Velocity Profiles

 

Fig. 7.6  Initial velocity profile results for the Phillips k-λ model. 

 

Eq. (7.35)Eq. (7.36)
Eq. (7.42)

Model Eddy-Viscosity
Profiles

uτ R
__νt

0.00

0.02

0.04

0.06

0.08

0.10

 0.0  0.2  0.4  0.6  0.8  1.0

y/R

Eq. (7.43)

 

Fig. 7.7  Initial eddy-viscosity profile results for the Phillips k-λ model. 

 



153 

103 104 105 106 107 108 109

Reynolds Number

0.01

0.10

D
ar

cy
F

ri
ct

io
n

F
ac

to
r

0.02

0.04

0.06

0.08

0.000058

0.00030

0.00098

0.0020

0.0039

0.0083

0.016

0.034

= 0.034, Nikuradse
= 0.016, Nikuradse
= 0.0083, Nikuradse
= 0.0039, Nikuradse
= 0.0020, Nikuradse
= 0.00098, Nikuradse
= 0.000058, Shockling et al

R
el

at
iv

e 
R

ou
gh

ne
ss

 

Fig. 7.8  Initial friction factor results for the Phillips k-λ model. 

IV.  Summary and Conclusions 

 The bulk of what is understood today about fully rough turbulent flow is based on the original work of 

Nikuradse [59] who performed a substantial set of experiments for a range of roughness Reynolds numbers. 

Nikuradse correlated the friction coefficient, wall roughness, and roughness Reynolds number results 

according to the expression given in Eq. (7.24) which in this work is called the Nikuradse number. 

Nikuradse found that for fully rough flows, the Nikuradse number was independent of roughness Reynolds 

number. This fully rough limit is so ingrained in subsequent work, that it has come to define the meaning of 

roughness. 

 Nikuradse’s work suggests that fully rough flow begins around 0.70≈

+

s
k  whereas the work of 

Colebrook [73] suggests that the fully rough region begins around 0.100≈

+

s
k . However, it has been shown 

analytically that in order for the flow to truly be considered fully rough, it should have a roughness 

Reynolds number in the range 0.1000≥
+

s
k . 

 The empirical relation of Kays and Crawford [96] for the eddy viscosity in fully rough pipe flow was 

used to develop estimates for the mean vortex wavelength distribution. From this, an algebraic relation for 

the mean vortex wavelength was developed along with initial values for the closure coefficients. This 



154 

complete system of equations constitutes the Phillips k-λ model for fully rough pipe flow. This model along 

with the associated boundary conditions is summarized in Eqs. (7.68) and (7.69). The system of equations 

can be solved using a fourth-order Runge-Kutta integration method, as explained above, and initial results 

for the model have been shown. Using the initial estimates for the closure coefficients, velocity profiles and 

eddy-viscosity distributions were obtained which match empirical relations. However, the friction factor 

predicted by the model is significantly in error. This error can be minimized by evaluating more appropriate 

closure coefficients for the model. 



155 

CHAPTER 8 

PHILLIPS k-λ MODEL CLOSURE COEFFICIENT EVALUATION 

I.  Introduction 

 The Phillips k-λ model for fully rough pipe flow in nondimensional form comprises the following 

equations and boundary conditions 

 

2

2

22

1ˆ
0ˆ

1ˆ

2123
e

e3

)1(

2e1

2

2

2

2

43
2

1

2

1)2()1(
    ,0

ˆ
    ,0

)]}0(1[{)]0(2[R

])ˆ1(R   ,Rmin[

ˆ
ˆ

ˆˆ3

4

ˆˆ
ˆ)1(

ˆˆ3

5

)1(

ˆ

ˆ

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡ −+
===

+=

=

−+=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+−⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+−

+
−=

+

++

=

+

=

+

=

+

++

+++

+
++

+

+

++

+

+

+

+

+

r

rr
r

r

a

sr

ss

r

r

r

c

aa

cr

a

sr

a

cr

k

kC

kk
k

rd

dk
u

Ru

k

RrCkCRC

rd

dk
r

rd

d

r

k
CR

r

u

rd

dk
r

rd

d

r

rR

rd

du

κγ

ν

λν

λ

λ

νσν

ν

τ

ττ

λτ

τ

 (8.1) 

where the model constants are 
k

σ , 
λ

C , 
1r

C , 
1r

a , 
2r

C , 
2r

a , 
3r

C , 
3r

a ,  and 
4r

a . Values for these model 

constants have a significant impact on the accuracy of the model. Therefore, accurate values for these 

constants must be evaluated. The influence of 
λ

C  on the model solution can be analytically determined. 

However, in order to determine acceptable values for the other model constants, computer optimization was 

used. This chapter explains the process for evaluating the model constants. 

 

II.  The Influence of 
λ

C  for Fully Rough Pipe Flow 

 The influence of the closure coefficient 
λ

C  is most easily seen by considering the fundamental 

dimensional equations of the model 

 
R

ru

dr

Vd

t

z

)(

2

νν

τ

+

−=  (8.2) 



156 

 ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛
+−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂
=⎥

⎦

⎤
⎢
⎣

⎡
+−

dr

dk
r

dr

d

r

k
C

r

V

dr

dk
r

dr

d

r

z

tkt
3

4
)(

3

5
2

2

λ
ννσνν

λ
 (8.3) 

 ])1(R   ,Rmin[ 43
2

1

e32e1
RRrCkkCRC rr

r
r

aa

crs

a

sr

a

cr
−+=

+

λ  (8.4) 

 k
t

λν =  (8.5) 

 Equation (8.4) shows that the mean vortex wavelength is greatest near the centerline and smallest near 

the wall. Because the dissipation of turbulent kinetic energy is inversely proportional to the square of the 

mean vortex wavelength, Eq. (8.3) shows that the dissipation of turbulent kinetic energy is greatest at the 

wall where the mean vortex wavelength is small. Also note that because the turbulent kinetic energy and 

mean vortex wavelength are large at the center of the pipe, Eq. (8.5) shows that the turbulent eddy viscosity 

is also large at the center of the pipe. Therefore, in the core region of the pipe, the diffusion and generation 

terms of the turbulent kinetic energy become the dominant terms. The dissipation term only becomes 

significant near the wall where the mean vortex wavelength is much smaller. Therefore, Eq. (8.3) shows 

that the turbulent kinetic energy that is generated in the core of the pipe is diffused toward the wall where it 

is dissipated. This makes sense from a physical point of view as the energy from the large eddies diffuses 

toward the wall where these eddies break down to form the smaller eddies. These small eddies have higher 

strain rates and are responsible for much of the dissipation of energy. Thus the bulk of the dissipation of 

turbulent kinetic energy takes place in a layer very near the wall. As the roughness Reynolds number is 

increased, this dissipation layer becomes thinner. At very high roughness Reynolds numbers, the molecular 

viscosity is negligible compared with the turbulent eddy viscosity across most of the flow, and the 

dissipation layer becomes infinitesimally thin. At that point, the solution becomes independent of the 

molecular viscosity, and Eqs. (8.2) and (8.3) simplify to 

 
R

ru

dr

Vd

t

z

ν

τ

2

−=  (8.6) 

 

2

3

5

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

r

V

dr

dk
r

dr

d

r

z

t

k

t
ν

σ

ν

 (8.7) 

Using Eq. (8.6) in Eq. (8.7) gives 



157 

 
2

34

5

3

R

ru

dr

dk
r

dr

d

t

k

t
ν

σ
ν

τ−=⎥
⎦

⎤
⎢
⎣

⎡
 (8.8) 

Therefore, at high roughness Reynolds numbers, the solution is independent of the model constant 
λ

C . At 

lower roughness Reynolds numbers, and particularly in the transition and smooth-wall limits, 
λ

C  will 

significantly affect the solution. Note from Eq. (8.3) that the point that the molecular viscosity becomes 

negligible compared to the turbulent eddy viscosity is dependent on the value of 
λ

C . Thus, 
λ

C  determines 

to some extent the transition point to fully rough flow. However, as the roughness Reynolds number is 

increased, the solution will eventually become independent of 
λ

C . Because this work focuses on a model 

for the fully rough flow asymptote, for the remainder of this work the solution is assumed independent of 

the value for 
λ

C . 

 

III.  Computer Optimization 

 Optimization routines are helpful in evaluating optimal values for a set of inputs for a given situation. 

These input variables are commonly called the design variables, and the range of viable values for the 

design variables is called the design space. In order for an optimization routine to evaluate the best solution 

for the design variables within the design space, the relationship between the design variables and the 

solution must be expressed quantitatively. Once this solution is obtained for a given set of design variables, 

the degree to which that solution matches the desired solution is commonly called the fitness of the 

solution. The fitness must be a single number that comes as a direct result from a given set of design 

variables. The routine that calculates the fitness as a function of the design variables is commonly called 

the fitness function. Fitness functions can be as simple as an algebraic expression, or as complicated as a 

turbulence model. The optimization routine itself treats the fitness function as a sort of a “black box” which 

given a set of design variables returns a fitness value. Thus, an early step to any optimization problem is to 

define the fitness function, which, if minimized, results in the optimal solution. 

 



158 

A.  Model Fitness 

 It has been shown that the solution for this turbulence model in the fully rough regime is independent  

of the model constant 
λ

C . Therefore, the design variables for this case are the remaining model constants 

k
σ , 

1r
C , 

1r
a , 

2r
C , 

2r
a , 

3r
C , 

3r
a ,  and 

4r
a . Given values for each of these model constants, a fitness of the 

model must be evaluated. The fitness of any given set of closure coefficients was determined by evaluating 

how well the model matched the Colebrook equation in the fully rough limit. 

 For a given set of model constants, 46 cases were run over a range of values for 
r
k  and +

s
k  that all fall 

in the fully rough regime. The values for 
r
k  were taken to match the values for the experimental cases of 

Nikuradse [59] and Shockling, Allen, and Smits [61] with an additional 
r
k  value to fill in the large gap 

between the data sets of the researchers. The values for +

s
k  began at 1000=

+

s
k  and were incremented up to 

values that resulted in bulk Reynolds numbers at or just above 8e0.1R
e
= , or until at least 3 cases were run. 

This provided a range of cases that most nearly match the range of data sets available. 

 For each of the 46 cases, the resulting friction factor was compared with the friction factor given by the 

Colebrook equation at the Reynolds number computed by the model. The percent error in the friction factor 

for each case was evaluated, squared, and summed with the errors of the other cases. This total was divided 

by 46 and the square root of that value was taken to yield the root-mean-square (RMS) percent error of the 

model. This single value was used as the fitness for any given set of model constants. 

 For example, given the non-optimal model constants 

 
   12.1   ,003.0   ,063.0

,004.0   ,002.0   ,0.0   ,065.0   ,0.1

433

2211

=−==

−=====

rrr

rrrrk

aaC

aCaCσ

 (8.9) 

produces the results shown in Table 8.1. 

 



159 

 Table 8.1  Sample results for the Phillips k-λ fully rough pipe flow model given a set of non-optimal 

model constants  

kr ks
+
 Re Phillips 4Cf Colebrook 4Cf % Error 

3.40E-02 1.00E+3.00 3.34E+05 6.20E-02 6.04E-02 2.77E-02 

3.40E-02 1.00E+3.25 5.93E+05 6.22E-02 6.03E-02 3.16E-02 

3.40E-02 1.00E+3.50 1.05E+06 6.23E-02 6.03E-02 3.37E-02 

3.40E-02 1.00E+3.75 1.87E+06 6.24E-02 6.03E-02 3.47E-02 

3.40E-02 1.00E+4.00 3.33E+06 6.24E-02 6.03E-02 3.50E-02 

3.40E-02 1.00E+4.25 5.92E+06 6.24E-02 6.03E-02 3.50E-02 

3.40E-02 1.00E+4.50 1.05E+07 6.24E-02 6.03E-02 3.47E-02 

3.40E-02 1.00E+4.75 1.87E+07 6.23E-02 6.03E-02 3.43E-02 

3.40E-02 1.00E+5.00 3.33E+07 6.23E-02 6.03E-02 3.39E-02 

3.40E-02 1.00E+5.25 5.93E+07 6.23E-02 6.03E-02 3.34E-02 

1.60E-02 1.00E+3.00 8.26E+05 4.58E-02 4.48E-02 2.25E-02 

1.60E-02 1.00E+3.25 1.47E+06 4.59E-02 4.48E-02 2.59E-02 

1.60E-02 1.00E+3.50 2.61E+06 4.60E-02 4.47E-02 2.77E-02 

1.60E-02 1.00E+3.75 4.63E+06 4.60E-02 4.47E-02 2.84E-02 

1.60E-02 1.00E+4.00 8.24E+06 4.60E-02 4.47E-02 2.85E-02 

1.60E-02 1.00E+4.25 1.47E+07 4.60E-02 4.47E-02 2.83E-02 

1.60E-02 1.00E+4.50 2.61E+07 4.60E-02 4.47E-02 2.78E-02 

1.60E-02 1.00E+4.75 4.64E+07 4.60E-02 4.47E-02 2.73E-02 

1.60E-02 1.00E+5.00 8.25E+07 4.59E-02 4.47E-02 2.66E-02 

8.30E-03 1.00E+3.00 1.79E+06 3.64E-02 3.57E-02 2.06E-02 

8.30E-03 1.00E+3.25 3.17E+06 3.65E-02 3.56E-02 2.36E-02 

8.30E-03 1.00E+3.50 5.64E+06 3.65E-02 3.56E-02 2.50E-02 

8.30E-03 1.00E+3.75 1.00E+07 3.65E-02 3.56E-02 2.55E-02 

8.30E-03 1.00E+4.00 1.78E+07 3.65E-02 3.56E-02 2.54E-02 

8.30E-03 1.00E+4.25 3.17E+07 3.65E-02 3.56E-02 2.50E-02 

8.30E-03 1.00E+4.50 5.64E+07 3.65E-02 3.56E-02 2.44E-02 

3.90E-03 1.00E+3.00 4.27E+06 2.88E-02 2.82E-02 2.01E-02 

3.90E-03 1.00E+3.25 7.59E+06 2.89E-02 2.82E-02 2.26E-02 

3.90E-03 1.00E+3.50 1.35E+07 2.89E-02 2.82E-02 2.38E-02 

3.90E-03 1.00E+3.75 2.40E+07 2.89E-02 2.82E-02 2.41E-02 

3.90E-03 1.00E+4.00 4.27E+07 2.89E-02 2.82E-02 2.38E-02 

3.90E-03 1.00E+4.25 7.59E+07 2.89E-02 2.82E-02 2.33E-02 

2.00E-03 1.00E+3.00 9.14E+06 2.39E-02 2.34E-02 2.02E-02 

2.00E-03 1.00E+3.25 1.62E+07 2.40E-02 2.34E-02 2.25E-02 

2.00E-03 1.00E+3.50 2.89E+07 2.40E-02 2.34E-02 2.35E-02 

2.00E-03 1.00E+3.75 5.14E+07 2.40E-02 2.34E-02 2.36E-02 

2.00E-03 1.00E+4.00 9.14E+07 2.40E-02 2.34E-02 2.32E-02 

9.80E-04 1.00E+3.00 2.04E+07 1.99E-02 1.96E-02 2.02E-02 

9.80E-04 1.00E+3.25 3.63E+07 2.00E-02 1.95E-02 2.23E-02 

9.80E-04 1.00E+3.50 6.45E+07 2.00E-02 1.95E-02 2.32E-02 

3.00E-04 1.00E+3.00 7.64E+07 1.52E-02 1.49E-02 1.82E-02 

3.00E-04 1.00E+3.25 1.36E+08 1.52E-02 1.49E-02 2.03E-02 

3.00E-04 1.00E+3.50 2.41E+08 1.53E-02 1.49E-02 2.10E-02 

5.80E-05 1.00E+3.00 4.66E+08 1.09E-02 1.08E-02 8.96E-03 

5.80E-05 1.00E+3.25 8.28E+08 1.10E-02 1.08E-02 1.15E-02 

5.80E-05 1.00E+3.50 1.47E+09 1.10E-02 1.08E-02 1.24E-02 



160 

Squaring and summing each value in the “% Error” column, dividing by 46, and taking the square root 

gives 2.5808% RMS error. This is the fitness for this case. Figure 8.1 shows the results of this case with 

respect to the Colebrook equation. The results of the model using the constants given in Eq. (8.9) fall just 

above the Colebrook equation. A fitness of 0.0% RMS error would show the model results falling directly 

on the Colebrook equation. 

 

103 104 105 106 107 108 109

Reynolds Number

0.01

0.10

D
ar

cy
F

ri
ct

io
n

F
ac

to
r

0.02

0.04

0.06

0.08

0.00005

0.00030

0.00098

0.0020

0.0039

0.0083

0.016

0.034

8

R
el

at
iv

e 
R

ou
gh

ne
ss

 

Fig. 8.1  Sample friction factor results for the Phillips k-λ fully rough pipe flow model given a set of 

non-optimal model constants. 

B.  Common Optimization Algorithms 

 Once the fitness has been defined as a function of the design variables, an optimization algorithm can 

be used to determine the values for the variables that will minimize the fitness function. Many types of 

optimization methods exist which can generally be classified as gradient-based, discrete variable, or 

evolutionary methods. Gradient-based optimization algorithms are generally used to solve optimization 

problems for which the fitness is a continuous and differentiable function within the design space. Discrete 

variable algorithms are used when only discrete values for the design variables are viable options. 

Evolutionary routines, sometimes called genetic algorithms, comprise a relatively new branch of 

optimization and attempt to mimic nature in a sense of survival of the fittest. These schemes are very useful 

for optimization problems for which the design space is discontinuous, has multiple local saddle points and 



161 

minima, or has regions where the fitness function cannot be solved. Because the fitness function for this 

turbulence model is expected to be continuous throughout the design space, a gradient-based optimization 

algorithm was chosen for the optimization routine.  

 Three common types of gradient-based methods are steepest decent methods, Newton’s method, and 

quasi-Newton methods. The advantages of steepest decent methods are that they make good progress 

toward an optimum when they are far from the optimum, they always progress downhill, and will always 

eventually converge to a local minimum. However, if the function to be minimized is eccentric, these 

methods can require an immense amount of time to reach convergence. The advantage of Newton’s method 

is that it can quickly find a point for which the gradient is zero, especially if the function to be minimized is 

nearly quadratic. This is commonly made possible through the evaluation of second derivatives to construct 

the Hessian matrix of the fitness function. Thus, if it is near an optimum, it will quickly find the optimum 

regardless of the eccentricity of the function. However, Newton’s method has several disadvantages. For 

example, it cannot differentiate between a maximum, minimum, or saddle point. Thus, it does not 

guarantee that it will progress downhill, and it may even converge to a maximum rather than a minimum. 

Additionally, it requires the evaluation of second derivatives, which can be computationally expensive. 

Quasi-Newton methods combine the advantages of steepest decent methods with those of Newton’s method 

and eliminate many of the disadvantages. Quasi-Newton methods, sometimes termed “variable metric 

methods”, begin as steepest decent methods, and store first derivative information in order to estimate the 

Hessian matrix as the solution progresses. As it approaches the optimum, a quasi-Newton method 

resembles a Newton’s method where it can use the Hessian to progress more quickly to the optimum.  

 In general, quasi-Newton methods allow a direction matrix to be determined and refined as the solution 

progresses toward the optimum. This direction matrix is multiplied by the negative of the gradient in order 

to evaluate a search direction. In mathematical terms, 

 )(xNs
v

v

v

v

f∇−=  (8.10) 

where )(x
v

f∇  is the gradient of the vector of design variables, N
v

v

 is the direction matrix, and s
v

 is the search 

direction. Note that if the direction matrix is positive definite, the search direction will always point 



162 

downhill. If the direction matrix is equal to the identity matrix, then the method is a steepest decent method. 

If the direction matrix is equal to the inverse of the Hessian, then the method is equivalent to Newton’s 

method. Most methods for updating the direction matrix begin with the identity matrix and attempt to 

construct the Hessian through the evaluation of first derivatives as the solution progresses. Multiple update 

methods have been developed which ensure that the direction matrix is always positive definite. One such 

update method was chosen for this work and an overview of this method is included here. 

 

C.  Broyden-Fletcher-Goldfarb-Shanno Update Method 

 One of the best quasi-Newton’s methods to date is the Broyden-Fletcher-Goldfarb-Shanno (BFGS) 

update method named after Broyden [97], Fletcher [98], Goldfarb [99], and Shanno [100] who each came 

up with the update independently in the same year. This update method can be written as 

 
ii

iiiiii

ii

ii

ii

iii

ii

γx

xγNNγx

γx

xx

γx

γNγ
NN

vv

vv

v

v

v

v

vv

vv

vv

vv

v

v

v

v

v

v

v

v

T

TT

T

T

T

T

1
1

Δ

Δ+Δ
−⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

Δ

ΔΔ

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

Δ
++=

+
 (8.11) 

where 

 
)()(

1

1

iii

iii

ff xxγ

xxx

vvv

vvv

∇−∇≡

−≡Δ

+

+

 (8.12) 

and the subscript i is the iteration or step number. This update is commonly combined with a line search 

algorithm. Given a search direction, a line search can be performed in that direction until a minimum is 

found. The line search in this work included running several cases at specific intervals along the search 

direction and fitting a parabola to the three points that comprised the minimum point and the two points to 

either side of that minimum point. Once a parabola had been fit to those three points, the minimum of the 

parabola was taken as the next step or iteration in the BFGS algorithm. This algorithm is perhaps best 

understood by example. 

 Given the fitness function 

 2

221

2

1
42)( xxxxf +−=x

v

 (8.13) 

we seek values for the design variables 
1
x  and 

2
x  that minimize this function. Starting from the point 



163 

 19)(     ,
14

8
)(     ,

1

3
000

=
⎭
⎬
⎫

⎩
⎨
⎧−

=∇
⎭
⎬
⎫

⎩
⎨
⎧−

= xxx

vvv

ff  (8.14) 

For the first step, the identity matrix is used for the direction matrix 

 ⎥
⎦

⎤
⎢
⎣

⎡
=

10

01
0

N

v

v

 (8.15) 

This gives the search direction 

 
⎭
⎬
⎫

⎩
⎨
⎧

−
=

⎭
⎬
⎫

⎩
⎨
⎧−
⎥
⎦

⎤
⎢
⎣

⎡
−=∇−=

14

8

14

8

10

01
)(

000
xNs
v

v

v

v

f  (8.16) 

A line search is performed in this direction, and a parabola is fit to the minimum of the line search to give 

the next point 

 235.3)(     ,
522.1

664.2
)(     ,

698.0

030.2
111
=

⎭
⎬
⎫

⎩
⎨
⎧

−

−
=∇

⎭
⎬
⎫

⎩
⎨
⎧

−

−
= xxx

vvv

ff  (8.17) 

Using Eqs. (8.14) and (8.17) in Eq. (8.12) gives 

 

⎭
⎬
⎫

⎩
⎨
⎧

−
=∇−∇≡

⎭
⎬
⎫

⎩
⎨
⎧

−
=−≡Δ

522.15

336.5
)()(

698.1

970.0

010

010

xxγ

xxx

vvv

vvv

ff

 (8.18) 

Using this in Eq. (8.11) gives the updated direction matrix 

 ⎥
⎦

⎤
⎢
⎣

⎡
=

Δ

Δ+Δ
−⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

Δ

ΔΔ

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

Δ
++=

200.0266.0

266.0957.0
1

0

T

0

T

0000

T

00

0

T

0

T

00

0

T

0

00

T

0

01

γx

xγNNγx

γx

xx

γx

γNγ
NN

vv

vv

v

v

v

v

vv

vv

vv

vv

v

v

v

v

v

v

v

v

 (8.19) 

Using this in Eq. (8.10) gives the new search direction 

 
⎭
⎬
⎫

⎩
⎨
⎧

=
⎭
⎬
⎫

⎩
⎨
⎧

−

−
⎥
⎦

⎤
⎢
⎣

⎡
−=∇−=

015.1

954.2

522.1

664.2

200.0266.0

266.0957.0
)(

111
xNs
v

v

v

v

f  (8.20) 

Performing a line search in this direction brings us within single precision computations of the optimum. 

The process can be repeated until double precision is achieved. The optimum for this design space is 

 0)(     ,
0

0
)(     ,

0

0
=

⎭
⎬
⎫

⎩
⎨
⎧

=∇
⎭
⎬
⎫

⎩
⎨
⎧

= xxx
vvv

ff  (8.21) 

At that point, the algorithm can exit. However, it is interesting to note that if the direction matrix is updated 

before exiting, it gives the inverse of the Hessian matrix 



164 

 ⎥
⎦

⎤
⎢
⎣

⎡
== −

167.0167.0

167.0667.0
1

HN

v

v

v

v

 (8.22) 

 Because the direction matrix is a function of the previous direction matrix, if the nature of the design 

space is such that the optimization routine requires several iterations before an optimum is achieved, the 

direction matrix may contain information that is not applicable near an optimum. For this reason it can be 

helpful to reset the direction matrix to the identity matrix periodically. In this work, the direction matrix 

was reset to the identity matrix each time the resulting step size was 

 12e0.1 −≤Δ
i

x

v

 (8.23) 

If the direction matrix was equal to the identity matrix and the criteria in Eq. (8.23) was met, the solution 

was considered finished and the algorithm exited. 

 The gradient required by the algorithm in Eq. (8.12) was computed numerically using a second-order 

central-differencing method. It was found that a step size of 1.0e-8 for the differencing provided a good 

trade-off between truncation and round-off error. This was the step size used for differencing in the code. 

Appendix P contains the Fortran code used for the optimization routine. 

 

D.  An Example Optimization Run 

 An example optimization run may be helpful to the reader. Beginning with the non-optimal values for 

the constants given in Eq. (8.9) and holding 0.1=
k

σ , 065.0
1
=

r
C , and 0.0

1
=

r
a  constant, the optimization 

routine took the steps shown in Table 8.2. The resulting model constants for this case are 

 
00+1.1202E   ,03--3.0563E   ,02-6.2543E

,03--3.6480E   ,03-2.0768E   ,0.0   ,065.0   ,0.1

433

2211

===

=====

rrr

rrrrk

aaC

aCaCσ

 (8.24) 

which results in an RMS error of 0.2136%. Figure 8.2 shows the model results for the constants evaluated 

from the optimization run. Also included are the corresponding results for the Colebrook equation. 



165 

 

Table 8.2  Example optimization iterations using the BFGS update method 

iteration C
r2 a

r2 C
r3 a

r3 a
r4 Fitness 

0 2.0000E-03 -4.0000E-03 6.3000E-02 -3.0000E-03 1.1200E+00 2.5808E+00 

1 2.1749E-03 -3.9968E-03 6.2986E-02 -3.0155E-03 1.1200E+00 8.0540E-01 

2 2.1999E-03 -4.1727E-03 6.3320E-02 -3.0288E-03 1.1202E+00 7.9584E-01 

3 2.4371E-03 -8.7041E-03 6.9826E-02 -5.9085E-03 1.1258E+00 5.6610E-01 

4 2.5871E-03 -1.2737E-02 7.1871E-02 -6.0652E-03 1.1295E+00 4.3093E-01 

5 2.6995E-03 -1.9510E-02 7.2916E-02 -8.5437E-03 1.1236E+00 4.0144E-01 

6 2.4684E-03 -1.4187E-02 6.8653E-02 -5.8296E-03 1.1242E+00 2.9050E-01 

7 2.4222E-03 -1.4296E-02 6.7363E-02 -5.8726E-03 1.1210E+00 2.7447E-01 

8 2.1622E-03 -5.3522E-03 6.4061E-02 -3.4922E-03 1.1218E+00 2.2605E-01 

9 2.1307E-03 -4.4432E-03 6.3595E-02 -3.1936E-03 1.1219E+00 2.2352E-01 

10 2.1252E-03 -4.6136E-03 6.3391E-02 -3.1418E-03 1.1217E+00 2.1715E-01 

11 2.1122E-03 -5.0337E-03 6.3106E-02 -3.5625E-03 1.1198E+00 2.1455E-01 

12 2.0867E-03 -3.9178E-03 6.2766E-02 -3.1851E-03 1.1203E+00 2.1377E-01 

13 2.0800E-03 -3.7579E-03 6.2596E-02 -3.0954E-03 1.1202E+00 2.1360E-01 

14 2.0800E-03 -3.7579E-03 6.2596E-02 -3.0954E-03 1.1202E+00 2.1360E-01 

15 2.0799E-03 -3.7579E-03 6.2596E-02 -3.0954E-03 1.1202E+00 2.1360E-01 

16 2.0800E-03 -3.7578E-03 6.2596E-02 -3.0950E-03 1.1202E+00 2.1360E-01 

17 2.0798E-03 -3.7522E-03 6.2596E-02 -3.0960E-03 1.1202E+00 2.1360E-01 

18 2.0775E-03 -3.6923E-03 6.2553E-02 -3.0762E-03 1.1201E+00 2.1359E-01 

19 2.0768E-03 -3.6480E-03 6.2543E-02 -3.0563E-03 1.1202E+00 2.1359E-01 

20 2.0768E-03 -3.6480E-03 6.2543E-02 -3.0563E-03 1.1202E+00 2.1359E-01 

21 2.0768E-03 -3.6480E-03 6.2543E-02 -3.0563E-03 1.1202E+00 2.1359E-01 

22 2.0768E-03 -3.6480E-03 6.2543E-02 -3.0563E-03 1.1202E+00 2.1359E-01 

 

103 104 105 106 107 108 109

Reynolds Number

0.01

0.10

D
ar

cy
F

ri
ct

io
n

F
ac

to
r

0.02

0.04

0.06

0.08

0.000058

0.00030

0.00098

0.0020

0.0039

0.0083

0.016

0.034

R
el

at
iv

e 
R

ou
gh

ne
ss

 

Fig. 8.2  Friction factor results for the Phillips k-λ fully rough pipe flow model with a set of optimal 

model constants given in Eq. (8.24). 



166 

Comparing Figs. 8.1 and 8.2, it is easy to see that these model constants provide a significant improvement 

over the original set of model constants given in Eq. (8.9) which resulted in an RMS error of 2.5808%. 

 

E.  Resulting Closure Coefficients 

 Initial estimates for the model constants were obtained by fitting the algebraic relation for +

λ  to results 

derived from the mixing length model. Early optimization runs were set to allow all the model constants to 

vary except for 
λ

C , which was held at the value 0004.0=
λ

C . Results from these runs showed that excellent 

model fitness could be achieved over a significant range of values for 
k

σ  and 
1r

C . Hundreds of 

optimization cases were run holding both 
k

σ  and 
1r

C  at specified values in the ranges of 0.210.0 ≤≤
k

σ  

and 25.00005.0
1
≤≤

r
C . These ranges were chosen based on estimates gained from early optimization 

runs. Figure 8.3 shows the % RMS error as a function of 
1r

C  for several values of 
k

σ . 

 

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.00 0.05 0.10 0.15 0.20 0.25

%
 R

M
S 

E
rr

or

Cr1

0.10

=2.00

1.75

1.50

1.25

1.00

0.75
0.50

0.25

 

Fig. 8.3  % RMS error over a range of values for 
1r

C  and 
k

σ . 

 Figure 8.3 shows two distinct regions of the design space. Note that for a given value of 
k

σ , the % 

RMS error is minimized at low values of 
1r

C . However, for high values of 
1r

C , the % RMS error is 

independent of 
1r

C . The region of the design space with high values of 
1r

C  is attractive for two reasons. 



167 

First, if the solution at high roughness Reynolds numbers is independent of 
1r

C , the closure coefficient 
1r

C  

may be used as an extra degree of freedom for developing a model that transitions to lower roughness 

Reynolds numbers. Second, note that the % RMS error for high values of 
1r

C  for any given value of 
k

σ  is 

not significantly higher than the best % RMS error possible. In fact, the difference in % RMS error of these 

two regions is generally on the order of a few tenths of a percent. Therefore, it appears that using a solution 

in the region of small values for 
1r

C  does not result in a model that is significantly better than using a 

solution with high values of 
1r

C .  

 In the region where the solution is independent of 
1r

C , it was found that the fitness is also independent 

of 
1r

a . To understand this, it is helpful to consider the algebraic relation for the mean vortex wavelength 

 ])ˆ1(R   ,Rmin[ 43
2

1

e3

)1(

2e1 ττ
λ RrCkCRC rr

r
r

aa

cr

a

sr

a

cr
−+=

+
++  (8.25) 

If 
1r

C  and 
1r

a  combine such that 1

e1
R r

a

cr
C  is large enough, 

 43

2

1 )ˆ1(RR e3

)1(

2
e1

rr

r

r
aa

cr

a

sra

cr
rC

R

kC
C −+>

+
+

τ

 (8.26) 

over the entire pipe radius, and the solution becomes independent of both 
1r

C  and 
1r

a . In the flat regions of 

Fig. 8.3, the optimized results for 
1r

a  are identically 0.0 because 
1r

a  was initialized to 0.0, and the results 

were found to be independent of both 
1r

C  and 
1r

a . Initial optimization runs for which both 
1r

C  and 
1r

a  were 

allowed to vary, and for which the product 1

e1
R r

a

cr
C  was small enough to affect the results, often converged 

to solutions for 
1r

a  that were on the order of 1.0e-4. 

 Again note from Fig. 8.3 that even for small values of 
1r

C  where 
1r

a  was also allowed to vary, the case 

fitness values do not significantly improve over the flat region that is independent of both 
1r

C  and 
1r

a . 

Therefore, it appears that choosing values for the constants that give results in the lower regions of 
1r

C  do 

not offer significant improvements over the results that can be obtained in the region where the solution is 

independent of both 
1r

C  and 
1r

a . Overall, the case fitness appears to be a more significant function of 
k

σ  

than of 
1r

C  and 
1r

a , and the case fitness is only a function of 
k

σ  in the region that is perfectly flat. 

 Additional optimization cases were run extending the ranges of 
k

σ  and 
1r

C  to 0.402.0 ≤≤
k

σ  and 

50.00005.0
1
≤≤

r
C . These ranges are expected to bound the domain of probable final values of the 



168 

coefficients. In traditional turbulence models, 
k

σ  has ranged from 0.5 to 2.0. Thus the bound on 
k

σ  is 

likely sufficiently large. Because the mean vortex wavelength is expected to be less than the pipe radius, it 

is expected that the upper bound for 
1r

C  is about 1.0. Additionally, it was found that the solution is 

independent of 
1r

C  for 50.0
1
>

r
C  for all 02.0≥

k
σ . Therefore, optimization runs for 50.0

1
>

r
C  are not 

needed. 

 In the region where the solution is independent of 
1r

C  and 
1r

a , optimal values for the remaining 

constants and the % RMS error are only functions of 
k

σ . Because this region is perfectly flat with respect 

to 
1r

C , it will subsequently be referred to as “the flat.” Figures 8.4 through 8.8 show the optimization results 

for each of the remaining closure coefficients as a function of 
k

σ  as well as curves that represent the lines 

of best fit for the results on the flat. Details on computing these lines of fit can be found in the Fortran 

subroutine included in Appendix Q that uses these lines of fit to calculate each of the closure coefficients as 

a function of 
k

σ . This method for computing the closure coefficients in this region as a function of 
k

σ  will 

be referred to from here on as computing the closure coefficients from the flat. 

 

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

 0.0  0.5  1.0  1.5  2.0  2.5  3.0  3.5  4.0

C
r2

 

Fig. 8.4  Optimal value for 
2r

C  as a function of 
k

σ . 

 



169 

−0.08

−0.06

−0.04

−0.02

0.00

0.02

 0.0  0.5  1.0  1.5  2.0  2.5  3.0  3.5  4.0

a r
2

 

Fig. 8.5  Optimal value for 
2r

a  as a function of 
k

σ . 

 

 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

 0.0  0.5  1.0  1.5  2.0  2.5  3.0  3.5  4.0

C
r3

 

Fig. 8.6  Optimal value for 
3r

C  as a function of 
k

σ . 

 



170 

−0.04

−0.03

−0.02

−0.01

0.00

0.01

 0.0  0.5  1.0  1.5  2.0  2.5  3.0  3.5  4.0

a r
3

 

Fig. 8.7  Optimal value for 
3r

a  as a function of 
k

σ . 

 

1.05

1.06

1.07

1.08

1.09

1.10

1.11

1.12

1.13

1.14

 0.0  0.5  1.0  1.5  2.0  2.5  3.0  3.5  4.0

a r
4

 

Fig. 8.8  Optimal value for 
4r

a  as a function of 
k

σ . 

 A short discussion on the behaviors of the coefficients 
2r

a , 
3r

a , and 
4r

a  may be of interest. Note from 

Fig. 8.7 that the value for 
3r

a  is zero at 75.0≅
k

σ . Because 0.0
1
=

r
a  was used for these optimization runs, 

choosing 75.0≅
k

σ  gives a model that is independent of the core Reynolds number. Similarly, from Fig. 

8.5 it can be seen that choosing 85.0≅
k

σ  gives 0.0
2
=

r
a  which results in a model where the mean vortex 

wavelength at the wall is a linear function of the roughness Reynolds number. Finally, note from Fig. 8.8 



171 

that 
4r

a  is within 14% of 1.0 over the entire range included in this study. This result suggests that the mean 

vortex wavelength close to the wall is nearly a linear function of distance from the wall. In fact, in the 

region where the solution is independent of 
1r

C  and 
1r

a , this result gives a model where the characteristic 

length of the turbulence is nearly a linear function of radius over the entire pipe cross section. This could be 

significant because of its similarity to Prandtl’s original mixing-length theory. Prandtl hypothesized that 

near a smooth wall, the turbulent characteristic length is directly proportional to the distance from the wall. 

For roughened pipes, wall effects could be expected to extend further from the wall than for smooth pipes, 

affecting a larger region of the flow cross section. For fully rough pipe flow, it is probable that the wall 

effects extend across the entire pipe and that the characteristic length of the energy-bearing eddies would be 

directly proportional or very nearly proportional to the distance from the wall. Optimal results for the 

Phillips k-λ model suggest a value within 14% of 0.1
4
=

r
a  which results in a model where the mean vortex 

wavelength, or characteristic length of the energy-bearing eddies, is nearly directly proportional to the 

distance from the wall. Thus, this model for fully rough pipe flow resembles Prandtl’s hypothesis for wall-

bounded turbulence. 

 In the flat region of Fig. 8.3, the case fitness is a function of only 
k

σ . Figure 8.9 shows the % RMS 

error of the model as a function of 
k

σ . Note that even at the upper limit of 0.4=
k

σ , the % RMS error is 

less than 1%. 

 

0.10

0.20

0.30

0.40

0.50

0.60

0.70

 0.0  0.5  1.0  1.5  2.0  2.5  3.0  3.5  4.0

%
 R

M
S 

E
rr

or

 

Fig. 8.9  % RMS error as a function of 
k

σ . 



172 

 The relations shown in results of Figs. 8.4 through 8.9 were developed for the range where the solution 

is totally independent of 
1r

C  and 
1r

a . However, if 1

e1
R r

a

cr
C  is small enough, the solution is affected as 

demonstrated in Fig. 8.3. Therefore, the relations shown in Figs. 8.4 through 8.9 cannot be expected to 

produce valid results for small values of 
1r

C . The discussion following Fig. 8.8 provides some justification 

as to why the fully rough solution may be expected to be independent of 
1r

C . However, at lower roughness 

Reynolds numbers, 
1r

C  may become increasingly important as the flow transitions towards the smooth-wall 

asymptote, and the presence of the wall affects a smaller portion of the flow. Therefore, it is of worth to 

examine the % RMS error of the model for small values of 
1r

C  using the coefficient relations from the flat. 

Figure 8.10 shows the % RMS error of the model as a function of 
1r

C  for several values of 
k

σ . The closure 

coefficients over the entire range shown in Fig. 8.10 were evaluated using the flat with 0.0
1
=

r
a . Note that 

the error of the model increases rapidly for low values of 
1r

C . It appears that the range of values 

0.15.0 ≤≤
k

σ  give the best model fitness over the widest range of values for 
1r

C . 

 

 

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1.0

 0.0  0.1  0.2  0.3  0.4  0.5

%
 R

M
S 

E
rr

or

Cr1

=4.00

3.00

2.00

1.00

0.50
0.25
0.10
0.05

=0.02

 

Fig. 8.10  % RMS error of the final model using coefficients evaluated from the flat over a range of 

values for 
1r

C  and 
k

σ . 



173 

 One point of interest apparent from Fig. 8.3 is the minimum % RMS error in the design space shown in 

that figure. This occurs at 1.0=
k

σ  and 03.0
1
=

r
C . This point is significant because it presents an optimal 

point where the value of 
1r

C  is small enough to affect the solution. The % RMS error at that point is 0.129. 

It appears that this is very near the best solution possible with this turbulence model, and the model results 

at this point along with select points from the flat will be considered in the following chapter. 

 

IV.  Summary and Conclusions 

 The closure coefficients for the Phillips k-λ model are 
k

σ , 
λ

C , 
1r

C , 
1r

a , 
2r

C , 
2r

a , 
3r

C , 
3r

a ,  and 
4r

a . 

The closure coefficient 
λ

C  only influences the solution through the dissipation term in the turbulent-

kinetic-energy transport equation. Because the bulk of the dissipation of turbulent kinetic energy takes 

place in a very small region near the wall in fully rough pipe flow, the influence of 
λ

C  is negligible for 

fully rough pipe flow. This has been shown analytically and confirmed numerically. However, at lower 

roughness Reynolds numbers, and especially in the smooth-wall limit, the influence of 
λ

C  will be 

extremely important. 

 Values for the remaining closure coefficients, 
k

σ , 
1r

C , 
1r

a , 
2r

C , 
2r

a , 
3r

C , 
3r

a ,  and 
4r

a  were evaluated 

using a quasi-Newton, gradient-based optimization algorithm. This algorithm employed the BFGS update 

method which begins as the steepest-decent method and stores information about the first derivative 

throughout the design space to estimate the Hessian. As the solution progresses, the stored information 

allows more intelligent steps to be taken until an optimum is reached. 

 Hundreds of optimization cases were run over a range of values for the closure coefficients. The results 

of this optimization study showed that the model results are independent of 
1r

C  and 
1r

a  over a wide range 

of the design space. In that region, the model predicts that the mean vortex wavelength is nearly directly 

proportional to the distance from the wall, which is similar to the fundamental hypothesis of Prandtl’s 

mixing-length model. Additionally, in that region, optimal values for the remaining closure coefficients can 

be expressed as a function of 
k

σ . These relationships are shown in Figs. 8.4 through 8.8 and details on the 

lines of best fit for the closure coefficients can be found in Appendix Q. Choosing a value for 
k

σ  in the 



174 

range of 0.15.0 ≤≤
k

σ  appears to give a model with the best fit to experimental data over a wide range of 

values for 
1r

C . Additionally, choosing a value of 75.0≅
k

σ  gives 0.0
3
≅

r
a  which results in a model that is 

independent of the core Reynolds number. 

 Perhaps the best point in the design space is that for 1.0=
k

σ  and 03.0
1
=

r
C . The optimal values of the 

closure coefficients at this point result in a model with the minimum % RMS error in the design space of 

this study. The results of the model at this point along with points from the flat are considered in detail in 

the following chapter. 



175 

CHAPTER 9 

PHILLIPS k-λ MODEL RESULTS AND CONCLUSIONS 

I.  Introduction 

  The Phillips k-λ model and accompanying closure coefficient relations presented in the previous 

chapter provides an accurate method for predicting the friction factor of fully rough pipe flow. The results 

of the previous section show that there is a range of values for the closure coefficients that results in a 

model that has less than 1% RMS error for fully rough flows. If 
1r

C  is large enough that it does not affect 

the solution, the closure coefficients that provide the best fit are only a function of 
k

σ . Four points of 

interest in the design space may be worth considering to evaluate the overall performance of the model. 

Three of these values are values on the flat for 1.0=
k

σ , 4=
k

σ , and 75.0=
k

σ . These constitute a small 

value for 
k

σ , a large value for 
k

σ , and a convenient point in between that minimizes error while making 

the model nearly independent of the core Reynolds number. The final point of interest is the minimum % 

RMS error point in Fig. 8.3 with 1.0=
k

σ  and 03.0
1
=

r
C . Results for each of these points are discussed 

here and the model results are compared to results from the Wilcox 1998 and 2006 models. 

 

II.  Model Results at Points of Interest 

A.  Low Value on the Flat: 0.1=
k

σ  

 Setting 1.0=
k

σ  and evaluating the other closure coefficients from the flat gives model results with a 

% RMS error of 0.158 over the range of fully rough flows studied. Figure 9.1 shows the friction factor 

results for these closure coefficient values. Figures 9.2 and 9.3 show the nondimensional velocity and eddy-

viscosity profiles for 1000=

+

s
k  over a range of relative roughness values. The empirical correlations from 

Chapter 7 are also included for comparison. Note that although the friction factor results match the 

Colebrook equation extremely well and are easily within the scatter of the experimental data, the velocity 

profiles do not match the law of the wall and the eddy-viscosity profiles deviate significantly from the 



176 

empirical relations far from the wall. These characteristics of the model are typical for results computed on 

the flat as will be shown in the following subsections. The characteristics displayed in Figs. 8.12 and 8.13 

reveal significant traits of the model and will be discussed once other plots computed from the flat have all 

been presented. 

 

103 104 105 106 107 108 109

Reynolds Number

0.01

0.10

D
ar

cy
F

ri
ct

io
n

F
ac

to
r

0.02

0.04

0.06

0.08

0.000058

0.00030

0.00098

0.0020

0.0039

0.0083

0.016

0.034

= 0.034, Nikuradse
= 0.016, Nikuradse
= 0.0083, Nikuradse
= 0.0039, Nikuradse
= 0.0020, Nikuradse
= 0.00098, Nikuradse
= 0.000058, Shockling et al

R
el

at
iv

e 
R

ou
gh

ne
ss

 

Fig. 9.1  Friction factor results for the Phillips k-λ model on the flat with 0.1=
k

σ . 

 

   0

   5

  10

  15

  20

  25

10−2 10−1 100 101 102 103

u+

y/ks

Eq. (7.31)

Eq. (7.32)

0.034

0.016
0.0083

0.0039
0.0020

k
r
=0.00098

 

Fig. 9.2  Velocity results for the Phillips k-λ model on the flat with 0.1=
k

σ  and 1000=

+

s
k . 



177 

 

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

 0.0  0.2  0.4  0.6  0.8  1.0

y/R

Eq. (7.36)

Eq. (7.35)

k
r
=0.00098

0.0020

0.0039

0.0083
0.016

0.034

uτ R
__νt

Eq. (7.42)

 

Fig. 9.3  Eddy-viscosity results for the Phillips k-λ model on the flat with 0.1=
k

σ  and 1000=

+

s
k . 

 

B.  High Value on the Flat: 4=
k

σ  

 Setting 00.4=
k

σ  (which is likely larger than it will need to be to allow the model to transition to 

smoother walls) and evaluating the other closure coefficients from the flat gives friction factor results with 

a % RMS error of 0.670. Figure 9.4 shows the friction factor results along with published experimental 

data. Note that the friction factor results deviate noticeably more from the Colebrook equation than those 

for 1.0=
k

σ . However, they could reasonably be considered within the scatter of the experimental data. 

Figures 9.5 and 9.6 show the velocity and eddy-viscosity profile results for 1000=

+

s
k . Again, note that the 

velocity profiles do not match the law of the wall, and the eddy-viscosity results do not match the empirical 

relations far from the wall. 

 



178 

103 104 105 106 107 108 109

Reynolds Number

0.01

0.10

D
ar

cy
F

ri
ct

io
n

F
ac

to
r

0.02

0.04

0.06

0.08

0.000058

0.00030

0.00098

0.0020

0.0039

0.0083

0.016

0.034

= 0.034, Nikuradse
= 0.016, Nikuradse
= 0.0083, Nikuradse
= 0.0039, Nikuradse
= 0.0020, Nikuradse
= 0.00098, Nikuradse
= 0.000058, Shockling et al

R
el

at
iv

e 
R

ou
gh

ne
ss

 

Fig. 9.4  Friction factor results for the Phillips k-λ model on the flat with 4=
k

σ . 

 

 

 

   0

   5

  10

  15

  20

  25

10−2 10−1 100 101 102 103

u+

y/ks

Eq. (7.31)

Eq. (7.32)

0.034

0.016
0.0083

0.0039
0.0020

k
r
=0.00098

 

Fig. 9.5  Velocity results for the Phillips k-λ model on the flat with 4=
k

σ  and 1000=

+

s
k . 

 



179 

0.00

0.10

0.20

0.30

0.40

0.50

 0.0  0.2  0.4  0.6  0.8  1.0

y/R

Eq. (7.36)

Eq. (7.35)

k
r
=0.00098

0.0020

0.0039

0.0083

0.016
0.034

Eq. (7.42)

uτ R
__νt

 

Fig. 9.6  Eddy-viscosity results for the Phillips k-λ model on the flat with 4=
k

σ  and 1000=

+

s
k . 

C.  Point of Interest on the Flat: 0.75=
k

σ  

 Setting 75.0=
k

σ  and evaluating the other closure coefficients from the flat gives friction factor results 

with a % RMS error of 0.186. The friction factor results are shown in Fig. 9.7. Again, the model results 

match the fully rough limit of the experimental data within the accuracy of the experimental data. Figures 

9.8 and 9.9 show the results for the velocity and eddy-viscosity profiles. 

 

103 104 105 106 107 108 109

Reynolds Number

0.01

0.10

D
ar

cy
F

ri
ct

io
n

F
ac

to
r

0.02

0.04

0.06

0.08

0.000058

0.00030

0.00098

0.0020

0.0039

0.0083

0.016

0.034

= 0.034, Nikuradse
= 0.016, Nikuradse
= 0.0083, Nikuradse
= 0.0039, Nikuradse
= 0.0020, Nikuradse
= 0.00098, Nikuradse
= 0.000058, Shockling et al

R
el

at
iv

e 
R

ou
gh

ne
ss

 

Fig. 9.7  Friction factor results for the Phillips k-λ model on the flat with 0.75=
k

σ . 



180 

 

   0

   5

  10

  15

  20

  25

10−2 10−1 100 101 102 103

u+

y/ks

Eq. (7.31)

Eq. (7.32)

0.034

0.016
0.0083

0.0039
0.0020

k
r
=0.00098

 

Fig. 9.8  Velocity results for the Phillips k-λ model on the flat with 0.75=
k

σ  and 1000=

+

s
k . 

 

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

 0.0  0.2  0.4  0.6  0.8  1.0

y/R

uτ R
__νt

Eq. (7.36)

Eq. (7.35)

k
r
=0.00098

0.0020

0.0039

0.0083
0.016

0.034

Eq. (7.42)

 

Fig. 9.9  Eddy-viscosity results for the Phillips k-λ model on the flat with 0.75=
k

σ  and 1000=

+

s
k . 



181 

 The results of the model with coefficients computed from the flat reveal some important characteristics 

of the model. Recall that the flat portion of the optimal design space is a region where the solution is 

independent of 
1r

C . If 
1r

C  is large enough, the mean vortex wavelength is nearly a linear function of the 

distance from the wall, which results in a mean vortex wavelength distribution that does not satisfy the 

centerline symmetry boundary condition. Although this can be seen from Eq. (8.25), the fact that it did not 

satisfy the centerline symmetry boundary condition was not realized until the results for the eddy-viscosity 

profiles were considered. The fact that the mean vortex wavelength has a finite slope at the centerline 

causes the eddy-viscosity profile to have a finite slope at the centerline, which is obviously not correct. At 

the centerline, all the turbulence properties must satisfy the symmetry boundary condition which, in 

mathematical terms, means that the gradient at the centerline must be zero. 

 The fact that the velocity profiles on the flat do not match the law of the wall is very apparent in Figs. 

9.2, 9.5, and 9.8. To understand why, recall that Eq. (7.32) was derived making two major assumptions. 

First, it was assumed that the eddy viscosity is a linear function of the distance from the wall, and second, it 

was assumed that 
τ

Ry
+  is small compared to unity. Even though these assumptions do not match reality 

far from the wall, somehow the resulting equation for the velocity profile matches experimental data over 

the entire flow cross section as can be seen in Fig. 7.4. This fact suggests that the effects of one assumption 

must be cancelling the effects of the other assumption in the solution far from the wall. Therefore, if the 

eddy viscosity were assumed linear but the assumption that 
τ

Ry
+  is small compared to unity were 

neglected, the closed-form solution for the velocity profile would likely be in significant error far from the 

wall. Such an assumption is similar to the results of this model with coefficients computed from the flat. 

Note that the eddy viscosity of the model is nearly linear over the entire flow cross section and that it 

matches the near-wall eddy viscosity of the empirical relations very well. However, in the numerical 

integration, the 
τ

Ry
+  term is included, and the solution gives a velocity profile that does not match Eq. 

(7.32) in the region where 
τ

Ry
+  is significant compared to unity. 

 These results show that although the results from the flat portion of the optimal design space match the 

friction factor very well, this region creates a non-physical mean vortex wavelength profile which in turn 



182 

causes the eddy-viscosity and velocity profiles to deviate significantly from experimental data and 

empirical relations. Therefore, a point in the optimum design space where 
1r

C  is small enough to cause the 

mean vortex wavelength profile to satisfy the centerline symmetry boundary condition is worth 

considering. 

 

D.  Point of Minimum % RMS Error 

 The point with the smallest % RMS error for the friction factor shown in Fig. 8.3 is that for 1.0=
k

σ  

and 03.0
1
=

r
C . This point is significant because it is not on the flat portion of the optimal design space, and 

therefore, the value for 
1r

C  is small enough to affect the solution. The optimal closure coefficients for this 

point to three significant figures are 

 
1.12   ,03-E17.2   ,01-E70.1

,03-E51.6   ,03-E96.4   ,03-E54.7   ,03.0   ,1.0

433

2211

===

=====

rrr

rrrrk

aaC

aCaCσ

 (9.1) 

Figure 9.10 shows the friction factor results for high roughness Reynolds numbers. The % RMS error for 

this set of closure coefficients is 0.129. Note that the results match the Colebrook equation extremely well. 

103 104 105 106 107 108 109

Reynolds Number

0.01

0.10

D
ar

cy
F

ri
ct

io
n

F
ac

to
r

0.02

0.04

0.06

0.08

0.000058

0.00030

0.00098

0.0020

0.0039

0.0083

0.016

0.034

= 0.034, Nikuradse
= 0.016, Nikuradse
= 0.0083, Nikuradse
= 0.0039, Nikuradse
= 0.0020, Nikuradse
= 0.00098, Nikuradse
= 0.000058, Shockling et al

R
el

at
iv

e 
R

ou
gh

ne
ss

 

Fig. 9.10  Friction factor results for the Phillips k-λ model at the point of minimum % RMS error. 

 Figures 9.11 and 9.12 show the velocity and eddy-viscosity profiles for the model with 1000=

+

s
k  over 

a range of values for the relative roughness. Note that the velocity profiles appear to match the law of the 



183 

wall marginally better than the results for the velocity profiles on the flat, with the greatest improvement 

being apparent near the centerline of the pipe. Also note from Fig. 9.12 that the eddy-viscosity profiles with 

this set of closure coefficients are much closer to the empirical relations than the profiles resulting from 

closure coefficients on the flat. 

 

   0

   5

  10

  15

  20

  25

10−2 10−1 100 101 102 103

u+

y/ks

Eq. (7.31)

Eq. (7.32)

0.034

0.016
0.0083

0.0039
0.0020

k
r
=0.00098

 

Fig. 9.11  Velocity results for the Phillips k-λ model at the point of minimum % RMS error with 

1000=

+

s
k . 

 

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

 0.0  0.2  0.4  0.6  0.8  1.0

y/R

Eq. (7.36)

Eq. (7.35)
Eq. (7.42)

k
r
=0.00098

0.0020
0.0039
0.0083
0.016
0.034

uτ R
__νt

 

Fig. 9.12  Eddy-viscosity results for the Phillips k-λ model at the point of minimum % RMS error 

with 1000=

+

s
k . 



184 

 Of particular note is that the region of the velocity profiles that deviates the most from the law of the 

wall corresponds to the region of the eddy-viscosity profile of 2.002.0 << Ry . Note that the model 

predicts an eddy-viscosity distribution in this region that is nearly linear while the experimental data shown 

in Fig. 7.5 displays a more parabolic distribution. Because the velocity distribution is a function of the 

eddy-viscosity distribution, if the law of the wall is to be correctly predicted, the eddy viscosity must also 

be accurately predicted in this region. Recall that the mean vortex wavelength function was based on 

matching the eddy-viscosity distribution to the approximation of Kays and Crawford in Eq. (7.42). Because 

the Kays and Crawford approximation is nearly linear, the resulting model has near-linear mean-vortex-

wavelength and eddy-viscosity distributions in this region. Because the eddy viscosity is directly 

proportional to the mean vortex wavelength, if the law of the wall is to be obtained, the fundamental 

equation for the mean vortex wavelength given in Eq. (7.59) must be altered to a more general profile that 

would allow for a parabolic eddy-viscosity distribution. This appears to be the fundamental limitation of 

the model closure. 

 Near the center of the pipe where the velocity gradient is small, the dependence of the velocity profile 

on the eddy viscosity becomes weaker. In this region, there appears to be significant scatter in the data for 

the eddy viscosity as can be seen in Fig. 7.5. Therefore, it is expected that the exact distribution of the eddy 

viscosity and mean vortex wavelength in the region 5.0>Ry  is less important than that in the region 

2.002.0 << Ry . 

 Given the current limitations of this turbulence model, it appears that the set of closure coefficients 

given in Eq. (9.1) are the best set of closure coefficients for this model. Significant improvements could be 

made to the model if the mean vortex wavelength equation were altered. However, without that flexibility, 

it is unlikely that any other set of closure coefficients would significantly improve the results of the model. 

 



185 

III.  Comparison to Other Models 

A.  Wilcox k-ω Model 

 Traditionally, the k-ω model has been accepted as the model most capable of modeling rough-wall 

effects without implementing wall functions. The effects of surface roughness are commonly incorporated 

into the k-ω model by simply altering the surface boundary condition on ω. For example, Wilcox [35] 

suggests using the relation for +

ω  at a rough wall of 

 

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

>−
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+

≤
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

=

++

+++

+

+

=

+

+

5),5exp(
100200100

5,
200

2

2

0

ss

sss

s

s

y

kk

kkk

k

k

ω  (9.2) 

The Wilcox 1998 k-ω model is likely the most widely used model for rough walls, and there is perhaps no 

better way to evaluate the Wilcox 1998 model than by using code distributed by Wilcox. Along with his 

book on turbulence modeling, Wilcox distributes a CD with a number of computer programs capable of 

running his model for various flows. Among these programs is a fully-developed-pipe-flow code which 

allows the user to model roughness effects by specifying +

ω  at the wall. This code was used to evaluate the 

Wilcox 1998 model in comparison to the experimental cases of Nikuradse. For each 
r

k  value, cases were 

run starting at 0.1=
τ

R  and incrementing 
τ

R  until the computer code would no longer converge. For each 

case, +

ω  at the wall was evaluated using Eq. (9.2) as suggested by Wilcox. It was found that grid-

converged results for the code could be obtained using 801 nodes, and therefore, each case was run using 

this grid size. Figure 9.13 shows the results of this study. The results of this model appear to be nearly 

within the scatter of the experimental data for high Reynolds numbers. However, the results exhibit a trend 

with a positive slope that causes the deviation from the Colebrook equation to increase with increasing 

Reynolds number. Additionally, the code did not converge for higher Reynolds numbers than those shown 

in the figure. 

 In 2006 Wilcox published a revised model which has not as yet been as widely implemented as his 

1998 model [35]. Using his code for his 2006 model, the computations explained above were repeated. 



186 

Figure 9.14 shows the results of this model compared to experimental data. Note that this revised model 

deviates significantly from the Colebrook equation, and the deviation increases with increasing Reynolds 

number. The code did not converge for Reynolds numbers higher than those shown in the figure. 

 

103 104 105 106 107 108 109

Reynolds Number

0.01

0.10

D
ar

cy
F

ri
ct

io
n

F
ac

to
r

0.02

0.04

0.06

0.08

0.000058

0.00030

0.00098

0.0020

0.0039

0.0083

0.016

0.034

= 0.034, Nikuradse
= 0.016, Nikuradse
= 0.0083, Nikuradse
= 0.0039, Nikuradse
= 0.0020, Nikuradse
= 0.00098, Nikuradse
= 0.000058, Shockling et al

R
el

at
iv

e 
R

ou
gh

ne
ss

Limit of Convergence

 

Fig. 9.13  Friction factor results for the Wilcox 1998 k-ω model. 

 

103 104 105 106 107 108 109

Reynolds Number

0.01

0.10

D
ar

cy
F

ri
ct

io
n

F
ac

to
r

0.02

0.04

0.06

0.08

0.000058

0.00030

0.00098

0.0020

0.0039

0.0083

0.016

0.034

= 0.034, Nikuradse
= 0.016, Nikuradse
= 0.0083, Nikuradse
= 0.0039, Nikuradse
= 0.0020, Nikuradse
= 0.00098, Nikuradse
= 0.000058, Shockling et al

R
el

at
iv

e 
R

ou
gh

ne
ss

Limit of Convergence

 

Fig. 9.14  Friction factor results for the Wilcox 2006 k-ω model. 



187 

 Comparing the results of the Wilcox 1998 and 2006 k-ω models seen in Figs. 9.13 and 9.14 to the 

results of the Phillips k-λ model seen in Figs. 9.1, 9.4, 9.7, and 9.10 shows that the Phillips k-λ model 

provides a significant improvement over traditional methods for modeling the bulk-flow properties of fully 

rough pipe flow. Figure 9.15 shows the results of the model predictions for the Nikuradse number as a 

function of roughness Reynolds number. For these results, the optimal model constants given in Eq. (9.1) 

were used. The plot also includes the data sets of Nikuradse and Shockling, et al. Note that the Phillips k-λ 

model is within the scatter of the experimental data for fully rough flows, whereas the k-ω models deviate 

significantly from the Colebrook equation and the experimental data. 

101 102 103 104 105

Roughness Reynolds Number

-1.00

0.00

N
ik

u
ra

d
se

N
u

m
b

er

Nikuradse
Shockling et al
Wilcox 1998 - model
Wilcox 2006 - model
Phillips - model

Colebrook Equation

 

Fig. 9.15  Nikuradse number results of the Phillips k-λ model with optimum model constants. 

B.  Eddy-Viscosity Models 

 Four eddy-viscosity models for fully rough pipe flow were given in Chapter 7. Equation (7.35) is a 

model that fits Nikuradse’s eddy-viscosity estimates, Eq. (7.36) is a model that fits the estimates of 

Reichardt, Eq. (7.42) is a model suggested by Kays and Crawford, and Eq. (7.43) is a model that can be 

developed from the law of the wall. It is insightful to observe how well each of these models compares to 

the Phillips k-λ model presented here. Because the deviation for each of these eddy-viscosity profiles as a 

function of roughness is almost imperceptible when shown on a plot similar to Fig. 7.5, the eddy-viscosity 



188 

profiles are not included here. Figures 9.16 – 9.19 show the velocity profiles produced by each of the 

models for a range of 
r

k  values where 1000=

+

s
k . Each of these cases was run with the traditional values of 

40.0=κ  and 0334.0=γ . The code to run each of these cases is included in Appendix O. 

   0

   5

  10

  15

  20

  25

10−2 10−1 100 101 102 103

u+

y/ks

k
r
=0.00098

Eq. (7.31)

Eq. (7.32)

0.034

0.016

0.0083

0.0039
0.0020

 

Fig. 9.16  Velocity results for the eddy-viscosity model given in Eq. (7.35) with 1000=

+

s
k . 

 

   0

   5

  10

  15

  20

  25

10−2 10−1 100 101 102 103

u+

y/ks

Eq. (7.31)

Eq. (7.32)

0.034

0.016
0.0083

0.0039
0.0020

k
r
=0.00098

 

Fig. 9.17  Velocity results for the eddy-viscosity model given in Eq. (7.36) with 1000=

+

s
k . 



189 

   0

   5

  10

  15

  20

  25

10−2 10−1 100 101 102 103

u+

y/ks

Eq. (7.31)

Eq. (7.32)

0.034

0.016

0.0083
0.0039

0.0020
k

r
=0.00098

 

Fig. 9.18  Velocity results for the eddy-viscosity model given in Eq. (7.42) with 1000=

+

s
k . 

 

   0

   5

  10

  15

  20

  25

10−2 10−1 100 101 102 103

u+

y/ks

Eq. (7.31)

Eq. (7.32)

all k
r
 values for k

s 
=1000+

 

Fig. 9.19  Velocity results for the eddy-viscosity model given in Eq. (7.43) with 1000=

+

s
k . 

 Because each of these models was developed from velocity profile measurements, each model also 

reconstructs the velocity profile fairly well. Note particularly the results in Fig. 9.19. As the value for +

s
k  is 

increased, the model results approach the law-of-the-wall equations also included in the plot. This behavior 



190 

is not surprising because the model given in Eq. (7.43) was derived directly from the law-of-the-wall 

velocity profile with the fully rough flow assumption. Each of these velocity profiles from the eddy-

viscosity models appears to be a significant improvement over the velocity profiles predicted by the 

Phillips k-λ model shown in Fig. 9.11.  

 Although each of these models reconstructs the velocity profile fairly well, the relationship between 

friction factor and Reynolds number is not extremely accurate. Figures 9.20 – 9.23 show the friction factor 

results for each of these models. Note that the models based on Nikuradse’s and Reichardt’s 

approximations for the eddy viscosity given in Eqs. (7.35) and (7.36) result in significant errors in the 

friction factor as a function of Reynolds number. These yield % RMS errors of 5.46 and 7.81 respectively. 

The model based on the work of Kays and Crawford given in Eq. (7.42) gives reasonable results with a % 

RMS error of 1.81, but is noticeably less accurate than the Phillips k-λ model. The model derived from the 

law of the wall with results shown in Fig. 9.23 has a % RMS error of 0.826. This model is a significant 

improvement over the other three models, but has a % RMS error that is six times that of the Phillips k-λ 

model. Therefore, the Phillips k-λ model included in this work provides a significant improvement over 

other models for predicting the relationship between the Reynolds number and friction factor for fully 

rough pipe flow. 

103 104 105 106 107 108 109

Reynolds Number

0.01

0.10

D
ar

cy
F

ri
ct

io
n

F
ac

to
r

0.02

0.04

0.06

0.08

0.000058

0.00030

0.00098

0.0020

0.0039

0.0083

0.016

0.034

= 0.034, Nikuradse
= 0.016, Nikuradse
= 0.0083, Nikuradse
= 0.0039, Nikuradse
= 0.0020, Nikuradse
= 0.00098, Nikuradse
= 0.000058, Shockling et al

R
el

at
iv

e 
R

ou
gh

ne
ss

 

Fig. 9.20  Friction factor results for the eddy-viscosity model given in Eq. (7.35). 



191 

 

103 104 105 106 107 108 109

Reynolds Number

0.01

0.10

D
ar

cy
F

ri
ct

io
n

F
ac

to
r

0.02

0.04

0.06

0.08

0.000058

0.00030

0.00098

0.0020

0.0039

0.0083

0.016

0.034

= 0.034, Nikuradse
= 0.016, Nikuradse
= 0.0083, Nikuradse
= 0.0039, Nikuradse
= 0.0020, Nikuradse
= 0.00098, Nikuradse
= 0.000058, Shockling et al

R
el

at
iv

e 
R

ou
gh

ne
ss

 

Fig. 9.21  Friction factor results for the eddy-viscosity model given in Eq. (7.36). 

 

 

103 104 105 106 107 108 109

Reynolds Number

0.01

0.10

D
ar

cy
F

ri
ct

io
n

F
ac

to
r

0.02

0.04

0.06

0.08

0.000058

0.00030

0.00098

0.0020

0.0039

0.0083

0.016

0.034

= 0.034, Nikuradse
= 0.016, Nikuradse
= 0.0083, Nikuradse
= 0.0039, Nikuradse
= 0.0020, Nikuradse
= 0.00098, Nikuradse
= 0.000058, Shockling et al

R
el

at
iv

e 
R

ou
gh

ne
ss

 

Fig. 9.22  Friction factor results for the eddy-viscosity model given in Eq. (7.42). 



