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ABSTRACT

Evaluation of an Incompressible Energy-Vorticity

Turbulence Model for Fully Rough Pipe Flow

by

Douglas F. Hunsaker, Doctor of Philosophy
Utah State University, 2011

Major Professor: Dr. Warren Phillips
Department: Mechanical and Aerospace Engineering

Traditional methods of closing the Boussinesq-based Reynolds-averaged Navier-Stokes equations
are considered, and suggestions for improving two-equation turbulence models are made. The traditional
smooth-wall boundary conditions are shown to be incorrect, and the correct boundary conditions are
provided along with sample solutions to traditional models. The correct boundary condition at a smooth
wall for dissipation-based turbulence models is that which forces both the turbulent kinetic energy and its
first derivative to zero. Foundations for an energy-vorticity model suggested by Phillips are presented along
with the near-smooth-wall behavior of the model. These results show that at a perfectly smooth wall, the
turbulent kinetic energy may approach the wall at a higher order than is generally accepted. The
foundations of this model are used in the development of a k-4 model for fully rough pipe flow. Closure
coefficients for the model are developed through gradient-based optimization techniques. Results of the
model are compared to results from the Wilcox 1998 and 2006 k-w models as well as four eddy-viscosity
models. The results show that the Phillips k-4 model is much more accurate than other models for
predicting the relationship between Reynolds number and friction factor for fully rough pipe flow.
However, the velocity profiles resulting from the model deviate noticeably from the law of the wall.

(445 pages)
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CHAPTER 1

TRADITIONAL TURBULENCE MODELING

I. Introduction

Fluid mechanics has been a topic of study for hundreds of years and has fascinated many of the
greatest minds of history. Many applications today are dependent on correctly understanding and predicting
the motion of fluids and much research has been conducted to that end. The laws that govern fluid motion
have been understood since the mid 1800s and the vector mathematics needed to fully analyze three-
dimensional fluid mechanics was sufficiently understood only a few decades later. See for example the
work of Navier [1], Stokes [2], Hamilton [3—5], and Boyer and Merzback [6]. Since that time, these laws of
motion and mathematical properties have been studied by countless researchers, and much progress in the
physical understanding of both laminar and turbulent flows has been achieved. However, the complexity
presented in completely understanding and correctly predicting fluid mechanics leaves room for much
improvement.

Many analytical solutions exist for problems with simple geometries because the governing equations
can be simplified and analytically applied. However, for more complex geometries and flow fields, the
boundary conditions and vector equations are more complex and numerical means must be employed.
Computational Fluid Dynamics (CFD) is a method of fluid flow calculation that uses a gridded domain to
predict the flow field in or about a given geometry. This solution method has grown in popularity as
computing power has increased, making solutions to complex flow problems more readily achievable.
However, even with modern computational power, accurate solutions to flow problems can take days or
weeks to converge.

The difficulty of modeling fluid mechanics is greatly increased when turbulent flow is considered.

Indeed, the most intriguing and complex flow solutions are those for turbulent flow fields. Analytical
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solutions for turbulent flow fields are much more difficult to develop than those for laminar flow fields.
Therefore, turbulent flow modeling is left almost entirely to numerical methods.

The governing principles of mass and momentum conservation apply to turbulent flow and can be
employed directly through CFD methods. However, the grid refinement required to capture the small scales
of turbulence using CFD techniques is so extreme that solutions based on this technique can be fairly
computationally expensive. Such CFD techniques are called Direct Numerical Simulation (DNS) methods
and are currently employed mainly for simple domains and relatively low Reynolds numbers in which the
small scales of turbulence are large in comparison to the grid element size of the domain of interest. For a
review of DNS, see Moin and Mahesh [7].

In order to model the turbulent characteristics of larger geometries without the grid refinement required
for DNS, additional relationships are commonly combined with the governing equations of fluid motion.
These additional relationships should be based on the physics of turbulent motion to provide accurate
simulations. The physical characteristics of turbulence have been studied in detail during the past century.
Much of our current understanding of turbulence has been constructed through the results of countless
experiments performed in the past two centuries. Although these findings have greatly expanded our
understanding of turbulent flow characteristics, they are somewhat preliminary in nature and have not
proven to be fully representative of turbulent behavior. In other words, there is still much to be learned
about turbulence. To this extent, notable authors have commented.

“I am an old man now, and when I die and go to Heaven there are two matters on which I hope

for enlightenment. One is quantum electrodynamics, and the other is the turbulent motion of

fluids. And about the former I am really rather optimistic.” -Sir Horace Lamb [8]

“Turbulence...[was] probably invented by the Devil on the seventh day of Creation (when the

Good Lord wasn't looking).” -P. Bradshaw [9]

“... less is known about the fine scale of turbulence ... than about the structure of atomic nuclei.

Lack of basic knowledge about turbulence is holding back progress in fields as diverse as



cosmology, meteorology, aeronautics and biomechanics. Understanding the hierarchically
organized complexity of turbulence may well provide a paradigm for understanding a variety of

problems at the frontiers of physics research.” -U. Frisch and S. Orszag [10]

“Turbulence is the last great unsolved problem of classical physics. Remarks of this sort have
been variously attributed to Sommerfeld, Einstein, and Feynman, although no one seems to know
precise references, and searches of some likely sources have been unproductive. Of course, the
allegation is a matter of fact, not much in need of support by a quotation from a distinguished
author. However, it would be interesting to know when the matter was first recognised.” -P.J.
Holmes, G. Berkooz, and J.L. Lumley [11]

Although the physical phenomenon of turbulence is not fully understood, the basic features of
turbulent motion are known. First, turbulence is caused by inertial forces overpowering viscous forces
within a fluid. At low Reynolds numbers, viscous forces dominate producing laminar flow. However, as the
Reynolds number increases, the inertial forces of the fluid increase and eventually overcome the viscous
forces. At this point, velocity and pressure fluctuations develop and the flow becomes irregular. This leads
to the second most fundamentally understood characteristic of turbulence. Turbulent flow is comprised of
fluctuations in pressure, velocity, and temperature making it impossible to reproduce the exact fluctuations
from consecutive experiments although the average flow field is recreated.

A definition for turbulence commonly accepted today was given by Hinze [12]:

“Turbulent fluid motion is an irregular condition of flow in which the various quantities show a

random variation with time and space coordinates, so that statistically distinct average values can

be discerned.”

A definition that is perhaps more mathematically precise is that given by Phillips [13]:

“Turbulent fluctuations are irregular variations in certain quantities of a flow field (such as

pressure, temperature and velocity) that are not predictably repeatable from one experiment to

l

another.’
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The definition by Phillips is more accurate for two reasons. First, his definition specifies the averaging
method required to correctly deduce statistical information about a turbulent flow field. It can be shown and
is well understood that ensemble averaging must be used instead of spatial and temporal averaging in order
to accurately distinguish the average flow field from turbulent fluctuations in common unsteady turbulent
flow fields. For a detailed discussion on averaging see Phillips [13] or Wilcox [14]. Second, Phillips uses
the term “irregular” as opposed to “random” in referring to the flow fluctuations. Strictly speaking,
although the fluctuations may appear to be random, they must at all times satisfy the governing equations
of fluid flow. Therefore, the term “irregular” is a more correct way of describing the flow fluctuations.

The complex nature of turbulent flow is not yet fully understood. However, research conducted during
the past century has allowed for certain properties of mean turbulent flow to be quantified, and traditional
governing equations of mean turbulent flow have been developed. The challenge of forming equations truly
representative of mean turbulent flow has inspired much research that has resulted in varying degrees of
success. The most widely used models for internal flows include the k-¢ model based on the development
of Jones and Launder [15], and variations of the k- model originally developed by Kolmogorov [16].
Commonly used aerodynamic (external) flow models include models developed by Spalart and Allmaras
[17] and Baldwin and Barth [18]. Although these models are widely used, correct turbulence modeling is
anything but a closed subject at this point in computational fluid dynamics and several concerns about the
traditional methods have been identified.

Retracing the derivations of traditional turbulence modeling equations reveals seemingly minor yet
possibly significant assumptions which may have hindered the validity of the models in the past. Recent re-
examination of these equations by Phillips [13] has led to alternative developments of the well-known and
explored k-¢, k-, and k- turbulence models. It is possible that the adjusted equations will produce more
accurate results for turbulent flow calculations.

Durbin [19] expressed concerns about the implementation of smooth-wall boundary conditions for
dissipation-based turbulence models nearly 20 years ago. However, even today many of the

implementations of these models lack the correct boundary conditions. This discrepancy has not been
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widely acknowledged in the literature likely because Durbin’s warning has not been well understood by the
traditional CFD community. If significant improvements in turbulence modeling are to be made, the correct
boundary conditions for traditional models must be understood.

Additionally, most turbulence models are developed to model the flow about smooth surfaces while
few models are capable of modeling the effects of rough walls. In reality, there is no such thing as a
perfectly smooth surface, and what we term a “smooth” or “hydraulically smooth” surface is a surface for
which the roughness effects are seemingly negligible. The fact that no surface is perfectly smooth may shed
some light as to why traditional models have had difficulty matching experimental data over a wide range
of Reynolds numbers.

This dissertation focuses on addressing a few identifiable concerns with traditional turbulence
modeling including the correct implementation of smooth-wall boundary conditions for dissipation-based
turbulence models, the modeling of rough-wall flows, and the implementation of a turbulent-kinetic-energy
equation suggested by Phillips [13]. To set this work in perspective to previous work, an overview of

traditional turbulence model development and evaluation is included here.
II. Governing Equations of Fluid Motion

The Eulerian study of fluid mechanics is accomplished by understanding the basic laws and
relationships that govern the motion of a differential fluid element. Such a fluid element, that is large
enough for the molecular structure and the molecular motions to be ignored, can be studied by
understanding its transport properties. A general transport equation for any transportable property can be

written as

—6((;75) +V-(oV4) =Gy (1.1)

where ¢ is the property of transport per unit mass, and G¢ is the production rate per unit volume of the
transport property. Three fundamental laws of physics can be applied to the fluid element by specifying

three different transport properties in Eq. (1.1). These three laws are the conservation of mass, the



conservation of momentum, and the conservation of energy and comprise the governing equations of fluid

mechanics.

A. Conservation of Mass: The Continuity Equation

The conservation of mass equation (the continuity equation) is developed from Eq. (1.1) by defining
mass as the property of transport. Since mass per unit mass is unity, ¢ is unity. Assuming Newtonian
physics, the mass of the continuum cannot be created nor destroyed and the generation term is zero.

Therefore, the continuity equation is written as

P v (V) =
(V) =0 (1.2)

For incompressible flow, the first term can be dropped and the equation simplifies to

V-V=0 (1.3)

B. Conservation of Momentum: Newton’s Second Law

The conservation of momentum equation is developed from Eq. (1.1) by defining momentum as the
property of transport. In this case, ¢ is the velocity vector since momentum per unit mass is velocity. The
generation of momentum per unit volume is the sum of the forces per unit volume acting on the differential

element. Therefore, the conservation of momentum equation is written as
%+V-(,{)VV)=fb+fs (1.4)

where f,, and f are the body and surface forces respectively. It is important to note that the conservation of

momentum equation is the same as Newton’s second law which states that force exerted on an object is

equal to its mass times the acceleration of the object. Multiplying Eq. (1.4) by volume simplifies to the
familiar expression

F=mA (1.5)

Because velocity is a vector, the conservation of momentum equation is a set of three scalar equations.

The vector product VV is a tensor and can be written



Vx Vx Vx Vy Vx Vz
V=V, VY, VL. (1.6)
vy, V.V, V..

Using the vector identity given in Eq. (A.1) and applying the chain rule and the continuity equation, the

left-hand side of Eq. (1.4) can be written as

ANV v (W)= p Y (VW VL VIV (V)]
ot ot ot (1.7)
ov '
=p—+(pV-V)V
ot
The surface forces can be written as the divergence of the fluid stress tensor
f,=V.o (1.8)
where the tensor, 1:7, includes both viscous normal and shear stresses.
a Oy ny Oz
6=|0, 0, O, (1.9)
O« O-zy O,

The components of the fluid stress tensor are written in the form o;; where the subscript i represents the
direction normal to the surface on which the stress is acting, and the subscript j represents the direction of
the stress. It is important to note that compressive pressures included in the fluid stress tensor would have a
minus sign as tensile stress is denoted positive.

The body forces include all other external forces (ie. gravitational and electromagnetic forces). If
gravity is the only body force, this term can be written as

f, =—pg,VZ (1.10)

where g, is the acceleration of gravity at standard sea level and Z is the geopotential altitude.

Using Egs. (1.7), (1.8), and (1.10) in Eq. (1.4) gives a common form of the conservation of momentum

equation for fluid mechanics

4é¥+akvnl=vé—p&vz (1.11)



C. Conservation of Energy: First Law of Thermodynamics

The conservation of energy equation is developed from Eq. (1.1) by defining energy as the property of
transport. The generation of energy per unit volume can result from heat, work done on the fluid element
from the fluid stress tensor, or other volumetric heating resulting from nuclear or chemical reactions.

Therefore, the conservation of energy can be written as

8(pe)+v_(pVe):_v.q+v.(§.v)+yg' (1.12)

ot

where e is the specific energy, q is the heat flux vector, and U, includes any other volumetric heating. The

energy per unit mass is

e=u,+3V’ +g,Z (1.13)
where u, is the specific internal energy and V' is the magnitude of the velocity vector of the fluid element.
Using Eq. (1.13) in Eq. (1.12), applying the vector identities in Eqgs. (A.2) and (A.3) as well as the
continuity equation, and realizing that the geopotential altitude is not a function of time, the conservation of

energy equation can be written in the form
p{%(ue + sz) +(V-V)(u, +%V2 + goZ)} =-V.q+6-(VV)+V-(V-6)+U, (1.14)

A less cumbersome transport equation can be obtained by first developing the mechanical energy
equation. Taking the dot product of the conservation of momentum equation, Eq. (1.11), with the velocity

vector and applying the vector identity in Eq. (A.4) to the left-hand side gives
6 1 1 =
pb(zﬂw (V-V)<2V2)} =V:(V-0)-pg,(V-V)Z (1.15)
This can be rearranged to yield the well-known mechanical energy equation
0 1,2 17,2 _ =
o) E(EV )+(V-V)GV+g,2)|=V-(V-0) (1.16)

Subtracting Eq. (1.16) from Eq. (1.14) yields a transport equation often called the thermal energy equation

p{agte+(V-V)ue}:—V-q+<:s~(VV)+U! (1.17)



D. Application of Newtonian and Continuum Assumptions
Assuming Newtonian physics, the continuity equation, Newton’s second law, and the thermal energy
equation represent the general Eulerian equations of motion for a reference frame with only a single

gravitational potential.

op

4V (pV)=0 (1.2)
ot
p{z—v+(V~V)V}:V-é—ngVZ (1.11)
t
ou, -
p|: o +(V-V)ue}=—v.q+s~(VV)+Ug (1.17)

These equations provide a system of five scalar equations and 17 scalar unknowns. The unknowns are the
three components of the heat transfer vector, the three components of the fluid velocity vector, the nine
components of the fluid stress tensor, the specific internal energy of the fluid, and the fluid density. To
complete the system of equations, additional relationships are needed.

At this point, two assumptions are applied. First, we assume that the fluid can be treated as a
continuum (ie. the length scales are large compared to the molecular mean-free path). Second, we assume
that the fluid is a Newtonian fluid. These assumptions allow the stress tensor to be related to the element

deformation

5=(AV-V - p)o+2uS(V) (1.18)
where p is the thermodynamic pressure, & is the Kronecker delta, 4 is the coefficient of bulk viscosity, u

is the dynamic viscosity, and S is the strain-rate tensor defined as

ov, oV, ov, oV, ov, ov,
—x 4y —x —x 4= —X 4+
ox  Ox dy  Ox 0z  Ox
= oV, ov, oV v
Sovy=L|[ S | | Py (O OV, (1.19)
2({ ox oy Oy Oy Oz oy

v, o, ov, ov, ov, ov,
—£ 4= —E 4+ — —£+—=
ox Oz oy Oz oz oz
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Fourier’s law of thermal diffusion is commonly used to express the heat flux vector in terms of the
thermodynamic temperature, 7', as

q=-kVT (1.20)

For incompressible liquids and ideal gases, the specific internal energy can be related to the temperature
through the thermodynamic property

du, = c,dT (1.21)

where ¢, is the constant volume specific heat. These relations allow the Eulerian equations of motion to be

written for Newtonian fluids as

PV (V) =0 (1.22)

ot
p{aa—\;+(v.v)v} =-V(p+g,pZ-AV-V)+V .[2ﬂ§(v)]+ g,ZVp (1.23)
pch_f+ vy T} =V-(kVT) = pV-V+ AV -V) +248(V)- S(V) + U (1.24)

The three components of Eq. (1.23) are called the Navier-Stokes equations after Navier [1] and Stokes
[2] who developed the equations independently. To complete the formulation from this point, the fluid
properties p, A, i, c,, and k, must be known functions of pressure and temperature. An approximation
commonly used for 4 was suggested by Stokes and is 4 =—(2/3)x. Note that for incompressible fluids, the
value of A is inconsequential in light of the incompressible continuity equation, Eq. (1.3). For

incompressible Newtonian flow, Eqs. (1.22)—(1.24) can be simplified to

V-V=0 (1.25)

oV =
SV VIV =V(pl pt g, 2)+ V28] (1.26)
Z—f+ (V-V)T=[V-(kVT)/ p+2vS(V)- S(V)+U.'/ pl/c, (1.27)

where v is the kinematic viscosity, 4/p . Careful examination of Egs. (1.25)-(1.27) reveals that for

incompressible Newtonian flow, the dependence of viscosity on temperature is the only term that couples
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the Navier-Stokes equations to the thermal energy equation. Therefore, if the viscosity of the fluid is
assumed independent of temperature, or the temperature gradients are small enough that the dependence
can be ignored, the thermal energy equation can be decoupled from the other four equations and solved
separately after the four equations, consisting of the continuity equation and the Navier-Stokes equations,
have been solved.

The continuity equation and the Navier-Stokes equations provide a system of four equations and four
unknowns and must be satisfied at every point in the flow. For laminar flow, these governing equations
have been applied with much success both analytically and numerically. However, turbulent flow has
irregular fluctuations in the flow velocity vector at extremely small scales which complicates the analytical
solutions and requires extremely fine grid refinement for accurate CFD solutions. Direct Numerical
Simulation relies on a gridded domain with elements fine enough to capture the smallest turbulent
fluctuations. As a result, DNS simulations are commonly used to better understand the physics of the small
scales of turbulence. In order to model larger turbulent flow fields, other means are often used that
incorporate turbulent flow properties into the general equations of motion. The most common methods, and
the method of choice for this research, are based on the Reynolds-averaged Navier-Stokes (RANS)

equations.

III. The Reynolds-Averaged Navier-Stokes Equations

Turbulence models based on the RANS equations attempt to model the average fluid motion rather
than trying to capture every fluctuation within the flow. By definition, at any given point and time, the
continuity and the Navier-Stokes equations must be satisfied regardless of whether the flow is turbulent or
laminar. Additionally, because the continuity equation is linear, it must be satisfied for the mean flow. The
velocity and pressure at any given time in a turbulent flow can be expressed as the sum of the ensemble
average of the property at that point and the fluctuating component. In the following notation, the over-bar
and tilde represent the ensemble averages and fluctuating components respectively. Using this notation, the

velocity vector and pressure scalar at a point in the flow can be written
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\ (1.28)

(1.29)

Il
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+
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p

It is important to note that the average of the fluctuating component is zero by definition. (See Appendix A

for properties of ensemble averaging.)

V=5=0 (1.30)

Il
U
Il

Fluctuations in density can be ignored for flows which do not have high supersonic mean Mach
numbers. Although the fluctuations in density due to turbulence are ignored, changes in the average density
with time and space are retained.

Taking the ensemble average of the continuity equation yields

66—/;+V~(pV)=O (1.31)

which can be simplified by using rules of ensemble averaging to

P v (V) =0 (1.32)
ot
Using Eq. (1.28) in Eq. (1.2) gives
op - = op — =
§+V~[p(V+V)]:§+V-(pV)+V-(pV):0 (1.33)

Applying Eq. (1.32) to Eq. (1.33) gives a form of the continuity equation for the fluctuations
V-(pV)=0 (1.34)

Taking the ensemble average of the strain rate tensor and applying rules of ensemble averaging gives

S(V)=5W) (1.35)

Using the approximation given by Stokes for A in Eq. (1.23) and taking the ensemble average gives

p|:aa—\t7+(V-V)V:|=—V(p +ngZ+§IuV.V)+V.[2M§(V)]+gozvp (1.36)

Applying rules of ensemble averaging and simplifying yields



13

p|:aa—‘t]+ RZ V)V} = V(P +pg,Z + iV V) +V - [2uS(V)] + £,2Yp (1.37)

Using Eqgs. (1.28) and (1.30) and applying rules of ensemble averaging, the second term on the left-hand

side of Eq. (1.37) can be written

(V-V)V=[(V+V)-V)I(V+V) (1.38)

=(V-V)V+(V-V)V

Thus the RANS equations can then be written
QV — — _ > — = —= =
P E+ (V-V)V |=—V(p+pg,Z +IHV- V)+V - [2uS(V)]+g,ZVp—p(V-V)V (1.39)

Notice that the last term on the right-hand side is the only term that involves the turbulent fluctuations.
All other terms depend only on the average flow field. Using the vector identity in Eq. (A.1), this

fluctuation term can be expanded to

p(V-V)V=V-(pVV)= V[V (pV)] (1.40)
The second term on the right-hand side in this equation is identically zero from the turbulent fluctuation
continuity equation given in Eq. (1.34). The first term on the right-hand side introduces the symmetric

Reynolds stress tensor first suggested by Osborn Reynolds [20]

Ve V.V, V.
T=—pVV=—p VV, V,V, V,V. (1.41)
z'x z'y z'z
thus
p(V-V)V=-V.7 (1.42)

Using Eq. (1.42) in Eq. (1.39), the RANS equations can then be written as
& o— ] N .
P E+(V VIV ==NV(p+pg,Z+ 51V -V)+V [2uS(V) + 7]+ g,ZVp (1.43)

Combining the continuity equation given in Eq. (1.32) with this general expression of the RANS

equations provides four equations that contain ten unknowns. The unknowns include the three components
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of the average velocity vector, the average pressure, and the six unknown terms in the symmetric Reynolds
stress tensor. More relationships are needed to close this system of equations. This represents what is
known as the turbulence closure problem and has resulted in a great deal of research. An overview of the

most common approaches to the turbulence closure problem is discussed in the following section.

IV. Traditional Turbulence Closure

Two general methods are typically used to close the turbulence equations. The first method is referred
to as Reynolds stress modeling and consists of modeling the Reynolds stress tensor in a tensor transport
equation based on the mean flow. The second method relies on the Boussinesq hypothesis to relate the
Reynolds stress tensor to the mean-strain-rate tensor. Only a brief overview of the Reynolds stress
modeling method is included here as it is not studied in this work. The Boussinesq hypothesis method is

discussed in more detail.

A. Reynolds Stress Modeling

The Reynolds stress tensor can be modeled by looking at the transport of the components of the tensor
with the average flow. This transport equation is developed by first taking a moment of the Navier-Stokes
equations by multiplying the equations by the fluctuating velocity. Taking the ensemble average of the

result gives the Reynolds-stress-transport equation. The Reynolds-stress-transport equation can be written

vV

+(V-V)VV = -5(V,V)—1Z(V) W2 VV —5(V) - 2(V, F) (1.44)

where

YV,V)=-V[(V-V)V]-{V[(V-V)V]} T (1.45)

V)V V)V, V(I,)-V(F.)
EV)=2 V() V() V()Y V() V(T.) (1.46)
V() V) VL)V, V() -V(T)
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V-(WVN) V-V V) V-V V)
IV =V 7N V-7V VTV (1.47)
V-V V) V-(W.VN) V()

=~ 1= 2 1=_z= S oo
a(V,p)=—VVp+—[VVvp] = (V- V)VV (1.48)
P P
and W is the negative of the specific Reynolds stress tensor, T/p. In Eq. (1.48) we have used the

definition

p

P-suv-V (1.49)
This approach to turbulence modeling requires knowledge of the new scalar terms in the tensors on the
right-hand side of Eq. (1.44). These terms are correlations of the velocity and pressure fluctuations and are
unknown. More transport equations for these unknown scalar terms could be developed, but this repeated
process would never produce enough equations to match the number of unknowns. At some point, the
subsequent scalar terms obtained from modeling the stress transport must be related to the mean flow in
order to “close” the formulation. The method of introducing transport equations for the Reynolds stress
tensor has not shown to produce better results than relating the Reynolds stress tensor to the mean flow and

will not be discussed further.

B. The Boussinesq Hypothesis

The most direct and commonly employed approach to relating the Reynolds stress tensor to the mean
properties of the flow is based on an analogy between molecular and turbulent transport first suggested by
Boussinesq [21]. Application of the Boussinesq hypothesis suggests that the Reynolds stress tensor might
be modeled as a linear function of the mean-strain-rate tensor just as the total molecular stress tensor is

modeled as a linear function of the total-strain-rate tensor. The Boussinesq hypothesis can be expressed as

=24 S(V) -2 (pk+ 1,V - V)3 (1.50)
where y, is the dynamic eddy viscosity, k is the turbulent kinetic energy per unit mass, and & is the

Kronecker delta. The dynamic eddy viscosity and turbulent kinetic energy per unit mass will be discussed
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in more detail at a later point. Notice how Eq. (1.50) compares to Eq. (1.18). It should be noted that in the
literature, this is often called the Boussinesq approximation. However, it is not actually an approximation.
It is better termed the Boussinesq hypothesis or assumption. Applying the Boussinesq hypothesis to the

RANS equations given in Eq. (1.43) yields

v == _ — =
p{5+ v -V)V} =-V[p+pg,Z+ 2 ph+ 2+ u)V-VI+V-[2(u+u)S(V)+ g,ZVp  (1.51)
A pseudo mean pressure can be defined by combining like terms on the right-hand side

fyz;_?+pgoZ+§pk+§(,u+,u,)V-V (1.52)

and the Boussinesq RANS equations can be written as

p{%—\;ﬂvv)ﬂ = V(p)+V-12(u+ 1) SVYI+ g,2Vp (1.53)

In order to close the formulation with the Boussinesq hypothesis, the dynamic eddy viscosity, #,, and
the turbulent kinetic energy per unit mass, k, must be related to the other flow properties. Several methods
have been suggested for closing the formulation based on the Boussinesq hypothesis, and can be classified
as zero, one, or two equation turbulence models.