192 

103 104 105 106 107 108 109

Reynolds Number

0.01

0.10

D
ar

cy
F

ri
ct

io
n

F
ac

to
r

0.02

0.04

0.06

0.08

0.000058

0.00030

0.00098

0.0020

0.0039

0.0083

0.016

0.034

= 0.034, Nikuradse
= 0.016, Nikuradse
= 0.0083, Nikuradse
= 0.0039, Nikuradse
= 0.0020, Nikuradse
= 0.00098, Nikuradse
= 0.000058, Shockling et al

R
el

at
iv

e 
R

ou
gh

ne
ss

 

Fig. 9.23  Friction factor results for the eddy-viscosity model given in Eq. (7.43). 

IV.  Summary and Conclusions 

 The focus of this work has been to evaluate the performance of an alternate energy-vorticity turbulence 

model. One significant benefit to the current turbulence model is that it is based on modeling the vorticity 

of the flow. Many RANS-based turbulence models in use today model the dissipation of turbulent kinetic 

energy as a transport property. This is simply not physically correct because dissipation is not a transport 

property. Furthermore, it has been shown that traditional smooth-wall boundary conditions for dissipation-

based turbulence models are incorrect. The correct smooth-wall boundary conditions for turbulence models 

were presented in Chapter 5, and are boundary conditions that force both k and its first derivative to zero at 

a smooth wall. The behavior of the present turbulence model near a smooth wall has been considered, and 

justification for developing a model for rough walls was given in Chapter 6. The development of the 

Phillips k-λ model for fully rough pipe flow was presented in detail in Chapter 7 and includes an algebraic 

relation for the mean vortex wavelength as a function of distance from the wall. A gradient-based 

optimization routine was presented that was used to evaluate optimal values for the closure coefficients. 

Finally, the results of the model have been presented and compared to experimental results, empirical 

correlations, and other rough-wall models. 



193 

 The resulting model provides a very accurate method for predicting the bulk flow properties of fully 

rough pipe flow. The % RMS error of the model is less than 1% over a range of values for 
1r

C  and 
k

σ  as 

shown in Fig. 8.10. The model is significantly more accurate for predicting the relationship between 

Reynolds number and friction coefficient for fully rough pipe flow than the Wilcox 1998 and 2006 k-ω 

models as well as the eddy-viscosity models of Nikurase, Reichardt, and Kays and Crawford. However, the 

resulting velocity profiles of the Phillips k-λ model do not match the expected law of the wall for fully 

rough pipe flow. One result of the model that will likely lead to future research is the fact that if 
1r

C  is large 

enough that it does not affect the solution, the mean vortex wavelength equation does not satisfy the 

centerline symmetry boundary condition. This is a fundamental limitation in the model which must be 

addressed in a future revision of the model. The fact that the mean vortex wavelength does not satisfy the 

centerline boundary condition in this situation leads to a result for the eddy viscosity that also does not 

satisfy this centerline boundary condition. This is clearly a fundamental inconsistency with the model and 

should be addressed in future work. 

 The current limitations of the model suggest areas of future work that could produce promising results. 

First, a fully rough model must be developed which has the flexibility of matching the parabolic nature of 

the eddy-viscosity distribution in the law-of-the-wall region of the flow. This will most likely be achieved 

by developing a closing equation for the mean vortex wavelength that, when coupled with the turbulent-

kinetic-energy transport equation, results in a parabolic distribution for the eddy viscosity. This can be 

accomplished using a method similar to that presented in Chapter 8, but using the distribution of Reichardt 

[95] or a distribution that matches the data of Nikuradse [59] rather than the approximation suggested by 

Kays and Crawford [96]. Once a relation for the mean vortex wavelength has been developed, the 

optimization routine included in this work can be used to evaluate optimal closure coefficients for the 

model. The resulting model will likely match the velocity and eddy-viscosity profiles better than the model 

presented here, and may even match the friction factor results given by the Colebrook equation better than 

the current model. 



194 

 Once a robust model for fully rough pipe flow has been obtained, a transition model could be 

developed that allows the model to predict the flow properties at lower roughness Reynolds numbers. In the 

limit as the roughness approaches zero, this model should match results for hydraulically smooth walls. It is 

unlikely that a model will need to be developed for perfectly smooth walls, as no experimental data exists 

for such walls, and such a wall is currently impossible to manufacture. 

 Once a complete turbulence model for transitionally rough pipe flows has been developed, the model 

characteristics can be extended to channel and other boundary layer flows. It is possible that such an 

approach to developing future turbulence models can result in models that are more robust and accurate 

over a wide range of flow scenarios. 



195 

REFERENCES 

 
 [1] Navier, C. L. M. H., “Mémoire sur les Loisdu Movement des Fluides,” Mém. de l’ Acad. R. Sci. 

Paris, Vol. 6, 1823, pp. 389–416. 
 
 [2] Stokes, G. G., “On the Theories of Internal Friction of Fluids in Motion,” Transactions of the 

Cambridge Philosophical Society, Vol. 8, 1845, pp. 287–305. 
 
 [3] Hamilton, W. R., “On Quaternions: Or a New System of Imaginaries in Algebra,” Philosophical 

Magazine, Vol. 25, No. 3, 1844, pp. 489–495. 
 
 [4] Hamilton, W. R., Lectures on Quaternions, Hodges and Smith, Dublin, 1853, pp. 1–736. 
 
 [5] Hamilton, W. R., Elements of Quaternions, Longmans, Green and Co., London, 1866, pp. 1–762. 
 
 [6] Boyer, C. B., and Merzback, U. C., A History of Mathematics, 2nd ed., Wiley, New York, 1989, 

pp. 656–762. 
 
 [7] Moin, P., and Mahesh, K., “Direct Numerical Simulation – A Tool in Turbulence Research,” 

Annual Review of Fluid Mechanics, Vol. 30, 1998, pp. 539–578. 
 
 [8] Goldstein, S., “Fluid Mechanics in the First Half of This Century,” Annual Review of Fluid 

Mechanics, Vol. 1, 1969, pp. 1–29. 
 
 [9] Bradshaw, P., “Turbulence: The Chief Outstanding Difficulty of Our Subject,” Experiments in 

Fluids, Vol. 16, 1994, pp. 203–216. 
 
 [10] Frisch, U., and Orszag, S., “Turbulence: Challenges for Theory and Experiment,” Physics Today, 

Vol. 43, 1990, pp. 24–32. 
  
 [11] Holmes P. J., Berkooz G., and Lumley J. L., “Turbulence,” Turbulence, Coherent Structures, 

Dynamical Systems and Symmetry, Cambridge University Press, 1996, pp. 3–6. 
 
 [12] Hinze, J. O., “General Introduction and Concepts,” Turbulence, Second Edition, McGraw-Hill, 

New York, 1975, pp. 1–2. 
 
 [13] Phillips, W. F., “Turbulent Flow in Newtonian Fluids,” Aerodynamics of Flight DRAFT, Wiley, 

Hoboken, New Jersey, 2008, pp. 1–51. 
 
 [14] Wilcox D. C., “Reynolds Averaging,” Turbulence Modeling for CFD, Third Edition, DCW 

Industries, Inc., La Cañada, California, 2006, pp. 34–38. 
 
 [15] Jones, W. P. and Launder, B. E., "The Prediction of Laminarization with a Two-Equation Model 

of Turbulence,” International Journal of Heat and Mass Transfer, Vol. 15, 1972, pp. 301–314. 
 
 [16] Kolmogorov, A. N., “Equations of Turbulent Motion of an Incompressible Fluid,” Izvestia 

Academy of Sciences, USSR; Physics, Vol. 6, Nos. 1 and 2, 1942, pp. 56–58. 
 
 [17] Spalart, P. R., and Allmaras, S. R., “A One-Equation Turbulence Model for Aerodynamic Flows,” 

AIAA 92-439, 1992. 
 
 [18] Baldwin, B. S., and Barth, T. J., “A One-Equation Turbulence Transport Model for High Reynolds 

Number Wall-Bounded Flows,” NASA TM-102847, 1990. 



196 
 
 [19] Durbin, P. A., “Near-Wall Turbulence Closure Modeling Without Damping Functions,” 

Theoretical and Computational Fluid Dynamics, Vol. 3, No. 1, 1991, pp. 1–13. 
 
 [20] Reynolds, O., “On the Dynamical Theory of Incompressible Viscous Fluids and the Determination 

of the Criterion,” Philosophical Transactions of the Royal Society of London, Series A, Vol. 186, 
1895, p. 123–164. 

  
 [21] Boussinesq, J., “Théore de l’Écoulement Tourbillant,” Mém. Présentés par Divers Savants Acad. 

Sic. Inst. Fr., Vol. 23, 1877, pp. 46–50. 
 
 [22] Prandtl, L., “Über die ausgebildete Turbulenz,” Z. angew. Math. u. Mech., Vol. 5, 1925, pp. 136–

139. 
 
 [23] Prandtl, L., "Über ein neues Formelsystem für die ausgebildete Turbulenz," Nacr. Akad. Wiss 

Göttingen, Math-Phys. Kl., 1945, pp. 6–19. 
 
 [24] Emmons, H. W., “Shear Flow Turbulence,” Proceedings of the 2nd U. S. Congress of Applied 

Mechanics, ASME, 1954. 
 
 [25] Glushko, G., “Turbulent Boundary Layer on a Flat Plate in an Incompressible Fluid,” Izvestia 

Akademiya Nauk SSSR, Mekh., No. 4, 1965, p. 13–30. 
 
 [26] Wolfshtein, M., “Convection Processes in Turbulent Impinging Jets,” Imperial College, Heat 

Transfer Section Report SF/R/2, 1967. 
 
 [27] Bradshaw, P., Ferriss, D. H., and Atwell, N. P., “Calculation of Boundary Layer Development 

Using the Turbulent Energy Equation,” Journal of Fluid Mechanics, Vol. 28, Pt. 3, 1967, pp. 593–
616. 

 
 [28] Nee, V. W., and Kovasznay, L. S. G., “The Calculation of the Incompressible Turbulent Boundary 

Layer by a Simple Theory,” Physics of Fluids, Vol. 12, 1968, pp. 473. 
 
 [29] Sekundov, A. N., “Application of the Differential Equation for Turbulent Viscosity to the Analysis 

of Plane Non-Self-Similar Flows,” Akademiya Nauk SSSR, Izvestiia, Mekhanika Zhidkosti i Gaza, 
1971, pp. 114–127 (in Russian). 

 
 [30] Menter, F. R., “Eddy Viscosity Transport Equations and Their Relation to the k-ε Model,” Journal 

of Fluids Engineering, Volume 119, Issue 4, 1997, pp. 876–884. 
 
 [31] Rotta, J. C., “Statistische Theorie nichthomogener Turbulenz,” Zeitschrift für Physik, Vol. 129, 

1951, pp. 547–572. 
 
 [32] Rotta, J. C., “Über eine Methode zur Berechnung turbulenter Scherströmungen,” Aerodynamische 

Versuchanstalt Göttingen, Rep. 69 A 14, 1968. 
 
 [33] Zeierman, S., and Wolfshtein, M., “Turbulent Time Scale for Turbulent Flow Calculations,” AIAA 

Journal, Vol. 24, No. 10, 1986, pp. 1606–1610. 
 
 [34] Speziale, C. G., Abid, R., and Anderson, E. C., “A Critical Evaluation of Two-Equation Models 

for Near Wall Turbulence,” AIAA 90-1481, 1990. 
 
 [35] Wilcox D. C., “One-Equation and Two-Equation Models,” Turbulence Modeling for CFD, Third 

Edition, DCW Industries, Inc., La Cañada, California, 2006, pp. 107–238. 
 



197 
 [36] Taylor, G. I., “The Spectrum of Turbulence,” Proceedings of the Royal Society of London, Series 

A, Vol. 164, 1938, pp. 476–490. 
 
 [37] Hinze, J. O., “Isotropic Turbulence,” Turbulence, Second Edition, McGraw-Hill, New York, 1975, 

pp. 165–204. 
 
 [38] Launder, B. E., Morse, A., Rodi, W., and Spalding, D. B., “Prediction of Free Shear Flows – A 

Comparison of the Performance of Six Turbulence Models,” Proceedings of NASA Conference on 

Free Turbulent Shear Flows, Langley Research Center, Hampton, VA, Vol. 1, 1972, pp. 361–426. 
 
 [39] Wilcox, D. C., “Multiscale Model for Turbulent Flows,” AIAA Journal, Vol. 26, No. 11, 1988, pp. 

1311–1320. 
 
 [40] Wilcox, D. C., “Reassessment of the Scale Determining Equation for Advanced Turbulence 

Models,” AIAA Journal, Vol. 26, No. 11, 1988, pp. 1299–1310. 
 
 [41] Menter, F. R., “Improved Two-Equation k-ω Turbulence Models for Aerodynamic Flows,” NASA 

TM-103975, 1992. 
 
 [42] Peng, S. H., Davidson, L., and Holmberg, S., “A Modified Low-Reynolds Number k-ω Model for 

Recirculating Flows,” Journal of Fluids Engineering, Vol. 119, 1997, pp. 867–875. 
 
 [43] Kok, J. C., “Resolving the Dependence on Freestream Values for the k-ω Turbulence Model,” 

AIAA Journal, Vol. 38, No. 7, 2000, pp. 1292–1295. 
 
 [44] Hellsten, A., “New Advanced k-ω Turbulence Model for High-Lift Aerodynamics,” AIAA Journal, 

Vol. 43, No. 9, 2005, pp. 1857–1869. 
 
 [45] Wilcox, D. C., “One-Equation and Two-Equation Models,” Turbulence Modeling for CFD, 

Second Edition, DCW Industries, Inc., La Cañada, California, 1998, pp. 103–226. 
 
 [46] Robinson, D. E., Harris, J. E., and Hassan, H. A., “Unified Turbulence Closure Model for 

Axisymmetric and Planar Free Shear Flows,” AIAA Journal, Vol. 33, No. 12, 1995, pp. 2325–
2331. 

 
 [47] Robinson, D. E., and Hassan, H. A., “Further Development of the k-ζ (Enstrophy) Turbulence 

Closure Model,” AIAA Journal, Vol. 36, No. 10, 1998, pp. 1825–1833. 
 
 [48] Townsend, A. A., The Structure of Turbulent Shear Flow, Second Ed., Cambridge University 

Press, Cambridge, England, 1976. 
 
 [49] Durbin, P. A., and Pettersson Reif, B. A., “Analytical Solutions to the k-ε Model,” Statistical 

Theory and Modeling for Turbulent Flows, John Wiley & Sons Ltd, Chichester, England, 2001, 
pp. 120–123. 

 
 [50] Clark, J. A., “A Study of Incompressible Turbulent Boundary Layers in Channel Flows,” Journal 

of Basic Engineering, Vol. 90, 1968, pp. 455. 
 
 [51] Laufer, J., “Some Recent Measurements in a Two-Dimensional Turbulent Channel,” Journal of 

Aeronautical Sciences, Vol. 17, 1950, pp. 277–287. 
 
 [52] Briggs, D. A., Ferziger, J. H., Koseff, J. R., and Monismith, S. G., “Entrainment in a Shear-Free 

Turbulent Mixing Layer,” Journal of Fluid Mechanics, Vol. 310, 1996, pp. 215–241. 
 
 [53] Klebanoff, P. S., “Characteristics of Turbulence in a Boundary Layer with Zero Pressure 

Gradient,” NACA TN-1247, 1955. 



198 
 
 [54] P. Bradshaw, “The turbulence structure of equilibrium boundary layers,” Journal of Fluid 

Mechanics, Vol. 29, 1967, pp. 625–645. 
 
 [55] Marusic, I., and Hutchins, N., “Study of the Log-Layer Structure in Wall Turbulence over a Very 

Large Range of Reynolds number,” Flow Turbulence and Combustion, Vol. 81, 2008, pp. 115–
130. 

 
 [56] Guala, M., Metzger, M., and McKeon, B. J., “Interactions within the Turbulent Boundary Layer at 

High Reynolds Number,” Journal of Fluid Mechanics, Vol. 666, 2011, pp. 573–604. 
 
 [57] Laufer, J., “Investigation of Turbulent Flow in a Two-Dimensional Channel,” NACA TR-1053, 

1951. 
 
 [58] Zanoun, E.-S., Durst, F., and Nagib, H., “Evaluating the Law of the Wall in Two-dimensional 

Fully Developed Turbulent Channel Flows,” Physics of Fluids, Vol. 15, No. 10, October 2003, pp. 
3079–3089. 

 
 [59] Nikuradse, J., “Strömungsgesetze in rauhen Rohren,” VDI Forschungsheft 361, 1933 [see also 

NACA TM-1292, 1950]. 
 
 [60] Laufer, J., “The Structure of Turbulence in Fully Developed Pipe Flow,” NACA TR-1174, 1954. 
 
 [61] Shockling, M. A., Allen, J. J., and Smits, A. J., “Roughness Effects in Turbulent Pipe Flow,” 

Journal of Fluid Mechanics, Vol. 564, 2006, pp. 267–285. 
 
 [62] Bradbury, L. J. S., “The Structure of a Self-Preserving Turbulent Plane Jet,” Journal of Fluid 

Mechanics, Vol. 23, 1965, pp. 31–64. 
 
 [63] Heskestad, G., “Hot-Wire Measurements in a Plane Turbulent Jet,” Journal of Applied Mechanics, 

Vol. 32, No. 4, 1965, pp. 721–734. 
 
 [64] Wygnanski, I., and Fiedler, H. E., “Some Measurements in the Self-Preserving Jet,” Journal of 

Fluid Mechanics, Vol. 38, 1969, pp. 577–612. 
 
 [65] Rodi, W., “A New Method of Analyzing Hot-Wire Signals in Highly Turbulent Flow, and Its 

Evaluation in a Round Jet,” Disa Information, No. 17, 1975. 
 
 [66] Pope, S. B., “An Explanation of the Turbulent Round-Jet/Plane-Jet Anomaly,” AIAA Journal, Vol. 

16, No. 3, 1978, pp. 279–281. 
 
 [67] Durbin, P. A., “Application of a Near-Wall Turbulence Model to Boundary Layers and Heat 

Transfer,” International Journal of Heat and Fluid Flow, Vol. 14, No. 4, 1993, pp. 316–323. 
 
 [68] Lam, C. K. G. and Bremhorst, K. A., “Modified Form of the k-ε Model for Predicting Wall 

Turbulence,” ASME, Journal of Fluids Engineering, Vol. 103, 1981, pp. 456–460. 
 
 [69] Launder, B. E. and Sharma, B. I., “Application of the Energy Dissipation Model of Turbulence to 

the Calculation of Flow Near a Spinning Disc,” Letters in Heat and Mass Transfer, Vol. 1, No. 2, 
1974, pp. 131–138. 

 
 [70] Huang, P. G., Coleman, G. H., and Bradhsaw, P., “Compressible Turbulent Channel Flows: DNS 

Results and Modeling,” Journal of Fluid Mechanics, Vol. 305, 1995, pp. 185–218. 
 



199 
 [71] Kreuzinger, J., Friedrich, R., and Gatski, T. B., “Compressibility Effects in the Solenoidal 

Dissipation Rate Equation: A Priori Assessment and Modeling,” International Journal of Heat 

and Fluid Flow, Vol. 27, 2006, pp. 696–706. 
 
 [72] Anderson, P. S., Kays, W. M., and Moffat, R. J., “Experimental Results for the Transpired 

Turbulent Boundary Layer in an Adverse Pressure Gradient,” Journal of Fluid Mechanics, Vol. 
69, 1975, pp. 353–375. 

 
 [73] Colebrook, C. F., “Turbulent Flow in Pipes, with particular reference to the Transition Region 

between the Smooth and Rough Pipe Laws,” Journal of the Institution of Civil Engineers, Vol. 11, 
1939, pp. 133–156. 

 
 [74] Rhie, C. M., “A Numerical Study of the Flow Past an Isolated Airfoil with Separation,” Ph.D. 

Thesis, Dept. of Mechanical and Industrial Engineering, University of Illinois at Urbana-
Champaign, Urbana, IL, 1981. 

 
 [75] Shyy, W., Udaykumar, H. S., Rao, M. M., and Smith, R. W., “Governing Equations and Solution 

Procedure,” Computational Fluid Dynamics with Moving Boundaries, Taylor and Francis, 
Philadelphia, PA, 1996, pp. 21–23. 

 
 [76] Versteeg, H. K., and Malalasekera, W., “The Finite Volume Method for Convection-Diffusion 

Problems,” An Introduction to Computational Fluid Dynamics: The Finite Volume Method, 
Pearson Education Limited, Harlow, England, 1995, pp. 103–134. 

 
 [77] Ferziger, J. H., and Peric, M., “Finite Volume Methods,” Computational Methods for Fluid 

Dynamics, Springer-Verlag Berlin Heidelberg, 1996, pp. 71–84. 
 
 [78] Patankar, S. V. and Spalding, D. B., “A Calculation Procedure for Heat, Mass and Momentum 

Transfer in Three-dimensional Parabolic Flows,” Int. Journal of Heat Mass Transfer, Vol. 15, 
1972, p. 1787–1806. 

 
 [79] Versteeg, H. K., and Malalasekera, W., “Solution Algorithms for Pressure-Velocity Coupling in 

Steady Flows,” An Introduction to Computational Fluid Dynamics: The Finite Volume Method, 
Pearson Education Limited, Harlow, England, 1995, pp. 135–155. 

 
 [80] Rhie, C. M., and Chow, W. L., “Numerical Study of the Turbulent Flow Past an Airfoil with 

Trailing Edge Separation,” AIAA Journal, Vol. 21, No. 11, Nov. 1983, pp. 1525–1532. 
 
 [81] Richardson, L. F., “The Approximate Arithmetical Solution by Finite Differences of Physical 

Problems Involving Differential Equations, with an Application to the Stresses in a Masonry 
Dam,” Transactions of the Royal Society of London, A, Vol. 210, Jan. 1910, pp. 307–357. 

 
 [82] Richardson, L. F., and Gaunt, J. A., “The Deferred Approach to the Limit,” Transactions of the 

Royal Society of London, A, Vol. 226, Jan. 1927, pp. 299–361. 
 
 [83] Phillips, W. F., Hunsaker, D. F., and Spall, R. E., “Smooth-Wall Boundary Conditions for 

Dissipation-Based Turbulence Models,” 48th AIAA Aerospace Sciences Meeting, Orlando, 
Florida, AIAA 2010-1103, 2010. 

 
 [84] Patel, V. C., Rodi, W., and Scheuerer, G., “Turbulence Models for Near-Wall and Low Reynolds 

Number Flows: A Review,” AIAA Journal, Vol. 23, No. 9, 1985, pp. 1308–1319. 
 
 [85] Fluent 6.3, “Standard k-ω Model,” FLUENT 6.3 User’s Guide, Fluent Inc., Lebanon, NH, Sept. 

2006, pp. 12-26–12-31. 
 



200 
 [86] Wilcox, D. C., “Numerical Accuracy Near Boundaries,” Turbulence Modeling for CFD, Second 

Edition, DCW Industries, Inc., La Cañada, California, 1998, pp. 341–344. 
 
 [87] Kline, S. J., Cantwell, B. J., and Lilley, G. M. (eds.), Proceedings of the 1980–81 AFOSR-HTTM-

Stanford Conference on Complex Turbulent Flows, Vol. 1, Stanford University Press, Stanford, 
CA, 1981. 

 
 [88] Van Driest, E. R., “On Turbulent Flow Near a Wall,” Journal of Aerospace Sciences, Vol. 23, 

1956, pp. 1007–1011. 
 
 [89] Metzger, M. M. and Klewicki, J. C., “A Comparative Study of Near-wall Turbulence in High and 

Low Reynolds Number Boundary Layers,” Physics of Fluids, Vol. 13, Number 3, 2001, pp. 692–
701. 

 
 [90] Marusic, I., McKeon, B. J., Monkewitz, P. A., Nagib, H. M., Smits, A. J., and Sreenivasan K. R., 

“Wall-bounded Turbulent Flows at High Reynolds Numbers: Recent Advances and Key Issues,” 
Physics of Fluids, Vol. 22, 2010, pp. 065103-1–065103-24. 

 
 [91] Schlichting, H., “Experimentelle Untersuchungen zum Rauhigkeitsproblem,” Ing.-Arch. Vol. 7, 

1936, pp. 1–34. 
 
 [92] Schlichting, H., Grenzschicht-Theorie, vorm. G. Braunsche Hofbuchdruckerei u. Verlag GmbH, 

Karlsruhe, Germany, 1951. 
 
 [93] Schlichting, H., “Rough Pipes and Equivalent Sand Roughness,” Boundary Layer Theory, Fourth 

Edition, McGraw-Hill, New York, 1960, pp. 519–527. 
 
 [94] Moody, L. F., “Friction Factors for Pipe Flow,” Transactions of the A.S.M.E., Vol. 66, 1944, pp. 

671–684. 
 
 [95] Reichardt, H., “Die Grundlagen des turbulenten Wärmeüberganges,” Arch. Ges. Wärmetechnik 2, 

1951, pp. 129–142. 
 
 [96] Kays, W. M., and Crawford, M. E., “Momentum Transfer: Turbulent Flow in Tubes,” Convective 

Heat and Mass Transfer, Third Edition, McGraw-Hill, Inc., 1993, pp. 244–254. 
 
 [97] Broyden, C. G., “The Convergence of a Class of Double-rank Minimization Algorithms,” Journal 

of the Institute of Mathematics and Its Applications Vol. 6, 1970, pp. 76–90. 
 
 [98] Fletcher, R., “A New Approach to Variable Metric Algorithms,” The Computer Journal, Vol. 13, 

1970, pp. 317–322. 
 
 [99] Goldfarb, D., “A Family of Variable Metric Methods Derived by Variational Means,” 

Mathematics of Computation, Vol. 24, 1970, pp. 23–16. 
 
 [100] Shanno, D. F., “Conditioning of Quasi-Newton Methods for Function Minimization,” 

Mathematics of Computation, Vol. 24, 1970, pp. 647–656. 
 
 [101] Launder, B. E., and Spalding, D. B., “The Numerical Computation of Turbulent Flows,” 

Computer Methods in Applied Mechanics and Engineering, Vol. 3, 1974, pp. 269–289. 
 
 [102] Chien, K.-Y., “Predictions of Channel and Boundary-Layer Flows with a Low-Reynolds-Number 

Turbulence Model,” AIAA Journal, Vol. 20, No. 1, 1982, pp. 33–38. 
 
 [103] Saffman, P. G., “A Model for Inhomogeneous Turbulent Flow,” Proceedings of the Royal Society 

of London, Series A, Vol. 317, 1970, pp. 417–433. 



201 
 
 [104] Blasius, H., “Grenzschichten in Flüssigkeiten mit kleiner Reibung,” Z. Angew. Math. Phys., Vol. 

56, 1908, pp. 1–37 [English translation in NACA TM-1256, 1950]. 
 
 [105] White, F. M., “The Turbulent Boundary Layer On A Flat Plate,” Viscous Fluid Flow, Third 

Edition, McGraw Hill, New York, New York, 2006, pp. 433–440. 
 
 [106] Kays, W. M., and Crawford, M. E., “Momentum Transfer: The Turbulent Boundary Layer,” 

Convective Heat and Mass Transfer, Third Edition, McGraw-Hill, Inc., 1993, pp. 192–243. 
 
 [107] Schultz-Grunow, F., “New Frictional Resistance Law for Smooth Plates,” NACA TM-986, 1941. 
 
 [108] Schlichting, H., “Laminare Strahlausbreitung,” Zeitschrift für angewandte Mathematik und 

Mechanik, Vol. 13, 1933, pp. 260–263. 
 



202 

 

 

 

 

 

 

 

APPENDICES



203 

APPENDIX A 

MATHEMATICAL IDENTITIES 

I. Vector Identities 

 

 )()()( UVVUUV ⋅∇+∇⋅=⋅∇  (A.1) 

 )()()( VVV ⋅∇+∇⋅=⋅∇ sss  (A.2) 

 )()()( σVVσVσ
v

v

v

v

v

v

⋅∇+∇⋅=⋅⋅∇  (A.3) 

 ))(()()( 2

2

12

2

1
UU

tt
∇⋅+

∂

∂
=⎥

⎦

⎤
⎢
⎣

⎡
∇⋅+

∂

∂
⋅ VUV

U
U  (A.4) 

 

II. Ensemble Averaging Identities 

 

 0
~
=ϕ  (A.5) 

 
ψϕψϕ

ψϕψϕψϕψϕϕψ

~~

~~~~

+=

+++=

 (A.6)

 ςψϕςψϕςϕψςψϕςψϕϕψς
~~~~~~~~~

++++=  (A.7) 

 
x

f

x

f

∂

∂
=

∂

∂
 (A.8) 

 

III. Flowfield Properties 

The strain-rate tensor is given by 

 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎠

⎞
⎜
⎝

⎛

∂

∂
+

∂

∂
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
+

∂

∂
⎟
⎠

⎞
⎜
⎝

⎛

∂

∂
+

∂

∂

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
+

∂

∂
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
+

∂

∂
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
+

∂

∂

⎟
⎠

⎞
⎜
⎝

⎛

∂

∂
+

∂

∂
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
+

∂

∂
⎟
⎠

⎞
⎜
⎝

⎛

∂

∂
+

∂

∂

≡

z

V

z

V

z

V

y

V

z

V

x

V

y

V

z

V

y

V

y

V

y

V

x

V

x

V

z

V

x

V

y

V

x

V

x

V

zzyzxz

zyyyxy

zxyxxx

2

1
(V)S
v

v

 (A.9) 

The Jacobian tensor of a vector field is 



204 

 

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂

∂

∂

∂

∂

∂
∂

∂

∂

∂

∂

∂
∂

∂

∂

∂

∂

∂

≡

z

V

y

V

x

V

z

V

y

V

x

V

z

V

y

V

x

V

zzz

yyy

xxx

(V)J
v

v

 (A.10) 

The rotation tensor is 

 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎠

⎞
⎜
⎝

⎛

∂

∂
−

∂

∂
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
−

∂

∂
⎟
⎠

⎞
⎜
⎝

⎛

∂

∂
−

∂

∂

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
−

∂

∂
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
−

∂

∂
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
−

∂

∂

⎟
⎠

⎞
⎜
⎝

⎛

∂

∂
−

∂

∂
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
−

∂

∂
⎟
⎠

⎞
⎜
⎝

⎛

∂

∂
−

∂

∂

≡

z

V

z

V

z

V

y

V

z

V

x

V

y

V

z

V

y

V

y

V

y

V

x

V

x

V

z

V

x

V

y

V

x

V

x

V

zzyzxz

zyyyxy

zxyxxx

2

1
(V)Ω

v

v

 (A.11) 

This can be written in terms of vorticity 

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

×∇×∇−

×∇−×∇

×∇×∇−

≡

0)()(

)(0)(

)()(0

2

1

xy

xz

yz

VV

VV

VV

(V)Ω
v

v

 (A.12) 

Note that 

 (V)Ω(V)S(V)J
v

v

v

v

v

v

+=  (A.13) 

The squared magnitude of the strain-rate tensor is given the symbol 2

V
S  and is defined as 

 222222

2

2

1

2

1

2

1
⎟
⎠

⎞
⎜
⎝

⎛

∂

∂
+

∂

∂
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
+

∂

∂
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
+

∂

∂
+⎟

⎠

⎞
⎜
⎝

⎛

∂

∂
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
+⎟

⎠

⎞
⎜
⎝

⎛

∂

∂
=

⋅≡

x

V

z

V

z

V

y

V

y

V

x

V

z

V

y

V

x

V

S

zxyzxyzyx

V (V)S(V)S
v

v

v

v

 (A.14) 

The squared magnitude of the rotation tensor is given the symbol 2

V
Ω  and is defined as 

 

222

2

2

1

2

1

2

1

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
−

∂

∂
+⎟

⎠

⎞
⎜
⎝

⎛

∂

∂
−

∂

∂
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
−

∂

∂
=⋅≡

y

V

x

V

x

V

z

V

z

V

y

V
Ω xyzxyz
V (V)Ω(V)Ω

v

v

v

v

 (A.15) 

This can also be written as one-half of the squared magnitude of the vorticity vector 

 )()(
2

1
VV(V)Ω(V)Ω ×∇⋅×∇=⋅

v

v

v

v

 (A.16) 



205 

APPENDIX B 

TRADITIONAL TURBULENCE MODELS 

I.  The k-ε Model 

A. The General k-ε Model Equations 

 The k-ε model was first made popular by Jones and Launder [15] and has become one of the most 

widely used turbulence models. In its general, steady-state, incompressible form, the complete k-ε model 

includes the continuity equation, the RANS equations, the turbulent kinetic energy equation, the dissipation 

transport equation, and the closing kinematic viscosity equation  

 

εν

εσνν
εε

νε

σννεν

ννρ

μ

εεε

2

2

21
])[(2)(

])[(2)(

)]()(2[/ˆ)(

0

kC

k
C

k
C

kk

p

t

tt

ktt

t

=

∇+⋅∇+−⋅=∇⋅

∇+⋅∇+−⋅=∇⋅

+⋅∇+−∇=∇⋅

=⋅∇

)V(S)V(SV

)V(S)V(SV

VSVV

V

v

v

v

v

v

v

v

v

v

v

 (B.1) 

This model has difficulty near wall boundaries and is generally modified in one of two ways depending on 

the flow Reynolds number. For high Reynolds number flows, Launder and Spalding [101] suggest the use 

of wall functions. For low Reynolds number flows, damping functions are employed which allow the 

model to be integrated to the wall. Because this work is more comparable to models capable of integration 

to the wall, special attention is given here to damping function models. Several damping function models 

exist including those by Jones and Launder [15], Launder and Sharma [69], Lam and Bremhorst [68], and 

Chien [102]. Patel et al. [84] compare the performance of several models. 

 Many low Reynolds number k-ε models can be written in the form 

 

εν

εσνν

εε

νε

σννεεν

μμ

εεε

2

2

2211
])[(2)(

])[(2)(

kfC

E
k

fC
k

fC

kk

t

tt

ktot

=

∇+⋅∇++−⋅=∇⋅

∇+⋅∇+−−⋅=∇⋅

)V(S)V(SV

)V(S)V(SV

v

v

v

v

v

v

v

v

 (B.2) 



206 

where the models differ only in their definitions of 
µ
f , 

1
f , 

2
f , E , 

o
ε , and the closure constants, 

1ε
C , 

2ε
C , 

µ
C , 

k
σ , and 

ε
σ . In this work, only the low-Reynolds number models of Launder and Sharma [69] and Lam 

and Bremhorst [68] are included. 

 

B. Fully Developed Channel Flow 

 The k-ε model with damping functions can be written in its general form for incompressible, steady-

state flow as 

 ])[(2)( kk
ktot
∇+⋅∇+−−⋅=∇⋅ σννεεν )V(S)V(SV

v

v

v

v

 (B.3) 

 ])[(2)(
2

2211
εσνν

εε

νε
εεε
∇+⋅∇++−⋅=∇⋅

tt
E

k
fC

k
fC )V(S)V(SV

v

v

v

v

 (B.4) 

 εν
µµ

2kfC
t
=  (B.5) 

The k and ε transport equations can be written for 2-D flow in Cartesian coordinates as 

 ⎥
⎦

⎤
⎢
⎣

⎡
++−−

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

dy

dk

dy

d

dy

Vd

dy

Vd

dy

kVd

kto
xy

t
y

)(
2

1
2

)(
22

σννεεν  (B.6) 

 ⎥
⎦

⎤
⎢
⎣

⎡
+++−

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

dy

d

dy

d
E

k
fC

dy

Vd

dy

Vd

k
fC

dy

Vd
t

xy

t

y ε

σνν

εε

ν

ε

εεε
)(

2

1
2

)( 2

22

22

11
 (B.7) 

For fully developed channel flow, the transport property gradients with respect to x are much smaller than 

those with respect to y. Therefore, eliminating the x-derivatives and using Eq. (C.20) gives the two-

dimensional fully developed k and ε transport equations 

 
o

x

tkt
dy

Vd

dy

dk

dy

d
εενσνν −−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⎥

⎦

⎤
⎢
⎣

⎡
+−

2

)(  (B.8) 

 E
k

fC
dy

Vd

k
fC

dy

d

dy

d
x

tt
+−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⎥

⎦

⎤
⎢
⎣

⎡
+−

2

22

2

11
)(

εε

ν

ε

σνν
εεε

 (B.9) 

Using the nondimensional definitions 

 
2

τ
u

k
k ≡

+ , 
4

τ

εν

ε

u

≡

+ , 
4

τ

νε

ε

u

o

o
≡

+ , 
6

2

τ

ν

u

E
E ≡

+ , 
ν

τ

τ

Lu
R ≡  (B.10) 



207 

and substituting in the results of Eq. (C.31), gives the nondimensional fully developed k-ε model 

 

2

)1(
)1(

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+

−
−+=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+

+

+

+++

+

+

+

+

ν

νεεσν

τ

τ

R

yR

dy

dk

dy

d
ok

 (B.11) 

 +

+

+

+

+

+

+

+

+

+

+

+
−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+

−
−=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+ E

R

yR

k
fC

k
fC

dy

d

dy

d
2

11

2

22

)1(
)1(

ν

ε

ν

εε

σν

τ

τ

εεε
 (B.12) 

 +++

= εν
µµ

2

kfC  (B.13) 

 In order to close this formulation, the damping functions 
µ
f , 

1
f , 

2
f , +

E , and 
+

o
ε  must be specified. 

Various functions have been proposed, and the subsequent sections will discuss one such proposal. In 

addition to the definitions of the damping functions, four boundary conditions must be specified. These are 

 0)( =

+

+

τ
R

dy

dk
, 0)( =

+

+

τ

ε

R
dy

d
, 0)0( =

+

k , 0)0( =

+

+

dy

dk
 (B.14) 

The first two conditions are a result of symmetry at the centerline of the channel. The third and fourth 

conditions are a result of the definition of k and the fact that the velocity fluctuations must go to zero at the 

wall. The final boundary condition for k is not widely recognized in the literature. The most common 

approaches include examining the near-wall behavior of ε and specifying this behavior as a boundary 

condition. However, such an approach is mathematically incorrect. The governing equations cannot be used 

to invoke a boundary condition at the wall as discussed in Chapter 5. 

 

C. Fully Developed Pipe Flow 

 Several low-Reynolds number versions of the k-ε model exist and can be written in the form 

 

])[(2)(

])[(2)(

2

2211

2

εσνν

εε

νε

σννεεν

εν

εεε

μμ

∇+⋅∇++−⋅=∇⋅

∇+⋅∇+−−⋅=∇⋅

=

tt

ktot

t

E
k

fC
k

fC

kk

kfC

)V(S)V(SV

)V(S)V(SV

v

v

v

v

v

v

v

v

 (B.15) 

where the models differ only in their definitions of 
µ
f , 

1
f , 

2
f , E , 

o
ε , and the closure constants, 

1ε
C , 

2ε
C , 

µ
C , 

k
σ , and 

ε
σ . The turbulent-kinetic-energy and dissipation-frequency transport equations can be written 

in cylindrical coordinates as 



208 

 

⎥
⎦

⎤
⎢
⎣

⎡

∂

∂
+

∂

∂
+

⎥
⎦

⎤
⎢
⎣

⎡

∂

∂
+

∂

∂
+⎥

⎦

⎤
⎢
⎣

⎡

∂

∂
+

∂

∂
+−−

⎥
⎥

⎦

⎤

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
+

∂

∂
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂
+

∂

∂
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂
+

∂

∂
+

⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

∂

∂
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂
=

∂

∂
+

∂

∂
+

∂

∂

z

k

z

k

rrr

k
r

rr

r

V

z

V

z

VV

r

V

rr

rV
r

z

V

r

VV

rr

V

z

k
V

k

r

V

r

k
V

kt

ktkto

zrzr

zrr

tzr

)(

1
)(

1
)(

1

2

11

2

11)(

2

1

1
2

222

222

σνν

θ
σνν

θ
σννεε

θθ

θ
ν

θ

θθ

θθ

 (B.16) 

 

⎥
⎦

⎤
⎢
⎣

⎡

∂

∂
+

∂

∂
+

⎥
⎦

⎤
⎢
⎣

⎡

∂

∂
+

∂

∂
+⎥

⎦

⎤
⎢
⎣

⎡

∂

∂
+

∂

∂
++−

⎥
⎥

⎦

⎤

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
+

∂

∂
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
+

∂

∂
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
+

∂

∂
+

⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

∂

∂
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
=

∂

∂
+

∂

∂
+

∂

∂

zz

rrr
r

rr
E

k
fC

r

V

z

V

z

VV

r

V

rr

rV
r

z

V

r

VV

rr

V

k
fC

z
V

r

V

r
V

t

tt

zrzr

zrr

tzr

ε
σνν

θ

ε
σνν

θ

ε
σνν

ε

θθ

θ

ε
ν

ε

θ

εε

ε

εεε

θθ

θ

ε

θ

)(

1
)(

1
)(

1

2

11

2

11)(

2

1

1
2

2

22

222

222

11

 (B.17) 

Applying the simplifications for fully developed flow in a pipe, these equations can be written as 

 

⎥
⎦

⎤
⎢
⎣

⎡

∂

∂
+

∂

∂
++−

⎥
⎥

⎦

⎤

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
+

⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
=

∂

∂

⎥
⎦

⎤
⎢
⎣

⎡

∂

∂
+

∂

∂
+−−

⎥
⎥

⎦

⎤

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
+

⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
=

∂

∂

r
r

rr
E

k
fC

r

V

r

V

r

V

k
fC

r
V

r

k
r

rrr

V

r

V

r

V

r

k
V

t

zrr

tr

kto

zrr

tr

ε

σνν

εε

ν

ε

σννεεν

εεε
)(

1

2

1
2

)(
1

2

1
2

2

22

222

11

222

 (B.18) 

Applying Eq. (C.59) gives 

 

E
k

fC
r

V

k
fC

r
r

rr

r

V

r

k
r

rr

z

tt

o

z

tkt

+−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
=⎥

⎦

⎤
⎢
⎣

⎡

∂

∂
+−

∂

∂

−−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
=⎥

⎦

⎤
⎢
⎣

⎡

∂

∂
+−

∂

∂

2

22

2

11

2

)(
1

)(
1

εε

ν

ε

σνν

εενσνν

εεε

 (B.19) 

The k-ε formulation with the remaining boundary conditions can be written as 



209 

 

0)0(    ,0)0(    ,0)(    ,0)(    ,0)(

)(
1

)(
1

)(

2

22

2

11

2

2

2

=====

+−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
=⎥

⎦

⎤
⎢
⎣

⎡

∂

∂
+−

∂

∂

−−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
=⎥

⎦

⎤
⎢
⎣

⎡

∂

∂
+−

∂

∂

=

+
−=

dr

d

dr

dk
R

dr

dk
RkRV

E
k

fC
r

V

k
fC

r
r

rr

r

V

r

k
r

rr

kfC

R

ru

dr

Vd

z

z

tt

o

z

tkt

t

t

z

ε

εε

ν

ε

σνν

εενσνν

εν

νν

εεε

μμ

τ

 (B.20) 

Applying the nondimensional parameter definitions 

 
2

τ
u

k
k ≡

+ , 
4

τ

εν

ε

u

≡

+ , 
4

τ

νε

ε

u

o

o
≡

+ , 
6

2

τ

ν

u

E
E ≡

+  (B.21) 

with those given in Eq. (C.68), the formulation can be written as 

 

0)0(
ˆ

    ,0)0(
ˆ

    ,0)1(
ˆ

    ,0)1(    ,0)1(

ˆˆ
ˆ)1(

ˆˆ

1

ˆˆ
ˆ)1(

ˆˆ

1

)1(

ˆ

ˆ

2

22

2

11

2

2

=====

+−⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+−

−−⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+−

=

+
−=

+++

++

+

+

++

+

+

+

+

+

++

+

+

+

+

+++

+

+

rd

d

rd

dk

rd

dk
ku

E
k

fC
rd

du

k
fC

rd

d
r

rd

d

r

rd

du

rd

dk
r

rd

d

r

kfC

rR

rd

du

ok

ε

εε

ν

ω

σν

εενσν

εν

ν

εεω

μμ

τ

 (B.22) 

 

D.  Sample Models 

 

1. The Launder-Sharma k-ε Model 

  The Launder-Sharma [69] turbulence model is a special case of Eq. (B.2) where 

 

3.1    ,0.1    ,92.1    ,44.1    ,09.0

,2    ,2    ,

),exp(3.01    ,0.1    ,])501(4.3exp[

21

2

2

2
2

2

2

21

2

=====

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
==

−−==+−=

εεεμ

μ

σσ

νννε

νε

k

x

tot

tt

CCC

y

V
E

y

kk
R

RffRf

 (B.23) 



210 

where y is the coordinate measured normal to the wall and 
x

V  is the velocity tangential to the wall. This 

formulation can be written in terms of the k and ε transport equations given in Table F.1 and is a special 

case where 

 

3.1    ,0.1    ,92.1    ,44.1    ,09.0

],)501(4.3exp[    ,    ,

,2)]exp(3.01[    ,2

,2    ,2

21

22

2

2

2

22

2

2211

2

21

=====

+−===

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
−−−==

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
+==

εεεμ

μμμ

εεμμεε

σσ

εν

νε

νν

ε

νεν

k

ttt

x

tt

ktk

CCC

RfkfC
k

R

y

V

k
RCfkfCCf

y

k
ff

 (B.24) 

This model was designed so that 0→ε  as 0→y . Therefore, the near-wall approximation for ε is 

 0
0
=

ε
f  (B.25) 

This is not a boundary condition. It is simply a near-wall approximation for ε and can be applied at a no-

slip wall. 

 The Launder-Sharma turbulence model can be written for two-dimensional fully developed channel 

flow as 

 

2

2

22

22

2

11

22

2)(

2
)(

ˆ1
)(

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
+−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⎥

⎦

⎤
⎢
⎣

⎡
+−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⎥

⎦

⎤
⎢
⎣

⎡
+−

=⎥
⎦

⎤
⎢
⎣

⎡
+

∂

y

u

k
fC

dy

du

k
fC

dy

d

dy

d

y

k

kdy

du

dy

dk

dy

d

dx

pd

dy

du

dy

ttt

tkt

t

νν
εε

ν
ε

σνν

ν
ενσνν

ρ
νν

εεε

 (B.26) 

where 

 

νεε
µ

µ

22

2

21

2

    ,

),exp(3.01    ,0.1    ,])501(4.3exp[

k
R

k
fCν

RffRf

tµt

tt

==

−−==+−=

 (B.27) 

and the closure constants are 

 09.0=
µ

C , 44.1
1
=

ε
C , 92.1

2
=

ε
C , 0.1=

k
σ , 3.1=

ε
σ  (B.28) 

Using the change of variables, ε=h , Eq. (B.26) is a special case of Eq. (E.1) where 



211 

 

h

k
RRf

f
k

h
Rfkff

fhfff
dx

pd
f

h

k
ff

tt

ththh

kkku

ν

νν

ν
ρ

μ

μ

νμν

2

2

3

2

2

21

321

2

    ,])501(4.3exp[

,2     ,)]exp(3.01[92.1    ,1296.0

    ,    ,    ,
ˆ1

    ,09.0

=+−=

=−−==

===−==

 (B.29) 

Because h is not singular at the wall, the near-wall solution only needs to be used for the value of h at the 

wall. Therefore, we set 0=hm . In the limit as 0→y , the k equation reduces to 

 0
0
=h  (B.30) 

Figures B.1–B.3 show the nondimensional results of a grid-resolution study for the model as a function of 

+

y  where 001.=µ , 1.=ρ , 5.0=l , and 2.7ˆ
−=dxpd . The logscale axes are helpful for seeing how the 

model behaves near the wall. 

 

 0.0

 5.0

10.0

15.0

20.0

 0.1  1.0 10.0 100.0

y+

u+

law of th
e wall

u+=y+

25 cells
50 cells

100 cells
200 cells

 

Fig. B.1  Nondimensional mean velocity results from the Launder-Sharma model. 



212 

10−4

10−3

10−2

10−1

100

101

 0.1  1.0 10.0 100.0

y+

k+

25 cells
50 cells

100 cells
200 cells

 

Fig. B.2  Nondimensional turbulent kinetic energy results from the Launder-Sharma model. 

 

 

 

 

10−4

10−3

10−2

10−1

 0.1  1.0 10.0 100.0

y+

ε+

25 cells
50 cells

100 cells
200 cells

 

Fig. B.3  Nondimensional dissipation results from the Launder-Sharma model. 



213 

  The Launder-Sharma turbulence model is a special case of Eq. (B.20) where 

 

3.1    ,0.1    ,92.1    ,44.1    ,09.0

,2    ,
2

2    ,

),exp(3.01    ,0.1    ,])501(4.3exp[

21

2

2

22
2

2

2

21

2

=====

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
=⎟

⎠

⎞
⎜
⎝

⎛

∂

∂
=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
==

−−==+−=

εεεμ

μ

σσ

νν

ν

νε

νε

k

z

tot

tt

CCC

r

V
E

r

k

kr

kk
R

RffRf

 (B.31) 

In nondimensional form, it is a special case of Eq. (B.22) where 

 

3.1    ,0.1    ,92.1    ,44.1    ,09.0

,
ˆ

2
    ,

ˆ2

1

ˆ

2
    ,

),exp(3.01    ,0.1    ,])501(4.3exp[

21

2

2

2

4

2

2

2

2

2

2

21

2

=====

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
==

−−==+−=

++

+

+

+

+

+

+

+

εεεμ

τττ

μ

σσ

ν

ε

ε

k

ot

tt

CCC

r

u

R
E

r

k

Rkr

k

R

k
R

RffRf

 (B.32) 

From the differential equations, it can be shown that the near-wall asymptotic solution for +

ε  is 

 0)0( =

+

ε  (B.33) 

This model is a special case of Eq. (D.1) where 

 

3.1    ,0.1    ,92.1    ,44.1    ,09.0

,
ˆ

2
    ,

ˆ2

1

ˆ

2
    ,

),exp(3.01    ,])501(4.3exp[

ˆ

ˆ

21

2

2

2

4

2

2

2

2

2

2

2

2

2

22

2

1

2

2

=====

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
==

−−=+−=

+−
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

−−
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

=

=

++

+

+

+

+

+

+

+

+

+

++

+

++

+

+

++

++

εεεμ

τττ

μ

εμμε

μμν

σσ

ν

ε

ε

ε

εεν

ε

ε

k

ot

tt

h

ok

CCC

r

u

R
E

r

k

Rkr

k

R

k
R

RfRf

E
k

fC
rd

du
kfCCS

rd

du
S

kfCf

h

 (B.34) 

The algorithms given in Eqs. (D.18)–(D.20) can be used to solve this model where the functions are 

defined as 



214 

 

3.1    ,0.1    ,92.1    ,44.1    ,09.0

0.0

2
)]exp(3.01[])501(4.3exp[

2

])501(4.3exp[

21

0

2

4

2

2

2

2

2

1

2

2
2

2
2

2

=====

=

″
+−−−

′
+−=

′

−−
′

=

+−=

=

+

+

+

+

++

+

+

+++

++

+

+

εεεμ

τ

εμε

τ

μν

σσ

νε

εν

ε

ε

k

h

j
j

j

j
tjjth

j

j
jjjk

jjt

j

j
t

CCC

f

u
Rk

RCukRCCS

Rk

k
uS

kRCf

k
R

 (B.35) 

and 1=
h

m  should be used. 

 

2. The Lam-Bremhorst k-ε Model 

  The Lam-Bremhorst [68] turbulence model is a special case of Eq. (E.2) where 

 

3.1    ,0.1    ,92.1    ,44.1    ,09.0

,0    ,0    ,    ,    ,

),exp(1    ,)05.(1    ,]5.201[)]0165.exp(1[

21

22

2

2

3

1

2

=====

=====

−−=+=+−−=

εεεμ

μ

μμ

σσ

ε

ννεε

k

oytµt

tty

CCC

E
ky

R
k

R
k

fCν

RfffRRf

 (B.36) 

where y is the coordinate measured normal to the wall. This formulation can be written in terms of the k 

and ε transport equations given in Table F.1 and is a special case where 

 

3.1    ,0.1    ,92.1    ,44.1    ,09.0

,]5.201[)]0165.exp(1[    ,    ,    ,

,)]exp(1[    ,])05.(1[2

,    ,2

21

2

22

2

2

22

3

11

21

=====

+−−====

−−=+=

==

εεεμ

μμ

εεμμεε

σσ

ννεε

ε

εν

k

tyytµt

tµ

ktk

CCC

RRf
ky

R
k

R
k

fCν

k
RCfkffCCf

ff

 (B.37) 

In the limit as 0→y , the k equation reduces to give the near-wall approximation for ε 

 

0

2

2

0 ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

dy

kd
f
ε

 (B.38) 

This is not a boundary condition. It is simply a near-wall approximation for ε and can be applied at a 

smooth, no-slip wall. Some have implemented 0)0( =dydε  as a boundary condition. However, this is 

mathematically incorrect and has no physical basis as pointed out in Chapter 5. Using Eqs. (F.10) and 



215 

(F.11) along with the approximations given in Eqs. (H.22) and (H.23), Eq. (B.38) can be evaluated along 

the south boundary as 

 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

Δ

−+−
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

Δ

−+−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

Δ

−+−
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

2

3210
0

210210

0

2
,0

0

2

2
2
,

0

,,

00

2

2

0

15

126012072

3

98

3

98

ηηη

ηηη

ηη

ξ

ξ

ξξ

ε

kkkk
J

kkkJJJ
xJ

d

kd
J

d

dk

d

dJ
Jx

d

dk
Jx

d

d
Jx

dy

dk

dy

d

dy

kd
f

 (B.39) 

where the subscript 0 is the value at the wall, and the subscripts 1, 2, and 3 represent the values at the first, 

second, and third cells off of the wall respectively. As a final note, it is important to mention that near the 

wall, 
t

R  and 
y

R  approach zero and cause some of the functions in Eq. (B.37) to be singular. Therefore, 

near-wall approximations must be used. The following criteria were applied on a 32-bit computer 

performing double-precision computations for the case of 16E520 -. R
t
<  

 

2

3

224

23

42

3

1

2

2

t

2

2

92.1    ,
)0165.0()5.20(

)05.0(1296.0
    

,)01650(845.1     ,)01650(520

νε

ν

ν

ν

ν

ε

εε

μ

k
f

y

k
f

ky
.

k

y
..f

==

==

 (B.40) 

 The Lam-Bremhorst turbulence model can be written for two-dimensional fully developed channel 

flow as 

 

k
fC

dy

du

k
fC

dy

d

dy

d

dy

du

dy

dk

dy

d

dx

pd

dy

du

dy

tt

tkt

t

2

22

2

11

2

)(

)(

ˆ1
)(

εε
ν

ε
σνν

ενσνν

ρ
νν

εεε
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⎥

⎦

⎤
⎢
⎣

⎡
+−

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎥

⎦

⎤
⎢
⎣

⎡
+−

=⎥
⎦

⎤
⎢
⎣

⎡
+

∂

 (B.41) 

where 



216 

 

ννεε
µ

µµ

ky
R

k
R

k
fCν

RfffRRf

ytµt

tty

===

−−=+=+−−=

    ,    ,

),exp(1    ,)05.(1    ,]5.201[)]0165.exp(1[

22

2

2

3

1

2

 (B.42) 

and the closure constants are 

 09.0=
µ

C , 44.1
1
=

ε
C , 92.1

2
=

ε
C , 0.1=

k
σ , 3.1=

ε
σ  (B.43) 

Using the change of variables, ε=h , Eq. (B.41) is a special case of Eq. (E.1) where 

 

νν

ρ

μ

μμ

νμν

ky
R

h

k
RRRf

f
k

h
Rfkfff

fhfff
dx

pd
f

h

k
ff

ytty

hthh

kkku

==+−−=

=−−=+=

===−==

    ,    ,]5.201[)]0165.exp(1[

,0     ,)]exp(1[92.1    ,])05.(1[1296.0

0    ,    ,    ,
ˆ1

    ,09.0

2

2

3

2

2

2

3

1

321

2

 (B.44) 

Because h is not singular at the wall, the near-wall solution only needs to be used for the value of h at the 

wall. Therefore, we set 0=hm . In the limit as 0→y , the k equation reduces to 

 

0

2

2

0 ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

dy

kd
h  (B.45) 

which can be evaluated from Eq. (E.49). As a final note on the Lam-Bremhorst model, it is important to 

mention that near the wall, 
t

R  and 
y

R  approach zero and cause some of the functions in Eq. (B.44) to be 

singular. Therefore, the near-wall approximations must be used. The following criteria were applied on a 

32-bit computer performing double-precision computations for the case of 16E520 -. R
t
<  

 

2

3

224

23

42

3

1

2

2

2

2

92.1    ,
)0165.0()5.20(

)05.0(1296.0
    

)01650(845.1     ,)01650(520

ν

ν

νν
νμ

k
f

hy

k
f

ky
.f

k

hy
..f

hh
==

==

 (B.46) 

Figures B.4–B.6 show the nodimensional results of a grid-resolution study for the model as a function of 

+

y  where 001.=µ , 1.=ρ , 5.0=l , and 2.7ˆ
−=dxpd . 



217 

 0.0

 5.0

10.0

15.0

20.0

 0.1  1.0 10.0 100.0

y+

u+

law of th
e wall

u+=y+

25 cells
50 cells

100 cells
200 cells

 

Fig. B.4  Nondimensional mean velocity results from the Lam-Bremhorst model. 

 

 

10−4

10−3

10−2

10−1

100

101

 0.1  1.0 10.0 100.0

y+

k+

25 cells
50 cells

100 cells
200 cells

 

Fig. B.5  Nondimensional turbulent kinetic energy results from the Lam-Bremhorst model. 

 



218 

10−3

10−2

10−1

 0.1  1.0 10.0 100.0

y+

ε+

25 cells
50 cells

100 cells
200 cells

 

Fig. B.6  Nondimensional dissipation results from the Lam-Bremhorst model. 

  The Lam-Bremhorst turbulence model is a special case of Eq. (B.20) where 

 

3.1    ,0.1    ,92.1    ,44.1    ,09.0

,0    ,0    ,    ,

),exp(1    ,)05.0(1    ),20.5(1)]0165.0exp(1[

21

2

2

2

3

1

2

=====

====

−−=+=+−−=

εεεμ

μμ

σσ

ε

ννε

k

oyt

tty

CCC

E
ky

R
k

R

RfffRRf

 (B.47) 

In nondimensional form, it is a special case of Eq. (B.22) where 

 

3.1    ,0.1    ,92.1    ,44.1    ,09.0

,0    ,0    ,    ,

),exp(1    ,)05.0(1    ),20.5(1)]0165.0exp(1[

21

2

2

2

3

1

2

=====

====

−−=+=+−−=

++++

+

+

εεεμ

μμ

σσ

ε

ε

k

oyt

tty

CCC

EkyR
k

R

RfffRRf

 (B.48) 

From the differential equations, it can be shown that the near-wall asymptotic solution for +

ε  is 

 )0()0(
″

=
++

kε  (B.49) 

where the double-prime represents a derivative with respect to +

y . This model is a special case of Eq. (D.1) 

where 



219 

 

3.1    ,0.1    ,92.1    ,44.1    ,09.0

,    ,    ),exp(1

,)05.0(1    ),20.5(1)]0165.0exp(1[

ˆ

ˆ

21

2

2

2

3

1

2

2

22

2

11

2

2

=====

==−−=

+=+−−=

−⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

−⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

=

=

++

+

+

+

++

+

+

+

+

++

++

εεεμ

μμ

εμμε

μμν

σσ

ε

ε

εν

ε

ε

k

ytt

ty

h

k

CCC

kyR
k

RRf

ffRRf

k
fC

rd

du
kffCCS

rd

du
S

kfCf

h

 (B.50) 

The algorithms given in Eqs. (D.18)–(D.20) can be used to solve this model where the functions are 

defined as 

 

3.1    ,0.1    ,92.1    ,44.1    ,09.0

)]exp(1[)20.5(1)]0165.0exp(1][)05.0(1[

)20.5(1)]0165.0exp(1[

       ,

21

0

2

2

2

2

23

1

2

2

21

2

=====

″
=

−−−
′

+−−+=

−
′

=

+−−=

==

+

+

+

++

+++

++

+

+

εεεμ

εμμε

μν

σσ

ε

εν

ε

k

jh

j

j
tjjtyh

jjjk

tyt

jjy

j

j
t

CCC

kf

k
RCukRRfCCS

uS

RRRCf

ykR
k

R

(B.51) 

and 1=
h

m  should be used. As a final note on the Lam-Bremhorst model, it is important to mention that 

near the wall, 
t

R  and 
y

R  approach zero and cause some of the functions to be singular. Therefore, near-wall 

approximations must be used for these functions. The leading-order terms in the near-wall Taylor series 

expansion for k and the near-wall asymptotic solution for ε give 

 

L

L

+
″

=

+

″

=

++

++

+

)0(

2

)0(
2

k

yk
k

ε

 (B.52) 

Using these leading-order terms in the definitions of 
t

R  and 
y

R  shows that as 0→
+

y  



220 

 

2

)0(

4

)0(

2

21

42

++

++

++

+

+

″

=≡

″

=≡

yk
ykR

ykk
R

y

t
ε

 (B.53) 

This shows that as 0→
+

y , 0→
t

R  as 
4

+
y  and 0→

y
R  as 

2
+

y . Looking at the asymptotic behavior of 
µ
f  

for double-precision computations gives 

 

t

yyt

tyy

R
Rf- R-. R

RRf- R

5.20
)0165.0(    )6E71.2( and )15E520( if

]5.201[)0165.0(     6E71.2 if

2

2

=<<

+=<

µ

µ

 (B.54) 

These approximations can be used in Eq. (B.50) to give conditional statements for 
ν
f  

 

2

2

2

2

2

)0165.0(5.20

5.20
)0165.0(    

)6E71.2( and )15E520( if

     

]5.201[)0165.0(     

6E71.2 if

y

t

y

yt

ty

y

RC

k

R
RCf

- R-. R

k
fCf

RRf

- R

μ

μν

μμν

μ

ε

ε

=

=

<<

=

+=

<

+

+

+

+

 (B.55) 

Approximations from Eq. (B.54) can be used in Eq. (B.50) to give conditional statements for 
+kff

µ1
. 

Details are shown here. 



221 

 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+=

⎪
⎪
⎪

⎭

⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

⎟
⎠

⎞
⎜
⎝

⎛ ″

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛ ″

+=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+=

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+=

⎪
⎪

⎭

⎪
⎪

⎬

⎫

⎪
⎪

⎩

⎪
⎪

⎨

⎧

⎥
⎦

⎤
⎢
⎣

⎡
+=

<<

++=

<

++

++

++

++

++

+

++

++

+

++

+

+

++

++

++

36

3
2

2

3

3
6

6

3
2

3

2
2

3
3

6
6

3
3

2
2

2

2
21

3

2

2
21

3

2

3

2

3

1

23

1

)5.20()0165.0(8

)05.0(
15.20)0165.0(                  

)0()5.20()0165.0(

2

)0(
)05.0(

15.20)0165.0(                  

)5.20()0165.0(

)05.0(
15.20)0165.0(                  

5.20
)0165.0(

5.20
)0165.0(

)05.0(
1                  

5.20
)0165.0(

5.20
)0165.0(

)05.0(
1     

)6E71.2( and )15E520( if

]5.201[)0165.0]()05.(1[     

6E71.2 if

ε

ε

ε

ε

ε

ε

µ

µµ

y

ky

yk

y

y

k
y

k
k

yk

k
yk

k
R

R

R
R

kff

- R-. R

kRRfkff

- R

t

y

t

y

yt

ty

y

 (B.56) 

Likewise, double-precision computations gives 

 
3

2

2 )]exp(1[     4E11.2 if +

+

+

=−−< k
k

R- R
tt

ε

 (B.57) 

 

II.  The k-ω Model 

A. The General k-ω Model Equations 

 The k-ω model was first developed by Kolmogorov [16] and has been revised by many others 

including Saffman [103], Wilcox [35,39,40,45], Speziale et al. [34], Peng et al. [42], Kok [43], and 

Hellsten [44]. In its general, steady-state, incompressible form, the complete k-ω model includes the 

continuity equation, the RANS equations, the turbulent kinetic energy equation, the dissipation frequency 

transport equation, and the closing kinematic viscosity equation 



222 

 

ω
ν

ωσννω
ω

νω

σννων

ννρ

ωωω

μ

k

C
k

C

kkCk

p

t

tt

ktt

t

=

∇+⋅∇+−⋅=∇⋅

∇+⋅∇+−⋅=∇⋅

+⋅∇+−∇=∇⋅

=⋅∇

])[(2)(

])[(2)(

)]()(2[/ˆ)(

0

2

21
)V(S)V(SV

)V(S)V(SV

VSVV

V

v

v

v

v

v

v

v

v

v

v

 (B.58) 

where 
µ

C , 
1ω

C , 
2ω

C , 
k

σ , and 
ω

σ  are the closure coefficients. Because this model does not naturally exhibit 

the correct behavior in the near-wall region, functions are typically included that are similar to the wall 

damping functions employed in the k-ε model. These damping functions modify the equations above to 

yield a variation of the turbulent kinetic energy equation, the dissipation frequency transport equation, and 

the closing kinematic viscosity equation 

 

ω

ν

ωσννω

ω

νω

σννων

μ

ωωω

μ

k
f

fC
k

fC

kkfCk

t

tt

ktkt

=

∇+⋅∇+−⋅=∇⋅

∇+⋅∇+−⋅=∇⋅

])[(2)(

])[(2)(

2

2211
)V(S)V(SV

)V(S)V(SV

v

v

v

v

v

v

v

v

 (B.59) 

 

B. Fully Developed Channel Flow 

 The k and ω transport equations can be written for 2-D flow in Cartesian coordinates as 

 

⎥
⎦

⎤
⎢
⎣

⎡

∂

∂
+

∂

∂
+⎥

⎦

⎤
⎢
⎣

⎡

∂

∂
+

∂

∂
+

−
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
+

∂

∂
+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
=

∂

∂
+

∂

∂

y

k

yx

k

x

kfC
y

V

x

V

y

V

x

V

y

kV

x

kV

ktkt

k
xyyx

t
yx

)()(

2

1
2

)()(
222

σννσνν

ων
µ

 (B.60) 

 

⎥
⎦

⎤
⎢
⎣

⎡

∂

∂
+

∂

∂
+⎥

⎦

⎤
⎢
⎣

⎡

∂

∂
+

∂

∂
+

−
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
+

∂

∂
+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
=

∂

∂
+

∂

∂

yyxx

fC
y

V

x

V

y

V

x

V

k
fC

y

V

x

V

tt

xyyx
t

yx

ω

σνν

ω

σνν

ω

ω

ν

ωω

ωω

ωω

)()(

2

1
2

)()( 2

22

222

11

 (B.61) 

For fully developed channel flow, the transport property gradients with respect to x are much smaller than 

those with respect to y. Therefore, eliminating the x-derivatives and using Eq. (C.20), gives the two-

dimensional fully developed k and ω transport equations 



223 

 ωνσνν
µ

kfC
y

V

y

k

y
k

x

tkt
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂
=⎥

⎦

⎤
⎢
⎣

⎡

∂

∂
+

∂

∂
−

2

)(  (B.62) 

 2

22

2

11
)( ω

ω

ν

ω

σνν
ωωω

fC
y

V

k
fC

yy

x

tt
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂
=⎥

⎦

⎤
⎢
⎣

⎡

∂

∂
+

∂

∂
−  (B.63) 

Using the nondimensional definitions 

 
2

τ
u

k
k ≡

+ , 
2

τ

ων

ω

u

≡

+  (B.64) 

and substituting in the results of Eq. (C.31), gives the nondimensional fully developed k-ω model 

 

2

)1(
)1(

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+

−
−=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+

+

+

+++

+

+

+

+

ν

νωσν

τ

τ

μ

R

yR
kfC

dy

dk

dy

d
kk

 (B.65) 

 

2

11

2

22

)1(
)1(

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+

−
−=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂

∂
+

∂

∂
+

+

+

+

++

+

+

+

ν

ω

νω

ω

σν

τ

τ

ωωω

R

yR

k
fCfC

yy
 (B.66) 

 
+

+

+

=

ω

ν
µ

k
f  (B.67) 

 In order to close this formulation, the damping functions 
µ
f , 

1
f , 

2
f , and kf , must be specified. Various 

functions have been proposed, and the subsequent sections will discuss one such proposal. In addition to 

the definitions of the damping functions, four boundary conditions must be specified. These are 

 0)( =

+

+

τ
R

dy

dk
, 0)( =

+

+

τ

ω

R
dy

d
, 0)0( =

+

k , 0)0( =

+

+

dy

dk
 (B.68) 

Again, the final boundary condition in Eq. (B.68) is not widely recognized in the literature, and the near-

wall behavior of ω is often referred to as a boundary condition. This is incorrect as discussed in Chapter 5. 