Most zero-equation models (also known as algebraic models) are based on a hypothesis first made by
Ludwig Prandtl [22]. This hypothesis is referred to as mixing-length theory. Prandtl hypothesized that the
turbulence characteristics were related to a characteristic length and velocity scale associated with the
turbulent fluctuations. Thus, the closing equations are simply algebraic relationships between the turbulent
parameters based on characteristics of the flow known a priori. Zero-equation models are classified as
incomplete models because they require properties of the turbulent flow field to be known a priori.

Most one-equation models are based on a subsequent hypothesis by Prandtl [23]. In this development,
Prandtl hypothesized that the eddy viscosity was proportional to the product of the square root of the

turbulent kinetic energy per unit mass and a characteristic length scale.

u, o< LTk (1.54)



17
Prandtl used a modeled version of a turbulent kinetic energy transport equation and related the eddy
viscosity to the turbulent kinetic energy algebraically. The length scale was also calculated algebraically
from the mean flow. The distinguishing factors of most one-equation models is that they model the
turbulent kinetic energy per unit mass by a differential equation, they express the eddy viscosity as a
function of the turbulent kinetic energy per unit mass, and they calculate some type of length scale from the
mean fluid velocity. Many one-equation models have been proposed including those by Emmons [24],
Glushko [25], and Wolfshtein [26]. Bradshaw, Ferriss, and Atwell [27] also proposed a one-equation model
based on the turbulent kinetic energy, but do not use the Boussinesq hypothesis. Other one-equation models
that are based on some transport property other than turbulent kinetic energy include models by Nee and
Kovasznay [28], Sekundov [29], Baldwin and Barth [18], Spalart and Allmaras [17], and Menter [30].

Most two-equation turbulence models are based on a method first suggested by Kolmogorov [16].
Kolmogorov proposed using a differential equation to model the turbulent kinetic energy per unit mass as
Prandtl had. However, Kolmogorov also suggested using a supplementary differential transport equation
for a scalar quantity known as the specific dissipation rate. This quantity represents a characteristic
frequency related to the turbulent kinetic energy dissipation and was given the symbol @. Algebraic
relationships are then developed on the basis of dimensional analysis to calculate a length scale and express
the eddy viscosity as a function of the two modeled variables and the length scale. Two-equation
formulations are called complete models because they allow the mean turbulent flow to be modeled without
any characteristics of the flow being known a priori. Much attention has been given to this method and
several two-equation models have consequently been developed. The most common two-equation models
can be classified as either k-¢ or k- models where ¢ is the turbulent kinetic energy dissipation rate per unit
mass. These models will be discussed in more detail in a subsequent section. Two-equation models that are
based on transport properties other than & or @ include models suggested by Rotta [31], Rotta [32],

Zeierman and Wolfshtein [33], and Speziale, Abid, and Anderson [34].
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C. Turbulent Kinetic Energy Transport
The turbulent kinetic energy is a measure of the kinetic energy of the fluid resulting from the turbulent
fluctuations that are generated from velocity gradients in the flow. Turbulent kinetic energy is transported
with the mean flow and is dissipated through molecular viscosity. The specific turbulent kinetic energy is
commonly denoted as k£ and is defined to be one-half the mean square magnitude of the velocity

fluctuations. This is equal to one-half the trace of the negative of the specific Reynolds stress tensor.
kE;\Nf-\N’:;VZ:;(ﬁjLﬁJrﬁ):—;trace(l] (1.55)

Because of the relation of the turbulent kinetic energy to the Reynolds stress tensor, a transport equation for
the turbulent kinetic energy can be taken from the Reynolds-stress-transport equation. Taking the trace of

the Reynolds-stress-transport equation given in Eq. (1.44) gives

%+(V-V)k=yk —ve+vVik—y, —m, (1.56)

where the subscript & represents one-half the trace of the tensor. A close look at these terms reveals that
they can each be written as functions of alternate quantities. The trace terms on the right-hand side of

Eq. (1.56) can be written

== I(V) (1.57)
ol
g, =3(V)-J(V) (1.58)
Xk E%V-W (1.59)
;rk E%{v.E(V)—E(vﬁ)%ﬁziw} (1.60)

where the tensor J is the Jacobian tensor and can be expressed in Cartesian coordinates for an arbitrary

flow field, V, as
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fov, ov, ov,]
ox Oy oz
= v V V
J(V)= o, o, oy (1.61)
ox oy Oz
ov, ov, oV,
| Ox 0Oy Oz |

Using Egs. (1.49) and (1.57)—(1.60) in Eq. (1.56) gives the turbulent-kinetic-energy transport equation per

unit mass

%JF(V-V)k:
ot

T IV —vIV)-3(V) 4 BV- V)= (V- V)?
P 1 o (1.62)
L [PV V- L v |
P
Each of the terms on the right-hand side of Eq. (1.62) represents physical aspects of the turbulent-
kinetic-energy transport. The first term on the right-hand side of Eq. (1.62) is the production term and is the

rate that specific kinetic energy is transferred from the mean flow to the turbulent fluctuations. Using the

Boussinesq hypothesis given in Eq. (1.50), the production term can be written

IV =208V IV) =2 (k+v,V-V)3-J(V)

D | A

- (1.63)
=2v,S(V)-S(V) - 2 (k +v,V-V)V-V

where v, is the kinematic eddy viscosity, 4, /p. Notice that the second term on the right-hand side of Eq.
(1.63) is zero for incompressible flow. The second term on the right-hand side of Eq. (1.62) is often
understood to represent the dissipation of k, or the rate that the kinetic energy of the turbulent fluctuations
is dissipated to thermal energy through viscosity. It is commonly called the dissipation per unit mass and

has been modeled in many different ways. For now, it is simply denoted as

e=ve, =vI(V)-I(V) (1.64)
The third and fourth terms on the right-hand side of Eq. (1.62) are called the dilation terms and represent
the exchange of energy between the turbulent kinetic energy and the thermal energy of the fluid resulting
from fluid compression or expansion. For compressible flow the dilation terms are usually small and often

neglected in modeling. For incompressible flow the dilation terms are identically zero.
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%5(V-\7)—;V(V-\7)2:0 (1.65)

The fifth term on the right-hand side of Eq. (1.62) comes from molecular diffusion and is commonly
understood to account for the diffusion of turbulent kinetic energy resulting from the fluid’s molecular
transport properties. Finally, the remaining terms on the right-hand side of Eq. (1.62) are usually referred to
as the turbulent transport terms. These terms include the transport of turbulent kinetic energy caused by the

turbulent fluctuations. The turbulent transport term is often modeled as a gradient diffusion process
3 PVV + BV =L u(V-VIV = ~(u,/0,)Vk (1.66)
where o, is a closure constant. Using Egs. (1.63)—(1.66) in Eq. (1.62) gives a version of the turbulent-

kinetic-energy-transport equation commonly used for modeling.

Z—IZ+ (V-V)k=20S(V)-SV) -2 (k +v,V - VIV -V £ + V[V +V,/0; VK] (1.67)

Combining Eq. (1.67) with the mean continuity equation and the RANS equations provides a system of
five equations with seven unknowns. The unknowns are the three components of the mean velocity vector,
the mean pressure, and the three turbulence variables, v,, k, and ¢. In order to complete the system, we
must provide additional relations between these variables. As stated previously, most one-equation models
accomplish this by relating the turbulence variables through an algebraic expression. Most complete
turbulence models, however, employ an additional transport equation and relate the kinematic eddy

viscosity, v,, algebraically.

D. Turbulent Dissipation Transport
The modeled transport equation for the turbulent dissipation, ¢, is usually developed by analogy with

Eq. (1.67), and can be written as

.. 2
aa—j+ (V-V)e=2C,v, %sw) SV)-C,, ‘% +V[(v+v,[o,)Ve] (1.68)
where C,, C,,, and o, are closure constants. Note that the turbulent dissipation transport equation is

traditionally constructed by dimensional analysis and is not developed rigorously from the Navier-Stokes
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equations. Wilcox [35] makes mention of this concern and gives what he terms an “exact” equation for the
turbulent dissipation, &, by taking a moment of the Navier-Stokes equation using the definition of the
turbulent dissipation given in Eq. (1.64). However, the resulting equation is extremely complicated and
Wilcox submits that closure coefficients for the resulting differential equation are all but impossible to
measure at this point. Thus the modeled version of the dissipation transport given in

Eq. (1.68) is traditionally used for lack of a useful version of a more rigorously derived equation.

E. Length and Velocity Scales

The Boussinesq hypothesis allows the Reynolds stress tensor to be written in terms of two unknowns,
the kinematic eddy viscosity and the specific turbulent kinetic energy. By definition, the specific turbulent
kinetic energy is related to the Reynolds stress tensor, allowing a transport equation for the specific
turbulent kinetic energy to be developed. This provides an additional equation but also introduces an
additional unknown, the turbulent dissipation. By analogy to the turbulent kinetic energy transport
equation, a transport equation for the turbulent dissipation can be found. In order to complete the closure of
the Boussinesq RANS equations, a relation must be found that relates one of these unknowns to other
parameters. This is accomplished by observing the length and velocity scales of turbulence.

The kinematic eddy viscosity is a diffusivity coefficient and can be better understood by first looking
at the diffusivity coefficient resulting from the kinetic theory of gases, molecular viscosity. All kinematic
diffusivity coefficients have units of length times velocity. Molecular viscosity has been shown to be
proportional to the product of the molecular mean free path and the square root of the total specific
molecular kinetic energy. This leads to the obvious claim that the kinematic eddy viscosity can be modeled
as a product of a turbulent length scale and a turbulent velocity scale. These scales are not properties of the
fluid, but properties of the flow. Perhaps the seemingly most natural velocity scale of a flow is the average
velocity of the fluid. This relation was first used by Prandtl who hypothesized that the characteristic length
and velocity of a turbulent flow could be related to the characteristic velocity and length of the average

flow. However, it is important to note that the turbulent kinetic energy is independent of the average fluid
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velocity. Rather, the turbulent kinetic energy is a measure of the energy contained in the velocity
fluctuations where the average of the fluctuations is zero. Obviously, there is neither a single length scale
nor a single velocity scale that is fully representative of turbulent fluctuations. Turbulence is the
superposition of a myriad of velocity fluctuations each with differing characteristic lengths and energies.
However, spectral analysis of turbulent fluctuations provides insight into velocity and length scales for a
turbulent flow. Geoffrey 1. Taylor [36] was the first to present such an analysis. Taylor developed a
mathematical relation between the velocity fluctuations and the turbulence energy spectrum. Thus, a
characteristic length of the flow could be found from some type of weighted average of the various eddy
lengths of the turbulent flow. For a detailed discussion on the energy spectrum, see Hinze [37].

Prandtl [23] suggested that the square root of the specific kinetic energy of the fluctuating velocity

field offers a valuable velocity scale for the flow field.
Vv, = K2 (1.69)
Realizing that periodic waves can be characterized by an angular velocity, @,, and a translational velocity,

V., provides a relationship for a characteristic length scale, /.. These two velocity scales of a periodic wave

are related to the length scale of the wave through

/

Ye (1.70)
wC

c

Therefore, the turbulent characteristic length scale should be proportional to the turbulent characteristic

velocity divided by a turbulent characteristic angular velocity.

Lm%— (1.71)
t

The characteristic angular velocity is often taken to be proportional to the approximate dissipation divided

by the specific kinetic energy

o o (1.72)

It is important to note that this definition links the characteristic length of the turbulent flow field to the

characteristic length of turbulent dissipation, not to the characteristic length of the eddies in which the most
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energy is found. This is an item of concern and will be addressed later. Using Egs. (1.69), (1.71), and (1.72)

to represent the kinematic eddy viscosity yields

v, =C, ke (1.73)
where C, is a closure constant. This relationship finally closes the first turbulence model of interest, known
as the k-¢ model. The other two models presented in the subsequent section can be constructed through a

change of variables from the k-¢ model as will be shown.

F. Resulting Energy-Dissipation Turbulence Models

Many two-equation turbulence models have been proposed on the basis of transport equations for the
turbulent kinetic energy and the dissipation. In this section, three traditional models are presented that are
based on these two transport equations. The purpose of this section is to provide the fundamental equations
to these traditional models, not to provide a catalog of existing models. The models presented here are often
thought to be fundamentally different. However, it will be shown that these models are all based on the
transport of dissipation, and can be derived through a change of variables from the other models. For each

of the models presented in this section, incompressible flow is assumed.

1. The k-¢ Model

Combining Egs. (1.67), (1.68), and (1.73) gives the traditional k-¢ model first made popular by Jones

and Launder [15].
ok _ - __ = _
(V- VIk=208(V)-S(V)— & + V-[(v +v, /o) VA] (1.74)
— _ 2
Z—‘j+ (V-V)e=2C,v, %S(V) SV)-C,, % +V[(v+v,[o,)Ve] (1.75)

v,=C,k*/e (1.76)
The most widely used closure coefficients are attributed to Launder, Morse, Rodi, and Spalding [38] who
suggested very similar coefficients after significant computer optimization. The commonly used

coefficients are
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C,=0.09, C =13 (1.77)

&

=144, C,=192, o0,=10, o,
The k-e model in its general form cannot be integrated to the wall. Generally wall functions or damping

functions are incorporated into the model for near-wall treatment. For more detail and example results for

the k-¢ model, see Appendix B.

2. The k-w Model
Using the relationship given in Eq. (1.72), the k-¢ model can be reparameterized in terms of the
turbulent dissipation frequency, @, rather than the turbulent dissipation rate, £. Note that @ is sometimes

called the specific dissipation rate in the literature. Using C, as the proportionality constant gives

e _2wIW)-IV)

w= — (1.78)
Cuk  c,v-v
)
Solving for & and substituting the result into Eq. (1.73) gives
2
K C, (V -VJ
v=—=——— (1.79)
@ 4vJ(V)-J(V)

Using Eq. (1.78) in Eq. (1.67) gives the traditional k-w model first attempted by Kolmogorov [16] and
revised by many others. See for example Wilcox [39,40], Speziale, Abid, and Anderson [34], Menter [41],
Peng, Davidson, and Holmberg [42], Kok [43], and Hellsten [44]. Thus, the turbulent-energy-transport

equation is given by

% +(V-V)k =2v,S(V)-S(V) = C ko +V -[(v +v, /6, VK] (1.80)

Through dimensional analysis and analogy with Eq. (1.80), the dissipation-frequency-transport equation is

given by

Z—“;+ V-V)o = 2Cw1v,%§(V) S(V)=C e +V [(v+V, o,V o] (1.81)

The algebraic relationship to close the system is

(1.82)
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Many values for the closure coefficients have been suggested as the model has evolved over time.
Currently, the following coefficients are commonly used

C,=0.09, C, =052, C,,=0072, 0,=20, c,=20 (1.83)

ol =
It is also not uncommon for a form of wall damping functions to be applied to this model. The wall

damping functions of Wilcox [45] are perhaps the most widely used to date. For more detail and example

results for the k- model, see Appendix B.

3. The k-¢ Model
A less-common turbulence model based on enstrophy was first presented by Robinson, Harris, and
Hassan [46] and further developed by Robinson and Hassan [47]. Enstrophy, ¢, is traditionally defined as

the mean square magnitude of the fluctuating vorticity
£ =(VxV)-(VxV) (1.84)
However, in their model, Robinson et al. defined an approximate turbulent energy dissipation term, & = Jv.
This is simply a change of variables defining the turbulent Jacobian magnitude
c=2-3(V)-I(V) (1.85)
1%
Using this in Egs. (1.74) and (1.76) gives the turbulent-energy-transport equation

% +(V-V)k = 2v,S(V)-S(V) = v +V - [(v/3+V, /o, VK] (1.86)

and the closing algebraic equation

k2
Y=z (1.87)
The turbulent-enstrophy-transport equation used in the model is
0 — — — =
V=10 /B - oo Bk~ Co ¢ KRS @)
+Cp¥, 2230 +Cp3 23~ Cp v O [k + Crs(v, £/K)S(V)-S(V) (188)

~4v,S()-S() - (Vx2)- 2V -[v,SW)]+ LVE}

el /S(V)- @~ L Q)-(VEx V) Q2 4V [(v +v, [0, )V
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where the definitions Q =V xV and Q2 = Q- Q are used and the closure coefficients are

C, =009, C; =150, C;,;=040, C;3=084, C,5=237,
Crs=070, Cpg=920, 1/0,=18, /o, =146

(1.89)

It should be noted that although Robinson et al. claim that their definition of ¢ has the physical significance

of enstrophy, their development does not support that claim mathematically. Rather, their definition of the

enstrophy term is simply a change of variables which comes from dividing the dissipation term by the
kinematic viscosity.

The k-¢, k-w, and k- models are often thought of as being fundamentally different. However, a close

look at these models shows that they are not fundamentally different. Rather they differ through a change

of variables and the closing differential equation for the chosen turbulence parameter.

V. Closure Coefficient Evaluation

Once the fundamental equations for a turbulence model have been developed, closure coefficients can
be adjusted to allow the developer to tune the model. In general, closure coefficients are chosen which
allow the turbulence model to match experimental results. A wide range of experimental data is available
for many flow scenarios. The model developer is free to choose the actual flow scenarios used to evaluate
the closure coefficients. However, the resulting model will be tuned to produce more accurate solutions for
flows similar to those flow scenarios.

In the ideal situation, the coefficients could be evaluated by isolating each term of the equations and
comparing the isolated terms to physical aspects of a given flow scenario. The terms in the governing
equations do not appear in a completely isolated form in nature, so empirical relations are often developed
by conducting wind tunnel tests, DNS simulations, Large Eddy Simulations (LES), or other computational
methods that simulate isolated characteristics of turbulent flow. Once an estimate for the closure
coefficients has been obtained for a given flow scenario, computer optimization is often used to refine the

final values. Closure coefficients are often altered as new flow scenarios are studied.
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Common methods for evaluating model coefficients are based on examination of the behavior of the
model in the log layer and the behavior of the model in decaying homogeneous isotropic turbulence. Other
flow scenarios sometimes used include vortex stretching, flow separation, and shear-free mixing. A brief
overview of a few of these approaches is given here. The discussion will focus on how closure coefficients

for the k- model could be obtained.

A. The Log Layer

The log layer is the portion of flow near a wall that is close enough to the wall for the velocity term
normal to the wall to be ignored, but far enough from the wall that the molecular viscosity is negligible
compared to the turbulent eddy viscosity. Extensive experimental data has shown that in the log layer, the

nondimensional velocity profile satisfies what is known as the law-of-the-wall

V. =2 In(u, y/v)+C (1.90)
K

where the value of the constants are generally accepted as k¥ =0.41 and C =5.0, and u, =4/7,,/p is the
conventional friction velocity. From the definition of the friction velocity and the assumption of the

constant-stress layer,

= y? (1.91)

Experimental data by Townsend [48] indicate that in the log layer,

T = =5
%z—VxVy =a,V? (1.92)

where a; =0.15 is the empirical constant. From the definition of the turbulent-kinetic-energy given in

Eq. (1.55), Eq. (1.92) can be written as
-V, =2ak = B,k (1.93)
where S, = 0.30 is often called Bradshaw’s constant from Bradshaw, Ferris, and Atwell [27]. Applying the

near-wall approximations to the Boussinesq hypothesis used to define eddy viscosity in Eq. (1.50) gives a

definition for the eddy viscosity in the near-wall region
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-V, Ev,% (1.94)
ay
Using Egs. (1.91), (1.93) and (1.94) gives the relation
2 2
ol 2 U (1.95)
£, 030

This relationship suggests a constant nondimensional value for the turbulent-kinetic-energy in the log layer

k 1
kt=—=— 1.96
u? 03 (1.56)
This relationship can also be used to calibrate a turbulence model.
Applying the log-layer approximations to the k- model gives the equations for V_, k, and @
v, Vs - u? (1.97)
o
o (v, ok o7, \’
B R el Yol (1.98)
oy\ oy Oy oy
o(v, d o7, \’
e I O e IR o (1.99)
oyv\ o, Oy k\ oy
where the turbulent eddy viscosity is
v, = L3 (1.100)
@
We wish the solution of this model to match Eq. (1.90). From Eq. (1.90) we find
Wy _u: (1.101)
oy Ky
Using Egs. (1.95), (1.100), and (1.101) in Eq. (1.98) gives
o=tz (1.102)
&\ C
Using Egs. (1.100), (1.101), (1.102), and (1.95) in Eq. (1.97) gives
C, =B =(0.30)> =0.09 (1.103)

Using these same expressions along with Eq. (1.103) in Eq. (1.99) gives the relation
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K* 5 0.683
c, = =
ﬂr(ca)Z/C,u - Ca)l) (C(u2 /009 - Cwl)

(1.104)

An almost identical development can be followed for the k-& model to develop relationships for the closure
coefficients. Methods for applying the law of the wall to find closure coefficients are presented by Durbin

and Pettersson Reif [49] and Wilcox [35].

B. Homogeneous, Isotropic Turbulence
Applying the properties of homogeneous isotropic turbulence to the governing equations is another
commonly used tool for finding closure coefficients. Experiments show that the decay of turbulent kinetic

energy can be expressed in the form

g ¢ Ok__ aC (1.105)
(t+B)?  at  (t+B)°"!

where a =1.2 £ 0.25. Notice the considerable range in the data. For homogeneous, isotropic flow, there are
no spatial gradients of any of the mean flow properties. Applying this assumption to the traditional k-w

model allows Egs. (1.80) and (1.81) to be reduced to

ok =—C ko
ot #
(1.1006)
ow 2
E ==L
These equations can be solved to yield
k — t_Cﬂ/Ca)Z
o= 1 (1.107)
C,ot

Applying this result to Eq. (1.105) gives the relationship C, / C,, =a. Using a value of a=1.2 and
applying Eq. (1.103) gives

C,, =0.075 (1.108)
Note that the traditional value is C,, =0.072. Using Eq. (1.108) in Eq. (1.104) gives

0.683
“ 7 833-C,

R

- (1.109)
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Applying the traditional closure coefficient C

ol =

0.52 gives o, =2.18. Applying the traditional closure

coefficient o, = 2.0 gives C,,; =0.49.

ol =

C. The Log Layer at Separation
The log layer for differential pressure boundary layers can also be examined. Measurements [48]

indicate that near separation, the law of the wall is replaced by

v L |2 (1.110)
024\ p dx

as y — 0. Additionally, measurements from Clark [50] and Laufer [51] suggest that empirical relationships
can be used to approximate the kinetic energy and velocity near the center of a channel. Zeierman and

Wolfshtein [33] use this information in the development of closure coefficients for a turbulence model.

D. Shear-Free Mixing Layer

Another approach to calculating closure coefficients is that used by Briggs, Ferziger, Koseff, and
Monismith [52] by examining LES results of a shear-free mixing layer. In this scenario, diffusion terms
offset dissipation terms in the governing equations. The authors conclude that the asymptotic behavior of &

and v, can be described as
k~ay?® (1.111)

v, ~ by (1.112)

as y — o where a and b are constants.
It has been shown here that there are several possible methods for evaluating closure coefficients. The
method of choice is generally dependent on the purpose of the turbulence model. During the development
of any turbulence model, benchmarking cases are used to evaluate the accuracy of the model. This is the

topic of the following section.
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VI. Common Turbulence Model Evaluation Cases

Common cases used for evaluating a turbulence model include the cases of boundary layer flow,
channel flow, pipe flow, plane-jet flow, and round-jet flow. This set of flow scenarios allows a model to be
tested for both wall-bounded and free-shear flows. An overview of these testing scenarios is given here. For
a more in-depth discussion of each of these flow scenarios as well as sample computations from a CFD

algorithm, see Appendix C.

A. Boundary Layer Flow

Boundary layer flow is often one of the first scenarios considered for evaluating a turbulence model.
The test case consists of an infinite flat plate placed in-line with the velocity vector of a uniform flow. As
the flow advances along the plate, the momentum deficit from the skin drag on the plate causes a boundary
layer to develop. The profile of this boundary layer has been studied in great detail and much experimental
data exists for this case. Experimental results show that the boundary layer profile is self-similar and a
function of the skin friction along the plate.

Because of the behavior of the boundary layer profile, certain approximations can be applied to the
RANS equations and the resulting simplified equations can be written in a similarity form. The nature of
the boundary layer equations allows a solution to be obtained by directly integrating the equations in space.
This solution method allows for the effect of turbulence model closure coefficients to be quickly assessed
because any one solution requires only a matter of seconds to compute with modern computers. However,
this method suffers from the fact that approximations about the flowfield must be assumed in order to
develop the boundary layer equations.

The boundary layer flow case in a two-dimensional CFD solver can be constructed on a rectangular
domain as shown in Fig. 1.1. On the west side of the domain a velocity inlet boundary condition is
specified. At this boundary condition, all freestream properties of the flow must be specified. In this case,
uniform properties of the flow are specified across the inlet boundary. Along the south side of the domain,

a no-slip wall boundary condition is specified. Along the north and east sides of the domain, pressure outlet
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boundary conditions are specified. Once the solution has reached a converged state, there should be no flow

entering the domain from the north and east boundaries.
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Fig. 1.1 Boundary layer case description.