 

C. Fully Developed Pipe Flow 

 The k-ω model includes an expression for the kinematic eddy viscosity, the turbulent-kinetic-energy 

equation, and the dissipation-frequency-transport equation 



224 

 

])[(2)(

])[(2)(

2

2211
ωσννω

ω

νω

σννων

ων

ωωω

μ

μ

∇+⋅∇+−⋅=∇⋅

∇+⋅∇+−⋅=∇⋅

=

tt

ktkt

t

fC
k

fC

kkfCk

kf

)V(S)V(SV

)V(S)V(SV

v

v

v

v

v

v

v

v

 (B.69) 

The turbulent-kinetic-energy and dissipation-frequency transport equations can be written in cylindrical 

coordinates as 

 

⎥
⎦

⎤
⎢
⎣

⎡

∂

∂
+

∂

∂
+

⎥
⎦

⎤
⎢
⎣

⎡

∂

∂
+

∂

∂
+⎥

⎦

⎤
⎢
⎣

⎡

∂

∂
+

∂

∂
+−

⎥
⎥

⎦

⎤

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
+

∂

∂
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂
+

∂

∂
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂
+

∂

∂
+

⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

∂

∂
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂
=

∂

∂
+

∂

∂
+

∂

∂

z

k

z

k

rrr

k
r

rr
kfC

r

V

z

V

z

VV

r

V

rr

rV
r

z

V

r

VV

rr

V

z

k
V

k

r

V

r

k
V

kt

ktktk

zrzr

zrr

tzr

)(

1
)(

1
)(

1

2

11

2

11)(

2

1

1
2

222

222

σνν

θ
σνν

θ
σννω

θθ

θ
ν

θ

μ

θθ

θθ

 (B.70) 

 

⎥
⎦

⎤
⎢
⎣

⎡

∂

∂
+

∂

∂
+

⎥
⎦

⎤
⎢
⎣

⎡

∂

∂
+

∂

∂
+⎥

⎦

⎤
⎢
⎣

⎡

∂

∂
+

∂

∂
+−

⎥
⎥

⎦

⎤

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
+

∂

∂
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂
+

∂

∂
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂
+

∂

∂
+

⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

∂

∂
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂
=

∂

∂
+

∂

∂
+

∂

∂

zz

rrr
r

rr
fC

r

V

z

V

z

VV

r

V

rr

rV
r

z

V

r

VV

rr

V

k
fC

z
V

r

V

r
V

t

tt

zrzr

zrr

tzr

ω
σνν

θ

ω
σνν

θ

ω
σννω

θθ

θ

ω
ν

ω

θ

ωω

ω

ωωω

θθ

θ

ω

θ

)(

1
)(

1
)(

1

2

11

2

11)(

2

1

1
2

2

22

222

222

11

 (B.71) 

Applying the simplifications for fully developed flow in a pipe, these equations can be written as 

 

⎥
⎦

⎤
⎢
⎣

⎡
++−

⎥
⎥

⎦

⎤

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎢
⎢

⎣

⎡
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

⎥
⎦

⎤
⎢
⎣

⎡
++−

⎥
⎥

⎦

⎤

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

dr

d
r

dr

d

r
fC

dr

Vd

r

V

dr

Vd

k
fC

dr

d
V

dr

dk
r

dr

d

r
kfC

dr

Vd

r

V

dr

Vd

dr

dk
V

t

zrr

tr

ktk

zrr

tr

ω

σννω

ω

ν

ω

σννων

ωωω

μ

)(
1

2

1
2

)(
1

2

1
2

2

22

222

11

222

 (B.72) 

Applying Eq. (C.59) gives 



225 

 

2

22

2

11

2

)(
1

)(
1

ω

ω

ν

ω

σνν

ωνσνν

ωωω

μ

fC
dr

Vd

k
fC

dr

d
r

dr

d

r

kfC
dr

Vd

dr

dk
r

dr

d

r

z

tt

k

z

tkt

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎥

⎦

⎤
⎢
⎣

⎡
+−

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎥

⎦

⎤
⎢
⎣

⎡
+−

 (B.73) 

The k-ω formulation with the remaining boundary conditions can be written as 

 

0)0(    ,0)0(    ,0)(    ,0)(    ,0)(

)(
1

)(
1

)(

2

22

2

11

2

2

=====

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎥

⎦

⎤
⎢
⎣

⎡
+−

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎥

⎦

⎤
⎢
⎣

⎡
+−

=

+
−=

dr

d

dr

dk
R

dr

dk
RkRV

fC
dr

Vd

k
fC

dr

d
r

dr

d

r

kfC
dr

Vd

dr

dk
r

dr

d

r

kf

R

ru

dr

Vd

z

z

tt

k

z

tkt

t

t

z

ω

ω

ω

ν

ω

σνν

ωνσνν

ων

νν

ωωω

μ

μ

τ

 (B.74) 

Applying the nondimensional parameter definitions 

 
22

    ,

ττ

ων

ω

uu

k
k ≡≡

++  (B.75) 

with those given in Eq. (C.68), the formulation can be written as 

 

0)0(
ˆ

    ,0)0(
ˆ

    ,0)1(
ˆ

    ,0)1(    ,0)1(

ˆˆ
ˆ)1(

ˆˆ

1

ˆˆ
ˆ)1(

ˆˆ

1

)1(

ˆ

ˆ

2
2

22

2

11

2

2

=====

−⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+−

−⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+−

=

+
−=

+++

++

+

++

+

++

+

+

+

+

+++

+

+

rd

d

rd

dk

rd

dk
ku

RfC
rd

du
ffC

rd

d
r

rd

d

r

kRfC
rd

du

rd

dk
r

rd

d

r

kf

rR

rd

du

kk

ω

ω

ω

σν

ωνσν

ων

ν

τωμωω

τμ

μ

τ

 (B.76) 

 

D. Sample Models 

 

1. The Traditional k-ω Model 

  The traditional k-ω turbulence model is a special case of Eq. (B.59) where 



226 

 
0.2    ,0.2    ,072.0    ,52.0    ,09.0

,0.1    ,0.1    ,0.1    ,0.1

21

21

=====

====

ωωωμ

μ

σσ
k

k

CCC

ffff
 (B.77) 

This formulation can be written in terms of the k and ω transport equations given in Table F.1 and is a 

special case where 

 

0.2    ,0.2    ,072.0    ,52.0    ,09.0

,    ,    ,2    ,    ,2

21

2

221121

=====

=====

ωωωμ

ωωωωμ

σσ

ω

ωων

k

tktk

CCC

k
νCfCfkCff

 (B.78) 

In the limit as 0→y , ω becomes singular. The near-wall asymptotic behavior for ω can be written 

 
20

072.0

6

y
f

ν

ω
=  (B.79) 

where y is the coordinate measured normal to the wall. Fluent uses this near-wall approximation for the 

first cell off of a smooth wall. 

 The traditional k-ω model can be written for two-dimensional fully developed channel flow as 

 

2

2

2

1

2

)(

)(

ˆ1
)(

ω
ω

ν
ω

σνν

ωνσνν

ρ
νν

ωωω

μ

C
dy

du

k
C

dy

d

dy

d

kC
dy

du

dy

dk

dy

d

dx

pd

dy

du

dy

d

tt

tkt

t

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎥

⎦

⎤
⎢
⎣

⎡
+−

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎥

⎦

⎤
⎢
⎣

⎡
+−

=⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

 (B.80) 

where 

 
ω

ν

k
t
=  (B.81) 

and the closure constants are 

 09.0=
µ

C , 52.0
1
=

ω
C , 072.0

2
=

ω
C , 0.2=

k
σ , 0.2=

ω
σ  (B.82) 

Using the change of variables, ω=h , Eq. (B.80) is a special case of Eq. (E.1) where 

 

0    ,072.0    ,52.0

0    ,09.0    ,    ,
ˆ1

    ,

3

2

21

321

===

===−==

hhh

kkku

fhff

fkhfff
dx

pd
f

h

k
f

νν

ρ  (B.83) 



227 

Because h is singular at the wall, the near-wall solution must be used for the value of h near the wall. In the 

limit as 0→y , the near-wall asymptotic behavior can be written for ω in the form of Eq. (E.34) as 

 
20

072.0

6

j

h
y

f
ν

=  (B.84) 

Fluent uses Eq. (B.84) for the first node off of a smooth wall. This is equivalent to setting 1=hm . Figures 

B.7–B.9 show the nondimensional results of a grid-resolution study for the model as a function of +

y  

where 001.=µ , 1.=ρ , 5.0=l , and 2.7ˆ
−=dxpd . 

 

 

 

 

 0.0

 5.0

10.0

15.0

20.0

 0.1  1.0 10.0 100.0

y+

u+

law of th
e wall

u+=y+

25 cells
50 cells

100 cells
200 cells

 

Fig. B.7  Nondimensional mean velocity results from the traditional k-ω model. 

 



228 

10−6

10−5

10−4

10−3

10−2

10−1

100

101

 0.1  1.0 10.0 100.0

y+

k+

25 cells
50 cells

100 cells
200 cells

 

Fig. B.8  Nondimensional turbulent kinetic energy results from the traditional k-ω model. 

 

 

 

10−2

10−1

100

101

102

103

104

105

 0.1  1.0 10.0 100.0

y+

ω+

25 cells
50 cells

100 cells
200 cells

 

Fig. B.9  Nondimensional dissipation frequency results from the traditional k-ω model. 

 



229 

2. The Wilcox 1998 k-ω Model 

 The Wilcox 1998 k-ω model [45] including shear-flow corrections is a special case of Eq. (B.59) 

where 

 

0.2    ,0.2    ,072.0    ,52.0    ,09.0

    ,    ,0.1    ,
)95.21(

95.291

,
0,

4001

6801

0,1

)8(1

)8(154
    ,

61

6024.0

21

321

2

2

4

4

=====

=
∇⋅∇

==
+

+
=

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

>
+

+

≤

+

+
=

+

+
=

ωωωμ

μ

μ

σσ

νωω

ω
ψ

ψ

ψ

ψ

ψ

k

tk

t

t

k

k

k

k

t

t

k

t

t

CCC

k
R

k
f

Rf

R
f

R

R
f

R

R
f

 (B.85) 

This formulation can be written in terms of the k and ω transport equations given in Table F.1 and is a 

special case where 

 

0.2    ,0.2    ,072.0    ,52.0    ,09.0

,    ,

,
61

6024.0
    ,    ,

95.21

95.291
2

,
0,

4001

6801

0,1

)8(1

)8(154
    ,2

21

3

2

2211

2

2

4

4

21

=====

=
∇⋅∇

=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+

+
==

+

+
=

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

>
+

+

≤

+

+
==

ωωωμ

ωωωω

μ

σσ

νωω

ω
ψ

ω
ω

ψ

ψ

ψ

ψ

ων

k

tk

t

t

t

t

t

k

k

k

k

t

t

ktk

CCC

k
R

k

R

Rk
νCf

R

R
Cf

R

R
kCff

 (B.86) 

In the limit as 0→y , ω becomes singular. The near-wall asymptotic behavior for ω can be written 

 
20

072.0

6

y
f

ν

ω
=  (B.87) 

where y is the coordinate measured normal to the wall. Fluent uses this near-wall approximation for the 

first cell off of a smooth wall. Wilcox [86] suggests using this leading-order solution for the first 7 to 10 

grid points off the surface to avoid numerical errors that can develop from using the central differencing 

scheme near a wall boundary. Wilcox states that this approximation is only good for grid points where 

5.2<
+

y . Therefore, it is recommended that the grid be fine enough to ensure that at least 7 grid points are 

within this constraint. 

 As an alternative, Wilcox suggests using the slightly rough wall boundary condition 



230 

 ,
2500

)0,(
2

2

+

=

s

t

k

u
x

ν

ω 25<
+

s
k  (B.88) 

where 

 
ν

st

s

ku
k ≡

+  (B.89) 

is the scaled surface roughness height. The condition 5<
+

s
k  gives results for a hydraulically smooth 

surface. 

 Fluent 6.3 [85] implements the boundary conditions a similar way. Fluent sets the first node off of the 

wall, 
1
y , to 

 ,
6

,
2500

min),(
2

2

2

2

1 ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

+ yCk

u
yx

s

t

ω

ν

ν

ω 25<
+

s
k  (B.90) 

where 

 ⎟
⎠

⎞
⎜
⎝

⎛
=+

ν

st

s

ku
k ,0.1max  (B.91) 

The current research is not concerned about rough surfaces. Therefore, the boundary conditions for rough 

walls are not included here. 

 The shear-flow corrections included in this model are dependent on the quantity 

 
3

ω

ω
ψ

∇⋅∇
=

k

k
 (B.92) 

This scalar quantity can be written in Cartesian coordinates as 

 ⎥
⎦

⎤
⎢
⎣

⎡

∂

∂

∂

∂
+

∂

∂

∂

∂
=

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

∂

∂
∂

∂

⋅

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

∂

∂
∂

∂

=
yy

k

xx

k

y

x

y

k
x

k

k

ωω

ω
ω

ω

ω

ψ
33

11
 (B.93) 

Applying Eqs. (F.10) and (F.11) gives 

 

⎥
⎦

⎤
⎢
⎣

⎡

∂

∂

∂

∂
+

∂

∂

∂

∂
=

⎥
⎦

⎤
⎢
⎣

⎡

∂

∂

∂

∂
+

∂

∂

∂

∂
=

η

ω

ηξ

ω

ξω

η

ω

ηξ

ω

ξω
ψ

ξη

ξξηη

k
x

k
y

J

Jx
k

JxJy
k

Jy
k

2
,

2
,3

2

,,,,3

1

 (B.94) 



231 

This is discretized using the second-order differencing schemes explained in Appendix H. 

 The Wilcox 1998 k-ω model with wall damping functions without shear flow corrections can be 

written for two-dimensional fully developed channel flow as 

 

2

22

2

11

2

)(

)(

ˆ1
)(

ω
ω

ν
ω

σνν

ωνσνν

ρ
νν

ωωω

μ

fC
dy

du

k
fC

dy

d

dy

d

kfC
dy

du

dy

dk

dy

d

dx

pd

dy

du

dy

d

tt

ktkt

t

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎥

⎦

⎤
⎢
⎣

⎡
+−

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎥

⎦

⎤
⎢
⎣

⎡
+−

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

 (B.95) 

where 

 

νωω
ν

μ

μ

μ

k
R

k
f

R

R
f

f
Rf

R
f

R

R
f

tt

t

t

k

t

t

t

t

==
+

+
=

=
+

+
=

+

+
=

    ,    ,
)8(1

)8(154

,0.1    ,
)95.21(

95.291
    ,

61

6024.0

4

4

21

 (B.96) 

and the closure constants are 

 09.0=
µ

C , 52.0
1
=

ω
C , 072.0

2
=

ω
C , 0.2=

k
σ , 0.2=

ω
σ  (B.97) 

Using the change of variables, ω=h , Eq. (B.95) is a special case of Eq. (E.1) where 

 

h

k
Rfhf

R

R
f

fkh
R

R
fff

dx

pd
f

R

R

h

k
f

thh

t

t

h

k

t

t

kku

t

t

ν

ρ
νν

===
+

+
=

=
+

+
==−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

+

+
=

    ,0    ,072.0    ,
)95.21(

95.291
52.0

0    ,
)8(1

)8(154
09.0    ,    ,

ˆ1
    ,

61

6024.0

3

2

21

34

4

21

 (B.98) 

Because h is singular at the wall, the near-wall solution must be used for the value of h near the wall. In the 

limit as 0→y , the near-wall asymptotic behavior can be written for ω in the form of Eq. (E.34) as 

 
20

072.0

6

j

h
y

f
ν

=  (B.99) 

Fluent uses Eq. (B.99) for the first node off of a smooth wall. This is equivalent to setting 1=hm . Figures 

B.10–B.12 show the nodimensional results of a grid-resolution study for the model as a function of +

y  

where 001.=µ , 1.=ρ , 5.0=l , and 2.7ˆ
−=dxpd . 



232 

 0.0

 5.0

10.0

15.0

20.0

 0.1  1.0 10.0 100.0

y+

u+

law of th
e wall

u+=y+

25 cells
50 cells

100 cells
200 cells

 

Fig. B.10  Nondimensional mean velocity results from the Wilcox 1998 model. 

 

 

 

10−4

10−3

10−2

10−1

100

101

 0.1  1.0 10.0 100.0

y+

k+

25 cells
50 cells

100 cells
200 cells

 

Fig. B.11  Nondimensional turbulent kinetic energy results from the Wilcox 1998 model. 

 



233 

10−2

10−1

100

101

102

103

104

105

 0.1  1.0 10.0 100.0

y+

ω+

25 cells
50 cells

100 cells
200 cells

 

Fig. B.12  Nondimensional dissipation frequency results from the Wilcox 1998 model. 

 The Wilcox 1998 k-ω model is a special case of Eq. (B.76) where 

 

0.2    ,0.2    ,072.0    ,52.0    ,09.0

1    ,
)95.21(

95.291
    ,

0,
4001

6801

0,1

)8(1

)8(154

61

6024.0
    ,    ,

21

21

2

2

4

4

3

=====

=
+

+
=

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

>
+

+

≤

+

+
=

+

+
=

∇⋅∇
≡≡

ωωωμ

μ

μ

σσ

ψ

ψ

ψ

ψ

ω

ω
ψ

νω

k

t

t

k

k

k

k

t

t

k

t

t

kt

CCC

f
Rf

R
f

R

R
f

R

R
f

kk
R

 (B.100) 

The shear-flow correction term in the damping equations can be written in cylindrical coordinates as 

 ⎟
⎠

⎞
⎜
⎝

⎛

∂

∂

∂

∂
+

∂

∂

∂

∂
+

∂

∂

∂

∂
=

∇⋅∇
≡

zz

kk

rrr

kk
k

ω

θ

ω

θ

ω

ωω

ω
ψ

233

11
 (B.101) 

For fully developed pipe flow, derivatives with respect to θ and z are zero. Applying these simplifications 

to Eq. (B.101) and applying the nondimensional parameters gives 

 
rr

k

R
rr

kk
k

ˆˆ

11

2
333 ∂

∂

∂

∂
=

∂

∂

∂

∂
=

∇⋅∇
≡

++

+

ω

ω

ω

ωω

ω
ψ

τ

 (B.102) 

This model is a special case of Eq. (D.1) where 



234 

 

0.2    ,0.2    ,072.0    ,52.0    ,09.0

1    ,
)95.21(

95.291
    ,

0,
4001

6801

0,1

)8(1

)8(154

61

6024.0
    ,

ˆˆ

1
    ,

ˆ

ˆ

21

21

2

2

4

4

2
3

2
2

22

2

11

2

2

=====

=
+

+
=

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

>
+

+

≤

+

+
=

+

+
=

∂

∂

∂

∂
=≡

−⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

−⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

=

=

++

+
+

+

+

+

++

+

+

++

++

ωωωμ

μ

μ

τ

τωμω

τμ

μν

σσ

ψ

ψ

ψ

ψ

ω

ω

ψ

ω

ω

ων

ω

ω

k

t

t

k

k

k

k

t

t

k

t

t

kt

h

kk

CCC

f
Rf

R
f

R

R
f

R

R
f

rr

k

R

k
R

RfC
rd

du
ffCS

kRfC
rd

du
S

kff

h

 (B.103) 

The algorithms given in Eqs. (D.18)–(D.20) can be used to solve this model where the functions are 

defined as 

 

20

2
2

2

2

2

4

4

2

2

2
3

072.0

6

072.0
95.21

95.291
52.0

0,
4001

6801

0,1

)8(1

)8(154
09.0

61

6024.0

    ,

+

++

++++

+

+

+

++

+

+

=

−′
+

+
=

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

>
+

+

≤

+

+
−′=

+

+
=

′′
=≡

j

h

jj
t

t
h

k

k

k

k

t

t
jjjjk

t

t

j

j

j

jj

k

j

j

t

y

f

Ru
R

R
S

R

R
kRuS

R

Rk
f

R

kk
R

ω

ψ

ψ

ψ

ψ

ων

ω

ω

ω
ψ

ω

τ

τ

ν

τ

 (B.104) 

and 7=
h

m  can be used because +

ω  is singular at the wall. 



235 

APPENDIX C 

COMMON CASE STUDIES 

 I. Boundary Layer Flow over an Infinite Flat Plate 

A. Case Description 

 Boundary layer flow is often one of the first scenarios considered for evaluating a turbulence model. 

The test case is rather simple consisting of an infinite flat plate placed in-line with the velocity vector of a 

uniform flow. As the flow advances along the plate, the momentum deficit from the skin drag on the plate 

causes a boundary layer to develop. The profile of this boundary layer has been studied in great detail and 

much experimental data exists for this case. Experimental results show that the boundary layer profile is 

self-similar and a function of the skin friction along the plate. 

 Because of the behavior of the boundary layer profile, certain approximations can be applied to the 

RANS equations and the resulting simplified equations can be written in a similarity form. The nature of 

the boundary layer equations allows a solution to be obtained by directly integrating the equations in space. 

This solution method allows for the effect of turbulence model closure coefficients to be quickly assessed 

because any one solution requires only a matter of seconds to compute with modern computers. However, 

this method suffers from the fact that approximations about the flowfield must be assumed in order to 

develop the boundary layer equations. 

 The boundary layer flow case in a two-dimensional CFD solver can be constructed on a rectangular 

domain as shown in Fig. C.1. On the west side of the domain a velocity inlet boundary condition is 

specified. At this boundary condition, all freestream properties of the flow must be specified. In this case, 

uniform properties of the flow are specified across the inlet boundary. Along the south side of the domain, 

a no-slip wall boundary condition is specified. Along the north and east sides of the domain, pressure outlet 

boundary conditions are specified. Once the solution has reached a converged state, there should be no flow 

entering the domain from the north and east boundaries. However, during the solution process, freestream  



236 

 
Fig. C.1  Boundary layer case description. 

conditions must be specified along these boundaries in the case that during any given iteration, backflow 

develops along one of these boundaries. Figure C.1 shows the setup for this case. 

 Two of the most significant parameters of interest in flat-plate boundary layer flow are the prediction 

of the skin friction along the plate, and the prediction of the nondimensional velocity profile. According to 

convention, 
x

R  is defined as the Reynolds number at any x-position along the plate where the x-position is 

measured from the leading edge of the plate along the direction of flow. This Reynolds number can be 

expressed as 

 νxVR
x ∞
≡  (C.1) 

Here we define 
L

R  as the Reynolds number based on the length of the plate, L, which can be expressed as 

 νLVR
L ∞
≡  (C.2) 

The friction coefficient is defined as 

 )(2
2

∞
≡ VC

wf
ρτ  (C.3) 

Plots of the nondimensional velocity profile, +
u , as a function of +

y  where 
τ
uVu

x
≡

+  and ν
τ

yuy ≡
+  in 

comparison with experimental data are often included. There is a wealth of experimental data for boundary 



237 

layer flows. For example, results of boundary layer flow can be compared to experimental data by 

Klebanoff [53], Bradshaw [54], Marusic and Hutchins [55], and Guala et al. [56]. 

 

B. Laminar Flow 

 The laminar case for boundary layers was studied in detail by Blasius [104]. Applying the boundary 

layer equations, Blasius developed an expression for the friction coefficient in terms of the Reynolds 

number along the plate 

 

x

f
R

C
664.0

≈  (C.4) 

 A laminar case was run in both ICESS and Fluent using the following dimensional properties:  

 

4e1    m,  0.1

,msN  001.0    ,mkg  1.0    ,sm  0.100

m,  2.0heightdomain     m,  0.1thdomain wid

23

==

⋅===

==

∞

L
RL

V μρ  (C.5) 

Figures C.2 and C.3 show grid resolution results from ICESS and Fluent for the case and include grid 

resolutions of 2525× , 5050× , and 100100× . The figures show the friction coefficient as a function of 

Reynolds number along the plate and include the Blasius solution. Figure C.4 compares the grid-resolved 

results from ICESS to those from Fluent, both on grids of 100100×  cells. 

10−2

10−1

100

100 101 102 103 104

Rx

Cf

25×25 cells
50×50 cells

100×100 cells
Blasius

 

Fig. C.2  Grid resolution results from ICESS for the laminar boundary layer. 

 



238 

10−2

10−1

100

100 101 102 103 104

Rx

Cf

25×25 cells
50×50 cells

100×100 cells
Blasius

 

Fig. C.3  Grid resolution results from Fluent for the laminar boundary layer. 

 

10−2

10−1

100

100 101 102 103 104

Rx

Cf

ICESS 100×100 cells
Fluent 100×100 cells

Blasius

 

Fig. C.4  Grid-resolved results from ICESS and Fluent for the laminar boundary layer. 

 



239 

C. Turbulent Flow 

 The turbulent boundary layer case has been studied in detail including both analytical studies and 

experimental studies. Several approximations for the friction coefficient exist. For example, White [105] 

develops the relation 

 
)06.0(ln

455.0

2

x

f

R

C ≈  (C.6) 

Kays and Crawford [106] develop the relation 

 
51

0574.0

x

f

R

C ≈  (C.7) 

Schultz-Grunow [107] obtains the relation 

 
584.2

)][log(

37.0

x

f

R
C ≈  (C.8) 

 It is well understood that the nondimensional velocity profile of a turbulent boundary layer is a 

function of the nondimensional wall coordinate. In the laminar sublayer, this profile follows the expression 

 5~     , <=
+++

yyu  (C.9) 

In the log layer, the velocity profile follows what is known as the law of the wall 

 500~30     ,)ln(
1

<<+=
+++

yCyu

κ

 (C.10) 

Based on modern experimental data, it is generally accepted that the best values for the constants in the 

law-of-the-wall equation are 41.0=κ  and 0.5=C . 

 

II.  Fully Developed Channel Flow 

A. Case Description 

 Fully developed flow in a channel is a common case for evaluating a turbulence model. This case is a 

two-dimensional flow which is identical to the three-dimensional flow between two infinite flat plates. As 

flow enters a channel, a boundary layer develops on each channel wall. As the flow moves downstream, the 

two boundary layers eventually meet, and the flow reaches the fully developed state. 



240 

 This flow case in two dimensions can be constructed on a rectangular domain as shown in Fig. C.5. 

Along the south side of the domain, a no-slip wall boundary condition is applied. Because this case is 

symmetrical along the centerline of the channel, only half of the channel is modeled, and a symmetry 

boundary condition is applied along the north side of the domain. The east and west sides of the domain are 

then specified as periodic boundary conditions. This boundary condition forces the properties of the flow 

exiting one side of the domain to be equal to those entering the other side of the domain. The use of 

periodic boundary conditions requires either a pressure drop across the domain to be specified, or a mass 

flux across the periodic boundary to be specified. Figure C.5 shows the setup for this case in Cartesian 

coordinates. 

 For fully developed channel flow, gradients in the flow properties with respect to the flow direction 

disappear, and the profiles of flow properties become dependent only on the coordinate normal to the wall. 

Therefore, the governing equations can be simplified to a one-dimensional problem and the solution can be 

obtained numerically very quickly on modern computers. The formulation can be discretized into a banded 

system of equations and solved quite rapidly where the full two-dimensional problem may take a 

significantly longer amount of time. Therefore, this one-dimensional test case is ideal for the optimization 

process of closure coefficients. 

 

 

Fig. C.5  Fully developed channel flow case description. 

 



241 

B. The Continuity and RANS Equations 

 The steady-state, incompressible continuity and Boussinesq-RANS equations can be written in vector 

format as 

 0=⋅∇ V  (C.11) 

 )]()(2[/ˆ)( VSVV

v

v

t
p ννρ +⋅∇+−∇=∇⋅  (C.12) 

These can be written for two-dimensional flow in Cartesian coordinates as 

 0=
∂

∂
+

∂

∂

y

V

x

V yx  (C.13) 

 
⎥

⎥

⎦

⎤

⎢

⎢

⎣

⎡

⎟

⎟

⎠

⎞

⎜

⎜

⎝

⎛

∂

∂

+

∂

∂

+

∂

∂

+
⎥

⎦

⎤

⎢

⎣

⎡

∂

∂

+

∂

∂

+

∂

∂

−=

∂

∂

+

∂

∂

x

V

y

V

yx

V

xx

p

y

VV

x

VV yx

t

x

t

xyxx
)()(2

ˆ
1)()(

νννν
ρ

 (C.14) 

 
⎥

⎥

⎦

⎤

⎢

⎢

⎣

⎡

⎟

⎟

⎠

⎞

⎜

⎜

⎝

⎛

∂

∂

+

∂

∂

+

∂

∂

+

⎥

⎥

⎦

⎤

⎢

⎢

⎣

⎡

∂

∂

+

∂

∂

+

∂

∂

−=

∂

∂

+

∂

∂

x

V

y

V

xy

V

yy

p

y

VV

x

VV
yx

t

y

t

yyyx
)()(2

ˆ
1)()(

νννν
ρ

 (C.15) 

where the y-coordinate is the normal coordinate measured outward from the wall of the channel and the x-

coordinate is the coordinate along the channel. For fully developed flow in a pipe, the gradients of transport 

properties with respect to x are zero, and these equations can be simplified to 

 0=

∂

∂

y

V
y

 (C.16) 

 
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
+

∂

∂
+

∂

∂
−=

∂

∂

y

V

yx

p

y

VV
x

t

xy
)(

ˆ1)(
νν

ρ
 (C.17) 

 
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

∂

∂
+

∂

∂
+

∂

∂
−=

∂

∂

y

V

yy

p

y

VV
y

t

yy
)(2

ˆ1)(
νν

ρ
 (C.18) 

The no-slip boundary conditions at the wall of the pipe, 0=y , are 

 
0)0(

0)0(

=

=

y

x

V

V
 (C.19) 

Applying the 
y

V  boundary condition to the integral of Eq. (C.16) gives 

 0=
y

V  (C.20) 



242 

Applying this result to Eq. (C.18) gives 

 0

ˆ

=
∂

∂

y

p
 (C.21) 

This shows that )(

ˆˆ xpp = . Using Eqs. (C.20) and (C.21) in Eq. (C.17) gives 

 
dx

pd

dy

Vd

dy

d
x

t

ˆ1
)(

ρ
νν =

⎥

⎥

⎦

⎤

⎢

⎢

⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+  (C.22) 

Integrating Eq. (C.22) from the wall to some arbitrary distance, y, gives 

 

y
dx

pd

dy

Vd

dy

Vd

dx

pd

dy

Vd

dy

d

y

x

t

yy

x

t

y

y

y

y

x

t

ˆ1
)()(

ˆ1
)(

0

00

ρ
νννν

ρ
νν

=⎥
⎦

⎤

⎢
⎣

⎡
+−⎥

⎦

⎤

⎢
⎣

⎡
+

=⎥
⎦

⎤

⎢
⎣

⎡
+

==

==
∫∫

 (C.23) 

Because the turbulent eddy viscosity goes to zero at a no-slip wall, the second term on the left-hand side of 

Eq. (C.23) evaluated at the wall can be written in terms of the friction velocity or the wall shear stress 

 2

0

)(
τ

ρ

τ
νν u

dy

Vd
w

y

x

t

==⎥
⎦

⎤

⎢
⎣

⎡
+

=

 (C.24) 

Using this in Eq. (C.23) gives the relation 

 2
ˆ1

)(
τ

ρ
νν uy

dx

pd

dy

Vd
x

t
+=+  (C.25) 

The velocity boundary condition at the center of the channel, Ly = , is 

 0=

=Ly

x

dy

Vd

 (C.26) 

Applying this to Eq. (C.25) gives 

 
L

u

dx

pd
2ˆ

1
τ

ρ
−=  (C.27) 

Finally, applying this relation to Eq. (C.25) gives 

 
)(

)1(
2

t

x
Lyu

dy

Vd

νν

τ

+

−

=  (C.28) 



243 

 The friction velocity is commonly used to nondimensionalize the parameters of a wall-bounded flow. 

Defining the nondimensional parameters 

 
dx

pd

u
p

Lu
R

yu
y

u

V
u

t

τ

x

ˆ

    ,    ,    ,    ,
3

τ

ττ

τ
ρ

ν

ν

ν

ν

νν

≡≡≡≡≡
++++  (C.29) 

Using these definitions, Eqs. (C.27) and (C.28) can be rewritten as 

 
τ

Rp 1−=
+  (C.30) 

 
+

+

+

+

+

−
=

ν1

1
τ

Ry

dy

du
 (C.31) 

 The most significant parameters of interest for the channel flow case are the ability of a model to 

predict the correct relation between flow Reynolds number and the friction coefficient, and the ability of 

the model to predict the correct nondimensional velocity profile. The channel Reynolds number is defined 

as 

 ν
h

DV
bulke

R ≡  (C.32) 

where 

 ∫ =

≡

L

y
xdyV

L
V

0
bulk

1
 (C.33) 

 is the bulk velocity, and 

 LD
h

4=  (C.34) 

is the hydraulic diameter based on the channel half-width, L. The Fanning friction factor is defined as 

 
2

bulk

2

2

bulk

22

V

u

V
C

w
f

τ

ρ

τ
=≡  (C.35) 

The Darcy friction factor is defined as 

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−≡
dx

pd

V

D
f h

D

ˆ

2

bulk2

1
ρ

 (C.36) 

Using Eqs. (C.27) and (C.34) in this definition gives an alternate form for channel flow 



244 

 fD C
V

u
f 4

8

2

bulk

2

==

τ  (C.37) 

Using the nondimensional parameters given in Eq. (C.29) as well as the definition 

 ∫
=

+++

+

=≡

τ
R

yτ

dyu
Ru

V
u

0

bulk

bulk

1

τ

 (C.38) 

in Eqs. (C.32), (C.35), and (C.37) gives the expressions 

 
τ

Ru
+

=
bulke

4R  (C.39) 

 
2

bulk

2

+

=

u

C f  (C.40) 

 fD C

u

f 4
8

2

bulk

==

+

 (C.41) 

 

C. Laminar Flow 

 For laminar flow, the turbulent eddy viscosity is zero throughout the flow. Integrating Eq. (C.28) for 

laminar flow and applying Eq. (C.27) gives the laminar fully developed channel flow solution 

 

τ

x

R

y
yu

Ly
y

dx

pd

L

y
y

u
V

2

2

ˆ1

2

2

222

+

++ −=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−=⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
−=

μν

τ

 (C.42) 

Evaluating Eq. (C.42) at Ly =  gives the centerline velocity 

 

2

ˆ

22

22

τ

c

c

R
u

dx

pdLLu
V

=

−==

+

μν

τ

 (C.43) 

Dividing Eq. (C.42) by Eq. (C.43) gives a normalized expression for the velocity profile 

 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−=

⎟
⎠

⎞
⎜
⎝

⎛
−=

++

+

+

ττc

c

x

R

y

R

y

u

u

L

y

L

y

V

V

2

2

 (C.44) 

The bulk velocity can be evaluated by integrating Eq. (C.42) 



245 

 

32

1

ˆ

332

1

0

2

bulk

32

0

22

bulk

τ
R

y ττ

L

y

R
dy

R

y
y

R
u

dx

pdLLu
dy

L

y
y

u

L
V

τ

=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−=

−==⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−=

∫

∫

=

+

+

++

=

+

μνν

ττ

 (C.45) 

Using Eq. (C.45) along with Eq. (C.32) in Eq. (C.35) gives 

 
e

R

24
=fC  (C.46) 

 The fully developed channel flow case was run in ICESS using the following properties 

 
0.300    ,sm0.6    ,mPa 6.3

mPa 2.7ˆ    m, 5.0    ,mkg 1.0    ,s)(mkg 001.0 3

===

−===⋅=

τw
Ru

dxpdL

τ
τ

ρμ
 (C.47) 

Figure C.6 shows the nondimensional velocity profile results for a grid with 50 cells using logarithmic 

clustering near the wall. 

 

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

y+/L+

u+/u+
c

ICESS 50 cells
Analytic

 

Fig. C.6  Normalized velocity profile for fully developed channel flow. 

D. Turbulent Flow 

 Two-equation RANS-based turbulence models can be coupled with Eq. (C.31). A general form for the 

complete system of equations including boundary conditions can often be written in the form 



246 

 

0)(    ,0)(    ,0)0(    ,0)0(    ,0)0(

)1(

)1(

1

1

=====

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+−

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+−

=

+

−
=

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

ττ

hh

kk

τ

R
dy

dh
R

dy

dk

dy

dk
ku

S
dy

dh

dy

d

S
dy

dk

dy

d

f

Ry

dy

du

σν

σν

ν

ν

ν

 (C.48) 

where +

h  represents the second turbulence variable and 
ν
f , 

k
S , and 

h
S  are model-dependent functions. For 

sample results, see Appendix B. 

 

III.  Fully Developed Pipe Flow 

A. Case Description 

 The fully developed pipe flow case is very closely related to the fully developed channel flow case. As 

flow enters a pipe, a boundary layer develops along the pipe wall. As the flow moves downstream, the 

boundary layer eventually fills the entire pipe, and the flow reaches the fully developed state. In this state, 

there are no gradients in the azimuthal direction of the pipe, and the case can be simplified to a two-

dimensional flow in cylindrical coordinates. 

 This flow case in two dimensions can be constructed on a rectangular domain as shown in Fig. C.7. 

Along the north side of the domain, a no-slip wall boundary condition is applied. Because this case is 

symmetrical along the centerline of the pipe, only half of the pipe is modeled, and a symmetry boundary 

condition is applied along the south side of the domain. This side of the domain is also the axis of rotation 

of the pipe. The east and west sides of the domain are then specified as periodic boundary conditions where 

either a pressure drop across the domain or a mass flux across the periodic boundary must be specified. 

Figure C.7 shows the setup for this case in cylindrical coordinates. 



247 

 

Fig. C.7  Fully developed pipe flow case description. 

 For fully developed pipe flow, gradients in the flow properties with respect to the flow direction 

disappear, and the profiles of flow properties become dependent only on the coordinate normal to the axis 

of symmetry. Therefore, the governing equations can be simplified to a one-dimensional problem and the 

solution can be obtained numerically very quickly on modern computers. Because solutions to this case can 

be quickly obtained, this test case is ideal for evaluating closure coefficients. 

 

B. The Continuity and RANS Equations 

 The governing steady-state, incompressible continuity and Boussinesq-RANS equations can be written 

in vector form as 

 0=⋅∇ V  (C.49) 

 )]()(2[/ˆ)( VSVV

v

v

t
p ννρ +⋅∇+−∇=∇⋅  (C.50) 

These can be written for flow in a pipe in cylindrical coordinates including the continuity equation 

 0
1)(1

=
∂

∂
+

∂

∂
+

∂

∂

z

VV

rr

Vr

r

zr

θ

θ  (C.51) 

and the three components of the Boussinesq-RANS equations 



248 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

∂

∂+
−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
+

∂

∂
+

∂

∂
+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
+

∂

∂
+

∂

∂
+

⎥
⎦

⎤
⎢
⎣

⎡

∂

∂
+

∂

∂
+

∂

∂
−=−

∂

∂
+

∂

∂
+

∂

∂

r

trz

t

r

t

r

t

r

z

rr

r

V
V

rz

V

r

V

z

V

r

rV
r

r

r

V
r

rrr

p

r

V

z

V
V

V

r

V

r

V
V

θ

νν
νν

θ
νν

θ

νν
ρθ

θ

θ

θθ

2

2

2

2

)(2
)(

)(
)(

1

)(2
1ˆ1

 (C.52) 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
+

∂

∂+
+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
+

∂

∂
+

∂

∂
+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

∂

∂
+

∂

∂
+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
+

∂

∂
+

∂

∂
+

∂

∂
−=+

∂

∂
+

∂

∂
+

∂

∂

r

rV
r

V

rz

VV

rz

r

VV

rr

r

rV
r

V

r
r

rr

p

r

VV

z

V
V

V

r

V

r

V
V

rtz

t

r

t

r

t

r

zr

)()(1
)(

1
)(2

1

)(1
)(

1ˆ1

2

2

θθ

θ

θθθθθθ

θ

νν

θ
νν

θ
νν

θ

θ
νν

θρθ

(C.53) 

 

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
+

∂

∂
+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
+

∂

∂
+

∂

∂
+

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
+

∂

∂
+

∂

∂
+

∂

∂
−=

∂

∂
+

∂

∂
+

∂

∂

z

V

z

V

rz

V

r

r

V

z

V
r

rrz

p

z

V
V

V

r

V

r

V
V

z

t

z

t

zr

t

z

z

zz

r

)(2
1

)(
1

)(
1ˆ1

νν
θ

νν
θ

νν
ρθ

θ

θ

 (C.54) 

For fully developed flow in a pipe, the gradients of transport properties with respect to z are zero. 

Additionally, all gradients with respect to θ are zero and 0=
θ

V . Therefore, Eqs. (C.51)–(C.54) can be 

simplified to 

 0
)(
=

dr

Vrd
r  (C.55) 

 
r

tr

t

r

r
V

rdr

Vd
r

dr

d

rr

p

dr

Vd
V

2

)(2
)(2

1ˆ1 νν
νν

ρ

+
−⎥

⎦

⎤
⎢
⎣

⎡
++

∂

∂
−=  (C.56) 

 ⎥
⎦

⎤
⎢
⎣

⎡
++

∂

∂
−=

dr

Vd
r

dr

d

rz

p

dr

Vd
V z

t

z

r
)(

1ˆ1
νν

ρ
 (C.57) 

The no-slip boundary conditions at the wall of the pipe, r=R, are 

 
0)(

0)(

=

=

RV

RV

z

r
 (C.58) 

Applying the 
r

V  boundary condition to the integral of Eq. (C.55) gives 0=
r

V  and the governing equations 

can be written as 



249 

 0=
r

V  (C.59) 

 0

ˆ

=
∂

∂

r

p
 (C.60) 

 
dz

pd

dr

Vd
r

dr

d

r

z

t

ˆ1
)(

1

ρ
νν =⎥

⎦

⎤
⎢
⎣

⎡
+  (C.61) 

The results of Eq. (C.60) show that )(ˆˆ zpp =  which has been used in Eq. (C.61). The coordinate r is the 

normal coordinate measured outward from the center of the pipe. The velocity boundary condition at the 

center of the pipe, r=0, is 

 0)0( =

dr

Vd
z  (C.62) 

Integrating Eq. (C.61) from the centerline to some arbitrary distance, r, gives 

 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+=+

=⎥
⎦

⎤
⎢
⎣

⎡
+ ∫∫

==

C
r

dz

pd

dr

Vd
r

dz

pdr

dr

Vd
r

dr

d

z

t

r

r

r

r

z

t

2

ˆ1
)(

ˆ
)(

2

00

ρ
νν

ρ
νν

 (C.63) 

where C is an arbitrary constant. Applying the boundary condition given in Eq. (C.62) gives 0=C  and Eq. 

(C.63) can be written 

 r
dz

pd

dr

Vd
z

t

ˆ

2

1
)(

ρ
νν =+  (C.64) 

The left-hand side of Eq. (C.64) evaluated at the wall is related to the shear stress at the wall which can also 

be written in terms of the friction velocity 

 2)()(
τ

ρ

τ
νν uR

dr

Vd
wz

t
−=−=+  (C.65) 

Using this in Eq. (C.64) evaluated at r=R gives the relationship 

 
R

u

dz

pd
2ˆ

2

1
τ

ρ
−=  (C.66) 

Using this in Eq. (C.64) gives the formulation and the remaining boundary condition 

 0)(           ,
)(

2

=

+

−= RV
R

ru

dr

Vd
z

t

z

νν

τ  (C.67) 



250 

This can be written in nondimensional form using the following parameters 

 

ττ

τ

ττ

τ

ττ

τ

τ

τ

νν

ρ

ν

νν

ν

ν
ν

ν

RRuR

u

uudz

pd
p

rR
RrRurRu

y

u

V
u

Ru
R

R

r
r tz

222ˆ

),ˆ1(
)1()(

,    ,    ,    ,ˆ

2

33
−=−=−=≡

−=

−

=

−

≡

≡≡≡≡

+

+

++

 (C.68) 

Using these nondimensional parameters, Eq. (C.67) can be written as 

 0)1(      ,
)1(

ˆ

ˆ
=

+

−=
+

+

+

u
rR

rd

du

ν

τ  (C.69) 

 The most significant parameters of interest for the pipe flow case are the ability of a model to predict 

the correct relation between flow Reynolds number and the friction coefficient, and the ability of the model 

to predict the correct nondimensional velocity distribution. The pipe Reynolds number is defined as 

 ν
h

DV
bulke

R ≡  (C.70) 

 where 

 ∫
=

≡

R

r
z
rdrV

R

V
0

2bulk

2
 (C.71) 

 is the bulk velocity, and 

 RD
h

2=  (C.72) 

is the hydraulic diameter based on the pipe radius, R. Again, the Fanning friction factor is defined as 

 
2

bulk

2

2

bulk

22

V

u

V
C

w
f

τ

ρ

τ
=≡  (C.73) 

The Darcy friction factor is defined as 

 ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−≡
dz

pd

V

D
f h

D

ˆ

2

bulk2

1
ρ

 (C.74) 

Using Eqs. (C.66) and (C.72) in this definition gives an alternate form for pipe flow 

 fD C
V

u
f 4

8

2

bulk

2

==

τ  (C.75) 



251 

Using the nondimensional parameters given in Eq. (C.68) as well as the definition 

 ∫
=

++

=≡

1

0ˆ

bulk

bulk
ˆˆ2

r

rdru
u

V
u

τ

 (C.76) 

in Eqs. (C.70), (C.73), and (C.75) gives the expressions 

 
τ

Ru
+

=
bulke

2R  (C.77) 

 
2

bulk

2

+

=

u

C f  (C.78) 

 fD C

u

f 4
8

2

bulk

==

+

 (C.79) 

 

C. Laminar Flow 

 For laminar flow, the turbulent eddy viscosity is zero throughout the flow. Integrating Eq. (C.67) for 

laminar flow gives 

 C
R

ru
V
z

+−=

ν

τ

2

22

 (C.80) 

Applying the boundary condition 0)( =RV
z

 gives ν
τ

2
2
RuC =  and the laminar fully developed pipe flow 

solution can be expressed as 

 

)ˆ1(
2

)(
ˆ

4

1
)(

2

2

2222

2

r
R

u

Rr
dz

pd
rR

R

u
V
z

−=

−=−=

+ τ

τ

μν
 (C.81) 

Evaluating Eq. (C.81) at 0=r  gives the centerline velocity 

 

2

ˆ

42

22

τ

τ

μν

R
u

dz

pdRRu
V

c

c

=

−==

+

 (C.82) 

Dividing Eq. (C.81) by Eq. (C.82) gives a normalized expression for the velocity profile 



252 

 
2

2

2

ˆ1

1

r

u

u

R

r

V

V

c

c

z

−=

−=

+

+

 (C.83) 

The bulk velocity can be evaluated by integrating Eq. (C.81) 

 

4
ˆˆ)ˆ1(

ˆ

84
)(

2

2

1

0ˆ

2

bulk

22

0

22

2

2bulk

τ

τ

ττ

μνν

R
rdrrRu

dz

pdRRu
rdrrR

R

u

R
V

r

R

r

=−=

−==−=

∫

∫

=

+

=

 (C.84) 

Using Eq. (C.84) along with Eq. (C.70) in Eq. (C.73) gives 

 
e

R

16
=fC  (C.85) 

 A laminar fully developed pipe flow case was run in ICESS using the following properties 

 
0.300    ,sm0.6    ,mPa 6.3

mPa 4.14ˆ    m, 5.0    ,mkg 1.0    ,s)(mkg 001.0 3

===

−===⋅=

τw
Ru

dzpdR

τ
τ

ρμ
 (C.86) 

Figure C.8 shows the nondimensional velocity profile results for a grid with 50 cells using logarithmic 

clustering near the wall. 

 

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

r+/Rτ

u+/u+
c

ICESS 50 cells
Analytic

 

Fig. C.8  Normalized velocity profile for fully developed pipe flow. 



253 

 

D. Turbulent Flow 

 Two-equation RANS-based turbulence models can be coupled with Eq. (C.69). A general form for the 

complete system of equations including boundary conditions can often be written in the form 

 

0)0(
ˆ

    ,0)0(
ˆ

    ,0)1(
ˆ

    ,0)1(    ,0)1(

ˆ
ˆ)1(

ˆˆ

1

ˆ
ˆ)1(

ˆˆ

1

)1(

ˆ

ˆ

=====

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+−

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+−

=

+
−=

+++

++

+

+

+

+

+

+

+

rd

dh

rd

dk

rd

dk
ku

S
rd

dh
r

rd

d

r

S
rd

dk
r

rd

d

r

f

rR

rd

du

hh

kk

σν

σν

ν

ν

ν

τ

 (C.87) 

where +

h  represents the second turbulence variable and 
ν
f , 

k
S , and 

h
S  are model-dependent functions. For 

sample models, see Appendix B. 

 

IV. Plane Jet Flow 

A. Case Description 

 The plane jet flow case is a valuable case for testing the ability of the model to predict shear flows. The 

case consists of a two-dimensional jet of fluid entering a quiescent fluid. As the jet of fluid advances into 

the quiescent fluid, the momentum of the jet is diffused outward normal to the jet axis. The jet centerline 

velocity decreases as the flow moves downstream, and the width of the jet grows. Eventually, the core of 

the jet profile becomes self-similar. The boundary layer equations are often applied to this case in order to 

develop a similarity solution for the jet profile. However, these equations are based on the assumption that 

the fluid velocity normal to the jet axis is much smaller than the fluid velocity in the direction of the jet 

axis. This assumption holds near the center of the jet, but is obviously not correct far from the jet 

centerline. In fact, in the regions far from the jet centerline, the fluid velocity normal to the axis of the jet is 

much greater than the fluid velocity in the direction of the jet axis. This is caused from the fluid 

entrainment surrounding the jet. The fact that the boundary layer equations don’t hold outside of the core of 



254 

the jet is seldom mentioned in the literature, and the similarity solution for the jet is often used to evaluate 

the performance of a turbulence model for the plane jet case. The similarity solutions provide a system of 

equations that can be quickly solved to give the self-similar jet profile. However, in this work, a full two-

dimensional RANS solver will be used to evaluate the performance of the new turbulence model. This 

solver will give more accurate results for the spreading rate of the jet because it is not based on the 

similarity solution.  

 This flow case in two dimensions can be constructed on a rectangular domain by assigning a separate 

boundary condition to each side of the domain. For our purposes here, we assume the jet is moving in the x-

direction and the y-coordinate is measured normal to the centerline of the jet. Along the west side of the 

domain, an initial profile for the jet is specified along with inlet conditions for any flow parameters. This 

initial profile can be taken from the similarity solution for the jet or from experimental data. Along the 

south side of the domain, a symmetry boundary condition is applied. The east and north sides of the domain 

are specified as pressure boundary conditions. Figure C.9 shows the setup for this case in Cartesian 

coordinates. 

 

Fig. C.9  Plane jet flow case description. 



255 

 Some of the most significant parameters of interest in plane jet flow are the prediction of the jet 

velocity along the centerline of the jet, the prediction of the jet spread rate, and the prediction of the jet 

velocity profile. Defining w as the span of the jet in the third dimension, the specific x-momentum flux per 

unit span is defined as 

 ∫
∞

∞−

=≡ dyV
wM

K
x

2

ρ
 (C.88) 

where M is the total momentum flux. From conservation of momentum, the momentum flux across each x 

cross section must remain constant. The mass flux across each x cross section is a function of the distance 

downstream of the jet because as the jet moves downstream, it entrains flow. The volume flow rate is 

defined as 

 ∫
∞

∞−

= dyVwQ
x

 (C.89) 

Because of fluid entrainment, the volume flow rate increases as the fluid moves downstream. The volume 

flow rate is commonly written in nondimensional form to give a local Reynolds number of the jet flow 

 
ν

wQ
R
x
≡  (C.90) 

In order to define a spread rate for the jet, the width of the jet must be defined. Here we define the jet 

width, 
h
y , as the y-coordinate at which the velocity in the direction of the jet centerline is equal to half the 

velocity along the jet centerline 

 )0,(5.0),( xVyxV
xhx

=  (C.91) 

The spread rate can then be evaluated by plotting the jet width as a function of distance along the jet 

centerline. The jet velocity profile is commonly reported in nondimensional form where the velocity has 

been nondimensionalized by the centerline velocity, and the distance from the jet centerline is 

nondimensionalized by the jet width. Results for the plane jet can be compared to data by Bradbury [62] 

and Heskestad [63]. 



256 

B. Laminar Flow 

 An approximation to the laminar plane jet solution can be found by using boundary layer theory and 

applying a similarity analysis. Schlichting [108] gives a solution where the velocity field can be written as 

 

)]tanh()(sech[2
6

)(sech
32

3

2

31

2

2

31
2

γγγ
ν

γ
ν

−⎟
⎠

⎞
⎜
⎝

⎛
=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

x

K
V

x

K
V

y

x

 (C.92) 

where 

 
32

31

2
48 x

yK
⎟
⎠

⎞
⎜
⎝

⎛
≡

ν

γ  (C.93) 

Using this solution in Eq. (C.89), the volume flow rate per unit span of the jet is 

 31)36( xKdyVwQ
x

ν== ∫
∞

∞−

 (C.94) 

and the local Reynolds number of the jet flow is 

 

31

2

36
⎟
⎠

⎞
⎜
⎝

⎛
=≡

νν

KxwQ
R
x

 (C.95) 

The right-hand side of this expression reveals an important length scale for the plane jet case. Because both 

K and ν are constants related to the flow field, they can be used to give a scale by which length parameters 

can be nondimensionalized. The nondimensional form of a length parameter where this characteristic 

length has been used will be given the symbol H. For example, the nondimensional position, x, can be 

expressed as 

 
2

ν

Kx
H

x
≡  (C.96) 

Using Eq. (C.95) in Eqs. (C.92) and (C.93), the velocity field can be rewritten in terms of Reynolds number 

 

)]tanh()(sech[2
6

)(sech
2

3

2

2

γγγ
ν

γ
ν

−=

=

x

R
V

R

K
V

x

y

x

x

 (C.97) 

where 



257 

 
x

yR
x

12
≡γ  (C.98) 

At the centerline, 0=γ  which can be used in Eq. (C.97) to give the centerline velocity of the jet. 

 
x

xc

R

K
xVV

ν2

3
)0,( =≡  (C.99) 

The x-velocity profile can be nondimensionalized by dividing the profile by the centerline velocity yielding 

 )(sech

2

3

)(sech
2

3

2

2

γ

ν

γ
ν

==

x

x

c

x

R

K

R

K

V

V
 (C.100) 

Here we define the width of the jet to be the point at which the x-velocity is 50% of the centerline velocity 

 ( ) 88.05.0sech5.0)(sech 12
≅=⇒==

−

γγ

c

x

V

V
 (C.101) 

Using this in Eq. (C.98) gives the y-coordinate at which the x-velocity of the jet is only 50% of the 

centerline velocity 

 ( )
xx

h
R

x

R

x
y 58.10

12
5.0sech

1
≅=

−  (C.102) 

As a side note, it is sometimes useful to know the point at which the x-velocity of the jet is only 1% of the 

centerline velocity. Following the procedure above, we obtain 

 

( )

( )
xx

c

x

R

x

R

x
y

V

V

92.35
12

01.0sech

99.201.0sech01.0)(sech

1

%1

12

≅=

≅=⇒==

−

−

γγ

 (C.103) 

 The most significant parameters of this flowfield can be plotted in nondimensional format. Once the 

width of the jet has been found, the nondimensional velocity profile at any x-coordinate can be found 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

hh

xx

c

x

y

y

y

Rx

x

yR

V

V
88.0sech

58.10

12
sech

22  (C.104) 

The velocity at the centerline as a function of x can be written in nondimensional form by rearranging  

Eq. (C.99) 



258 

 

3131

2

31

32

3

32

3

2

3

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟

⎠

⎞
⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛
==

−

xx

c

H

Kx

RK

V

ν

ν

 (C.105) 

Finally, the jet width as a function of x can be written in nondimensional form by dividing Eq. (C.102) by 

the length scale given in Eq. (C.96) 

 ( )
( )

( ) 31
2

312

1

2
4888.0

36

12
88.0

12
88.0

12
5.0sech

x

x

x

x

x

x

h H
H

H

R

HK

R

xKy
==≅=

−

νν

 (C.106) 

 A laminar plane jet case was run in ICESS using the following properties 

 233 sm 10    ,mkg 1.0    ,s)(mkg 001.0 ==⋅= Kρμ  (C.107) 

The case was run on a grid of 100x100 cells and a grid of 200x200 cells using logarithmic clustering near 

the wall. Figure C.10 shows the nondimensional velocity profile solution of the fine grid at several 

locations along the jet. The analytical solution is that given in Eq. (C.104). Note that in the core of the jet, 

the results match the analytical solution almost perfectly. However, far from the jet, the numerical solution 

deviates somewhat from the analytical solution. This deviation is due to the assumptions made in order to 

develop the analytical solution. Figure C.11 shows the nondimensional centerline velocity as a function of 

distance along the jet centerline where the analytical solution is that given in Eq. (C.105). Figure C.12 

shows the nondimensional spread rate of the jet as a function of distance along the jet where the analytical 

solution is given in Eq. (C.106). 

 

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

y/yh

Vx/Vc

Kx/ν2= 1⋅104

= 2⋅104

= 3⋅104

= 4⋅104

= 5⋅104

= 6⋅104

= 7⋅104

= 8⋅104

= 9⋅104

Analytical

 

Fig. C.10  Numerical results for the nondimensional x-velocity profile for the plane laminar jet. 



259 

8.0⋅10−3

1.0⋅10−2

1.2⋅10−2

1.4⋅10−2

1.6⋅10−2

1.8⋅10−2

2.0⋅10−2

2.2⋅10−2

0.0⋅100 2.0⋅104 4.0⋅104 6.0⋅104 8.0⋅104 1.0⋅105 1.2⋅105

Kx/ν2

Vcν/K

100 cells
200 cells
Analytical

 

Fig. C.11  Numerical results for the nondimensional plane laminar jet centerline velocity. 

 

 

 

 1⋅103

 2⋅103

 3⋅103

 4⋅103

 5⋅103

 6⋅103

 7⋅103

 8⋅103

0.0⋅100 2.0⋅104 4.0⋅104 6.0⋅104 8.0⋅104 1.0⋅105 1.2⋅105

Kx/ν2

Kyh/ν2

100 cells
200 cells
Analytical

 

Fig. C.12  Numerical results for the nondimensional plane laminar jet spread rate. 



260 

V. Round Jet Flow 

A. Case Description 

 The round jet flow case is very similar to the plane jet, but examines an axisymmetric jet rather than a 

two-dimensional jet. Just like the plane jet, as the jet of fluid advances into the quiescent fluid, the 

momentum of the jet is diffused outward normal to the jet axis. The jet centerline velocity decreases as the 

flow moves downstream, and the radius of the jet grows. Eventually, the core of the jet profile becomes 

self-similar. Because the jet is axisymmetric, the case can be simplified to a two-dimensional problem in 

cylindrical coordinates. The boundary layer equations are often applied to this case in order to develop a 

similarity solution for the jet profile. However, just like the case of the plane jet, these equations do not 

hold far from the jet centerline. The similarity solutions provide a system of equations that can be quickly 

solved to give the self-similar jet profile. However, in this work, an axisymmetric two-dimensional RANS 

solver will be used to evaluate the performance of the new turbulence model. This solver will give more 

accurate results for the spreading rate of the jet because it is not based on the similarity solution.  

 This flow case in two dimensions can be constructed on a rectangular domain by assigning a separate 

boundary condition to each side of the domain. We assume the jet is moving in the z-direction and the r-

coordinate is measured normal to the centerline of the jet. Along the west side of the domain, an initial 

profile for the jet is specified along with inlet conditions for any flow parameters. This initial profile can be 

taken from the similarity solution for the jet or from experimental data. Along the south side of the domain, 

a symmetry boundary condition is applied. The south side of the domain is the axis of rotation for the case. 

The east and north sides of the domain are specified as pressure boundary conditions. Figure C.13 shows 

the setup for this case in cylindrical coordinates. 

 Some of the most significant parameters of interest in plane jet flow are the prediction of the jet 

velocity along the centerline of the jet, the prediction of the jet spread rate, and the prediction of the jet 

velocity profile. The specific z-momentum flux is defined as 

 ∫
∞

=≡

0

2
2 rdrV

M
K

z
π

ρ
 (C.108) 



261 

 

Fig. C.13  Round jet flow case description. 

where M is the momentum flux. From conservation of momentum, the momentum flux across each z cross 

section must remain constant. The mass flux across each z cross section is a function of the distance 

downstream of the jet because as the jet moves downstream, it entrains flow. The volume flow rate is 

defined as 

 ∫
∞

=

0

2 rdrVQ
z
π  (C.109) 

Results for the round jet can be compared to data by Wygnanski and Fiedler [64] and Rodi [65]. 

 

B. Laminar Flow 

 An approximation for the laminar round jet can be found by using boundary layer theory and applying 

a similarity analysis. Schlichting [108] gives a solution where the velocity field can be written as 

 

22

221

22

)1(

)1(3

2

1

)1(

1

8

3

γ

γγ

π

γπν

+

−
⎟
⎠

⎞
⎜
⎝

⎛
=

+
=

K

z
V

z

K
V

r

z

 (C.110) 

where 



262 

 
z

rK
21

2
64

3
⎟
⎠

⎞
⎜
⎝

⎛
≡

πν

γ  (C.111) 

Using Eq. (C.110) in Eq. (C.109) gives the volume flow rate 

 zrdrVQ
z

πνπ 82
0

== ∫
∞

 (C.112) 

This shows that the volume flow rate is directly proportional to the distance along the centerline from the 

virtual origin. In general, the position of the virtual origin is not known a priori. However, the initial 

volume flow rate at the physical origin of the jet, 
o
z , can be defined as 

 
oo
zQ πν8=  (C.113) 

Any downstream position, ẑ , measured relative to the physical origin of the jet can now be expressed 

relative to the virtual origin, 0=z , as 

 
πν8

ˆ o
Q

zz +=  (C.114) 

At the centerline, 0=γ  which can be used in Eq. (C.110) to give the centerline velocity of the jet. 

 
z

K
zVV

zc

πν8

3
)0,( =≡  (C.115) 

This can be rewritten in terms of the distance downstream of the physical origin by applying Eq. (C.114) 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

⎟
⎠

⎞
⎜
⎝

⎛
+

=

2

2

2

8

ˆ

1

8

3

8
ˆ

1

8

3

πνν

νπ

πν

πν K

Q

zKQ

K

Q
z

K
V

o

oo

c
 (C.116) 

This can be rearranged to give the nondimensional form of the centerline velocity as a function of z. 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

2

2

2

8

ˆ
8

3

πνν

π

ν

K

Q

zKK

VQ

o

co  (C.117) 

The z-velocity profile can be written in nondimensional form by dividing the profile by the centerline 

velocity. This gives 

 
22

22

)1(

1

8

3

)1(

1

8

3

γ

πν

γπν

+

=
+

=

z

K

z

K

V

V

c

z  (C.118) 



263 

Using Eq. (C.112) in Eq. (C.111) gives the relation 

 
Q

rK
21

21)3( πγ ≡  (C.119) 

Applying this to Eq. (C.118) gives the nondimensional form of the jet velocity profile 

 
2

2
21

31

1

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+

=

Q

rK
V

V

c

z

π

 (C.120) 

Here we define the width of the jet to be the point at which the z-velocity is 50% of the centerline velocity 

 ( ) 64.0125.0
)1(

1 21
21

22
≅−=⇒=

+

= γ

γ
c

z

V

V
 (C.121) 

Using this in Eq. (C.113) gives the r-coordinate at which the z-velocity of the jet is only 50% of the 

centerline velocity 

 
( ) 21

2
21

212

97.2
3

1264

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
=

K
z

K
zr

h

πνπν

 (C.122) 

Using Eq. (C.114) in Eq. (C.122) and rearranging gives a nondimensional form of the spread rate 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

2

21
2

8

ˆ
97.2

πνν

πν

ν

K

Q

zK

KQ

Kr

oo

h  (C.123) 

As a side note, it is sometimes useful to know the point at which the z-velocity of the jet is only 1% of the 

centerline velocity. Following the procedure above, we obtain 

 21
2

%1

22

3

64
3

301.0
)1(

1

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

=⇒=
+

=

K
zr

V

V

c

z

πν

γ

γ

 (C.124) 

 A laminar round jet case was run in ICESS using the following properties 

 sm 25.0    ,sm 10    ,mkg 1.0    ,s)(mkg 001.0 3243
===⋅=

o
QKρμ  (C.125) 

The case was run on a grid of 100x100 cells and a grid of 200x200 cells using logarithmic clustering near 

the jet center. Figure C.14 shows the nondimensional velocity profile solution of the fine grid at several 



264 

locations along the jet. The analytical solution is that given in Eq. (C.120). Figure C.15 shows the 

nondimensional centerline velocity as a function of distance along the jet centerline where the analytical 

solution is that given in Eq. (C.117). Figure C.16 shows the nondimensional spread rate of the jet as a 

function of distance along the jet where the analytical solution is given in Eq. (C.123). 

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

K1/2r/Q

Vz/Vc

ẑ K/(Qoν)= 0.4⋅103

= 0.8⋅103

= 1.2⋅103

= 1.6⋅103

= 2.0⋅103

= 2.4⋅103

= 2.8⋅103

= 3.2⋅103

= 3.6⋅103

Analytical

 

Fig. C.14  Numerical results for the nondimensional z-velocity profile for the round laminar jet. 

 

1.4⋅10-5

1.6⋅10-5

1.8⋅10-5

2.0⋅10-5

2.2⋅10-5

2.4⋅10-5

2.6⋅10-5

2.8⋅10-5

3.0⋅10-5

3.2⋅10-5

0.0⋅100 5.0⋅102 1.0⋅103 1.5⋅103 2.0⋅103 2.5⋅103 3.0⋅103 3.5⋅103 4.0⋅103

ẑ K/(Qoν)

Qoν
2Vc⎯⎯⎯

K2

100 cells
200 cells
Analytical

 

Fig. C.15  Numerical results for the nondimensional round laminar jet centerline velocity. 



265 

 

6.0⋅101

7.0⋅101

8.0⋅101

9.0⋅101

1.0⋅102

1.1⋅102

1.2⋅102

1.3⋅102

1.4⋅102

0.0⋅100 5.0⋅102 1.0⋅103 1.5⋅103 2.0⋅103 2.5⋅103 3.0⋅103 3.5⋅103 4.0⋅103

ẑ K/(Qoν)

Krh⎯⎯Qoν

100 cells
200 cells
Analytical

 

Fig. C.16  Numerical results for the nondimensional round laminar jet spread rate. 