Two of the most significant parameters of interest in flat-plate boundary layer flow are the prediction
of the skin friction along the plate, and the prediction of the nondimensional velocity profile. According to
convention, R, is defined as the Reynolds number at any x-position along the plate where the x-position is
measured from the leading edge of the plate along the direction of flow. This Reynolds number can be

expressed as

R =V, x/v (1.113)

Here we define R; as the Reynolds number based on the length of the plate, L, which can be expressed as
R, =V, LJv (1.114)
The friction coefficient is defined as
C,=2,/(pV2) (1.115)
Plots of the nondimensional velocity profile, u*, as a function of y* where u* =¥, /u, and y* = yu, /v in

comparison with experimental data are often included. There is a wealth of experimental data for boundary
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layer flows. For example, results of boundary layer flow can be compared to experimental data by

Klebanoff [53], Bradshaw [54], Marusic and Hutchins [55], and Guala, Metzger, and McKeon [56].

B. Fully Developed Channel Flow
Fully developed flow in a channel is a common case for evaluating a turbulence model. This case is a

two-dimensional flow which is identical to the three-dimensional flow between two infinite flat plates. As
flow enters a channel, a boundary layer develops on each channel wall. As the flow moves downstream, the
two boundary layers eventually meet, and the flow reaches the fully developed state.

This flow case in two dimensions can be constructed on a rectangular domain as shown in Fig. 1.2
Along the south side of the domain, a no-slip wall boundary condition is applied. Because this case is
symmetrical along the centerline of the channel, only half of the channel is modeled, and a symmetry
boundary condition is applied along the north side of the domain. The east and west sides of the domain are

then specified as periodic boundary conditions. This boundary condition forces the properties of the flow
exiting one side of the domain to be equal to those entering the other side of the domain. The use of

periodic boundary conditions requires either a pressure drop across the domain to be specified, or a mass

flux across the periodic boundary to be specified.
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Fig. 1.2 Fully developed channel flow case description.

For fully developed channel flow, gradients in the flow properties with respect to the flow direction
disappear, and the profiles of flow properties become dependent only on the coordinate normal to the wall.

Therefore, the governing equations can be simplified to a one-dimensional problem and the solution can be
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obtained numerically very quickly on modern computers. The formulation can be discretized into a banded
system of equations and solved quite rapidly where the full two-dimensional problem may take a
significantly longer amount of time. Therefore, this one-dimensional test case is ideal for the optimization
process of closure coefficients.

The most significant parameters of interest for the channel flow case are the ability of a model to
predict the correct relation between flow Reynolds number and the friction coefficient, and the ability of

the model to predict the correct nondimensional velocity profile. The channel Reynolds number is defined

as
R, =Vour Dy [V (1.116)
where
Z)ulkzlf Vedy (1.117)
L »=0
is the bulk velocity, and
D, =4L (1.118)

is the hydraulic diameter based on the channel half-width, L. The Fanning friction factor is defined as

Cr =22,/ (P (1.119)
Results of fully developed channel flow can be compared to experimental data by Laufer [57] and Zanoun,

Durst, and Nagib [58].

C. Fully Developed Pipe Flow

The fully developed pipe flow case is very closely related to the fully developed channel flow case. As
flow enters a pipe, a boundary layer develops along the pipe wall. As the flow moves downstream, the
boundary layer eventually fills the entire pipe, and the flow reaches the fully developed state. In this state,
there are no gradients in the azimuthal direction of the pipe, and the case can be simplified to a two-

dimensional flow in cylindrical coordinates.
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This flow case in two dimensions can be constructed on a rectangular domain as shown in Fig. 1.3.
Along the north side of the domain, a no-slip wall boundary condition is applied. Because this case is
symmetrical along the centerline of the pipe, only half of the pipe is modeled, and a symmetry boundary
condition is applied along the south side of the domain. This side of the domain is also the axis of rotation
of the pipe. The east and west sides of the domain are then specified as periodic boundary conditions where

either a pressure drop across the domain or a mass flux across the periodic boundary must be specified
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Fig. 1.3 Fully developed pipe flow case description.

For fully developed pipe flow, gradients in the flow properties with respect to the flow direction

disappear, and the profiles of flow properties become dependent only on the coordinate normal to the axis

of symmetry. Therefore, the governing equations can be simplified to a one-dimensional problem. Because
solutions to this case can be quickly obtained, this test case is often used for evaluating closure coefficients.
The most significant parameters of interest for the pipe flow case are the ability of a model to predict

the correct relation between flow Reynolds number and the friction coefficient, and the ability of the model

to predict the correct nondimensional velocity distribution. The pipe Reynolds number is defined as
R, = Vyui Dy, /v where

_ ) f _
Viak =— | V., rd
bulk 22 Joo rar
is the bulk velocity, and

(1.120)

D, =2R

(1.121)
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is the hydraulic diameter based on the pipe radius, R. Again, the Fanning friction factor is defined as
Cr E2rw/ (pl7bﬁ1k). Results of fully developed pipe flow can be compared to experimental data by

Nikuradse [59], Laufer [60], and Shockling, Allen, and Smits [61].

D. Plane Jet Flow

The plane jet flow case is a valuable case for testing the ability of the model to predict shear flows. The
case consists of a two-dimensional jet of fluid entering a quiescent fluid. As the jet of fluid advances into
the quiescent fluid, the momentum of the jet is diffused outward normal to the jet axis. The jet centerline
velocity decreases as the flow moves downstream, and the width of the jet grows. Eventually, the core of
the jet profile becomes self-similar. The boundary layer equations are often applied to this case in order to
develop a similarity solution for the jet profile. However, these equations are based on the assumption that
the fluid velocity normal to the jet axis is much smaller than the fluid velocity in the direction of the jet
axis. This assumption holds near the center of the jet, but is obviously not correct far from the jet
centerline. In fact, in the regions far from the jet centerline, the fluid velocity normal to the axis of the jet is
much greater than the fluid velocity in the direction of the jet axis. This is caused from the fluid
entrainment surrounding the jet. The fact that the boundary layer equations don’t hold far from the jet
centerline is seldom mentioned in the literature, and the similarity solution for the jet is often used to
evaluate the performance of a turbulence model for the plane jet case. The advantage of using the similarity
solution is that it provides a system of equations that can be quickly solved compared to a full two-
dimensional CFD model.

This flow case in two dimensions can be constructed on a rectangular domain as shown in Fig. 1.4.
Along the west side of the domain, an initial profile for the jet is specified along with inlet conditions for
any flow parameters. This initial profile can be taken from the similarity solution for the jet or from
experimental data. Along the south side of the domain, a symmetry boundary condition is applied. The east
and north sides of the domain are specified as pressure boundary conditions. Figure 1.4 shows the setup for

this case in Cartesian coordinates.
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Fig. 1.4 Plane jet flow case description.

Two of the most significant parameters of interest in plane jet flow are the prediction of the jet velocity
along the centerline of the jet, and the prediction of the spread rate of the jet. Here we define R, as the

Reynolds number at any x-position measured along the centerline of the jet. This Reynolds number can be

expressed as

36M )"
R, E( zxx] (1.122)
|4

where ]\7x is the specific x-momentum flux initiated in the quiescent fluid from the jet and is defined as

M, = f 7 2dy (1.123)

This value must remain constant across each x cross section of the flow. In order to define a spread rate for
the jet, the width of the jet must be defined. Here we define the jet width, y,, as the y-coordinate at which

the velocity in the direction of the jet centerline is equal to half the velocity along the jet centerline

V_(x,y,)=0.5V_(x,0) (1.124)

The spread rate can then be evaluated by plotting the jet width as a function of distance along the jet

centerline. Results for the plane jet can be compared to data by Bradbury [62] and Heskestad [63].
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E. Round Jet Flow

The round jet flow case is very similar to the plane jet, but examines an axisymmetric jet rather than a
two-dimensional jet. Just like the plane jet, as the jet of fluid advances into the quiescent fluid, the
momentum of the jet is diffused outward normal to the jet axis. The jet centerline velocity decreases as the
flow moves downstream, and the radius of the jet grows. Eventually, the core of the jet profile becomes
self-similar. Because the jet is axisymmetric, the case can be simplified to a two-dimensional problem in
cylindrical coordinates. The boundary layer equations are often applied to this case in order to develop a
similarity solution for the jet profile. However, just like the case of the plane jet, these equations do not
hold far from the jet centerline.

This flow case in two dimensions can be constructed on a rectangular domain as shown in Fig. 1.5.
Along the west side of the domain, an initial profile for the jet is specified along with inlet conditions for
any flow parameters. This initial profile can be taken from the similarity solution for the jet or from
experimental data. Along the south side of the domain, a symmetry boundary condition is applied. The
south side of the domain is the axis of rotation for the case. The east and north sides of the domain are

specified as pressure boundary conditions. Figure 1.5 shows the setup for this case in cylindrical

coordinates.
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Fig. 1.5 Round jet flow case description.
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Two of the most significant parameters of interest in plane jet flow are the prediction of the jet velocity
along the centerline of the jet, and the prediction of the spread rate of the jet. Here we define R, as the
Reynolds number at any z-position measured along the centerline of the jet. Results of a turbulence model
sometimes include plots of the centerline velocity, 176, as a function of R,. In order to define a spread rate
for the jet, the width of the jet must be defined. Again we define the jet width, 7, as the radial coordinate at

which the velocity in the direction of the jet centerline is equal to half the velocity along the jet centerline

V_(z,r,) =0.5V,(2,0) (1.125)

The spread rate can then be evaluated by plotting the jet width as a function of distance along the jet
centerline. Results for the round jet can be compared to data by Wygnanski and Fiedler [64] and Rodi [65].
Many turbulence models predict that the round jet spreads more quickly than the plane jet. However,

this goes against the measured physical characteristics of the jets. The tendency towards this error in
turbulence models is known as the round-jet/plane-jet anomaly. Some have tried to correct this anomaly in
current turbulence models. For example, Pope [66] suggested a modification to the dissipation equation
which alleviates this shortcoming in the k-¢ model. The round-jet/plane-jet anomaly is an important

assessment of a turbulence model.

VII. Summary and Conclusions

Although the laws of Newtonian fluid motion have been understood for quite some time, turbulence
modeling is still an unsolved problem. The fundamental equations for laminar flow are the continuity and
Navier-Stokes equations which can be extended to the RANS equations for turbulent flow. The RANS
equations cannot be closed without modeling the unknown components of the Reynolds stress tensor, and
this difficulty presents what is known as the turbulence closure problem. Various methods for closing the
RANS equations have been proposed, and the discussion included in this chapter focused on those closure
methods that are based on the Boussinesq hypothesis. The Boussinesq hypothesis assumes the Reynolds
stress tensor can be modeled as a function of the turbulent kinetic energy and the eddy viscosity of the

flow. This replaces the six unknowns in the Reynolds stress tensor with only two unknowns. A transport
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equation for the turbulent kinetic energy is traditionally developed from the Reynolds-stress-transport
equation. This transport equation introduces one additional unknown, the dissipation of turbulent kinetic
energy. Energy-dissipation turbulence models solve for the dissipation using a transport equation that is
developed by direct analogy to the turbulent-kinetic-energy equation. The turbulent kinetic energy and
dissipation are then related algebraically to the turbulent eddy viscosity, closing the system of equations.
The most popular dissipation-based models are the k-¢, k-, and k-{ models.

Closure coefficients for turbulence models have traditionally been developed by tuning the model to
match experimental data for specific flow scenarios. Perhaps the most widely used experimental data sets
used for this purpose are data sets taken in the log layer and data taken on the decay of turbulent kinetic
energy. Once initial estimates for closure coefficients are developed, models are commonly tested for a
wide range of flow cases including free-shear flows and wall-bounded flows. These cases allow the
versatility of the model to be tested and closure coefficients to be refined.

Although energy-dissipation models such as the k-¢ and k-w models have been widely used for many
years, it is well known that these models are sometimes inconsistent and are often unable to capture the true
behavior of turbulent flow. This can likely be attributed to the fact that these models have only partially
been developed from fundamental physical phenomenon and have been patched and tuned over time to
exhibit the proper behavior for specific flows. Several concerns with the development of the traditional
energy-dissipation models have been noted by turbulence model developers. These concerns and some

possible remedies for these concerns are the topic of the following chapter.
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CHAPTER 2

POSSIBLE IMPROVEMENTS IN RANS-BASED TURBULENCE MODELING

I. Introduction

Even though RANS-based turbulence modeling has been a topic of research for many years, it is
anything but a closed subject. Several concerns with traditional turbulence modeling have been identified
by various researchers, and many concerns have yet to be fully addressed. Some of the most significant
concerns with the mathematics and fundamentals of turbulence modeling are listed here along with
references to researchers who have noted these concerns.

1. The traditional smooth-wall boundary conditions implemented for dissipation-based models are

mathematically incorrect [19,67].

2. The dissipation per unit mass used in the traditional turbulence models is not the true dissipation of
turbulent kinetic energy per unit mass [13,35].

3. The traditional dissipation per unit mass actually includes a portion of the total molecular transport
term. Therefore, the molecular transport term in the traditional turbulent-kinetic-energy equation
neglects a portion of the molecular transport of turbulent kinetic energy [13].

4. Because a portion of the molecular transport is neglected in the traditional turbulent-kinetic-energy
equation, subsequent application of Boussinesq’s analogy between turbulent and molecular
transport results in neglecting a portion of the turbulent transport of turbulent kinetic energy [13].

5. The length scale used to close traditional turbulence models is a dissipation-based length scale
associated with the smaller turbulent eddies which have higher strain rates. However, the larger
turbulent eddies carry more energy and are primarily responsible for the transport of momentum
and energy in a fluid [9,13,35].

6. The dissipation-based length scale used in the development of Egs. (1.76), (1.82), and (1.87) results

in a modeled Reynolds stress tensor that is inversely proportional to the fluid molecular viscosity.
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However, the modeled version of the Reynolds stress tensor should not be directly dependent on
molecular viscosity, as seen by the definition given in Eq. (1.41) [13].

7. The closing transport equations given by Egs. (1.75), (1.81), and (1.88) were developed by simple
analogy and dimensional analysis and were not developed rigorously from the Navier-Stokes
equations [13,35].

8. Few turbulence models are capable of modeling turbulence near a rough wall. However, it is
impossible to manufacture a perfectly smooth wall. Therefore, no experimental data exists for
perfectly smooth walls, and the use of a model that has been designed for perfectly smooth-walls in
the analysis of a real-life scenario is questionable.

The following sections discuss a few of these concerns in more detail and present some preliminary work
by others to address them. Note that in subsequent chapters and sections, these concerns may be referenced

as a concern number ranging from Concern #1 to Concern #8.

II. Traditional Smooth-Wall Boundary Conditions

The smooth-wall boundary conditions commonly employed on traditional dissipation-based turbulence
models are mathematically incorrect. Durbin [19] was the first to point this out and stated, “These
conditions must violate the energy balance...” However, this statement has seldom been acknowledged in
the literature perhaps because it has not been well understood. Today, 20 years later, even commercial
implementations of k-¢, k-, and k- turbulence models still employ smooth-wall boundary conditions that
are mathematically incorrect and do not enforce energy conservation. Failure to impose proper wall
boundary conditions results in an indeterminate system of equations with an infinite number of solutions.
Results obtained for dissipation-based turbulence models using the traditional smooth-wall boundary
conditions are dependent on the numerical algorithms used to implement the equations. Such solutions can
be highly implementation dependent.

Perhaps the most fundamental flaw in the development of traditional smooth-wall boundary conditions

is the extraction of a boundary condition from the differential equation itself. Many of the most widely
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implemented models including those of Lam and Bremhorst [68], Launder and Sharma [69], and Wilcox
[45] derive boundary conditions for the second turbulence variable, ¢ or w, by examining the near-wall
behavior of the differential equations. Such an approach is mathematically incorrect because a boundary
condition can never be developed from the differential equation itself. A boundary condition is a condition
that is imposed on a differential equation. No amount of analysis will ever result in a boundary condition
being derived from the differential equation. The near-wall approximation of any transport equation is valid
and can be used as an expression appropriately close to a wall. However, it is not a boundary condition and
should not be used as such.

This common mistake has lead to the implementation of many turbulence models in an indeterminate
form because what is referred to as a boundary condition is actually a near-wall approximation of the
differential equations. This misconception must be understood by the CFD community if correct turbulence

modeling is to be achieved.
III. Turbulent Energy Transport

The turbulent-kinetic-energy transport equation has traditionally been derived from the specific
Reynolds stress tensor. In contrast to the traditional development, the turbulent-energy transport equation
can also be developed from the mechanical energy equation which is formed by taking the dot product of
the velocity vector with the Navier-Stokes equations. This approach alleviates a few of the concerns
mentioned regarding the traditional turbulent-kinetic-energy equation and was first taken by Phillips [13].
This new development of the turbulent-kinetic-energy equation has not previously been implemented in a
turbulence model. Because this equation forms the foundation of the turbulence model presented in this
work, an overview of the development of this equation is included here.

Defining a pseudo hydrostatic pressure that includes the static pressure, hydrostatic head, and viscous

normal stresses,

p=p+pg,Z+i V-V 2.1)

the Navier-Stokes equations can be written in vector form as
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p{‘;—fw-vw} = —Vp+V -[2uS(V)]+g,2Vp 22)

Taking the dot product of the velocity vector with the Navier-Stokes equations, rearranging, and using

mathematical identities gives the mechanical energy equation for a Newtonian fluid

0
Pl = GVH+V VGV [=VulVEV)+(V-V)V]}
ot (23)
- V-[Vp-g,ZVp]-2uS(V)-S(V)
Applying Eq. (1.28) and Eq. (1.29) to this general form of the mechanical energy equation and taking the

ensemble average of the resulting formulation gives

p|:§(;l72 +k)+ V-V +k)+\~7~V(V-\~7)+\N7~V(;I72)}
!

=V. {y[vg?z +k)+(V-V)V+(V-V)V]} (2.4)
~V[Vh-g,2Vp]-V -Vp - 24S(V)-SV) +S(V)-S(V)]
where £ is defined from Eq. (1.55) as the specific turbulent kinetic energy and the two pressure terms are
the mean and fluctuating hydrostatic pressure terms respectively

p=p+pg,Z+ iV 2.5)

Zsﬁ+§yv-\7 (2.6)

Using these definitions for pressure terms, the RANS equations in vector form can be written as

p{aa_‘z]+ (V-V)V+(V-9)V | ==V + V-[248(V)] + g,2Vp @D

Taking the dot product of the mean velocity vector with this form of the Reynolds-averaged Navier-Stokes
equations, rearranging, and using mathematical identities gives the mean mechanical energy equation for a

Newtonian fluid

pP(‘172)+V-V(1172)+V-(\7-V)\7} =VAuVET ) +(V-V)V]}
ot 2 2 2 (2.8)

V[V~ g,2Vp]-2uSV)-S(V)
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Applying mathematical identities to this equation, subtracting the result from Eq. (2.4), and applying more

mathematical identities gives an alternate form of the turbulent-kinetic-energy-transport equation

ok — = = N = — o
p{——k(V-V)k} :17-J(V)—2/1[S(V)-S(V)—%(V-V)2]+p(V-V)
ot (2.9)
+V - (UVk =WV 1) =V [ pV*V + BV + 2 u(V-V)V]

A close look at this equation reveals that the terms on the right-hand side are the true volumetric
production, viscous dissipation, pressure dilation, molecular transport, and the volumetric turbulent
transport of turbulent kinetic energy. Note that the only approximation used to develop this equation was
that for a Newtonian fluid. Also note that the assumption of constant dynamic viscosity was not made in the

development of this governing equation as was done in the development of Eq. (1.62). Applying the

Boussinesq hypothesis to this equation gives the Boussinesg-based turbulent-energy-transport equation.

p[%-i— Rz V)k} =2uSV)-SV)~2 (pk + V- V)V -V

~248(¥)-SV) =} (V- V)T + H(V - V) (2.10)

+V (v +v, o) PV + 2V (pk + 14V - V) =2V [ S(V)]})
Defining £ as the exact dissipation per unit mass,
£=215(V)-SM)- L(v- V)] 2.11)

and neglecting the pressure dilation term

H(V-V)=0 (2.12)
gives a version of the turbulent-energy-transport equation that can be used in a traditional RANS-based
turbulence model.

ok — - = ) — —
Pl =+ (V-V)k | =2uS(V)-S(V) -3 (pk+ 1 V-V)V-V
ot (2.13)
~ 2 —_— o —
— PE+V (v 4V, /o) pVE + 2V (k + 14,Y - V) =2V [ SV
Note that the dissipation term used in this differential equation represents the exact dissipation per unit

mass. However, this equation can be used interchangeably with other turbulence models that include a
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modeled dissipation term. A close look at Eq. (2.13) reveals that the molecular transport term is not simply
a pure gradient diffusion process as is assumed with traditional developments. Therefore, it is probable that
this version of the turbulent-energy-transport equation will be more accurate than the traditional equation.

Before leaving the topic of turbulent-energy transport, it is important to note that the turbulent-energy-
transport equation can alternatively be written in another significant form. The square of the root-mean-

square (RMS) fluctuating vorticity is defined as

@ =(VxV)-(VxV) (2.14)
A change of variables can be applied to express the exact dissipation term in terms of the RMS fluctuating

vorticity
F=2/3(V)-8V)- L (V- V)?) _ ors)

=V@® + 4V (LY (pk + 1Y V)=V [ SV} /)
The first term on the second line of the left-hand side of Eq. (2.15) is known as the solenoidal dissipation
and will be given the symbol

é=va’ (2.16)
Huang, Coleman, and Bradshaw [70] have shown that the dilatational terms in Eq. (2.15) are negligibly
small for mean velocities under Mach three. Neglecting the dilatational terms, the turbulent-energy-

transport equation can be written in terms of the RMS fluctuating vorticity as

p[% +(V- V)k} =245(V)-SV) -2 (pk + 1V -VIV -V
4 4V (L ok + 14V V)=V - [1S(V)1 ) (2.17)
FV (v, /o) (PVE+ 2V (pk+ 1V V) =29 [ S(V]})

Phillips submits that the advantage of applying this change of variables is two-fold. First, vorticity is a
well-understood transportable property of a fluid flow field while the turbulent dissipation is not. Second,
the divergence of the vorticity of any flow field is always zero. This mathematical property could be
beneficial in the development of a vorticity-based-transport equation which is not available in the

development of a turbulent-dissipation-transport equation.
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A significant difference between traditional two-equation turbulence models and the Phillips
turbulence model can be seen in the differences in the modeled turbulent-kinetic-energy equation. The

traditional turbulent-kinetic-energy transport equation can be written for steady, incompressible flow as

(V-V)k = 2v,S(V)-S(V) - £ + V- [(v +V, [0, )VK] (2.18)
The Phillips turbulent-kinetic-energy transport equation can be written for steady-state, incompressible

flow in terms of the RMS fluctuating vorticity as

(V-V)k=20,8(V) - SV) (& +4V - (L VA~V -[v,S(V)]}) or9)
V(v 4+1, /o) EVE=2V [V ST '

It is instructive to note that the traditional turbulent-kinetic-energy equation was developed by taking the
trace of the Reynolds stress transport equation. In that development, the fluid viscosity is assumed constant,
which puts use of the Boussinesq hypothesis in question. On the other hand, Phillips’s equation was
derived with only the assumption of a Newtonian fluid and includes terms that are neglected in the
traditional development on grounds that they were small for molecular transport. It is also important to note
that the dissipation term in the Phillips development is directly proportional to the fluid viscosity. However,
the dissipation term in the traditional development is modeled as being independent of the fluid viscosity. It
seems intuitive that the dissipation of turbulent kinetic energy should physically be directly related to the
fluid viscosity. These two insights into the differences of the two modeled versions of the turbulent-kinetic-

energy equation suggest that the Phillips equation should model the physical aspects of turbulent flow

better than the traditional equation.
IV. Turbulent Length Scale

As mentioned in Chapter 1, the length scale commonly employed in the development of traditional
turbulence models is that associated with the turbulent dissipation. However, the larger energy-bearing
eddies are primarily responsible for the majority of the transport of turbulent energy in a flow. An alternate

length scale suggested by Phillips [13] is formulated by examining the fluctuating vorticity of a flow field.
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It is important to note that the angular velocity of a fluid element is one-half the local vorticity. For a
fluctuating flowfield with a mean velocity of zero, the mean kinetic energy per unit mass is equal to one-
half the mean square of the translational velocity. Phillips suggests that the mean kinetic energy per unit
mass for this scenario can also be defined as one-half the mean square of the angular velocity multiplied by

the square of some length scale. This gives the relation

k=3 V-V =[L(VxV) (VW) (2.20)
where /, is the energy-weighted length scale. This length scale should be an important length scale
associated with the turbulent energy. From the definition of the fluctuating vorticity, @’ = (Vx \~7) (V% \7),

Phillips defines this length scale as

l, = 2.21)

|5

This approach to the important length scale of turbulent flow could provide a significant improvement to
the accuracy of a turbulence model. The use of the symbol @ in these relations should not be confused with
the w used for the traditional k- model. Note that w is related to the dissipation as shown in Eq. (1.78)

whereas @ is the fluctuating vorticity defined in Eq. (2.14). These symbols cannot be used interchangeably.
V. Phillips Energy-Vorticity Model

From the development of Egs. (2.19) and (2.21), Phillips [13] constructs the core of an energy-vorticity
turbulence model. Using Eq. (2.21) as the length scale in the definition of the turbulent eddy viscosity, and
combining this new definition of turbulent eddy viscosity with Eq. (2.19) gives the two fundamental

equations of Phillips’ energy-vorticity model

k

v, =C, (2.22)

K V-V =20 S(V)-SV) ~ (@ +4V - {1 VK-V -[vSV)I})
ot (2.23)

FV (v, /o) EVE -2V ST

where C,, and o, are closure constants.
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The most important contributions of the Phillips development are first, the inclusion of the last term in
Eq. (2.23) and second, the proposition of using the local energy-weighted turbulent length scale found in
Eq. (2.21) to define the eddy viscosity. These contributions have not been included in other turbulence
models and could potentially improve the accuracy of RANS-based turbulence modeling.

The reader may note that the model proposed by Phillips lacks a closing relation for the RMS
fluctuating vorticity. For most two-equation turbulence models, the final closing equation is developed by
analogy with the turbulent-kinetic-energy transport equation but is not rigorously developed from physics.
Several options exist for closing the Phillips k-vorticity model, and a short explanation of some of these

methods is included here.