 

 



266 

APPENDIX D 

ONE-DIMENSIONAL FINITE-DIFFERENCE FORMULATIONS 

I. A Second-Order Formulation 

 A general formulation for fully developed pipe and channel flow can be written to allow 

implementation of several two-equation turbulence models. This formulation takes the form 

 

0)0(    ,0)0(    ,0)1(    ,0)1(    ,0)1(

11
ˆ

1

11
ˆ

1

)1(

ˆ
    ,    ),ˆ1(

=′=′=′==

=″⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+−′⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
+−′

′
−

=″⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+−′⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
+−′

′
−

+
−=′=−=

+++++

+

+

+

+

+

+

+

+

+

+

+

+

+

+++

hkkku

Shh
r

h

Skk
r

k

rR
ufrRy

h

hh

k

kkk

σ

ν

σ

ν

σ

ν

σ

ν

σ

ν

σ

ν

ν

ν

ω

τ

ντ

 (D.1) 

where +

h  represents the second turbulence variable, the primes represent derivatives with respect to r̂ , and 

ν
f , 

k
S , and 

h
S  are model-dependent functions. Equation (D.1) can be solved numerically using the finite-

difference method on a non-uniform grid. Here we define a one-dimensional domain discretized by m 

nodes. Node 1 is located at 0ˆ =r , and node m is located at 1ˆ =r . Applying second-order forward difference 

approximations, the first and second derivatives of any variable, φ , can be approximated at node 1 as 

 

43

211

322

2

222

2

122

22

1

141312

)ˆˆ)(ˆˆ(ˆ

)ˆˆ(2

)ˆˆ)(ˆˆ(ˆ

)ˆˆ(2
         

)ˆˆ)(ˆˆ(ˆ

)ˆˆ(2

ˆˆˆ

)ˆˆˆ(2

ˆˆˆˆ

ˆ

ˆˆˆˆ

ˆ

ˆˆˆˆ

ˆˆ

ˆˆˆ    ,ˆˆˆ    ,ˆˆˆ

φφ

φφφ

φφφφ

accbc

ba

bacbb

ac

acbaa

cb

cba

cba

abba

a

abba

b

abba

ab

cba

rδrδrδrδrδ

rδrδ

rδrδrδrδrδ

rδrδ

rδrδrδrδrδ

rδrδ

rδrδrδ

rδrδrδ

rδrδrδrδ

rδ

rδrδrδrδ

rδ

rδrδrδrδ

rδrδ

rrrδrrrδrrrδ

−−

+
+

−−

+
+

−−

+
+

++
=″

−

+

−

−
+

−

−
=′

−≡−≡−≡

 (D.2) 

Applying second-order forward difference approximations, the first and second derivatives of any variable, 

φ , can be approximated at node 2 as 



267 

 

43

212

322

2

222

22

122

2

2

242321

)ˆˆ)(ˆˆ(ˆ

)ˆˆ(2

)ˆˆ)(ˆˆ(ˆ

)ˆˆ(2
         

ˆˆˆ

)ˆˆˆ(2

)ˆˆ)(ˆˆ(ˆ

)ˆˆ(2

ˆˆˆˆ

ˆ

ˆˆˆˆ

ˆˆ

ˆˆˆˆ

ˆ

ˆˆˆ    ,ˆˆˆ    ,ˆˆˆ

φφ

φφφ

φφφφ

accbc

ba

bacbb

ac

cba

cba

acbaa

cb

abba

a

abba

ab

abba

b

cba

rδrδrδrδrδ

rδrδ

rδrδrδrδrδ

rδrδ

rδrδrδ

rδrδrδ

rδrδrδrδrδ

rδrδ

rδrδrδrδ

rδ

rδrδrδrδ

rδrδ

rδrδrδrδ

rδ

rrrδrrrδrrrδ

−−

+
+

−−

+
+

++
+

−−

+
=″

−

+

−

−
+

−

−
=′

−≡−≡−≡

 (D.3) 

Applying second-order finite difference approximations, the first and second derivatives of any variable, φ , 

can be approximated at an interior node, j, as 

 

1

12

122

2

22

22

122

2

211

)ˆˆ)(ˆˆ(ˆ

)ˆˆ(2

ˆˆˆ

)ˆˆˆ(2
                           

)ˆˆ)(ˆˆ(ˆ

)ˆˆ(2

)ˆˆ)(ˆˆ(ˆ

)ˆˆ(2
    

ˆˆˆˆ

ˆ

ˆˆˆˆ

ˆˆ

ˆˆˆˆ

ˆ
    

ˆˆˆ    ,ˆˆˆ    ,ˆˆˆ    

13for 

+

−−

+−

−+−

−−

+
+

++
+

−−

+
+

−−

+
=″

−

+

−

−
+

−

−
=′

−≡−≡−≡

−≤≤

j
bacbb

ac
j

cba

cba

j
acbaa

cb
j

accbc

ba
j

j

abba

a
j

abba

ab
j

abba

b
j

jjcjjbjja

rδrδrδrδrδ

rδrδ

rδrδrδ

rδrδrδ

rδrδrδrδrδ

rδrδ

rδrδrδrδrδ

rδrδ

rδrδrδrδ

rδ

rδrδrδrδ

rδrδ

rδrδrδrδ

rδ

rrrδrrrδrrrδ

mj

φφ

φφφ

φφφφ  (D.4) 

Applying second-order backward difference approximations, the first and second derivatives of any 

variable, φ , can be approximated at node m as 

 

m

cba

cba

m

acbaa

cb

m

bacbb

ac

m

accbc

ba

m

m

abba

ab

m

abba

b

m

abba

a

m

mmcmmbmma

rδrδrδ

rδrδrδ

rδrδrδrδrδ

rδrδ

rδrδrδrδrδ

rδrδ

rδrδrδrδrδ

rδrδ

rδrδrδrδ

rδrδ

rδrδrδrδ

rδ

rδrδrδrδ

rδ

rrrδrrrδrrrδ

φφ

φφφ

φφφφ

ˆˆˆ

)ˆˆˆ(2

)ˆˆ)(ˆˆ(ˆ

)ˆˆ(2
                       

)ˆˆ)(ˆˆ(ˆ

)ˆˆ(2

)ˆˆ)(ˆˆ(ˆ

)ˆˆ(2

ˆˆˆˆ

ˆˆ

ˆˆˆˆ

ˆ

ˆˆˆˆ

ˆ

ˆˆˆ    ,ˆˆˆ    ,ˆˆˆ

1

23

22

22

122

2

222

2

321

++
+

−−

+
+

−−

+
+

−−

+
=″

−

−
+

−

−
+

−

=′

−≡−≡−≡

−

−−

−−

−−−

 (D.5) 

 Any number of algorithms can be used for grid generation. An algorithm that works well for the 

present study clusters the nodes near the wall and can be written as 

 
)ˆ1(    ,

])1()1([1

])1()1()[1()1(
1ˆ    ,

1

1
    

1for 

111

1

1 jmjmjmj rRyr
m

j

mj

j

j

−+

+

−+−

−

−+
−=

−++

−+−−+
−=

−

−
=

≤≤

τη

η

ββ

ββββ
η

 (D.6) 

where β is a clustering parameter. 

 Once the r̂  array has been filled out, the following coefficient arrays can also be filled out 



268 

 

)ˆˆ)(ˆˆ(ˆ

)ˆˆ(2
  ,

)ˆˆ)(ˆˆ(ˆ

)ˆˆ(2

)ˆˆ)(ˆˆ(ˆ

)ˆˆ(2
  ,

ˆˆˆ

)ˆˆˆ(2
  ,0  ,0  ,0

)ˆˆ(ˆ

ˆ
  ,

)ˆˆ(ˆ

ˆ

,
ˆˆ

)ˆˆ(
  ,0  ,0

ˆˆˆ    ,ˆˆˆ    ,ˆˆˆ

1,31,2

1,11,1,11,21,3

1,21,1

1,1,11,2

141312

accbc

ba

U

bacbb

ac

U

acbaa

cb

U

cba

cba

DLLL

bab

a

U

baa

b

U

ba

ba

DLL

cba

rδrδrδrδrδ

rδrδ
A

rδrδrδrδrδ

rδrδ
A

rδrδrδrδrδ

rδrδ
A

rδrδrδ

rδrδrδ
AAAA

rδrδrδ

rδ
C

rδrδrδ

rδ
C

rδrδ

rδrδ
CCC

rrrδrrrδrrrδ

−−

+
≡

−−

+
≡

−−

+
≡

++
≡≡≡≡

−

≡

−

−

≡

+

≡≡≡

−≡−≡−≡

 (D.7) 

 

0  ,
)ˆˆ)(ˆˆ(ˆ

)ˆˆ(2
  ,

)ˆˆ)(ˆˆ(ˆ

)ˆˆ(2

,
ˆˆˆ

)ˆˆˆ(2
  ,

)ˆˆ)(ˆˆ(ˆ

)ˆˆ(2
  ,0  ,0

0  ,
)ˆˆ(ˆ

ˆ

,
ˆˆ

)ˆˆ(
  ,

)ˆˆ(ˆ

ˆ
  ,0

ˆˆˆ    ,ˆˆˆ    ,ˆˆˆ

2,32,22,1

2,2,12,22,3

2,22,1

2,2,12,2

242321

≡

−−

+
≡

−−

+
≡

++
≡

−−

+
≡≡≡

≡

−

≡

+−

≡

−

−

≡≡

−≡−≡−≡

U

accbc

ba

U

bacbb

ac

U

cba

cba

D

acbaa

cb

LLL

U

bab

a

U

ba

ba

D

baa

b

LL

cba

A
rδrδrδrδrδ

rδrδ
A

rδrδrδrδrδ

rδrδ
A

rδrδrδ

rδrδrδ
A

rδrδrδrδrδ

rδrδ
AAA

C
rδrδrδ

rδ
C

rδrδ

rδrδ
C

rδrδrδ

rδ
CC

rrrδrrrδrrrδ

 (D.8) 

 

0  ,0  ,
)ˆˆ)(ˆˆ(ˆ

)ˆˆ(2
  ,

ˆˆˆ

)ˆˆˆ(2

,
)ˆˆ)(ˆˆ(ˆ

)ˆˆ(2
  ,

)ˆˆ)(ˆˆ(ˆ

)ˆˆ(2
  ,0

0  ,
)ˆˆ(ˆ

ˆ

,
ˆˆ

)ˆˆ(
  ,

)ˆˆ(ˆ

ˆ
  ,0

ˆˆˆ    ,ˆˆˆ    ,ˆˆˆ    

                                                                                                       13for 

,3,2,1,

,1,2,3

,2,1

,,1,2

211

≡≡

−−

+
≡

++
≡

−−

+
≡

−−

+
≡≡

≡

−

≡

+−
≡

−

−
≡≡

−≡−≡−≡

−≤≤

−+−

jUjU
bacbb

ac
jU

cba

cba
jD

acbaa

cb
jL

accbc

ba
jLjL

jU

bab

a
jU

ba

ba
jD

baa

b
jLjL

jjcjjbjja

AA
rδrδrδrδrδ

rδrδ
A

rδrδrδ

rδrδrδ
A

rδrδrδrδrδ

rδrδ
A

rδrδrδrδrδ

rδrδ
AA

C
rδrδrδ

rδ
C

rδrδ

rδrδ
C

rδrδrδ

rδ
CC

rrrδrrrδrrrδ

mj

 (D.9) 

 

0  ,0  ,0

,
ˆˆˆ

)ˆˆˆ(2
  ,

)ˆˆ)(ˆˆ(ˆ

)ˆˆ(2

,
)ˆˆ)(ˆˆ(ˆ

)ˆˆ(2
  ,

)ˆˆ)(ˆˆ(ˆ

)ˆˆ(2

0  ,0

,
ˆˆ

)ˆˆ(
  ,

)ˆˆ(ˆ

ˆ
  ,

)ˆˆ(ˆ

ˆ

ˆˆˆ    ,ˆˆˆ    ,ˆˆˆ

,3,2,1

,,1

,2,3

,2,1

,,1,2

321

≡≡≡

++
≡

−−

+
≡

−−

+
≡

−−

+
≡

≡≡

+−

≡

−

−

≡

−

≡

−≡−≡−≡
−−−

mUmUmU

cba

cba

mD

acbaa

cb

mL

bacbb

ac

mL

accbc

ba

mL

mUmU

ba

ba

mD

baa

b

mL

bab

a

mL

mmcmmbmma

AAA

rδrδrδ

rδrδrδ
A

rδrδrδrδrδ

rδrδ
A

rδrδrδrδrδ

rδrδ
A

rδrδrδrδrδ

rδrδ
A

CC

rδrδ

rδrδ
C

rδrδrδ

rδ
C

rδrδrδ

rδ
C

rrrδrrrδrrrδ

 (D.10) 



269 

Using Eqs. (D.7)–(D.10) in Eqs. (D.2)–(D.5) gives second-order approximations for the first and second 

derivatives of any variable, φ  

 

mmDmmLmmLmmLm

mmDmmLmmLm

jjUjjDjjLjjLj

jjUjjDjjLj

UUDL

UDL

UUUD

UUD

AAAA

CCC

AAAA

CCC

mj

AAAA

CCC

AAAA

CCC

φφφφφ

φφφφ

φφφφφ

φφφφ

φφφφφ

φφφφ

φφφφφ

φφφφ

,1,12,23,3

,1,12,2

1,1,1,12,2

1,1,1,1

42,232,122,12,12

32,122,12,12

41,331,221,111,1

31,221,111,1

    

    

13for 

+++=″

++=′

+++=″

++=′

−≤≤

+++=″

++=′

+++=″

++=′

−−−

−−

+−−

+−

 (D.11) 

 Beginning with initial estimates for +

k  and +

h  along with the known arrays of r̂  and +

y , initial 

estimates for +

ν  and ′+

u  can be found from 

 

)1(

ˆ
    ,    

1for 

+

++

+

−=
′

=

≤≤

j

j

jj

rR
uf

mj

ν

ν
τ

ν

 (D.12) 

If the model requires the second derivative of +

u  to be calculated, it can be estimated using Eq. (D.11) 

 

′+′+′=″

′+′+′=″

−≤≤

′+′+′=″

++

−

+

−

+

+

+

++

−

+

++++

mmDmmLmmLm

jjUjjDjjLj

UUD

uCuCuCu

uCuCuCu

mj

uCuCuCu

,1,12,2

1,1,1,1

31,221,111,1

    

12for 

 (D.13) 

Likewise, in light of the boundary conditions, the first derivatives for +

k , +

h , and +

ν  can be estimated 



270 

 

++

−

+

−

+

++

−

+

−

+

+

+

+

++

−

+

+

+

++

−

+

+

+

++

−

+

+++

++=′

++=′

=′

++=′

++=′

++=′

−≤≤

=′=′=′

mmDmmLmmLm

mmDmmLmmLm

m

jjUjjDjjLj

jjUjjDjjLj

jjUjjDjjLj

CCC

hChChCh

k

CCC

hChChCh

kCkCkCk

mj

hk

νννν

νννν

ν

,1,12,2

,1,12,2

1,1,1,1

1,1,1,1

1,1,1,1

111

0

    

    

    

12for 

0    ,0    ,0

 (D.14) 

 The k-transport equation can now be written in terms of the second-order finite-difference 

approximations expressed above including the boundary conditions on k 

 

0

0

)(1     

)(1
ˆ

1
)(    

23for 

)(1  

)(1
ˆ

1
)(

0

,1,12,2

1,1,1,12,2

1,1,1,11,1,1,1

42,232,122,12,1
2

32,122,12,1
2

2

32,122,12,1
2

31,221,111,

=

=++

=+++
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+−

++
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+−++

′

−

−≤≤

=+++⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+−

++⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+−++

′
−

=++

+

++

−

+

−

+

+

++

−

+

−

+

+

+

++

−

+

+

+

++

−

+

++++

+

+++

+

+++

+

+++

m

mmDmmLmmL

kjjUjjDjjLjjL
k

j

jjUjjDjjL
k

j

j
jjUjjDjjL

k

j

kUUDL
k

UDL
k

UDL
k

UUD

k

kCkCkC

SkAkAkAkA

kCkCkC
r

kCkCkC

mj

SkAkAkAkA

kCkCkC
r

kCkCkC

kCkCkC

σ

ν

σ

ν

σ

ν

σ

ν

σ

ν

σ

ν

 (D.15) 

The h-transport equation can also be written in terms of the second-order finite-difference approximations 

expressed above including the boundary conditions on h 



271 

 

0

1,1,1,12,2

1,1,1,11,1,1,1

42,232,122,12,1
2

32,122,12,1
2

2

32,122,12,1
2

31,221,111,

    

1for 

)(1     

)(1
ˆ

1
)(    

3for 

)(1  

)(1
ˆ

1
)(

0

hj

h

hjjUjjDjjLjjL
h

j

jjUjjDjjL
h

j

j
jjUjjDjjL

h

j

h

hUUDL
h

UDL
h

UDL
h

UUD

fh

mjmm

ShAhAhAhA

hChChC
r

hChChC

mmj

ShAhAhAhA

hChChC
r

hChChC

hChChC

=

≤≤+−

=+++
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+−

++
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+−++

′

−

−≤≤

=+++⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+−

++⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+−++

′
−

=++

+

+

+

++

−

+

−

+

+

+

++

−

+

+

+

++

−

+

++++

+

+++

+

+++

+

+++

σ

ν

σ

ν

σ

ν

σ

ν

σ

ν

σ

ν

 (D.16) 

where 
0h

f  is the near-wall asymptotic solution for +

h  at node j, and 
h

m  is an integer that determines how 

many nodes are calculated from the near-wall solution. The integer 7≥
h

m  should be used if the asymptotic 

solution of +

h  is singular. Otherwise, 1=
h

m  can generally be used. 

 The formulations given in Eqs. (D.15) and (D.16) are for fully developed flow in a pipe. This 

formulation can be used to calculate fully developed flow in a channel by making minor modifications. 

Here we define P as an array that can be conditionally evaluated and used for the terms in the pipe 

formulation that are different than those in the channel formulation. For example, in the k-equation Pj can 

be evaluated as follows 

 

0    flow; channel if    

1
ˆ

1
    flow; pipe if    

1for 

=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+=

≤≤

+

j

k

j

j
j

P

r
P

mj

σ

ν

 (D.17) 

 The systems of equations given in Eqs. (D.15) and (D.16) can be solved through an iterative process by 

lagging certain terms. The systems reduce to tridiagonal systems if any terms other than the tridiagonal 

terms are lagged (moved to the right-hand side of the system) along with the source terms. The solution 

process becomes more stable if part of the off-diagonals of the resulting tridiagonal system are also lagged. 

In the following algorithms, Ω is a relaxation factor, and Γ is a blending factor. Given initial estimates for 

+

k , +

h , 
′+

u , 
″+

u , 
′+

k , and 
′+

h , the following arrays can be calculated 



272 

 

++

−

+

−

+++

−

+

−

+

+++

−

+

−

+

+

+

++

−

++

+

++

−

+

+

+

++

−

++

+

++

−

+

+++++++

+++

++=′++=′

=′′+′+′=″

++=′++=′

++=′′+′+′=″−≤≤

=
′

=
′

=
′′+′+′=″

+−=
′

=≤≤

mmDmmLmmLmmmDmmLmmLm

mmmDmmLmmLm

jjUjjDjjLjjjUjjDjjLj

jjUjjDjjLjjjUjjDjjLj

UUD

jjjj

CCChChChCh

kuCuCuCu

CCChChChCh

kCkCkCkuCuCuCumj

hkuCuCuCu

rRufmj

νννν

νννν

ν

νν
τν

,1,12,2,1,12,2

,1,12,2

1,1,1,11,1,1,1

1,1,1,11,1,1,1

11131,221,111,1

   ;

   0   ;

   ;                          

   ;  ;12for 

0    ;0   ;0    ;

)1(ˆ    ;  ;1for 

(D.18) 

Using the notation jjUjjDjjLj BkTkTkT =++
+

+

++

− 11
 as row j in the tridiagonal system, the following 

algorithm can be used to obtain an improved estimate for +

k  

 

)(    ;][    ;

))(1(    ;    ;    ;12for 

0    ;0    ;1    ;0

0    ;    ;    ;

1    

;1    

;1    ;1    

23for 

1 

1

;1    ;1

    ;    ;    ;0

0    else;    ;ˆ)1(    flow; pipe if    ;1for 

oldold
1

old

11

1,1,11,21

2,2

,1,1

,,,1,1

42,2
2

2

2,1
2

2,12
2

2

2,
2

2,2
2

22,1
2

2,12
2

2

31,211,111,11

kkkkBTkkk −+===

+−−===−≤≤

====

====

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
++=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+−

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+

′

−=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+−

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+

′

−=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+−

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+

′

−=

−≤≤

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
++=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+−

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
+

′
−=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+−

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
+

′
−=⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
+−

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
+

′
−=

−====

=+=≤≤

−

+

+

+

−

−−−−

+

−

+

++

++++

+

+

++

++++

+

+

k

jUjjLjkjjUjkUjLjkLj

mUmDmLm

mmDUmmLDmmLLm

jjL
k

j
kj

jU
k

j
jUj

k

j
Uj

jD
k

j
jDj

k

j
DjjL

k

j
jLj

k

j
Lj

U
k

k

U
k

U
k

U

D
k

D
k

DL
k

L
k

L

UUUDDL

jjkjj

Ω

kTkTΓBBTΓTTΓTmj

BTTT

BCTCTCT

kASB

ACPT

ACPTACPT

mj

kASB

ACPT

ACPTACPT

kCBCTCTT

PrPmj

σ

ν

σ

ν

σ

ν

σ

ν

σ

ν

σ

ν

σ

ν

σ

ν

σ

ν

σ

ν

σ

ν

σ

ν

σ

ν

σ

ν

σν

 (D.19) 

The new estimate for +

k  is used in Eq. (D.18) to update the arrays in that equation. A similar tridiagonal 

algorithm can then be used to evaluate an improved estimate for +

h  



273 

 

)(    ;][    ;

))(1(    ;    ;    ;2for 

    ;0    ;1    ;0    

;1for 

1    

;1    

;1    ;1    

3for 

1 

1

;1    ;1

    ;    ;    ;0

0    else;    ;ˆ)1(    flow; pipe if    ;1for 

oldold
1

old

11

0

2,2

,1,1

,,,1,1

42,2
2

2

2,1
2

2,12
2

2

2,
2

2,2
2

22,1
2

2,12
2

2

31,211,111,11

hhhhBThhh −+===

+−−===−≤≤

====

≤≤+−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
++=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+−

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+

′

−=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+−

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+

′

−=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+−

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+

′

−=

−≤≤

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
++=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+−

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
+

′
−=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+−

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
+

′
−=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+−

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
+

′
−=

−====

=+=≤≤

−

+

+

+

−

+

−

+

++

++++

+

+

++

++++

+

+

h

jUjjLjhjjUjhUjLjhLjh

hjUjDjLj

h

jjL

h

j

hj

jU

h

j

jUj

h

j

Uj

jD

h

j

jDj

h

j

DjjL

h

j

jLj

h

j

Lj

h

U

h

h

U

h

U

h

U

D

h

D

h

DL

h

L

h

L

UUUDDL

jjhjj

Ω

hThTΓBBTΓTTΓTmmj

fBTTT

mjmm

hASB

ACPT

ACPTACPT

mmj

hASB

ACPT

ACPTACPT

hCBCTCTT

PrPmj

σ

ν

σ

ν

σ

ν

σ

ν

σ

ν

σ

ν

σ

ν

σ

ν

σ

ν

σ

ν

σ

ν

σ

ν

σ

ν

σ

ν

σν

 (D.20) 

The algorithms given in Eqs. (D.18)–(D.20) are repeated until a converged solution is obtained. Upon 

completion, +

u  can be found by direct numerical integration using the trapezoidal rule 

 
))(ˆˆ(

2

1
   ;11for 

0

111
′+′−+=≥≥−

=

+

+

+

+

+

+

+

+

jjjjjj

m

uurruujm

u

 (D.21) 

 

II. Higher-Order Formulations 

A. Motivation 

 Second-order approximations are generally used in numerical methods to solve computational fluid 

dynamics problems. However, near a wall, second-order approximations are limited in their ability to 

capture higher-order phenomena. Many turbulence models are based on modeled turbulence parameters 



274 

that approach the wall as powers of 
2

y  or less. Therefore, second-order methods are often sufficient for 

capturing the model behavior. However, the model presented in this research includes higher-order 

phenomena near a wall. Therefore, higher-order methods must be used in this region. The following 

sections present the method used here for developing higher-order finite-differencing methods. 

 

B. An n
th
-Order First Derivative Approximation 

 The second-order approximation for the first derivative at a point can be obtained by retaining the first 

three terms in the Taylor series at two points near the point of interest, jy . This gives 

  

L

L

+Δ+
Δ

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+Δ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=Δ+≡

+Δ+
Δ

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+Δ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=Δ+≡

)(
!2

)(

)(
!2

)(

3

2

2

2

2

2

222

3

1

2

1

2

2

111

yO
y

dy

d
y

dy

d
yy

yO
y

dy

d
y

dy

d
yy

jj

jj

jj

jj

φφ
φφφ

φφ
φφφ

 (D.22) 

This system of equations can be rearranged to yield 

 
⎭
⎬
⎫

⎩
⎨
⎧

−

−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

ΔΔ−

Δ−Δ

ΔΔ−ΔΔ
=

⎭
⎬
⎫

⎩
⎨
⎧

−

−

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

Δ
Δ

Δ
Δ

=

⎪
⎪

⎭

⎪
⎪

⎬

⎫

⎪
⎪

⎩

⎪
⎪

⎨

⎧

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

j

j

j

j

j

j

yy

yy

yyyyy
y

y
y

dy

d

dy

d

φφ

φφ

φφ

φφ

φ

φ

2

1

12

2

1

2

2

2

2

1

2

212

1

1

2

2

2

2

1

1

2

2
22

1

2

2  (D.23) 

This gives 

 
2

2
1

2
21

2
2
1

2
2

2
11

2
2 )(

yyyy

yyyy

dy

d j

j ΔΔ−ΔΔ

Δ−Δ−Δ+Δ
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ φφφφ
 (D.24) 

 This can be used to obtain the second-order central difference formula for the first derivative on a 

uniform grid. Setting the y-distances in Eq. (D.24) as unit distances from the central node, gives 

yy Δ−=Δ 1
1

 and yy Δ=Δ 1
2

. The function values are 
11 −

= jφφ  and 
12 +

= jφφ . Using this in Eq. (D.24) gives 

 
ydy

d jj

j
Δ

−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −+

2

11
φφφ

 (D.25) 

This method can be used to obtain forward-difference and backward-difference formulas. For example, the 

forward-difference formula can be obtained from Eq. (D.24) by using yy Δ=Δ 1
1

 and yy Δ=Δ 2
2

 where the 

function values are 
11 +

= jφφ , 
22 +

= jφφ . 



275 

 In general, the nth-order approximation for the first derivative can be developed by retaining n+1 terms 

in the Taylor series at n points about the point of interest 

 

LL

LLL

M

LL

LL

+Δ+
Δ

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
++

Δ
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+Δ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=Δ+≡

+Δ+
Δ

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
++

Δ
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+Δ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=Δ+≡

+Δ+
Δ

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
++

Δ
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+Δ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=Δ+≡

+Δ+
Δ

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
++

Δ
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+Δ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=Δ+≡

+

+

−

−−

−−−

+

+

)(
!!2

)(

)(
!!2

)(

)(
!!2

)(

)(
!!2

)(

1

2

2

2

1

1

1

2

1

2

2

111

1

1

2

2

2

2

2

222

1

1

1

2

1

2

2

111

n
n

n
n

j

n

n
n

j

n

j

jnjn

n
n

n
n

j

n

n
n

j

n

j

jnjn

n
n

j

n

n

jj

jj

n
n

j

n

n

jj

jj

yO
n

y

dy

dy

dy

d
y

dy

d
yy

yO
n

y

dy

dy

dy

d
y

dy

d
yy

yO
n

y

dy

dy

dy

d
y

dy

d
yy

yO
n

y

dy

dy

dy

d
y

dy

d
yy

φφφ
φφφ

φφφ
φφφ

φφφ
φφφ

φφφ
φφφ

(D.26) 

This system of equations can be rewritten as 

 

⎪
⎪
⎪

⎭

⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

−

−

−

−

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

Δ

−

ΔΔ
Δ

Δ

−

ΔΔ
Δ

Δ

−

ΔΔ
Δ

Δ

−

ΔΔ
Δ

=

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−

−

−

−

−

−−

−

−

−

−

−

jn

jn

j

j

n
n

n
nn

n

n
n

n
nn

n

nn

nn

j

n

n

j

n

n

j

j

n

y

n

yy
y

n

y

n

yy
y

n

y

n

yy
y

n

y

n

yy
y

dy

d

dy

d

dy

d

dy

d

φφ

φφ

φφ

φφ

φ

φ

φ

φ

1

2

1

1

12

1

1

1

2

1

1

2

1

2

2

2

2

1

1

1

2

1

1

1

1

2

2

!)!1(!2

!)!1(!2

!)!1(!2

!)!1(!2

M

L

L

MMOMM

L

L

M  (D.27) 

The solution to this system of equations gives the nth-order approximation for the first derivative at a point. 

It should be noted that this method is not constrained to uniform grids. However, uniform grids are 

commonly used, and results are included in a subsequent section for 2nd-, 4th-, 6th-, and 8th-order 

approximations for uniform grid spacing. 

 

C. An n
th
-Order Second Derivative Approximation 

 The second-order finite-difference approximation for the second derivative at a point can be developed 

by considering the Taylor series expansion of the function about the point jy . Given the location of three 



276 

discrete points at distances 
1
yΔ , 

2
yΔ , and 

3
yΔ , along with the values of the function at those points, 

1
φ , 

2
φ , 

and 
3

φ , the system of equations can be written by retaining the first four terms in the Taylor series 

 

L

L

L

+Δ+
Δ

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+

Δ
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+Δ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=Δ+≡

+Δ+
Δ

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+

Δ
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+Δ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=Δ+≡

+Δ+
Δ

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+

Δ
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+Δ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=Δ+≡

)(
!3!2

)(

)(
!3!2

)(

)(
!3!2

)(

4

3

3

3

3

32

3

2

2

333

4

2

3

2

3

32

2

2

2

222

4

1

3

1

3

32

1

2

2

111

yO
y

dy

dy

dy

d
y

dy

d
yy

yO
y

dy

dy

dy

d
y

dy

d
yy

yO
y

dy

dy

dy

d
y

dy

d
yy

jjj

jj

jjj

jj

jjj

jj

φφφ
φφφ

φφφ
φφφ

φφφ
φφφ

 (D.28) 

This can be rearranged to yield 

 
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

−

−

−

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

ΔΔ
Δ

ΔΔ
Δ

ΔΔ
Δ

=

⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

j

j

j

j

j

j

yy
y

yy
y

yy
y

dy

d

dy

d

dy

d

φφ

φφ

φφ

φ

φ

φ

3

2

1

1

3

3

2

3

3

3

2

2

2

2

3

1

2

1

1

3

3

2

2

!3!2

!3!2

!3!2

 (D.29) 

The solution of this system of equations gives the second-order finite difference approximations for the first 

and second derivatives of the function. 

 
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

−

−

−

Δ−ΔΔΔΔ+Δ−ΔΔΔΔ−Δ−ΔΔΔΔ

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

Δ−ΔΔΔΔ−ΔΔΔ−Δ−ΔΔΔ

Δ−ΔΔΔ−Δ−ΔΔΔΔ−ΔΔΔ−

Δ−ΔΔΔΔ−ΔΔΔ−Δ−ΔΔΔ

=

⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

j

j

j

j

j

j

yyyyyyyyyyyyyyy

yyyyyyyyyyyy

yyyyyyyyyyyy

yyyyyyyyyyyy

dy

d

dy

d

dy

d

φφ

φφ

φφ

φ

φ

φ

3

2

1

12

2

2

2

1313

2

3

2

1223

2

3

2

21

122113312332

2

1

2

221

2

1

2

331

2

2

2

332

12

2

2

2

113

2

3

2

123

2

3

2

2

3

3

2

2

)()()(

)(6)(6)(6

)(2)(2)(2

)()()(

(D.30) 

 This can be used to obtain the second-order central difference formula for the second derivative on a 

uniform grid. Setting the y-distances in Eq. (D.30) as distances from the central node, gives yy Δ−=Δ 1
1

, 

yy Δ=Δ 1
2

, and yy Δ=Δ 2
3

, where the function values are 
11 −

= jφφ , 
12 +

= jφφ , and 
23 +

= jφφ . Using this in 

Eq. (D.30) gives 



277 

 
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

−

−

−

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

ΔΔ

−

Δ

−
ΔΔ

Δ

−

ΔΔ

−

=

⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+

+

−

jj

jj

jj

j

j

j

yyy

yy

yyy

dy

d

dy

d

dy

d

φφ

φφ

φφ

φ

φ

φ

2

1

1

333

22

3

3

2

2

131

0
11

6

11

3

1

 (D.31) 

Or, after simplifying, 

 
2

11

2

2 2

ydy

d jjj

j
Δ

+−
=⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
+−

φφφφ
 (D.32) 

This method can be used to obtain forward-difference and backward-difference formulas. For example, the 

forward-difference formula can be obtained from Eq. (D.30) by using yy Δ=Δ 1
1

, yy Δ=Δ 2
2

, and 

yy Δ=Δ 3
3

, where the function values are 
11 +

= jφφ , 
22 +

= jφφ , and 
33 +

= jφφ . 

 In general, the nth-order approximation for the second derivative can be developed by retaining n+2 

terms in the Taylor series at n+1 points. 

 

LL

LL

M

LL

LL

+Δ+
+

Δ
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
++

Δ
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+Δ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=Δ+≡

+Δ+
+

Δ
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
++

Δ
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+Δ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=Δ+≡

+Δ+
+

Δ
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
++

Δ
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+Δ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=Δ+≡

+Δ+
+

Δ
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
++

Δ
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+Δ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=Δ+≡

+

+

+

+

+

+

+

+++

+

+

+

+

+

+

+

+

+

+

+

+

)(
)!1(!2

)(

)(
)!1(!2

)(

)(
)!1(!2

)(

)(
)!1(!2

)(

2

1

1

1

1

12

1

2

2

111

2

1

1

12

2

2

2

2

1

2

1

12

2

2

2

222

2

1

1

1

1

12

1

2

2

111

n
n

n
n

j

n

n
n

j

n

j

jnjn

n
n

n
n

j

n

n
n

j

n

j

jnjn

n
n

j

n

n

jj

jj

n
n

j

n

n

jj

jj

yO
n

y

dy

dy

dy

d
y

dy

d
yy

yO
n

y

dy

dy

dy

d
y

dy

d
yy

yO
n

y

dy

dy

dy

d
y

dy

d
yy

yO
n

y

dy

dy

dy

d
y

dy

d
yy

φφφ
φφφ

φφφ
φφφ

φφφ
φφφ

φφφ
φφφ

(D.33) 

This system of equations can be rewritten as 



278 

 

⎪
⎪
⎪

⎭

⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

−

−

−

−

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

ΔΔΔ
Δ

+

ΔΔΔ
Δ

+

ΔΔΔ
Δ

+

ΔΔΔ
Δ

=

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+

−

+

+++

+

+

+

+

+

+

jn

jn

j

j

n
n

n
nn

n

n
n

n
nn

n

nn

nn

j

n

n

j

n

n

j

j

n

y

n

yy
y

n

y

n

yy
y

n

y

n

yy
y

n

y

n

yy
y

dy

d

dy

d

dy

d

dy

d

φφ

φφ

φφ

φφ

φ

φ

φ

φ

1

2

1

1

1

11

2

1

1

12

1

22

2

2

2

1

11

2

1

1

1

1

2

2

)!1(!!2

)!1(!!2

)!1(!!2

)!1(!!2

M

L

L

MMOMM

L

L

M  (D.34) 

The solution to this system of equations gives the nth-order approximation for the second derivative at a 

point. Again, this method is not constrained to uniform grids. However, tabulated solutions for 2nd-, 4th-, 

6th-, and 8th-order approximations are included in the next section. 

 

D. Uniform-Grid Tabulated Approximations 

 

Table D.1  Second-order approximation for the first derivative 

 
Forward 

Difference 

Central 

Difference 

Backward 

Difference 

2+jφ  -1   

1+jφ  4 1  

jφ  -3 0 3 

1−jφ   -1 -4 

2−jφ    1 

Denominator 2 yΔ  

 

Table D.2  Second-order approximation for the second derivative 

 
Forward 

Difference 

Central 

Difference 

Backward 

Difference 

3+jφ  -1   

2+jφ  4   

1+jφ  -5 1  

jφ  2 -2 2 

1−jφ   1 -5 

2−jφ    4 

3−jφ    -1 

Denominator 2
yΔ  



279 

 

Table D.3  Fourth-order approximation for the first derivative 

 Forward Difference 
Central 

Difference 
Backward Difference 

4+jφ  -3     

3+jφ  16 1    

2+jφ  -36 -6 -1   

1+jφ  48 18 8 3  

jφ  -25 -10 0 10 25 

1−jφ   -3 -8 -18 -48 

2−jφ    1 6 36 

3−jφ     -1 -16 

4−jφ      3 

Denominator 12 yΔ  

 

 

Table D.4  Fourth-order approximation for the second derivative 

 Forward Difference 
Central 

Difference 
Backward Difference 

5+jφ  -10     

4+jφ  61 1    

3+jφ  -156 -6    

2+jφ  214 14 -1   

1+jφ  -154 -4 16 10  

jφ  45 -15 -30 -15 45 

1−jφ   10 16 -4 -154 

2−jφ    -1 14 214 

3−jφ     -6 -156 

4−jφ     1 61 

5−jφ      -10 

Denominator 12 2
yΔ  

 



280 

Table D.5  Sixth-order approximation for the first derivative 

 Forward Difference 
Central 

Difference 
Backward Difference 

6+jφ  -10       

5+jφ  72 2      

4+jφ  -225 -15 -1     

3+jφ  400 50 8 1    

2+jφ  -450 -100 -30 -9 -2   

1+jφ  360 150 80 45 24 10  

jφ  -147 -77 -35 0 35 77 147 

1−jφ   -10 -24 -45 -80 -150 -360 

2−jφ    2 9 30 100 450 

3−jφ     -1 -8 -50 -400 

4−jφ      1 15 225 

5−jφ       -2 -72 

6−jφ        10 

Denominator 60 yΔ  

 

Table D.6  Sixth-order approximation for the second derivative 

 Forward Difference 
Central 

Difference 
Backward Difference 

7+jφ  -126       

6+jφ  1019 11      

5+jφ  -3618 -90 -2     

4+jφ  7380 324 16     

3+jφ  -9490 -670 -54 2    

2+jφ  7911 855 85 -27 -11   

1+jφ  -4014 -486 130 270 214 126  

jφ  938 -70 -378 -490 -378 -70 938 

1−jφ   126 214 270 130 -486 -4014 

2−jφ    -11 -27 85 855 7911 

3−jφ     2 -54 -670 -9490 

4−jφ      16 324 7380 

5−jφ      -2 -90 -3618 

6−jφ       11 1019 

7−jφ        -126 

Denominator 180 2
yΔ  



281 

 

Table D.7  Eighth-order approximation for the first derivative 

 Forward Difference 
Central 

Difference 
Backward Difference 

8+jφ  -105         

7+jφ  960 15        

6+jφ  -3920 -140 -5       

5+jφ  9408 588 48 3      

4+jφ  -14700 -1470 -210 -30 -3     

3+jφ  15680 2450 560 140 32 5    

2+jφ  -11760 -2940 -1050 -420 -168 -60 -15   

1+jφ  6720 2940 1680 1050 672 420 240 105  

jφ  -2283 -1338 -798 -378 0 378 798 1338 2283 

1−jφ   -105 -240 -420 -672 -1050 -1680 -2940 -6720 

2−jφ    15 60 168 420 1050 2940 11760 

3−jφ     -5 -32 -140 -560 -2450 -15680 

4−jφ      3 30 210 1470 14700 

5−jφ       -3 -48 -588 -9408 

6−jφ        5 140 3920 

7−jφ         -15 -960 

8−jφ          105 

Denominator 840 yΔ  

 



282 

Table D.8  Eighth-order approximation for the second derivative 

 Forward Difference 
Central 

Difference 
Backward Difference 

9+jφ  -3044         

8+jφ  30663 223        

7+jφ  -139248 -2268 -38       

6+jφ  375704 10424 389 9      

5+jφ  -667800 -28560 -1800 -90      

4+jφ  818874 51786 4956 396 -9     

3+jφ  -704368 -65128 -8932 -952 128 38    

2+jφ  422568 57288 10458 882 -1008 -603 -223   

1+jφ  -165924 -28944 -2184 5796 8064 6984 5274 3044  

jφ  32575 2135 -7900 -12460 -14350 -12460 -7900 2135 32575 

1−jφ   3044 5274 6984 8064 5796 -2184 -28944 -165924 

2−jφ    -223 -603 -1008 882 10458 57288 422568 

3−jφ     38 128 -952 -8932 -65128 -704368 

4−jφ      -9 396 4956 51786 818874 

5−jφ       -90 -1800 -28560 -667800 

6−jφ       9 389 10424 375704 

7−jφ        -38 -2268 -139248 

8−jφ         223 30663 

9−jφ          -3044 

Denominator 5040 2
yΔ  

 

 

E. Example Results 

 To illustrate the effects of the order of the approximation, consider using a finite-difference algorithm 

to solve the differential equation 

 122

2

2

)1( −−

−−=

aa yayaa
dy

d φ
 (D.35) 

where a is an arbitrary constant and the boundary conditions are 

 0)1(      ,0)0( ==

dy

dφ
φ  (D.36) 

This can be solved analytically to give 



283 

 1

1

+

+

−=
aa

y
a

a
yφ  (D.37) 

Choosing 2=a  gives a third-order solution. However, as 0→y , the solution approaches second-order. The 

solution for this case is easily solved using a second-order numerical method. However, choosing 3=a  

gives a fourth-order solution that approaches third-order as 0→y . A second-order numerical method 

cannot resolve the near-wall solution to this equation because the approximation truncates higher-order 

terms. Therefore, the truncation error of this method is too great to resolve cases of Eq. (D.35) where 2>a . 

Solutions to this equation for 62 ≤≤ a  using a second-order finite-difference method are shown in Fig. D.1 

using double-precision computations on a uniform grid with 1601 nodes. Note the evidence of truncation 

error in the higher-order solutions. 

 The turbulence model by Phillips suggests that k approaches the wall as y6. Therefore, the ability to 

capture the solution to Eq. (D.35) with 6=a  is of interest. Figures D.2–D.7 demonstrate the limitations of 

using lower-order differencing methods to approximate the equation 

 76

7

6
yyu −=  (D.38) 

 

10−10

10−8

10−6

10−4

10−2

100

10−3 10−2 10−1 100

y

u

y2−2/3y3

y3−3/4y4

y4−4/5y5

y5−5/6y6

y6−6/7y7

 

Fig. D.1  Near-wall results of a second-order finite-difference algorithm. 



284 

 Figure D.2 shows the results of the second-order finite-difference solver with several grid densities 

using double-precision computations. Figure D.3 shows the same calculations using quad-precision 

computations. Note that regardless of the grid density, the first few points from the wall do not follow the 

6th-order near-wall solution. This is true whether double- or quad-precision computations are used. 

 

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

10−3 10−2 10−1 100

y

u
51

101
201
401
801

1601
3201
6401

u=y6−6/7y7

 

Fig. D.2  Second-order results using double-precision computations. 

 

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

10−3 10−2 10−1 100

y

u
51

101
201
401
801

1601
3201
6401

u=y6−6/7y7

 

Fig. D.3  Second-order results using quad-precision computations. 



285 

 Figure D.4 shows the results of the fourth-order finite-difference solver using double-precision 

computations, and Fig. D.5 shows the same computations as Fig. D.4, but with quad-precision. Again, note 

that the first few nodes nearest the wall do not follow the correct solution regardless of the grid density. 
 

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

10−3 10−2 10−1 100

y

u

51
101
201
401
801

1601
3201

u=y6−6/7y7

 

Fig. D.4  Fourth-order results using double-precision computations. 

 

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

10−3 10−2 10−1 100

y

u

51
101
201
401
801

1601
3201

u=y6−6/7y7

 

Fig. D.5  Fourth-order results using quad-precision computations. 



286 

 

 Figure D.6 shows results using the eighth-order finite-difference solver with double-precision 

computations, and Fig. D.7 shows these same calculations using quad-precision computations. Here, the 

discrepancies seen in the finest grid of Fig. D.6 are no longer truncation errors, but round-off errors. This is 

shown by comparing the results of Figure 6 to those given in Fig. D.7 where the same computations were 

made using quad precision. 

 Figure D.8 shows the results of using the eighth-order method to approximate the equation 

 1110

11

10
yyu −=  (D.39) 

with varying grid resolutions using logarithmic grid clustering. Note that these results look very similar to 

the results of using a second-order method to approximate a higher-order equation. To demonstrate that the 

method used to obtain Fig. D.8 is in fact eighth-order, the RMS error of the solution is plotted as a function 

of 8
yΔ  in Fig. D.9. A line passing through the data points obtained from the two finest grids is 

superimposed on the plot. The fact that the error approaches this line as 0→Δy  shows that the solution 

method is eighth-order. 

 

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

10−3 10−2 10−1 100

y

u

51
101
201
401

u=y6−6/7y7

 

Fig. D.6  Eighth-order results using double-precision computations. 



287 

 

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

10−3 10−2 10−1 100

y

u

51
101
201
401

u=y6−6/7y7

 

Fig. D.7  Eighth-order results using quad-precision computations. 

 

10−20

10−15

10−10

10−5

100

10−2 10−1 100

y

u

51
101
201
401
801

1601
u=y10−10/11y11

 

Fig. D.8  Eighth-order results of a tenth-order near-wall equation using quad-precision 

computations. 

 



288 

 

10−18

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−26 10−24 10−22 10−20 10−18 10−16 10−14 10−12

R
M

S 
E

rr
or

Δy8

 

Fig. D.9  Eighth-order finite-difference RMS error as a function of grid spacing. 

 As a final note on the difficulties associated with using a lower-order method to estimate a higher-

order solution, consider again the results shown in Fig D.8. Many of the most important approximations in 

fluid mechanics are based on the behavior of the data nearest the wall. The data points nearest the wall 

from any of the data sets in Fig. D.8 are actually negative, and therefore do not appear on the logarithmic 

plot shown in Fig. D.8. The fact that the near-wall solution is negative can be very troublesome because it 

appears that if the order of the solution near the wall is greater than the order of the numerical 

approximations, the correct sign of the solution nearest the wall can’t even be obtained. In order to observe 

the behavior of the near-wall data obtained from the scenario shown in Fig. D.8, the near-wall data is 

plotted in Fig. D.10 on a logarithmic plot with a negative y-axis. Note that the error of the first node off of 

the wall still converges in an eighth-order fashion. However, it appears that regardless of how fine the grid 

is, the solution very near the wall will always have the wrong sign. For this reason it is important to ensure 

that the numerical method is always higher order than the order of the solution very near a wall. 



289 

−10−22

−10−20

−10−18

−10−16

−10−14

−10−12

−10−10

−10−8

−10−6

−10−4

10−4 10−3 10−2 10−1

y

u

51
101
201
401
801

1601

 

Fig. D.10  Negative near-wall results of an eighth-order approximation to a tenth-order near-wall 

solution. 

III.  Sample Code 

 The following Fortran code can be used to solve the Wilcox 1998 turbulence model for smooth walls 

using an arbitrary order of finite differencing. The variable “approx” in the main code is used to set the 

finite difference order. Subroutines for basic matrix operations such as inverting a matrix or solving a 

system of equations in matrix form have not been included. 

 
PROGRAM Wilcox1998 
IMPLICIT NONE 
INTEGER::m,mh,mk,j,iter,itermax,limit_nu, limit_k, 
limit_h,filesize,line,coord,ierror,titer,iprint,cont,eligiblepts,approx 
REAL::Rtau,beta,u_bulk,Re,Cf,cbeta,fD,eta,fitness,dy,dzeta 
REAL::gammak,omegak,sigmak,rmsk 
REAL::gammah,omegah,sigmah,rmsh 
REAL::fnu,Sk,Sh,fk0,fh0 !Function Subroutines 
REAL::yval,uval,kval,hval,nuval,yvalold,uvalold,kvalold,hvalold,nuvalold,frac !File vars 
REAL, allocatable, dimension(:)::y,B,nu,nuprime,zeta 
REAL, allocatable, dimension(:)::k,k_old,kprime,h,h_old,hprime,u,uprime,P,udprime,kdprime 
REAL, allocatable, dimension(:)::const,VDu,VDconst 
REAL, ALLOCATABLE, DIMENSION(:,:)::A,FD1,FD2 
CHARACTER*(20):: rec,init 
CHARACTER(LEN=100)::fn 
 
ALLOCATE(const(4)); 
ALLOCATE(VDconst(2)); 
 
!---------- Set Defaults ------------ 
m = 51                 ! Number of nodes 
Rtau = 300.0           ! Length 
mh = 7                 ! Number of nodes to use assymptotic solution for h 



290 
mk = 1                 ! Number of nodes to use assymptotic solution for k 
 
approx = 6 
 
const(1) = 0.52        !C_omega1 
const(2) = 0.072        !C_omega2 
const(3) = 0.0         !not used 
const(4) = 0.09         !C_nu 
sigmak = 2.0           !sigma_k 
sigmah = 2.0           !sigma_omega 
 
VDconst(1) = 0.41      !kappa 
VDconst(2) = 26.0      !Aplus 
 
gammak = 0.99           ! Blending Factor 
gammah = 0.99           ! Blending Factor 
omegak = 0.05        ! Relaxation Factor 
omegah = 0.05        ! Relaxation Factor 
itermax = 100 
iprint = 1 
beta = 1.02 
init = 'none' 
coord = 0              ! = 1 if pipe, =0 if channel 
cont = 0               ! =1 if continue until convergence is reached is selected 
 
200 FORMAT (1X, 1000I10) 
100 FORMAT (1X, 1000ES20.12) 
110 FORMAT (1X, I10, 4ES20.12, 3I10) 
 
!---------- User Inputs ------------ 
write(*,*) 'Wilcox 1998' 
write(*,*) 'Channel flow or pipe flow? (0=channel, 1=pipe) (',coord,' ):' 
read(5,'(a)') rec 
if(rec .ne. ' ') then 
    read(rec,*) coord 
end if 
 
write(*,*) 'Finite-Difference order (',approx,' ):' 
read(5,'(a)') rec 
if(rec .ne. ' ') then 
    read(rec,*) approx 
end if 
 
write(*,*) 'Number of nodes (',m,' ):' 
read(5,'(a)') rec 
if(rec .ne. ' ') then 
    read(rec,*) m 
end if 
 
write(*,*) 'R_tau (',Rtau,' ):' 
read(5,'(a)') rec 
if(rec .ne. ' ') then 
    read(rec,*) Rtau 
end if 
 
write(*,*) 'Stretching Factor (',beta,' ):' 
read(5,'(a)') rec 
if(rec .ne. ' ') then 
    read(rec,*) beta 
end if 
 
write(*,*) 'Enter C_omega1 (',const(1),' ):' 
read(5,'(a)') rec 
if(rec .ne. ' ') then 
    read(rec,*) const(1) 
end if 
 
write(*,*) 'Enter C_omega2 (',const(2),' ):' 
read(5,'(a)') rec 
if(rec .ne. ' ') then 
    read(rec,*) const(2) 
end if 
 
write(*,*) 'Enter C_omega3 (',const(3),' ):' 
read(5,'(a)') rec 
if(rec .ne. ' ') then 
    read(rec,*) const(3) 
end if 
 



291 
write(*,*) 'Enter C_nu (',const(4),' ):' 
read(5,'(a)') rec 
if(rec .ne. ' ') then 
    read(rec,*) const(4) 
end if 
 
write(*,*) 'Enter sigma_k (',sigmak,' ):' 
read(5,'(a)') rec 
if(rec .ne. ' ') then 
    read(rec,*) sigmak 
end if 
 
write(*,*) 'Enter sigma_omega (',sigmah,' ):' 
read(5,'(a)') rec 
if(rec .ne. ' ') then 
    read(rec,*) sigmah 
end if 
 
write(*,*) 'Enter mh (',mh,' ):' 
read(5,'(a)') rec 
if(rec .ne. ' ') then 
    read(rec,*) mh 
end if 
 
write(*,*) 'Enter mk (',mk,' ):' 
read(5,'(a)') rec 
if(rec .ne. ' ') then 
    read(rec,*) mk 
end if 
 
write(*,*) 'Initialize from a file (enter [none] for automated guess) (',init,'):' 
read(5,'(a)') rec 
if(rec .ne. ' ') then 
    read(rec,*) init 
end if 
 
!Allocate Memory 
ALLOCATE(y(m)); ALLOCATE(B(m)); 
ALLOCATE(k(m)); ALLOCATE(k_old(m)); ALLOCATE(kprime(m)); ALLOCATE(kdprime(m)); 
ALLOCATE(h(m)); ALLOCATE(h_old(m)); ALLOCATE(hprime(m)); 
ALLOCATE(u(m)); ALLOCATE(uprime(m)); ALLOCATE(udprime(m)); 
ALLOCATE(nu(m)); ALLOCATE(nuprime(m)); ALLOCATE(zeta(m)); ALLOCATE(P(m)); 
ALLOCATE(VDu(m)); 
ALLOCATE(A(m,m));ALLOCATE(FD1(m,m));ALLOCATE(FD2(m,m)) 
 
dzeta = 1.0/real(m-1) 
dy = Rtau*dzeta 
!Create Grid 
do j=1,m,1 
    eta = real(j-1)/real(m-1) 
    cbeta = ((beta+1.0)/(beta-1.0))**(1.0-eta) 
    if(beta .eq. 0) then 
        zeta(m+1-j) = 1.0 - real(j-1)*dzeta 
    else 
        zeta(m+1-j) = 1.0 - (beta+1.0 - (beta-1.0)*cbeta)/(1.0 + cbeta); 
    end if 
    y(m+1-j) = Rtau*(1.0-zeta(m+1-j)) 
    k(m+1-j) = 0.01*y(m+1-j)!fk0(m+1-
j,m,Rtau,y,k,h,nu,uprime,udprime,kprime,kdprime,hprime,const,coord) 
    h(m+1-j) = fh0(m+1-
j,m,Rtau,y,k,h,nu,uprime,udprime,kprime,kdprime,hprime,const,coord) 
end do 
 
CALL FDMatrix(approx,m,zeta,1,FD1) 
CALL FDMatrix(approx,m,zeta,2,FD2) 
 
call VanDriestSolution(m,y,VDconst,VDu) 
 
if(init .ne. 'none') then 
    open(1,FILE=init) 
    read(1,*) filesize 
    read(1,*) 
    read(1,*) 
    read(1,*) 
    read(1,*)yvalold,uvalold,kvalold,hvalold,nuvalold 
    u(m) = uvalold; k(m) = kvalold; h(m) = hvalold; nu(m) = nuvalold; 
    do line=2,filesize,1 
        read(1,*)yval,uval,kval,hval,nuval 
        do j=2,m-1,1 



292 
            if((y(m+1-j) < yval) .and. (y(m+1-j) > yvalold)) then 
                frac = (y(m+1-j) - yvalold)/(yval-yvalold) 
                u(m+1-j) = frac*(uval-uvalold)+uvalold 
                k(m+1-j) = frac*(kval-kvalold)+kvalold 
                h(m+1-j) = frac*(hval-hvalold)+hvalold 
                nu(m+1-j) = frac*(nuval-nuvalold)+nuvalold 
            end if 
        end do 
        yvalold = yval; uvalold = uval; kvalold = kval; hvalold = hval; nuvalold = nuval; 
    end do 
    u(1) = uval; k(1) = kval; h(1) = hval; nu(1) = nuval; 
    do j=1,m,1 
        uprime(j) = -Rtau*zeta(j)/(1.0+nu(j)); 
    end do 
    do j=m-mh+1,m 
        h(j)=fh0(j,m,Rtau,y,k,h,nu,uprime,udprime,kprime,kdprime,hprime,const,coord) 
    end do 
end if 
 
write(*,*) 'Number of iterations before pause (',itermax,' ):' 
write(*,*) '  Enter zero to exit' 
write(*,*) '  Enter -1 to run to convergence'  
read(5,'(a)') rec 
if(rec .ne. ' ') then 
    read(rec,*) itermax 
end if 
if(itermax<0) then 
    cont = 1; itermax = 1; 
end if 
titer=0 !total iterations 
do while (itermax>0) 
    write(*,*) 'Number of iterations per print (',iprint,' ):' 
    read(5,'(a)') rec 
    if(rec .ne. ' ') then 
        read(rec,*) iprint 
    end if 
    write(*,*) 'Blending Factor (',gammak,' ):' 
    read(5,'(a)') rec 
    if(rec .ne. ' ') then 
        read(rec,*) gammak 
    end if 
    gammah = gammak 
    write(*,*) 'Relaxation Factor (',omegak,' ):' 
    read(5,'(a)') rec 
    if(rec .ne. ' ') then 
        read(rec,*) omegak 
    end if 
    omegah = omegak 
 
    iter = 0 
    write(*,*) 'iterations  k_rms               h_rms               centerline k        & 
            &centerline h         limit_k   limit_h  limit_nu' 
    do while (iter < itermax) 
        limit_nu = 0; limit_k = 0; limit_h = 0; 
        rmsk = 0.0; rmsh = 0.0; 
 
        !Update Arrays 
        do j=1,m,1 
            nu(j) = fnu(j,m,y,k,h,uprime,udprime,kprime,kdprime,hprime,const,coord); 
            if(nu(j) > 1e5) then 
                nu(j) = 1e5; limit_nu = limit_nu+1; 
            end if 
            uprime(j) = -Rtau*zeta(j)/(1.0+nu(j)); 
        end do 
 
        call Derivative(m,FD1,nu,nuprime) 
        call Derivative(m,FD1,uprime,udprime) 
        call Derivative(m,FD1,k,kprime) 
        call Derivative(m,FD2,k,kdprime) 
        call Derivative(m,FD1,h,hprime) 
        kprime(1)=0.0; hprime(1)=0.0; nuprime(1)=0.0; kprime(m)=0.0; 
        !k solver 
        if(coord .eq. 1) then 
            do j=1,m,1 
                P(j) = (1.0+nu(j)/sigmak)/zeta(j); 
            end do 
        else 
            P=0.0; 
        end if 



293 
        A(1,:) = FD1(1,:); B(1) = 0.0 !centerline boundary condition 
        do j=2,m-2 
            A(j,:) = -(nuprime(j)/sigmak+P(j))*FD1(j,:) - (1.0 + nu(j)/sigmak)*FD2(j,:) 
            B(j)=Sk(j,m,Rtau,y,k,h,nu,uprime,udprime,kprime,kdprime,hprime,const,coord) 
        end do 
        A(m-1,:) = FD1(m,:); B(m-1) = 0.0 !kprime=0 at wall 
        A(m,:) = 0.0; A(m,m) = 1.0; B(m) = 0.0 !k=0 at wall 
 
        k_old = k; 
        CALL MatrixBlend(m,gammak,A,k,B) 
        CALL AXB(m,A,B,k); 
         
        k = k_old + omegak*(k - k_old); 
        do j=1,m,1 !Usual limiter on k 
            if(k(j) < 0.0) then 
                k(j) = 1e-30; 
                limit_k = limit_k +1; 
            end if 
        end do 
         
        !Update Arrays 
        do j=1,m,1 
            nu(j) = fnu(j,m,y,k,h,uprime,udprime,kprime,kdprime,hprime,const,coord); 
            if(nu(j) > 1e5) then 
                nu(j) = 1e5; limit_nu = limit_nu+1; 
            end if 
            uprime(j) = -Rtau*zeta(j)/(1.0+nu(j)); 
        end do 
        call Derivative(m,FD1,nu,nuprime) 
        call Derivative(m,FD1,uprime,udprime) 
        call Derivative(m,FD1,k,kprime) 
        call Derivative(m,FD2,k,kdprime) 
        call Derivative(m,FD1,h,hprime) 
        kprime(1)=0.0; hprime(1)=0.0; nuprime(1)=0.0; kprime(m)=0.0; 
 
        !h solver 
        if(coord .eq. 1) then 
            do j=1,m,1 
                P(j) = (1.0+nu(j)/sigmah)/zeta(j); 
            end do 
        else 
            P=0.0; 
        end if 
        A(1,:) = FD1(1,:); B(1) = 0.0 !centerline boundary condition 
        do j=2,m-mh 
            A(j,:) = -(nuprime(j)/sigmah+P(j))*FD1(j,:) - (1.0 + nu(j)/sigmah)*FD2(j,:) 
            B(j)=Sh(j,m,Rtau,y,k,h,nu,uprime,udprime,kprime,kdprime,hprime,const,coord) 
        end do 
        do j=m-mh+1,m 
            A(j,:) = 0.0; A(j,j) = 1.0;  
B(j)=fh0(j,m,Rtau,y,k,h,nu,uprime,udprime,kprime,kdprime,hprime,const,coord) !near-wall 
        end do 
 
        h_old = h; 
        CALL MatrixBlend(m,gammah,A,h,B) 
        CALL AXB(m,A,B,h); 
 
        h = h_old + omegah*(h - h_old); 
        do j=1,m-mh,1 !usual limiter on h 
            if(h(j) < 0.0) then 
                h(j) = 1e-30; 
                limit_h = limit_h +1; 
            end if 
        end do 
 
        do j=1,m,1 
            rmsk = rmsk + (k(j) - k_old(j))**2 
        end do 
        do j=1,m-mh,1 
            rmsh = rmsh + (h(j) - h_old(j))**2 
        end do 
        rmsk = sqrt(rmsk/m); rmsh = sqrt(rmsh/m); 
        if(rmsk .ne. rmsk) exit; if(rmsh .ne. rmsh) exit; 
        if((rmsk < 1.0e-18) .and. (rmsh < 1.0e-18)) then 
            write(*,110) titer,rmsk,rmsh,k(1),h(1),limit_k,limit_h,limit_nu; exit; 
        end if 
        iter = iter + 1; titer = titer+1; 
        if(cont .eq. 1) itermax = itermax + 1 
        if(mod(real(iter),real(iprint)).eq.0.0) then 



294 
            write(fn,*) iter 
            fn = trim(adjustl(fn))//'.txt' 
            open(unit = 10, File = "results.txt", status="replace", action = "write", 
iostat = ierror) 
            write(10,*) m,' nodes' 
            write(10,*) '   y_plus              u_prime              k_plus              
h_plus              nu_plus' 
            do j=1,m 
                write(10,100) y(m+1-j),uprime(m+1-j),k(m+1-j),h(m+1-j),nu(m+1-j) 
            end do 
            close(10) 
            write(*,110) titer,rmsk,rmsh,k(1),h(1),limit_k,limit_h,limit_nu 
        end if 
    end do 
 
    print *, char(7) !Makes a noise 
    if(cont.eq.1) exit; 
    write(*,*) 'Number of iterations before pause (',itermax,' ):' 
    write(*,*) '  Enter zero to exit' 
    write(*,*) '  Enter -1 to run to convergence'  
    read(5,'(a)') rec 
    if(rec .ne. ' ') then 
        read(rec,*) itermax 
    end if 
    if(itermax<0) then 
        cont = 1; itermax = 1; 
    end if 
end do 
 
!integrate u 
u(m) = 0.0; 
do j=2,m 
    u(m+1-j) = u(m-j+2) + 0.5*(zeta(m+1-j)-zeta(m-j+2))*(uprime(m+1-j) + uprime(m-j+2)) 
!Physical Domain 
end do 
 
if(coord .eq. 1) then !Pipe 
    write(*,*) '-------------- Pipe Flow Results --------------' 
    u_bulk = 0.0; 
    do j=2,m 
        u_bulk = u_bulk + (zeta(j)-zeta(j-1))*(zeta(j)*u(j) + zeta(j-1)*u(j-1)) 
    end do 
    Re = 2.0*u_bulk*Rtau 
else    !Channel flow 
    write(*,*) '-------------- Channel Flow Results --------------' 
    u_bulk = 0.0; 
    do j=2,m 
        u_bulk = u_bulk + 0.5*(zeta(j)-zeta(j-1))*(u(j) + u(j-1)) 
    end do 
    Re = 4.0*u_bulk*Rtau 
end if 
Cf = 2.0/u_bulk**2 
fD = 4.0*Cf 
 
!Calculate fitness against Van Driest Solution 
fitness = 0.0; eligiblepts = 0; 
do j=1,m 
    if(y(m+1-j) < 500) then 
        fitness = fitness + (u(m+1-j) - VDu(m+1-j))**2 
        eligiblepts = eligiblepts+1 
    end if 
end do 
fitness = sqrt(fitness/eligiblepts) 
 
write(*,*) '                      R_tau = ',Rtau 
write(*,*) '                      nodes = ',m 
write(*,*) '                    u+_bulk = ',u_bulk 
write(*,*) '        Reynolds number, Re = ',Re 
write(*,*) 'Fanning friction factor, Cf = ',Cf 
write(*,*) ' Darcy friction factor, f_D = ',fD 
write(*,*) ' Fitness against Van Driest = ',fitness 
write(*,*) '-------------- --------------- --------------' 
 
open(unit = 10, File = "results.txt", status="replace", action = "write", iostat = 
ierror) 
write(10,*) m,' nodes' 
write(10,*) fitness,' fitness against Van Driest' 
write(10,*) 'nodes=',m,' Cnu=',const(4),' C1=',const(1),' C2=',const(2),' C3=',const(3),' 
sigmak=',sigmak,' sigmaw=',sigmah  



295 
write(10,*) '   y_plus              u_plus              k_plus              h_plus              
nu_plus             Van Driest' 
do j=1,m 
    write(10,100) y(m+1-j),u(m+1-j),k(m+1-j),h(m+1-j),nu(m+1-j),VDu(m+1-j) 
end do 
close(10) 
write(*,*) 
write(*,*) 'Results written to results.txt in local directory.' 
write(*,*) 
 
!Deallocate Memory 
DEALLOCATE(y); DEALLOCATE(B); DEALLOCATE(k) 
DEALLOCATE(k_old); DEALLOCATE(h); DEALLOCATE(h_old); DEALLOCATE(nu) 
STOP 
END PROGRAM Wilcox1998 
 
 
!--------------------------------- FUNCTIONS ------------------------------- 
REAL FUNCTION fnu(j,m,y,k,h,uprime,udprime,kprime,kdprime,hprime,const,coord) 
IMPLICIT NONE; INTEGER::j,m,coord; 
REAL,DIMENSION(m)::y,k,h,uprime,udprime,kprime,kdprime,hprime; REAL,DIMENSION(4)::const; 
Real::Rt 
Rt = k(j)/h(j) 
if(j.eq.m) then 
    fnu = 0.0 
else 
    fnu = Rt*(0.024 + Rt/6.0)/(1.0 + Rt/6.0) 
end if 
RETURN; END FUNCTION fnu 
 
REAL FUNCTION Sk(j,m,Rtau,y,k,h,nu,uprime,udprime,kprime,kdprime,hprime,const,coord) 
IMPLICIT NONE; INTEGER::j,m,coord; 
REAL,DIMENSION(m)::y,k,h,nu,uprime,udprime,kprime,kdprime,hprime; 
REAL,DIMENSION(4)::const; 
Real::Rtau,r,Rt,chi 
Rt = k(j)/h(j) 
chi = kprime(j)*hprime(j)/(h(j)**3*Rtau**2) 
if(chi > 0.0) then 
    chi = (1.0+680.0*chi**2)/(1.0+400.0*chi**2) 
else 
    chi = 1.0; 
end if 
Sk = nu(j)*uprime(j)**2 - const(4)*Rtau**2*k(j)*h(j)*(4.0/15.0 + (Rt/8.0)**4)/(1.0 + 
(Rt/8.0)**4)*chi 
RETURN; END FUNCTION Sk 
 
REAL FUNCTION Sh(j,m,Rtau,y,k,h,nu,uprime,udprime,kprime,kdprime,hprime,const,coord) 
IMPLICIT NONE; INTEGER::j,m,coord; 
REAL,DIMENSION(m)::y,k,h,nu,uprime,udprime,kprime,kdprime,hprime; 
REAL,DIMENSION(4)::const; 
Real::Rtau,r,Rt 
Rt = k(j)/h(j) 
Sh = const(1)*(1.0/9.0 + Rt/2.95)/(1.0 + Rt/2.95)*uprime(j)**2 - const(2)*Rtau**2*h(j)**2 
RETURN; END FUNCTION Sh 
 
REAL FUNCTION fk0(j,m,Rtau,y,k,h,nu,uprime,udprime,kprime,kdprime,hprime,const,coord) 
IMPLICIT NONE; INTEGER::j,m,coord; 
REAL,DIMENSION(m)::y,k,h,nu,uprime,udprime,kprime,kdprime,hprime; 
REAL,DIMENSION(4)::const; 
Real::Rtau 
fk0 = 0.0 
RETURN; END FUNCTION fk0 
 
REAL FUNCTION fh0(j,m,Rtau,y,k,h,nu,uprime,udprime,kprime,kdprime,hprime,const,coord) 
IMPLICIT NONE; INTEGER::j,m,coord; 
REAL,DIMENSION(m)::y,k,h,nu,uprime,udprime,kprime,kdprime,hprime; 
REAL,DIMENSION(4)::const; 
Real::Rtau 
if(y(j)<1e-15) then 
    fh0 = 1.0e33 
else 
    fh0 = 6.0/(const(2)*y(j)**2) 
end if 
RETURN; END FUNCTION fh0 
 
!------------  Van Driest  SOLUTION-------------- 
 
SUBROUTINE VanDriestSolution(m,yplus,VDconst,VDu) 
IMPLICIT NONE 



296 
INTEGER::m,j 
REAL,DIMENSION(m)::yplus,VDu 
REAL,DIMENSION(2)::VDconst 
REAL::du(4),u,dy 
VDu(m) = 0.0  
do j=2,m,1 
    dy = yplus(m-j+1)-yplus(m-j+2) 
    call rnkta4(1,VDconst,yplus(m-j+2),VDu(m-j+2),dy,du,u) 
    VDu(m-j+1) = u 
end do 
END SUBROUTINE VanDriestSolution 
 
!------------------------------ Van Driest called from Runge-kutta-----------------------
----- 
REAL FUNCTION f(i,const,yplus,uplus) 
implicit none 
INTEGER::i 
REAL::yplus,uplus,kappa,Aplus,a,b,c 
REAL,DIMENSION(2)::const 
kappa = const(1) 
Aplus = const(2) 
a = kappa**2*yplus**2*(1.0-exp(-yplus/Aplus))**2 
b = 1.0 
c = -1.0 
f = max((-b + sqrt(b**2 - 4.0*a*c))/(2.0*a),(-b - sqrt(b**2 - 4.0*a*c))/(2.0*a)) 
if(yplus .eq. 0) then 
    f = 1.0 
end if 
RETURN; END FUNCTION f 
 
!------------------------------Finite Difference Support ---------------- 
SUBROUTINE FDMatrix(order,m,y,deriv,ans) 
!This subroutine calculates the 8th Order Coefficient matrix of Finite Differences 
!m = size of vector of y coordinates 
!y = vector of coordinates 
!deriv = 1 for 1st Deriv, 2 for 2nd deriv 
!ans = output matrix mxm of finite difference coefficients 
    IMPLICIT NONE 
    INTEGER::order,m,deriv,j,index,n,lower,upper 
    REAL,DIMENSION(m)::y 
    REAL,DIMENSION(m,m)::ans 
    REAL,DIMENSION(order+2)::ans_vec 
    if(deriv .eq. 1) then ! 1st Derivative 
        n = order+1 
        index=order/2 
        lower = order/2 
        upper = order/2 
    end if 
    if(deriv .eq. 2) then ! 2nd Derivative 
        n = order+2 
        index=n/2 
        lower = (n-2)/2 
        upper = n/2 
    end if 
     
!write(*,*) 'n = ',n 
!write(*,*) 'index = ',index 
!write(*,*) 'lower = ',lower 
!write(*,*) 'upper = ',upper 
 
    do j=1,index 
        CALL FiniteDifference(n,j,y(1:n),deriv,ans_vec) 
        ans(j,1:n)=ans_vec(:) 
    end do 
    do j=index+1,m-index 
        CALL FiniteDifference(n,lower+1,y(j-lower:j+upper),deriv,ans_vec) 
        ans(j,j-lower:j+upper) = ans_vec(:) 
    end do 
    do j=m-index+1,m 
        CALL FiniteDifference(n,n-(m-j),y(m-n+1:m),deriv,ans_vec) 
        ans(j,m-n+1:m) = ans_vec(:) 
    end do 
    RETURN 
END SUBROUTINE FDMatrix 
 
SUBROUTINE FiniteDifference(n, index, pts, deriv, ans) 
!deriv = 1 for 1st Derivative 
!deriv = 2 for 2nd Derivative 
!n     = size of array being passed in 



297 
!index = indice of "point of interest" within array 
!pts   = array of coordinate points 
!ans   = coefficients for each of the array of points  
!Order of approximation is n-1 for 1st derivative 
!Order of approximation is n-2 for 2nd derivative 
    IMPLICIT NONE 
    INTEGER::n,index,i,j,deriv 
    REAL,DIMENSION(n)::pts,ans 
    REAL,DIMENSION(n-1,n-1):: A,Ainv 
    REAL::factorial 
    A = 0.0 
    do i=1,n-1 
        do j=1,n-1 
            A(i,j) = (pts(i)-pts(index))**j/Factorial(j) 
        end do 
    end do 
    do i=index+1,n 
        do j=1,n-1 
            A(i-1,j) = (pts(i)-pts(index))**j/Factorial(j) 
        end do 
    end do 
    CALL matinv(n-1,A,Ainv) 
    ans(:) = Ainv(deriv,:) 
    ans(index+1:n)=Ainv(deriv,index:n-1) 
    ans(index) = -sum(Ainv(deriv,:)) 
    RETURN 
END SUBROUTINE FiniteDifference 
 
SUBROUTINE Derivative(m,FD,phi,ans) 
!m = size of vector 
!FD = Finite Difference Matrix size mxm 
!phi = vector of funtion values 
!ans = output vector size m of derivative values 
    IMPLICIT NONE 
    INTEGER::m,j 
    REAL,DIMENSION(m,m)::FD 
    REAL,DIMENSION(m)::phi,ans 
    REAL::dot 
     
    do j=1,m 
        ans(j) = dot(m,FD(j,:),phi(:)) 
!write(*,*) 'ans(',j,')=',ans(j) 
    end do 
    RETURN 
END SUBROUTINE Derivative 
 
!-------------------------- Matrix Support ------------------------ 
SUBROUTINE MatrixBlend(m,gamma,A,x,B) 
!m = size of matrix (mxm) 
!gamma = relaxation factor 
!A = matrix mxm 
!x = current solution vector 
!B = Right-Hand Side vector 
    IMPLICIT NONE 
    INTEGER::m,j,i 
    REAL::gamma,temp,dot 
    REAL,DIMENSION(m,m)::A 
    REAL,DIMENSION(m)::x,B 
     
    do j=1,m 
        temp = A(j,j) 
        B(j) = B(j)-(1.0-gamma)*(dot(m,A(j,:),x)-temp*x(j)) 
        A(j,:) = gamma*A(j,:) 
        A(j,j) = temp 
    end do 
    RETURN 
END SUBROUTINE MatrixBlend 
 
 
 
!-------------------------- FUNCTIONS ------------------------- 
 
REAL FUNCTION Factorial(n) 
    IMPLICIT NONE 
    INTEGER::n,i 
    Factorial=1.0 
    do i=1,n 
        Factorial = Factorial*real(i) 
    end do 



298 
END FUNCTION Factorial 
 
REAL FUNCTION dot(n,v1,v2) 
    IMPLICIT NONE 
    INTEGER::n,i 
    REAL,DIMENSION(n)::v1,v2 
    dot=0.0 
    do i=1,n 
        dot = dot + v1(i)*v2(i) 
    end do 
END FUNCTION dot 
 
!-------------------------- Runge-Kutta Solver ------------------------- 
 
      subroutine rnkta4(n,a,t0,y0,dt,dy,y) 
!     This single precision subroutine computes a value for the n component 
!     vector y(t0+dt) from a known value of the vector y(t0)=y0.  The solution 
!     is based on a fourth order Runge-Kutta solution to the system of n 
!     differential equations, 
! 
!                dy(i)/dt = f(i,a,t,y)              i = 1,2,3,...,n 
! 
!     where a is a coefficient array passed to the functuon f.  The single 
!     precision function subprogram f(i,a,t,y) must be provided by the user. 
! 
      real f,a(*),t0,y0(n),dt,dy(n,4),y(n),c(4) 
      c(1) = 1.0/6.0 
      c(2) = 1.0/3.0 
      c(3) = c(2) 
      c(4) = c(1) 
      do j=1,n 
         dy(j,1)=f(j,a,t0,y0)*dt 
         y(j)=y0(j)+dy(j,1)/2. 
      end do 
      do j=1,n 
         dy(j,2)=f(j,a,t0+dt/2.,y)*dt 
      end do 
      do j=1,n 
         y(j)=y0(j)+dy(j,2)/2. 
      end do 
      do j=1,n 
         dy(j,3)=f(j,a,t0+dt/2.,y)*dt 
      end do 
      do j=1,n 
         y(j)=y0(j)+dy(j,3) 
      end do 
      do j=1,n 
         dy(j,4)=f(j,a,t0+dt,y)*dt 
      end do 
      do j=1,n 
         y(j)=y0(j) 
         do i=1,4 
            y(j)=y(j)+c(i)*dy(j,i) 
         end do 
      end do 
      return 
      end subroutine rnkta4 

 

 



299 

APPENDIX E 

ONE-DIMENSIONAL FINITE-VOLUME FORMULATION 

I. Governing Equations 

 A fairly general system of equations for fully developed turbulent channel flow can be written in 

dimensional form for Cartesian coordinates including the momentum transport equation, turbulent kinetic 

energy equation, and one additional transport equation as 

 

),,(

),,,(),,,(),,,()(

2

),,,(
),,,(),,,()(

),()(

2

2

2

32

2

1

2

3

2

2

1

yhkf

dy

ud
yhkfyhkf

dy

du
yhkf

dy

dh

dy

d

dy

dk

k

yhkf
yhkf

dy

du
yhkf

dy

dk

dy

d

yuf
dy

du

dy

d

t

hhhht

k

kkkt

ut

ν
ν

νννσνν

ν

ννσνν

νν

=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⎥

⎦

⎤
⎢
⎣

⎡
+−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⎥

⎦

⎤
⎢
⎣

⎡
+−

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−

 (E.1) 

with the boundary conditions 

 0)(    ,0)(    ,0)(    ,0)0(    ,0)0(    ,0)0( ====== l
dy

dh
l

dy

dk
l

dy

du

dy

dk
ku  (E.2) 

where h represents the second turbulence variable ε or ω and l is the channel half-width. 