A. RMS Turbulent Vorticity Closure: A k- Model

Perhaps the simplest approach to closing the Phillips vorticity model is to model the RMS turbulent
vorticity in terms of the mean fluid velocity, the specific turbulent kinetic energy, and the turbulent eddy
viscosity. The RMS fluctuating vorticity is defined by Eq. (2.14). By analogy with Eq. (2.23), a turbulent-

vorticity transport equation can be obtained. This results in a model defined by

v=c,k (2.24)
w
K (VY= 20, SV)-S(V) = (@ + 4V - L VE -V -[v SV
ot > (2.25)
+V (v +v, o) V=2V [V S(V)]})
%?+V1Vﬁ=2qmw§§68§66—cm52+V{W+qugV5] (2.26)

where C,,, 0, C, Cs,, and o are the closure constants for the model and need to be evaluated.
This formulation can be directly recast in terms of enstrophy. The enstrophy is equal to the square of
the fluctuating vorticity.
(=’ 2.27)

Using this change of variables, the formulation can be written
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v, =C, k[ (2.28)
K ¥ VY= 20,3V)-S(V) (L +4V - LVE-V- SV
ot ) (2.29)
+V (v +v, /o) V=2V - [vS(V)]})
08 N Ve =4Cs, S8(V)-S(V) - 205,
ot k (2.30)

V[V, [0,V =3 (v 4V, [o,)VE VL

where the closure coefficients are the same as those needed for Egs. (2.24)—(2.26).

B. Solenoidal Dissipation Closure: A k- Model
Another approach to closing the formulation is to model the solenoidal dissipation by relating it to the
enstrophy. A modeled version of the turbulent dissipation is given in Eq. (1.68). By direct analogy with this

traditional turbulent dissipation equation, a transport equation for the solenoidal dissipation can be written

A Al L A2
‘Z—j+V~V,§ =2C£.1v,£S( )-S( )—C£2%+V'[(V+Vt/0'£)v¢€‘] (2.31)

The enstrophy is related to the solenoidal dissipation through the relation
&=vC (2.32)
Using this relation, the solenoidal dissipation transport equation can be recast in terms of the enstrophy.

This results in the model

v, =C, k/cV? (2.33)
KV VY= 20,8(V)-SOV) v(C +4V - { LVE-V [y SV}
ot > (2.34)
+V (v +v, /o) (5 VE=2V - [vS(V)]})
_ _ 2
86—‘5+V-V§ =2C,y, %@(V) S(V)- C:ZV%+ V- [(v+v, [0V (2.35)

where C,, oy, Cyy, Cpy, and o are the closure constants for the model and may need to be reevaluated
from those used in the traditional dissipation transport equation because the solenoidal dissipation, £,

differs from the traditional definition of dissipation, ¢.
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C. DNS Solenoidal Dissipation Closure: A k-¢ Model
Another possibility to closing the Phillips vorticity-based model is to use the results of a recently
developed DNS-based solenoidal-dissipation model by Kreuzinger, Friedrich, and Gatski [71] that has
provided good agreement with DNS results. The solenoidal-dissipation-transport equation for

incompressible flow is given in this study as

Z—E+V-Vé =20,y %é(V) SV)-C;, %(é AV (LVE-V - [1, SV

y (2.36)

~ W ACs(VEV) +(Cay [OUVE) VIV - (VEV)+ V- [(v +Vv, [0V E]
This equation can be recast using the change of variables from solenoidal dissipation to enstrophy, and the

resulting formulation is written as

v, =C, k/V? (2.37)
K (VY =20 8V)-SV) (L +4Y - { VK-V [V SV)]})
ot > (2.38)
+V-(v+v, /o) & VE=2V [V, S(V)]})
X V=20, L8V SV = Cy L+ 4V - (L VK-V [ SV}
ot S Tk 3 ! (2.39)

—VACA(VIV) +(Cpy [OIVE)-VIVY-(VIV) + V- [(v +V, [0,V ]
where C,,, 0y, Cpy, Cpy, Cr3, Cpy and o are the closure constants for the model and need to be evaluated.

The closure coefficients Cyy, Cpy, Cp3, Cpy and o could possibly be taken from those given in the study.

D. General Enstrophy Closure: A k- Model
A close look at the previous three closure methods suggests a general model which would encompass

the three models. This formulation is written
v, =C, k/cV? (2.40)

K ¥V VY= 20,8V)-S(V) (L +4V - LVE-V- SV
o 2.41)

FV (v +v, o) EVE -2V VST
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%—f+V-vg = clv,%§(V)-§(V)—C2§3/2
R A A e (242)

v {C5(V2V) +(Cs [)[(VEK)-VIV}-(VZV)
+V [(v+v, [0 )VE]=Cr(v+v, [0V -V /S

where C,, oy, 0, and C; through C; are the closure constants for the model and need to be evaluated.
Notice that Eq. (2.30) is a special case of Eq. (2.42) when C, =4Cy;, C, =2C,, C; =0.5, 0, =0, and
C;=C4 =Cs5 =C¢ =0. Equation (2.35) is a special case of Eq. (2.42) when G, =2C;, C5=C,, and
C, =C4 =C5 =C¢ =C; =0. Equation (2.39) is a special case of Eq. (2.42) when C, =2Cpy, C;3=Cy,,

Cy=4.0,C5=Cpry, Cg=Cpyoand C, = C; = 0.

E. Robinson Enstrophy-Transport Closure: A k- Model
Another approach to closing the vorticity-based model is to implement the closing formulation given

by Robinson et al. [46,47]. Using Eq. (1.88) as the closing equation gives the model

v, =C, k[ (2.43)
K L (V -V)k = 20,5(V)-S(V)— v +4V - LVE-V SV
ot ) (2.44)
+V (v +v, /o) £ VE =2V [V S(V)]})
(VNI (C ¢ B~ Coar? Bk~ o ¢ KIS (@)
+Cpv, 23 +Cif Q3= Crv &P+ Crs(v, £TRSV)-S(V) (2.45)

~4v,5(Q)-5(@) ~ (V< Q) 2V -[v,S(V)] +1 VK}

a0, /S(V)- @~ L Q)-(VEx V) Q2 4V [(v +v, [0,V
where C,, oy, Cpy, Cry, Cpz, Cpy, Cps, Cpg, and o are the closure constants for the model and would
need to be evaluated. The closure coefficients in the turbulent-enstrophy-transport equation may initially be

taken from those given in the published model but would likely need to be tuned to the current model.
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F. Mean Vortex Wavelength Closure: A k-4 Model
Another possible approach to closing the Phillips energy-vorticity model is based on the analogy
between turbulent diffusion and molecular diffusion. Just as the molecular mean-free path is used to model
molecular viscosity, a mean vortex wavelength can be used to model the turbulent eddy viscosity.
Experimental research by Anderson, Kays, and Moffat [72] has shown that the turbulent mixing length
varies nearly linearly in the near-wall region of a flow, and is nearly constant in the bulk flow region for
pipe flow. Therefore, for the case of pipe flow, an algebraic expression for the mean vortex wavelength
could be developed which varies linearly near a wall and reaches a constant in the bulk flow region. In a
sense, this closure method is similar to that taken by Prandtl in the development of his mixing-length
model. Prandtl hypothesized that the mixing length was proportional to the distance from the wall, and this
hypothesis led to a very successful model for near-wall turbulence that has been widely used.

Using the mean vortex wavelength, 4, as the length scale in the turbulent eddy viscosity gives

v, =k (2.46)
Setting this relationship equal to that given in Eq. (2.22) gives a relationship between the mean vortex

wavelength and the RMS fluctuating vorticity

Ascviz , Y'V — (2.47)
@ 2(VxV)-(VxV)
Using this relationship in Eq. (2.23) gives the turbulent kinetic energy equation in terms of A
ok — = = 2 1 =
m +(V-V)k =2v,8(V)-S(V)-v(C, k//1 +4V. {§ Vik-V-[v,S(V)1})
(2.48)

5 e
+V-((v+vt/0'k){§Vk—2V-[V,S(V)]})
where C, is a closure coefficient. For the case of pipe flow, a closing relation for the mean vortex

wavelength could take an algebraic form

A=f() (2.49)

Such a method is described in more detail in Chapter 7.
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VI. Closing Transport Equations

It is widely acknowledged that the closing transport equations given in Egs. (1.75), (1.81), and (1.88)
are not derived rigorously from the Navier-Stokes equations. Instead, closing equations are generally
developed by analogy with the turbulent-kinetic-energy equation and/or by dimensional analysis. In the
ideal case, a turbulence model would be written entirely in terms of turbulence properties for which the
governing equations were known and well understood. However, this has not yet been achieved, and a
second equation must generally be developed in order to close a RANS-based turbulence model. Energy-
dissipation models such as the traditional k-¢, k-, and k-{ models relate the turbulent eddy viscosity to the
dissipation of turbulent kinetic energy algebraically, and then attempt to model the dissipation property as a
transport property of the flow. Because a transport equation for the dissipation would be difficult at best to
develop, this closing equation is generally developed by dimensional analysis with the turbulent-kinetic-
energy equation. This presents two drawbacks. First, the equation used to close the model is not rigorously
derived from physics. Second, because dissipation is not a transportable property, attempting to model the
dissipation using a transport equation that is analogous to the transport of turbulent kinetic energy is a
grievous error.

Although the work of Phillips presented in the previous sections does not circumvent the difficulty in
developing a closing equation for the second turbulence variable, the models suggested by Phillips attempt
to model transportable properties with transport equations. In other words, the closing transport equations
suggested by Phillips are no more rigorously derived from physics than those used in the traditional
dissipation-based models. However, the turbulent parameters which the transport equations are designed to
model can be expected to behave according to a transport equation. Therefore, from a physical standpoint,

the models suggested by Phillips are likely more viable than traditional dissipation-based models.
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VII. Rough-Wall Turbulence Modeling

It appears that most turbulence models have been developed initially for smooth walls and that the
rough-wall case has traditionally been seen as a more difficult case to which the model could be extended
once the smooth-wall behavior of the model was well understood. In practice, the smooth-wall equations
and constants considered to be the fundamental model are commonly modified to match experimental data
for roughened walls. However, it may be that this approach has hindered fundamental understanding of
turbulence near a wall.

Nikuradse [59] conducted a phenomenal amount of experimental research exploring the effects of
roughness on pipe flow. He correlated his results according to a relation which will be called the Nikuradse
number, N; = 2.Olog10(7.4R/kS)—l/ \/E , in this work. The Nikuradse number is a function of the
friction coefficient, C,, and roughness height, k,, and was correlated with a parameter called the roughness
Reynolds number, & =u,k /v. It was shown that at low roughness Reynolds numbers, the experimental
data for the Nikuradse number asymptotically approaches a logarithmic relationship with the roughness
Reynolds number. At high roughness Reynolds numbers, the Nikuradse number is independent of
roughness Reynolds number. Figure 2.1 shows a plot of his experimental data along with lines representing
the asymptotes at low and high roughness Reynolds numbers.

These results show that for nearly smooth walls or flows at low Reynolds numbers, the friction
coefficient is a strong function of Reynolds number and roughness, while for very rough walls or flows at
high Reynolds numbers, the friction coefficient is independent of the Reynolds number. This is also easily
observed in the well-known Moody diagram, which was based on the findings of Nikuradse [59] and

Colebrook [73].
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Fig. 2.1 Correlation between friction coefficient and r;ughness Reynolds number by Nikuradse [59].

With this information on the effects of roughness in mind, the case for first developing a model
capable of modeling roughness at high roughness Reynolds numbers and approaching a model that can
handle a smooth wall may be more intuitive. A more robust turbulence model may be developed by
focusing on the model behavior for high roughness Reynolds numbers where at least the friction coefficient
(if not other flow properties) is independent of Reynolds number. Once the model is robust in this region,
transition to lower roughness Reynolds numbers can be considered, with the “smooth” or “hydraulically
smooth” wall being an asymptote or a special case of the rough wall. To the author’s knowledge, this
approach has not been taken before in the development of a turbulence model.

From a physical point of view, a rough wall is the more general case and what is termed a “smooth” or
“hydraulically smooth” wall is simply the asymptotic behavior of the wall as the roughness height
approaches zero. In reality, a perfectly smooth wall has never been manufactured. Therefore, all
experimental data that has been taken near walls is inherently data taken for a rough wall. This may provide
some justification for starting with the general case of a rough wall and working towards a model capable

of correctly predicting flow near a hydraulically smooth wall.
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VIII. Summary and Conclusions

Several significant concerns with traditional RANS-based turbulence modeling have been identified
and were listed at the beginning of this chapter along with researchers who have mentioned the concerns.
These concerns include the fact that the traditional smooth-wall boundary conditions used for dissipation-
based turbulence models are incorrect, the traditional turbulent-kinetic-energy equation derivation assigns
definitions and makes assumptions that are incorrect or unnecessary, the length scale used for traditional
RANS-based modeling is the length scale associated with the dissipation of turbulent kinetic energy rather
than the transport of turbulent kinetic energy, the second transport equation used in traditional energy-
dissipation models is not derived rigorously from the Navier-Stokes equations, and few turbulence models
are capable of modeling rough-wall effects. Each of these concerns was discussed in some detail
throughout the chapter. The fact that these concerns are rooted deeply in fundamental physical and
mathematical laws suggests that sufficiently addressing these concerns may result in significant
improvements in RANS-based turbulence modeling.

Many of these fundamental concerns of turbulence modeling have been acknowledged for some time
and past work has been initiated to address them. Durbin [19] mentioned the inconsistency related to the
smooth-wall boundary conditions used for traditional turbulence models roughly 20 years ago. Phillips [13]
performed extensive work in developing an alternate transport equation for the turbulent kinetic energy,
which alleviates the concerns related to the development and definitions used in the traditional equation.
Additionally, he has suggested an alternate length scale that is related to the energy-bearing eddies rather
than those eddies associated with the dissipation. These fundamental developments of Phillips can be
combined to form the basis of an energy-vorticity model which can be closed in terms of a k-£, k-@, k-, or

k-A model. This previous work forms the foundation of the work of this dissertation.
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CHAPTER 3

OUTLINE OF THE PRESENT WORK

Several significant concerns with current turbulence models were discussed in the previous chapter.
Some of the most notable concerns are that 1) the smooth-wall boundary conditions for traditional
turbulence models are incorrect, 2) most turbulence models are incapable of modeling turbulent flow near
rough walls, 3) the dissipation per unit mass used in the traditional turbulence models is not the true
dissipation per unit mass, and 4) the length scale used in traditional models is the length scale associated
with dissipation, not the length scales of the larger eddies which cause most of the momentum and energy
transport. The work of this dissertation builds on the work of Durbin and Phillips to more fully address the
concerns mentioned here. More specifically, the work of this dissertation includes:

1. implementing the correct smooth-wall boundary conditions suggested by Durbin [19] for

dissipation-based turbulence models,

2. evaluating the behavior of the Phillips energy-vorticity model in the presence of perfectly smooth

walls,

3. implementing one possible k-4 closure of the Phillips energy-vorticity model for fully rough pipe

flow,

4. determining appropriate values for the closure constants of the Phillips k-4 model, and

5. comparing numerical results of the Phillips A-4 model to numerical results of other models as well as

experimental data.
Each of these items is addressed in detail in the following chapters. Chapter 4 gives an overview of the
numerical methods used for the research which include finite-difference, finite-volume, and direct
numerical integration methods as well as one-dimensional and two-dimensional implementations.
Chapter 5 discusses the smooth-wall boundary conditions for dissipation-based turbulence models and

includes a discussion on the mathematical implications of applying incorrect boundary conditions. It also
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presents results from traditional turbulence models once the correct boundary conditions have been applied.
Chapter 6 presents the characteristics of two possible closure methods for the Phillips energy-vorticity
model in the presence of a perfectly smooth wall, and discusses the physical implications of the models.
Chapter 7 gives a detailed development of the Phillips k-4 model for fully rough pipe flow and preliminary
results of the model. Chapter 8 presents the optimization techniques used to evaluate the closure
coefficients for the Phillips k-4 model. The results of the model are shown in Chapter 9 and compared to
experimental results and empirical relations. Chapter 9 also includes the conclusions of the work and

suggests area for future work.
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CHAPTER 4

COMPUTATIONAL FLUID DYNAMICS METHODS

I. Introduction

Turbulent fluid flow is commonly modeled using numerical algorithms called computational fluid
dynamics (CFD) methods. In general, CFD codes use discretization methods to divide up the flow domain
into what are termed “cells” or “elements” to which the flow equations can be applied. Many CFD codes
have been developed by various researchers and organizations. For example, Fluent is a commercial CFD
solver sold by Ansys, CFL3D is a CFD code developed using government funding which can be used by
approved citizens of the United States, and OpenFOAM is an open-source CFD code that has recently
gained popularity. The work of this dissertation could have been performed by altering public or open-
source codes. However, the author chose to write CFD codes from the ground up rather than attempting to
alter more traditional codes so that the fundamentals of the code would be understood and could readily be
changed. Several CFD codes were written during the course of this work in order to test and implement
various models and flows. These codes include a one-dimensional finite difference solver, a one-
dimensional finite-volume solver, a two-dimensional finite-volume solver, and a one-dimensional Runge-

Kutta integration solver. This chapter gives a brief overview of these codes and includes sample results.

II. One-Dimensional Finite-Difference Formulation

A one-dimensional finite-difference method was written to model fully developed flow in a pipe or
channel. The original version of this method was second order and is detailed in Appendix D. Also
included in the appendix are methods for developing higher-order differencing algorithms. The finite-
difference methods used in this work can be used on non-uniform grids, and a second-order version has
been used to obtain solutions to the k-w model of Wilcox [45] for the case of fully developed pipe flow.

Figure 4.1 shows results of a grid convergence study for this case.
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Fig. 4.1 Grid convergence results for Wilcox 1998 k- model for fully developed pipe flow.

Figure 4.2 shows the grid-converged results of the code for the case described above and includes the
results of the same case using code written by Wilcox. Note that Wilcox’s code required considerably more

nodes to reach grid convergence. This is largely because his code is not second order.
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Fig. 4.2 Grid-converged results of codes written by Hunsaker and Wilcox for the Wilcox 1998 k-w
model for fully developed pipe flow.
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A sixth-order code was required to model the near-smooth-wall behavior of Phillips’s energy-vorticity
model. The method for developing a sixth-order finite difference code is included in Appendix D along

with sample code for the algorithm.

II1. One-Dimensional Finite-Volume Formulation

Finite-volume codes are commonly employed in the CFD solution methods of two- or three-
dimensional problems. In order to work out some inconsistencies in a two-dimensional finite-volume
solver, a one-dimensional finite-volume code was developed for the case of fully developed channel flow.
The details of this algorithm are included in Appendix E. Four two-equation turbulence models were
incorporated into the one-dimensional finite-volume code including the k-¢ model by Lam and Bremhorst
[68], the k-¢ model by Launder and Sharma [69], the traditional k-w model, and the k-« model of Wilcox
[45]. A comparison of the grid-converged results of these models for the case of fully developed channel

flow is shown in Figure 4.3.
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Fig. 4.3 Grid-converged results of four models for the case of fully developed pipe flow.
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IV. Two-Dimensional Finite-Volume RANS Solver

The two-dimensional RANS solver is a more complex solver and was developed using the
programming language C++. It will often be referred to here as an Incompressible Computational
Enstrophy Structured Solver (ICESS). The code is capable of solving two-dimensional axisymmetric flows.
The following sections give a brief overview of the methods employed in the two-dimensional code as well

as initial results validating the code. The details of this code are included in Appendices F through L.

A. Coordinate System

Complex geometries are often modeled using a body-fitted coordinate system known as curvilinear
coordinates. In two dimensions, this coordinate system is created by assuming that a computational domain
(&,m) can be defined by a transformation of the physical domain (x,y) where & = &(x, y) and 1 =n(x, »).
This type of transformation allows the governing equations to be discretized and solved in the
computational domain. This method has been widely used for CFD. See for example the work of Rhie [74]
or Shyy, Udaykumar, Rao, and Smith [75]. In this work, the grids are confined to orthogonal, rectilinear

grids. Therefore,

x=x(5)

4.1
y=y(n) e

and &, =7, =0. Partial derivatives of any continuously differentiable scalar, ¢, in the physical domain

can be written as partial derivatives in the computational domain according to

2y 0

Ox " os 42)

d d '
a T on
where J is the Jacobian scalar of the coordinate transformation and is defined as

a(&, S O

yRus =&, (43)
o(x,y) 0 .y




64
A scalar equation can be transformed from the physical domain to the computational domain by
applying the properties of the transformation above. In this way, the two-dimensional steady-state general

scalar transport equation can be written in curvilinear coordinates as

a(aV?) a(«;@ & aaf[r Z?j fan[”%) % 49

where I is the diffusion coefficient, S represents the source terms and

‘I

(4.5)

<SSl

Yo
X I7
are the contravariant velocity components in the curvilinear coordinate plane. More details on the

coordinate transformation in Cartesian and cylindrical coordinates can be found in Appendices F and G.

B. Transport Equation Discretization

The transport equations for all scalar transport properties are solved using the finite-volume method.
This method is applied by integrating Eq. (4.4) about a control volume referred to here as a cell. The
resulting integral is then discretized using second-order discretization schemes. A collocated grid
arrangement is used and all flow properties are defined at the cell centers. Therefore, for any given cell, P,
the flow properties of neighboring cells are defined at the E, W, N, and S (east, west, north, and south
respectively) cell centers. The convection terms are discretized to allow deferred correction between first-
order upwinding and second-order upwinding. All other terms in the equations are discretized in the
computational domain using second-order differencing methods. For work by others using similar solution
methods, see Rhie [74], Versteeg and Malalasekera [76], Ferziger and Peric [77]. Details on the general
discretization can be found in Appendix H. Details on the finite-volume discretization for the transport

equations can be found in Appendix I for Cartesian coordinates and Appendix J for cylindrical coordinates.

C. Pressure Coupling
To complete the solution process, the continuity equation must be coupled with the momentum

equations. This is done by implementing a well-known algorithm known as the Semi-Implicit Method for
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Pressure-Linked Equations (SIMPLE) algorithm. The method was first suggested by Patankar and Spalding
[78], and can be found in many CFD books. See for example Versteeg and Malalasekera [79]. The method
solves for the pressure distribution using a combination of the continuity equation and momentum
equations in a guess-and-correct manner. The method was originally suggested for staggered-grid
arrangements and can induce extreme pressure oscillations in collocated grid arrangements. Rhie and Chow
[80] suggest a correction to the way velocities are interpolated to cell faces in order to smooth out pressure
fluctuations. This correction method is implemented in the current code. Details on this method in
Cartesian coordinates is included in Appendix K. Details in cylindrical coordinates are included in
Appendix L.

Other methods for coupling the continuity equation to the transport equations exist. For example, the
fluid vorticity can also be evaluated and a vorticity transport equation can form the closing link between the
continuity equation and the transport equations. A short overview of such a method is included in Appendix
M which could prove useful in two dimensions. However, vorticity transport methods are difficult at best to

implement in three dimensions, and seem to be waning in popularity in two dimensions.

D. Solution Procedure

The transport equations and SIMPLE algorithm are solved in an iterative manner. Inner loop iterations
on each of the transport equations are performed within an outer loop. The outer loop sweeps through each
of the transport equations in the following order: x-momentum, y-momentum, pressure (SIMPLE),
turbulent kinetic energy, second differential equation (&, @, ¢, etc.). The pressure correction equation must
be solved to a higher degree of accuracy than the transport equations during each outer iteration. Therefore,
the default in the code employs 100 inner iterations on the pressure equation to every 10 inner iterations on
each of the transport equations. Before repeating the outer iteration, the turbulent eddy viscosity is updated
based on the new turbulence parameters. Iterations of the outer loop are repeated until the residuals of each
equation stop changing. The number of outer and inner iterations as well as the values of relaxation factors

can be specified by the user to speed convergence.
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E. Code Validation

1. Laminar Lid-Driven Cavity

A case often used for testing the initial phases of a CFD code is the lid-driven cavity case. Figure 4.4
shows the results from ICESS for the x-velocity along the vertical centerline of the lid-driven cavity at a
Reynolds number of 100. The Richardson extrapolation presented by Richardson [81] and Richardson and
Gaunt [82] has been used to estimate the results for a fully grid-converged solution from the solutions of
coarse, medium, and fine grids. The Richardson extrapolation method followed in this work is the method
presented in the Journal of Fluids Engineering “Statement on the Control of Numerical Accuracy”
(http://journaltool.asme.org/Content/JFENumAccuracy.pdf). In this case, uniform grids of sizes 2500,

10000, and 40000 cells were used for the coarse, medium, and fine grids respectively.
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Fig. 4.4 ICESS grid refinement results of the x-velocity profile along the vertical centerline of the lid-
driven cavity at a Reynolds number of 100.

Grid refinement studies for the lid-driven cavity case at a Reynolds number of 100 were also
conducted in the Fluent and OpenFOAM software packages using the same grids as those used for the grid-

refinement study in the author’s code. Figures 4.5 and 4.6 show the grid refinement results from Fluent and
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OpenFOAM respectively for the x-velocity profile along the vertical centerline of the lid-driven cavity
case. Notice that at y =0.64, the Richardson extrapolation in Figure 4.5 seems inconsistent with the
solutions from the coarse, medium, and fine grids. This is likely caused by the low precision at which the
data from Fluent was reported. Although Fluent calculated the solution using double precision numbers, the
results were reported to less than single precision accuracy. The Richardson extrapolation is very sensitive
to differences between solutions. When the differences between solutions are small and the solutions are
reported only to low precision, the differences calculated in the Richardson algorithm are very similar
between the coarse and medium solutions and the medium and fine solutions. This similarity in differences
causes the Richardson extrapolation to estimate that the grid is still far from converged, and the final grid-
resolved solution to lie significantly outside of the reported results. This result is perhaps even more

apparent when the Richardson extrapolation results of each of the software packages are compared.
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Fig. 4.5 Fluent grid refinement results of the x-velocity profile along the vertical centerline of the lid-
driven cavity at a Reynolds number of 100.
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Fig. 4.6 OpenFOAM grid refinement results of the x-velocity profile along the vertical centerline of
the lid-driven cavity at a Reynolds number of 100.