 

II. Coordinate Transformation 

 A general transport equation for any variable, φ , for fully developed channel flow can be written in 

Cartesian coordinates as 

 ),,,,,( yhkuCS
dy

d

dy

d
ν

φ
=⎥

⎦

⎤
⎢
⎣

⎡
Γ−  (E.3) 

where Γ  is the diffusion coefficient, S includes the source terms, and C is an array of constants. We wish to 

solve this equation numerically using the finite-volume method. This method requires the domain to be 

discretized into a finite number of control volumes which will be referred to as cells. To facilitate variable 



300 

cell sizes, it is beneficial to rewrite Eq. (E.3) in terms of the independent variable η where )(ηyy = . This 

provides a coordinate transformation from the physical domain in Cartesian coordinates to the 

computational domain in the transformed coordinate system. However, in order to apply this coordinate 

transformation, the one-dimensional physical domain must be divided into cells using variable spacing in y 

such that )(ηy  and its first derivative are continuous. The Jacobian of the one-dimensional transformation is 

a scalar defined as 

 
dy

d
J

η
≡  (E.4) 

From this coordinate transformation, the first derivative of any continuous function, )(yφφ = , can be 

written as 

 
η

φη

η

φφ

d

d
J

dy

d

d

dy

dy

d

dy

d
==  (E.5) 

Applying Eq. (E.5) to Eq. (E.3) gives the general transport equation for any variable, φ , for fully developed 

channel flow in the transformed coordinate system 

 S
d

d
J

d

d
J =⎥

⎦

⎤
⎢
⎣

⎡
Γ−

η

φ

η
 (E.6) 

This equation can be solved numerically using the finite volume method. Once a solution in the 

computational domain has been attained, the solution must be transformed to the physical domain to be of 

practical use. Details on a method for transforming from the computational domain to the physical domain 

or vice versa is included in Appendix F and will not be repeated here. This development will continue by 

presenting a method for solving Eq. (E.6) numerically in the computational domain. 

 

III. Discretization 

 The finite-volume method is applied to this one-dimensional problem by integrating Eq. (E.6) across a 

control volume in the η-direction. This can be written as 

 η
η

φ

η
dS

d

d
J

d

d
J∫ ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=⎥
⎦

⎤
⎢
⎣

⎡
Γ−  (E.7) 



301 

Before continuing, the control volumes for the integration must be defined. In this case, the domain is 

divided into m cells with variable spacing in the physical domain. The definition of the coordinate 

transformation requires the transformation function to be continuous. Because the central difference 

scheme is only second order for midpoint calculations, uniform spacing in η is chosen. For simplicity, the 

grid spacing in the computational domain is set to 0.1=Δη . Each cell has a node P placed at the cell center 

in the computational domain at which the values of the dependent variables will be evaluated. Additionally, 

each cell has a north and south face denoted by points n and s. Neighboring north and south cell centers are 

denoted here as nodes N and S respectively. The subscript j is used here as the index variable. In the 

transformed coordinate system, node 1=j  is located at 5.0=η , and node mj =  is located at 5.0−= mη . 

Figure E.1 shows the relationship between the physical domain and computational domain as well as the 

cell nomenclature. Note that the centers of the cells in the computational domain do not correspond to 

centers of the cells in the physical domain. 

 

 

 

Fig. E.1  Comparison of physical and transformed domains. 



302 

 Applying the transformation 

 
1])1()1([

}])1()1(){[1()1(
)(

1

1

+−+

−+−−+
=

−

−

m

m

ly
η

η

ββ

ββββ
η  (E.8) 

where β is a grid-stretching factor with the limits ∞<< β1 , gives 

 
])1()1(ln[

})](1[)](1[ln{
)(

−+

+−−+
−=

ββ

ββ
η

lyly
mmy  (E.9) 

The Jacobian must be nonzero over the domain to ensure that the transformation is not singular. Taking the 

derivative of Eq. (E.9) with respect to y gives 

 
])1()1(ln[})](1[{

2
22

−+−−

=≡

βββ

βη

lyl

m

dy

d
J  (E.10) 

The derivative of the Jacobian with respect to η is 

 
})](1[{

)](1[21
22 lyl

ly

dy

dJ

Jdy

d

dy

dJ

d

dJ
J

−−

−−
====′

β

η

η
 (E.11) 

where the prime represents a derivative with respect to η. Equations (E.10) and (E.11) are exact for the 

transformation given in Eqs. (E.8) and (E.9). However, for an arbitrary transformation, the Jacobian and its 

derivative with respect to η can be estimated to second-order accuracy where the y-coordinates of the grid 

are known at the cell faces. For node P, second-order differencing gives 

 
sn

P
yy

J
−

Δ
=

η
 (E.12) 

Once the Jacobian is known at every node, the derivative of the Jacobian with respect to η can be calculated 

using the second-order differences given in Eqs. (H.13) and (H.16). Using j as the index, 

 

,
2

,
2

,
3

34

1

11

210

1

η

η

η

Δ

−
=′

Δ

−
=′

Δ

++−
=′

−

−+

mm
m

jj

j

JJ
J

JJ
J

JJJ
J

   

mj

m

j

=

−≤≤

=

1j2

1

 (E.13) 

where 
0

J  is the estimate for the Jacobian at the wall given by 



303 

 
2

3
21

0

JJ
J

−

=  (E.14) 

 The finite volume method continues by evaluating Eq. (E.7) for a single cell 

 ∫=⎢
⎣

⎡
Γ−

n

s

n

s

d
J

S

d

d
J η

η

φ
 (E.15) 

Applying the central difference approximations given in Eqs. (H.18) and (H.19) to the left-hand side and 

the midpoint rule given in Eq. (H.29) to the right-hand side of Eq. (E.15) and simplifying gives the 

discretized form of the transport equation for the cells 12 −≤≤ mj  

 
P

P

SPPSPSPNPNPN

J
S

JJJJ η

η

φφ

η

φφ Δ
=

Δ

−+Γ+Γ
+

Δ

−+Γ+Γ
−

)(

2

)(

2

)()(

2

)(

2

)(
 (E.16) 

Using the subscript j as an index value, Eq. (E.16) can be rewritten as 

 

j

jj

jjjj

j

jjjj

j

jjjjjjjj

J
S

JJJJ

JJJJ

mj

η
φ

η
φ

η

φ
ηη

Δ
=

Δ

+Γ+Γ
−

Δ

+Γ+Γ
−

⎥
⎦

⎤
⎢
⎣

⎡

Δ

+Γ+Γ
+

Δ

+Γ+Γ

−≤≤

−

−−

+

++

−−++

1

11

1

11

1111

4

))((

4

))((

4

))((

4

))((

12for   

 (E.17) 

 For the cells 1=j  and mj = , discretization of Eq. (E.15) must account for the influence of the 

boundary. Because all transport properties are symmetric about the centerline, 
mm

φφ =
+1

. Applying this to 

Eq. (E.17) gives the discretized equation for cell m 

 
m

mm

mmmm

m

mmmm

J
S

JJJJ η
φ

η
φ

η

Δ
=

Δ

+Γ+Γ
−⎥

⎦

⎤
⎢
⎣

⎡

Δ

+Γ+Γ
−

−−−−

1

1111

4

))((

4

))((
 (E.18) 

The wall boundary conditions affect the discretized equation for the first cell off of the boundary and are 

dependent on the transport property. These will be discussed in the appropriate sections below. 

 

IV. Transport Equations 

A. x-Momentum 

 The x-momentum equation is a special case of Eq. (E.3) where 

 u=φ , 
t

νν +=Γ , ),( yufS
u

=  (E.19) 



304 

Using these definitions, the right-hand side of Eq. (E.16) can be written for any cell, j as   

 
j

jju

j

j
J

yuf
J

S
ηη Δ

=
Δ

),(  (E.20) 

For the cell adjacent to the wall boundary, Eq. (E.15) must be discretized using forward difference 

approximations. Here we define the points such that 
0

u  is the velocity at the wall, 
1
u  is the velocity at the 

center of the first cell, and 
2

u  is the velocity at the center of the second cell. Values and derivatives on the 

cell faces are estimated by using the forward difference approximations given in Eqs. (H.21) and (H.22) for 

the boundary face, and the central difference approximations given in Eqs. (H.18) and (H.19) for the face 

opposite the boundary face. Applying these relations gives the discretized form of the x-momentum 

equation for the cell adjacent to the wall boundary 

 
1

11

2102121121212 ),(
3

)98(

2

)3(

2

)3()(

2

)(

2

)(

J
yuf

uuuJJuuJJ
u

η

ηη

Δ
=

Δ

−+−−Γ−Γ
+

Δ

−+Γ+Γ
−  (E.21) 

This can be rewritten as 

 

1

110

2121

2

21211212

1

21211212

),(
12

)3)(3(8

12

)3)(3(

4

))((

12

)3)(3(9

4

))((

J
yufu

JJ
u

JJJJ

u
JJJJ

u

η

ηηη

ηη

Δ
+

Δ

−Γ−Γ
=⎥

⎦

⎤
⎢
⎣

⎡

Δ

−Γ−Γ
+

Δ

+Γ+Γ
−

⎥
⎦

⎤
⎢
⎣

⎡

Δ

−Γ−Γ
+

Δ

+Γ+Γ

 (E.22) 

The no-slip boundary condition at the wall is imposed by setting 0.0
0
=u . 

 In summary, Eqs. (E.17), (E.18), and (E.22) can be used to get an improved estimate for the velocity 

distribution given an estimate for the dependent variables. These equations can be written as a tridiagonal 

system of equations including a conventional underrelaxation factor, 
u

Ω , and a blending factor, 
u

Γ . When 

1=
u

Γ , the method becomes a pure traditional tridiagonal algorithm. When 0=
u

Γ , the method is a 

pointwise successive underrelaxation algorithm. Using the notation jjUjjDjjLj BuTuTuT =++
+− 11

 for row j, 

the algorithm can be written as  

 



305 

 

);(    ;][    ;

;    );)(1(

;    ;    );)(1(    ;12for 

;    );)(1(

;0    ;    ;
4

))((

;    ;
4

))((
    ;

4

))((
        

;12for 

;
12

)3)(3(

4

))((

;
12

)3)(3(9

4

))((
    ;0

;),(    );,,(    ;1for 

oldold

1

old

1

11

112111

11

1111

21211212

1

21211212

11

uuuuBTuuu −+===

=−−=

==+−−=−≤≤

=−−=

=−=
Δ

+Γ+Γ
−=

−−=
Δ

+Γ+Γ
−=

Δ

+Γ+Γ
−=

−≤≤

⎥
⎦

⎤
⎢
⎣

⎡

Δ

−Γ−Γ
+

Δ

+Γ+Γ
−=

⎥
⎦

⎤
⎢
⎣

⎡

Δ

−Γ−Γ
+

Δ

+Γ+Γ
==

Δ=+=Γ≤≤

−

−

+−

−−

++−−

u

LmuLmmLmumm

UjuUjLjuLjjUjjLjujj

UuUUu

UmLmDm
mmmm

Lm

UjLjDj

jjjj

Uj

jjjj

Lj

U

DL

jjjujjjjj

Ω

TΓTuTΓBB

TΓTTΓTuTuTΓBBmj

TTuTBB

TTT
JJ

T

TTT
JJ

T
JJ

T

mj

JJJJ
T

JJJJ
TT

JyufByhkfmj

αα

η

ηη

ηη

ηη

ην
ν

 (E.23) 

 Once an estimate for the velocity profile has been obtained, an estimate for the shear velocity at the 

wall can be calculated. The shear velocity is related to the shear stress according to ρτ
τ w
u ≡ . The shear 

stress can be calculated at the wall as 

 )0()0(
0

η
μμτ
∂

∂
=

∂

∂
≡

u
J

y

u
w

 (E.24) 

Using the second-order forward difference approximations given in Eqs. (H.21) and (H.22), the wall shear 

stress can be calculated for a given velocity profile as 

 
η

ρ
η

ρτ
Δ

−−Γ−Γ
=

Δ

−+−−Γ−Γ
=

3

)9(

4

)3)(3(

3

)98(

4

)3)(3(
2121212102121

uuJJuuuJJ

w
 (E.25) 

 

B. Turbulent Kinetic Energy 

 The turbulent-kinetic-energy equation is a special case of Eq. (E.3) where 

 k=φ , 
kt

σνν +=Γ , 

2

3

2

2

1
2

),,,(
),,,(),,,( ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

dy

dk

k

yhkf
yhkf

dy

du
yhkfS k

kk

ν

νν  (E.26) 

Using these definitions and rearranging the last term in the source term, the right-hand side of Eq. (E.16) 

can be written for any cell, j as   

 ην
η

νην
η

Δ′−
Δ

−Δ′=
Δ

jjjjjk

j

jjjjkjjjjjjk

j

j Jkyhkf
J

yhkfJuyhkf
J

S 221

32

2

1
]))[(,,,(2),,,())(,,,( (E.27) 



306 

where the prime represents a derivative with respect to η, and the relationship )()2( 2121
′=′ kkk  has been 

applied. The first derivative for any property is estimated by the central difference approximation given in 

Eq. (H.13) for cells m≤≤ j2  and the forward difference approximation given in Eq. (H.16) for the cell 

1=j . Applying these equations to the derivatives in Eq. (E.27) as well as the symmetry boundary condition 

at node m, gives the finite difference approximations 

 

,
2

,
2

,
3

34

1

11

210

1

η

η

η

Δ

−
=′

Δ

−
=′

Δ

++−
=′

−

−+

mm
m

jj

j

uu

u

uu

u

uuu

u

   

mj
kk

k

m
kk

k

j
kkk

k

mm
m

jj

j

=
Δ

−
=′

−≤≤
Δ

−
=′

=
Δ

++−
=′

−

−+

                   ,
2

)(

1j2                   ,
2

)(

1    ,
3

34
)(

21

1

21

21

21

1

21

121

21

2

21

1

21

0

1

21

η

η

η

 (E.28) 

 The no-slip boundary condition for the turbulent kinetic energy requires that k and its first derivative 

both be zero at the wall. Using the forward difference approximation given in Eq. (H.22) imposes the 

following relationship between the wall value of k, denoted here as 
0
k , and the first two nodes off of the 

wall, 
1
k  and 

2
k  respectively 

 
098

0

210

0

=−+−

=

kkk

k
 (E.29) 

This relationship constrains the value of 
1
k  relative to 

2
k . Therefore, the governing transport equation for k 

need not be solved for the first node off of the wall when the correct boundary conditions are applied. Some 

implementations of turbulence models neglect to enforce the second equation in Eq. (E.29) and solve the 

governing turbulent kinetic energy equation with 0
0
=k  as the only boundary condition. In that case, the 

governing equation is discretized similar to Eq. (E.24). However, this is incorrect. Both equations in Eq. 

(E.29) must be enforced to correctly model the no-slip boundary condition. Correct implementation of the 

no-slip boundary condition for k at the wall eliminates the need for the first equations in Eq. (E.28) because 

the source term given in Eq. (E.27) need not be evaluated for the cell adjacent to the boundary. 

 In summary, Eqs. (E.17), (E.27), and (E.29) can be used to get an improved estimate for the turbulent 

kinetic energy distribution given an estimate for the dependent variables. Just as was done with the x-



307 

momentum equations, these equations can be written as a tridiagonal system of equations including a 

conventional underrelaxation factor, 
k

Ω , and a blending factor, 
k

Γ . The algorithm can be written as  

 

);(    ;][    ;

;    );)(1(

;    ;    );)(1(    ;12for 

;    );)(1(

;]))[(,,,(2),,,(),,,(        

2for 

;0    ;    ;
4

))((
  ;

2
)(  ;

2

;    ;
4

))((
    ;

4

))((
        

;
2

)(    ;
2

        

12for 

;]))[(,,,(2),,,(),,,(        

;
12

)3)(3(

4

))((
        

;
12

)3)(3(9

4

))((
    ;0        

    ;
3

3
)(    ;

3

3
        

condition)boundary  slip-no (incorrect

0    ;1    ;9    ;0        

condition)boundary  slip-no(correct 

;/),,(    ;1for 

oldold

1

old

1

11

112111

221

32

2

1

11

21

1

21

211

1111

21

1

21

12111

1

2

1

21

11113

1

111121

2

1111111

21211212

1

21211212

11

21

2

21

1

1

2121

1

1111

kkkkBTkkk −+===

=−−=

==+−−=−≤≤

=−−=

Δ′−
Δ

−Δ′=

≤≤

=−=
Δ

+Γ+Γ
−=

Δ

−
=′

Δ

−
=′

−−=
Δ

+Γ+Γ
−=

Δ

+Γ+Γ
−=

Δ

−
=′

Δ

−
=′

−≤≤

Δ′−
Δ

−Δ′=

⎥
⎦

⎤
⎢
⎣

⎡

Δ

−Γ−Γ
+

Δ

+Γ+Γ
−=

⎥
⎦

⎤
⎢
⎣

⎡

Δ

−Γ−Γ
+

Δ

+Γ+Γ
==

Δ

+
=′

Δ

+
=′

=−===

+=Γ≤≤

−

−

+−

−−−−

++−−

−+−+

k

LmkLmmLmkmm

UjkUjLjkLjjUjjLjkjj

UkUUk

jjjjjjk
j

jjjjkjjjjjjkj

UmLmDm
mmmm

Lm
mm

m
mm

m

UjLjDj
jjjj

Uj
jjjj

Lj

jj
j

jj
j

kkk

U

DL

UDL

kjjjj

Ω

TΓTkTΓBB

TΓTTΓTkTkTΓBBmj

TTkTBB

Jkyhkf
J

yhkfJuyhkfB

mj

TTT
JJ

T
kk

k
uu

u

TTT
JJ

T
JJ

T

kk
k

uu
u

mj

Jkyhkf
J

yhkfJuyhkfB

JJJJ
T

JJJJ
TT

kk
k

uu
u

BTTT

yhkfmj

αα

ην
η

νην

ηηη

ηη

ηη

ην
η

νην

ηη

ηη

ηη

σν
ν

(E.30) 

where both the correct and incorrect implementations of the no-slip boundary condition on k are given. This 

gives an improved estimate for k based on an estimate for the dependent variables. 

 

C. Second Turbulence Variable, h 

 The second turbulence variable transport equation is a special case of Eq. (E.3) where 

 h=φ , 
ht

σνν +=Γ , 

2

2

2

32

2

1
),,,(),,,(),,,(

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

dy

ud
yhkfyhkf

dy

du
yhkfS

hhh
ννν  (E.31) 



308 

Using these definitions and expanding the second derivative in the last term in the source terms, the right-

hand side of Eq. (E.16) can be written for any cell, j as   

 

ην

η
νην

η

Δ′′+′′+

Δ
−Δ′=

Δ

jjjjjjjjjh

j

jjjjhjjjjjjh

j

j

JuJuJyhkf

J
yhkfJuyhkf

J
S

2

3

2

2

1

))(,,,(

),,,())(,,,(
 (E.32) 

where the prime represents a derivative with respect to η. The derivative in the first term on the right-hand 

side is calculated using Eq. (E.28). The last term on the right-hand side can be calculated using the central 

difference approximations given in Eqs. (H.13) and (H.14) for cells mj ≤≤2  and the forward difference 

approximations given in Eqs. (H.16) and (H.17) for the cell 1=j . Applying these equations to the 

derivatives in Eq. (E.32) as well as the symmetry boundary condition at node m, and the no-slip boundary 

condition 0
0
=u , gives the finite difference approximations 

 

mj
uu

u

m
uuu

u

j
uuu

u

mm
m

jjj

j

=

Δ

+−
=′′

−≤≤

Δ

+−
=′′

=

Δ

−+−
=′′

−

−+

                ,
)(

1j2         ,
)2(

1      ,
15

)33075(

2

1

2

11

2

321

1

η

η

η

 (E.33) 

Some cases are singular near a wall and require special treatment. In these cases, the asymptotic behavior 

of the h equation near the wall can be used in the near-wall region rather than solving the differential 

equation. Depending on the second transport variable, a predetermined number of cells off of the wall, h
m , 

will simply be set to the asymptotic solution for h 

 hhj mjjfh ≤≤= 1     ),,,,(
0

yhk  (E.34) 

If the second turbulence variable and its governing equation are not singular at the wall, the governing 

equation is discretized similar to Eq. (E.22) and the asymptotic value of h is only needed to calculate h at 

the wall, ),,,0(
00

yhkhfh = . 

 In summary, an algorithm can be written to get an improved estimate for the second turbulence 

variable distribution given an estimate for the dependent variables. Just as was done above, the equations 

can be written as a tridiagonal system of equations including a conventional underrelaxation factor, 
h

Ω , and 



309 

a blending factor, 
h

Γ . If 0>hm , the near-wall asymptotic solution is used for the cells hmj ≤ . Otherwise, 

the asymptotic solution is only used at the wall. The algorithm can be written as  

 

);(    ;][    ;

;    );)(1(

;    ;    );)(1(    ;12for 

;    );)(1(

;))(,,,(              

),,,())(,,,(        

1,2)max(for 

;0    ;    ;
4

))((

;
2

)(
   ;

)(
   ;

2

;    ;
4

))((
    ;

4

))((
        

;
2

)(
   ;

)2(
   ;

2
        

11,2)max(for 

;))(,,,(             

),,,())(,,,(
12

)3)(3(8
        

;
12

)3)(3(

4

))((
        

;
12

)3)(3(9

4

))((
    ;0        

;
3

)34(
   ;

15

)33075(
   ;

3

3
        

);,,,0(        

else

);,,,(    ;0    ;1    ;0    ;1for         

0 if

;/),,(    ;1for 

oldold

1

old

1

11

112111

2

3

2

2

1

11

1

2

11

1111

11

2

1111

1

2

111111113

1

111121

2

1111110

2121

1

21211212

1

21211212

11

210

12

321

1

21

1

00

0

hhhhBThhh

yhk

yhk

−+===

=−−=

==+−−=−≤≤

=−−=

Δ′′+′′+

Δ
−Δ′=

≤≤+

=−=
Δ

+Γ+Γ
−=

Δ

−
=′

Δ

+−
=′′

Δ

−
=′

−−=
Δ

+Γ+Γ
−=

Δ

+Γ+Γ
−=

Δ

−
=′

Δ

+−
=′′

Δ

−
=′

−≤≤+

Δ′′+′′+

Δ
−Δ′+

Δ

−Γ−Γ
=

⎥
⎦

⎤
⎢
⎣

⎡

Δ

−Γ−Γ
+

Δ

+Γ+Γ
−=

⎥
⎦

⎤
⎢
⎣

⎡

Δ

−Γ−Γ
+

Δ

+Γ+Γ
==

Δ

++−
=′

Δ

−+−
=′′

Δ

+
=′

=

====≤≤

>

+=Γ≤≤

−

−

+−

−−

−−−

++−−

−+−+−+

h

LmhLmmLmhmm

UjhUjLjhLjjUjjLjhjj

UhUUh

jjjjjjjjjh

j
jjjjhjjjjjjhj

h

UmLmDm
mmmm

Lm

mm
m

mm
m

mm
m

UjLjDj
jjjj

Uj
jjjj

Lj

jj
j

jjj
j

jj
j

h

h

hh

U

DL

h

hjUjDjLjh

h

hjjjj

Ω

TΓThTΓBB

TΓTTΓThThTΓBBmj

TThTBB

JuJuJyhkf

J
yhkfJuyhkfB

mjm

TTT
JJ

T

JJ
J

uu
u

uu
u

TTT
JJ

T
JJ

T

JJ
J

uuu
u

uu
u

mjm

JuJuJyhkf

J
yhkfJuyhkfh

JJ
B

JJJJ
T

JJJJ
TT

JJJ
J

uuu
u

uu
u

fh

jfBTTTmj

m

yhkfmj

αα

ην

η
νην

η

ηηη

ηη

ηηη

ην

η
νην

η

ηη

ηη

ηηη

σν
ν

 (E.35) 

This gives an improved estimate for h given estimates for the dependent variables. 

 



310 

V. Solution Procedure 

 Equations (E.23), (E.30), and (E.35) provide algorithms for obtaining an improved estimate for the 

dependent variables u, k, and h respectively given an estimate for all the dependent variables. Given an 

initial guess, these three equations are used in turn to improve the estimate for the dependent variables. The 

process is repeated iteratively until a converged solution is obtained. 

 

VI. Sample Results 

 It is helpful to test the code on equations with a known analytical solution such that the accuracy of the 

code can be determined. Three such cases are included here.  Results for four turbulence models which 

were solved using this finite-volume algorithm can be found in Appendix B. 

 

A. Laminar Flow 

 The governing equation and boundary conditions for fully developed laminar flow in a channel can be 

written 

 
dx

pd

dy

du

dy

d ˆ1

ρ
ν =⎥

⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 (E.36) 

 0)(    ,0)0( == l
dy

du
u  (E.37) 

Equation (E.36) is a special case of Eq. (E.1) where 

 0=
ν
f , 

dx

pd
f
u

ˆ1

ρ
−=  (E.38) 

and k and h are irrelevant. Because it is a second-order equation and 
u
f  does not contain any “lagging” 

variables, the numerical solution to this case can be obtained by applying a single iteration of Eq. (E.23). 

The closed-form solution to this case is 

 
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−= ly

y

dx

pd
yu

2

ˆ1
)(

2

µ
 (E.39) 

which can be used to evaluate the accuracy of the method. 



311 

 

B. A Second-Order Test Case 

 Consider the system of equations 

 3.0        ,8        ,1
2

2

2

2

2

2

−=⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−=⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
−=⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

dy

hd

dy

kd

dy

ud
 (E.40) 

with the boundary conditions 

 0)1(    ,0)1(    ,0)1(    ,8)0(    ,0)0(    ,0)0( ======

dy

dh

dy

dk

dy

du

dy

dk
ku  (E.41) 

This system of equations is second-order in each variable. Equation (E.40) is a special case of Eq. (E.1) 

where 

 0    ,3.0    ,0    ,0    ,8    ,0    ,1    ,0    ,1    ,1
321321
====−======

hhhkkku
ffffffffl

ν
ν  (E.42) 

The closed-form solution to this system of equations is 

 

2

2

2

15.030.020.0)(

48)(

2
)(

yyyh

yyyk

y
yyu

+−=

−=

−=

 (E.43) 

This can be used to evaluate the accuracy of numerical solutions. Because h is not singular at the wall, the 

near-wall solution only needs to be used for the value of h at the wall. Therefore, we set 0=hm . In the limit 

as 0→y , 

 20.0
0
=h  (E.44) 

 

C. A Closed-Form k-ε Analogy 

 Consider the system of equations 

 6

2

2

2

2
2

4

2

2

2

2

        ,        ,1 y
dy

du
y

dy

hd
h

dy

du
y

dy

kd

dy

ud
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
−=⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
−  (E.45) 

with the boundary conditions 

 0)1(    ,0)1(    ,0)1(    ,0)0(    ,0)0(    ,0)0( ======

dy

dh

dy

dk

dy

du

dy

dk
ku  (E.46) 



312 

This system of equations is similar in order to the Lam-Bremhorst [68] turbulence model. Equation (E.45) 

is a special case of Eq. (E.1) where 

 0    ,    ,    ,0    ,    ,    ,1    ,0    ,1
3

6

2

2

132

4

1
=========

hhhkkku
fyfyffhfyfff

ν
ν  (E.47) 

Because h is not singular at the wall, the near-wall solution only needs to be used for the value of h at the 

wall. Therefore, we set 0=
h

m . In the limit as 0→y , the k equation reduces to 

 

0

2

2

0 ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

dy

kd
h  (E.48) 

This is not a boundary condition. However, it can be used to calculate 
0
h . Using Eq. (E.5) along with the 

forward difference approximations given in Eqs. (H.22) and (H.23), the asymptotic solution for h at the 

wall is discretized as 

 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

Δ

−+−
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

Δ

−+−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

Δ

−+−
=

′′+′′=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

2

3210

0

210210

0

00000

0

2

2

0

15

126012072

3

98

3

98

)(

ηηη

kkkk
J

kkkJJJ
J

kJkJJ

dy

kd
h

 (E.49) 

where 2)3(
210

JJJ −=  is the finite difference approximation for the Jacobian at the wall. The closed-form 

solution to this system of equations is 

 

2520

4584252210276169

5040

9325218292169

2

8654

1087632

2

yyyyy
h

yyyyyy
k

y
yu

+−+−−

=

+−+−−

=

−=

 (E.50) 

This can be used to evaluate the accuracy of numerical solutions. 

 

VII.  Sample Code 

 The following sample C++ code can be used to solve the Wilcox 1998 model for smooth walls. 

 
#include <iostream> 
#include <math.h> 
using namespace std; 



313 
 
 
//kw model 
double fu(double L, int j, double rho, double nu, double dpdx, double y, double k, double 
h, double ut, int &limit){ 
    return -1.0/rho*dpdx; } 
double fnu(double L, int j, double rho, double nu, double dpdx, double y, double k, 
double h, double ut, int &limit){ 
    double Rt = k/(nu*h); 
    return k/h*(.024 + Rt/6.0)/(1.0 + Rt/6.0);} 
double fk1(double L, int j, double rho, double nu, double dpdx, double y, double k, 
double h, double ut, int &limit){ 
    return fnu(L,j,rho,nu,dpdx,y,k,h,ut,limit);} 
double fk2(double L, int j, double rho, double nu, double dpdx, double y, double k, 
double h, double ut, int &limit){ 
    double Rt = k/(nu*h); 
    return 0.09*k*h*(4.0/15.0 + pow(Rt/8.0,4))/(1.0 + pow(Rt/8.0,4));} 
double fk3(double L, int j, double rho, double nu, double dpdx, double y, double k, 
double h, double ut, int &limit){ 
    return 0.0;} 
double fh1(double L, int j, double rho, double nu, double dpdx, double y, double k, 
double h, double ut, int &limit){ 
    double Rt = k/(nu*h); 
    return 0.52*(1.0/9.0 + Rt/2.95)/(1.0 + Rt/2.95);} 
double fh2(double L, int j, double rho, double nu, double dpdx, double y, double k, 
double h, double ut, int &limit){ 
    return 0.072*h*h;} 
double fh3(double L, int j, double rho, double nu, double dpdx, double y, double k, 
double h, double ut, int &limit){ 
    return 0.0;} 
double fh0(int j, double* k, double* h, double* y, double* J, double nu, double ut){ 
    return 6.0*nu/(.072*y[j]*y[j]);} 
double U_Exact(double L, int j, double rho, double nu, double dpdx, double y, double k, 
double h, double ut, int &limit){ 
    return 1.0/rho/nu*dpdx*(y*y/2.0 - L*y);} //laminar solution 
double K_Exact(double L, int j, double rho, double nu, double dpdx, double y, double k, 
double h, double ut, int &limit){ 
    return 0.0;} 
double H_Exact(double L, int j, double rho, double nu, double dpdx, double y, double k, 
double h, double ut, int &limit){ 
    return 6.0*.01/(.072*y*y);} 
double U_Init(double L, int j, double rho, double nu, double dpdx, double y, double k, 
double h, double ut, int &limit){ 
    return 1.0/rho/nu*dpdx*(y*y/2.0 - L*y);} 
double K_Init(double L, int j, double rho, double nu, double dpdx, double y, double k, 
double h, double ut, int &limit){ 
    return y/L*ut*ut;} 
double H_Init(double L, int j, double rho, double nu, double dpdx, double y, double k, 
double h, double ut, int &limit){ 
    return 6.0*.01/(.072*y*y);} 
 
 
int TriDiagSolver(int n, double* a, double* b, double* c, double* x, double* d)  
//returns x=[A]^-1 B 
{ 
// n = size of matrix 
// a = Lower Diagonal 
// b = Diagonal 
// c = Upper Diagonal 
// d = Right-Hand Side 
// x = vector of unknowns 
    int k; 
    double m; 
    for(k = 2; k <=n; k++) 
    { 
        m = a[k]/b[k-1]; 
        b[k] = b[k] - m*c[k-1]; 
        d[k] = d[k] - m*d[k-1]; 
    } 
    x[n] = d[n]/b[n]; 
    for(k = n-1; k > 0; k--) x[k] = (d[k] - c[k]*x[k+1])/b[k]; 
    return 0; 
} 
 
int initzero(int size, double* a) 
{ 
    for(int i = 0; i < size; i++) a[i] = 0.0; 
    return 0; 
} 



314 
 
int Jacobian_Exact(int n, double length, double growth, double* y_face, double* ynodes, 
double* Jfaces, double* Jnodes) //Exact Roberts 
{ 
    int i; 
    //Exact Roberts Transformation 
    for(i = 0; i <= n; i++) Jfaces[i] = double(n)*2.0*growth/(length*(growth*growth - 
pow((1.0 - (y_face[i]/length)),2))*log((growth + 1.0)/(growth - 1.0))); 
    for(i = 1; i <= n; i++) Jnodes[i] = double(n)*2.0*growth/(length*(growth*growth - 
pow((1.0 - (ynodes[i]/length)),2))*log((growth + 1.0)/(growth - 1.0))); 
    return 0; 
} 
 
int Jacobian_Difference(int n, double length, double growth, double* y_face, double* 
ynodes, double* Jfaces, double* Jnodes) //Central Difference Approximation 
{ 
    int i; 
    //Numerical approximation for J 
    Jfaces[0] = 2.0/(-3.0*y_face[0] + 4.0*y_face[1] - y_face[2]); 
    for(i = 1; i < n; i++) Jfaces[i] = 2.0/(y_face[i+1] - y_face[i-1]); 
    Jfaces[n] = -2.0/(-3.0*y_face[n] + 4.0*y_face[n-1] - y_face[n-2]); 
     
    Jnodes[1] = 3.0/(-4.0*ynodes[0] + 3.0*ynodes[1] + ynodes[2]); 
    for(i = 2; i < n; i++) Jnodes[i] = 2.0/(ynodes[i+1] - ynodes[i-1]); 
    Jnodes[n] = -3.0/(-4.0*ynodes[n+1] + 3.0*ynodes[n] + ynodes[n-1]); 
     
    return 0; 
} 
 
int Jacobian_Coarse(int n, double length, double growth, double* y_face, double* ynodes, 
double* Jfaces, double* Jnodes) //Central Difference Approximation - very coarse 
{ 
    int i; 
    //Numerical approximation for J 
    Jfaces[0] = 2.0/(-3.0*y_face[0] + 4.0*y_face[1] - y_face[2]); 
    for(i = 1; i < n; i++) Jfaces[i] = 2.0/(y_face[i+1] - y_face[i-1]); 
    Jfaces[n] = -2.0/(-3.0*y_face[n] + 4.0*y_face[n-1] - y_face[n-2]); 
     
    for(i = 1; i <= n; i++) Jnodes[i] = 1.0/(y_face[i] - y_face[i-1]); //very coarse 
approximation! 
    return 0; 
} 
 
int UniformGrid(int n, double length, double growth, double* y_face, double* ynodes, 
double* Jfaces, double* Jnodes) //Central Difference Approximation - very coarse 
{ 
    int i; 
    //uniform grid 
    for(i = 0; i <= n; i++) //faces 
    { 
        y_face[i] = length/double(n)*double(i); 
        Jfaces[i] = double(n)/length; 
    } 
    for(i = 1; i <= n; i++) //nodes 
    { 
        ynodes[i] = length/double(n)*(double(i)-.5); 
        Jnodes[i] = double(n)/length; 
    } 
    ynodes[0] = y_face[0]; 
    ynodes[n+1] = y_face[n]; 
    Jnodes[0] = Jfaces[0]; 
    Jnodes[n+1] = Jfaces[n]; 
    return 0; 
} 
     
int makegrid(int n, double length, double growth, double* y_face, double* ynodes, double* 
Jfaces, double* Jnodes) 
{ 
    int i; 
    double sum = 0.0; 
    for(i = 1; i <= n; i++) sum += pow(growth,i); 
    double mult = length/sum; 
 
//    y_face[0] = 0.0; 
//    for (i = 1; i < n; i++) y_face[i] = y_face[i-1]+pow(growth,i)*mult; //exponential 
growth 
//    y_face[n] = length; 
//    for(i = 0; i <= n; i++) y_face[i] = length*double(i*i)/double(n*n); //quadratic 
growth 



315 
 
    //Exact Roberts Transformation 
    for(i = 0; i <= n; i++) y_face[i] = length*((growth + 1.0) - (growth - 
1.0)*(pow(((growth + 1.0)/(growth-1.0)),1.0-double(i)/double(n))))/(pow(((growth + 
1.0)/(growth - 1.0)),1.0-double(i)/double(n)) + 1.0); 
    for(i = 1; i <= n; i++) ynodes[i] = length*((growth + 1.0) - (growth - 
1.0)*(pow(((growth + 1.0)/(growth-1.0)),1.0-(double(i)-.5)/double(n))))/(pow(((growth + 
1.0)/(growth - 1.0)),1.0-(double(i)-.5)/double(n)) + 1.0); 
    ynodes[0] = y_face[0]; 
    ynodes[n+1] = y_face[n]; 
     
//    Jacobian_Exact(n,length,growth,y_face,ynodes,Jfaces,Jnodes); 
//    Jacobian_Difference(n,length,growth,y_face,ynodes,Jfaces,Jnodes); 
    Jacobian_Coarse(n,length,growth,y_face,ynodes,Jfaces,Jnodes); 
 
    Jnodes[0] = Jfaces[0]; 
    Jnodes[n+1] = Jfaces[n]; 
 
//    UniformGrid(n,length,growth,y_face,ynodes,Jfaces,Jnodes); 
 
    return 0; 
} 
 
int Transport(int n, double* phi, double alpha, double omega, double* TU, double* TL, 
double* TD, double* B, int print, int& limit) 
{ 
    int j; 
    double* phi_old = new double[n+2]; 
     
    if(print) 
    { 
        for(j = 1; j <= n; j++) 
        { 
            printf("%13.14f * %13.14f + %13.14f * %13.14f + %13.14f * 
%13.14f\n",TL[j],phi[j-1],TD[j],phi[j],TU[j],phi[j+1]); 
            printf(" = %13.14f vs %13.14f\n", B[j],TL[j]*phi[j-
1]+TD[j]*phi[j]+TU[j]*phi[j+1]); 
        } 
    } 
     
    B[1] = B[1] - (1.0 - alpha)*TU[1]*phi[2]; TU[1] = alpha*TU[1]; 
    for(j = 2; j < n; j++) 
    { 
        B[j] = B[j] - (1.0-alpha)*(TL[j]*phi[j-1] + TU[j]*phi[j+1]); 
        TL[j] = alpha*TL[j]; 
        TU[j] = alpha*TU[j]; 
    } 
    B[n] = B[n] - (1.0 - alpha)*TL[n]*phi[n-1]; TL[n] = alpha*TL[n]; 
    for(j = 1; j <= n; j++) phi_old[j] = phi[j]; 
     
    TriDiagSolver(n,TL,TD,TU,phi,B); 
    for(j = 1; j <= n; j++) 
    { 
        if(phi[j] != phi[j]) 
        { 
            cout<<endl<<" ------> NAN detected. "<<j<<" "<<phi[j]<<endl; 
            return 1; 
        } 
        phi[j] = phi_old[j] + omega*(phi[j] - phi_old[j]); 
        if(limit > 0) 
        { 
            if(phi[j] < 0.0) 
            { 
                phi[j] = 1.0e-16; 
                limit ++; 
            } 
        } 
    } 
     
    delete phi_old; 
 
    return 0; 
} 
 
int main (int argc, char * const argv[]) 
{ 
    int i,j,iter,ulimit,klimit,hlimit,limit; 
    double alphau, alphak, alphah; 
//    double omegau, omegak, omegah; 



316 
    double omega,J0; 
    double urms,krms,hrms, urms_face, krms_face, hrms_face; 
    double L = 0.5; 
    double growth = 1.02; 
    int n = 25;    //number of cells 
     
    int itermax = 100000; 
    int print = 1000; 
 
    //Blending factors (1 = TDA) (0 = PSUR) 
    alphau = alphak = alphah = 0.5; 
     
    //Relaxation Factors 
//    omegau = omegak = omegah = .001; 
    omega = 0.05; 
     
    FILE* pfile; 
    int initfile = 1;  //set to 0 for algebraic initialization 
 
    int m_h = 1; 
    int forcekp = 1; //force k prime if this is set to 1 
    double dkpdyp = 0.0;    //dk+/dy+ if it is forced 
    int ulimiter = 0; // 1 limits to positive numbers 
    int klimiter = 1; 
    int hlimiter = 1; 
 
    double nu = .01; 
    double rho = .1; 
    double dpdx = -7.2; 
    double tw = -dpdx*L; 
    double ut = sqrt(tw/rho); 
     
    double sigmak = 2.0; 
    double sigmah = 2.0; 
 
    double* y_face = new double[n+2]; 
    double* y = new double[n+2]; 
    double* Jfaces = new double[n+2]; 
    double* J = new double[n+2]; 
    double* dy = new double[n+2]; 
    double* u = new double[n+2]; 
    double* k = new double[n+2]; 
    double* h = new double[n+2]; 
    double* u_face = new double[n+2]; 
    double* k_face = new double[n+2]; 
    double* h_face = new double[n+2]; 
    double* up = new double[n+2]; 
    double* upp = new double[n+2]; 
    double* kp = new double[n+2]; 
    double* Jp = new double[n+2]; 
    double* Gamma = new double[n+2]; 
 
    double* TU = new double[n+2]; 
    double* TD = new double[n+2]; 
    double* TL = new double[n+2]; 
    double* B = new double[n+2]; 
 
    double* exactu = new double[n+2]; 
    double* exactk = new double[n+2]; 
    double* exacth = new double[n+2]; 
 
    double* exactu_face = new double[n+2]; 
    double* exactk_face = new double[n+2]; 
    double* exacth_face = new double[n+2]; 
 
    initzero(n+2,y_face); 
    initzero(n+2,y); 
    initzero(n+2,Jfaces); 
    initzero(n+2,J); 
    initzero(n+2,dy); 
    initzero(n+2,u); 
    initzero(n+2,up); 
    initzero(n+2,upp); 
    initzero(n+2,k); 
    initzero(n+2,kp); 
    initzero(n+2,Jp); 
    initzero(n+2,h); 
    initzero(n+2,Gamma); 
    initzero(n+2,TU); 



317 
    initzero(n+2,TD); 
    initzero(n+2,TL); 
    initzero(n+2,B); 
    initzero(n+2,exactu); 
    initzero(n+2,exactk); 
    initzero(n+2,exacth); 
    initzero(n+2,exactu_face); 
    initzero(n+2,exactk_face); 
    initzero(n+2,exacth_face); 
     
    makegrid(n,L,growth,y_face,y,Jfaces,J); 
    J0 = (3.0*J[1] - J[2])/2.0; 
     
    //write Fluent grid file 
    double dx = L/double(n); 
    FILE* ffile; 
    ffile = fopen("msh_paste.txt","w"); 
    fprintf(ffile,"info: %d x %d grid cells\n",n,5); 
    fprintf(ffile,"dx = %13.14e\n",dx); 
    fprintf(ffile,"growth (beta) = %13.14e\n",growth); 
    fprintf(ffile,"length (L) = %13.14e\n",L); 
     
    fprintf(ffile,"    %13.14e     %13.14e\n",5.0*dx,y_face[0]); 
    fprintf(ffile,"    %13.14e     %13.14e\n",0.0,y_face[0]); 
    for(j = 1; j < 5; j++) fprintf(ffile,"    %13.14e     
%13.14e\n",double(j)*dx,y_face[0]); 
    fprintf(ffile,"    %13.14e     %13.14e\n",0.0,y_face[n]); 
    fprintf(ffile,"    %13.14e     %13.14e\n",5.0*dx,y_face[n]); 
    for(j = 4; j > 0; j--) fprintf(ffile,"    %13.14e     
%13.14e\n",double(j)*dx,y_face[n]); 
    for(j = 1; j < n; j++) fprintf(ffile,"    %13.14e     %13.14e\n",0.0,y_face[j]); 
    for(j = 1; j < n; j++) fprintf(ffile,"    %13.14e     %13.14e\n",5.0*dx,y_face[j]); 
    for(i = n-1; i > 0; i--) 
    { 
        for(j = 1; j < 5; j++) fprintf(ffile,"    %13.14e     
%13.14e\n",double(j)*dx,y_face[i]); 
    } 
    fclose(ffile); 
 
    //initialize 
    for(j = 0; j <= n+1; j++) 
    { 
        exactu[j] = U_Exact(L,j,rho,nu,dpdx,y[j],k[j],h[j],ut,limit); 
        exactk[j] = K_Exact(L,j,rho,nu,dpdx,y[j],k[j],h[j],ut,limit); 
        exacth[j] = H_Exact(L,j,rho,nu,dpdx,y[j],k[j],h[j],ut,limit); 
        exactu_face[j] = U_Exact(L,j,rho,nu,dpdx,y_face[j],k[j],h[j],ut,limit); 
        exactk_face[j] = K_Exact(L,j,rho,nu,dpdx,y_face[j],k[j],h[j],ut,limit); 
        exacth_face[j] = H_Exact(L,j,rho,nu,dpdx,y_face[j],k[j],h[j],ut,limit); 
 
        u[j] = U_Init(L,j,rho,nu,dpdx,y_face[j],k[j],h[j],ut,limit); 
        k[j] = K_Init(L,j,rho,nu,dpdx,y_face[j],k[j],h[j],ut,limit); 
        h[j] = H_Init(L,j,rho,nu,dpdx,y_face[j],k[j],h[j],ut,limit); 
 
    } 
    if(initfile) 
    { 
        string enter; 
        pfile = fopen("rstrt_1998_100.txt","r"); 
        double ycur,yprev,ucur,uprev,kcur,kprev,hcur,hprev; 
        fscanf(pfile,"%lf %lf %lf %lf",&ycur,&ucur,&kcur,&hcur); 
        u[0] = ucur; k[0] = kcur; h[0] = hcur; 
        j = 1; 
        while(j<n+1) 
        { 
            while(ycur > y[j]) 
            { 
                u[j] = (y[j] - yprev)/(ycur - yprev)*(ucur - uprev) + uprev; 
                k[j] = (y[j] - yprev)/(ycur - yprev)*(kcur - kprev) + kprev; 
                h[j] = (y[j] - yprev)/(ycur - yprev)*(hcur - hprev) + hprev; 
                j++; 
            } 
            yprev = ycur; uprev = ucur; kprev = kcur; hprev = hcur; 
            fscanf(pfile,"%lf %lf %lf %lf",&ycur,&ucur,&kcur,&hcur); 
        } 
        fclose(pfile); 
    } 
    u[n+1] = u[n]; k[n+1] = k[n]; h[n+1] = h[n]; 
    do{ 
        for(iter = 0; iter < itermax; iter++) 



318 
        { 
            ulimit = ulimiter; 
            klimit = klimiter; 
            hlimit = hlimiter; 
 
            //u solver 
            limit = 0; 
            for(j = 1; j <= n; j++) 
            { 
                Gamma[j] = nu + fnu(L,j,rho,nu,dpdx,y[j],k[j],h[j],ut,limit); 
                B[j] = fu(L,j,rho,nu,dpdx,y[j],k[j],h[j],ut,limit)/J[j]; 
            } 
            TL[1] = 0.0; 
            TD[1] =  (Gamma[2] + Gamma[1])*(J[2] + J[1])/4.0 + 9.0*(3.0*Gamma[1] - 
Gamma[2])*(3.0*J[1] - J[2])/12.0; 
            TU[1] = -(Gamma[2] + Gamma[1])*(J[2] + J[1])/4.0 - 1.0*(3.0*Gamma[1] - 
Gamma[2])*(3.0*J[1] - J[2])/12.0;  
            for(j = 2; j <= n-1; j++) 
            { 
                TL[j] = -(Gamma[j-1] + Gamma[j])*(J[j-1] + J[j])/4.0; 
                TU[j] = -(Gamma[j+1] + Gamma[j])*(J[j+1] + J[j])/4.0; 
                TD[j] = -TL[j]-TU[j]; 
            } 
            TL[n] = -(Gamma[n-1] + Gamma[n])*(J[n-1] + J[n])/4.0; 
            TD[n] = -TL[n]; 
            TU[n] = 0.0; 
 
            if(Transport(n, u, alphau, omega, TU, TL, TD, B, 0, ulimit)) break; 
            tw = rho*(3.0*Gamma[1] - Gamma[2])*J0/2.0*(9.0*u[1] - u[2])/3.0; 
            ut = sqrt(tw/rho); 
 
            //k solver 
            for(j = 1; j <= n; j++) Gamma[j] = nu + 
fnu(L,j,rho,nu,dpdx,y[j],k[j],h[j],ut,limit)/sigmak; 
            if(forcekp) //correct no-slip boundary conditions 
            { 
                TL[1] = 0.0; TD[1] = 9.0; TU[1] =-1.0; B[1] = 
3.0*dkpdyp*pow(ut,3)/(nu*J0); 
            } 
            else //incorrect no-slip boundary conditions 
            { 
                up[1] = (3.0*u[1] + u[2])/3.0; kp[1] = (3.0*sqrt(k[1]) + sqrt(k[2]))/3.0; 
                TL[1] = 0.0; 
                TD[1] =  (Gamma[2] + Gamma[1])*(J[2] + J[1])/4.0 + 9.0*(3.0*Gamma[1] - 
Gamma[2])*(3.0*J[1] - J[2])/12.0; 
                TU[1] = -(Gamma[2] + Gamma[1])*(J[2] + J[1])/4.0 - 1.0*(3.0*Gamma[1] - 
Gamma[2])*(3.0*J[1] - J[2])/12.0; 
                B[1] = fk1(L,1,rho,nu,dpdx,y[1],k[1],h[1],ut,limit)*up[1]*up[1]*J[1] - 
fk2(L,1,rho,nu,dpdx,y[1],k[1],h[1],ut,limit)/J[1] - 
2.0*fk3(L,1,rho,nu,dpdx,y[1],k[1],h[1],ut,limit)*kp[1]*kp[1]*J[1]; 
            } 
             
            for(j = 2; j <= n-1; j++) 
            { 
                up[j] = (u[j+1] - u[j-1])/2.0; kp[j] = (sqrt(k[j+1]) - sqrt(k[j-1]))/2.0; 
                TL[j] = -(Gamma[j-1] + Gamma[j])*(J[j-1] + J[j])/4.0; 
                TU[j] = -(Gamma[j+1] + Gamma[j])*(J[j+1] + J[j])/4.0; 
                TD[j] = -TL[j]-TU[j]; 
            } 
            up[n] = (u[n] - u[n-1])/2.0; kp[n] = (sqrt(k[n]) - sqrt(k[n-1]))/2.0; 
            TL[n] = -(Gamma[n-1] + Gamma[n])*(J[n-1] + J[n])/4.0; 
            TD[n] = -TL[n]; 
            TU[n] = 0.0; 
            for(j = 2; j <= n; j++) 
            { 
                B[j] = fk1(L,j,rho,nu,dpdx,y[j],k[j],h[j],ut,limit)*up[j]*up[j]*J[j] - 
fk2(L,j,rho,nu,dpdx,y[j],k[j],h[j],ut,limit)/J[j] - 
2.0*fk3(L,j,rho,nu,dpdx,y[j],k[j],h[j],ut,limit)*kp[j]*kp[j]*J[j]; 
            } 
            if(Transport(n, k, alphak, omega, TU, TL, TD, B, 0, klimit)) break; 
 
            //h solver 
            for(j = 1; j <= n; j++) Gamma[j] = nu + 
fnu(L,j,rho,nu,dpdx,y[j],k[j],h[j],ut,limit)/sigmah; 
            if(m_h > 0) //near-wall asymptotic solution is used 
            { 
                for(j = 1; j <= m_h; j++) 
                { 
                    TL[j] = 0.0; TD[j] = 1.0; TU[j] = 0.0; B[j] = fh0(j,k,h,y,J,nu,ut); 



319 
                } 
            } 
            else    //near-wall asymptotic solution only used directly on boundary 
            { 
                h[0] = fh0(0,k,h,y,J,nu,ut); 
                up[1] = (3.0*u[1] + u[2])/3.0; upp[1] = (-75.0*u[1] + 30.0*u[2] - 
3.0*u[3])/15.0; Jp[1] = (-4.0*J[0] + 3.0*J[1] + J[2])/3.0; 
                TL[1] = 0.0; 
                TD[1] =  (Gamma[2] + Gamma[1])*(J[2] + J[1])/4.0 + 9.0*(3.0*Gamma[1] - 
Gamma[2])*(3.0*J[1] - J[2])/12.0; 
                TU[1] = -(Gamma[2] + Gamma[1])*(J[2] + J[1])/4.0 - 1.0*(3.0*Gamma[1] - 
Gamma[2])*(3.0*J[1] - J[2])/12.0; 
                B[1] = 8.0/12.0*(3.0*Gamma[1] - Gamma[2])*(3.0*J[1] - J[2])*h[0] + 
fh1(L,1,rho,nu,dpdx,y[1],k[1],h[1],ut,limit)*up[1]*up[1]*J[1] - 
fh2(L,1,rho,nu,dpdx,y[1],k[1],h[1],ut,limit)/J[1]; 
                B[1] += fh3(L,1,rho,nu,dpdx,y[1],k[1],h[1],ut,limit)*pow((Jp[1]*up[1] + 
J[1]*upp[1]),2)*J[1]; 
            } 
             
            for(j = max(m_h+1,2); j <= n-1; j++) 
            { 
                up[j] = (u[j+1] - u[j-1])/2.0; upp[j] = (u[j+1] - 2.0*u[j] + u[j-1]); 
Jp[j] = (J[j+1] - J[j-1])/2.0; 
                TL[j] = -(Gamma[j-1] + Gamma[j])*(J[j-1] + J[j])/4.0; 
                TU[j] = -(Gamma[j+1] + Gamma[j])*(J[j+1] + J[j])/4.0; 
                TD[j] = -TL[j]-TU[j]; 
            } 
            up[n] = (u[n] - u[n-1])/2.0; upp[n] = (-u[n] + u[n-1]); Jp[n] = (J[n] - J[n-
1])/2.0; 
            TL[n] = -(Gamma[n-1] + Gamma[n])*(J[n-1] + J[n])/4.0; 
            TD[n] = -TL[n]; 
            TU[n] = 0.0; 
            for(j = max(m_h+1,2); j <= n; j++) 
            { 
                B[j] = fh1(L,j,rho,nu,dpdx,y[j],k[j],h[j],ut,limit)*up[j]*up[j]*J[j] - 
fh2(L,j,rho,nu,dpdx,y[j],k[j],h[j],ut,limit)/J[j]; 
                B[j] += fh3(L,j,rho,nu,dpdx,y[j],k[j],h[j],ut,limit)*pow((Jp[j]*up[j] + 
J[j]*upp[j]),2)*J[j]; 
            } 
            if(Transport(n, h, alphah, omega, TU, TL, TD, B, 0, hlimit)) break; 
 
            //Interpolate to faces 
            u_face[0] = 0.0; 
            k_face[0] = 0.0; 
            h_face[0] = fh0(0,k,h,y,J,nu,ut); 
            for(j = 1; j < n; j++) 
            { 
                u_face[j] = .5*(u[j] + u[j+1]); 
                k_face[j] = .5*(k[j] + k[j+1]); 
                h_face[j] = .5*(h[j] + h[j+1]); 
            } 
            u_face[n] = (3.0*u[n] - u[n-1])/2.0; 
            k_face[n] = (3.0*k[n] - k[n-1])/2.0; 
            h_face[n] = (3.0*h[n] - h[n-1])/2.0; 
 
            //Calculate Error 
            urms = krms = hrms = urms_face = krms_face = hrms_face = 0.0; 
            for(j = 1; j <= n; j++) 
            { 
                urms += pow(exactu[j] - u[j],2); 
                krms += pow(exactk[j] - k[j],2); 
                hrms += pow(exacth[j] - h[j],2); 
            } 
            for(j = 0; j <= n; j++) 
            { 
                urms_face += pow(exactu_face[j] - u_face[j],2); 
                krms_face += pow(exactk_face[j] - k_face[j],2); 
                hrms_face += pow(exacth_face[j] - h_face[j],2); 
            } 
            urms = sqrt(urms/n); krms = sqrt(krms/n); hrms = sqrt(hrms/n); 
            urms_face = sqrt(urms_face/(n+1)); krms_face = sqrt(krms_face/(n+1)); 
hrms_face = sqrt(hrms_face/(n+1)); 
        } 
 
    cout<<"writing face.txt"<<endl; 
    //write results to file 
    pfile = fopen("face.txt","w"); 
    fprintf(pfile,"i\ty_faces\tu\tk\th\ty_plus\tu_plus\tk_plus\te_plus\tw_plus\tnut\n"); 
    for(j = 0; j <= n; j++) fprintf(pfile,"%d  %13.14e  %13.14e %13.14e %13.14e %13.14e 



320 
%13.14e %13.14e %13.14e %13.14e %13.14e\n",j,y_face[j],u_face[j],k_face[j],h_face[j], 
y_face[j]*ut/nu, u_face[j]/ut, k_face[j]/ut/ut, 
h_face[j]*nu/pow(ut,4),h_face[j]*nu/ut/ut,fnu(L,j,rho,nu,dpdx,y_face[j],k_face[j],h_face[
j],ut,limit)); 
    fclose(pfile); 
 
    cout<<"writing cell.txt"<<endl; 
    //write results to file 
    pfile = fopen("cell.txt","w"); 
    fprintf(pfile,"i\ty_cell\tu\tk\th\ty_plus\tu_plus\tk_plus\te_plus\tw_plus\tnut\n"); 
    for(j = 1; j <= n; j++) fprintf(pfile,"%d  %13.14e  %13.14e %13.14e %13.14e %13.14e 
%13.14e %13.14e %13.14e %13.14e %13.14e\n",j,y[j],u[j],k[j],h[j], y[j]*ut/nu, u[j]/ut, 
k[j]/ut/ut, 
h[j]*nu/pow(ut,4),h[j]*nu/ut/ut,fnu(L,j,rho,nu,dpdx,y[j],k[j],h[j],ut,limit)); 
    fclose(pfile); 
 
    cout<<"writing rstrt.txt"<<endl; 
    //write rstrt file 
    pfile = fopen("rstrt.txt","w"); 
    for(j = 0; j <= n; j++) fprintf(pfile,"%13.14e  %13.14e %13.14e 
%13.14e\n",y_face[j],u_face[j],k_face[j],h_face[j]); 
    fclose(pfile); 
 
        printf("\n  iter %d exact u = %13.14e  k = %13.14e  h = 
%13.14e\n",iter,exactu_face[n],exactk_face[n],exacth_face[n]); 
        printf("  iter %d calc  u = %13.14e  k = %13.14e  h = 
%13.14e\n\n",iter,u_face[n],k_face[n],h_face[n]); 
         
        cout<<"error info at nodes: "<<endl; 
        printf("%13.14e %13.14e %13.14e %13.14e\n",double(L)/double(n),urms,krms,hrms); 
        cout<<"error info at faces: "<<endl; 
        printf("%13.14e %13.14e %13.14e 
%13.14e\n",double(L)/double(n),urms_face,krms_face,hrms_face); 
        cout<<endl<<"tw \t\t y+(l) \t\t u+(l) \t\t k+(l) \t\t h+(l)"<<endl; 
        printf("%13.14e %13.14e %13.14e %13.14e %13.14e\n", tw, y_face[n]*ut/nu, 
u_face[n]/ut, k_face[n]/ut/ut, h_face[n]*nu/pow(ut,4)); 
        cout<<"enter omega ("<<omega<<") (0 -> quit):"; 
        cin>>omega; 
    }while(omega > 0.0); 
     
 
    return 0; 
} 
 

 



321 

APPENDIX F 

COORDINATE TRANSFORMATIONS IN CARTESIAN COORDINATES 

I. Transformation Definitions 

 Complex geometries are often modeled using a body-fitted coordinate system known as curvilinear 

coordinates. In two dimensions, this coordinate system is created by assuming that a computational domain 

(ξ ,η) can be defined by a transformation of the physical domain (x ,y ) where 

 
),(

),(

ηξ

ηξ

yy

xx

=

=

 (F.1) 

The coordinate transformation function must be continuous over the entire domain. The determinant of the 

Jacobian transformation matrix, referred to here as simply the Jacobian and given the symbol J, is defined 

as  

 
xyyx

yx

yx

yx
J

,,,,

,,

,,

),(

),(
ηξηξ

ηη

ξξηξ
−==

∂

∂
≡  (F.2) 

The Jacobian can be evaluated from 

 
ξηηξηξ

ηξ

ηξ ,,,,,,

,,

1

1
1

),(

),(
1

1

yxyxyy

xxyx

J
J

−
==

∂

∂
==

−

 (F.3) 

by using second-order central differences in the computational domain. Using the chain rule, partial 

derivatives can be expressed as 

 

η
η

ξ
ξ

η
η

ξ
ξ

∂

∂
+

∂

∂
=

∂

∂

∂

∂
+

∂

∂
=

∂

∂

yy

xx

y

x

,,

,,

 (F.4) 

The metrics 
x,

ξ , 
y,

ξ , 
x,

η , and 
y,

η  can be evaluated by applying the relationship 

 ⎥
⎦

⎤
⎢
⎣

⎡

−

−
=⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
−

ξξ

ηη

ηξ

ηξ

ηη

ξξ

,,

,,

1

,,

,,

,,

,,

xy

xy
J

yy

xx

yx

yx
 (F.5) 

This gives 



322 

 

ξ

ξ

η

η

η

η

ξ

ξ

,,

,,

,,

,,

Jx

Jy

Jx

Jy

y

x

y

x

=

−=

−=

=

 (F.6) 

Therefore, partial derivatives of any continuously differentiable scalar, φ , in the physical domain can be 

written as partial derivatives in the computational domain according to 

 

)(

)(

,,,,,

,,,,,

ξηηξ

ηξξη

φφφ
φ

φφφ
φ

xxJ
y

yyJ
x

y

x

−==
∂

∂

−==
∂

∂

 (F.7) 

 In this work, the grids are confined to orthogonal, rectilinear grids. Therefore, )(ξxx = , )(ηyy = , and 

0
,,

==
xy

ηξ . Equations (F.2) and (F.3) simplify to 

 
yx

y

x

yx
J ,,

,

,

0

0

),(

),(
ηξ

η

ξηξ
==

∂

∂
≡  (F.8) 

 
ηξη

ξ

ηξ ,,,

,

1

1

0

0
1

),(

),(
1

1

yxy

xyx

J
J ==

∂

∂
==

−

 (F.9) 

Partial derivatives can be expressed as 

 

η
η

ξ
ξ

∂

∂
=

∂

∂

∂

∂
=

∂

∂

y

x

y

x

,

,

 (F.10) 

where 

 
ξ

η

η

ξ

,,

,,

Jx

Jy

y

x

=

=
 (F.11) 

In this work, the contravariant velocity components are defined as 

 

y

x

VxV

VyV

ξη

ηξ

,

,

≡

≡

 (F.12) 

 



323 

II. Scalar Transport Coordinate Transformations 

A. General Scalar Transport 

 The general steady-state scalar transport equation is written in vector form as 

 S+∇Γ⋅∇=∇⋅ )()( φφV  (F.13) 

The two-dimensional steady-state transport equation for any scalar, φ , can be written in Cartesian 

coordinates as 

 S
yyxxy

V

x

V yx +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
Γ

∂

∂
+⎟

⎠

⎞
⎜
⎝

⎛

∂

∂
Γ

∂

∂
=

∂

∂
+

∂

∂ φφφφ )()(
 (F.14) 

where Γ  is the diffusion coefficient and S  represents the source terms. Applying Eq. (F.10) to Eq. (F.14) 

gives 

 S
VV

yyxx

y

y

x

x
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂
Γ

∂

∂
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂
Γ

∂

∂
=

∂

∂
+

∂

∂

η

φ
η

η
η

ξ

φ
ξ

ξ
ξ

η

φ
η

ξ

φ
ξ

,,,,,,

)()(
 (F.15) 

Applying Eq. (F.11) gives 

 SJxJxJyJy
V

Jx
V

Jy
yx +⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂
Γ

∂

∂
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂
Γ

∂

∂
=

∂

∂
+

∂

∂

η

φ

ηξ

φ

ξη

φ

ξ

φ
ξξηηξη ,,,,,,

)()(
 (F.16) 

Simplifying gives the two-dimensional steady-state scalar transport equation in the transformed coordinate 

system 

 
J

S
JxJy

VV
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂
Γ

∂

∂
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂
Γ

∂

∂
=

∂

∂
+

∂

∂

η

φ

ηξ

φ

ξη

φ

ξ

φ
ξη

ηξ 2
,

2
,

)()(
 (F.17) 

 

B. Source Terms 

 Each transport equation has its own definition for a transport property, φ , diffusion coefficient, Γ , and 

source term, S . Table F.1 shows these definitions in Cartesian coordinates for the transport equations used 

in this research. The source term in many of the turbulence models includes the squared magnitude of the 

strain-rate tensor. For conciseness, this magnitude is given the symbol 2

V
S  and is defined as 

 )V(S)V(S
v

v

v

v

⋅≡

2

V
S  (F.18) 

 



324 

 

Table F.1. Transport equation terms 

Transport Equation φ  Γ S 

Continuity 1 0 0 

X-Momentum x
V

 
t

νν +  
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
Γ

∂

∂
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
Γ

∂

∂
+

∂

∂
−

x

V

yx

V

xx

p yx
ˆ1

ρ
 

Y-Momentum 
y

V

 
t

νν +  ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
Γ

∂

∂
+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
Γ

∂

∂
+

∂

∂
−

y

V

xy

V

yy

p
xy

ˆ1

ρ
 

Kinetic Energy k  kt
σνν +  

2

2

1 kVk
fSf −  

Dissipation ε  
ε

σνν
t

+  
2

2

1 εε
fSf

V
−  

Dissipation Frequency ω  
ω

σνν
t

+  
2

2

1 ωω
fSf

V
−  

 

 

The source term in some turbulence models includes the squared magnitude of the rotation tensor. For 

conciseness, this magnitude is given the symbol 2

V
Ω  and is defined as 

 (V)Ω(V)Ω
v

v

v

v

⋅≡Ω
2

V
 (F.19) 

All derivatives in the source terms must be converted from Cartesian coordinates to the transformed 

coordinate system. These transformations are shown in this section. 

 

1. Continuity 

 Applying the continuity equation definitions given in Table F.1 to Eq. (F.17) gives the continuity 

equation in curvilinear coordinates 

 0=
∂

∂
+

∂

∂

ηξ

ηξ VV
 (F.20) 

 



325 

2. x-Momentum 

 Applying Eqs. (F.10) and (F.11) to the x-momentum source terms gives 

 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
Γ

∂

∂
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
Γ

∂

∂
+

∂

∂
−=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
Γ

∂

∂
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
Γ

∂

∂
+

∂

∂
−=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
Γ

∂

∂
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
Γ

∂

∂
+

∂

∂
−=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
Γ

∂

∂
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
Γ

∂

∂
+

∂

∂
−=

ξηξξξρ

ξ
ξ

ηξξξρ

ξ
ξ

η
η

ξ
ξ

ξ
ξ

ξρ
ξ

ρ

ηη

ξηηη

yx

y

x

x

y

xy

x

xxx

yx

x

V
J

V
JJy

p
Jy

V
Jx

V
JyJy

p
Jy

VVp

x

V

yx

V

xx

p
S

2
,,

,,,,,

,,,,,

ˆ1

ˆ1

ˆ1

ˆ1

 (F.21) 

 

3. y-Momentum 

 Applying Eqs. (F.10) and (F.11) to the y-momentum source terms gives 

 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
Γ

∂

∂
+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
Γ

∂

∂
+

∂

∂
−=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
Γ

∂

∂
+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
Γ

∂

∂
+

∂

∂
−=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
Γ

∂

∂
+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
Γ

∂

∂
+

∂

∂
−=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
Γ

∂

∂
+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
Γ

∂

∂
+

∂

∂
−=

ηξηηηρ

ηξ
ξ

ηηηρ

η
η

ξ
ξ

η
η

η
η

ηρ
η

ρ

ξξ

ξξξξ

xy

x

x

y

x

yx

y

yyy

xy

y

V
J

V
JJx

p
Jx

V
Jx

V
JxJx

p
Jx

VVp

y

V

xy

V

yy

p
S

2
,,

,,,,,

,,,,,

ˆ1

ˆ1

ˆ1

ˆ1

 (F.22) 

 

4. Strain-Rate Tensor 

 The strain-rate tensor can be written for two-dimensional flow in Cartesian coordinates as 

 

222

2

2

1

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
+

∂

∂
+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂
=⋅≡

x

V

y

V

y

V

x

V
S

yxyx
V )V(S)V(S

v

v

v

v

 (F.23) 

Applying Eqs. (F.10) and (F.11) gives 



326 

 

2

,,

2

,

2

,

2

,,

2

,

2

,

222

2

2

1

2

1

2

1

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
+

∂

∂
+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
+

∂

∂
+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
+

∂

∂
+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
=

ξηηξ

ξ
ξ

η
η

η
η

ξ
ξ

ηξξη

yxyx

y

x
x

y

y

y
x

x

yxyx
V

V
Jy

V
Jx

V
Jx

V
Jy

VVVV

x

V

y

V

y

V

x

V
S

 (F.24) 

 

5. Rotation Tensor 

 The rotation tensor can be written for two-dimensional flow in Cartesian coordinates as 

 

2

2

2

1

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
−

∂

∂
=⋅≡

y

V

x

V
Ω xy

V (V)Ω(V)Ω
v

v

v

v

 (F.25) 

Applying Eqs. (F.10) and (F.11) gives 

 

2

,,

2

,,

2

2

2

1

2

1

2

1

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
−

∂

∂
=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
−

∂

∂
=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
−

∂

∂
=

ηξ

η
η

ξ
ξ

ξη
xy

x
y

y

x

xy

V

V
Jx

V
Jy

VV

y

V

x

V
Ω

 (F.26) 



327 

APPENDIX G 

COORDINATE TRANSFORMATIONS IN CYLINDRICAL COORDINATES 

I. Transformation Definitions 

 Complex geometries are often modeled using a body-fitted coordinate system known as curvilinear 

coordinates. For axisymmetric flow in cylindrical coordinates, this coordinate system is created by 

assuming that a computational domain (ξ ,η) can be defined by a transformation of the physical domain 

(z ,r) where 

 
),(

),(

ηξ

ηξ

rr

zz

=

=

 (G.1) 

The coordinate transformation function must be continuous over the entire domain. The determinant of the 

Jacobian transformation matrix, referred to here as simply the Jacobian and given the symbol J, is defined 

as  

 
zrrz

rz

rz

rz
J ,,,,

,,

,,

),(

),(
ηξηξ

ηη

ξξηξ
−==

∂

∂
≡  (G.2) 

The Jacobian can be evaluated from 

 
ξηηξηξ

ηξ

ηξ ,,,,,,

,,

1

1
1

),(

),(
1

1

rzrzrr

zzrz

J

J
−

==
∂

∂
==

−

 (G.3) 

by using second-order central differences in the computational domain. Using the chain rule, partial 

derivatives can be expressed as 

 

η
η

ξ
ξ

η
η

ξ
ξ

∂

∂
+

∂

∂
=

∂

∂

∂

∂
+

∂

∂
=

∂

∂

rr

zz

r

z

,,

,,

 (G.4) 

The metrics 
z,

ξ , 
r,

ξ , 
z,

η , and 
r,

η  can be evaluated by applying the relationship 

 ⎥
⎦

⎤
⎢
⎣

⎡

−

−
=⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
−

ξξ

ηη

ηξ

ηξ

ηη

ξξ

,,

,,

1

,,

,,

,,

,,

zr

zr
J

rr

zz

rz

rz

 (G.5) 



328 

This gives 

 

ξ

ξ

η

η

η

η

ξ

ξ

,,

,,

,,

,,

Jz

Jr

Jz

Jr

r

z

r

z

=

−=

−=

=

 (G.6) 

Therefore, partial derivatives of any continuously differentiable scalar, φ , in the physical domain can be 

written as partial derivatives in the computational domain according to 

 

)(

)(

,,,,,

,,,,,

ξηηξ

ηξξη

φφφ
φ

φφφ
φ

zzJ
r

rrJ
z

r

z

−==
∂

∂

−==
∂

∂

 (G.7) 

 In this work, the grids are confined to orthogonal, rectilinear grids. Therefore, )(ξzz = , )(ηrr = , and 

0
,,

==
zr

ηξ . Equations (G.2) and (G.3) simplify to 

 
rz

r

z

rz
J

,,

,

,

0

0

),(

),(
ηξ

η

ξηξ
==

∂

∂
≡  (G.8) 

 
ηξη

ξ

ηξ ,,,

,

1

1

0

0
1

),(

),(
1

1

rzr

zrz

J

J ==
∂

∂
==

−

 (G.9) 

Partial derivatives can be expressed as 

 

η
η

ξ
ξ

∂

∂
=

∂

∂

∂

∂
=

∂

∂

r

z

r

z

,

,

 (G.10) 

where 

 
ξ

η

η

ξ

,,

,,

Jz

Jr

r

z

=

=

 (G.11) 

In this work, the contravariant velocity components are defined as 

 

r

z

VzV

VrV

ξη

ηξ

,

,

≡

≡

 (G.12) 

 



329 

II. Scalar Transport Coordinate Transformations 

A. General Scalar Transport 

 The general steady-state scalar transport equation is written in vector form as 

 S+∇Γ⋅∇=∇⋅ )()( φφV  (G.13) 

where Γ  is the diffusion coefficient and S  represents the source terms. The steady-state transport equation 

for any scalar, φ , can be written in cylindrical coordinates as 

 S
zzrrr

r
rrz

V
r

V

r
V

zr
+⎟

⎠

⎞
⎜
⎝

⎛

∂

∂
Γ

∂

∂
+⎟

⎠

⎞
⎜
⎝

⎛

∂

∂
Γ

∂

∂
+⎟

⎠

⎞
⎜
⎝

⎛

∂

∂
Γ

∂

∂
=

∂

∂
+

∂

∂
+

∂

∂ φ

θ

φ

θ

φφ

θ

φφ
θ

111
 (G.14) 

For axisymmetric flow, 0=
θ

V , and Eq. (G.14) reduces to 

 S
zzr

r
rrz

V
r

V
zr

+⎟
⎠

⎞
⎜
⎝

⎛

∂

∂
Γ

∂

∂
+⎟

⎠

⎞
⎜
⎝

⎛

∂

∂
Γ

∂

∂
=

∂

∂
+

∂

∂ φφφφ 1
 (G.15) 

Applying Eq. (G.10) to Eq. (G.15) gives 

 Sr
r

VV
zzrrzzrr

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
Γ

∂

∂
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂
Γ

∂

∂
=

∂

∂
+

∂

∂

ξ

φ
ξ

ξ
ξ

η

φ
η

η
η

ξ

φ
ξ

η

φ
η

,,,,,,

1
 (G.16) 

Applying Eq. (G.11) gives 

 SJrJrJzrJz
r

JrVJzV
zr

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
Γ

∂

∂
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂
Γ

∂

∂
=

∂

∂
+

∂

∂

ξ

φ

ξη

φ

ηξ

φ

η

φ
ηηξξηξ ,,,,,,

1
 (G.17) 

Simplifying gives the two-dimensional steady-state transport equation in the transformed coordinate system 

 
J

S
JrJr

r
zVV +⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂
Γ

∂

∂
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂
Γ

∂

∂
=

∂

∂
+

∂

∂

ξ

φ

ξη

φ

ηξ

φ

η

φ
ηξξη
2
,

2
,

1
 (G.18) 

 Note that the left-hand side of Eq. (G.13) can be written according to the identity 

 )()()( VVV ⋅∇−⋅∇=∇⋅ φφφ  (G.13) 

Applying continuity to this expression gives an alternate form for the right-hand side of Eq. (G.13) 

 
z

VV

rr

Vr

rz

VV

rr

Vr

r

zrzr

∂

∂
−

∂

∂
−

∂

∂
−

∂

∂
+

∂

∂
+

∂

∂
=⋅∇−⋅∇ φ

θ
φφ

φ

θ

φφ
φφ θθ 1)(1)()(1)(1

)()( VV  (G.13) 

Assuming axisymmetric flow 



330 

 
z

V

r

Vr

rz

V

r

Vr

r

zrzr

∂

∂
−

∂

∂
−

∂

∂
+

∂

∂
=⋅∇−⋅∇ φφ

φφ
φφ

)(1)()(1
)()( VV  (G.13) 

Using the chain rule for the first two terms on the left-hand side gives 

 
z

V

r

Vr

rz
V

rr
Vr

z

V

r

Vr

r

zr

zr

zr

∂

∂
−

∂

∂
−

∂

∂
+

∂

∂
+

∂

∂
+

∂

∂
=⋅∇−⋅∇ φφ

φφ
φφφφ

)(11)()(1
)()( VV  (G.13) 

Simplifying gives 

 
z

V
r

V
zr

∂

∂
+

∂

∂
=⋅∇−⋅∇

φφ
φφ )()( VV  (G.13) 

 

B. Source Terms 

 

1. Continuity 

 The continuity equation can be written in cylindrical coordinates as 

 0
1)(1

=
∂

∂
+

∂

∂
+

∂

∂

z

VV

rr

Vr

r

zr

θ

θ  (G.19) 

For axisymmetric flow, this reduces to 

 0
)(1

=
∂

∂
+

∂

∂

z

V

r

Vr

r

zr  (G.20) 

Applying Eqs. (G.10), (G.11), and (G.12) gives 

 

0
)(1

0
)()(1

0
)(1

0
)(1

,,

,,

,,

=
∂

∂
+

∂

∂

=
∂

∂
+

∂

∂

=
∂

∂
+

∂

∂

=
∂

∂
+

∂

∂

ξη

ξη

ξη

ξ
ξ

η
η

ξη

ηξ

ηξ

VVr

r

Vr
J

Vrz
J

r

V
Jr

Vr
Jz

r

VVr

r

zr

zr

z

z

r

r

 (G.21) 

 

2. Momentum 

 The steady-state RANS equation is a vector equation and can be written in cylindrical coordinates as 



331 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

∂

∂+
−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
+

∂

∂
+

∂

∂
+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
+

∂

∂
+

∂

∂
+

⎥
⎦

⎤
⎢
⎣

⎡

∂

∂
+

∂

∂
+

∂

∂
−=−

∂

∂
+

∂

∂
+

∂

∂

r

trz

t

r

t

r

t

r

z

rr

r

V
V

rz

V

r

V

z

V

r

rV
r

r

r

V
r

rrr

p

r

V

z

V
V

V

r

V

r

V
V

θ

νν
νν

θ
νν

θ

νν
ρθ

θ

θ

θθ

2

2

2

2

)(2
)(

)(
)(

1

)(2
1ˆ1

 (G.22) 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
+

∂

∂+
+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
+

∂

∂
+

∂

∂
+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

∂

∂
+

∂

∂
+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
+

∂

∂
+

∂

∂
+

∂

∂
−=+

∂

∂
+

∂

∂
+

∂

∂

r

rV
r

V

rz

VV

rz

r

VV

rr

r

rV
r

V

r
r

rr

p

r

VV

z

V
V

V

r

V

r

V
V

rtz

t

r

t

r

t

r

zr

)()(1
)(

1
)(2

1

)(1
)(

1ˆ1

2

2

θθ

θ

θθθθθθ

θ

νν

θ
νν

θ
νν

θ

θ
νν

θρθ

(G.23) 

 

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
+

∂

∂
+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
+

∂

∂
+

∂

∂
+

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
+

∂

∂
+

∂

∂
+

∂

∂
−=

∂

∂
+

∂

∂
+

∂

∂

z

V

z

V

rz

V

r

r

V

z

V
r

rrz

p

z

V
V

V

r

V

r

V
V

z

t

z

t

zr

t

z

z

zz

r

)(2
1

)(
1

)(
1ˆ1

νν
θ

νν
θ

νν
ρθ

θ

θ

 (G.24) 

For axisymmetric flow, these equations reduce to only two equations 

 ( )
r

trz

t

r

t

r

z

r

r
V

rz

V

r

V

zr

V
r

rrr

p

z

V
V

r

V
V

2

)(2
)()(2

1ˆ1 νν
νννν

ρ

+
−⎥

⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
+

∂

∂
+

∂

∂
+⎥

⎦

⎤
⎢
⎣

⎡

∂

∂
+

∂

∂
+

∂

∂
−=

∂

∂
+

∂

∂
(G.25) 

 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
+

∂

∂
+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
+

∂

∂
+

∂

∂
+

∂

∂
−=

∂

∂
+

∂

∂

z

V

zr

V

z

V
r

rrz

p

z

V
V

r

V
V z

t

zr

t

z

z

z

r
)(2)(

1ˆ1
νννν

ρ
 (G.26) 

These can be written in the form of Eq. (G.15) to yield 

 
r

r

t

r

t

r

z

r

r
S

z

V

zr

V
r

rrz

V
V

r

V
V +⎥

⎦

⎤
⎢
⎣

⎡

∂

∂
+

∂

∂
+⎥

⎦

⎤
⎢
⎣

⎡

∂

∂
+

∂

∂
=

∂

∂
+

∂

∂
)()(

1
νννν  (G.27) 

 
z

z

t

z

t

z

z

z

r
S

z

V

zr

V
r

rrz

V
V

r

V
V +⎥

⎦

⎤
⎢
⎣

⎡

∂

∂
+

∂

∂
+⎥

⎦

⎤
⎢
⎣

⎡

∂

∂
+

∂

∂
=

∂

∂
+

∂

∂
)()(

1
νννν  (G.28) 

where 

 

( )

⎥
⎦

⎤
⎢
⎣

⎡

∂

∂
+

∂

∂
+⎥

⎦

⎤
⎢
⎣

⎡

∂

∂
+

∂

∂
+

∂

∂
−=

+
−⎥

⎦

⎤
⎢
⎣

⎡

∂

∂
+

∂

∂
+⎥

⎦

⎤
⎢
⎣

⎡

∂

∂
+

∂

∂
+

∂

∂
−=

z

V

zz

V
r

rrz

p
S

V
rr

V

zr

V
r

rrr

p
S

z

t

r

tz

r

tz

t

r

tr

)()(
1ˆ1

)(2
)()(

1ˆ1
2

νννν
ρ

νν
νννν

ρ
 (G.29) 



332 

Applying Eqs. (G.10) and (G.11) to the momentum source terms gives 

 

( )

( )

( )
r

tz

t

r

t

r

tz

rt

r

t

r

tz

t

r

tr

V
r

V
J

V
rJJz

r

p
Jz

V
r

V
Jr

V
rJJz

r

p
Jz

V
r

V
JzJr

V
rJzJz

r

p
JzS

2

2
,,

2,,
2
,,

2,,,,,

)(2
)()(

1ˆ1

)(2
)()(

1ˆ1

)(2
)()(

1ˆ1

νν

η
νν

ξη
νν

ηηρ

νν

η
ηνν

ξη
νν

ηηρ

νν

η
νν

ξη
νν

ηηρ

ξξ

ηξξ

ξηξξξ

+
−⎥

⎦

⎤
⎢
⎣

⎡

∂

∂
+

∂

∂
+⎥

⎦

⎤
⎢
⎣

⎡

∂

∂
+

∂

∂
+

∂

∂
−=

+
−⎥

⎦

⎤
⎢
⎣

⎡

∂

∂
+

∂

∂
+⎥

⎦

⎤
⎢
⎣

⎡

∂

∂
+

∂

∂
+

∂

∂
−=

+
−⎥

⎦

⎤
⎢
⎣

⎡

∂

∂
+

∂

∂
+⎥

⎦

⎤
⎢
⎣

⎡

∂

∂
+

∂

∂
+

∂

∂
−=

 (G.30) 

 

⎥
⎦

⎤
⎢
⎣

⎡

∂

∂
+

∂

∂
+⎥

⎦

⎤
⎢
⎣

⎡

∂

∂
+

∂

∂
+

∂

∂
−=

⎥
⎦

⎤
⎢
⎣

⎡

∂

∂
+

∂

∂
+⎥

⎦

⎤
⎢
⎣

⎡

∂

∂
+

∂

∂
+

∂

∂
−=

⎥
⎦

⎤
⎢
⎣

⎡

∂

∂
+

∂

∂
+⎥

⎦

⎤
⎢
⎣

⎡

∂

∂
+

∂

∂
+

∂

∂
−=

ξ
νν

ξξ
νν

ηξρ

ξ
νν

ξξ
ξνν

ηξρ

ξ
νν

ξξ
νν

ηξρ

ηη

ηξη

ηηηξη

z

t

r

t

z

t

r

zt

z

t

r

tz

V
JJr

V
rJ

r

p
Jr

V
JJr

V
rJz

r

p
Jr

V
JrJr

V
rJrJz

r

p
JrS

)()(
1ˆ1

)()(
1ˆ1

)()(
1ˆ1

2
,,

2
,,,,

,,,,,

 (G.31) 

 

3. Strain-Rate Tensor 

 The squared magnitude of the strain-rate tensor is given the symbol 2

V
S  and is defined as 

 )V(S)V(S
v

v

v

v

⋅≡

2

V
S  (G.32) 

The squared magnitude of the strain-rate tensor can be written in cylindrical coordinates as 

 
222

222

2

2

11

2

11)(

2

1

1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
+

∂

∂
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂
+

∂

∂
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂
+

∂

∂
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

∂

∂
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂
=

r

V

z

V

z

VV

r

V

rr

rV
r

z

V

r

VV

rr

V
S

zrzr

zrr

V

θθ

θ

θθ

θ
 (G.33) 

For axisymmetric flow, this can be written as 

 

2222

2

2

1

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
+

∂

∂
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
=

r

V

z

V

z

V

r

V

r

V
S

zrzrr

V
 (G.34) 

Applying Eqs. (G.10) and (G.11) gives 

 

2

,,

2

,

22

,

2

,,

2

,

22

,
2

2

1

2

1

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
+

∂

∂
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
+

∂

∂
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
=

ηξξη

η
η

ξ
ξ

ξ
ξ

η
η

ξηηξ
zrzrr

z

r

r

z

z

z

rr

rV

V
Jz

V
Jr

V
Jr

r

VV
Jz

VVV

r

VV
S

 (G.35) 



333 

APPENDIX H 

FINITE-VOLUME DISCRETIZATION 

I. Domain Discretization 

 We wish to solve transport equations written in the computational coordinate system using the finite-

volume method. This method requires the domain to be discretized into a finite number of control volumes 

which will be referred to as cells. These cells may vary in size in the physical domain, but the reader is 

reminded that the definition of the coordinate transformation requires the transformation function to be 

continuous. In order to facilitate the second-order central difference scheme, uniform cell spacing in the 

computational domain is chosen. Because the cell size is arbitrary, for simplicity it is set to 0.1=Δ=Δ ηξ . 

Each cell has a node P placed at the cell center in the computational domain at which the values of the 

dependent variables will be evaluated. Additionally, each cell has a north, south, east, and west faces 

denoted by points n, s, e, and w. Neighboring cell centers are denoted here as nodes N, S, E, and W 

respectively. Figures H.1 and H.2 show the relationship between the physical domain and computational 

domain as well as the cell nomenclature. Figures H.3 and H.4 show the physical and computational 

domains of an arbitrary rectilinear domain with logarithmic grid spacing. The points in the figure represent 

the cell nodes and are centered in the computational domain. Note that the centers of the cells in the 

computational domain do not correspond to centers of the cells in the physical domain. 

 Nodes are also placed along the boundaries of the domain at which boundary conditions are applied. 

The boundary nodes can be thought of as cells with a cell center directly on the boundary and a cell area of 

zero. Therefore, for cells adjacent to a boundary, the value at the boundary node is equal to the value at the 

face of the cell. For example, for a cell adjacent to the north boundary, 
nN

φφ = . Thus the nomenclature N 

and n can be used interchangeably for a cell adjacent to the north boundary. 



334 

 

Fig. H.1  Physical domain discretization and nomenclature. 

 

 

 

Fig. H.2  Computational domain discretization and nomenclature. 



335 

 

Fig. H.3  Physical domain of an example rectilinear grid with logarithmic spacing. 

 

 

Fig. H.4  Computational domain of an example rectilinear grid with logarithmic spacing. 



336 

II. Discretization Schemes 

A. Differencing 

 The Taylor series expansion for a function, )(yφ  about a point y for the value at yy Δ+   can be written 

 L+Δ+
Δ

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
+

Δ
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
+Δ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂
+=Δ+ )(

62
)()( 4

3

3

32

2

2

yO
y

y

y

y
y

y
yyy

yyy

φφφ
φφ  (H.1) 

This equation can be written in several discrete forms in order to yield useful approximations for values and 

derivatives near a point. Writing an equation for the Taylor series expansion at points a and b about point j 

gives 

 L+Δ+
Δ

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
+

Δ
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
+Δ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂
+=Δ+= )(

62
)( 4

3

3

32

2

2

a
a

j

a

j

a

j

jaja yO
y

y

y

y
y

y
yy

φφφ
φφφ  (H.2) 

 L+Δ+
Δ

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
+

Δ
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
+Δ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂
+=Δ+= )(

62
)( 4

3

3

32

2

2

b
b

j

b

j

b

j

jbjb yO
y

y

y

y
y

y
yy

φφφ
φφφ  (H.3) 

 Subtracting the product of Eq. (H.3) and 
a
yΔ  from the product of Eq. (H.2) and 

b
yΔ  gives 

 L+Δ+
ΔΔ−ΔΔ

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
+Δ−Δ=Δ−Δ )(

2

)(
)( 4

22

2

2

yO
yyyy

y
yyyy baab

j

abjabba

φ
φφφ  (H.4) 

Solving for jφ  gives 

 L+
Δ−Δ

ΔΔ−ΔΔ
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
−

Δ−Δ

Δ−Δ
=

)(2

)(

)(

22

2

2

ab

baab

jab

abba
j

yy

yyyy

yyy

yy φφφ
φ  (H.5) 

Because the second term on the right-hand side of Eq. (H.5) is of order 
2

yΔ , dropping it yields the second-

order approximation for the value at a point. 

 
)( ab

abba
j

yy

yy

Δ−Δ

Δ−Δ
=

φφ
φ  (H.6) 

This relationship is called linear interpolation if the point j lies between points a and b. Otherwise it is 

called linear extrapolation. 

 Subtracting the product of Eq. (H.3) and 
2

a
yΔ  from the product of Eq. (H.2) and 

2

b
yΔ  gives 



337 

 L+
ΔΔ−ΔΔ

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
+ΔΔ−ΔΔ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂
+Δ−Δ=Δ−Δ

6
)()(

3232

3

3

222222 baab

j

baab

j

abjabba

yyyy

y

yyyy
y

yyyy
φφ

φφφ  (H.7) 

Solving for the first derivative at j gives 

 L+Δ+
ΔΔ−ΔΔ

ΔΔ−ΔΔ
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
−

ΔΔ−ΔΔ

Δ−Δ−Δ−Δ
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂
)(

)(6)(

)(
3

22

3232

3

3

22

2222

yO
yyyy

yyyy

yyyyy

yyyy

y
baab

baab

jbaab

abjabba

j

φφφφφ
 (H.8) 

Because the second term on the right-hand side of Eq. (H.5) is of order 
2

yΔ , dropping it yields the second-

order approximation for the first derivative at a point 

 
)(

)(

22

2222

baab

abjabba

j
yyyy

yyyy

y ΔΔ−ΔΔ

Δ−Δ−Δ−Δ
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂ φφφφ
 (H.9) 

 In order to develop a second-order approximation for the second derivative at point j, an additional 

equation must be added to Eqs. (H.2) and (H.3) for the Taylor series expansion at point c 

 L+Δ+
Δ

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
+

Δ
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
+Δ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂
+=Δ+= )(

62
)( 4

3

3

32

2

2

c
c

j

c

j

c

j

jcjc yO
y

y

y

y
y

y
yy

φφφ
φφφ  (H.10) 

After a considerable amount of algebra, Eqs. (H.2) (H.3) and (H.10) can be used to give the following 

second-order approximation for the second derivative at a point 

 

L+Δ+
Δ−ΔΔ−ΔΔ

Δ+Δ
+

Δ−ΔΔ−ΔΔ

Δ+Δ
+

Δ−ΔΔ−ΔΔ

Δ+Δ
+

ΔΔΔ

Δ+Δ+Δ
=⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂

)(
))((

)(2

))((

)(2

))((

)(2)(2

2

2

2

yO
yyyyy

yy

yyyyy

yy

yyyyy

yy

yyy

yyy

y

c
accbc

ba
b

bacbb

ac

a
acbaa

cb
j

cba

cba

j

φφ

φφ
φ

 (H.11) 

 The applications of the differencing approximations presented above will be discussed in detail in the 

following section for the case of one-dimensional approximations. The two-dimensional approximations 

are straight-forward and are included in the following section with less detail. 

 

1. Cell Centers 

 In the notation implemented here, discrete values are used to represent an internal point, P, and its 

north (N) and south (S) neighboring points on a uniform grid with spacing equal to ηΔ . Using this notation, 

the equations from the previous section can be used with the uniform grid definitions ηΔ−=Δ
a
y , 



338 

ηΔ=Δ
b
y , Pj φφ = , 

Sa
φφ = , and 

Nb
φφ = . Using these definitions in Eqs. (H.6), (H.9), and (H.11) gives the 

second-order central difference approximations at an internal node P 

 
2

SN

P

φφ
φ

+

=  (H.12) 

 
η

φφ

η

φ

Δ

−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂

2

SN

P

 (H.13) 

 
22

2
2

η

φφφ

η

φ

Δ

+−
=⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂ SPN

P

 (H.14) 

 For a cell adjacent to a boundary, the uniform grid definitions cannot be applied. Instead we define the 

points such that 
0

φ  is the value at the wall, 
1
φ  is the value at the center of the first cell, 

2
φ  is the value at the 

center of the second cell, and 
3

φ  is the value at the center of the third cell. The near-wall definitions can be 

applied 
1
φφ =j , 

0
φφ =

a
, 

2
φφ =

b
, and 

3
φφ =

c
 with grid spacing 2ηΔ−=Δ

a
y , ηΔ=Δ

b
y , and ηΔ=Δ 2

c
y . 

Using these near-wall definitions in Eqs. (H.6), (H.9), and (H.11) gives the second-order forward difference 

approximations for a cell adjacent to a boundary 

 
3

2
20

1

φφ
φ

+

=  (H.15) 

 
η

φφφ

η

φ

Δ

++−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂

3

34
210

1

 (H.16) 

 
2

3210

1

2

2

15

3307548

η

φφφφ

η

φ

Δ

−+−
=⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
 (H.17) 

 

2. Cell Faces 

 Consider an internal face, n, which is the north face of cell P and the south face of cell N. With 

uniform grid spacing equal to ηΔ , point n is the midpoint of nodes N and P. Using this notation, the 

equations from the previous section can be used with the uniform grid definitions 2ηΔ−=Δ
a
y , 

2ηΔ=Δ
b
y , nj φφ = , 

Pa
φφ = , and 

Nb
φφ = . Using these definitions in Eqs. (H.6), (H.9), and (H.11) gives 

the second-order central difference approximations for an internal face 



339 

 
2

PN

n

φφ
φ

+

=  (H.18) 

 
η

φφ

η

φ

Δ

−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂
PN

n

 (H.19) 

 
22

2
484

η

φφφ

η

φ

Δ

+−
=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
PnN

n

 (H.20) 

 Boundary faces must be treated differently. Consider a cell adjacent to a boundary. Here we define the 

points such that 
0

φ  is the value at the wall, 
1
φ  is the value at the center of the first cell, 

2
φ  is the value at the 

center of the second cell, and 
3

φ  is the value at the center of the third cell. The near-wall definitions can be 

applied 
0

φφ =j , 
1
φφ =

a
, 

2
φφ =

b
, and 

3
φφ =

c
 with grid spacing 2ηΔ=Δ

a
y , 23 ηΔ=Δ

b
y , and 

25 ηΔ=Δ
c
y . Using these near-wall definitions in Eqs. (H.6), (H.9), and (H.11) gives the second-order 

forward difference approximations for a boundary face where the transport property, φ , is known at cell 

centers 

 
2

3
21

0

φφ
φ

−

=  (H.21) 

 
η

φφφ

η

φ

Δ

−+−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂

3

98
210

0

 (H.22) 

 
2

3210

0

2

2

15

126012072

η

φφφφ

η

φ

Δ

−+−
=⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
 (H.23) 

 In the case where φ  is known at the cell faces on a uniform grid and not at the cell centers (as may be 

the case with estimating the Jacobian), the near-wall definitions can be applied 
0

φφ =j , 
1
φφ =

a
, 

2
φφ =

b
, 

and 
3

φφ =
c

 with grid spacing ηΔ=Δ
a
y , ηΔ=Δ 2

b
y , and ηΔ=Δ 3

c
y . Using these near-wall definitions in 

Eqs. (H.6), (H.9), and (H.11) gives the second-order forward difference approximations for a boundary face 

where the transport property, φ , is known at cell faces 

 
210

2 φφφ −=  (H.24) 

 
η

φφφ

η

φ

Δ

−+−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂

2

43
210

0

 (H.25) 



340 

 
2

3210

0

2

2
452

η

φφφφ

η

φ

Δ

−+−
=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
 (H.26) 

 

B. Integration 

 The integral of a Taylor series expansion for a function, )(yφ  about a point j from the point 
a
y  to 

b
y  

can be written 

 dy
yy

y

yy

y
yy

y
dyy

bj

aj

b

a

yy

yy

j

j

j

j

j

j

j

y

y ∫∫
Δ+

Δ+ ⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
+

−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
+

−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
+−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂
+= L

6

)(

2

)(
)()(

3

3

32

2

2 φφφ
φφ  (H.27) 

Integrating Eq. (H.12) gives 

 

L+Δ+
Δ−Δ

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
+

Δ−Δ
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
+

Δ−Δ
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
+Δ−Δ=∫

)(
24

)(

6

)(

2

)(
)()(

5

44

3

333

2

2

22

yO
yy

y

yy

y

yy

y
yydyy

ab

j

ab

j

ab

j

abj

y

y

b

a

φφ

φ
φφ

 (H.28) 

Global error for integration is one order less than local truncation error. Therefore, for uniform grid 

spacing, only the first term on the right-hand side of the Eq. (H.28) must be retained for second-order 

accuracy. For a cell of size ηΔ  with the value specified at the midpoint, P, the integral over the cell volume 

can be evaluated by applying the definitions Pj φφ = , 2ηΔ=Δ
b
y , and 2ηΔ−=Δ

a
y . Using these 

definitions in Eq. (H.28) gives the second-order midpoint rule for an integral over a cell 

 ηφηηφ
η

η

Δ=∫
Δ

Δ−
P

d
2

2

)(  (H.29) 

 

C. Approximations in Two Dimensions 

 

1. Cell Centers 

 Applying Eq. (H.13) at a node, P, that is not adjacent to a boundary gives 

 

η

φφ

η

φ

ξ

φφ

ξ

φ

Δ

−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂

Δ

−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂

2

2

SN

P

WE

P
 (H.30) 



341 

For a cell adjacent to the north boundary, applying Eq. (H.16) gives 

 
η

φφφ

η

φ

Δ

−−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂

3

34
SPN

P

 (H.31) 

For a cell adjacent to the south boundary, applying Eq. (H.16) gives 

 
η

φφφ

η

φ

Δ

++−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂

3

34
NPS

P

 (H.32) 

For a cell adjacent to the east boundary, applying Eq. (H.16) gives 

 
ξ

φφφ

ξ

φ

Δ

−−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂

3

34
WPE

P

 (H.33) 

For a cell adjacent to the west boundary, applying Eq. (H.16) gives 

 
ξ

φφφ

ξ

φ

Δ

++−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂

3

34
EPW

P

 (H.34) 

 

2. Cell Faces 

 Applying Eq. (H.18) at a node, P, that is not adjacent to a boundary gives 

 

2

2

2

2

WP

w

PE

e

SP

s

PN

n

φφ
φ

φφ
φ

φφ
φ

φφ
φ

+

=

+

=

+

=

+

=

 (H.35) 

For a cell adjacent to the north boundary, applying Eq. (H.21) gives 

 
2

3
SP

n

φφ
φ

−

=  (H.36) 

For a cell adjacent to the south boundary, applying Eq. (H.21) gives 

 
2

3
NP

s

φφ
φ

−

=  (H.37) 

For a cell adjacent to the east boundary, applying Eq. (H.21) gives 

 
2

3
WP

e

φφ
φ

−

=  (H.38) 



342 

For a cell adjacent to the west boundary, applying Eq. (H.21) gives 

 
2

3
EP

w

φφ
φ

−

=  (H.39) 

 Applying Eq. (H.19) at a node, P, that is not adjacent to a boundary gives 

 

ξ

φφ

ξ

φ

ξ

φφ

ξ

φ

η

φφ

η

φ

η

φφ

η

φ

Δ

−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂

Δ

−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂

Δ

−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂

Δ

−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂

WP

w

PE

e

SP

s

PN

n

 (H.40) 

For a cell adjacent to the north boundary, applying Eq. (H.22) gives 

 
η

φφφ

η

φ

Δ

+−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂

3

98
SPN

n

 (H.41) 

For a cell adjacent to the south boundary, applying Eq. (H.22) gives 

 
η

φφφ

η

φ

Δ

−+−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂

3

98
NPS

s

 (H.42) 

For a cell adjacent to the east boundary, applying Eq. (H.22) gives 

 
ξ

φφφ

ξ

φ

Δ

+−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂

3

98
WPE

e

 (H.43) 

For a cell adjacent to the west boundary, applying Eq. (H.22) gives 

 
ξ

φφφ

ξ

φ

Δ

−+−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂

3

98
EPW

w

 (H.44) 

Values at cell corners are simply the average of all neighboring cells. Therefore, cross-derivative terms are 

calculated for cell faces not on or adjacent to a boundary by applying Eq. (H.13) 



343 

 

η

φφφφ

η

φ

η

φφφφ

η

φ

ξ

φφφφ

ξ

φ

ξ

φφφφ

ξ

φ

Δ

−+−
=

∂

∂

Δ

−+−
=

∂

∂

Δ

−+−
=

∂

∂

Δ

−+−
=

∂

∂

4

4

4

4

SNSWNW

w

SNSENE

e

WESWSE

s

WENWNE

n

 (H.45) 

For a cell faces on or adjacent to the north boundary, Eqs. (H.13) and (H.16) give 

 

η

φφφφφφ

η

φ

η

φφφφφφ

η

φ

ξ

φφ

ξ

φ

Δ

+−+−+
=

∂

∂

Δ

+−+−+
=

∂

∂

Δ

−
=

∂

∂

6

)()(3)(4

6

)()(3)(4

2

SWSWPNWN

w

SESEPNEN

e

NWNE

n

 (H.46) 

For a cell faces on or adjacent to the south boundary, Eqs. (H.13) and (H.16) give 

 

η

φφφφφφ

η

φ

η

φφφφφφ

η

φ

ξ

φφ

ξ

φ

Δ

+++++−
=

∂

∂

Δ

+++++−
=

∂

∂

Δ

−
=

∂

∂

6

)()(3)(4

6

)()(3)(4

2

NWNWPSWS

w

NENEPSES

e

SWSE

s

 (H.47) 

For a cell faces on or adjacent to the east boundary, Eqs. (H.13) and (H.16) give 

 

η

φφφφφφ

ξ

φ

η

φφφφφφ

ξ

φ

η

φφ

η

φ

Δ

+−+−+
=

∂

∂

Δ

+−+−+
=

∂

∂

Δ

−
=

∂

∂

6

)()(3)(4

6

)()(3)(4

2

SWWSPSEE

s

NWWNPNEE

n

SENE

e

 (H.48) 

For a cell faces on or adjacent to the west boundary, Eqs. (H.13) and (H.16) give 



344 

 

η

φφφφφφ

ξ

φ

η

φφφφφφ

ξ

φ

η

φφ

η

φ

Δ

+++++−
=

∂

∂

Δ

+++++−
=

∂

∂

Δ

−
=

∂

∂

6

)()(3)(4

6

)()(3)(4

2

SEESPSWW

s

NEENPNWW

n

SWNW

w

 (H.49) 

Corners of the grid require yet another treatment. At the north-east corner of the grid, Eq. (H.16) gives 

 

η

φφφ

ξ

φ

η

φφφ

η

φ

Δ

−−
=

∂

∂

Δ

−−
=

∂

∂

3

34

3

34

NWNNE

n

SEENE

e
 (H.50) 

At the north-west corner of the grid, Eq. (H.16) gives 

 

η

φφφ

ξ

φ

η

φφφ

η

φ

Δ

++−
=

∂

∂

Δ

−−
=

∂

∂

3

34

3

34

NENNW

n

SWWNW

w
 (H.51) 

At the south-east corner of the grid, Eq. (H.16) gives 

 

η

φφφ

ξ

φ

η

φφφ

η

φ

Δ

−−
=

∂

∂

Δ

++−
=

∂

∂

3

34

3

34

SWSSE

s

NEESE

e
 (H.52) 

At the south-west corner of the grid, Eq. (H.16) gives 

 

η

φφφ

ξ

φ

η

φφφ

η

φ

Δ

++−
=

∂

∂

Δ

++−
=

∂

∂

3

34

3

34

SESSW

s

NWWSW

w
 (H.53) 

 

3. Integration 

 In two dimensions Eq. (H.29) becomes 

 ηξφηξηξφ
η

η

ξ

ξ
ΔΔ=∫ ∫

Δ

Δ−

Δ

Δ−
P

dd
2

2

2

2

),(  (H.54) 

 



345 

APPENDIX I 

THE FINITE-VOLUME METHOD IN CARTESIAN COORDINATES 

I. General Scalar Transport 

 The transport equation for any scalar, φ , can be written in curvilinear coordinates as 

 
J

S
JxJy

VV
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂
Γ

∂

∂
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂
Γ

∂

∂
=

∂

∂
+

∂

∂

η

φ

ηξ

φ

ξη

φ

ξ

φ
ξη

ηξ 2
,

2
,

)()(
 (I.1) 

The finite volume method is used in this work to solve the governing equations. This method is applied by 

integrating about a rectangular control volume in the ξ  and η  directions 

 ηξ
η

φ

ηξ

φ

ξη

φ

ξ

φη

η

ξ

ξ
ξη

ηξ
dd

J

S
JxJy

VV

∫ ∫
Δ

Δ−

Δ

Δ− ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
Γ

∂

∂
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂
Γ

∂

∂
=

∂

∂
+

∂

∂2

2

2

2

2
,

2
,

)()(
 (I.2) 

This gives 

 SJxJyVV

n

s

e

w

n

s

e

w

ˆ)()( 2
,

2
, +Δ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂
Γ+Δ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂
Γ=Δ+Δ ξ

η

φ
η

ξ

φ
ξφηφ ξηηξ  (I.3) 

where 

 ηξ
η

η

ξ

ξ
dd

J

S
S ∫ ∫

Δ

Δ−

Δ

Δ−

⎟
⎠

⎞
⎜
⎝

⎛
≡

2

2

2

2

ˆ  (I.4) 

The convection terms can be rewritten by defining the average volume flux terms on each face of the 

control volume 

 

ξ

ξ

η

η

η

η

ξ

ξ

Δ≡

Δ≡

Δ≡

Δ≡

s

n

w

e

Vm

Vm

Vm

Vm

s

n

w

e

&

&

&

&

 (I.5) 

Using these definitions for the volume flux and applying the second-order central differencing scheme to 

the diffusion terms gives the discretized form of the governing equation for any cell, P, not adjacent to 

a boundary 



346 

 

SJJx

JJymmmm

SP

ss

PN

nnP

WP

ww

PE

eePssnnwwee

ˆ)(

)(

2
,

2
,

+Δ⎥
⎦

⎤
⎢
⎣

⎡

Δ

−
Γ−

Δ

−
Γ+

Δ⎥
⎦

⎤
⎢
⎣

⎡

Δ

−
Γ−

Δ

−
Γ=−+−

ξ
η

φφ

η

φφ

η
ξ

φφ

ξ

φφ
φφφφ

ξ

η
&&&&

 (I.6) 

 The convection terms are calculated using deferred correction. 

 )( o

L

o

HLssnnwwee
FFFmmmm −+=−+− βφφφφ &&&&  (I.7) 

The subscripts H and L stand for higher- and lower-order approximations and β  is the blending factor. 

Several higher- and lower-order approximations could be used in this formulation. In this work, first-order 

upwinding has been implemented for the lower-order approximation, and second-order upwinding has been 

implemented for the higher-order approximation. The first-order upwinding approximation is calculated by 

retaining only the first term in the Taylor Series expansion about the upwind cell center 

 

SsPs

NnPn

WwPw

EePeL

mm

mm

mm

mmF

φφ

φφ

φφ

φφ

]0,max[]0,max[

]0,max[]0,max[

]0,max[]0,max[

]0,max[]0,max[

&&

&&

&&

&&

−−+

−−+

−−+

−−≡

 (I.8) 

The second-order upwinding approximation is calculated by retaining the first two terms in a Taylor Series 

expansion about the upwind cell center to approximate the value at the face 

 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ Δ

∂

∂
+−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ Δ

∂

∂
−−+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ Δ

∂

∂
−−−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ Δ

∂

∂
++

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ Δ

∂

∂
+−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ Δ

∂

∂
−−+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ Δ

∂

∂
−−−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ Δ

∂

∂
+≡

2
]0,max[

2
]0,max[

2
]0,max[

2
]0,max[

2
]0,max[

2
]0,max[

2
]0,max[

2
]0,max[

η

η

φ
φ

η

η

φ
φ

η

η

φ
φ

η

η

φ
φ

ξ

ξ

φ
φ

ξ

ξ

φ
φ

ξ

ξ

φ
φ

ξ

ξ

φ
φ

S

Ss

P

Ps

N

Nn

P

Pn

W

Ww

P

Pw

E

Ee

P

PeH

mm

mm

mm

mmF

&&

&&

&&

&&

 (I.9) 

The values in Eq. (I.9) contain derivatives estimated at cell centers. These are calculated according to the 

methods presented in Appendix H. The terms in the parentheses of Eq. (I.7) are calculated from the 

previous iteration as denoted by the superscript o and can be included as source terms. 

 )( o

L

o

Hc
FFS −≡ β  (I.10) 



347 

 Using Eqs. (I.7) – (I.10) in Eq. (I.6) gives 

 SSAAAAA
cSSNNWWEEPP

ˆ+−+++= φφφφφ  (I.11) 

where 

 

SNWEP

ssPsS

nnPnN

wwPwW

eePeE

AAAAA

JxmA

JxmA

JymA

JymA

+++=

Γ
Δ

Δ
+=

Γ
Δ

Δ
+−=

Γ
Δ

Δ
+=

Γ
Δ

Δ
+−=

η

ξ

η

ξ

ξ

η

ξ

η

ξ

ξ

η

η

)(]0,max[

)(]0,max[

)(]0,max[

)(]0,max[

2
,

2
,

2
,

2
,

&

&

&

&

 (I.12) 

Solving Eq. (I.11) for 
P

φ  gives 

 )ˆ(
1

SSAAAA
A

cSSNNWWEE

P

P
+−+++= φφφφφ  (I.13) 

Note that in the convection terms, the 
P

φ  coefficients have been modified according to the equality 

 

Psnwe

Psnwe

Psnwe

mmmm

mmmm

mmmm

φ

φ

φ

)(

])0,max[]0,max[]0,max[]0,(max[

])0,max[]0,max[]0,max[]0,(max[

&&&&

&&&&

&&&&

−+−+

+−++−=

−++−+

 (I.14) 

in order to facilitate the summation in Eq. (I.12). The second-half of the right-hand side of Eq. (I.14) 

contains the continuity equation and is equal to zero for incompressible flows. Applying an under-

relaxation variable, α , and the previous solution, o

P
φ , gives an under-relaxation form of Eq. (I.13), 

 )ˆ()1( SSAAAA
A

cSSNNWWEE

P

o

PP
+−++++−= φφφφ

α
φαφ  (I.15) 

 

II. Boundary Condition Implementation 

 Two types of boundary conditions can be applied. A Dirichlet boundary condition exists when the 

value of the transport property is known at the boundary. A Neumann boundary condition exists when the 

gradient of the transport property is known at the boundary. The implementation of each of these conditions 

will be discussed here. 



348 

A. The Dirichlet Boundary Condition 

 For a cell adjacent to a boundary at which a Dirichlet boundary condition should be applied, the 

discretization method presented above is used, but the second-order differencing scheme for the boundary 

is employed. For example, using the approximation given in Eq. (H.42), the discretized form of Eq. (I.3) 

for a cell adjacent to the south boundary is 

 

SJJx

JJymmmm

NPS

ss

PN

nnP

WP

ww

PE

eePssnnwwee

ˆ
3

98
)(

)(

2
,

2
,

+Δ⎥
⎦

⎤
⎢
⎣

⎡

Δ

−+−
Γ−

Δ

−
Γ+

Δ⎥
⎦

⎤
⎢
⎣

⎡

Δ

−
Γ−

Δ

−
Γ=−+−

ξ
η

φφφ

η

φφ

η
ξ

φφ

ξ

φφ
φφφφ

ξ

η
&&&&

 (I.16) 

where 
S

φ  is the value of the transport property at the south wall. Using the same methods as presented 

above for the convection terms, Eq. (I.16) can be rewritten to match Eq. (I.11) where 

 

SNWEP

ssPsS

ssnnPnN

wwPwW

eePeE

AAAAA

JxmA

JJxmA

JymA

JymA

+++=

Γ
Δ

Δ
+=

⎟
⎠

⎞
⎜
⎝

⎛
Γ+Γ

Δ

Δ
+−=

Δ

Δ
Γ+=

Δ

Δ
Γ+−=

3

8
)(]0,max[

3

1
)(]0,max[

)(]0,max[

)(]0,max[

2
,

2
,

2
,

2
,

η

ξ

η

ξ

ξ

η

ξ

η

ξ

ξ

η

η

&

&

&

&

 (I.17) 

Likewise, for a cell adjacent to the north boundary, 

 

SNWEP

nnssPsS

nnPnN

wwPwW

eePeE

AAAAA

JJxmA

JxmA

JymA

JymA

+++=

⎟
⎠

⎞
⎜
⎝

⎛
Γ+Γ

Δ

Δ
+=

Γ
Δ

Δ
+−=

Δ

Δ
Γ+=

Δ

Δ
Γ+−=

3

1
)(]0,max[

3

8
)(]0,max[

)(]0,max[

)(]0,max[

2
,

2
,

2
,

2
,

η

ξ

η

ξ

ξ

η

ξ

η

ξ

ξ

η

η

&

&

&

&

 (I.18) 

For a cell adjacent to the east boundary, 



349 

 

SNWEP

ssPsS

nnPnN

eewwPwW

eePeE

AAAAA

JxmA

JxmA

JJymA

JymA

+++=

Γ
Δ

Δ
+=

Γ
Δ

Δ
+−=

⎟
⎠

⎞
⎜
⎝

⎛
Γ+Γ

Δ

Δ
+=

Γ
Δ

Δ
+−=

η

ξ

η

ξ

ξ

η

ξ

η

ξ

ξ

η

η

)(]0,max[

)(]0,max[

3

1
)(]0,max[

3

8
)(]0,max[

2
,

2
,

2
,

2
,

&

&

&

&

 (I.19) 

For a cell adjacent to the west boundary 

 

SNWEP

ssPsS

nnPnN

wwPwW

wweePeE

AAAAA

JxmA

JxmA

JymA

JJymA

+++=

Γ
Δ

Δ
+=

Γ
Δ

Δ
+−=

Γ
Δ

Δ
+=

⎟
⎠

⎞
⎜
⎝

⎛
Γ+Γ

Δ

Δ
+−=

η

ξ

η

ξ

ξ

η

ξ

η

ξ

ξ

η

η

)(]0,max[

)(]0,max[

3

8
)(]0,max[

3

1
)(]0,max[

2
,

2
,

2
,

2
,

&

&

&

&

 (I.20) 

 

B. The Neumann Boundary Condition 

 For a cell adjacent to a boundary at which a Neumann boundary condition should be applied, the 

discretization method presented above is used, but the gradient along the boundary is directly applied. For 

example, if a Neumann condition is known at the south boundary, the discretized form of Eq. (I.3) for a cell 

adjacent to the south boundary is 

 

SJJx

JJymmmm

s

ss

PN

nnP

WP

ww

PE

eePssnnwwee

ˆ)(

)(

2
,

2
,

+Δ
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
Γ−

Δ

−
Γ+

Δ⎥
⎦

⎤
⎢
⎣

⎡

Δ

−
Γ−

Δ

−
Γ=−+−

ξ
η

φ

η

φφ

η
ξ

φφ

ξ

φφ
φφφφ

ξ

η
&&&&

 (I.21) 

 A common Neumann boundary condition is the zero gradient boundary condition, for example, at a 

symmetry boundary. For a zero gradient boundary condition on the south boundary,  



350 

 

SJx

JJymmmm

PN

nnP

WP

ww

PE

eePssnnwwee

ˆ0)(

)(

2
,

2
,

+Δ⎥
⎦

⎤
⎢
⎣

⎡
−

Δ

−
Γ+

Δ⎥
⎦

⎤
⎢
⎣

⎡

Δ

−
Γ−

Δ

−
Γ=−+−

ξ
η

φφ

η
ξ

φφ

ξ

φφ
φφφφ

ξ

η
&&&&

 (I.22) 

Using the same methods as presented above for the convection terms, Eq. (I.22) can be rewritten to match 

Eq. (I.11) where 

 

SNWEP

sS

nnPnN

wwPwW

eePeE

AAAAA

mA

JxmA

JymA

JymA

+++=

=

Γ
Δ

Δ
+−=

Γ
Δ

Δ
+=

Γ
Δ

Δ
+−=

]0,max[

)(]0,max[

)(]0,max[

)(]0,max[

2
,

2
,

2
,

&

&

&

&

η

ξ

ξ

η

ξ

η

ξ

η

η

 (I.23) 

Likewise, for a cell adjacent to the north boundary, 

 

SNWEP

ssPsS

nN

wwPwW

eePeE

AAAAA

JxmA

mA

JymA

JymA

+++=

Γ
Δ

Δ
+=

−=

Γ
Δ

Δ
+=

Γ
Δ

Δ
+−=

η

ξ

ξ

η

ξ

η

ξ

η

η

)(]0,max[

]0,max[

)(]0,max[

)(]0,max[

2
,

2
,

2
,

&

&

&

&

 (I.24) 

For a cell adjacent to the east boundary, 

 

SNWEP

ssPsS

nnPnN

wwPwW

eE

AAAAA

JxmA

JxmA

JymA

mA

+++=

Γ
Δ

Δ
+=

Γ
Δ

Δ
+−=

Γ
Δ

Δ
+=

−=

η

ξ

η

ξ

ξ

η

ξ

ξ

η

)(]0,max[

)(]0,max[

)(]0,max[

]0,max[

2
,

2
,

2
,

&

&

&

&

 (I.25) 

For a cell adjacent to the west boundary, 



351 

 

SNWEP

ssPsS

nnPnN

wW

eePeE

AAAAA

JxmA

JxmA

mA

JymA

+++=

Γ
Δ

Δ
+=

Γ
Δ

Δ
+−=

=

Γ
Δ

Δ
+−=

η

ξ

η

ξ

ξ

η

ξ

ξ

η

)(]0,max[

)(]0,max[

]0,max[

)(]0,max[

2
,

2
,

2
,

&

&

&

&

 (I.26) 

 Another common Neumann boundary condition is the constant gradient boundary condition where the 

gradient of the transport property normal to the boundary is assumed constant over the cell. This condition 

is sometimes used at a pressure boundary. For a constant gradient boundary condition on the north 

boundary of the domain, the gradient on the north face of each cell along the boundary is equal to the 

gradient on the south face of the cell. 

 

sn

sn

JxJx

yy

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂

∂

∂
=

∂

∂

η

φ

η

φ

φφ

ξξ ,,

 (I.27) 

This can be applied to give the discretized form of Eq. (I.3) for a cell adjacent to a north boundary 

 

SJx

JJymmmm

SP

ssnP

WP

ww

PE

eePssnnwwee

ˆ)()(

)(

2
,

2
,

+Δ⎥
⎦

⎤
⎢
⎣

⎡

Δ

−
Γ−Γ+

Δ⎥
⎦

⎤
⎢
⎣

⎡

Δ

−
Γ−

Δ

−
Γ=−+−

ξ
η

φφ

η
ξ

φφ

ξ

φφ
φφφφ

ξ

η
&&&&

 (I.28) 

Using the same methods as presented above for the convection terms, Eq. (I.28) can be rewritten to match 

Eq. (I.11) where 

 

SNWEP

snsPsS

nN

wwPwW

eePeE

AAAAA

JxmA

mA

JymA

JymA

+++=

Γ−Γ
Δ

Δ
+=

−=

Γ
Δ

Δ
+=

Γ
Δ

Δ
+−=

)()(]0,max[

]0,max[

)(]0,max[

)(]0,max[

2
,

2
,

2
,

η

ξ

ξ

η

ξ

η

ξ

η

η

&

&

&

&

 (I.29) 

For a cell adjacent to a south boundary with a constant gradient boundary condition, 



352 

 

SNWEP

sS

nsnPnN

wwPwW

eePeE

AAAAA

mA

JxmA

JymA

JymA

+++=

=

Γ−Γ
Δ

Δ
+−=

Γ
Δ

Δ
+=

Γ
Δ

Δ
+−=

]0,max[

)()(]0,max[

)(]0,max[

)(]0,max[

2
,

2
,

2
,

&

&

&

&

η

ξ

ξ

η

ξ

η

ξ

η

η

 (I.31) 

For a cell adjacent to an east constant gradient boundary, 

 

SNWEP

ssPsS

nnPnN

wewPwW

eE

AAAAA

JxmA

JxmA

JymA

mA

+++=

Γ
Δ

Δ
+=

Γ
Δ

Δ
+−=

Γ−Γ
Δ

Δ
+=

−=

η

ξ

η

ξ

ξ

η

ξ

ξ

η

)(]0,max[

)(]0,max[

)()(]0,max[

]0,max[

2
,

2
,

2
,

&

&

&

&

 (I.32) 

For a cell adjacent to a west constant gradient boundary, 

 

SNWEP

ssPsS

nnPnN

wW

ewePeE

AAAAA

JxmA

JxmA

mA

JymA

+++=

Γ
Δ

Δ
+=

Γ
Δ

Δ
+−=

=

Γ−Γ
Δ

Δ
+−=

η

ξ

η

ξ

ξ

η

ξ

ξ

η

)(]0,max[

)(]0,max[

]0,max[

)()(]0,max[

2
,

2
,

2
,

&

&

&

&

 (I.33) 

 

C. Velocity Inlet 

 At a velocity inlet, the properties of the flow must be known. Therefore, a velocity inlet boundary 

condition is modeled using Dirichlet boundary conditions on all transport properties of the flow.  

 

D. Outlet 

 At an outlet, the flow is assumed to be in a fully developed state. In other words, it is assumed that 

there are no gradients in the flow normal to the boundary at an outlet. Therefore, all flow properties are 

modeled using Neumann boundary conditions where the gradient normal to the boundary is equal to zero. 

 



353 

E. Smooth, No-Slip Wall 

 At a smooth wall, the velocity and turbulent velocity fluctuations must go to zero. Therefore, at a wall, 

the Dirichlet boundary conditions 

 0==
yx

VV  (I.34) 

are applied for the x- and y-momentum transport equations. 

 Smooth-wall boundary conditions for the turbulent kinetic energy require that both k and its first 

derivative go to zero at the wall. Therefore, the value of k at a cell adjacent to a wall boundary is specified 

simply from the value of k at the second cell off of the wall. If 
0
k  is the value of k at the wall, 

1
k  is the value 

of k at the first cell off of the wall, and 
2

k  is the value of k at the second cell off of the wall, Eq. (H.22) can 

be applied to develop the following two relationships which must be enforced to correctly model the no-

slip boundary condition 

 
098

0

210

0

=−+−

=

kkk

k
 (I.35) 

 A Dirichlet boundary condition is often applied for the second transport equation at a wall. However, it 

is incorrect to refer to the value of the second transport property (ε, ω, ζ, ω~ , etc.) at a wall as a boundary 

condition. Because of the order of the system of equations and because two boundary conditions are 

applied to the turbulent kinetic energy, k, it is mathematically incorrect to apply a boundary condition to the 

second transport property at a wall. However, examining the model equations often gives a near-wall 

approximation for the second transport property. This near-wall function is dependent on the model and is 

applied in the same way a Dirichlet boundary condition is applied. In this work the value of ε at a wall will 

be given the symbol 
0ε

f  and the value of ω at a wall will be given the symbol 
0ω

f . 

 

F. Symmetry 

 A symmetry boundary conditions assumes that gradients in the flow normal to the boundary are zero, 

and that no mass crosses the boundary. Because the x- and y-momentum equations combine to form a 

vector equation, the process for implementing a symmetry boundary condition includes both a Neumann 



354 

condition and a Dirichlet condition. For example, at a line of symmetry on the north or south boundary, the 

boundary conditions are 

 

0    Dirichlet 

0Neumann   

=

=

y

x

V

d

Vd

η  (I.36) 

At a line of symmetry on the east or west boundary, the boundary conditions are 

 

0    Dirichlet 

0Neumann   

=

=

x

y

V

d

Vd

η  (I.37) 

For any other transport property, a Neumann condition is applied with the gradient normal to the boundary 

equal to zero. 

 

G. Pressure 

 Generally, a pressure boundary condition is used to represent a boundary across which the pressure is 

known, and across which the flow is allowed to enter or exit. In this work, it was helpful to specify two 

different types of pressure boundary conditions. A pressure inlet is a constant-pressure boundary across 

which flow is entering. A pressure outlet is a constant-pressure boundary across which flow is exiting. This 

differentiation between the two types of pressure boundary conditions helped to simplify the 

implementation of a pressure boundary condition. 

 At a pressure inlet, the properties of the flow must be known. In this work, it is assumed that at a 

pressure inlet, the flow enters the domain normal to the boundary. Applying mass conservation, this 

requires that the gradient of the normal velocity component must be zero at the boundary. For example, if 

the north side of a domain is specified as a pressure inlet boundary, flow must enter the domain without any 

x-velocity component. Continuity requires that 

 
dy

Vd

dx

Vd yx
−=  (I.38) 

Since it is assumed that the flow enters the domain in a uniform fashion along the boundary, this means that 

the left-hand side of Eq. (I.38) must be zero. Therefore, the y-velocity component must have a zero gradient 



355 

at the pressure boundary. This same procedure could be applied to any side of the flow domain to show that 

the velocity normal to the boundary must have a zero gradient normal to the boundary across the inlet 

pressure boundary if the flow enters normal to the boundary. Therefore, a pressure inlet boundary requires 

that a Dirichlet condition be applied to one of the flow velocity components, while a Neumann condition of 

zero gradient be applied to the other flow velocity component. All other transport properties must be 

specified at a pressure inlet boundary, and a Dirichlet condition is applied for these transport properties. 