Figure 4.7 shows the extrapolated results from each of the software packages. The results suggest that

the laminar portion of the author’s code is working correctly.
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Fig. 4.7 Richardson extrapolation results for the x-velocity profile along the vertical centerline of the
lid-driven cavity. Comparison of results from Fluent, OpenFOAM, and ICESS.
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2. Order of Convergence
In order to ensure that the discretization schemes used in this work are second order, an order of
convergence test was conducted. This is done by examining the error of the solution as the cell size
approaches zero. In order to calculate the error of a solution, the exact solution of the case must be known.
The exact solution for laminar, fully developed channel flow is

- 2
7. :L@(y__w} 4.6)
Mde| 2

where L is the channel half-width and y is measured outward normal to the wall. The fully developed
channel flow case was run in ICESS where ¢ =.001, p=.1, L =0.5, and d;%/dx = —7.2. Variable grid sizes
ranging from 25 to 800 cells in the y-direction were run with cells clustered near the wall using logarithmic
clustering. Once the solution was fully converged, the RMS error of the solution was calculated.
Figure 4.8 shows the RMS error with respect to the average cell size squared, Ay?. A line passing through
the data points obtained from the two finest grids is superimposed on the plot. The fact that the error is

nearly linear with Ay* shows that the solution method is nearly second order.
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Fig. 4.8 Finite volume algorithm RMS error as a function of average cell size squared.
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3. Turbulent Fully Developed Channel Flow
Turbulent fully developed flow in a channel is a common case for testing solution algorithms. The
traditional k- model and the Wilcox [45] k- model were coded into ICESS. Figures 4.9 and 4.10 show
the results of a grid resolution study of the predicted mean velocity from the Wilcox 1998 model using the
one-dimensional and two-dimensional finite-volume algorithms where g =.001, p=.1, L=0.5, and
dp / dx =—7.2. It was found that using 200 cells in the y-direction with logarithmic clustering near the wall

produced grid-resolved results for each of the models.

T
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Fig. 4.9 Grid resolution for the mean velocity predicted by the Wilcox 1998 k-« model using the one-
dimensional finite-volume method.

The results of the one-dimensional and two-dimensional codes are compared here to results from a
one-dimensional finite-difference code. Figures 4.11 and 4.12 show the predicted mean velocity from the
traditional k- and Wilcox 1998 models using the one- and two-dimensional finite-volume codes compared
with the finite-difference results. The results for these figures were obtained using 200 cells with

logarithmic clustering near the wall in each of the algorithms.
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Fig. 4.10 Grid resolution for the mean velocity predicted by the Wilcox 1998 k- model using the
two-dimensional finite-volume method.
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Fig. 4.11 Comparison of results from the one- and two-dimensional finite-volume methods and a
finite-difference method for the mean velocity predicted by the traditional k- model.
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Fig. 4.12 Comparison of results from the one- and two-dimensional finite-volume methods and a
finite-difference method for the mean velocity predicted by the Wilcox 1998 k- model.

The results presented in this section show that the two-dimensional finite-volume code, ICESS, written
for this research is second-order accurate and able to correctly implement current two-equation turbulence

models.

V. One-Dimensional Runge-Kutta Direct Integration

One-dimensional flows can also be solved using a direct numerical integration method. In general, the
second-order transport equations can be written as a set of first-order equations and directly integrated
using a high-order integration method. For example, in one dimension, the Boussinesq-RANS equation
simplify to a first-order differential equation and two-equation turbulence models can be written as a
system of two second-order equations. Each second-order equation can be rearranged to yield two first-
order equations. In this way, a two-equation turbulence model can generally be written for a one-
dimensional flow scenario as a series of five first-order equations. These can be directly integrated to yield
the turbulence model solution. Details on how this is can be done for traditional k-¢ and k-w models is

included in Appendix N.
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VI. Summary and Conclusions

Turbulence models are generally solved using computational methods known as CFD methods. In
order to evaluate boundary conditions and turbulence models, a computational framework is necessary.
Although the work of this dissertation could have been accomplished using previously written CFD
algorithms, the author chose to write the CFD algorithms for this work from the ground up. This provided
the author with the freedom to alter the code in any way desired and allowed the greatest flexibility for
implementing and testing the model properties as needed. Several codes were written for this work
including finite-difference, finite-volume, and direct integration codes. An overview of these codes has

been included here, and details for the algorithms are included in the appendices.
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CHAPTER 5

SMOOTH-WALL BOUNDARY CONDITIONS FOR DISSIPATION-BASED MODELS

I. Introduction

Many of the most-widely used turbulence models are based on the Boussinesq hypothesis and can be
termed two-equation dissipation-based models. These models include the k-¢, k-, and k- models and their
development was discussed in Chapter 1. The correct smooth-wall boundary conditions for these models
are commonly misunderstood and are therefore often implemented incorrectly. This chapter discusses the
misconception and explains the correct implementation of smooth-wall boundary conditions giving
examples from the k-& and k- models. A meeting paper has been published on the subject [83].

In general, a turbulence model is a set of mathematical relations that are developed to model the
physical phenomenon known as turbulence. Once these equations have been constructed, the laws of
mathematics must be followed during the solution process to ensure a correct solution has been obtained.
Most dissipation-based turbulence models are called two-equation models because they model two
turbulent properties using second-order differential transport equations. The branch of mathematics known
as differential equations has long been understood, and specific rules exist for the application of boundary
conditions to such equations. A misconception in these boundary conditions is the fundamental flaw in the
way many dissipation-based two-equation turbulence models are implemented today.

Durbin [19] was the first to point this out when he stated, “These conditions must violate the energy
balance...” Although this statement was made about 20 years ago, it has apparently not been well-
understood. The fundamental flaw in traditional smooth-wall boundary conditions can be seen by

considering the physical characteristics of turbulence near a smooth wall.
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II. Physics of Smooth-Wall Boundary Conditions

Most dissipation-based turbulence models are based on two second-order differential transport
equations, one for the turbulent kinetic energy, and one for a second turbulence property. The turbulent
kinetic energy per unit mass, k, is a measure of the kinetic energy of the fluid resulting from turbulent

fluctuations in the flow and is defined as one-half the mean square magnitude of the velocity fluctuations

1> 1(=5 =5 =<5
k=377 =5(Vx2+Vy2+szj (5.1)
The turbulent-kinetic-energy transport equation has traditionally been developed by taking the trace of the

specific Reynolds-stress-transport equation and can be written for incompressible flow as

% +(V-V)k =20 S(V)-S(V) =&+ V -[(v +v, /5, VK] (5.2)

where ¢ is the dissipation of turbulent kinetic energy. The dissipation of turbulent kinetic energy is defined

as

e=vI(V)-J(V) (5.3)
Most two-equation models apply a second-order differential equation to model the dissipation as a transport
property and relate these two properties to the turbulent eddy viscosity algebraically. Examples can be seen
in Chapter 1.
At a perfectly smooth, no-slip wall, the turbulent fluctuations must be exactly zero just as the mean
velocity is exactly zero. This provides the widely acknowledged and implemented boundary condition
k=0, y=0 (5:4)
where y is the distance from the wall measured normal to the wall. Traditionally, a boundary condition is
also imposed on the second transport equation by specifying the dissipation at a smooth surface. However,
we see from Eq. (5.3) that the dissipation is a function only of the derivatives of the velocity fluctuations.
Because physics imposes no constraints on these derivatives at a smooth wall, it is incorrect to apply a
boundary condition on the dissipation at a smooth wall. We will see in subsequent sections that the laws of

mathematics require an additional boundary condition to be applied in order to ensure a unique solution to
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the turbulence model. The additional boundary condition is obtained by taking the gradient of the turbulent-
kinetic-energy at a smooth wall. By definition,

~_2 ~

szvGV )zVVV (5.5)

Because the velocity fluctuations at a smooth wall must be zero at a smooth wall (17 =0), we see that Eq.
(5.5) requires the gradient of & to also be zero.

Vk=0, y=0 (5.6)
This is the correct second boundary condition at a smooth wall, and any boundary condition other than this,
as Durbin states, “must violate the energy balance...” In a subsequent publication, Durbin [67] also makes
the statement, “These two conditions on k suffice to determine the solution for the coupled system of
equations, there is no need to impose conditions of € at the wall — indeed, it would be incorrect to do so.”
Hence, we see that a no-slip wall imposes two boundary conditions on £ and none on ¢. There is no need to
impose a wall boundary condition on ¢, and it is incorrect to do so. The value of ¢ at a smooth wall is that
required to satisfy both Eqs. (5.4) and (5.6), as was originally pointed out by Durbin roughly 20 years ago.
A better understanding of the mathematics of the problem can be seen by considering examples of the k-¢

and k-w models for the simple case of fully developed flow in a channel.
III. Smooth-Wall Boundary Conditions for the k-¢ Model

The case of fully developed channel flow can be constructed in Cartesian coordinates where x is the
ordinate in the direction of flow, and y is the ordinate normal to the channel wall as outlined in Appendix
C. For this case, there are no gradients in the mean flow transport properties in the x-direction. This
formulation is sometimes called the parallel-flow approximation because it assumes that the gradients of
the flow properties with respect to x are negligible compared to the gradients with respect to y. This is
nearly true very close to a wall even for flow that is not in a fully developed state. The formulation
including the continuity, RANS, turbulent-kinetic-energy, and dissipation-transport equations can be

written in nondimensional form as
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dut 1+p'y" dp*
vt 1+vt T ayt

+ +\?
d (l+v+/0'k)dk =¢"+eg, —v' au”
dy* dy* dy*

d . de* e L& dut ’ N
F (I+v /O'g) =ngf2kT_CglﬁV -E

=0

(5.7)

ay* = dy”
2
vi=C, £k et

where o, 0., C

e C,,, and C,, are model-dependent constants, and f, 1> fi» f>» E*, and &, are the model-

dependent wall damping functions. For a detailed development of these equations, see Appendices B and
C.

In order to close this sixth-order formulation, the damping functions and six boundary conditions must
be specified. Three obvious conditions come from the channel centerline. At the centerline of the channel,

the flow property gradients must be zero. These conditions can be written as

du* dk* de*
C (R =T (R =
dy dy dy

(R;)=0 (5.8)

Applying the first of these boundary conditions to Eq. (5.7) gives

+ o+
p"=-1R,, dL:M (5.9)
ay* 1+v*
The traditional no-slip boundary conditions are
ut(0)=k"(0)=0 (5.10)

The final boundary condition has been a topic of some confusion and has typically been chosen as a
relationship for the dissipation at the wall. Various researchers have taken different approaches to this final
condition, and therefore, the condition has traditionally differed with the model. However, this final

condition should be model independent, and be a property of the physical aspects of the flow.

A. The Launder-Sharma k-¢ Model

The Launder-Sharma [69] model is a special case of Eq. (5.7) where the wall-damping functions are
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fu=exp[-34/(1+R,/50)’], f,=1.0, f,=1-0.3exp(-R}),

-¢—2 + 2 2+ 2
R,=k+, e = 1+ ak+ , Et=2v" 8u2 , (5.11)
& 2k7 \ oy ot

C,=009, C,=144, C,,=192, 0,=10, 0,=13

Using Eqgs. (5.9) and (5.11) in Eq. (5.7) gives

fo_yr, W _1-0'R
R 1+v*
2 2
d et | 1 [kt o dut
+ I 2%t | oyt -V vt
% % y a4
d de* & dut ) ot
(1+v*)0,) == Corfr =——=Co C, fuk™ —ot 2 (5.12)
+ & + €2J2 4 el~ul p + 2
dy dy k dy ot

2
2 k*
vi=C, fk" /g+, R = =
fu =exp[-3.4/(1+R,/50)’], f, =1-03exp(-R}),
C, =009, C, =144, C,,=192, 0,=10, 0,=13

The near-wall behavior of this model can be observed by considering the Taylor-Series expansions

N
0=k @k O + KO,
2 (5.13)
()= (0)+e" 0y +5 2(0) oo
Launder and Sharma suggest a final boundary condition at the wall of
£H(0)=0 (5.14)

Applying this boundary condition along with Eq. (5.10) to Eq. (5.13) gives the near-wall approximations
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, +H
Fo =k O + 0y
e (0
£ 0= Oy + 2() bon
+2 + + +" +
R,sk+ k (0) v |k (O)k 0 _k (0): (0) (5.15)
&g (0) £ (0) 2677(0)
+
vi=C, fk" /g =C, exp(- 34)k (O)
e (0)
Su=exp(=3.4)+-, f,=0T+
Using these near-wall expansions in the k-transport equation in Eq. (5.12) gives
27+ +
d—kzzk—fo)+ (5.16)
dy* y

which is obviously indeterminate at the wall. On the other hand, if we apply the physically correct
boundary condition k*l (0) =0 and treat £*(0) as an unknown, the near-wall expansion for the k-transport

equation becomes

27+ "
‘;’; =& (0)+k" (0)+-- (5.17)
)y

which naturally requires £*(0)=0. Thus we see that referring to £*(0)=0 as a boundary condition is
incorrect. Enforcing £%(0)=0 does not require the true boundary condition k+'(0) =0 to hold, while
forcing k*r(O) =0 requires £*(0) = 0 by virtue of the differential equations. Therefore, using £ (0) =0 as a
near-wall approximation for & is appropriate if and only if k+,(0) =0 is also enforced. With the full no-
slip boundary condition enforced, the near-wall expansions for the Launder-Sharma damping function and

eddy viscosity are
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k*(y+)=wy+2+%y+3
) =& 0+t (0)y + D) 2(0) 4o
+2 +" + +" +
R,Ek+ K0 (0) s |k (O)k ) k (O,)f (0) i (5.18)
e a0 62" (0) 8% (0)

vi=C, fk* /,9 =C, exp(~ 34)kJr ()
26" (0)
Su=exp(=3.4)+-, f,=0T+-

Thus we see the complete model given in Eq. (5.12) requires the correct no-slip wall boundary conditions
u"(0)=0, k7 (0)=0, and k+'(0) =0 along with the centerline boundary conditions k¥ (R,)=0 and

&" (R,) =0 to yield a solution that is mathematically determinate.

B. The Lam-Bremhorst k-¢ Model

The Lam-Brembhorst [68] model is a special case of Eq. (5.7) where the wall-damping functions are

S =[1-exp(<0.0165R ) (1+20.5/R,), f, =1+(0.05/£,)°, f,=1-exp(-R}),

K+

g+

C, =009, C,=144, C,,=192, 0,=1.0, 0,=13

R ="—, R,=y"Nk", & =0, E"=0, (5.19)

Using Eqgs. (5.9) and (5.19) in Eq. (5.7) gives the model and boundary conditions

dut 1-y"/R,
p+:_1/R75 _Jr:y—/Jr
dy I+v

2
+ +

d+{ dk+}:g+_v+[du+]
ly ly dy

L2 2
d de* &t du”
;{(IJFW/O})F:I:CQJG e ~Cafiv’ +( J

dy*

42

VJr = C/lf;LlRt’ Rt :];_Jr’ Ry = y+ k+ (520)

S =[1—exp(=0.0165R )*(1+20.5/R,), f; =1+(0.05/1,)’, fo=1-exp(-R}).
C,=0.09, C,=144, C,,=192, 0,=10, 0,=13

WH(0)=0, k*(0)=0, k*(R)=0, & (R.)=0
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As the final boundary condition in addition to Egs. (5.8) and (5.10), Lam and Bremhorst suggest the

relation

£ (0)=k" (0) (5.21)

Although this boundary conditions is commonly accepted in the literature as being the appropriate smooth-

wall boundary condition for this model, it is in fact mathematically incorrect. There are an infinite number

of solutions to Eq. (5.20) that also satisfy Eq. (5.21). This relation can be derived directly from the

differential equations and therefore cannot be termed a boundary condition. This relation will be satisfied

independent of the boundary condition and thus yields an infinite number of solutions to the system of
equations.

To see why Eq. (5.21) is not a viable boundary condition for Eq. (5.20), consider Eq. (5.20) in the limit

as y" approaches zero. In this limit, both R, and R , 80 to zero and the wall damping functions and eddy

viscosity near a smooth wall reduce to

2+ 42
y' =0, f,= 20'5(0'01;5) £V = 20.5(0.0165)2Cﬂk+y+2,
(5.22)
P (0.05°k* , K
1= H 2=
(20.5)(0.0165)° £+ y** &t

Using these limiting relations in the differential equation from Eq. (5.20) produces the near-wall system of
equations, which applies in the limit as y* approaches zero,

dt Pk det —(0.057C,Cok”

v =0, 2 - 5 D 22 .4
B (205200165 £ y*

(5.23)

Thus we see that Eq. (5.21) is satisfied independent of the final boundary condition. Therefore, Eq. (5.21)
does not provide the additional information required to obtain a unique solution to the indeterminate system
of equations.

As a further demonstration of why Eq. (5.21) is not a viable boundary condition for completing the

indeterminate system in Eq. (5.20), consider the similar system and boundary conditions
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~ 27 ~\2 2 A\2
du_l_j/’ d*k é_A4(duJ, dgzjj(,_j/z(du]

& &> &H) & & (5.24)
1(0)=k(0)=k'(1)=&'(1)=0
Equation (5.24) is simple enough to obtain a closed-form solution. The general solution is
A2 A A2 ~3 ~6 7 <8 ~10
h=C+9-2-, k=C2+C3j;+C4y LSRN A2 A LN A
2 2 6 360 420 1680 5040 (5.25)
A4 A5 A6 A8 )
A A Y Y Y Y
E=Cy+Csy——+———+—
ST 0730 s6
The boundary conditions in Eq. (5.24) can be used to eliminate four of the five arbitrary constants
~2 N S 9983 1096 ~7  gan8 . a0
ﬁ:j/—y—, k:C4y 2y+338y 92y° —182y° +252y" =93y +y
2 2 5040 (5.26)
. —929% —707% +845° —287° +153°
£=Cat 840

As should be expected, there are an infinite number of solutions to any indeterminate fifth-order system of
differential equations with only four boundary conditions. However, if the mathematical logic presented by
Lam and Bremhorst is correct, then we should be able to reduce Eq. (5.26) to a single unique solution by
simply applying a boundary condition obtained from the second differential equation in Eq. (5.24)

evaluated at p = 0. If we accept this logic, then our final boundary condition for Eq. (5.24) is

£(0)=k"(0) (5.27)

However, applying this “boundary condition” yields the result C, = C,. Clearly, applying this boundary

condition yields a system of equations with an infinite number of solutions. It is a simple law of

mathematics that a boundary condition cannot be derived directly from the differential equations

themselves. It is apparent here that such a process can result in a system of equations with an infinite
number of solutions.

Patel, Rodi, and Scheuerer [84] suggest a “more convenient boundary condition” for the Lam-

Bremhorst model

de*

+

0)=0 (5.28)
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However, this boundary condition is also incorrect because physics dictates no boundary condition on the
dissipation of turbulent kinetic energy as outlined at the beginning of this chapter. The boundary condition
for Eq. (5.26) that is analogous to the physically based condition given in Eq. (5.6) is lg’(O) =0. Applying

this to Eq. (5.26) gives the unique solution

16992 =925 —18275° + 25257 —93p% + p1°
5040

_169-2769-2109* +2527° —847° + 457"

B 2520

2
G=9-2, k=
2 (5.29)

™>

and results in a nonzero result for both £ and &'. The boundary condition analogous to Eq. (5.28) is
£'(0)=0. Applying this boundary condition to Eq. (5.26) gives —23/210=0 which may cause some
concern with regard to using Eq. (5.28) as a boundary condition for Eq. (5.20).

Examination of the incomplete fifth-order system given by Eq. (5.24) has revealed that using Eq.
(5.27) as the fifth boundary condition results in an infinite number of solutions. On the other hand, Eq.
(5.24) has no solution if Eq. (5.28) is used as the fifth boundary condition. It can be shown that the
incomplete fifth-order system in Eq. (5.20) exhibits very similar behavior. However, solutions to Eq. (5.20)
must be obtained numerically.

Because fully developed flow is one dimensional, a solution to Eq. (5.20) combined with Eq. (5.6) can
be obtained by direct numerical integration. This permits the use of efficient high-order numerical methods
such as the fourth-order Runge-Kutta algorithm. Because such solutions can be obtained quickly on very
fine grids, fully developed channel flow provides an excellent benchmark for testing more computationally
intensive CFD algorithms.

To facilitate direct numerical integration, the two second-order equations in Eq. (5.20) can be

converted to four first-order equations by using the change of variables

dk*
dy*
de”
dy”

g =-(1+v*/o})
(5.30)

6" =—(1+v*/o,)
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Combining Eq. (5.20) with Eq. (5.6), applying the change of variables given in Eq. (5.30), and eliminating

" by direct substitution provides the complete one-dimensional fifth-order formulation

dut  e*(1-y*/R) _

= = u+
dyt e+ C, [,k
der o qret
dy+ opet+C, [,k
dgt C,f ke (1-y+/R,)? .
dy+ (e++C, [, k)
det o 0%t
dy+ o7 +C, [, k*? (5.31)
do* ?

' &r
= glfi C,uf,ukJrquz _CSZka_Jr

R=k?[er, R,=k"yr,
S =[1-exp(-0.0165R, ), S =1+ 20.5/R,

Ju=Fuafurs [i=1+0.05/1,), f,=1-exp(-R}),
ut(0)=0, k*(0)=0, ¢+(0)=0,
q*(R)=0, 6*(R)=0

It should be noted that the new variable g+ is a dimensionless form of the total diffusive flux of
turbulent kinetic energy k, which includes both molecular and turbulent diffusion. Similarly, 8% is a
dimensionless diffusive flux for ¢. This brings to light another physical interpretation of the boundary
condition given in Eq. (5.6), which led directly to the equivalent boundary condition in Eq. (5.31), i.e.,
g+(0) = 0. With this interpretation, Eq. (5.6) can be viewed as a mathematical statement of the simple fact
that turbulent kinetic energy cannot be diffused through a solid wall. The formulation for fully developed
flow that is given by Eq. (5.31) requires that g+ vanish at the wall and at the centerline. Thus, all of the
turbulent kinetic energy that is generated within this steady flow must also be dissipated within the flow. If
a boundary condition obtained from either Eq. (5.21) or Eq. (5.28) is used in place of that obtained from
Eq. (5.6), this energy balance is not enforced. This is the origin of Durbin’s statement that, “These
conditions must violate the energy balance,” [19].

A numerical solution to the five first-order differential equations given in Eq. (5.31) can be obtained

using fourth-order Runge-Kutta integration combined with an appropriate numerical root-finding method.
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Because only three of the five boundary conditions are given at y+=0, the solution for £+(0) and 8+(0)
must be obtained from the differential equations. The process is started with initial estimates for £+(0) and
6+(0). From these initial estimates, fourth-order Runge-Kutta integration can be used to obtain g*(R,) and
6*(R,). The initial estimates are then refined using an appropriate numerical method until the solution is
found, which corresponds to the correct centerline values g*(R,) = 0 and 6*(R,) = 0.

A few words of caution may be in order here. Some of the terms in Eq. (5.31) are numerically
indeterminate if k"= 0 and/or £+= 0. Notice that a division by zero occurs in the definition of R, for e+=0.
Thus, depending on the compiler, conditional relations may be required to enforce f,,=1 and f,=1 for
&+— 0. For most compilers, Eq. (5.31) is numerically indeterminate for £*= 0. In this limit, both R, and R,
go to zero and the eddy viscosity and wall damping functions reduce to

2
k=0, v+=20.5(0.0165>C k*y+>, f, % =k,

2, (0.05)° £+(0) y+* (532)

k+=20.5(0.0165)% &+ y+
N u Y T 8(205)2(0.0165)°

Hence, for the limit k* — 0, the formulation given in Eq. (5.31) should be conditionally replaced with its

near-wall asymptote

dut _ 1-y*/R._

kt—0, =yt

dy+ I+v+
dk* _ Oy q+
dy+* oy +V*
Z’q_+ — V+u+’2 _et

y+

+ o+

de* _ _ % (5.33)
dy+ o, +Vv*
do*

dy+ - C‘slc,uF‘s”Jr'2 _ngk+3

v+=20.5(0.0165)>C, k*y+?,

(0.05)° £+(0) y+2
+
8(20.5)%(0.0165)*

F. =20.5(0.0165)¢+y+*

To demonstrate that Eq. (5.21) is not a valid boundary condition for completing the formulation given

in Eq. (5.20), the results shown in Fig. 5.1 were obtained from Eq. (5.31) using randomly selected wall
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boundary conditions. The no-slip wall boundary conditions were used for both u*+ and &7, but the wall
boundary conditions for g+, ¢+, and 6%, as well as the wall-scaled dimensionless half width R, were
generated as listed in Fig. 5.1 using the “rand()” function, which generates a random number between 0.0
and 1.0. From the results presented in Fig. 5.1, it can be concluded that Eq. (5.21) is enforced directly by

Eq. (5.20), completely independent of the boundary conditions.

1o \ \
u+(0) = k*(0) =0 i
L ¢*(0)=2rand() -1 i
0.8 — &*(0)=rand() ]
F  0%(0)=2rand() -1 -
I~ R_.(0)=1000rand() N
0.6 |— —
k0 -
04— —|
02— —
0@ Ly

0.0 0.2 0.4 0.6 0.8 1.0

£*(0)
Fig. 5.1 Solutions to Eq. (5.31) with randomly selected wall boundary conditions.

To demonstrate that Eq. (5.28) is not a valid boundary condition for completing the formulation given
in Eq. (5.20), the results shown in Fig. 5.2 were obtained from Eq. (5.31) using the no-slip wall boundary
conditions for u+, k*, and g+, with the wall boundary conditions for #* obtained from Eq. (5.28). For
several values of R, the computed value for g+ at the centerline is plotted as a function of the remaining
wall boundary condition £*(0). Valid solutions to Eq. (5.20) could only correspond to those points where
these curves intersect the axis g+(R,) = 0. From the results presented in Fig. 5.2, it can be seen that there is
only one solution to Eq. (5.20) that satisfies Eq. (5.28) and the no-slip wall boundary conditions. That is the

trivial laminar solution

wr=y+—yQR), k*=qr=g=6*=0 (5.34)
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e+(0)
Fig. 5.2 Solutions to Eq. (5.31) with no slip and no dissipation gradient at the wall.
There is no turbulent flow solution to Eq. (5.20) that satisfies Eq. (5.28) and the no-slip wall boundary
conditions.

Examination of the numerical results shown in Figs. 5.1 and 5.2 reveals that Eq. (5.20) exhibits
behavior very similar to that demonstrated analytically for the hypothetical fifth-order system given by Eq.
(5.24). Using &+(0) = k*"(0) as the fifth boundary condition for Eq. (5.20) results in an infinite number of
solutions. On the other hand, Eq. (5.20) has no valid turbulent flow solution if £+'(0) = 0 is used as the fifth
boundary condition. This underscores the critical importance of always using the correct no-slip boundary

conditions z+(0) = k+(0) = k*'(0) = 0.

IV. Numerical Results from CFD Algorithms

Because the zero-gradient boundary condition for & in Eq. (5.6) is not explicitly enforced in many
commonly implemented k-¢ turbulence models, solutions obtained from these models are not unique. To
demonstrate this fact, the RANS formulations for fully developed channel flow for the Launder-Sharma
and Lam-Bremhorst models were solved numerically using a second-order finite difference algorithm with
successive underrelaxation. Solutions were obtained on the domain extending from the wall to the channel

centerline, and grid points were clustered near the wall using logarithmic clustering. To ensure that all



88
results were fully converged, the successive underrelaxation was allowed to continue until the observed
changes were reduced to within the double-precision machine accuracy.

To ensure that all results were grid resolved, the grids were uniformly refined until no significant
changes were observed with additional grid refinement. For a given axial pressure gradient, the Launder-
Sharma model required a somewhat finer grid than was required for the Lam-Bremhorst model. Results of
an example grid-resolution study for the Launder-Sharma model are shown in Figs. 5.3—-5.5. All results
shown in these figures were obtained using the fixed axial pressure gradient, which yields a value of y+ at
the centerline equal to 300. For the grid refinements shown in Figs. 5.3-5.5, the four grids produced
channel Reynolds numbers (based on the channel width and mean velocity) that were equal to 10,009,
10,653, 10,832, and 10,878, respectively. An additional refinement of the grid to 401 nodes, which is not
shown in Fig. 5.3, produced a channel Reynolds number of 10,889. From these and other similar results, it
was concluded that for Reynolds numbers on the order of 10,000, the 201-node grid used for
Figs. 5.3-5.5 produced adequate grid resolution with both the Lam-Bremhorst and Launder-Sharma

turbulence models.
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Fig. 5.3 Grid resolution for the mean velocity predicted from the Launder-Sharma k-& model.
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Fig. 5.4 Grid resolution for the turbulent energy predicted from the Launder-Sharma k- model.
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Fig. 5.5 Grid resolution for the turbulent dissipation predicted from the Launder-Sharma &-& model.

To demonstrate that solutions obtained from commonly implemented k-¢ turbulence models are not
unique, the second-order successive underrelaxation algorithm was implemented using a slight variant of
the wall boundary conditions specified in Eq. (5.6), which allows the user to specify an arbitrary value for
the gradient of & at the wall. Figures 5.6 and 5.7 show converged and grid-resolved results obtained from
this algorithm using three different gradient boundary conditions for k at the wall: £*'(0) = 0.0, £*'(0) = 0.1,
and £*'(0) =1.0.

To demonstrate that traditional implementations of these turbulence models do not necessarily

converge to the solution that yields £*'(0) = 0, Figs. 5.6 and 5.7 also include results obtained from the same
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algorithm, turbulence models, and grid, but with a traditional implementation of the wall boundary
conditions, which uses only z+(0) =0 and £*(0) = 0 together with an asymptotic relation obtained from the
differential equations, i.e., £*(0) = k*"(0) for the Lam-Bremhorst model and &+(0) = 0 for the Launder-
Sharma model. For additional comparison, Figs. 5.6 and 5.7 also show results from the general-purpose

finite-volume CFD solver FLUENT [85], which were obtained using the same turbulence models and grid

with only the traditional wall boundary conditions implemented.
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Fig. 5.6 Effects of wall boundary conditions on turbulent energy predicted from the Lam-Bremhorst

model.
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The results shown in Figs. 5.6 and 5.7 clearly demonstrate that when the natural boundary condition
k*+'(0) = 0 is not enforced, solutions obtained from commonly implemented k-& turbulence models are not
unique. When the boundary condition £*(0)=0 is omitted, solutions obtained from the resulting
indeterminate formulation are implementation dependent. Notice from Fig. 5.6 that for the Lam-Bremhorst
model with traditional implementation of the wall boundary conditions, the finite-difference algorithm
converged to a different solution from that obtained using the finite-volume algorithm with the same
indeterminate boundary conditions. Neither of these solutions agrees with that obtained from the finite-
difference algorithm with the boundary condition k£*'(0) = 0 enforced. Similarly, we see from Fig. 5.7 that
these finite-difference and finite-volume implementations of the Launder-Sharma model converge to
different solutions with traditional implementations of the wall boundary conditions. However, for the
particular implementation used to obtain the results shown in Fig. 5.7, the indeterminate finite-difference
algorithm converged to a solution that is very close to that obtained when the complete set of smooth-wall
boundary conditions was enforced. This should not be viewed as an endorsement for implementing the
Launder-Sharma turbulence model with mathematically incomplete boundary conditions.

From the near-wall expansions of the Launder-Sharma model given in Eqgs. (5.16) and (5.17), it was
shown that enforcing k*'(0) = 0 requires £*(0) = 0, whereas enforcing £+(0) = 0 does not require k*(0) = 0.
This can also be demonstrated numerically by examining the near-wall behavior of & obtained from
numerical solutions using different gradient boundary conditions for £ at the wall. Such results are shown in
Fig. 5.8, which were obtained from converged and grid-resolved solutions for the same channel flow that
was used to obtain the results shown in Fig. 5.7. Notice that, although k+'(0) does affect the near-wall
behavior of &*, all of these solutions satisfy £*(0) = 0. Only the solution corresponding to k+'(0) =0 also

satisfies the physically correct no-slip condition at the smooth wall.
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Fig. 5.8 Effects of wall boundary conditions on near-wall dissipation for Launder-Sharma model.

Because the wall damping functions for the Lam-Bremhorst model decay rapidly with increasing y+,
the wall boundary condition k*'(0)=0 has little impact on the velocity profiles predicted from this
turbulence model. On the other hand, the wall damping functions for the Launder-Sharma model decay
slower and have a more significant effect on the predicted mean velocity farther from the wall. This can be
seen in Fig. 5.9, which displays the velocity profiles for the same solutions that were used to obtain the
turbulent energy profiles displayed in Fig. 5.7. It may be worth reiterating that all of the solutions shown in
Fig. 5.9 satisfy the traditional wall boundary conditions u#+(0)=0 and £*(0)=0 together with the

asymptotic relation obtained from the differential equations, £+(0) = 0.
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Fig. 5.9 Effects of wall boundary conditions on the mean velocity predicted from the Launder-
Sharma model.
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Anyone who has taken time to compare results obtained from different CFD algorithms and different
k-¢ turbulence models will likely have noticed that there is often a greater difference between the results
obtained from two different implementations of the same turbulence model than there is between the
results obtained from the same implementation of two different turbulence models . The results shown in
Fig. 5.9 may shed some light on the reason for this phenomenon. We should not be too surprised to learn
that results obtained from commonly used k- turbulence models are implementation dependent, if we
recognize that these models are all short one boundary condition, and thus are mathematically
indeterminate.

Because the CFD community has not traditionally implemented two wall boundary conditions on & and
none on &, implementation of the correct smooth-wall boundary conditions first proposed by Durbin [19]
has been less than enthusiastically embraced. The actual implementation of these boundary conditions is
dependent on the numerical method being used to solve the system of differential equations. However, this
implementation should not be difficult using well-known methods in either finite-difference or finite-
volume algorithms. For example, results presented in this section were obtained from a finite-difference
algorithm. To implement the no-slip wall boundary conditions, the k-transport equation at any wall node
was replaced with the boundary condition k£(0) = 0. At the first node off the wall, the k-transport equation
was replaced with a second-order finite-difference approximation for the boundary condition 4+'(0)=0.
Because there is no wall boundary condition on ¢, the &-transport equation at any wall node was replaced
with the asymptotic relation obtained from the differential equations, i.e., £+(0) = k*"(0) for the Lam-
Bremhorst model and £+(0) =0 for the Launder-Sharma model. The implementation of the g-transport
equation is identical to that of the traditional formulation. The error in the traditional formulation is not that
the transport equation for ¢ is incorrectly implemented. Rather, the error is in assuming that the near-wall
asymptote obtained from the differential equations can be used to replace the final boundary condition
required at the wall.

As scientists and engineers, we do not have the luxury of choosing boundary conditions for ease of

numerical implementation. Boundary conditions are dictated by physics. It is our obligation to understand
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and implement them correctly if we hope to achieve mathematical formulations that correctly model
physics. The fundamental mathematical error of deriving a so called boundary condition directly from the
differential equations is not unique to the classical k-¢ turbulence models that have been considered here. It

is also an important concern for many other turbulence models developed more recently.

V. Smooth-Wall Boundary Conditions for the k- Model

The k-w model formulation for fully developed channel flow is presented in Appendix B. The
formulation including the continuity, RANS, turbulent-kinetic-energy, and dissipation-transport equations

can be written in nondimensional form as

dut 1+pTy" dp*

> =0
dyt 1+v? dy*
2
d dk* du”
—+v o) |=C, fik ot —v| T
dy dy dy (535)
s .
G, . ow”* L2 Lo [ dut
1+v'/jo,)—|=C o —C,fivi —
aer |:( / a)) ay il a)2f2 a)lfl k+ dy*
k+
vi=f,—
f/l (0+

where oy, 0,,, C,;, C,, and C,, are model-dependent constants, and f,, f;, />, and f; are the model-

dependent wall damping functions. Just as with the k-¢ model, in order to close this sixth-order formulation,

the damping functions and six boundary conditions must be specified. Again, three conditions come from

the channel centerline

du” dak™* do*
d; (R) =2 (R) =7 (R) =0 (5.36)

Applying the first of these conditions to Eq. (5.30) gives

E: 1_y+/Rr

.
p =-1R_,
/ dy* 1+v*

(5.37)

To close the formulation, three additional boundary conditions are needed. Two of these are the no-slip

boundary conditions traditionally used for dissipation-based models
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ut(0)=k"(0)=0 (5.38)

This leaves one boundary condition to be specified.
A version of the k-w model that is commonly implemented is the Wilcox 1998 model [45]. The closure

coefficients and wall-damping functions for this model are

s 1, v <0
0.024+R, /6 415+ (R, /8) )
T T T T o S AU
: R/®" |1 20002
1/9+ R, /2.95 Vk Vo k

o OHRJ2OS e, YO R =L (5.39)

7, (1% R, /2.95) » ve)

C, =009, Cp =052, C,,=0072, 0,=20, 0,=20

Using Egs. (5.37) and the nondimensional form of Eq. (5.39) in Eq. (5.35) gives the model for fully

developed flow in a channel

dut 1-y"/R,
p+ :_1/Rr , _+:y—/+
dy 1+v
+ )2
d (1+v*/ak)—dk =C, fik*o" —v* du”
dy* dy* dy*
2
0 N 0w L2 Lo [ dut
o {(HV /Gw)W}Zszfzw —Cofiv e
+
=Tk, (5.40)
4 1 v, <0
0.024+R, /6 4/15+ (R, /8) )
L Ty Y P e S
’ RS |00y Y
1/9+ R, /2.95 1 dk* do* k*
(ﬁZ#, f=10, yp=—a—e e, R =—
7.(+ R, [2.95) o v dy ®

¢,=009, C, =052, C,=0072, o,=20, 0,=2.0
Wt (0)=k*(0)=k* (R.)= " (R,)=0
As in the case of Eq. (5.20), one additional boundary condition is needed to complete the fifth-order
formulation expressed in Eq. (5.40). In the presentation of his 1998 k-» model Wilcox [45] states, “The
final condition follows from examination of the differential equations for k and @ approaching the
surface.” For a smooth wall in the limit y+—> 0, the boundary condition £*(0) = 0 requires R,(0) =0 and

v+(0) = 0. Thus, the differential equation for u+ and the w-transport equation given in Eq. (5.40) reduce to
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2
yros0, dut g det o2 Co (5.41)
dy+ dy+2 9
Let the leading-order term in the solution for @* be written as
a)+(y+) = Ay+“ NP (5.42)

where 4 and a are as yet unknown constants. Using Eq. (5.42) in the near-wall approximation for the w-
transport equation given by Eq. (5.41) yields
a(a—1)Ay+*2 = Cpr A2 y+*—Cp1 /9 (5.43)

Equating the exponents and coefficients of y+ in the leading-order terms, this near-wall relation requires

a@a-1) 6
a=-2, A= = 5.44
sz sz ( )
Hence, after using Eq. (5.44) in Eq. (5.42), the leading-order solution for @* yields
_ 6
or(yt) = ——— (5.45)
yllﬂ() sz y+

To minimize numerical truncation error associated with the singularity, Wilcox [86] suggests that
Eq. (5.45) should be used in place of the @w-transport equation “for the first 7 to 10 grid points above the
surface.” Wilcox also points out that the grid must be fine enough so that “these grid points must lie below
y+=2.5 ...” In practice, Eq. (5.45) is often used as the final boundary condition by applying this relation
only at the first grid point off the wall.

Because the leading-order solution given by Eq. (5.45) follows exclusively from the @-transport
equation with application of only the single boundary condition £*(0) =0, all solutions to Eq. (5.40) will
exhibit this asymptotic behavior, completely independent of the fifth boundary condition that is required to
obtain a unique solution to this system of equations. Equation (5.45) is certainly a valid asymptote for the
w-transport equation in Eq. (5.40) near a smooth wall. Thus, Eq. (5.45) can be used as an alternative to the
w-transport equation for y+ approaching zero, provided that it is combined with five appropriate boundary
conditions. However, Eq. (5.45) cannot be used as a substitute for one of the five required boundary
conditions.

To further exhibit this point, consider the similar system and boundary conditions



97

di . d* . u(di) de 1 (daY
=1-7, =y o-yp s —m T

4 & &) & b (5.46)
ii(0) = k(0) = K'(1) = &'(1) = 0
The general solution to this system of equations is
"2 . 4 S 2 6 7 .
(5.47)

—657 +47° - *

. 1 A
0=—5+C,+Csy+
6_)32 4 5V 12

The boundary conditions in Eq. (5.38) can be used to eliminate four of the five arbitrary constants. This

gives

c P-4y —26967 +8405" +3367° —5045° + 5605 ~1955"
Y12 10080
1 85— 637 +45° - »*

+Cy +
65 12

A2 .
q=y-"-, k=
(5.48)

a’):

Again as should be expected, there are an infinite number of solutions to any indeterminate fifth-order
system of differential equations with only four boundary conditions. The remaining constant of integration
Cy4 can be evaluated only by applying a mathematically appropriate boundary condition. No amount of
analysis applied to the differential equations, no matter how sophisticated, will ever yield a result from
which the remaining arbitrary constant in Eq. (5.48) can be determined.

Notice from Eq. (5.47) that, analogous to the result obtained from Eq. (5.40), the general solution for @
approaches y=0 in proportion to y~>. From examination of either Eq. (5.47) or Eq. (5.48), it should be
clear that none of the integration constants could ever be obtained by using the asymptotic behavior of @
for y — 0 as the fifth boundary condition for Eq. (5.46). In fact, because the behavior of & for y — 0
depends only on the differential equations in Eq. (5.46), no boundary condition for & can be applied to Eq.
(5.46) at y=0. Likewise, because the near-wall behavior of @+ depends only on the differential equations
in Eq. (5.40), no wall boundary condition for @+ can be applied to Eq. (5.40). The remaining boundary
condition for Eq. (5.46) at y =0 must be applied to k. Similarly, the remaining wall boundary condition for

Eq. (5.40) must be applied to k.
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At a smooth wall the correct no-slip boundary condition for completing the fifth-order formulation
presented in Eq. (5.40) is k*'(0) = 0. The analogous boundary condition for Eq. (5.46) is £'(0) =0. It is
easily shown that applying this wall boundary condition to the solution of Eq. (5.46) that is given in Eq.

(5.48) yields C4=-337/420, and the complete unique solution is

e _y_2 lg_840y2—674y4+336y5—504y°+560y7—195y8
YT E T 10080 :
R 5 A (5.49)
. 1 —337+280y-210y +140y> -35y
W= +
6> 420

Hence, we see that imposing two wall boundary conditions on k and none on @ is sufficient to determine a
unique solution to the coupled fifth-order system of differential equations given in Eq. (5.46). There is no
need to impose a wall boundary condition on @, and it is incorrect to do so.

It can be shown numerically that the Wilcox 1998 k-@ formulation given in Eq. (5.40) exhibits
behavior similar to that shown analytically for Eq. (5.46). For example, Figs. 5.10 and 5.11 show k* and
o+ for five solutions, which all satisfy both Egs. (5.40) and (5.45). These converged and grid-resolved
solutions were obtained using the same second-order successive underrelaxation algorithms that were used
to obtain the k-¢& solutions shown in Figs. 5.6 and 5.7. These results demonstrate that it is mathematically
incorrect to use Eq. (5.45) as the sole substitute for the remaining boundary condition, which is required to
obtain a unique solution to Eq. (5.40). Neither Eq. (5.45) nor any other relation obtained solely from the
differential equations can be used to obtain a unique solution from the indeterminate k-@ formulation given
in Eq. (5.40).

Like the Lam-Bremhorst k-& model, the wall damping functions for the Wilcox 1998 k-@ model decay
rapidly with increasing y+, so the wall boundary condition k*(0) =0 has little impact on the predicted

velocity profiles.
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Fig. 5.10 Effects of wall boundary conditions on turbulent energy predicted from the Wilcox 1998 .-

@ model.
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Fig.5.11 Effects of wall boundary conditions on the turbulent dissipation frequency predicted from the

Wilcox 1998 k-@ model.

VI. Comments on CFD Algorithms and Solutions

The reader may wonder how CFD algorithms have continued to obtain repeatable solutions for so

many years if these traditional dissipation-based turbulence models have been implemented in such a way

that many models are indeterminate. To this, the author wishes to make three comments.

First, CFD algorithms do not ensure that a unique solution is obtained. The CFD codes are usually

written such that the computer is seeking one solution which satisfies the system of equations. Once a
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solution is found, the algorithm exits. If multiple solutions exist for a given system of equations, the CFD
algorithm will end once any one of the solutions is found, and will generally not report that other solutions
exist. It is up to the user to ensure that the solution is unique. Therefore, solutions to these models have
been reported for several years, although some have noted that there is often more difference between two
different implementations of the same model than between two different models using the same
implementation [87].

Second, most CFD algorithms seek to minimize the error in the system of equations rather than to find
a solution that satisfies the equations perfectly. In fact, in most commercial codes, the user is able to specify
a tolerance for the error at which the algorithm will consider the solution to be acceptable. This is likely the
reason that solutions to the Lam-Bremhorst model have been obtained in the past. It has been shown that
there is no solution to the Lam-Bremhorst model for turbulent flow that also satisfies the correct smooth-
wall no-slip boundary conditions. However, solutions to this model have been obtained for many years by
CFD algorithms. This is most probably due to the fact that most CFD algorithms seek only to minimize the
error using finite-difference or finite-volume approaches.

Third, the wall-damping functions used by most models are designed in such a way as to force the
turbulence properties near a wall to behave in a certain way. Therefore, these damping functions can curb
the effects of indeterminate boundary conditions. For example, it has been shown that a deviation in the
first derivative of k at the wall has a much more profound effect on the Launder-Sharma model than it does
on the Lam-Bremhorst or Wilcox 1998 models. This is mainly due to the nature of the wall-damping
functions used for each model. Therefore, the damping functions of dissipation-based models have likely
reduced the effects of attempting to solve a system of equations that is short one boundary condition.

Even if a particular implementation or set of damping functions forces a CFD algorithm to converge to
a solution that is close to the unenforced boundary condition, this is no excuse for implementing a model
that is mathematically indeterminate. A full set of boundary conditions must always be enforced and it is

incorrect to omit a boundary condition because it is difficult to enforce, or to choose an arbitrary condition
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based on ease of implementation. Such neglectful behaviors have likely hindered progress that could have

been made years ago in turbulence modeling.

VII. Summary and Conclusions

It has been shown that the traditional smooth-wall boundary conditions for dissipation-based
turbulence models are incorrect. Traditional models generally enforce a boundary condition on the second
turbulence variable, ¢ or w, that is either physically incorrect or that can be directly derived from the
differential equations. Because physics imposes two boundary conditions on the turbulent kinetic energy at
a smooth wall and no boundary conditions on the dissipation at a smooth wall, it is incorrect to enforce a
boundary condition on the second turbulence variable. In order for the solution to be unique, both boundary
conditions required by physics at a smooth wall must be enforced on the turbulent kinetic energy. The near-
wall behaviors developed from the differential equations are perfectly valid equations for ¢ and w near the
wall. However, it is incorrect to refer to these expressions as boundary conditions because they are derived
directly from the differential equations. It is emphasized yet again that a boundary condition can never be
developed from the differential equations themselves. A boundary condition is a condition that is imposed
on the differential equations.

The algorithms commonly used to solve turbulence models are based on finite-difference or finite-
volume CFD methods which attempt to minimize the error in a solution. These algorithms do not ensure
that a unique solution has been found, nor do they ensure that a solution exists. This is likely the reason that
solutions to traditional models have been obtained for years even when the correct boundary conditions
have not been fully implemented. Even if a CFD algorithm converges to a solution near the correct solution
without enforcing the correct boundary conditions, this is no excuse for not implementing the correct
physically based boundary conditions for smooth walls.

The discussion of smooth-wall boundary conditions included here has focused on traditional models.
Evaluating the performance of the Phillips energy-vorticity model in the presence of a smooth wall brings

even more insight into the physics of turbulence near a perfectly smooth wall.
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CHAPTER 6
PHILLIPS TWO-EQUATION MODEL CHARACTERISTICS
I. Introduction

Phillips has proposed several closure methods for his energy-vorticity model and a few of these are
included in Chapter 2. Here we consider two closure methods and focus on their near-wall behavior for
perfectly smooth walls. The near-wall behavior of any turbulence model is an important property of the
model because this behavior determines the model prediction for the wall shear stress as well as the heat
transfer at a wall. Traditionally, turbulence models have been developed for the case of perfectly smooth
walls, and a select few have subsequently been modified to model rough walls. Because it is customary to
evaluate the performance of a turbulence model for smooth walls before considering rough walls, the near-
wall behavior of Phillips’s energy-vorticity model was considered for perfectly smooth walls. This analysis
presents interesting insight into the difference between smooth wall and rough wall turbulence

characteristics.
II. RMS Turbulent Vorticity Closure: A k-@ Model

The Phillips energy-vorticity turbulence model could be closed as an RMS turbulent vorticity model,
or k- model, including an expression for the kinematic eddy viscosity
v,=C, kjo (6.1)
the turbulent-kinetic-energy equation

K V-V =20 8(V)-SV) - V(aN)z + AV _4v V. [v,§(V)]})
ot 3 (6.2)

£ V0 4y, Jo OV R -2V (v +v, o)V v ST

and a model version for the RMS-fluctuating-vorticity transport equation
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00 N NE =20, L8V)-SV) - Cmvﬁ(a2 + V% —av. v ~[v,§(V)]})
ot k k 3 (6.3)

+CsV (v +v,/05)V o] —Cm%V AW+, /o )V [V SV}

When the gradients in the flow are normal to the mean flow velocity vector, these equations can be
greatly simplified. This simplified formulation is a good approximation for boundary layer flows, and holds
exactly for fully developed flow in a pipe or channel. Applying this simplification gives what will be called

the Phillips boundary-layer flow k-@ model

v,=C, kl@
% +(V-V)k=2v8(V) - SV) V(@ + V2 h)+ V(v +v, /o )V A (6.4)
‘36—‘;’+V~v5 =20, %§(‘).§(V)— Cazv%(ﬁz +AV) + CoyV (v 41, [V ]

This model addresses several of the concerns with current turbulence modeling techniques discussed in
Chapter 2. The correct smooth-wall boundary conditions can be used on the model, the turbulent kinetic
energy equation alleviates a few of the concerns associated with the definition of dissipation, and the length
scale is that associated with the energy-bearing eddies. In fact, this model alleviates all of the concerns
mentioned at the beginning of Chapter 2 except for those numbered 7 and 8. The rough-wall characteristics
of this model (Concern #8) is addressed in a later chapter, but will not be included in this section. The
major concern with this formulation is that the RMS-fluctuating-vorticity transport equation given in Eq.
(6.3) is no more rigorously derived than the second differential transport equations used in traditional
models (Concern #7). Equation (6.3) was developed by analogy to Eq. (6.2) and was not derived rigorously
from physical phenomenon. Such a method for developing transport equations for €, @, or { is commonly
used in other two-equation turbulence models. However, this differential equation is likely an improvement
over those equations used in other models because it can be expected that the transport of RMS fluctuating
vorticity could be modeled using a differential transport equation. Dissipation-based models attempt to
model the transport of dissipation with a differential transport equation, which is somewhat absurd because

dissipation is not a transportable property of the flow. On the other hand, the RMS fluctuating vorticity is a
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transportable property, and its transport could possibly be modeled by an equation similar to that given in

Eq. (6.3).