 A pressure outlet boundary is specified across a side of the domain where the pressure is known and it 

is assumed that flow is exiting but the gradients of the flow properties are unknown. In this work, a 

Neumann condition is applied at a pressure outlet and the gradient is assumed constant across the cell 

adjacent to the boundary. Without knowing the exact solution to the flowfield, it is difficult to improve 

upon this type of implementation of a pressure outlet. Some codes assume a constant gradient of the 

properties, similar to how an outlet boundary condition is implemented here. However, such an 

implementation assumes that the flow has reached a fully developed state, which is not realistic for many 

outlet boundary scenarios. 

 

III. Transport Equations 

A. Momentum 

 The x-momentum equation is a special case of Eq. (I.1) where 
x

V=φ  and 
t

νν +=Γ . The y-momentum 

equation is a special case of Eq. (I.1) where 
y

V=φ  and 
t

νν +=Γ . The x- and y-momentum source terms 

include pressure source terms and viscous source terms and can be written in the transformed coordinate 

system as 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
Γ

∂

∂
+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
Γ

∂

∂
+

∂

∂
−=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
Γ

∂

∂
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂
Γ

∂

∂
+

∂

∂
−=

ηξηηηρ

ξηξξξρ

ξξ

ηη

xy

y

yx

x

V
J

V
JJx

p
JxS

V
J

V
JJy

p
JyS

2
,,

2
,,

ˆ1

ˆ1

 (I.39) 

Integrating about a rectangular control volume in the ξ  and η  directions gives 



356 

 

ηξ
ηξηηηρ

ηξ

ηξ
ξηξξξρ

ηξ

η

η

ξ

ξ
ξξ

η

η

ξ

ξ

η

η

ξ

ξ
ηη

η

η

ξ

ξ

dd
VV

Jx
p

x

dd
J

S
S

dd
VV

Jy
p

y

dd
J

S
S

xy

y

y

yx

x

x

∫ ∫

∫ ∫

∫ ∫

∫ ∫

Δ

Δ−

Δ

Δ−

Δ

Δ−

Δ

Δ−

Δ

Δ−

Δ

Δ−

Δ

Δ−

Δ

Δ−

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
Γ

∂

∂
+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
Γ

∂

∂
+

∂

∂
−=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
Γ

∂

∂
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
Γ

∂

∂
+

∂

∂
−=

⎟
⎠

⎞
⎜
⎝

⎛
=

2

2

2

2

2
,,

2

2

2

2

2

2

2

2

2
,,

2

2

2

2

ˆ1

ˆ

ˆ1

ˆ

 (I.40) 

which can be approximated as 

 

η
η

ξ
η

ξ
ρ

ξ
ξ

η
ξ

η
ρ

ξξ

ηη

Δ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
Γ+Δ

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
Γ+Δ−=

Δ
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
Γ+Δ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂
Γ+Δ−=

e

w

x

n

s

y

n

s

y

n

s

y

e

w

x
e

w
x

VV
JxpxS

VV
JypyS

2
,,

2
,,

)ˆ(
1ˆ

)ˆ(
1ˆ

 (I.41) 

and rearranged to give 

 

η
ηη

ξ
ηη

ξ
ρ

ξ
ξξ

η
ξξ

η
ρ

ξξ

ηη

Δ
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
Γ−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
Γ+

Δ
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
Γ−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
Γ+Δ−=

Δ
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
Γ−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
Γ+

Δ
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
Γ−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
Γ+Δ−=

w

x

w

e

x

e

s

y

ss

n

y

nnnsy

s

y

s

n

y

n

w

x

ww

e

x

eeewx

VV

V
J

V
JxppxS

VV

V
J

V
JyppyS

2
,,

2
,,

)ˆˆ(
1ˆ

)ˆˆ(
1ˆ

 (I.42) 

These derivatives are calculated according to the methods presented earlier in this appendix. 

 Once an estimate for the velocity field has been obtained, the shear stress along any grid boundary can 

be estimated. For example, the shear stress can be written in the computational domain along the south 

boundary as 



357 

 

0

,

0

,

0

)(

)(

)(

⎥
⎦

⎤
⎢
⎣

⎡

∂

∂
+=

⎥
⎦

⎤
⎢
⎣

⎡

∂

∂
+=

⎥
⎦

⎤
⎢
⎣

⎡

∂

∂
+≡

η
ννρ

η
ηννρ

ννρτ

ξ
x

t

x
yt

x
tw

V
Jx

V

y

V

 (I.43) 

Applying Eq. (H.42) gives the discretized form 

 
η

ννρτ ξ
Δ

−+−
+=

3

98
)(

,

NPS

s

xxx

sstw

VVV
xJ  (I.44) 

Likewise, along a north boundary the shear stress can be calculated as 

 
η

ννρτ ξ
Δ

+−
+=

3

98
)(

,

SPN

n

xxx

nntw

VVV
xJ  (I.45) 

Along an east boundary the shear stress can be calculated as 

 
ξ

ννρτ
η

Δ

+−
+=

3

98
)(

,

WPE

e

yyy

eetw

VVV
yJ  (I.46) 

Along a west boundary the shear stress can be calculated as 

 
ξ

ννρτ
η

Δ

−+−
+=

3

98
)(

,

EPW

w

yyy

wwtw

VVV
yJ  (I.47) 

 

B. Turbulent Kinetic Energy 

  The turbulent kinetic energy equation is a special case of Eq. (I.1) where k=φ , 
kt

σνν +=Γ , and 

the source term is  

 
2

2

1 kVkk
fSfS −=  (I.48) 

Integrating about a rectangular control volume in the ξ  and η  directions gives 

 

ηξ

ηξ

η

η

ξ

ξ

η

η

ξ

ξ

dd
J

fSf

dd
J

S
S

kVk

k

k

∫ ∫

∫ ∫
Δ

Δ−

Δ

Δ−

Δ

Δ−

Δ

Δ−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
=

⎟
⎠

⎞
⎜
⎝

⎛
=

2

2

2

2

2

2

1

2

2

2

2

ˆ

 (I.49) 

Applying Eq. (H.29) gives 



358 

 
J

fSfS
kVkk

ηξΔΔ
−= )(ˆ

2

2

1
 (I.50) 

 

C. Dissipation 

  The dissipation equation is a special case of Eq. (I.1) where εφ = , 
ε

σνν
t

+=Γ , and the source 

term is  

 
2

2

1 εεε
fSfS

V
−=  (I.51) 

Integrating about a rectangular control volume in the ξ  and η  directions gives 

 

ηξ

ηξ

η

η

ξ

ξ

εε

η

η

ξ

ξ

ε
ε

dd
J

fSf

dd
J

S
S

kV∫ ∫

∫ ∫
Δ

Δ−

Δ

Δ−

Δ

Δ−

Δ

Δ−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
=

⎟
⎠

⎞
⎜
⎝

⎛
=

2

2

2

2

2

1

2

2

2

2

ˆ

 (I.52) 

Applying Eq. (H.29) gives 

 
J

fSfS
V

ηξ
εεε

ΔΔ
−= )(ˆ

2

2

1
 (I.53) 

 

D. Dissipation Frequency 

  The dissipation frequency equation is a special case of Eq. (I.1) where ωφ = , 
ω

σνν
t

+=Γ , and the 

source term is  

 
2

2

1 ωωω
fSfS

V
−=  (I.54) 

Integrating about a rectangular control volume in the ξ  and η  directions gives 

 

ηξ

ηξ

η

η

ξ

ξ

ωω

η

η

ξ

ξ

ω
ω

dd
J

fSf

dd
J

S
S

kV∫ ∫

∫ ∫
Δ

Δ−

Δ

Δ−

Δ

Δ−

Δ

Δ−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
=

⎟
⎠

⎞
⎜
⎝

⎛
=

2

2

2

2

2

1

2

2

2

2

ˆ

 (I.55) 

Applying Eq. (H.29) gives 

 
J

fSfS
V

ηξ
ωωω

ΔΔ
−= )(ˆ

2

2

1
 (I.56) 

 



359 

APPENDIX J 

FINITE-VOLUME METHOD IN CYLINDRICAL COORDINATES 

I. General Scalar Transport 

 The transport equation for any scalar, φ , can be written in curvilinear coordinates as 

 
J

S
Jr

r
zJrVV +⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂
Γ

∂

∂
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂
Γ

∂

∂
=

∂

∂
+

∂

∂

η

φ

ηξ

φ

ξη

φ

ξ

φ
ξηηξ

12
,

2
,  (J.1) 

The finite volume method is used in this work to solve the governing equations. This method is applied by 

integrating about a rectangular control volume in the ξ  and η  directions 

 ηξ
η

φ

ηξ

φ

ξη

φ

ξ

φη

η

ξ

ξ
ξηηξ dd

J

S
Jr

r
zJrVV∫ ∫

Δ

Δ−

Δ

Δ− ⎭
⎬
⎫

⎩
⎨
⎧

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
Γ

∂

∂
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂
Γ

∂

∂
=

∂

∂
+

∂

∂2

2

2

2

2
,

2
,

1
 (J.2) 

This gives 

 SJr
r

zJrVV

n

s

e

w

n

s

e

w

ˆ1
)()( 2

,
2
, +Δ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂
Γ+Δ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂
Γ=Δ+Δ ξ

η

φ
η

ξ

φ
ξφηφ ξηηξ  (J.3) 

where 

 ηξ
η

η

ξ

ξ
dd

J

S
S ∫ ∫

Δ

Δ−

Δ

Δ−

⎟
⎠

⎞
⎜
⎝

⎛
≡

2

2

2

2

ˆ  (J.4) 

The convection terms can be rewritten by defining the average volume flux terms on each face of the 

control volume 

 
ξ

η

ηη

ξξ

Δ≡

Δ≡

Vm

Vm

&

&

 (J.5) 

Using these definitions for the volume flux and applying the second-order central differencing scheme to 

the diffusion terms gives the discretized form of the governing equation for any cell, P, not adjacent to 

a boundary 



360 

 

SJrJr
r

z

JJrmm

SP

sss

PN

nnn

P

WP

ww

PE

eePsnwe

ˆ

)()()(

2
,

2
,

+Δ⎥
⎦

⎤
⎢
⎣

⎡

Δ

−
Γ−

Δ

−
Γ

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+

Δ⎥
⎦

⎤
⎢
⎣

⎡

Δ

−
Γ−

Δ

−
Γ=−+−

ξ
η

φφ

η

φφ

η
ξ

φφ

ξ

φφ
φφφφ

ξ

ηηξ
&&

 (J.6) 

 The convection terms are calculated using deferred correction. 

 )( o

L

o

HLsnwe
FFFmmmm −+=−+− βφφφφ ηηξξ

&&&&  (J.7) 

The subscripts H and L stand for higher- and lower-order approximations and β  is the blending factor. 

Several higher- and lower-order approximations could be used in this formulation. In this work, first-order 

upwinding has been implemented for the lower-order approximation, and second-order upwinding has been 

implemented for the higher-order approximation. The first-order upwinding approximation is calculated by 

retaining only the first term in the Taylor Series expansion about the upwind cell center 

 

SP

NP

WP

EPL

mm

mm

mm

mmF

φφ

φφ

φφ

φφ

ηη

ηη

ξξ

ξξ

]0,max[]0,max[

]0,max[]0,max[

]0,max[]0,max[

]0,max[]0,max[

&&

&&

&&

&&

−−+

−−+

−−+

−−≡

 (J.8) 

The second-order upwinding approximation is calculated by retaining the first two terms in a Taylor Series 

expansion about the upwind cell center to approximate the value at the face 

 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ Δ

∂

∂
+−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ Δ

∂

∂
−−+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ Δ

∂

∂
−−−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ Δ

∂

∂
++

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ Δ

∂

∂
+−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ Δ

∂

∂
−−+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ Δ

∂

∂
−−−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ Δ

∂

∂
+≡

2
]0,max[

2
]0,max[

2
]0,max[

2
]0,max[

2
]0,max[

2
]0,max[

2
]0,max[

2
]0,max[

η

η

φ
φ

η

η

φ
φ

η

η

φ
φ

η

η

φ
φ

ξ

ξ

φ
φ

ξ

ξ

φ
φ

ξ

ξ

φ
φ

ξ

ξ

φ
φ

ηη

ηη

ξξ

ξξ

S

S

P

P

N

N

P

P

W

W

P

P

E

E

P

PH

mm

mm

mm

mmF

&&

&&

&&

&&

 (J.9) 

The values in Eq. (J.9) contain derivatives estimated at cell centers. These are calculated according to the 

methods presented earlier in this appendix. The terms in the parentheses of Eq. (J.7) are calculated from the 

previous iteration as denoted by the superscript o and can be included as source terms. 

 )( o

L

o

Hc
FFS −≡ β  (J.10) 



361 

 Using Eqs. (J.7) – (J.10) in Eq. (J.6) gives 

 SSAAAAA
cSSNNWWEEPP

ˆ+−+++= φφφφφ  (J.11) 

where 

 

SNWEP

sss

P

S

nnn

P

N

wwPW

eePE

AAAAA

Jr
r

z
mA

Jr
r

z
mA

JrmA

JrmA

+++=

Γ
Δ

Δ

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+=

Γ
Δ

Δ

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+−=

Γ
Δ

Δ
+=

Γ
Δ

Δ
+−=

η

ξ

η

ξ

ξ

η

ξ

η

ξ
η

ξ
η

ηξ

ηξ

2
,

2
,

2
,

2
,

]0,max[

]0,max[

)(]0,max[

)(]0,max[

&

&

&

&

 (J.12) 

Solving Eq. (J.11) for 
P

φ  gives 

 )ˆ(
1

SSAAAA
A

cSSNNWWEE

P

P
+−+++= φφφφφ  (J.13) 

Note that in the convection terms, the 
P

φ  coefficients have been modified according to the equality 

 
P

P

mmmm

mmmm

φ

φ

ηηξξ

ηηξξ

])0,max[]0,max[]0,max[]0,(max[

])0,max[]0,max[]0,max[]0,(max[

&&&&

&&&&

+−++−=

−++−+
 (J.14) 

in order to facilitate the summation in Eq. (J.12). Applying an under-relaxation variable, α , and the 

previous solution, o

P
φ , gives an under-relaxation form of Eq. (J.13), 

 )ˆ()1( SSAAAA
A

cSSNNWWEE

P

o

PP
+−++++−= φφφφ

α
φαφ  (J.15) 

 

II. Boundary Condition Implementation 

 Two types of boundary conditions can be applied. A Dirichlet boundary condition exists when the 

value of the transport property is known at the boundary. A Neumann boundary condition exists when the 

gradient of the transport property is known at the boundary. The implementation of each of these conditions 

will be discussed here. 

 



362 

A. The Dirichlet Boundary Condition 

 For a cell adjacent to a boundary at which a Dirichlet boundary condition should be applied, the 

discretization method presented above is used, but the second-order differencing scheme for the boundary 

is employed. For example, using the approximation given in Eq. (H.42), the discretized form of Eq. (J.3) 

for a cell adjacent to the south boundary is 

 

SJrJr
r

z

JJrmm

NPS

sss

PN

nnn

P

WP

ww

PE

eePsnwe

ˆ
3

98

)()()(

2
,

2
,

+Δ⎥
⎦

⎤
⎢
⎣

⎡

Δ

−+−
Γ−

Δ

−
Γ

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+

Δ⎥
⎦

⎤
⎢
⎣

⎡

Δ

−
Γ−

Δ

−
Γ=−+−

ξ
η

φφφ

η

φφ

η
ξ

φφ

ξ

φφ
φφφφ

ξ

ηηξ
&&

 (J.16) 

where 
S

φ  is the value of the transport property at the south wall. Using the same methods as presented 

above for the convection terms, Eq. (J.16) can be rewritten to match Eq. (J.11) where 

 

SNWEP

sss

P

S

sssnnn

P

N

wwPW

eePE

AAAAA

Jr
r

z
mA

JrJr
r

z
mA

JrmA

JrmA

+++=

Γ
Δ

Δ

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+=

⎟
⎠

⎞
⎜
⎝

⎛
Γ+Γ

Δ

Δ
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+−=

Γ
Δ

Δ
+=

Γ
Δ

Δ
+−=

3

8
]0,max[

3

1
]0,max[

)(]0,max[

)(]0,max[

2
,

2
,

2
,

2
,

η

ξ

η

ξ

ξ

η

ξ

η

ξ
η

ξ
η

ηξ

ηξ

&

&

&

&

 (J.17) 

Likewise, for a cell adjacent to the north boundary, 

 

SNWEP

nnnsss

P

S

nnn

P

N

wwPW

eePE

AAAAA

JrJr
r

z
mA

Jr
r

z
mA

JrmA

JrmA

+++=

⎟
⎠

⎞
⎜
⎝

⎛
Γ+Γ

Δ

Δ

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+=

Γ
Δ

Δ

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+−=

Γ
Δ

Δ
+=

Γ
Δ

Δ
+−=

3

1
]0,max[

3

8
]0,max[

)(]0,max[

)(]0,max[

2
,

2
,

2
,

2
,

η

ξ

η

ξ

ξ

η

ξ

η

ξ
η

ξ
η

ηξ

ηξ

&

&

&

&

 (J.18) 

For a cell adjacent to the east boundary, 



363 

 

SNWEP

sss

P

S

nnn

P

N

eewwPW

eePE

AAAAA

Jr
r

z
mA

Jr
r

z
mA

JJrmA

JrmA

+++=

Γ
Δ

Δ

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+=

Γ
Δ

Δ

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+−=

⎟
⎠

⎞
⎜
⎝

⎛
Γ+Γ

Δ

Δ
+=

Γ
Δ

Δ
+−=

η

ξ

η

ξ

ξ

η

ξ

η

ξ
η

ξ
η

ηξ

ηξ

2
,

2
,

2
,

2
,

]0,max[

]0,max[

3

1
)(]0,max[

3

8
)(]0,max[

&

&

&

&

 (J.19) 

For a cell adjacent to the west boundary 

 

SNWEP

sss

P

S

nnn

P

N

wwPW

wweePE

AAAAA

Jr
r

z
mA

Jr
r

z
mA

JrmA

JJrmA

+++=

Γ
Δ

Δ

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+=

Γ
Δ

Δ

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+−=

Γ
Δ

Δ
+=

⎟
⎠

⎞
⎜
⎝

⎛
Γ+Γ

Δ

Δ
+−=

η

ξ

η

ξ

ξ

η

ξ

η

ξ
η

ξ
η

ηξ

ηξ

2
,

2
,

2
,

2
,

]0,max[

]0,max[

3

8
)(]0,max[

3

1
)(]0,max[

&

&

&

&

 (J.20) 

 

B. The Neumann Boundary Condition 

 For a cell adjacent to a boundary at which a Neumann boundary condition should be applied, the 

discretization method presented above is used, but the gradient along the boundary is directly applied. For 

example, if a Neumann condition is known at the south boundary, the discretized form of Eq. (J.3) for a cell 

adjacent to the south boundary is 

 

SJrJr
r

z

JJrmm

s

sss

PN

nnn

P

WP

ww

PE

eePsnwe

ˆ

)()()(

2
,

2
,

+Δ
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
Γ−

Δ

−
Γ

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+

Δ⎥
⎦

⎤
⎢
⎣

⎡

Δ

−
Γ−

Δ

−
Γ=−+−

ξ
η

φ

η

φφ

η
ξ

φφ

ξ

φφ
φφφφ

ξ

ηηξ
&&

 (J.21) 

 A common Neumann boundary condition is the zero gradient boundary condition, for example, at a 

symmetry boundary. For a zero gradient boundary condition on the south boundary,  



364 

 

SJr
r

z

JJrmm

PN

nnn

P

WP

ww

PE

eePsnwe

ˆ0

)()()(

2
,

2
,

+Δ⎥
⎦

⎤
⎢
⎣

⎡
−

Δ

−
Γ

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+

Δ⎥
⎦

⎤
⎢
⎣

⎡

Δ

−
Γ−

Δ

−
Γ=−+−

ξ
η

φφ

η
ξ

φφ

ξ

φφ
φφφφ

ξ

ηηξ
&&

 (J.22) 

Using the same methods as presented above for the convection terms, Eq. (J.22) can be rewritten to match 

Eq. (J.11) where 

 

SNWEP

S

nnn

P

N

wwPW

eePE

AAAAA

mA

Jr
r

z
mA

JrmA

JrmA

+++=

=

Γ
Δ

Δ
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+−=

Γ
Δ

Δ
+=

Γ
Δ

Δ
+−=

]0,max[

]0,max[

)(]0,max[

)(]0,max[

2
,

2
,

2
,

η

ξ
η

ηξ

ηξ

η

ξ

ξ

η

ξ

η

&

&

&

&

 (J.23) 

Likewise, for a cell adjacent to the north boundary, 

 

SNWEP

sss

P

S

N

wwPW

eePE

AAAAA

Jr
r

z
mA

mA

JrmA

JrmA

+++=

Γ
Δ

Δ
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+=

−=

Γ
Δ

Δ
+=

Γ
Δ

Δ
+−=

η

ξ

ξ

η

ξ

η

ξ
η

η

ηξ

ηξ

2
,

2
,

2
,

]0,max[

]0,max[

)(]0,max[

)(]0,max[

&

&

&

&

 (J.24) 

For a cell adjacent to the east boundary, 

 

SNWEP

sss

P

S

nnn

P

N

wwPW

E

AAAAA

Jr
r

z
mA

Jr
r

z
mA

JrmA

mA

+++=

Γ
Δ

Δ

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+=

Γ
Δ

Δ
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+−=

Γ
Δ

Δ
+=

−=

η

ξ

η

ξ

ξ

η

ξ
η

ξ
η

ηξ

ξ

2
,

2
,

2
,

]0,max[

]0,max[

)(]0,max[

]0,max[

&

&

&

&

 (J.25) 

For a cell adjacent to the west boundary, 



365 

 

SNWEP

sss

P

S

nnn

P

N

W

eePE

AAAAA

Jr
r

z
mA

Jr
r

z
mA

mA

JrmA

+++=

Γ
Δ

Δ

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+=

Γ
Δ

Δ
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+−=

=

Γ
Δ

Δ
+−=

η

ξ

η

ξ

ξ

η

ξ
η

ξ
η

ξ

ηξ

2
,

2
,

2
,

]0,max[

]0,max[

]0,max[

)(]0,max[

&

&

&

&

 (J.26) 

 Another common Neumann boundary condition is the constant gradient boundary condition where the 

gradient of the transport property normal to the boundary is assumed constant over the cell. This condition 

is sometimes used at a pressure boundary. For a constant gradient boundary condition on the north 

boundary of the domain, the gradient on the north face of each cell along the boundary is equal to the 

gradient on the south face of the cell. 

 

sn

sn

JzJz

rr

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂

∂

∂
=

∂

∂

η

φ

η

φ

φφ

ξξ ,,

 (J.27) 

This can be applied to give the discretized form of Eq. (J.3) for a cell adjacent to a north boundary 

 

SJrr
r

z

JJrmm

SP

sssnn

P

WP

ww

PE

eePsnwe

ˆ)(

)()()(

2
,

2
,

+Δ⎥
⎦

⎤
⎢
⎣

⎡

Δ

−
Γ−Γ

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+

Δ⎥
⎦

⎤
⎢
⎣

⎡

Δ

−
Γ−

Δ

−
Γ=−+−

ξ
η

φφ

η
ξ

φφ

ξ

φφ
φφφφ

ξ

ηηξ
&&

 (J.28) 

Using the same methods as presented above for the convection terms, Eq. (J.28) can be rewritten to match 

Eq. (J.11) where 

 

SNWEP

snnss

P

S

N

wwPW

eePE

AAAAA

Jrr
r

z
mA

mA

JrmA

JrmA

+++=

Γ−Γ
Δ

Δ
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+=

−=

Γ
Δ

Δ
+=

Γ
Δ

Δ
+−=

)(]0,max[

]0,max[

)(]0,max[

)(]0,max[

2
,

2
,

2
,

η

ξ

ξ

η

ξ

η

ξ
η

η

ηξ

ηξ

&

&

&

&

 (J.29) 



366 

For a cell adjacent to a south boundary with a constant gradient boundary condition, 

 

SNWEP

S

nssnn

P

N

wwPW

eePE

AAAAA

mA

Jrr
r

z
mA

JrmA

JrmA

+++=

=

Γ−Γ
Δ

Δ
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+−=

Γ
Δ

Δ
+=

Γ
Δ

Δ
+−=

]0,max[

)(]0,max[

)(]0,max[

)(]0,max[

2
,

2
,

2
,

η

ξ
η

ηξ

ηξ

η

ξ

ξ

η

ξ

η

&

&

&

&

 (J.30) 

For a cell adjacent to an east constant gradient boundary, 

 

SNWEP

sss

P

S

nnn

P

N

wewPW

E

AAAAA

Jr
r

z
mA

Jr
r

z
mA

JrmA

mA

+++=

Γ
Δ

Δ

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+=

Γ
Δ

Δ
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+−=

Γ−Γ
Δ

Δ
+=

−=

η

ξ

η

ξ

ξ

η

ξ
η

ξ
η

ηξ

ξ

2
,

2
,

2
,

]0,max[

]0,max[

)()(]0,max[

]0,max[

&

&

&

&

 (J.31) 

For a cell adjacent to a west constant gradient boundary, 

 

SNWEP

sss

P

S

nnn

P

N

W

ewePE

AAAAA

Jr
r

z
mA

Jr
r

z
mA

mA

JrmA

+++=

Γ
Δ

Δ

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+=

Γ
Δ

Δ
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+−=

=

Γ−Γ
Δ

Δ
+−=

η

ξ

η

ξ

ξ

η

ξ
η

ξ
η

ξ

ηξ

2
,

2
,

2
,

]0,max[

]0,max[

]0,max[

)()(]0,max[

&

&

&

&

 (J.32) 

 For the cases of interest in this work, the boundary conditions for a velocity inlet, outlet, smooth-wall, 

symmetry, and pressure outlet are the same as for the Cartesian formulation. However, the pressure inlet 

condition across the north side of the domain requires special attention. 

 It is assumed that at a pressure inlet, the flow enters the domain normal to the boundary and the 

properties of the flow are known across the boundary. If the north side of a domain is specified as a 



367 

pressure inlet boundary, flow must enter the domain without any z-velocity component. Continuity requires 

that 

 
r

V

dr

Vd
rr

−=  (J.33) 

Applying Eq. (G.10) gives this relationship in the transformed coordinate system 

 
r

VV
Jz

r

V
rrr

−=
∂

∂
=

∂

∂

η
ξ,  (J.34) 

Applying Eq. (H.22) across the north side of the domain gives 

 

N

rrrr

n

rr

r

VVVV
zJ

r

VV
Jz

NSPN

n
=

Δ

+−

−=
∂

∂

η

η

ξ

ξ

3

98

,

,

 (J.35) 

Rearranging gives 

 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

Δ

−
Δ

=

r

zJ

VV
zJ

V

n

SP

n

N

n

rr

n

r

1
8

3

)9(
3

,

,

η

η

ξ

ξ

 (J.36) 

Using that in this: 

 

SJrJr
r

z

JJrmm

SP

sss

SPN

nnn

P

WP

ww

PE

eePsnwe

ˆ
3

98

)()()(

2
,

2
,

+Δ⎥
⎦

⎤
⎢
⎣

⎡

Δ

−
Γ−

Δ

+−
Γ

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+

Δ⎥
⎦

⎤
⎢
⎣

⎡

Δ

−
Γ−

Δ

−
Γ=−+−

ξ
η

φφ

η

φφφ

η
ξ

φφ

ξ

φφ
φφφφ

ξ

ηηξ
&&

 (J.37) 

gives 

 

SJrCJr
r

z

JJrmm

SP

sss

SP

nnn

P

WP

ww

PE

eePsnwe

ˆ
3

9
)11(

)()()(

2
,

2
,

+Δ⎥
⎦

⎤
⎢
⎣

⎡

Δ

−
Γ−

Δ

−
−Γ

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+

Δ⎥
⎦

⎤
⎢
⎣

⎡

Δ

−
Γ−

Δ

−
Γ=−+−

ξ
η

φφ

η

φφ

η
ξ

φφ

ξ

φφ
φφφφ

ξ

ηηξ
&&

 (J.38) 

where 



368 

 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

Δ

−=

η

ξ

3
8

1
1

,
n

zJ
r

C

n

n

 (J.39) 

It is recommended that the developer use a Dirichlet boundary condition for both velocity components on 

the north face and update it every iteration according to 

 

0

1
8

3

)9(
3

,

,

=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

Δ

−
Δ

=

n

n

SP

n

n

z

n

n

rr

n

r

V

r

zJ

VV
zJ

V

η

η

ξ

ξ

 (J.40) 

All other transport properties must be specified at a pressure inlet boundary, and a Dirichlet condition is 

applied for these transport properties. 

 

III. Transport Equations 

 The z-momentum equation is a special case of Eq. (J.1) where 
z

V=φ  and 
t

νν +=Γ . The r-momentum 

equation is a special case of Eq. (J.1) where 
r

V=φ  and 
t

νν +=Γ . The z- and r-momentum source terms 

include pressure source terms and viscous source terms and can be written in the transformed coordinate 

system as 

 

2

2
,,

2
,,

21ˆ1

1ˆ1

r

VV
J

V
rJJz

r

p
JzS

V
JJr

V
rJ

r

p
JrS

rzr

r

zr

z

Γ
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂
Γ

∂

∂
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂
Γ

∂

∂
+

∂

∂
−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
Γ

∂

∂
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂
Γ

∂

∂
+

∂

∂
−=

ηξηηηρ

ξξξηξρ

ξξ

ηη

 (J.41) 

Integrating about a rectangular control volume in the ξ  and η  directions gives 

 

ηξ
ηξηηηρ

ηξ

ηξ
ξξξηξρ

ηξ

η

η

ξ

ξ
ξξ

η

η

ξ

ξ

η

η

ξ

ξ
ηη

η

η

ξ

ξ

dd
Jr

VVV
rJz

r

p
z

dd
J

S
S

dd
V

Jr
V

r
r

p
r

dd
J

S
S

rzr

r

r

zr

z

z

∫ ∫

∫ ∫

∫ ∫

∫ ∫

Δ

Δ−

Δ

Δ−

Δ

Δ−

Δ

Δ−

Δ

Δ−

Δ

Δ−

Δ

Δ−

Δ

Δ−

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧ Γ

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
Γ

∂

∂
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂
Γ

∂

∂
+

∂

∂
−=

⎟
⎠

⎞
⎜
⎝

⎛
=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
Γ

∂

∂
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂
Γ

∂

∂
+

∂

∂
−=

⎟
⎠

⎞
⎜
⎝

⎛
=

2

2

2

2
2

2
,,

2

2

2

2

2

2

2

2

2
,,

2

2

2

2

21ˆ1

ˆ

1ˆ1

ˆ

 (J.42) 



369 

which can be approximated as 

 

ηξη
η

ξ
η

ξ
ρ

ξ
ξ

η
ξ

η
ρ

ξξ

ηη

ΔΔ
Γ

−Δ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
Γ+Δ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂
Γ+Δ−=

Δ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
Γ+Δ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂
Γ+Δ−=

2

2
,,

2
,,

21
)ˆ(

1ˆ

1
)ˆ(

1ˆ

Jr

VVV
rJz

r
pzS

V
r

r

V
JrprS

r

e

w

z

n

s

r

n

s

r

n

s

r

e

w

z

e

w

z

 (J.43) 

and rearranged to give 

 

ηξη
ηη

ξ
ηη

ξ
ρ

ξ
ξξ

η
ξξ

η
ρ

ξξ

ηη

ΔΔ
Γ

−Δ
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
Γ−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂
Γ+

Δ
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
Γ−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂
Γ+Δ−=

Δ
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
Γ−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂
Γ+

Δ
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
Γ−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂
Γ+Δ−=

2

2
,,

2
,,

2

1
)ˆˆ(

1ˆ

1

)ˆˆ(
1ˆ

Jr

VVV

V
Jr

V
Jrz

r
ppzS

V
r

V
r

r

V
J

V
JrpprS

r

w

z

w

e

z

e

s

r

sss

n

r

nnnnsr

s

r

ss

n

r

nn

w

z

ww

e

z

eeewz

 (J.44) 

These derivatives are discretized according to the discretization methods presented in Appendix H. 

 The same no-slip wall boundary conditions apply as in Cartesian coordinates, and the wall shear stress 

is estimated the same way. For example, the shear stress can be written in the computational domain along 

the south boundary as 

 

0

,

0

,

0

)(

)(

)(

=

=

=

⎥
⎦

⎤
⎢
⎣

⎡

∂

∂
+=

⎥
⎦

⎤
⎢
⎣

⎡

∂

∂
+=

⎥
⎦

⎤
⎢
⎣

⎡

∂

∂
+≡

r

z

t

r

z

rt

r

z

tw

V
Jz

V

r

V

η
ννρ

η
ηννρ

ννρτ

ξ

 (J.45) 

Applying Eq. (H.42) gives the discretized form 

 
η

ννρτ ξ
Δ

−+−
+=

3

98
)(

,

NPS

s

zzz

sstw

VVV
zJ  (J.46) 

Likewise, along a north boundary the shear stress can be calculated as 

 
η

ννρτ ξ
Δ

+−
+=

3

98
)(

,

SPN

n

zzz

nntw

VVV
zJ  (J.47) 



370 

Along an east boundary the shear stress can be calculated as 

 
ξ

ννρτ
η

Δ

+−
+=

3

98
)(

,

WPE

e

rrr

eetw

VVV
rJ  (J.48) 

Along a west boundary the shear stress can be calculated as 

 
ξ

ννρτ η
Δ

−+−
+=

3

98
)(

,

EPW

w

rrr

wwtw

VVV
rJ  (J.49) 

 The source terms and boundary conditions for the other transport equations in cylindrical coordinates 

are identical to those in Cartesian coordinates. 



371 

APPENDIX K 

THE SIMPLE ALGORITHM IN CARTESIAN COORDINATES 

I. Development of the SIMPLE Algorithm 

 The conservation of momentum equations can be written for any cell as 

 

ySNWEP

xSNWEP

cyySyNyWyEyP

cxxSxNxWxExP

SSVAVAVAVAVA

SSVAVAVAVAVA

−++++=

−++++=

ˆ

ˆ

 (K.1) 

Neglecting all source terms other than pressure, these equations can be rewritten as 

 

ξ
ρ

η
ρ

ξ

η

Δ−+=

Δ−+=

∑

∑

)ˆˆ(

)ˆˆ(

,

,

ns

nb

ynbyP

ew

nb

xnbxP

pp
x

VAVA

pp
y

VAVA

nbP

nbP

 (K.2) 

where the subscript, nb, stands for the neighboring boundaries, N, S, E, and W. At some point during the 

solution procedure, approximate values for the pressure and velocities are known. The actual values of the 

pressure and velocities can be written as 

 

'*

'*

'*

ˆˆˆ ppp

VVV

VVV

yyy

xxx

+=

+=

+=

 (K.3) 

where the starred values indicate the present approximate or “guessed” values and the prime values indicate 

correction factors. Therefore, at any given time during the solution procedure, instead of Eq. (K.2) we 

actually have 

 

ξ
ρ

η
ρ

ξ

η

Δ−+=

Δ−+=

∑

∑

)ˆˆ(

)ˆˆ(

**,**

**,**

ns

nb

ynbyP

ew

nb

xnbxP

pp
x

VAVA

pp
y

VAVA

nbP

nbP

 (K.4) 

Subtracting Eq. (K.4) from Eq. (K.2) gives the momentum equations in terms of the correction factors 



372 

 

ξ
ρ

η
ρ

ξ

η

Δ−+=

Δ−+=

∑

∑

)ˆˆ(

)ˆˆ(

'',''

'',''

ns

nb

ynbyP

ew

nb

xnbxP

pp
x

VAVA

pp
y

VAVA

nbP

nbP

 (K.5) 

Neglecting the summation terms gives expressions for the velocity correction terms 

 

)ˆˆ(

)ˆˆ(

'','

'','

ns

P

y

ew

P

x

pp
A

x
V

pp
A

y
V

P

P

−
Δ

=

−
Δ

=

ρ

ξ

ρ

η

ξ

η

 (K.6) 

 From the definition of the contravariant velocity components given in Eq. (F.12), the correction to the 

contravariant velocity components can be written in terms of the correction to the physical velocity 

components. 

 
'

,
'

'
,

'

PP

PP

y

x

VxV

VyV

ξη

ηξ

=

=

 (K.7) 

Using Eq. (K.6) in Eq. (K.7) gives 

 

)ˆˆ(

)ˆˆ(

''

2
,'

''

2
,'

ns

P

ew

P

pp
A

x
V

pp
A

y
V

P

P

−
Δ

=

−
Δ

=

ρ

ξ

ρ

η

ξ
η

η
ξ

 (K.8) 

Equation (K.8) is a velocity correction equation for the cell center in terms of pressure values at the faces. 

Using a similar method to that presented here in Eqs. (K.1) through (K.8), expressions can be written for 

the velocity correction on the cell faces in terms of pressure values at cell centers for any cell face that is 

not a boundary. 

 

)ˆˆ(

)ˆˆ(

)ˆˆ(

)ˆˆ(

''

2
,'

''

2
,'

''

2
,'

''

2
,'

PS

s

NP

n

PW

w

EP

e

pp
A

x
V

pp
A

x
V

pp
A

y
V

pp
A

y
V

s

n

w

e

−
Δ

=

−
Δ

=

−
Δ

=

−
Δ

=

ρ

ξ

ρ

ξ

ρ

η

ρ

η

ξ
η

ξ
η

η
ξ

η
ξ

 (K.9) 



373 

 Now consider the average continuity equation for incompressible flow 

 0=⋅∇ V  (K.10) 

For two-dimensional flow, this can be written in curvilinear coordinates as 

 0=
∂

∂
+

∂

∂

ηξ

ηξ VV
 (K.11) 

Integrating around the boundary of a cell gives 

 

0)()(

0

=−Δ+−Δ

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

∂

∂
+

∂

∂
∫∫

snwe

VVVV

dd
VV

ηηξξ

ηξ

ξη

ηξ
ηξ  (K.12) 

Using Eq. (K.3) in Eq. (K.12) gives 

 0)()( '*'*'*'*

=−−+Δ+−−+Δ
ssnnwwee

VVVVVVVV ηηηηξξξξ ξη  (K.13) 

Rearranging yields 

 0)()( ''''

=+−Δ+−Δ
p

SVVVV
snwe

ηηξξ ξη  (K.14) 

where 

 )()( ****

snwe

VVVVS
p ηηξξ ξη −Δ+−Δ=  (K.15) 

is the imbalance of mass in the cell and approaches zero as the solution converges. Notice that this mass 

imbalance equation (the source term in the pressure solver) is dependent on knowing the contravariant 

velocity components at the faces of the cell. Obtaining these velocities through interpolations from the cell 

center can result in pressure oscillations for collocated grid arrangements. Employing a staggered grid 

arrangement eliminates this problem. To remedy the pressure oscillation problem on collocated grids, Rhie 

and Chow [80] suggest calculating the velocities at the cell faces by adding in some additional factors. This 

method has been widely adopted for collocated grids, and will be used here. The velocities at the cell faces 

are calculated from 



374 

 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

−
ΔΔ−=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

−
ΔΔ−=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

−
ΔΔ−=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

−
ΔΔ−=

*
,

**2
,**

*
,

**2
,**

*
,

**2
,**

*
,

**2
,**

η
ξ

ηη

η
ξ

ηη

ξ
η

ξξ

ξ
η

ξξ

δη
ηξ

ρ

δη
ηξ

ρ

δξ
ηξ

ρ

δξ
ηξ

ρ

p
pp

A

x
VV

p
pp

A

x
VV

p
pp

A

y
VV

p
pp

A

y
VV

SP

s

PN

n

WP

w

PE

e

ss

nn

ww

ee

(

(

(

(

(

(

(

(

(

(

(

(

 (K.16) 

where the curved bar represents an interpolated value to the cell face. 

 Using Eq. (K.9) in Eq. (K.14) gives 

 

0)ˆˆ()ˆˆ(

)ˆˆ()ˆˆ(

''

22
,''

22
,

''

22
,''

22
,

=+−
Δ

−−
Δ

+

−
Δ

−−
Δ

pPS

s

NP

n

PW

w

EP

e

Spp
A

x
pp

A

x

pp
A

y
pp

A

y

ρ

ξ

ρ

ξ

ρ

η

ρ

η

ξξ

ηη

 (K.17) 

Collecting terms and rearranging gives 

 
PSSNNWWEEPP

SpDpDpDpDpD −+++=
'''''
ˆˆˆˆˆ  (K.18) 

where 

 

SNWEP

s

S

n

N

w

W

e

E

DDDDD

A

x
D

A

x
D

A

y
D

A

y
D

+++≡

Δ
≡

Δ
≡

Δ
≡

Δ
≡

ρ

ξ

ρ

ξ

ρ

η

ρ

η

ξ

ξ

η

η

22
,

22
,

22
,

22
,

 (K.19) 

Therefore, 

 )ˆˆˆˆ(
1ˆ '''''

pSSNNWWEE

P

P SpDpDpDpD
D

p −+++=  (K.20) 

Note that Eq. (K.20) is linear and therefore requires no relaxation factor. Once the pressure correction terms 

are converged, they are added to the previous pressure terms using an under-relaxation factor, 
p

α  



375 

 '*
ˆˆˆ

PpPP ppp α+=  (K.21) 

Using Eq. (K.9), the contravariant velocity terms are then corrected without relaxation (the under-

relaxation for the velocity terms takes place in the momentum solver). 

 

)ˆˆ(

)ˆˆ(

)ˆˆ(

)ˆˆ(

''

2
,*

''

2
,*

''

2
,*

''

2
,*

PS

s

NP

n

PW

w

EP

e

pp
A

x
VV

pp
A

x
VV

pp
A

y
VV

pp
A

y
VV

ss

nn

ww

ee

−
Δ

+=

−
Δ

+=

−
Δ

+=

−
Δ

+=

ρ

ξ

ρ

ξ

ρ

η

ρ

η

ξ
ηη

ξ
ηη

η
ξξ

η
ξξ

 (K.22) 

These velocities are now mass-conserving velocities and can be averaged to find the contravariant velocity 

components at the center of the cell. The contravariant velocity components are then used to calculate the 

corrected velocities in rectilinear coordinates using Eq. (F.12). 

 

II. Boundary Treatment 

 Several different types of boundary conditions exist for pressure, however, they all require similar 

treatment. If the velocity at the boundary is fixed, then the velocity need not be updated, and the 

corresponding last term on the right-hand side of Eq. (K.22) is zero. Likewise, if the pressure gradient 

normal to the boundary is zero, then the corresponding last term on the right-hand side of Eq. (K.22) is 

zero. For example, if the east boundary is an outlet, the pressure gradient is zero and Eq. (K.20) can be 

solved by setting 0=
E

D . The same would be true if the east boundary were a velocity inlet (velocity 

specified), a wall (velocity = 0, and the normal pressure gradient is zero), or a line of symmetry (normal 

pressure gradient is zero). 



376 

APPENDIX L 

THE SIMPLE ALGORITHM IN CYLINDRICAL COORDINATES 

I. Development of the SIMPLE Algorithm 

 The conservation of momentum equations can be written for any cell as 

 

rSNWEP

zSNWEP

crrSrNrWrErP

czzSzNzWzEzP

SSVAVAVAVAVA

SSVAVAVAVAVA

−++++=

−++++=

ˆ

ˆ

 (L.1) 

Neglecting all source terms other than pressure, these equations can be rewritten as 

 

ξ
ρ

η
ρ

ξ

η

Δ−+=

Δ−+=

∑

∑

)ˆˆ(

)ˆˆ(

,

,

ns

nb

rnbrP

ew

nb

znbzP

pp
z

VAVA

pp
r

VAVA

nbP

nbP

 (L.2) 

where the subscript, nb, stands for the neighboring boundaries, N, S, E, and W. At some point during the 

solution procedure, approximate values for the pressure and velocities are known. The actual values of the 

pressure and velocities can be written as 

 

'*

'*

'*

ˆˆˆ ppp

VVV

VVV

rrr

zzz

+=

+=

+=

 (L.3) 

where the starred values indicate the present approximate or “guessed” values and the prime values indicate 

correction factors. Therefore, at any given time during the solution procedure, instead of Eq. (L.2) we 

actually have 

 

ξ
ρ

η
ρ

ξ

η

Δ−+=

Δ−+=

∑

∑

)ˆˆ(

)ˆˆ(

**,**

**,**

ns

nb

rnbrP

ew

nb

znbzP

pp
z

VAVA

pp
r

VAVA

nbP

nbP

 (L.4) 

Subtracting Eq. (L.4) from Eq. (L.2) gives the momentum equations in terms of the correction factors 



377 

 

ξ
ρ

η
ρ

ξ

η

Δ−+=

Δ−+=

∑

∑

)ˆˆ(

)ˆˆ(

'',''

'',''

ns

nb

rnbrP

ew

nb

znbzP

pp
z

VAVA

pp
r

VAVA

nbP

nbP

 (L.5) 

Neglecting the summation terms gives expressions for the velocity correction terms 

 

)ˆˆ(

)ˆˆ(

'','

'','

ns

P

r

ew

P

z

pp
A

z
V

pp
A

r
V

P

P

−
Δ

=

−
Δ

=

ρ

ξ

ρ

η

ξ

η

 (L.6) 

 From the definition of the contravariant velocity components given in Eq. (G.12), the correction to the 

contravariant velocity components can be written in terms of the correction to the physical velocity 

components. 

 
'

,
'

'
,

'

PP

PP

r

z

VzV

VrV

ξη

ηξ

=

=

 (L.7) 

Using Eq. (L.6) in Eq. (L.7) gives 

 

)ˆˆ(

)ˆˆ(

''

2
,'

''

2
,'

ns

P

ew

P

pp
A

z
V

pp
A

r
V

P

P

−
Δ

=

−
Δ

=

ρ

ξ

ρ

η

ξ
η

η
ξ

 (L.8) 

Equation (L.8) is a velocity correction equation for the cell center in terms of pressure values at the faces. 

Using a similar method to that presented here in Eqs. (L.1) through (L.8), expressions can be written for the 

velocity correction on the cell faces in terms of pressure values at cell centers for any cell face that is not a 

boundary. 

 

)ˆˆ(

)ˆˆ(

)ˆˆ(

)ˆˆ(

''

2
,'

''

2
,'

''

2
,'

''

2
,'

PS

s

NP

n

PW

w

EP

e

pp
A

z
V

pp
A

z
V

pp
A

r
V

pp
A

r
V

s

n

w

e

−
Δ

=

−
Δ

=

−
Δ

=

−
Δ

=

ρ

ξ

ρ

ξ

ρ

η

ρ

η

ξ
η

ξ
η

η
ξ

η
ξ

 (L.9) 



378 

 Now consider the average continuity equation for incompressible flow 

 0=⋅∇ V  (L.10) 

For two-dimensional axisymmetric flow, this can be written in curvilinear coordinates as 

 0
)(1

=
∂

∂
+

∂

∂

ξη

ξη VVr

r
 (L.11) 

Integrating around the boundary of a cell gives 

 

0)()(

0
)(1

=−
Δ

+−Δ

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

∂

∂
+

∂

∂
∫∫

snwe

VrVr
r

VV

dd
VVr

r

sn

P

ηηξξ

ξη

ξ
η

ηξ
ξη

 (L.12) 

Using Eq. (L.3) in Eq. (L.12) gives 

 0)()( '*'*'*'*

=−−+
Δ

+−−+Δ
ssnnwwee

VrVrVrVr
r

VVVV
ssnn

P

ηηηηξξξξ

ξ
η  (L.13) 

Rearranging yields 

 0)()( ''''
=+−

Δ
+−Δ psn

P

SVrVr
r

VV
snwe

ηηξξ

ξ
η  (L.14) 

where 

 )()( ****

snwe

VrVr
r

VVS sn

P

p ηηξξ

ξ
η −

Δ
+−Δ=  (L.15) 

is the imbalance of mass in the cell and approaches zero as the solution converges. Notice that this mass 

imbalance equation (the source term in the pressure solver) is dependent on knowing the contravariant 

velocity components at the faces of the cell. Obtaining these velocities through interpolations from the cell 

center can result in pressure oscillations for collocated grid arrangements. Employing a staggered grid 

arrangement eliminates this problem. To remedy the pressure oscillation problem on collocated grids, Rhie 

and Chow [80] suggest calculating the velocities at the cell faces by adding in some additional factors. This 

method has been widely adopted for collocated grids, and will be used here. The velocities at the cell faces 

are calculated from 



379 

 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

−
ΔΔ−=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

−
ΔΔ−=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

−
ΔΔ−=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

−
ΔΔ−=

*
,

**2
,**

*
,

**2
,**

*
,

**2
,**

*
,

**2
,**

η
ξ

ηη

η
ξ

ηη

ξ
η

ξξ

ξ
η

ξξ

δη
ηξ

ρ

δη
ηξ

ρ

δξ
ηξ

ρ

δξ
ηξ

ρ

p
pp

A

z
VV

p
pp

A

z
VV

p
pp

A

r
VV

p
pp

A

r
VV

SP

s

PN

n

WP

w

PE

e

ss

nn

ww

ee

(

(

(

(

(

(

(

(

(

(

(

(

 (L.16) 

where the curved bar represents an interpolated value to the cell face. 

 Using Eq. (L.9) in Eq. (L.14) gives 

 0)ˆˆ()ˆˆ()ˆˆ()ˆˆ( ''

22
,''

22
,''

22
,''

22
,

=+−
Δ

−−
Δ

+−
Δ

−−
Δ

pPS

sP

s
NP

nP

n
PW

w

EP

e

Spp
Ar

rz
pp

Ar

rz
pp

A

r
pp

A

r

ρ

ξ

ρ

ξ

ρ

η

ρ

η ξξηη
 (L.17) 

Collecting terms and rearranging gives 

 
PSSNNWWEEPP

SpDpDpDpDpD −+++=
'''''
ˆˆˆˆˆ  (L.18) 

where 

 

SNWEP

sP

s
S

nP

n
N

w

W

e

E

DDDDD

Ar

rz
D

Ar

rz
D

A

r
D

A

r
D

+++≡

Δ
≡

Δ
≡

Δ
≡

Δ
≡

ρ

ξ

ρ

ξ

ρ

η

ρ

η

ξ

ξ

η

η

22
,

22
,

22
,

22
,

 (L.19) 

Therefore, 

 )ˆˆˆˆ(
1ˆ '''''

pSSNNWWEE

P

P SpDpDpDpD
D

p −+++=  (L.20) 

Note that Eq. (L.20) is linear and therefore requires no relaxation factor. Once the pressure correction terms 

are converged, they are added to the previous pressure terms using an under-relaxation factor, 
p

α  

 '*
ˆˆˆ

PpPP ppp α+=  (L.21) 



380 

Using Eq. (L.9), the contravariant velocity terms are then corrected without relaxation (the under-relaxation 

for the velocity terms takes place in the momentum solver). 

 

)ˆˆ(

)ˆˆ(

)ˆˆ(

)ˆˆ(

''

2
,*

''

2
,*

''

2
,*

''

2
,*

PS

s

NP

n

PW

w

EP

e

pp
A

z
VV

pp
A

z
VV

pp
A

r
VV

pp
A

r
VV

ss

nn

ww

ee

−
Δ

+=

−
Δ

+=

−
Δ

+=

−
Δ

+=

ρ

ξ

ρ

ξ

ρ

η

ρ

η

ξ
ηη

ξ
ηη

η
ξξ

η
ξξ

 (L.22) 

These velocities are now mass-conserving velocities and can be averaged to find the contravariant velocity 

components at the center of the cell. The contravariant velocity components are then used to calculate the 

corrected velocities in rectilinear coordinates using Eq. (G.12). 

 

II. Boundary Treatment 

 Several different types of boundary conditions exist for pressure, however, they all require similar 

treatment. If the velocity at the boundary is fixed, then the velocity need not be updated, and the 

corresponding last term on the right-hand side of Eq. (L.22) is zero. Likewise, if the pressure gradient 

normal to the boundary is zero, then the corresponding last term on the right-hand side of Eq. (L.22) is 

zero. For example, if the east boundary is an outlet, the pressure gradient is zero and Eq. (L.20) can be 

solved by setting 0=
E

D . The same would be true if the east boundary were a velocity inlet (velocity 

specified), a wall (velocity = 0, and the normal pressure gradient is zero), or a line of symmetry (normal 

pressure gradient is zero). 



381 

APPENDIX M 

VORTICITY TRANSPORT 

 I. Laminar Flow Algorithm 

 The steady-state, incompressible continuity and Navier-Stokes equations can be written in vector 

format as 

 0=⋅∇ V  (M.1) 

 )](2[/ˆ)( VSVV
V

v

v

νρ ⋅∇+−∇=∇⋅+
∂

∂
p

t
 (M.2) 

Vorticity is defined as the curl of the velocity vector 

 VΩ ×∇≡  (M.3) 

The vorticity transport equation for incompressible flow can be developed by taking the curl of the Navier-

Stokes equations. After considerable algebra and the application of vector multiplication identities, the 

vorticity transport equation can be written as 

 )]([2)()()( 22
VSVΩVΩΩV

Ω
v

v

⋅∇×∇+∇×∇+∇+∇⋅=∇⋅+
∂

∂
ννν

t

 (M.4) 

 For two-dimensional, steady-state flow in Cartesian coordinates, 

 0            ,

0

            ,0

0

=
∂

∂

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

∂

∂

=∇
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

=
t

y

x

Ω

Ω  (M.5) 

Assuming that the fluid properties are constant throughout the flow (ie. laminar flow, 0=∇ν ), and using 

Eq. (M.5) in Eq. (M.4) gives the scalar two-dimensional vorticity transport equation for steady-state flow 

 ΩΩ
2)( ∇=∇⋅ νV  (M.6) 

This can be written in Cartesian coordinates as 

 
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
+

∂

∂
=

∂

∂
+

∂

∂
2

2

2

2

y

Ω

x

Ω

y

Ω
V

x

Ω
V

yx
ν  (M.7) 



382 

 By definition, 

 VVVΩ
2)()( ∇−⋅∇∇=×∇×∇=×∇  (M.8) 

Applying the continuity equation for incompressible flow to Eq. (M.8) gives 

 VΩ
2−∇=×∇  (M.9) 

This vector equation can be written as two scalar equations in Cartesian coordinates as 

 
2

2

2

2

y

V

x

V

y

Ω
xx

∂

∂
+

∂

∂
=

∂

∂
−  (M.10) 

 
2

2

2

2

y

V

x

V

x

Ω yy

∂

∂
+

∂

∂
=

∂

∂
 (M.11) 

 Equations (M.7), (M.10), and (M.11) can be discretized and rearranged to yield three equations that 

can be used to obtain better estimates for the three unknown values, Ω , 
x

V , and 
y

V . For example, given an 

estimate for the three variables, Eq. (M.7) can be used to calculate an improved estimate for Ω . Likewise, 

Eq. (M.10) can be used to calculate an improved estimate for 
x

V , and Eq. (M.11) can be used to calculate 

an improved estimate for 
y

V . 

 

 II. Turbulent Flow Algorithm 

A. The Ensemble Average Vorticity Transport Equation 

 Taking the ensemble average of Eq. (M.4) gives 

 )]([2)(
~
)

~
()(

~
)

~
()( 22

VSVΩVΩVΩΩVΩV
Ω

v

v

⋅∇×∇+∇×∇+∇+∇⋅+∇⋅=∇⋅+∇⋅+
∂

∂
ννν

t

 (M.12) 

Applying Eq. (M.5) gives the steady-state two-dimensional equation 

 )]([2)(
~
)

~
()( 22

VSVΩΩVΩV

v

v

⋅∇×∇+∇×∇+∇=∇⋅+∇⋅ ννν  (M.13) 

In order to use this equation in an algorithm to predict turbulent flow, the quantity ΩV
~
)

~
( ∇⋅  must 

somehow be modeled. An alternate approach is to develop the vorticity transport equation from the RANS 

equations directly as follows. 

 



383 

B. The RANS Ensemble Average Vorticity Transport Equation 

 The steady-state, incompressible continuity and Boussinesq-based RANS equations can be written in 

vector format as 

 0=⋅∇ V  (M.14) 

 )]()(2[/ˆ)( VSVV
V

v

v

t
p

t
ννρ +⋅∇+−∇=∇⋅+

∂

∂
 (M.15) 

The ensemble average of the vorticity is defined as the curl of the ensemble average of the velocity vector 

 VΩ ×∇≡  (M.16) 

The ensemble average vorticity transport equation for incompressible flow can be developed by taking the 

curl of the Boussinesq-based RANS equations. Following the development of Phillips, after considerable 

algebra and the application of vector multiplication identities, the ensemble average vorticity transport 

equation can be written as 

 )]()([2)()()()()( 22
VSVΩVΩΩV

Ω
v

v

⋅+∇×∇+∇×+∇+∇++∇⋅=∇⋅+
∂

∂

ttt

t

νννννν  (M.17) 

 For two-dimensional, steady-state flow in Cartesian coordinates, 

 0            ,

0

            ,0

0

=
∂

∂

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

∂

∂

=∇
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

=
t

y

x

Ω

Ω  (M.18) 

Using Eq. (M.18) in Eq. (M.17) gives the scalar two-dimensional vorticity transport equation for steady-

state flow 

 )]()([2)()()()( 22
VSVΩΩV

v

v

⋅+∇×∇+∇×+∇+∇+=∇⋅
ttt

νννννν  (M.19) 

This can be written in Cartesian coordinates as 



384 

 

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
+

∂

∂

∂

+∂
+

∂

∂

∂

+∂

∂

∂
−

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

∂

∂

∂

+∂
+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
+

∂

∂

∂

+∂

∂

∂
+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
+

∂

∂

∂

+∂
−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
+

∂

∂

∂

+∂
+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
+

∂

∂
+=

∂

∂
+

∂

∂

y

V

x

V

yx

V

xy

y

V

yx

V

y

V

xx

y

V

x

V

yy

V

x

V

xy

Ω

x

Ω

y

Ω
V

x

Ω
V

xytxt

ytyxt

xxtyyt
tyx

)()(
2

)(
2

)(

)()(
)(

2

2

2

2

2

2

2

2

2

2

2

2

νννν

νννν

νννν

νν

(M.20) 

 By definition, 

 VVVΩ
2)()( ∇−⋅∇∇=×∇×∇=×∇  (M.21) 

Applying the continuity equation for incompressible flow to Eq. (M.21) gives 

 VΩ
2

−∇=×∇  (M.22) 

This vector equation can be written as two scalar equations in Cartesian coordinates as 

 
2

2

2

2

y

V

x

V

y

Ω
xx

∂

∂
+

∂

∂
=

∂

∂
−  (M.23) 

 
2

2

2

2

y

V

x

V

x

Ω yy

∂

∂
+

∂

∂
=

∂

∂
 (M.24) 

 Equations (M.20), (M.23), and (M.24) can be discretized and rearranged to yield three equations that 

can be used to obtain better estimates for the three unknown values, Ω , 
x

V , and 
y

V . For example, given an 

estimate for the three variables, Eq. (M.20) can be used to calculate an improved estimate for Ω . Likewise, 

Eq. (M.23) can be used to calculate an improved estimate for 
x

V , and Eq. (M.24) can be used to calculate 

an improved estimate for 
y

V . 

 



385 

APPENDIX N 

ONE-DIMENSIONAL DIRECT INTEGRATION METHOD 

I. The k-ε Model Equations 

 Combining Eq. (C.31) with Eqs. (B.11) and (B.12) gives one first-order equation and two second-order 

equations. This system of equations can be rewritten as a system of five first-order equations by introducing 

the change of variables 

 

+

+

++

+

+

++

+−≡

+−≡

dy

d

dy

dk
q

k

ε
σνθ

σν

ε
)1(

)1(

 (N.1) 

Directly substituting the definition for 
+

ν , the five first-order equations can be written as 

 

2

2

22
2

2
2

2
2

11

2

2
2

2

2
2

2

)(

)(

)(

)(

)(

)(

++

++

+

+

+

+

+

++

+++

+

+

++

++

+

+

++

++

+++

+

+

++

++

+

+

+

−=

+−

+

−

=

+

−=

−−

+

−

=

+

−
=

kfCdy

d

E
k

fC
kfCR

yRkfC
fC

dy

d

kfC

q

dy

dk

kfCR

yRkfC

dy

dq

kfCR

yR

dy

du

k

k

o

μμε

ε

ε

μμτ

τμμ

ε

μμ

μμτ

τμμ

μμτ

τ

εσ

θεσε

ε

ε

εθ

εσ

εσ

εε

ε

ε

ε

ε

 (N.2) 

and the boundary conditions can be written as 

 0)0( =

+

u , 0)0( =

+

q , 0)0( =

+

k , 0)( =

+

τ
Rq , 0)( =

+

τ
θ R  (N.3) 

Once the damping functions 
µ
f , 

1
f , 

2
f , +

E , and +

o
ε  have been specified, the system of equations given by 

Eq. (N.2) along with the boundary conditions in Eq. (N.3) could likely be directly integrated using a 

numerical integration method such as the fourth-order Runge-Kutta algorithm. Various damping functions 

have been proposed and one is included in the following section.  



386 

 

 The model proposed by Lam and Bremhorst [68] can be written in nondimensional form as 

 
0    ,    ,

),exp(1    ,)05.(1    ,]5.201[)]0165.exp(1[

2

2

2

3

1

2

==≡≡

−−=+=+−−=

++++++

oyt

tty

EkyRkR

RfffRRf

εε

µµ

 (N.4) 

and the closure coefficients are 

 09.0=
µ

C , 44.1
1
=

ε
C , 92.1

2
=

ε
C , 0.1=

k
σ , 3.1=

ε
σ , (N.5) 

Lam and Bremhorst propose the boundary condition 

 )0()0(
2

2

+

+

+

=

dy

kd
ε  (N.6) 

However, this is not a boundary condition and can be derived directly by examining the transport equations 

as they approach the wall. This relation is satisfied by virtue of the equations, and cannot be used as a 

boundary condition. Equation (N.6) can be used as a near-wall approximation for ε to replace the governing 

equation for ε near the wall. However, it is not a boundary condition and should not be referred to as a 

boundary condition. Others have used the boundary condition 

 0)0( =

+

+

dy

dε
 (N.7) 

This is also incorrect. It has no physical basis and is employed most often because it is easy to implement. 

 The Lam-Bremhorst model is indeterminate at the wall. Near the wall, approximations for the damping 

functions can be written as 

 
+

++

=

k

y
f

2
2)0165.0(5.20 ε

µ
, 

63
63

3
3

1

)0165.0()5.20(

)05.0(
1

++

+

+=

y

k
f

ε

, 
2

4

2
+

+

=

ε

k
f  (N.8) 

Note that 
µ
f  and 

1
f  are still indeterminate at the wall where both 

+

y  and 
+

k  approach zero. The Taylor 

Series expansion of 
+

k  near the wall can be written as 

 L+++=
+

+

+

+

+

+

+++
2

2

2

)0(
2

1
)0()0()( y

dy

kd
y

dy

dk
kyk  (N.9) 



387 

The first two terms in this series are zero from the boundary condition definitions. The third term can be 

written in terms of ε because the turbulent eddy viscosity approaches zero near a wall. Near a wall, Eq. 

(B.12) can be combined with the Taylor Series expansion of 
+

k  to yield 

 )0(
2

)0(
2

1
)(

2

2

2

2

+

+

+

+

+

++

≅≅ ε

y
y

dy

kd
yk  (N.10) 

Using this in Eq. (N.8) gives the final near-wall approximations for the damping functions 

 01116225.0=
µ
f , 

3

3

1

)01116225.0(

)05.0(
1+=f , 

2

4

2
+

+

=

ε

k
f  (N.11) 

Note that 
µ
f  and 

1
f  are simply constants and can be used in the five first-order system of equations. 

Substituting the near-wall approximation for 
2
f  into the fourth equation in Eq. (N.2) gives the near-wall 

approximation for that equation 

 
3

2
2

2
2

2
2

11

)(

)(
+

++

+++

+

+

−

+

−

= kC
kfCR

yRkfC
fC

dy

d
ε

μμτ

τμμ

ε

ε

εθ
 (N.12) 

 

II. The k-ω Model Equations 

 Combining Eq. (C.31) with Eqs. (B.65) and (B.66) gives one first-order equation and two second-order 

equations. This system of equations can be rewritten as a system of five first-order equations by introducing 

the change of variables 

 

+

+

++

+

+

++

+−≡

+−≡

dy

d

dy

dk
q

k

ω
σνψ

σν

ω
)1(

)1(

 (N.13) 

The five first-order equations can be written as 



388 

 

'

2

22

2'

11

'

2'

'

)(

)(

1

1

+

+

+

+

+

++

+

+

+

+

+

+

+

++++

+

+

+

+

+

+

+

≡
+

−=

−=
∂

∂

≡
+

−=

−=

≡
+

−
=

ω

νσ

ψσω

ω
ψ

νσ

σ

ων

ν

ω

ω

ωμω

μ

τ

dy

d

fCuffC
y

k
q

dy

dk

kfCu
dy

dq

u
Ry

dy

du

k

k

k

 (N.14) 

Or, by substituting the definition for 
+

ν  directly,  

 

'

2

22

2'

11

'

2

2

'

)(

)(

)1(

)1(

+

++

++

+

+

++

+

+

+

++

++

+

+

++

++

+

++

+

+

+

++

++

+

+

≡
+

−=

−=
∂

∂

≡
+

−=

−
+

−
=

≡
+

−
=

ω

σω

ψσωω

ω
ψ

σω

σω

ω

ω

ω

ω

ω

μω

ω

ωμω

μ

μ

μ

τ

μ

μ

τ

kfdy

d

fCuffC
y

k
kf

q

dy

dk

kfC
kf

Ry
kf

dy

dq

u
kf

Ry

dy

du

k

k

k

 (N.15) 

The latter formulation is better suited, because ω approaches zero at the channel centerline. The boundary 

conditions are 

 0)0( =

+

u , 0)0( =

+

q , 0)0( =

+

k , 0)( =

+

τ
Rq , 0)( =

+

τ
ψ R  (N.16) 

 At the wall, 
+

ω  and ++
dydω  are singular. Therefore, near-wall approximations for the model must be 

used until some specified distance away from the wall. The leading-order terms of the dependent variables 

are 



389 

 

2

22

3

22

2
''

''

2

)0(

6
)(

)0(

12
)(

2

)0(
)(

)0()(

2
)(

+

++

+
+

+

++

+

+

++

++

+

+

++

+

+++

=

=−=

=

−=−=

−=

yfC
y

yfCdy

d
y

y
k

yk

yk
dy

dk
yq

R

y
yyu

ω

ω

τ

ω

ω
ψ

 (N.17) 

Once the damping functions 
µ
f , 

1
f , 

2
f , and 

k
f  have been specified, the system of equations given by Eq. 

(N.17) along with the boundary conditions in Eq. (N.16) could likely be directly integrated using a 

numerical integration method such as the fourth-order Runge-Kutta algorithm. Various damping functions 

have been proposed and one is included in the following section. 

 The Wilcox 1998 model [45] can be written in nondimensional form as 

 

+

+

+

+

+

+

+

==

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

>
+

+

≤

+

+
=

=
+

+
=

+

+
=

ω

ω

ω

ψ

ψ

ψ

ψ

ψ

µ

µ

k
R

dy

d

dy

dk

R

R
f

f
Rf

R
f

R

R
f

tk

k

k

k

k

t

t

k

t

t

t

t

    ,
1

,
0,

4001

6801

0,1

)8(1

)8(154

1    ,
)95.21(

95.291
    ,

61

6024.0

3

2

2

4

4

21

 (N.18) 

and the closure constants are 

 09.0=
µ

C , 52.0
1
=

ω
C , 072.0

2
=

ω
C , 0.2=

k
σ , 0.2=

ω
σ  (N.19) 

Near a wall, the damping functions approach 

 024.0=
µ
f , 216.0

1
=f , 1

2
=f , 154=

k
f  (N.20) 

 At the wall, 
+

ω  and ++
dydω  are singular. Wilcox [86] suggests using the leading-order solution 

 
22

22
072.0

66 −
+

−
++

=≅ yy
fC

ω

ω  (N.21) 



390 

for the first 7 to 10 grid points off the surface to avoid numerical errors near a wall boundary. Wilcox states 

that the approximation given in Eq. (N.21) is only good for grid points where 5.2<
+

y . Therefore, it is 

recommended that the grid be fine enough to ensure that at least 7 grid points are within this constraint. 