A. Homogeneous, Isotropic Turbulence

Experiments show that the decay of turbulent kinetic energy can be expressed in the form
(6.5)

- C %__ aC
(t+B)? ot (t+B)™!

where a =1.2 £0.25. For the case of decaying homogeneous turbulence, all gradients in the flow are zero,

and the model transport equations reduce to the form
Ok ~2
—=—Vo 6.6
5 (6.6)
00 @’
. _Cv 6.7
ot w2 k ( )
Applying Eq. (6.5) to Eq. (6.6) gives
w= V1/2(t+B)(a+1)/2 > dr - 2‘/1/2(t_’_B)(a+3)/2 :
Using Egs. (6.5) and (6.8) in Eq. (6.7) gives
a+1
Can = (6.9)
2a

Using a =1.2 gives an initial estimate of C;, = 0.92.

B. Smooth-Wall Behavior
The model can be written in Cartesian coordinates for steady, fully developed channel flow including

the continuity, RANS, turbulent-kinetic-energy, and RMS-turbulent-vorticity equations as

i (V+ Vt) ﬂ :l@
dy 7} p dx
(v sa)| () J e 4d (dk (6.10)
dy o, \3dy "\ ay 3dy\ dy
~ ~ = \2 ~
d (_](C d_wj _c, tﬁ(ﬂ) e ® 5z+ii(%J
o5 dy k\ dy k 3dv\ ay
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with boundary conditions

no=0. k=0, %o-0 Prgymo Egyooo Pg-0 @11
’ dy dy dy dy
where L is the channel half-width. Applying the nondimensional definitions
v, ko ., @ L dp
y+EM1y, ut=2x, V+Eﬁ, k+E—2, a)+Ea)_;/’ R = ur’ p+EL3_P (6.12)
14 u, 14 u; u; 14 pu; dx

= P
fy
2
_d K e 3] 352 4 d [ dk (6.13)
a |\ o \dv* slavt ) |5 5ay dy*
2

_d |y, v Y dat )| Cla(di") Cpa” 4Csm o d (dk’
dyjL 0-5 dy+ C53 dy+ Ca~)3 kjL 3C53 kjL derkder

with boundary conditions

+ + + ~
=0, KO=0, * =0,  ®)=0, % (r)=0, 2 (r)=0 (6.14)
+ dy+ dy+ dy+

Near the channel wall, the Boussinesq-RANS equations reduce to the differential equation

(v+v,)an =u? (6.15)
oy

T
or in nondimensional form,

N
ou _q

1+ = (6.16)

As y* = 0,v* <<1,and du*/dy* — 1 and the k and @ equations can be simplified to

27+ ) +
Tk 3530, X
dy*

2~+ ~ 3
do _Cpo 4G

w2

(6.17)
@ d*kT C,Cy

. Cas k' 3Ca k' g Ca

The leading-order term in the Taylor series expansion of the solution at the wall can be expressed for the

two transport variables as
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KO = Ay e, k= day e K = daga—1)y* T e 6.18)
~ b ! b sy b- )
G =B+, @ =Bbyt 4o, @ =Bb(b—1)y" 4
where the prime represents differentiation with respect to y*. Using Eq. (6.18) in Eq. (6.17) gives
— +a
da(a—-1)y* " =382 _3¢0, W .
By" (6.19)
Bb(b—1)y" 2 = oz B_3y+3b"’ + 3% paa—ny' ™ - Sl
Cas 4 3Ca Ca3
Equating the exponents gives
a-2=2b=a-b (6.20)
which can be solved to yield
a=6, b=2 (6.21)
Using this in Eq. (6.19) gives the relations
4= B* Co(Ca1=Cin)’
10B+C,  8(25C5, — Cs3)*(5C +20C, — Cay) (6.22)
C, G —-Ca
2 (25C5 - C3)
Using Egs. (6.21) and (6.22) in (6.18) gives the leading order terms
()= G (Ca —Can)’ N
8(25C; ~ Cs)* (5C1 +20C; — C) 6.23)
g)+(y+):&_cﬁ —Con +2+

2 (25C5,-C53)
From this solution, the leading order relationship for the nondimensional turbulent eddy viscosity can be

expressed as

S Co(Can = Can)’ o
Y&t A25C5 —Ca)(5C5 +20C5, — Caz)

+oee (6.24)

4
Equation (6.24) shows that the turbulent eddy viscosity approaches the wall as y™ .
Prandtl’s mixing length theory suggests that the eddy viscosity can be written in terms of a mixing

length, ¢, which can be used in Eq. (6.15) to give
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(V+€2%]%:uf (6.25)
or in nondimensional form
+ +
(1 ro ‘2”+ J Z”+ 1 (6.26)
Y Y

where ¢ = (u, /v. Van Driest [88] proposed a near-wall empirical correlation for the mixing length which
matches experimental data very well

0" =1 I —exp(-y" [ 4")] (627)
where « is the von Karman constant, generally accepted to be 0.41, and A™ is a constant that depends on

the wall roughness. For a smooth wall, A" is about 26. Using this along with Eq. (6.26) gives the Van

Driest expression for the turbulent eddy viscosity

ou”

T M R T (6.28)
ot ot '

As y© =0, 6u+/6y+ — 1, and the near-wall expansion of Eq. (6.28) simplifies to

pr=t (6.29)

4
Therefore, the Van Driest equation also suggests that the eddy viscosity approaches the wall as y™* .

Equating the constants in Eqs. (6.24) and (6.29) provides a relation for estimating closure coefficients

C = p K [(25Cs = Co)(5Cs +20C5 — )]
v
4 ICa1 — Caa

(6.30)

Note that the product within the radical in the numerator must be positive. This can be accomplished in one

of four ways:

1) Cz >Cs, and Cz3 <25C;,
or
2) Cy > Cx, and Cy3>5C5, +20C5,
or (6.31)
3) C; <Cpy, and Cyy <5C5 +20C5,
or
4) Cz <Cz, and Cz3 >25C;,
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These constraints are further confined by the constraint that 4 and B in Eq. (6.22) must both be positive. By
inspection, if B is positive, 4 must also be positive. Therefore the constraints apply

1) C > CﬁZ and Ca3 <25C52

or (6.32)
2) C(T)l < C(T)Z and C;ﬁ > 25C0~)2

ol

These are the true constraints for the coefficients because these constraints are more confining than those in
Eq. (6.31).

It is important to note that if the constraints given in Eq. (6.32) are adhered to, this &~@ model predicts
that k£ approaches the wall as y6 and @ approaches the wall as yz. This differs from the traditional
dissipation-based turbulence models, which predict that & approaches the wall as yz. Note, however, that
both dissipation-based models and this model predict that the turbulent eddy viscosity approaches the wall
as y4. Because k is a turbulence quantity that can be measured experimentally, it may be insightful to
consider how each of these predictions for k& compares with the physics of the flow. It is commonly
accepted that k£ approaches a smooth wall as y2 for two main reasons. First, it can be shown analytically
that the lowest order at which & could approach a smooth wall is y2. Second, experimental data seems to
support this y2 claim. Each of these seeming supporting evidences is discussed here.

It can be shown analytically that it is possible for k to approach a smooth wall as y2. This is
commonly shown by first acknowledging that the fluctuating velocities must be zero at a smooth wall, just
as the average velocities go to zero. In other words, at a no-slip wall I7x = I7y = I7z =0 just as

Vi =V, =V, =0. The continuity equation for the fluctuating velocities can be written as

v A (6.33)
dx dy dz

If y is the ordinate normal to the wall and x and z lie in the plane of the wall, gradients with respect to x and

z will be much smaller than gradients with respect to y and the continuity equation can be simplified to

—2X=0 (6.34)
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Therefore, the Taylor series expansion for each of the velocity fluctuation terms near the wall is assumed to
take the form
Ve=felxy.2)y+ 00

V,=f,(x,9,2)y" +0() (6.35)
V.= f.(x,0,2)y+0(")

where f,, f,, and f, satisfy the governing equations of fluid motion and have an ensemble average of
zero. Using these Taylor series expansions in the definition for the turbulent kinetic energy gives a near-
wall approximation for k&

kzg(ﬁﬁ_fﬁ_f):%(EJrEjyz+0(y3) (6.36)
which shows that the leading-order term is proportional to y2 . The oversight of this analysis is that it does
not prove that k£ must approach the wall as yz. This analysis shows that it must approach the wall at a
power of y of at least two but it does not show that it can’t approach the wall at a higher power of y. In
other words, this analysis puts a lower bound on the power of y but does not provide an upper bound.
Therefore, k could approach a smooth wall as a higher power, although it could not approach a smooth wall
as a lower power.

Some have cited experimental data that suggest that k approaches a wall as yz. The difficulty in
justifying this asymptotic behavior of k on experimental data is twofold. First, it is difficult to get accurate
measurements of the fluctuating components of velocity near a wall. Because of the nature of conducting
experiments extremely close to a wall and the size of the instruments required for such measurements, very
near-wall measurements for the fluctuating components of velocity are extremely difficult to obtain, and
measurements are susceptible to considerable error. In order to claim near-wall asymptotic behavior,
accurate measurements would be needed for y* << 1. However, such data is virtually non-existent in the
literature. For example, Laufer [57,60] published results down to y* =1, Metzger and Klewicki [89]
published results down to y* =1, and Marusic, McKeon, Molnkewitz, Nagib, Smits, and Sreenivasan [90]
published results down to y* = 7. Second, although the experimental results that have been obtained are

often reported as “smooth-wall” measurements, no measurements have ever been conducted on a perfectly
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smooth wall. Those that report “smooth-wall measurements” generally mean “hydraulically smooth-wall
measurements” for which it is assumed that roughness effects are negligible. It is true that roughness effects
decay asymptotically as the wall roughness height approaches zero, and therefore, “hydraulically smooth”
is a perfectly valid term for this region of wall roughness. However, although the fluctuating components of
velocity become very small at a hydraulically smooth surface, they only go to exactly zero at a perfectly
smooth surface. Therefore, the turbulent kinetic energy, k, cannot be exactly zero at a surface unless that
surface is a perfectly smooth surface. Because no physical surface is perfectly smooth, although k& may be
very small at a hydraulically smooth surface, it must be a nonzero constant for every physical experiment
ever conducted.

Based on the discussion presented here, it is the opinion of the author that there is insufficient evidence
to claim that k approaches the wall as y? for a perfectly smooth surface. The behavior of k near a smooth
wall as predicted by this k&-@ model is just as plausible as the behavior of & predicted by dissipation-based
models. More insight into the near-wall behavior of k can be gleaned from examining a system of equations
that is analogous to this k&-@ model.

Before continuing this discussion, it may be worth mentioning that if the near-wall solution of this
model is to be numerically evaluated, a sixth-order algorithm must be used in order to capture the correct
behavior of k. Most CFD algorithms in use today are second-order accurate and would therefore be
incapable of correctly implementing this model. Traditional dissipation-based turbulence models show that
k approaches the wall as y*, and therefore, second-order CFD implementations are capable of capturing

the near-wall behavior of k for such models.

C. A Closed-Form Analog
Much can be learned about the behavior of the system of equations given in Eq. (6.13) by studying a

system of equations that has similar characteristics in the limit as y — 0. Consider the system of equations

2 2 2 2~ 2
du_ Ak e 4O pldu) g (6.37)
dy* dy? Y ay : dy? dy
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where 4,, 4,, B;, and B, are the model constants. The boundary conditions that are analogous to the fully

developed channel or pipe flow boundary conditions are
w0=0, k0=0. Lo=0, Lp-o, Lm-o, Lp-o (6.38)
dy dy dy dy

We wish to determine constants for this system of equations such that this system has similar near-wall
behavior as the k-@ model given in Eq. (6.13). Integrating the u equation and applying the boundary

conditions #(0) = 0 and du/dy (1) =0 gives

2
y du

-  ==1- 6.39

u=y 5 3 y ( )

Integrating the @ equation and using the solution for u gives

40 _ B 5y By + (B, - By + G (6.40)
dy 3

Applying the boundary condition dw/dy (1) = 0 gives
C =-L_B, (6.41)
We wish the solution for @ to have a lowest order of yz. This requires
B, =3B, (6.42)
Using this relation and integrating again gives
aN):—%BZy4+BZy3—y2+C2 (6.43)

Squaring @ and using it in the k equation gives

dzk_lAstlABz7 1A32 2 6( 2 )5
—5 = hBy By | - ABy + By — Ay |y +\-24,B5 +24, )y
dy” 48 2 2 (6.44)
+(—%AZBZC2 +4,B3 — 4, jy4 +24,CyB,y* —24,CyByy* + 4,C3
Integrating gives
d_ 1 gy Lapys ML p2i a4 y7+l(—2AzB§+2Al)y6
dy 432 16 702 6 (6.45)

+ %(—%AZBQCZ + A,B — 4, )yS + % A,C,B,y* —§A2C2B2y3 +4,C3y+Cy
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Applying the boundary condition dk/dy (0) = 0 gives
C;=0 (6.46)
Applying the boundary condition dk/dy (1) =0 gives
7 4,

C, = 6.47
2 %0 (6.47)

1/2
12B, + {1441922 - 18()(5 B3 —3AIH

Because we wish the solution for @ to have a lowest order of y?, the relation

12
12B, + {144322 - 180{3 B2 - 3/‘1]}

74
C,=0= 2 (6.48)
90
must hold. This is possible only if
34
B:=211L 6.49
P-4 (6.49)

However, this condition is not sufficient to force C, = 0. Even if the condition in Eq. (6.49) is met, there are

two solutions for C,

C,=0, or C,= %Bz (6.50)

Using the solution C, =0 in Eq. (6.45) and integrating gives

k= : A2322y10 —LAszz)’9 +L(1A2322 +A2322 —Aljys

144 56\ 2

6.51)
+ %(— 24,B3 + 24, )y7 + 31—0(—%A232C2 +A,B3 — 4, jyé +C,
Applying the boundary condition £(0) = 0 gives
C,=0 (6.52)
Choosing
A4, =-8, Ay=-3, B =-3, B,=-1 (6.53)

gives the system of equations

2 2 2 2~ 2
du_ ﬁ:sy‘[ﬂj 332, d_wzg[ﬂj 1 (6.54)
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with the solution

y2

M:y—7
16 5 7 lg 19 1 10

h=—y"—— T4 — 84—y (6.55)
67 217 167 T48” "4s0”

~ 2 3.1 4

G=y -y +—

y -y 4J/

However, this is not a unique solution. Using the second solution from Eq. (6.50), C, =4B,/15=-4/15
gives

2

y
U=y—-—
Y7
8 2.2 4 2 5.9 ¢ 5 7. 1 g 1 49 1 1
k= =yt -y e Ty Ty (6.56)
757 T157 T25Y Ts0Y T21Y "6 Tag? T1aa0”
~ 4 5 3.1 4
D=y’ =y +—
5 Y YTy

Thus, the system of differential equations has two solutions, and a computer algorithm may tend to favor
one solution over the other. Note that the solution in Eq. (6.56) results in negative values for k and @ near
the wall. A similar anomaly may be exhibited by the system of equations given in Eq. (6.13). However, the
correct solution to that system cannot have negative values for k or @. Therefore, only one viable solution
should exist for that system of equations even if it also exhibits the characteristic of having a higher-order
solution that is positive across the entire domain and a lower-order solution that is negative over some
portion of the domain.

Note that the relationship between the closure coefficients given in Egs. (6.42) and (6.49) are vital to
creating a system of equations that exhibits the correct asymptotic behavior near a smooth wall. A similar

characteristic here can also observed in Eq. (6.23) for the k&-@ model. For example, if Cj;, = C;,, the order

2>
at which k& and @ approach the wall changes. Therefore, just like this closed-form example, the near-wall
results of the k- turbulence model are sensitive to the closure coefficients chosen for the model.

Using an eighth-order finite-difference algorithm, the system of equations given in Eq. (6.54) with

boundary conditions given in Eq. (6.38) was solved. The algorithm employs successive under-relaxation in

an iterative manner until convergence was reached. In order to ensure that the solution given in Eq. (6.55)
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was obtained rather than that in Eq. (6.56), the solutions for £ and @ were limited to positive numbers
following each iteration. Uniform grid spacing was used for grids with 51, 101, and 201 nodes. The results
for k and @ are shown in Figs. 6.1 and 6.2.

The results are shown here on log-log plots so that the near-wall asymptotic behavior of k and @
can be observed. The exact solution given in Eq. (6.55) is included to demonstrate that the eighth-order
algorithm used for the solution procedure is capable of capturing the high-order phenomenon near the wall.
Note that even with a relatively coarse grid, the algorithm is capable of solving for the near-wall behavior
of the solution. Similar near-wall behavior would be expected for the solution of the k-@ model, and
therefore a high-order algorithm similar to that used for this solution would be needed to solve the k-@
model in the presence of a perfectly smooth wall. High-order characteristics of the Phillips energy-vorticity
model near a perfectly smooth wall are exhibited even with other closure methods. Another promising

closure method, the k- model, is included here.

1072
1074+
10°%
1078
k
10710 +
1072+
51 s
10—14 101 5 i
: 201 o
~16 . - kexact - .
10 2 1 0
10~ 10~ 10

y

Fig. 6.1 Numerical solution for & in the closed-form analog to the k-@ model.
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Fig. 6.2 Numerical solution for @ in the closed-form analog to the k- model.

III. Enstrophy Closure: A k- Model

The Phillips energy-vorticity turbulence model could be closed as an energy-enstrophy model, or k-&

model, including an expression for the kinematic eddy viscosity

v=CHINE 657)

the turbulent-kinetic-energy equation

%k (V V) =2v,5(V)-S(V) - v(g +AV% -4V v -[v,§(V)]})
o ) (6.58)
+ V(v +v, o)V R =2V - {(v +v, /o, )V [V S(V)]}
and a model version for the enstrophy transport equation
% V= 20, £3(V)-8(v)- cgzvi(/; + AV _av.v -[v,§(V)]})
ot k [AE (659

+CpV [(v+v,/o)VE] -Cg4%V'{(VJth/Gk)V'[Vfg(V)]}

Applying the assumption that the gradients in the flow are normal to the mean flow velocity vector

gives what will be called the Phillips boundary-layer flow £-¢ model



v, =C, k/\J¢

Ok

% +V.VE =20y, %é(V) S(V) - ngv%(g + AV £ CpV [+, Jo, V]

S (VVk= 2, SV)-SWV) V(& + 4V + V- [(v +v, /o )V R
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(6.60)

Again, this model alleviates all of the concerns mentioned in Chapter 2, except concerns number 7 and 8.

The second transport equation used in this model is, again, not derived rigorously from physical

phenomenon. However, because enstrophy is a transport property, it can be expected that its transport could

be modeled in a form similar to that given in Eq. (6.59). This closure method will be considered here in

terms of its behavior near a perfectly smooth wall but could be extended to rough walls at a later date.

A. Homogeneous, Isotropic Turbulence

For the case of decaying homogeneous turbulence, all gradients in the flow are zero, and the model

transport equations reduce to the form

ok
—_— _V
ot ¢

o¢ ¢

% - v

ot 2k

Applying Eq. (6.5) to Eq. (6.61) gives
aC £ __aC(a+])

Using Egs. (6.5) and (6.63) in Eq. (6.62) gives
C{Z =a+1

Using a =1.2 gives the initial estimate C,, =2.2.

B. Smooth-Wall Behavior

ve+ B dt v+ B)*?

(6.61)

(6.62)

(6.63)

(6.64)

The model can be written in Cartesian coordinates for steady, fully developed channel flow including

the continuity, RANS, turbulent-kinetic-energy, and RMS-turbulent-vorticity equations as



117
i[(v +v, )( 4 H = l@

dy dy

—\2
iH +LJ[§£H _ Vt[d J _{; +ii(%ﬂ (6:65)
dy o, \3dy dy 3dy\dy
Al Ve e (av,
dy HV ’ o, J[Cﬁ dy ﬂ Cav [

2
X — ngl/i é’ +ii ﬁ
dy k 3dy\ dy
with boundary conditions

=

7.(0) = _o. *oy—0, Teqy-o, FEpy-o K-
=0 kKO0 TH0)=0,  TEW=0 ZHH=0 TH(1)=0

Applying the nondimensional definitions given in Eq. (6.12) along with the definition

(6.66)
_o
= - (6.67)
uT
the model equations for fully developed flow can be written as

v’ =Cv k+/\/§—+’ d+ I:(l+v+)(du+ ]:|=p+
dy dy*

+ + +3?

_d HI+V—Idk ﬂ:lﬁi{du ] 3[4”*+i

dy+ Oy dy+ 3

4
-= d_| dk (6.68)
S\ dy* 5 dy\ vt
2
+ + CcC +
_L 1+V dg _ v };4— du
| o Na” Css dy*
with boundary conditions

_C§2§_+ é’++i d dk+
C§3 k+ 3 dy+ dy+
=0, KFO=0, % =0, " (r)-0, * (r)-=0, %
a’y+ dy+ afy+

(R,)=0 (6.69)
day*
The leading-order solutions for k™ and ¢ can be helpful in evaluating closure coefficients. The

leading-order term in the Taylor series expansion of the solution at the wall can be expressed for the two
transport variables as

= Aay

La-1

R o

+ 0( y+“), = daa-1)yt T + O(y+a_l)

N =B O(y*M ) ¢ =Bhy O(y*b), o = Bbb-1y*" 10| vt

L (6.70)
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where the prime represents differentiation with respect to y*. Near the channel wall, y* — 0,

du”® / dy* —1,and v << 1, and the k and ¢ equations can be simplified to

27 + +
R ~3p 30,4

=
vt +
Y i Ve (6.71)
A0 _Cog" 4Co M d’ CCa =
& Co b 3CHk g Co

Using the leading-order terms from Eq. (6.70) in Eq. (6.71) gives

— +a
data-1)y*" " =38 _3C, %
B +
. , Y (6.72)
Bb(b—l)y+b72 _ Csy B2y* . 4Cry By* Aa(a—l)y+a72 _CGCy B'/2y+b/2
Coz gyt 3Cs gt Ces
Equating the exponents gives
a-2=b=a-b/2 (6.73)
b-2=2b-a=b/2
which can be solved to give
a=6, b=4 (6.74)
Using this in Eq. (6.72) gives the relations
C2
= 14 2
Ro (R —10) 6.75)
__ G
(Rc—10)°
where
g, = 4080 ~12C;3 +10C,) 6.76)
(Ca=Cp2)
Using Eqgs. (6.75) and (6.76) in (6.70) gives the leading order terms
k(7)) = C—szé + 0@”)
Re(Re —10)?
(6.77)

Cc? 4 5
Tt = v + I +
g ) —(Rc_lo)zy + (y j
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Note that this form of the energy-vorticity model also predicts that k approaches a perfectly smooth wall as
»°. From this solution, the leading order relationship for the nondimensional turbulent eddy viscosity can

be expressed as

vt=C K C‘% +

"Jo ReRe-10)”

Equation (6.78) shows that the turbulent eddy viscosity approaches the wall as a constant multiplied by

(6.78)

4
y*, just as the Van Driest equation suggests. Equating the constants in Egs. (6.78) and (6.29) provides a

relation for estimating closure coefficients

c, :%1/RC(RC ~10) (6.79)

The near-wall behavior of this model can perhaps be better understood by considering a closed-form

system of equations that is analogous to this turbulence model.
C. A Closed-Form Analog

1. Perfectly Smooth Wall

Consider the three second-order differential equations that are analogous to Eq. (6.68)

d’u d’k o duY d*¢ o duY )
—=-1, —=-C — | +C¢, —=-C — | +C (6.80)
dyz dyz Kny dy 28 dy2 a1y dy o2y
These equations are similar to the k- turbulence model and require six boundary conditions to ensure a

unique solution. In keeping with the similarity of the turbulence model, let us apply the following boundary

conditions
w=0, k0=0, Foy=0, Mamy-0, Ka-o, =0 (6.81)
dy dy dy dy

This can be analytically integrated to yield
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u=y—7
1 CioCei ) 5 1 [ Cily 7 1 [ Ca(Cry—Cy) 6
PR Pl U e TN YoMl L S et SR LY
56( a0 a2 o w30 12 ap
(6.82)
C., C
+% S N ) y3+% Li_LCé’l"-iC{Z y2
6 |30 3 2 (105¢,, 84 <720
C C (Crr=Cr) 4 (Ca C 1 Gy 1 3
¢l .6 ¢l s g2 cU 4 9! g2 k1
=0 e et eyt e ety M+ —C
T30 T 27 (30 3) 105C, 84 ¢ 20 ¢

If we desire a solution where ¢ approaches the wall as y* and k approaches the wall as »°, the relations
must hold

4 C
c.,=10C,,, C,,=———kL 6.83
¢l 2 2 13 Gy, ( )

From this we see that the constants must be related not only to each other in the { equation, but the
constants between the two transport equations must also be related if a solution is desired that matches the
near-wall behavior of the k.- model. This can also be shown through a near-wall order analysis as follows.

Beginning with the equations

du Ak du ) d? dau )’
i b R e ) R

Integrating the u-equation and applying the boundary condition du/dy (1) =0 gives the set of equations

du d*k
d_:]_y’ FZ—CHJ"‘”QCMJ’S ~Cy’ +Cial
Y i v (6.85)
d
Wg =(Csr — Cg])yz + 2C§]y3 - C§1y4

Near the wall, these equations have the solution

k()= Ay + Ay + Ay y* +---
$(y)=By+By+Byy* +--- (6.86)
u(y)==C, +C1y+C2y2 +ee

Applying the wall boundary conditions
u(0)=0,  k(0)=0, % 0)=0 (6.87)
Ly

gives the near-wall solution
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k(y)= A2y2 + A3y3 +A4y4 tee
{()=By+By+Byy* +--- (6.88)
u(y)=Cy+ Czyz + C3y3 t+-e

Using Eq. (6.87) in the u-equation and equating exponents gives

(C,+2C,y+--)=1-y>C, =1, sz—% (6.89)
This gives the new near-wall solution
k()= Apy” + Ay’ + Agy* oo
{1 =By+By+Byy* +-: (6.90)
u(y)=y —%yz

with the differential equations

d*k 4 s 6
==Cpy" +2CHy" —Cpy” +Cpl

2

& (6.91)
d’ 2 3 4

W=(C§2—C¢1)y +2CHy" —Cpy

Using Eq. (6.90) in Eq. (6.91) gives

(24, +643y+--) = —Ck]y4 + 2Ck]y5 _Ck1y6 +Ca(By+ By +-+)

) ; A (6.92)
(2B, +6B3y+-)=(Cry =Cp)y™ +2Cs1y" = Cpry
This yields

AZ:%BO, A3:%Bl, B,=0, B;=0 (6.93)

and gives the near-wall solution

C C
k :ﬁB 2+£B 3+A 4+...