391 

APPENDIX O 

CODE FOR SOLVING THE PHILLIPS k-λ MODEL 

 The following code can be used to solve the Phillips k-λ model for fully rough pipe flow. The code can 

also be used to give solutions for the eddy-viscosity models included as Eqs. (7.35), (7.36), (7.42), and 

(7.43). 

 
!gfortran -fdefault-real-8 solver.f90 main_solve.f90 
module solver 
    IMPLICIT NONE 
    integer :: m,nplot 
    integer :: model 
    integer :: modelcase 
 
    real :: Rtau,kr,ksp,beta,nu_hat,ximax,nutmax 
    real :: kappa, gamma,Cl0 
    real :: sigmak,Clambda 
    real :: kc,kw !kcenter, kwall 
    real :: Re_bulk,Re_max,Re_core,R_c,Cf4 
    real :: yp1 
    real :: AA,BB 
    real :: Cr1,Cr2,Cr3,ar1,ar2,ar3,ar4 
    real :: A0,A1,a,rc,B0 
 
    CHARACTER*(80):: rec,init,file_r 
    CHARACTER(LEN=100)::fn 
 
    real, allocatable, dimension(:)::r_hat,yplus 
    real, allocatable, dimension(:)::k,kprime 
    real, allocatable, dimension(:)::q,qprime 
    real, allocatable, dimension(:)::u,uprime 
    real, allocatable, dimension(:)::nut_hat 
    real, allocatable, dimension(:)::omega,lambda 
     
    real, allocatable, dimension(:)::vRe,vCF,vksp,vNi,vRebulk,vkr 
     
contains 
 
subroutine solver_allocate() 
    !Allocate Memory 
    ALLOCATE(r_hat(m)); ALLOCATE(yplus(m)) 
    ALLOCATE(k(m));     ALLOCATE(kprime(m)); 
    ALLOCATE(q(m));     ALLOCATE(qprime(m)); 
    ALLOCATE(u(m));     ALLOCATE(uprime(m)); 
    ALLOCATE(nut_hat(m)); 
    ALLOCATE(omega(m)); ALLOCATE(lambda(m)); 
    ALLOCATE(vRe(nplot));   ALLOCATE(vCF(nplot)); 
    ALLOCATE(vksp(nplot));   ALLOCATE(vNi(nplot)); 
    ALLOCATE(vkr(nplot));   ALLOCATE(vRebulk(nplot)) 
end subroutine solver_allocate 
 
subroutine solver_deallocate() 
    !Deallocate Memory 
    DEALLOCATE(r_hat); DEALLOCATE(yplus); 
    DEALLOCATE(k);     DEALLOCATE(kprime); 
    DEALLOCATE(q);     DEALLOCATE(qprime); 
    DEALLOCATE(u);     DEALLOCATE(uprime); 
    DEALLOCATE(nut_hat); 
    DEALLOCATE(omega); DEALLOCATE(lambda); 
    DEALLOCATE(vRe);   DEALLOCATE(vCF); 
    DEALLOCATE(vksp);  DEALLOCATE(vNi); 
    DEALLOCATE(vkr); DEALLOCATE(vRebulk) 
end subroutine solver_deallocate 
 
 
subroutine create_grid() 



392 
    integer :: j 
    real :: eta,cbeta,dzeta 
 
    dzeta = 1.0/real(m-1) 
    !Create Grid 
    do j=1,m,1 
        eta = real(m-j)/real(m-1) 
        cbeta = ((beta+1.0)/(beta-1.0))**(1.0-eta) 
        if(beta .eq. 0.0) then 
            r_hat(j) = 1.0 - real(j-1)*dzeta 
        else 
            r_hat(j) = 1.0 - (beta+1.0 - (beta-1.0)*cbeta)/(1.0 + cbeta) 
        end if 
    end do 
    r_hat(1) = 0.0 
end subroutine create_grid 
 
!!!!!!!!!!!!!!!!!!!!!!! Phillips Model !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
subroutine Phillips_kl(iprint,niter) 
    real :: x1,x2,f1,f2,slope,xnew,Re_old,relaxation 
    integer :: iter,niter,iprint,oiter 
 
!    write(*,*) '---------- Newton Solver -------' 
    if(iprint.eq.1) then 
        write(*,*) '   iter       q_wall                 q_center                 
k_center              & 
                   &  Re_core                4CF' 
        write(*,*) '-----------   -------------------    -----------------------  -------
-------------  & 
                   &  --------------------   -------------------------' 
    end if 
    relaxation = 1.0 
    niter = 100 
    oiter = 0 
    x2 = 0.0 
    do while(((niter.eq.100).or.(x2.ne.x2)).and.(oiter<5)) !under relax if solution not 
found 
        Rtau = 0.5*ksp/kr 
        nu_hat = 1.0/Rtau 
        Re_core = 21.26*Rtau**(1.078) 
 
        nut_hat(1) = Cl0 !initialize so that near-centerline approx for k works 
              k(1) = 0.205*Rtau**0.158 
 
        kw = ((sqrt(1.0/ksp**2 + 4.0*(kappa*gamma)**2)-1.0/ksp)/(2.0*Cr2*ksp**ar2))**2 
 
        x1 = 9.4*kr**(-0.152) 
        x2 = x1*(1.0+0.000001) 
        call p_integrate_k_fromwall(x1,f1) 
        call p_integrate_k_fromwall(x1,f1) !Call twice so that f1 is based off of 
practical Re_core 
        Re_old = 0.0 
        if(iprint.eq.1) write(*,*) "relax = ",relaxation 
        iter = 1 
        do while(((abs(f1).gt.1.0e-9).or.(abs(Re_core-Re_old)/Re_core.gt.1.0e-
13)).and.(iter.lt.100).and.(x2.eq.x2))       ! secant method for finding root 
            Re_old = Re_core 
            call p_integrate_k_fromwall(x2,f2) 
            slope = (f2-f1)/(x2-x1) 
            xnew = x2 - relaxation*f2/slope 
            if(abs((x1-x2)/x1).lt.1.0e-15) xnew = x2 
            x1 = x2; x2 = xnew; f1 = f2 
            if(iprint.eq.1) write(*,*) iter,xnew,f2,k(1),Re_core,Cf4 
            iter = iter + 1 
        end do 
        niter = iter 
        relaxation = relaxation - 0.05 
        oiter = oiter + 1 
    end do 
!    call p_log_check() 
end subroutine Phillips_kl 
 
subroutine p_vksp(iprint,ngood,error) 
    integer :: iprint,ngood,niter 
    real :: error,power 
 
    power = 3.0 
    ksp = 10**power 
    Re_bulk = 0.0 



393 
    ngood = 1 
    error = 0.0 
    if(iprint.eq.1) write(*,*) '     ngood   kr                       ksp                     
q_wall                 q_center    & 
                               &             Re_bulk                4CF                     
Colebrook                error       & 
                               &             num_iter' 
    do while(((Re_bulk<1.0e8).and.(ngood<=nplot)).or.(ngood<5)) 
        call Phillips_kl(0,niter) 
        vRebulk(ngood) = Re_bulk 
        vCF(ngood) = Cf4 
        if((Re_bulk<1.0e8).or.(ngood<4)) error = error + (abs(func_Colebrook(Re_bulk) - 
vCF(ngood))/func_Colebrook(Re_bulk))**2 !new corrected 
!        if((Re_bulk<1.0e8).or.(ngood<4)) error = error + (abs(func_Colebrook(Re_bulk) - 
vCF(ngood))/vCF(ngood))**2 !old 
        if(abs(q(1)).gt.1.0e-8) error = sqrt(-error) !puts a NAN in the output so that 
the optimization will halt 
        if(iprint.eq.1) write(*,*) 
ngood,kr,ksp,q(m),q(1),Re_bulk,Cf4,func_Colebrook(Re_bulk),error,niter 
        ngood = ngood + 1 
        power = power + 0.25 
        ksp = 10.0**power 
    end do 
    ngood = ngood - 2 
end subroutine p_vksp 
 
subroutine p_log_check() 
    real :: 
ypmin,logypmin,logrtau,dlog,yprealmin,dxi,xi,yp,dyp,ans0(4),ans1(4),du(4,4),dummy(2),ump,
nut 
    integer :: i,lower 
    ypmin = 0.1 
    lower = (m-1)/100 
    logypmin = log10(ypmin) 
    logrtau = log10(Rtau) 
    dlog = (logrtau-logypmin)/real(m-1-lower) 
    yprealmin = logypmin-(lower-1)*dlog 
    ans0(1) = k(m) 
    ans0(2) = q(m) 
    ans0(3) = 0.0   !wall value 
    ans0(4) = 0.0 !wall value 
    yp = 0.0 
    xi = 1.0 
    do i=m,2,-1 
        dyp = 10.0**(yprealmin+real(m-i)*dlog) - yp 
        dxi = 1.0-(yp+dyp)/Rtau - xi 
        call rnkta4(func_rnkta_p,4,dummy,xi,ans0,dxi,du,ans1) 
        ans0(:) = ans1(:) 
        yp = 10.0**(yprealmin+real(m-i)*dlog) 
        xi = 1.0-yp/Rtau 
    end do 
    ump = -ans1(4) 
    Cf4 = 8.0/(ump**2) 
    Re_bulk = 2.0*ump/nu_hat 
    Re_max = 2.0*ans1(3)/nu_hat 
    nut = func_p_nut(0.0,ans1(1)) 
    R_c = sqrt(2.0*(nu_hat+nut)*ans1(3)) 
    Re_core = R_c*Re_max 
    write(*,*) 'Log Grid Check:' 
    write(*,*) 1,q(m),ans1(2),ans1(1),Re_core,Cf4 
end subroutine p_log_check 
 
subroutine p_update() 
    integer :: i 
    real :: xi,nut 
    do i=1,m 
        xi = r_hat(i) 
        lambda(i) = func_p_lambda(xi) 
        nut = func_p_nut(xi,k(i)) 
        nut_hat(i) = nut 
        yplus(i) = Rtau*(1.0-r_hat(i)) 
        uprime(i) = func_p_uprime(xi,k(i)) 
        kprime(i) = func_p_kprime(xi,k(i),q(i)) 
        qprime(i) = func_p_qprime(xi,k(i)) 
        omega(i) = sqrt(Clambda*k(i))/lambda(i) 
    end do 
    kprime(1) = 0.0 
end subroutine p_update 
 



394 
subroutine p_integrate_k_fromwall(qwall,qcenter) 
    real :: qwall, qcenter,dxi,xi,ans0(4),ans1(4),du(4,4),dummy(2),ump 
    integer :: i 
     
    k(m) = kw   !k wall value 
    q(m) = qwall 
    u(m) = 0.0 
    ans0(1) = k(m) 
    ans0(2) = q(m) 
    ans0(3) = 0.0   !wall value 
    ans0(4) = 0.0 !wall value 
    xi = 0.0 
    do i=m,2,-1 
        xi = r_hat(i) 
        dxi = r_hat(i-1)-r_hat(i) 
        call rnkta4(func_rnkta_p,4,dummy,xi,ans0,dxi,du,ans1) 
        ans0(:) = ans1(:) 
        k(i-1) = ans1(1) 
        q(i-1) = ans1(2) 
        u(i-1) = ans1(3) 
    end do 
    qcenter = q(1) 
    call p_update() 
    ump = -ans1(4) 
    Cf4 = 8.0/(ump**2) 
    Re_bulk = 2.0*ump/nu_hat 
    Re_max = 2.0*u(1)/nu_hat 
    R_c = sqrt(2.0*(nu_hat+nut_hat(1))*u(1)) 
    Re_core = R_c*Re_max 
end subroutine p_integrate_k_fromwall 
 
real function func_p_nut(xi,k_local) 
    real :: xi,k_local 
    func_p_nut = func_p_lambda(xi)*sqrt(k_local) 
    if(k_local.lt.0.0) func_p_nut = 0.0 
return; end function func_p_nut 
 
real function func_p_lambda(xi) 
    real :: xi 
    func_p_lambda = min(Cr1*Re_core**ar1, 2.0*kr*Cr2*ksp**ar2 + Cr3*Re_core**ar3*(1.0-
xi)**ar4) 
return; end function func_p_lambda 
 
real function func_rnkta_p(n,i,dummy,xi,curr) 
    integer :: n,i 
    real :: xi,curr(n),dummy(2) 
    if(i.eq.1) then !k eqn 
        func_rnkta_p = func_p_kprime(xi,curr(1),curr(2)) 
!        if(xi.eq.0.0) func_rnkta_p = 0.0 
    elseif(i.eq.2) then !q eqn 
        func_rnkta_p = func_p_qprime(xi,curr(1)) 
    elseif(i.eq.3) then !u eqn 
        func_rnkta_p = func_p_uprime(xi,curr(1)) 
    else     !Cf eqn 
        func_rnkta_p = 2.0*curr(3)*xi 
    end if 
return; end function func_rnkta_p 
 
real function func_p_kprime(xi,k_local,q_local) 
    real :: xi,k_local,q_local,nut 
    nut = func_p_nut(xi,k_local) 
    func_p_kprime = -q_local/xi/(nu_hat/3.0 + 5.0/3.0*nut/sigmak) 
    if(xi.lt.0.002) then 
        AA = 3.0*sigmak*Clambda*nu_hat/(4.0*(sigmak*nu_hat+5.0*nut)*nut**2) 
        BB = 3.0*sigmak*nut/(8.0*(sigmak*nu_hat+5.0*nut)*(nu_hat+nut)**2) 
        func_p_kprime = 2.0*AA*k(1)**2*xi - 2.0*(BB-AA**2*k(1)**3)*xi**3 
        if(nut.eq.0.0) func_p_kprime = 0.0 
    end if 
return; end function func_p_kprime 
 
real function func_p_qprime(xi,k_local) 
    real :: xi,k_local,nut,lam 
    lam = func_p_lambda(xi) 
    nut = func_p_nut(xi,k_local) 
    func_p_qprime = nut*xi**3/(nu_hat+nut)**2 - xi*nu_hat*Clambda*k_local/lam**2 
return; end function func_p_qprime 
 
real function func_p_uprime(xi,k_local) 
    real :: xi,k_local,nut 



395 
    nut = func_p_nut(xi,k_local) 
    func_p_uprime = -xi/(nu_hat+nut) 
return; end function func_p_uprime 
 
!!!!!!!!!!!!!!!!!!!! Viscosity Models !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
 
subroutine Viscosity_Model() 
    real :: dxi,xi,ans0(2),ans1(2),du(2,4),dummy(2),ump 
    integer :: i 
     
    Rtau = 0.5*ksp/kr 
    nu_hat = 1.0/Rtau 
 
    if(model.eq.4) then !Kays and Crawford must find root 
        call KaysCrawford_root() 
    end if 
 
    u(m) = 0.0 
    ans0(1) = 0.0   !wall value 
    ans0(2) = 0.0 !wall value 
    xi = 0.0 
    do i=m,2,-1 
        xi = r_hat(i) 
        dxi = r_hat(i-1)-r_hat(i) 
        call rnkta4(func_rnkta_v,2,dummy,xi,ans0,dxi,du,ans1) 
        ans0(:) = ans1(:) 
        u(i-1) = ans1(1) 
    end do 
    call v_update() 
    ump = -ans1(2) 
    Cf4 = 8.0/(ump**2) 
    Re_bulk = 2.0*ump/nu_hat 
    Re_max = 2.0*u(1)/nu_hat 
    R_c = sqrt(2.0*(nu_hat+nut_hat(1))*u(1)) 
    Re_core = R_c*Re_max 
end subroutine Viscosity_Model 
 
subroutine v_update() 
    integer :: i 
    real :: xi,nut 
    do i=1,m 
        xi = r_hat(i) 
        nut = func_v_nut(xi) 
        nut_hat(i) = nut 
        yplus(i) = Rtau*(1.0-r_hat(i)) 
        uprime(i) = -xi/(nu_hat+nut) 
    end do 
end subroutine v_update 
 
real function func_rnkta_v(n,i,dummy,xi,curr) 
    integer :: n,i 
    real :: xi,curr(n),dummy(2),nut 
    if(i.eq.1) then !u eqn 
        nut = func_v_nut(xi) 
        func_rnkta_v = -xi/(nu_hat+nut) 
    else     !Cf eqn 
        func_rnkta_v = 2.0*curr(1)*xi 
    end if 
return; end function func_rnkta_v 
 
real function func_v_nut(xi) 
    real :: xi 
    if(model.eq.2) then !Nikuradse Eq. 7.35 
        func_v_nut = kappa*(Cl0+2.0*gamma*kr-(2.0*Cl0-0.5)*xi**2-(0.5-
Cl0)*xi**4)*xi**(0.5) 
    elseif(model.eq.3) then !Reichardt Eq. 7.36 
        func_v_nut = kappa/6.0*(1.0-xi+2.0*gamma*kr)*(1.0+xi)*(1.0+2.0*xi**2) 
    elseif(model.eq.4) then !Kays and Crawford Eq. 7.42 
        func_v_nut = func_KC_nut(xi) 
    elseif(model.eq.5) then !Log-Law Model Eq. 7.43 
        func_v_nut = kappa*xi*(1.0-xi+2.0*gamma*kr) 
    elseif(model.eq.6) then !Blending Function suggested by Phillips 
        func_v_nut = func_v_nut_blend(xi) 
    end if 
return; end function func_v_nut 
 
real function func_v_nut_blend(xi) 
    real :: xi,rh,ksh,yh,yc,vc,vcp,A2,A3,B1,B2 
    rh = xi 



396 
    ksh = 2.0*kr 
    yh = 1.0-rh 
    yc = 1.0-rc 
    A2 = 2.0*A0 - 0.5*(1.0 + a*gamma*ksh) 
    A3 = 0.5*(1.0 + a*gamma*ksh) - A0 
    vc = kappa*(A0 + gamma*ksh + A1*yc**2 - A2*rc**2 - A3*rc**4)*rc**(0.5+a) 
    vcp = (0.5+a)*kappa*(A0+gamma*ksh+A1*yc**2-A2*rc**2-A3*rc**4)*rc**(a-0.5)-
2.0*kappa*(A1*yc + A2*rc + 2.0*A3*rc**3)*rc**(0.5+a) 
    B1 = 3.0*(vc-B0)/rc**2 - vcp/rc; 
    B2 = vcp/rc**2 - 2.0*(vc-B0)/rc**3 
    if(rh.ge.rc) then 
        func_v_nut_blend = kappa*(A0 + gamma*ksh + A1*yh**2 - A2*rh**2 - 
A3*rh**4)*rh**(0.5+a) 
    else 
        func_v_nut_blend = B0 + B1*rh**2 + B2*rh**3 
    end if 
end function func_v_nut_blend 
 
subroutine KaysCrawford_root() 
    real :: x1,x2,xnew,f1,f2,slope 
 
    ximax = 0.0 
    x1 = 0.2 
    x2 = 0.4 
    f1 = func_KC_nut_prime(x1) 
    do while (abs(f1) > 1.0e-12)   !secant method for finding root 
        f2 = func_KC_nut_prime(x2) 
        slope = (f2-f1)/(x2-x1) 
        xnew = x2 - f2/slope 
        x1 = x2; x2 = xnew; f1 = f2 
    end do 
    ximax = xnew; nutmax = func_KC_nut(ximax) 
end subroutine KaysCrawford_root 
 
real function func_KC_nut(xi) 
    real :: xi,F 
 
    if(xi.lt.ximax) then 
        func_KC_nut = nutmax 
    else 
        F = kappa*(1.0-xi+2.0*gamma*kr) 
        func_KC_nut = sqrt((kr/ksp)**2 + F**2*xi) - kr/ksp 
    end if 
    if(func_KC_nut.gt.kappa/6.0) func_KC_nut = kappa/6.0 
return; end function func_KC_nut 
 
real function func_KC_nut_prime(xi) 
    real :: xi,F,Fp 
 
    F = kappa*(1.0-xi+2.0*gamma*kr) 
    Fp = -kappa 
    func_KC_nut_prime = (F**2 + 2.0*F*Fp*xi)/(2.0*sqrt((kr/ksp)**2 + F**2*xi)) 
return; end function func_KC_nut_prime 
 
 
!!!!!!!!!!!!!!!!!!!!!! General Functions !!!!!!!!!!!!!!!!!!!!!!!!!!! 
 
real function func_Colebrook(Re) 
    real :: Re,old,new 
    if(Re<100.0) then 
        func_Colebrook = 64.0/Re 
    else 
        new = (-1.8*log10((kr/3.7)**(1.11) + 6.9/Re))**(-2.0) 
        old = 10.0 
        do while(abs((new-old)/new) .gt. 1.0e-5) 
            old = new 
            new = (-2.0*log10(kr/3.7 + 2.51/(Re*sqrt(old))))**(-2.0) 
        end do 
        func_Colebrook = new 
    end if 
return; end function func_Colebrook 
 
real function maximum(n,vec) 
    integer :: i,n 
    real :: vec(n) 
    maximum = vec(1) 
    do i=1,n 
        if(vec(i).gt.maximum) maximum = vec(i) 
    end do 



397 
return; end function maximum 
 
 
real function minimum(n,vec) 
    integer :: i,n 
    real :: vec(n) 
    minimum = vec(1) 
    do i=1,n 
        if(vec(i).lt.minimum) minimum = vec(i) 
    end do 
return; end function minimum 
 
 
subroutine rnkta4(func,n,a,t0,y0,dt,dy,y) 
!     This single precision subroutine computes a value for the n component 
!     vector y(t0+dt) from a known value of the vector y(t0)=y0.  The solution 
!     is based on a fourth order Runge-Kutta solution to the system of n 
!     differential equations, 
! 
!                dy(i)/dt = f(i,a,t,y)              i = 1,2,3,...,n 
! 
!     where a is a coefficient array passed to the functuon f.  The single 
!     precision function subprogram f(i,a,t,y) must be provided by the user. 
!     func is a function pointer to be called 
 
      integer :: n,j,i 
      real :: a(*),t0,y0(n),dt,dy(n,4),y(n),c(4) 
      interface 
        real function func(n,i,a,t,y) 
            integer :: n,i 
            real :: a(*),t,y(n) 
        end function 
      end interface 
      c(1) = 1.0/6.0 
      c(2) = 1.0/3.0 
      c(3) = c(2) 
      c(4) = c(1) 
      do j=1,n 
         dy(j,1)=func(n,j,a,t0,y0)*dt 
         y(j)=y0(j)+dy(j,1)/2. 
      end do 
      do j=1,n 
         dy(j,2)=func(n,j,a,t0+dt/2.,y)*dt 
      end do 
      do j=1,n 
         y(j)=y0(j)+dy(j,2)/2. 
      end do 
      do j=1,n 
         dy(j,3)=func(n,j,a,t0+dt/2.,y)*dt 
      end do 
      do j=1,n 
         y(j)=y0(j)+dy(j,3) 
      end do 
      do j=1,n 
         dy(j,4)=func(n,j,a,t0+dt,y)*dt 
      end do 
      do j=1,n 
         y(j)=y0(j) 
         do i=1,4 
            y(j)=y(j)+c(i)*dy(j,i) 
         end do 
      end do 
      return 
end subroutine rnkta4 
 
end module solver 
 
! 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
! 
program main 
    use solver 
    implicit none 
    integer :: ID,ierror,irun 
 
    ID = 0 
    irun = 3 
    call set_defaults() 
 



398 
    call solver_allocate() 
    call create_grid() 
 
    write(*,*) 
    write(*,*) 
    write(*,*) '|----------------------------------|' 
    write(*,*) '|   Fully Rough Pipe Flow Solver   |' 
    write(*,*) '|   By: Doug Hunsaker  July 2011   |' 
    write(*,*) '|----------------------------------|' 
    write(*,*) 
    write(*,*) 'Select model (',model,') : ' 
    write(*,*) '  1: Phillips k-lambda Model' 
    write(*,*) '  2: Nikuradse         (Eq. 7.35) -|' 
    write(*,*) '  3: Reichardt         (Eq. 7.36) -|' 
    write(*,*) '  4: Kays/Crawford     (Eq. 7.42) -|- Eddy Viscosity Models' 
    write(*,*) '  5: Log-Law           (Eq. 7.43) -|' 
!    write(*,*) '  6: Blending Function (Eq. P.75) -|' !This function was suggested by 
Phillips 
    read(5,'(a)') rec 
    if(rec .ne. ' ') read(rec,*) model 
     
    if(model.eq.1) then 
        kappa = 0.404 
        gamma = 0.0341 
        write(*,*) 'Enter kappa (',kappa,') : ' 
        read(5,'(a)') rec 
        if(rec .ne. ' ') read(rec,*) kappa 
 
        write(*,*) 'Enter gamma (',gamma,') : ' 
        read(5,'(a)') rec 
        if(rec .ne. ' ') read(rec,*) gamma 
 
        write(*,*) 'Enter sigmak (',sigmak,') : ' 
        read(5,'(a)') rec 
        if(rec .ne. ' ') read(rec,*) sigmak 
 
        write(*,*) 'Enter C_lambda (',Clambda,') : ' 
        read(5,'(a)') rec 
        if(rec .ne. ' ') read(rec,*) Clambda 
 
        write(*,*) 'Enter Cr1 (',Cr1,') : ' 
        read(5,'(a)') rec 
        if(rec .ne. ' ') read(rec,*) Cr1 
 
        write(*,*) 'Enter ar1 (',ar1,') : ' 
        read(5,'(a)') rec 
        if(rec .ne. ' ') read(rec,*) ar1 
 
        write(*,*) 'Enter Cr2 (',Cr2,') : ' 
        read(5,'(a)') rec 
        if(rec .ne. ' ') read(rec,*) Cr2 
 
        write(*,*) 'Enter ar2 (',ar2,') : ' 
        read(5,'(a)') rec 
        if(rec .ne. ' ') read(rec,*) ar2 
 
        write(*,*) 'Enter Cr3 (',Cr3,') : ' 
        read(5,'(a)') rec 
        if(rec .ne. ' ') read(rec,*) Cr3 
 
        write(*,*) 'Enter ar3 (',ar3,') : ' 
        read(5,'(a)') rec 
        if(rec .ne. ' ') read(rec,*) ar3 
 
        write(*,*) 'Enter ar4 (',ar4,') : ' 
        read(5,'(a)') rec 
        if(rec .ne. ' ') read(rec,*) ar4 
    end if 
 
    if(model.eq.6) then 
        write(*,*) 'Select case for constant values (',modelcase,') : ' 
        write(*,*) '  0: Enter specific constants' 
        write(*,*) '  1: Empirical correlation for Nikuradse eddy viscosity (Eq. 7.35)' 
        write(*,*) '  2: Empirical fit to Nikuradse Velocity Profile' 
        write(*,*) '  3: Approximation for Reichardt eddy viscosity profile' 
        write(*,*) '  4: Fit to Nikuradse and Reichardt eddy viscotiy data' 
        read(5,'(a)') rec 
        if(rec .ne. ' ') read(rec,*) modelcase 
         



399 
        if(modelcase.eq.0) then 
            write(*,*) 'Enter kappa (',kappa,') : ' 
            read(5,'(a)') rec 
            if(rec .ne. ' ') read(rec,*) kappa 
            write(*,*) 'Enter gamma (',gamma,') : ' 
            read(5,'(a)') rec 
            if(rec .ne. ' ') read(rec,*) gamma 
            write(*,*) 'Enter A0 (',A0,') : ' 
            read(5,'(a)') rec 
            if(rec .ne. ' ') read(rec,*) A0 
            write(*,*) 'Enter A1 (',A1,') : ' 
            read(5,'(a)') rec 
            if(rec .ne. ' ') read(rec,*) A1 
            write(*,*) 'Enter a (',a,') : ' 
            read(5,'(a)') rec 
            if(rec .ne. ' ') read(rec,*) a 
            write(*,*) 'Enter rc (',rc,') : ' 
            read(5,'(a)') rec 
            if(rec .ne. ' ') read(rec,*) rc 
            write(*,*) 'Enter B0 (',B0,') : ' 
            read(5,'(a)') rec 
            if(rec .ne. ' ') read(rec,*) B0 
        elseif(modelcase.eq.1) then 
              A0 = 0.345 
              A1 = 0.0 
               a = 0.0 
              rc = 0.0 
              B0 = 0.0 
        elseif(modelcase.eq.2) then 
              A0 = 0.5+0.5*gamma*kr 
              A1 = A0 
               a = 0.5 
              rc = 0.0 
              B0 = 0.0 
        elseif(modelcase.eq.3) then 
              A0 = 0.297 
              A1 = 0.0 
               a = 0.0 
              rc = 0.57 
              B0 = .0667 
        elseif(modelcase.eq.4) then 
              A0 = 0.36 
              A1 = 0.36 
               a = 0.5 
              rc = 0.7 
              B0 = 0.057 
        end if 
    end if 
     
    write(*,*) 'Select what to run (',irun,') : ' 
    write(*,*) '  1: Single case for specific kr and ks+' 
    write(*,*) '  2: Nikuradse kr values at constant ks+' 
    write(*,*) '  3: Nikuradse, Shockling, and other kr values over a range of ks+>1000' 
    write(*,*) '     (#3 returns the % RMS error)' 
    read(5,'(a)') rec 
    if(rec .ne. ' ') read(rec,*) irun 
 
    if((irun.eq.1).or.(irun.eq.2)) then 
        if(irun.eq.1) then 
            write(*,*) 'Enter kr (',kr,') : ' 
            read(5,'(a)') rec 
            if(rec .ne. ' ') read(rec,*) kr 
        end if 
        write(*,*) 'Enter ks+ (',ksp,') : ' 
        read(5,'(a)') rec 
        if(rec .ne. ' ') read(rec,*) ksp 
    elseif(irun.eq.3) then 
!        write(*,*) 'Enter a case ID number (used by the optimization routine) (',ID,') : 
' 
!        read(5,'(a)') rec 
!        if(rec .ne. ' ') read(rec,*) ID 
    end if 
 
    if(irun.eq.1) then 
        call run1() 
    elseif(irun.eq.2) then 
        call run2() 
    elseif(irun.eq.3) then 
        call run3(ID) 



400 
    end if 
 
    call solver_deallocate() 
 
end program main 
! 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
! 
subroutine run1() 
    use solver 
    implicit none 
    integer :: ierror,i 
    real :: local_velocity(m,1), local_viscosity(m,1) 
    character*(50) :: filename1,filename2 
 
    100 FORMAT (1X, 1000ES25.15) 
    filename1 = 'viscosity.txt' 
    filename2 = 'velocity.txt' 
 
    open(unit = 10, File = filename1, status="replace", action = "write", iostat = 
ierror) 
    open(unit = 20, File = filename2, status="replace", action = "write", iostat = 
ierror) 
    write(10,*) '    y/R                      kr=',kr,' ks+=',ksp 
    write(20,*) '    y/R                      kr=',kr,' ks+=',ksp 
 
    call run_case(local_viscosity(:,1),local_velocity(:,1),1) 
 
    do i=m,1,-1 
        write(10,100) 1.0-r_hat(i),local_viscosity(i,:) 
        write(20,100) 1.0-r_hat(i),local_velocity(i,:) 
    end do 
    close(10) 
    close(20) 
 
end subroutine run1 
! 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
! 
subroutine run2() 
    use solver 
    implicit none 
    integer :: ierror,i 
    real :: local_velocity(m,6), local_viscosity(m,6), krvals(6) 
    character*(50) :: filename1,filename2 
    krvals(1) = 0.034 
    krvals(2) = 0.016 
    krvals(3) = 0.0083 
    krvals(4) = 0.0039 
    krvals(5) = 0.0020 
    krvals(6) = 0.00098 
 
    100 FORMAT (1X, 1000ES25.15) 
    filename1 = 'viscosity.txt' 
    filename2 = 'velocity.txt' 
 
    open(unit = 10, File = filename1, status="replace", action = "write", iostat = 
ierror) 
    open(unit = 20, File = filename2, status="replace", action = "write", iostat = 
ierror) 
    write(10,*) '    y/R                      kr=0.034                 kr=0.016                 
kr=0.0083                & 
                     kr=0.0039                kr=0.0020                kr=0.00098' 
    write(20,*) '    y/R                      kr=0.034                 kr=0.016                 
kr=0.0083                & 
                     kr=0.0039                kr=0.0020                kr=0.00098' 
 
    do i=1,6 
        kr = krvals(i) 
        call run_case(local_viscosity(:,i),local_velocity(:,i),1) 
    end do 
 
    do i=m,1,-1 
        write(10,100) 1.0-r_hat(i),local_viscosity(i,:) 
        write(20,100) 1.0-r_hat(i),local_velocity(i,:) 
    end do 
    close(10) 
    close(20) 
 



401 
end subroutine run2 
! 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
! 
subroutine run3(ID) 
    use solver 
    implicit none 
    integer :: ierror,i,ID,ngood,total 
    real :: local_velocity(m,1), local_viscosity(m,1), krvals(8) 
    real :: fitness,power,Ni_rough 
    character*(50) :: filename 
    krvals(1) = 0.034 
    krvals(2) = 0.016 
    krvals(3) = 0.0083 
    krvals(4) = 0.0039 
    krvals(5) = 0.0020 
    krvals(6) = 0.00098 
    krvals(7) = 0.00030 
    krvals(8) = 0.000058 
 
    100 FORMAT (1000ES25.15) 
    write(filename,*) ID 
    filename = 'case_'//trim(adjustl(filename))//'.txt' 
 
    open(unit = 10, File = filename, status="replace", action = "write", iostat = ierror) 
    write(10,*) '   kr                       Re_bulk                  4CF                      
Nikuradse_FullyRough     Colebrook' 
 
    fitness = 0.0 
    total = 0 
    do i=1,8 
        power = 3.0 
        kr = krvals(i) 
        Ni_rough = (2.0*log10(3.7/kr))**(-2.0) 
        ngood = 0 
        do while((Re_bulk<1.0e8).or.(ngood<3)) 
            ksp = 10**power 
            call run_case(local_viscosity(:,1),local_velocity(:,1),0) 
            if((Re_bulk<1.0e8).or.(ngood<3)) then 
 
Ni_rough = func_Colebrook(Re_bulk)!This line should be commented out in the future, but 
in the original work, the fitness 
!was based on the deviation from the Colebrook equation, not the Nikuradse number. So 
leaving that line uncommented 
!yields results from the original work, where in the future, it should be compared to the 
Nikuradse number 
 
                fitness = fitness + (abs(Ni_rough-Cf4)/Ni_rough)**2 
                ngood = ngood + 1 
                power = power + 0.25 
                write(10,100) kr,Re_bulk,Cf4,Ni_rough,func_Colebrook(Re_bulk) 
            end if 
        end do 
!        write(10,100) 
        total = total + ngood 
    end do 
    close(10) 
 
    fitness = 100.0*sqrt(fitness/real(total)) 
 
    write(filename,*) ID 
    filename = 'fitness_'//trim(adjustl(filename))//'.txt' 
    open(unit = 20, File = filename, status="replace", action = "write", iostat = ierror) 
    write(20,*) fitness,' = % RMS Error' 
    close(20) 
     
    write(*,*) '% RMS Error = ',fitness 
 
end subroutine run3 
! 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
! 
subroutine run_case(local_viscosity,local_velocity,iprint) 
    use solver 
    implicit none 
    integer :: niter,iprint 
    real :: local_viscosity(m),local_velocity(m) 
    if(model.eq.1) then 
        call Phillips_kl(iprint,niter) 



402 
    else 
        call Viscosity_Model() 
    end if 
     
    local_viscosity(:) = nut_hat(:) 
    local_velocity(:) = u(:) 
    if(iprint.eq.1) then 
        write(*,*) '--------------------------------------------------' 
        write(*,*) '                kr = ',kr 
        write(*,*) '           Re_bulk = ',Re_bulk 
        write(*,*) '              4*Cf = ',Cf4 
        write(*,*) '    Nikuradse 4*CF = ',(2.0*log10(3.7/kr))**(-2.0) 
        write(*,*) '         Colebrook = ',func_Colebrook(Re_bulk) 
        write(*,*) 'Nikuradse Num (Ni) = ',2.0*log10(3.7/kr)-1.0/sqrt(Cf4) 
    end if 
end subroutine run_case 
! 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
! 
subroutine set_defaults() 
    use solver 
    implicit none 
 
       model = 1 
   modelcase = 1 
 
          kr = 0.016 
         ksp = 1000.0 
      nu_hat = 2.0*kr/ksp 
        Rtau = 1.0/nu_hat 
 
        beta = 1.000002 
 
!Historical values: kappa = 0.40, gamma = 0.0334 
!Values suggested by Phillips: kappa = 0.404, gamma = 0.0341 
       kappa = 0.4 
       gamma = 0.0334 
         Cl0 = 0.345 
 
!Phillips k-l Model Constants 
      sigmak = 0.1 
     Clambda = 0.0004 
 
         Cr1 = 0.03 
         ar1 = 7.5443542322312E-03 
         Cr2 = 4.9611260553165E-03 
         ar2 = 6.5146629434291E-03 
         Cr3 = 1.6958276273121E-01 
         ar3 = 2.1743956148901E-03 
         ar4 = 1.1194408014358E+00 
 
!Eddy Viscosity Model Constants 
          A0 = 0.345 
          A1 = 0.0 
           a = 0.0 
          rc = 0.0 
          B0 = 0.0 
 
           m = 3201 
       nplot = 51 
end subroutine set_defaults 
! 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
! 



403 

APPENDIX P 

OPTIMIZATION CODE 

 The following Fortran code can be used in conjunction with an a.out executable to optimize input 

parameters. 

 
module bfgs 
    implicit none 
    integer :: nvars 
    integer :: diff_scheme !1 = central difference. 0 = forward difference 
    integer :: iter 
    integer :: nsearch 
 
    real :: default_alpha 
    real :: diff_delta 
    real :: fitness_curr 
    real :: stop_delta 
    real :: alpha 
 
    integer,allocatable :: opton(:) 
    real,allocatable :: grad(:) 
    real,allocatable :: vars(:) 
    real,allocatable :: s(:) 
     
contains 
 
!---------------------------------------------------------------------------------------- 
 
subroutine opt_allocate() 
    allocate(opton(nvars)) 
    allocate(grad(nvars)) 
    allocate(vars(nvars)) 
    allocate(s(nvars)) 
    opton = 0; vars = 0.0; grad = 0.0; s = 0.0 
end subroutine opt_allocate 
 
!---------------------------------------------------------------------------------------- 
 
subroutine opt_deallocate() 
    deallocate(opton) 
    deallocate(grad) 
    deallocate(vars) 
    deallocate(s) 
end subroutine opt_deallocate 
 
!---------------------------------------------------------------------------------------- 
 
subroutine opt_run() 
    integer :: i_iter,o_iter,i,ierror 
    real :: vars_orig(nvars),vars_old(nvars),grad_old(nvars) 
    real :: dx(nvars,1),NG(nvars,1),N(nvars,nvars),gamma(nvars,1) 
    real :: mag_dx,denom 
    character(LEN=50)::fn,command 
    110 format (1X, I10, 100ES22.13) 
 
    fn = 'optimization.txt' 
    open(unit = 1001, File = fn, action = "write", iostat = ierror) 
    write(1001,*) 'iter o_it i_it   sigma_k               Cr1                   ar1                   
Cr2                   & 
                                   &ar2                   Cr3                   ar3                   
ar4                   & 
                                   &kr                    Fitness               alpha                 
mag(dx)' 
    close(1001) 
    open(unit = 1001, File = 'gradient.txt', action = "write", iostat = ierror) 
    write(1001,*) 'iter o_it i_it   sigma_k               Cr1                   ar1                   
Cr2                   & 



404 
                                   &ar2                   Cr3                   ar3                   
ar4                   & 
                                   &kr                    Fitness               alpha                 
mag(dx)' 
    close(1001) 
 
    command = 'rm input_* output_* case_* fitness_*' 
    call system(command) 
 
    write(*,*) 'Beginning Optimization Routine' 
    write(*,*) 'Optimization Variables: ' 
    do i=1,nvars 
        write(*,110) opton(i),vars(i) 
    end do     
    write(*,*) '      default alpha : ',default_alpha 
    write(*,*) 'differenceing delta : ',diff_delta 
    write(*,*) 'differencing scheme : ',diff_scheme 
    write(*,*) '     stopping delta : ',stop_delta 
    write(*,*) 'simultaneous search : ',nsearch 
 
    o_iter = 0 
    mag_dx = 1.0 
    do while(mag_dx > stop_delta) 
        vars_orig = vars 
        i_iter = 0 
 
        do while(mag_dx > stop_delta) 
            call gradient() 
            call append_file(fn,o_iter,i_iter,mag_dx) 
             
            if(i_iter .eq. 0) then !set N=identity 
                N = 0.0 
                do i=1,nvars 
                    N(i,i) = 1.0 !N = identity matrix 
                end do 
            else 
                dx(:,1) = vars(:) - vars_old(:) 
                gamma(:,1) = grad(:) - grad_old(:) 
                NG(:,1) = matmul(N,gamma(:,1)) 
                denom = dot_product(dx(:,1),gamma(:,1)) 
        !        N = N + matmul(dx-NG,transpose(dx-NG))/dot_product(dx(:,1)-
NG(:,1),gamma(:,1)) !Rank One Hessian Inverse Update 
                N = N + 
(1.0+dot_product(gamma(:,1),NG(:,1))/denom)*(matmul(dx,transpose(dx))/denom) & !BFGS 
Update 
                    & - ( matmul(dx,matmul(transpose(gamma),N)) + 
matmul(NG,transpose(dx)))/denom 
            end if 
            s(:) = -matmul(N,grad) 
            vars_old = vars 
            grad_old = grad 
         
            call line_search() 
 
            dx(:,1) = vars(:) - vars_old(:) 
            mag_dx = sqrt(dot_product(dx(:,1),dx(:,1))) 
            i_iter = i_iter + 1 
            iter = iter + 1 
        end do 
 
        call append_file(fn,o_iter,i_iter,mag_dx) 
 
        dx(:,1) = vars(:) - vars_orig(:) 
        mag_dx = sqrt(dot_product(dx(:,1),dx(:,1))) 
        o_iter = o_iter + 1 
    end do 
     
    call sleep(1) 
    fitness_curr = case_fitness_single(0) 
    call append_file(fn,o_iter,i_iter,mag_dx) 
end subroutine opt_run 
 
!---------------------------------------------------------------------------------------- 
 
subroutine write_bfgs_file(fn) 
    character(50) :: fn 
    integer :: ierror 
    110 format (100ES22.13) 
    120 format (100I22) 



405 
    fn = trim(adjustl(fn)) 
    write(*,*) 'writing ',fn 
    open(unit = 200, File = fn, status = "replace", action = "write", iostat = ierror) 
    write(200,*) nvars,'       num vars' 
    write(200,*) 'Variable names can be inserted on this line' 
    write(200,110) vars(:) 
    write(200,120) opton(:) 
    write(200,*) default_alpha, '   default line search alpha' 
    write(200,*) diff_delta, '   delta step size used for gradient calculations' 
    write(200,*) diff_scheme,'   differencing scheme (1=central diff, 0=forward diff)' 
    write(200,*) stop_delta,'   stop delta' 
    write(200,*) nsearch,'     number of simultaneous cases in the line search' 
    close(200) 
end subroutine write_bfgs_file 
 
!---------------------------------------------------------------------------------------- 
 
subroutine append_file(fn,o_iter,i_iter,mag_dx) 
    character(50) :: fn 
    real :: mag_dx 
    integer :: o_iter,i_iter,ierror 
    110 format (3I5, 100ES22.13) 
    write(* ,110) iter,o_iter,i_iter,vars(:),fitness_curr,alpha,mag_dx 
    open(unit = 1001, File = fn, status = "OLD", access = "append", iostat = ierror) 
    write(1001,110) iter,o_iter,i_iter,vars(:),fitness_curr,alpha,mag_dx 
    close(1001) 
    open(unit = 1001, File = 'gradient.txt', status = "OLD", access = "append", iostat = 
ierror) 
    write(1001,110) iter,o_iter,i_iter,grad(:),fitness_curr,alpha,mag_dx 
    close(1001) 
end subroutine append_file 
 
!---------------------------------------------------------------------------------------- 
 
real function case_fitness(case_num) 
    integer :: case_num,ierror 
    character(50)::filename 
     
    write(filename,*) case_num 
    filename = 'fitness_'//trim(adjustl(filename))//'.txt' 
    open(unit = 10, File = filename, action = "read", iostat = ierror) 
    read(10,*) case_fitness 
    close(10) 
end function case_fitness 
 
!---------------------------------------------------------------------------------------- 
 
subroutine forward_diff() 
    integer :: i 
    character(50) :: command 
    real :: vars_orig(nvars) 
    vars_orig(:) = vars(:) 
     
    grad = 0.0 
    call start_case(0) 
    do i=1,nvars 
        if(opton(i).eq.1) then 
            vars(i) = vars(i) + diff_delta 
            call start_case(i) 
            vars(:) = vars_orig(:) 
        end if 
    end do     
 
    do while(.not.all_done()) 
        call sleep(1) 
    end do 
    call sleep(1)   !one more time to ensure all files are totally written 
 
    fitness_curr = case_fitness(0) 
    do i=1,nvars 
        if(opton(i).eq.1) grad(i) = (case_fitness(i) - fitness_curr)/diff_delta 
    end do 
     
    call sleep(1) 
    command = 'mv case_0.txt curr_case.txt' 
    call system(command) 
    command = 'rm input_* output_* case_* fitness_*' 
    call system(command) 
     



406 
end subroutine forward_diff 
 
!---------------------------------------------------------------------------------------- 
 
subroutine gradient() 
    real :: temp(nvars) 
    call forward_diff() 
    if(diff_scheme.eq.1) then 
        temp(:) = grad(:) 
        diff_delta = -diff_delta 
        call forward_diff() 
        grad(:) = 0.5*(grad(:) + temp(:)) 
        diff_delta = -diff_delta 
    end if 
end subroutine gradient 
 
!---------------------------------------------------------------------------------------- 
 
subroutine line_search() 
    real :: local_fitness,f1,f2,f3,a1,a2,a3,da 
    real :: xval(0:nsearch),yval(0:nsearch),vars_orig(nvars) 
    integer :: i,j,mincoord 
    write(*,*) 'line search ------------------------------------------------------------' 
 
    alpha = max(default_alpha,1.1*stop_delta/sqrt(dot_product(s(:),s(:)))) 
    vars_orig(:) = vars(:) 
 
    xval(0) = 0.0; yval(0) = fitness_curr 
    do 
        call run_mult_cases(nsearch,alpha,vars_orig,xval(1:nsearch),yval(1:nsearch)) 
        do j=0,nsearch 
            write(*,*) j,xval(j),yval(j) 
        end do 
        if(yval(1)>yval(0)) then 
            if(alpha*sqrt(dot_product(s(:),s(:))) < stop_delta) then 
                write(*,*) 'Line search within stopping tolerance : alpha = ',alpha 
                return 
            end if 
            write(*,*) 'Too big of a step. Reducing Alpha' 
            alpha = 0.5*alpha 
        else 
            mincoord = minimum_coordinate(nsearch+1,yval)-1 
            write(*,*) 'mincoord = ',mincoord 
            if(mincoord.ne.nsearch) exit 
            alpha = 2.0*alpha 
        end if 
    end do 
    a1 = xval(mincoord-1) 
    a2 = xval(mincoord) 
    a3 = xval(mincoord+1) 
    f1 = yval(mincoord-1) 
    f2 = yval(mincoord) 
    f3 = yval(mincoord+1) 
 
    da = a2-a1 
    alpha = a1+da*(4.0*f2-f3-3.0*f1)/(2.0*(2.0*f2-f3-f1)) 
    if((alpha > a3).or.(alpha < a1)) then !For parabolas whose min is not in bounds 
        alpha = a2 
        if(f2 > f1) alpha = a1 
    end if 
    vars(:) = vars_orig(:) + alpha*s(:) 
    write(*,*) 'final alpha = ',alpha 
end subroutine line_search 
 
!---------------------------------------------------------------------------------------- 
 
integer function minimum_coordinate(num,vals) 
    integer :: num,i 
    real :: vals(num),minval 
    minval = vals(1) 
    minimum_coordinate = 1 
    do i=2,num 
        if(vals(i)<minval) then 
            minval = vals(i) 
            minimum_coordinate = i 
        else 
            exit 
        end if 
    end do 



407 
end function minimum_coordinate 
     
!---------------------------------------------------------------------------------------- 
 
subroutine run_mult_cases(ncases,start_alpha,vars_orig,x,y) 
    integer :: ncases,i 
    real :: start_alpha,vars_orig(nvars) 
    real ::x(ncases),y(ncases) 
    character(50) :: command 
 
    do i=1,ncases 
        x(i) = real(i)*start_alpha 
        vars(:) = vars_orig(:) + x(i)*s(:) 
        call start_case(i) 
    end do     
    vars(:) = vars_orig(:) 
    do while(.not.mult_done(ncases)) 
        call sleep(1) 
    end do 
    call sleep(1)   !one more time to ensure all files are totally written 
 
    do i=1,ncases 
        y(i) = case_fitness(i) 
    end do 
    call sleep(1) 
 
    command = 'rm input_* output_* case_* fitness_*' 
    call system(command) 
end subroutine run_mult_cases 
 
!---------------------------------------------------------------------------------------- 
 
logical function mult_done(ncases) 
    implicit none 
    integer :: ncases,ios(ncases),i 
    character(50)::filename 
 
    do i=1,ncases 
        write(filename,*) i 
        filename = 'fitness_'//trim(adjustl(filename))//'.txt' 
        open(i*100,file=filename,status='old',iostat=ios(i)) 
    end do 
    if(count(ios==0)==size(ios)) then 
        mult_done = .true. 
    else 
        mult_done = .false. 
    end if 
     
    do i=1,ncases 
        if(ios(i)/=0) cycle 
        close(i*100) 
    end do 
end function mult_done 
 
!----------------------------------------------------------------------------------------  
real function case_fitness_single(case_num) 
    integer :: case_num,ierror 
    character(50)::filename,command 
     
    call start_case(case_num) 
    do while(.not.one_done(case_num)) 
        call sleep(1) 
    end do 
    call sleep(1)   !one more time to ensure file is totally written 
 
    case_fitness_single = case_fitness(case_num) 
    command = 'rm input_* output_* case_* fitness_*' 
    call system(command) 
end function case_fitness_single 
 
!---------------------------------------------------------------------------------------- 
 
subroutine start_case(case_num) 
    implicit none 
    integer :: case_num,ierror,i 
    character(50)::file_i,file_o,command 
     
    write(file_o,*) case_num 
    file_i = 'input_'//trim(adjustl(file_o))//'.txt' 



408 
    file_o = 'output_'//trim(adjustl(file_o))//'.txt' 
    open(unit = 10, File = file_i, status="replace", action = "write", iostat = ierror) 
    do i=1,nvars 
        write(10,*) vars(i) 
    end do 
    write(10,*) case_num 
    close(10) 
    command = './a.out < '//trim(adjustl(file_i))//' > '//trim(adjustl(file_o))//' &' 
!    write(*,*) command 
    call system(command) 
end subroutine start_case 
 
!----------------------------------------------------------------------------------------  
logical function one_done(case_num) 
    implicit none 
    integer::case_num,ios 
    character(50)::filename 
     
    write(filename,*) case_num 
    filename = 'fitness_'//trim(adjustl(filename))//'.txt' 
    open(100,file=filename,status='old',iostat=ios) 
    if(ios==0) then 
        one_done = .true. 
        close(100) 
    else 
        one_done = .false. 
    end if 
end function one_done 
 
!---------------------------------------------------------------------------------------- 
 
logical function all_done() 
    implicit none 
    integer ::ios(nvars+1),i 
    character(50)::filename 
     
    !Check for 0_ file 
    open(100,file="fitness_0.txt",status='old',iostat=ios(nvars+1)) 
    if(ios(nvars+1)==0) close(100) 
 
    do i=1,nvars 
        if(opton(i).eq.1) then 
            write(filename,*) i 
            filename = 'fitness_'//trim(adjustl(filename))//'.txt' 
            open(i*100,file=filename,status='old',iostat=ios(i)) 
        else 
            ios(i)=0 
        end if 
    end do 
    if(count(ios==0)==size(ios)) then 
        all_done = .true. 
    else 
        all_done = .false. 
    end if 
     
    do i=1,nvars 
        if(ios(i)/=0) cycle 
        close(i*100) 
    end do 
end function all_done 
 
end module bfgs 
 
!-------------------------------------MAIN PROGRAM --------------------------------- 
 
program main 
    use bfgs 
    implicit none 
    character*(50) :: rec,fn 
    integer :: i,ierror 
 
    !Defaults 
    iter = 0 
    default_alpha = 1.0e-8 
    diff_delta = 1.0e-8 
    diff_scheme = 1 
    stop_delta = 1.0e-12 
    nsearch = 8 
 



409 
    fn = 'none' 
    write(*,*) 'Enter filename (none=use interactive console instead of file) (',fn,' ) 
:' 
    read(5,'(a)') rec 
    if(rec .ne. ' ') read(rec,*) fn 
     
    if(fn.ne.'none') then 
        open(unit = 10, File = fn, action = "read", iostat = ierror) 
        read(10,*) nvars 
        read(10,*) !names of variables 
 
        call opt_allocate() 
 
        read(10,*) vars(1:nvars) 
        read(10,*) opton(1:nvars) 
        read(10,*) default_alpha 
        read(10,*) diff_delta 
        read(10,*) diff_scheme 
        read(10,*) stop_delta 
        read(10,*) nsearch 
        close(10) 
    else 
        write(*,*) 'Enter number of variables :' 
        read(5,'(a)') rec 
        if(rec .ne. ' ') read(rec,*) nvars 
 
        call opt_allocate() 
         
        do i=1,nvars 
            write(*,*) 'Enter variable ',i,' :' 
            read(5,'(a)') rec 
            if(rec .ne. ' ') read(rec,*) vars(i) 
            write(*,*) 'Optimize this variable? (1=yes,0=no) (',opton(i),') :' 
            read(5,'(a)') rec 
            if(rec .ne. ' ') read(rec,*) opton(i) 
        end do 
     
        write(*,*) 'Enter default line search alpha (',default_alpha,') :' 
        read(5,'(a)') rec 
        if(rec .ne. ' ') read(rec,*) default_alpha 
 
        write(*,*) 'Enter delta step size used for gradient calculations (',diff_delta,') 
:' 
        read(5,'(a)') rec 
        if(rec .ne. ' ') read(rec,*) diff_delta 
 
        write(*,*) 'Enter differencing scheme (1=central diff, 0=forward diff) 
(',diff_scheme,') :' 
        read(5,'(a)') rec 
        if(rec .ne. ' ') read(rec,*) diff_scheme 
 
        write(*,*) 'Enter stop delta (',stop_delta,') :' 
        read(5,'(a)') rec 
        if(rec .ne. ' ') read(rec,*) stop_delta 
 
        write(*,*) 'Enter number of simultaneous cases in the line search (',nsearch,') 
:' 
        read(5,'(a)') rec 
        if(rec .ne. ' ') read(rec,*) nsearch 
    end if 
 
    fn = 'bfgs_start.txt'; call write_bfgs_file(fn) 
    call opt_run() 
    fn = 'bfgs_end.txt'; call write_bfgs_file(fn) 
 
    call opt_deallocate() 
end program main 
 



410 

APPENDIX Q 

CLOSURE COEFFICIENT EVALUATION ON THE FLAT 

 The following code can be used to evaluate the closure coefficients on the flat given a value for 
k

σ . 
 
subroutine Flat(sigma_k,C_r2,a_r2,C_r3,a_r3,a_r4) 
implicit none 
real sigma_k,C_r2,a_r2,C_r3,a_r3,a_r4 
if(sigma_k.le.0.10)then 
   a_r2=-0.048511567*sigma_k**2 + 0.001955827*sigma_k + 0.012102649 
else if(sigma_k.lt.1.75)then 
   a_r2=-0.000206593*sigma_k**4 + 0.004754408*sigma_k**3 - 0.018765359*sigma_k**2 & 
        -0.001559875*sigma_k + 0.012141171 
else if(sigma_k.le.2.00)then 
   a_r2=-0.028076632*sigma_k + 0.024614722 
else 
   a_r2=-0.000061468*sigma_k**4 + 0.000684628*sigma_k**3 - 0.000750473*sigma_k**2 & 
        -0.031056442*sigma_k + 0.029083802 
end if 
if(sigma_k.le.0.10)then 
   a_r3=0.010523059*sigma_k**2 - 0.004315527*sigma_k + 0.005620078 
else if(sigma_k.lt.1.75)then 
   a_r3=-0.000357793*sigma_k**4 + 0.003598258*sigma_k**3 - 0.010812353*sigma_k**2 & 
        -0.000967269*sigma_k + 0.005489307 
else if(sigma_k.le.2.00)then 
   a_r3=-0.013340859*sigma_k + 0.009956552 
else 
   a_r3=-0.000003988*sigma_k**4 - 0.000034537*sigma_k**3 + 0.001537985*sigma_k**2 & 
        -0.018724532*sigma_k + 0.014912497 
end if 
if(sigma_k.le.0.10)then 
   a_r4=-0.01893511*sigma_k**2 - 0.00127611*sigma_k + 1.13352452 
else if(sigma_k.lt.1.75)then 
   a_r4=-0.00053239*sigma_k**4 + 0.00534831*sigma_k**3 - 0.01699619*sigma_k**2 & 
        -0.00109238*sigma_k + 1.13347404 
else if(sigma_k.le.2.00)then 
   a_r4=-0.02288151*sigma_k + 1.14322147 
else 
   a_r4=-0.00001166*sigma_k**4 + 0.0001342*sigma_k**3 + 0.00070418*sigma_k**2 & 
        -0.02678935*sigma_k + 1.14733412 
end if 
if(sigma_k.lt.0.10)then 
   C_r2=0.00173260*sigma_k**(-0.49813563) 
else if(sigma_k.le.0.25)then 
   C_r2=0.00179141*sigma_k**(-0.48401989) 
else if(sigma_k.le.2.00)then 
   C_r2=0.00179141*sigma_k**(-0.48401989) + 0.0000271629*sigma_k**4 -
0.0001736396*sigma_k**3 & 
       +0.0003974614*sigma_k**2 + 0.0000754681*sigma_k - 0.0000412428 
else 
   C_r2=0.00179141*sigma_k**(-0.48401989) + 0.0000002950*sigma_k**4 - 
0.0000011327*sigma_k**3 & 
       -0.0000292549*sigma_k**2 + 0.0005645091*sigma_k - 0.0002627585 
end if 
if(sigma_k.lt.0.10)then 
   C_r3=0.0558450*sigma_k**(-0.4986960) 
else if(sigma_k.le.0.25)then 
   C_r3=0.0571034*sigma_k**(-0.4892824) 
else if(sigma_k.le.2.00)then 
   C_r3=0.0571034*sigma_k**(-0.4892824) + 0.00073867*sigma_k**4 - 0.00434008*sigma_k**3 & 
       +0.00809117*sigma_k**2 + 0.00185242*sigma_k - 0.00090757 
else 
   C_r3=0.0571034*sigma_k**(-0.4892824) - 0.00002129*sigma_k**4 + 0.00039801*sigma_k**3 & 
       -0.00311039*sigma_k**2 + 0.01389982*sigma_k - 0.00594463 
end if 
return 
end 



411 

CURRICULUM VITAE 

 

Douglas F. Hunsaker 

December 2011 

EDUCATION 
 

PhD Mechanical Engineering      Utah State University        3.97 GPA                       Dec 2011 

Dissertation: Evaluation of an Alternate Incompressible Energy-Enstrophy Turbulence Model 
 

MS Mechanical Engineering        Brigham Young University       3.63 GPA               Apr 2007 

Thesis: A Numerical Vortex Approach to Aerodynamic Modeling of SUAV/VTOL Aircraft 
 

BS Mechanical Engineering         Brigham Young University      3.58 GPA                        Dec 2005 
 

EXPERIENCE 
 

Aerodynamics / Numerical Fluids 

• Developed compressible codes capable of predicting the lift-to-drag ratio of a half-angle cone 

hypersonic wave rider and a supersonic airfoil. Evaluated the effects of grid resolution on a 

supersonic NACA airfoil in Fluent. 

• Taught a full semester course on aerodynamics for senior-level and graduate students in the 

Mechanical and Aerospace Engineering Department at Utah State University. 

• Authored a numerical lifting-line code for modeling interactions of multiple lifting surfaces 

with deflected control surfaces. Added a blade-element propeller model to account for 

propeller effects on the wings. The code required only a fraction of the computational cost of 

conventional CFD methods and was used almost real-time in a flight simulator to predict the 

aerodynamics of a VTOL airframe as it transitioned from vertical take-off to horizontal flight. 

• Developed a 3D object-oriented potential flow solver for Sandia National Laboratories in 

Fortran to interface with their in-house code. The code can be used to model the potential 

flow effects of bodies near turbine blades. 

• Authored an interactive 2D finite-volume RANS-based turbulent flow code with pressure 

coupling in C++. The code included coordinate transformations to allow for second-order 

computations on a non-uniform grid.  

• Developed a 1D finite-difference turbulent flow solver for channel and pipe flow in Fortran. 

Implemented four traditional RANS models including k-ε and k-ω models. Authored a higher-

order finite differencing scheme allowing the models to be solved using 6th-order finite 

differencing. 

• Decreased computation time to 1/5th of the original time by parallelizing time-consuming 

subroutines of a CFD code. 
 

Flight Mechanics / Simulation 

• Developed a 6-DOF flight simulator based on quaternion attitude estimation and fourth-order 

Runge-Kutta time integration. Added user-interface components including landing detection 

and an intuitive HUD using OpenGL. Used the code to demonstrate common dynamic modes 

of aircraft to university students. 

• Taught a full course on the mechanics of flight for four semesters at Utah State University. 

Received exceptionally high marks as a teacher. Most recent teacher evaluation: 5.6/6.0. 

• Authored a linearized, coupled longitudinal and lateral aircraft dynamic stability code in 

Fortran. The code was used to evaluate the handling qualities of a newly-designed airframe. 

• Redesigned the empennage on the RQ-1 Predator UAV for a class project. The new design 

decreased empennage weight by 30% and met specific static stability requirements. 
 



412 

Aircraft Research and Development 

• Conducted wind tunnel tests to evaluate the stall characteristics of a low aspect ratio wing. 

Supported the design of the test setup, instrument construction, data collection, and post data 

analysis. 

• Designed, built, and flight tested a 4-foot UAV for a research lab at Brigham Young 

University (team size: 2). The final airframe increased flight endurance over previous designs 

by a factor of 4, solved a costly landing problem, doubled user viewing range, and matched 

design endurance to within 5%. 

• Propulsion system design lead in the development of an 18-inch UAV airframe (team size: 6). 

Ran design optimization studies to select motor, speed controller, battery, and propeller 

combination. Piloted initial flight tests. Later, on a team of 2, increased the endurance of the 

aircraft by 50% through an aerodynamic optimization study. 
 

Business Development 

• Submitted a proposal to a government subcontractor as part of a small business venture. 

Received the contract to complete a cost-benefit analysis for an aircraft designed for low-

altitude air sampling. This consulting work included evaluating advantages of several 

different airframe types, interfacing with potential suppliers, and estimating costs and risks 

involved with each configuration. 

• Authored a proposal for the construction of three hand-launchable long-endurance airframes 

for Flying Sensors, a local aerial photography company. 

• Established a business relationship and conducted the initial meeting between an international 

company and AeroVironment, Inc. 
 

Teaching / Leadership 

• Taught full semester graduate courses on aerodynamics and flight mechanics in the 

Mechanical Engineering and Aerospace Department at Utah State University. 

• Instructed university students in preparation for the Fundamentals of Engineering Exam. 

• Consulted university senior design teams during airframe design phases. 

• President: community organization, 50 members – conducted weekly organizational activities. 

• Trained non-profit organization associates in Frankfurt, Germany – Fluent in conversational 

German. 
 

AWARDS / FELLOWSHIPS 
 

• NASA Space Grant Consortium Fellowship, annually renewed 2005-2010. 

• International Society of Transport Aircraft Trading (ISTAT) Scholarship, 2007-2008. 

• 1ST Place Western Regional AIAA Student Competition Masters Division, 2006. 

• Office of Research and Creative Activities Graduate Research Fellowship, BYU, 2006-2007. 

• International Science and Engineering Fair Contestant, 1997, 1998, 1999. 
 

PUBLICATIONS 
 

Journal Publications 
 

Phillips, W. F., Hunsaker, D. F., and Niewoehner, R. J., “Estimating the Subsonic Aerodynamic 

Center and Moment Components for Swept Wings,” Journal of Aircraft, Vol. 45, No. 3, pp. 1033-

1043, June 2008. 

 

Hunsaker, D. F., and Phillips, W. F., “Momentum Theory with Slipstream Rotation Applied to Wind 

Turbines,” Wind Energy, submitted for review. 

 

Phillips, W. F., Hunsaker, D. F., and Spall, R. E., “Smooth-Wall Boundary Conditions for 

Dissipation-Based Turbulence Models,” will be submitted soon to a computational mathematics 

journal. 
 



413 

Meeting Papers 
 

Hunsaker, D. F., “A Numerical Lifting-Line Method Using Horseshoe Vortex Sheets,” Rocky 

Mountain Space Grant Consortium Meeting Proceedings, Logan, Utah, May 2011. 

 

Hunsaker, D. F., “A One-Dimensional Finite-Difference Solver for Fully-Developed Pipe and 

Channel Flows,” Rocky Mountain Space Grant Consortium Meeting Proceedings, Logan, Utah, May 

2010. 

 

Phillips, W. F., Hunsaker, D. F., and Spall, R. E., “Smooth-Wall Boundary Conditions for 

Dissipation-Based Turbulence Models,” 48th AIAA Aerospace Sciences Meeting, Orlando, Florida, 

Jan. 4-7, 2010. 

 

Hunsaker, D. F., “Application of a Coordinate Transformation and Discretization Method for 

Computational Fluid Dynamics,” Rocky Mountain Space Grant Consortium Meeting Proceedings, 

Salt Lake City, Utah, May 2009. 

 

Phillips, W. F., Hunsaker, D. F., Alley, N. R., and Niewoehner, R. J., “Pitch Dynamics of Unmanned 

Aerial Vehicles,” 47th AIAA Aerospace Sciences Meeting, Orlando, Florida, Jan. 5-8, 2009, AIAA-

2009-62. 

 

Hunsaker, D. F., “Evaluation of an Alternate Incompressible Energy-Enstrophy Turbulence Model,” 

Rocky Mountain Space Grant Consortium Meeting Proceedings, Salt Lake City, Utah, May 2008. 

 

Phillips, W. F., Hunsaker, D. F., and Niewoehner, R. J., “Estimating the Subsonic Aerodynamic 

Center and Moment Components for Swept Wings,” 46th AIAA Aerospace Sciences Meeting and 

Exhibit, Reno, Nevada, Jan. 7-10, 2008, AIAA-2008-192. 

 

Hunsaker, D. F., “Post Stall Behavior of a Lifting Line Algorithm,” Rocky Mountain Space Grant 

Consortium Meeting Proceedings, Salt Lake City, Utah, May 2007. 

 

Hunsaker, D. F., Larson, G., Condie, S., “Optimization of ‘Iris’, a Small Autonomous Surveillance 

UAV,” 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, Jan. 8-11, 2007, AIAA-

2007-360. 

 

Hunsaker, D. F., “A Numerical Blade Element Approach to Estimating Propeller Flowfields,” 45th 

AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, Jan. 8-11, 2007, AIAA-2007-374. 

 

Hunsaker, D. F., Snyder, D. O., “A Lifting-Line Approach to Estimating Propeller / Wing 

Interactions,” 24th Applied Aerodynamics Conference, San Francisco, California, June 5-8, 2006, 

AIAA-2006-3466. 

 

Hunsaker, D. F., “A Numerical Vortex Approach to Aerodynamic Modeling of SUAV/VTOL 

Aircraft,” Rocky Mountain Space Grant Consortium Meeting Proceedings, Salt Lake City, Utah, 

May 2006. 

 

Boyce, J., Carr, R., Chipman, D., Larson, G., Hopkins, N., Hunsaker, D., and Bowman, W. J., 

“Design of ‘Iris’, a Small Autonomous Surveillance UAV,” 44th AIAA Aerospace Sciences Meeting 

and Exhibit, Reno, Nevada, Jan. 9-12, 2006, AIAA-2006-824. 

 
 


	Evaluation of an Incompressible Energy-Vorticity Turbulence Model for Fully Rough Pipe Flow
	Recommended Citation

	Microsoft Word - PrelimPages.doc