») 5 0V 6 1Y 4y (6.94)

C(y)=By+ By +Byy* 4
Repeating this process will never tell us anything about B, and B, . However, the process can be repeated
to yield
(CpyBy + CpaBy +124,9% +2045° +30A4sy" +424,y° +5645y° +---) =

—Cuy* +2Cy° = Cy® +Cy(By + By + Byy* + Bsy® + Bey® +--9) (6.95)
(12B,y* +20Bsy’ +30Bgy* +--) = (Cpy = Cp)y* +2C1y° = Cp*
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This gives

Cir(Cry —C Ci,C
A, =0, A5 =0, A6=i(w—ckl} A7:%[2Ck1+MJ

30 12 10
c,,C
Agz—l Co+—22L\ 4, =0 (6.96)
56 30
B :—(Cﬂ_cﬂ) B :& B :_& B =0
4 I T

with the solution

6 30 12

1 Ckzcg1 . 1 Cszéwl g
+— 2C,; + ——— ——| Cpy +——— 6.97
42[ k1 Y k1 30 y ( )

(Céwz —Cgl)y4 +& 5 _&yé
12 10 30

C C 1 [ Cra(Cpry =Cpy)
k() ==E2Boy? +=£2 B,* +—[M—Ck1 »°

The final two constants, B, and B, are found by applying the two boundary conditions at the centerline
*ay=0, Lay=o (6.98)
dy dy

Taking the first derivative of Eq. (6.97) and applying Eq. (6.98) gives

1 c, 1 3

= —Cp +
105C,, 8 °' 20 *

0

(6.99)
B_l &—C
"3l ¢
which gives the complete solution
2
y
U=y——
)
Ch( 1 C 1 3 Cir [ Car
k=—k2| - =k _ o L2 (C 2 k2| Zel o 3
2(105@2 g4 <1720 2F TTg 0 )
(6.100)
1 ( Cia(Cpy =Cyy) 6 1 CixCa) 7 1 CiaCri ) g
b | 22 U o o e —| 20, + ——|Cy+
30( 12 S 7] e T 7] G
1 Gy 1 3 1 C (C2=C) 4 Ca s Ca s
=——% ——CH+—Cpy+—|—=—-C ==y -2
$=l0sC, st 3(10 e ) 2 2 "0 T30

Again we find that if we desire a solution where ¢ approaches the wall as y4 and k approaches the wall as

y6, the relations given in Eq. (6.83) must hold. It is interesting to note also that the same set of closure
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coefficients that would cause k to approach the wall at a different power also cause ¢ to approach the wall
at a different power. As was the case with the previous closed-form system of equations given in Eq.
(6.37), the behavior of this closed-form system can be very sensitive to the closure coefficients chosen for
the model. Changing the closure coefficients can change the fundamental characteristics of the model near

the wall.

2. Rough Wall
An alternate solution to this system of equations can be developed by applying a different set of
boundary conditions that may be more appropriate for a rough-wall turbulence model. Such an exercise
may provide insight into the behavior of the k- model for rough walls. Consider the three second-order
differential equations
d—2”=—1 d—zkz—c y“[ﬂ]z +Cpl "2—5:—0 yz[ﬂf +Cryy? (6.101)
e > P w7 k25> e A% 22
Again, these equations require six boundary conditions to ensure a unique solution. In keeping with the

similarity of a rough-wall turbulence model, let us apply the following boundary conditions
W0)=0,  kO)=ky (O=(n  Hm=0, Ea=o, Lm=0 (6102
dy dy dy

This system can be solved to yield

y
Uu=y——
75
1 CioCri ] 5, 1 [Cly 7 1 ([ Cra(Cra =Cy) 6
k=——|Cy+ +— +2C, |V = 222 U ¢
56[ “T30 T o S T 12 ap
(6.103)
Cin [ Car 3, Cbo 2 1 Gy 1 3
T P Lo +Cpa| ==K —Cpy +—Cpy =&y [y + K
18(10 o T el s, Taa TG T

C c (Cor=Co) 4 1(C
a6 Ca s (Cou=-Ch) 2
el el Sy nmer el A el v+
$=730Y 0 27 3(10 ij S

This solution differs from that given in Eq. (6.100) only by the boundary conditions that were applied.

For the smooth-wall solution given in Eq. (6.100), two boundary conditions were applied to the k equation
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at the wall, and none were applied to the ¢ equation at the wall. If the second boundary condition is
removed on k in favor of a wall boundary condition for £, the solution shown in Eq. (6.103) results.

Expressing the solution in the form shown in Eq. (6.103) allows some interesting characteristics of the
solution to be observed. For example, it can be seen that even if &, = 0 and £, =0, certain combinations of
closure coefficients can cause the solutions for k£ and § to approach the wall at various powers of y. If a
solution is desired that is analogous to the system of equations given in Eq. (6.68) near a perfectly smooth

wall, the relations must hold exactly

ko=0, £4=0, Cy=10Csy, Csy= 4G (6.104)
13 Cy,

Additionally if the closure coefficients are chosen to satisfy Eq. (6.83), any nonzero value for ¢, results in a
solution for k that has components proportional to y' and y?. Thus we see that the solution of these
equations near a perfectly smooth wall is sensitive to the closure coefficients chosen for the model. On the
other hand, for rough walls, k, # 0 and ¢, # 0, and the solution very near a wall becomes less sensitive to
the closure coefficients. If this behavior is indicative of the behavior of the k- model for rough walls, it
may be beneficial to study the £~ model in the presence of rough walls before attempting to develop the

model coefficients for perfectly smooth walls.

IV. Summary and Conclusions

Two formulations of Phillips energy-vorticity model have been discussed in this chapter. These include
the k- and k- formulations which each address all the concerns presented at the beginning of Chapter 2
except for concerns numbered 7 and 8. Both of these formulations predict that & approaches the wall as y°,
which goes against mainstream acceptance that & should approach a smooth wall as y2. It has been shown
that the analysis and experimental data often cited in support of this mainstream assertion is insufficient to
prove the y* behavior, and therefore, these models could give insight into the true behavior of k near a

perfectly smooth wall.
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Two closed-form systems of equations that are analogous to the turbulence model formulations were
also presented in this chapter. These closed-form solutions exhibit behaviors that suggest why solutions to
the k- and k-¢ models for perfectly smooth walls may be difficult to obtain. It has been shown that
multiple solutions exist for the closed-form analog to the k~-@ model and that solutions to both closed-form
systems can be highly sensitive to the closure coefficients chosen. These closure coefficients can determine
the order at which the models approach a perfectly smooth wall. Additionally, application of boundary
conditions similar to those that would be used at a rough wall may alleviate some of the difficulties
associated with the turbulence models near a wall.

Because this near-wall region for the turbulence models presented in this chapter seem to be highly
sensitive to closure coefficients and can even be sensitive to solution algorithms, the work from this point
on focuses on the behavior of turbulence models in the presence of rough walls rather than perfectly
smooth walls. Such an approach will address Concern #8 mentioned in Chapter 2. The analysis in this
chapter suggests that developing a turbulence model for rough walls and extending it to hydraulically
smooth walls by looking at its asymptotic behavior as k, — 0 may be more straight forward than
developing a turbulence model for perfectly smooth walls and extending the model to handle surface
roughness. Extending this concept one step further, it may make even more sense to develop a turbulence
model for high roughness Reynolds numbers where certain flow properties become independent of
roughness Reynolds number (as shown in Fig. 2.1) and extend the model to lower roughness Reynolds
numbers as the model matures. This is the philosophy pursued in the following chapter where a turbulence

model for fully rough pipe flow is presented that is based on the Phillips energy-vorticity model.
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CHAPTER 7

DEVELOPMENT OF THE PHILLIPS k-4 MODEL FOR FULLY ROUGH PIPE FLOW

I. Introduction

It has been shown in previous chapters that modeling turbulent behavior near perfectly smooth walls
can present significant numerical difficulties. Additionally, because there is no such thing as a perfectly
smooth wall, all experimental data available has been taken near walls with some degree of roughness.
Furthermore, because certain flow properties become independent of roughness Reynolds number at high
roughness Reynolds numbers, the argument has been made that developing a model for fully rough flow
may be more straight forward than developing a model that exhibits the correct behavior near a perfectly
smooth wall. Such a model could then be extended to lower roughness Reynolds numbers, perhaps even to
the hydraulically smooth wall asymptote. The first step in this process is to develop a turbulence model that
is consistent for high roughness Reynolds numbers.

Many wall-bounded flows including channel, boundary layer, and pipe flows have been used to
evaluate the effects of surface roughness. However, fully developed flow in a pipe has historically been the
foundational case and has been studied in great detail. This flow scenario makes an ideal case for
evaluating the effects of surface roughness because the bulk flow properties such as the mass flow rate and
wall shear stress are easily measured in an experimental setting. A wealth of experimental data exists for a
range of wall roughness values from which empirical relations have been developed. Because flow in a
pipe is so well understood and established, any viable turbulence model should be capable of predicting the
bulk flow properties for this flow scenario. This scenario was chosen as the beginning point in the
development of the Phillips k-4 model. The following sections present an overview of some of the
fundamental work on rough pipe flow, and conclude with the development of one possible closure for the

Phillips k-4 model.
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II. Rough Pipe Flow

A. Fundamental Relations and Definitions

Fully developed pipe flow is one of the best-understood turbulent flow cases. As flow enters a pipe, a
boundary layer develops along the pipe wall. As the flow moves downstream, the boundary layer
eventually fills the entire pipe, and the flow reaches the fully developed state. In this state, the gradients of
the mean turbulent properties are zero in both the azimuthal and axial directions of the pipe, and the case
can be simplified to a one-dimensional flow as a function of pipe radius. The governing equations for fully
developed flow in a pipe are developed in detail in Appendix C. A few of the most important relations are
included here.

The Boussinesq-RANS equations for fully developed pipe flow can be simplified to a single equation

and the no-slip wall boundary condition

av, __u;

r pu—
TR V.(R)=0 (7.1)

It can be shown that the wall shear stress is related to the pressure drop in the pipe according to

Ty = —,Ll% = _Eﬁ (72)

dr R 2 dz

The pressure drop can easily be measured along the length of a pipe and the wall shear stress directly

computed. The wall shear stress is generally expressed in terms of the Darcy friction factor

Darcy friction factor =4C, = S_TW (7.3)

2
PVouik

where C is the Fanning friction factor also called the skin-friction coefficient and the bulk velocity is

defined as

_ 2 _
Vbulk = F .[R:O Vzrdr (74)
The bulk Reynolds number is defined as

R.= I7bulth/V (7.5)
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where
D, =2R (7.6)
is the hydraulic diameter based on the pipe radius, R. Experimentally, the bulk velocity can be measured

from the mass flow rate or volume flow rate through the pipe. The friction velocity is defined as

u, =4J7,,/p (7.7)
and is commonly used to nondimensionalize many flow properties. The following nondimensional

definitions are useful for pipe flow

A T
r=—, R,
R 1%

= u,(R-r) _ u,R(1-r/R) _

R.(1-7), (7.8)
14 14
. _dp v _2v u? v 2

:Zpug_ ufR uTR_ R,

Using these definitions, the Boussinesq-RANS equation including the no-slip wall boundary condition can

be written in nondimensional forms as

du* R.7 .
== =0
dr 1+ V+) r=1
(7.9)
dt _(-y'JR)
dy”* 1+v") y'=0
and the bulk velocity, bulk Reynolds number, and Darcy friction factor can be expressed as
Upk = Vo Ezfu%lf R, =2uf R, 4C,= 8 (7.10)
! U, S ¢ e / ()’

One of the most well-established properties of fully developed turbulent pipe flow is the relation
between the wall shear stress, the bulk Reynolds number, and the wall roughness. The wall roughness is
commonly characterized in terms of the ratio of the equivalent sand grain roughness to the pipe diameter.

Here we define this ratio as

=
Il
bl

s (7.11)
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This is commonly termed the relative roughness. Modern notation has elected to express the relative
roughness as k, = &/D where ¢ denotes the surface roughness and D is the pipe diameter. Although this
notation has gained popularity and is used in several modern fluid mechanics books, the classical notation
shown in Eq. (7.11) will be used throughout this work to avoid confusion with the notation for dissipation

which is nearly universally given the symbol ¢. The roughness Reynolds number is defined as

i = u kg

=2k, R, (7.12)
14

Equation (7.12) can be rearranged to yield a convenient expression for evaluating the shear Reynolds

number, R,, as a function of the relative roughness and roughness Reynolds number.

R =—% (7.13)

It is easily shown that combining Eqs. (7.10) and (7.12) gives an expression for the roughness Reynolds

number as a function of the relative roughness, Reynolds number, and friction factor

ki =kR . JAC, /8 (7.14)

These terms are used throughout this work, although modern convention deviates somewhat from these

original definitions.

B. Mixing-Length Theory
The foundational theory from which turbulent flow in pipes was originally studied is the mixing-length
theory of Prandtl [22]. This theory is built on a semi-empirical relation that the turbulent eddy viscosity can

be expressed as

v, =1* v (7.15)
dy

where € is called the mixing length. Applying the definitions given in Eq. (7.8) along with v =v, /v and

(" =u l]v,Eq.(7.15) can be written

du”
dr

du®
dy*

o+
RT

2
vt=o¢"

(7.16)




130
The mixing length cannot be measured directly, and therefore is estimated from experimental results for the

velocity profile. Using Eq. (7.16) in Eq. (7.9) gives

(H s

Mixing-length theory formed the foundation for much of the historical work on flows in smooth and rough

du”
dy*

dy+ R y'=0

T

+ +
]d” -1-2 4t =0 (7.17)

pipes. This theory is still respected as a central part of turbulence modeling and will be referred to in the

following pages.

C. The Nikuradse Number
Much of what is understood today about rough pipe flow is based on the foundational research of one
of Ludwig Prandtl’s students, Johann Nikuradse [59], who performed an immense amount of experimental
work on pipes with roughened walls. Nikuradse roughened the walls of several pipes with sand grains of
specific sizes and was careful to minimize the variation in the sand grain size within a given pipe. These
pipes were tested over a range of Reynolds numbers to produce a substantial set of experimental data for
study and correlation. From this set of data, Nikuradse found relations for the eddy viscosity and mixing
length. Near the wall, where measurements for the mixing length are most accurate, Nikuradse found that
the mixing length was a function of both the distance from the wall and the roughness height
C=x(y+yk,) (7.18)
Given values for the two constants x and y, Eq. (7.18) can be used in Eq. (7.17) and integrated to yield a
velocity distribution. However, an analytical solution to this integral does not exist and numerical methods
were not practical at the time of Nikuradse. Therefore, two assumptions were made by Nikuradse to
simplify Eq. (7.17). First, it was assumed that the turbulent eddy viscosity is much greater than the
molecular viscosity over the entire pipe. This will be referred to here as the fully rough flow approximation.
This assumption is generally true in the bulk-flow region of turbulent pipe flow, but is also true near the

wall for fully rough flows. In the near-wall region, y™* /RT is small compared to unity. Applying this
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assumption over the entire flow drastically simplifies the problem, and forms the second assumption

applied by Nikuradse. Applying these two assumptions to Eq. (7.17) yields

N
A Y (7.19)

which is strictly true only in the fully rough near-wall region of the flow. However, applying Eq. (7.18) to
Eq. (7.19) gave an expression that could be analytically integrated to yield a velocity profile. This
expression was then matched to experimental results for the velocity profile to yield the historical values
for the constants x = 0.400 and y =0.0334.

Once the velocity profile was obtained, it could be analytically integrated to yield the bulk velocity.

Using this in Eq. (7.10) gives a relation for the friction factor

4C, =[2.04 log,o(R/ky) +1.68] (7.20)
However, after comparing these results to his experimental results for the friction factor, Nikuradse

suggested altering the coefficients slightly to

4C, =[2.00log(R/k,)+1.74]> (7.21)

Equation (7.21) was later rearranged slightly and written in a form with coefficients accurate to only two

significant digits

)
4C, = {2.010&0[%)} (7.22)

Equation (7.22) forms the foundation of what is understood today about fully rough flows. In fact, it is
commonly used to define a surface roughness. Following the work of Schlichting [91], the equivalent sand-
grain roughness for a set of data is usually defined to be the roughness that satisfies Eq. (7.22) at high
roughness Reynolds numbers.

Using a similar method to the development of Eq. (7.22), Nikuradse developed an expression that

matches the smooth-wall asymptote of the experimental data

\/%f =2.010g10(ReW)—0.8 (7.23)
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Nikuradse plotted his experimental results over a range of roughness Reynolds numbers as a deviation from

Eq. (7.22). Although he left this expression unnamed, it will be called the Nikuradse number in this work

Nikuradse number = N; = 2.Olog1({£j 1 (7.24)

k 4C,

In the fully rough limit, the Nikuradse number is zero. However, in the limit as the roughness approaches
zero, the Nikuradse number approaches a result obtained from Eq. (7.23) which can be rearranged to yield

the smooth wall limit in terms of the Nikuradse number

9.294] (725)

N. =2.01 —_
i Oglo(\/gk;

Figure 7.1 shows results for the Nikuradse number as a function of roughness Reynolds number for several
relative roughness data sets taken by Nikuradse. The plot includes lines representing the asymptotes for the
fully rough and smooth-wall limits. At low roughness Reynolds numbers, which can occur at low relative
roughness values or low Reynolds numbers, the Nikuradse number approaches a linear function of the
roughness Reynolds number. At high roughness Reynolds numbers, which can occur at high relative
roughness values or high Reynolds numbers, the Nikuradse number is zero and is independent of the

roughness Reynolds number.

300 1 rrrerr 1 rrrerr 1 T rrrrer 1 T rrrrer 1 T rrrrr
Smooth-Wall Limit
e
2.00
1.00
Ni Fully-Rough Limit
0.00
-1.00
1 11| LIl 1 11 1 1Ll 1 1L Llll 1 11 1 L1l 1 11 L1l
107 10° 10' 10? 10° 10*

kS
Fig. 7.1 Nikuradse number as a function of roughness Reynolds number for experimental data of

Nikuradse [59].
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The data of Nikuradse in conjunction with the smooth-wall and fully rough limits included in the plot
suggest three significant flow regions. It may have been Schlichting [92,93] who was the first to suggest
that the data of Nikuradse deviate from the smooth-wall asymptote at about £, ~ 5.0 and from the fully
rough asymptote at about k; ~70.0. Thus, flow with roughness Reynolds numbers k; <5.0 have
traditionally been termed “hydraulically smooth” because roughness effects appear to be negligible in this
region, and flows with roughness Reynolds numbers &, > 70.0 are traditionally termed “fully rough” flows
because the friction factor appears to be independent of the roughness Reynolds number in this region. The
region for 5.0 <k <70.0 is traditionally called the transition region where the properties of the flow
transition from the smooth-wall asymptote to the fully rough asymptote.

The work of Nikuradse has long been viewed as the definitive work on pipe roughness. As stated
earlier, today the relative roughness values of experiments are often determined by forcing the data to
match the data of Nikuradse for high roughness Reynolds numbers. The roughness of a surface is
commonly reported as an equivalent sand grain roughness in the literature to suggest that it would match
the work of Nikuradse for an equivalent sand grain size. For example, see the work of Shockling, Allen,

and Smits [61].

D. The Colebrook Equation

The work of Colebrook [73] has also had a profound influence on how pipe flow results are now
tabulated. Colebrook correlated data for many sets of experiments on commercial pipe. Because a
measurement of the roughness on commercial pipe was difficult to obtain, the results were matched to
Nikuradse’s results in the fully rough region, and the equivalent sand grain roughness for each
experimental data set was estimated. Following Nikuradse, Colebrook plotted experimental data as a
deviation from Eq. (7.22) in the same form as shown in Fig. 7.1. Figure 7.2 includes the data sets of both
Nikuradse and Colebrook. Although there is considerable scatter in the commercial pipe data, Colebrook

developed the empirical relation
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Fig. 7.2 Nikuradse number as a function of roughness Reynolds number.

N, = 2.Olog1({£j—;= 2.Olog10[l+wJ (7.26)

b ) e, JS;

which runs roughly through the mean of these data. Equation (7.26) will be referred to here as the
Colebrook equation. Results obtained from this equation are also included in Fig. 7.2. Using Eq. (7.14),
Colebrook rearranged Eq. (7.26) to express the friction factor in terms of the bulk Reynolds number

-2

k 2.51
4C, =|-2.0lo P S (7.27
s 210 37 R 4Cf )

€
which spans the smooth-wall and fully rough regions. This relationship is implicit because an iterative
process is required to solve for the friction factor given the Reynolds number and relative roughness.
The fully rough limit for the Colebrook equation can be obtained by taking the limit of Eq. (7.26) as

k. approaches infinity. This yields

N. = 0 (7.28)

L=
limk; >
Likewise, the smooth-wall limit can be obtained by taking the limit of Eq. (7.26) as k. approaches zero.

This yields

9.287
N. = 2.0lo —_ 7.29
limk? -0 glo(«@k:} 72
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which matches the smooth-wall limit of Nikuradse given in Eq. (7.25) to three significant digits. Figure 7.2
shows the Colebrook equation in conjunction with the experimental results used to obtain the Colebrook
equation. The experimental results of Nikuradse [59] and Shockling, Allen, and Smits [61] are also
included as well as the fully rough and smooth-wall limits. Note the considerable scatter in the data used to
generate the Colebrook equation.

Several significant characteristics of this plot should be mentioned. First, note that the data used by
Colebrook does not match the data taken by Nikuradse nor that taken by Shockling et al. in the transition
region between the fully rough and smooth-wall asymptotes. This reveals a fundamental difference in the
characteristics of pipe roughness of the various experimental setups. In order to understand this difference,
it must be understood that it is impossible to create a surface with perfectly uniform roughness, just as it is
impossible to manufacture a perfectly smooth wall. Therefore, a surface roughness could more accurately
be reported as having a mean relative roughness and a standard deviation in relative roughness. Those
surfaces with very uniform roughness elements would be characterized as having a low standard deviation
in relative roughness, and those surfaces with a wide variety of roughness element shapes or sizes would be
characterized as having a high standard deviation in relative roughness. It has been argued that because the
standard deviation in surface roughness for any given commercial pipe is greater than the standard
deviation in sand-grain sizes used in Nikuradse’s pipes, the transition from smooth-wall to fully rough flow
for commercial pipes is much more gradual than the transition shown by the experimental data of
Nikuradse. The Colebrook equation does in fact match the experimental data from which it was derived to
within the scatter of the experimental datasets themselves, and therefore is a viable equation for flow in
commercial pipes. This variation in the transition region noted between different experimental setups
suggests that if the standard deviation of relative roughness is small, the transition between the smooth-wall
region and fully rough regions is more abrupt than if the standard deviation of relative roughness is large.
Note that the smooth-wall and fully rough asymptotes are independent of the standard deviation of relative
roughness while the transition region is a function of both the mean relative roughness and the standard

deviation of relative roughness.
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The dependence of the transition region on the standard deviation of relative roughness is further
demonstrated by the data of Shockling, Allen, and Smits [61] also included in Fig. 7.2. Shockling et al.
used drawn pipe that had been honed in their experimental setup, and therefore, it can be expected that the
standard deviation in relative roughness along the pipe wall was somewhere between that of commercial
pipe and that of Nikuradse’s pipes. This explains why the data of Shockling et al. falls between the
Colebrook equation and the data taken by Nikuradse in the transition region.

Second, note that the transition region suggested by the Colebrook equation is significantly larger than
the traditional region of 5.0 <k, <70.0 suggested by the data from Nikuradse. The data from which the
Colebrook equation was obtained suggests that the transition region for commercial pipes may be more
accurately defined as 0.2 <k <100.0. The variation from the findings of Nikuradse in the definition of the
lower limit of the transition region can also be justified on the grounds of a difference in relative roughness
standard deviation for the two experimental data sets. For a given mean relative roughness, roughness
effects would be more pronounced for a surface with a large standard deviation of relative roughness than
for a surface with a small standard deviation of relative roughness. Therefore, roughness effects would be
more pronounced at low roughness Reynolds numbers for pipes with high relative roughness standard
deviations than those with low relative roughness standard deviations. Likewise, at high roughness
Reynolds numbers, pipes with low relative roughness standard deviations would approach the fully rough
region before those with high relative roughness standard deviations.

The results of Fig. 7.2 also show that the smooth-wall and fully rough asymptotes of the Colebrook
equation match all of the experimental data sets very well. Therefore, the smooth-wall and fully rough
limits of the Colebrook equation given in Egs. (7.28) and (7.29) can be used for pipes with any given
variation in roughness provided that the roughness Reynolds number is within the smooth-wall or fully
rough regions. However, the Nikuradse number in the transition region predicted by the Colebrook
equation should be used with caution because this region is sensitive to the standard deviation in relative

roughness of the pipe.
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The fact that the Colebrook equation is so widely used today is partly due to the work of Moody [94]
who plotted the Colebrook equation in a form that could easily be used by engineers. In his abstract,
Moody states, “The object of this paper is to furnish the engineer with a simple means of estimating the
friction factors to be used in computing the loss of head in clean new pipes and in closed conduits running
full with steady flow.” Moody used the Colebrook equation to plot the friction factor as a function of the
bulk Reynolds number over a range of relative roughness values. The famous Moody chart is shown in Fig.

7.3 along with the data from Nikuradse and Shockling, et al.
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Fig. 7.3 The Moody chart with experimental data from Nikuradse and Shockling, et al.

This figure without the experimental data can be found in many fluid mechanics text books and is
perhaps the most widely used engineering chart in fluid mechanics. The chart allows the engineer to
estimate the head losses of a pipe if an estimate for the surface roughness and bulk flow rate are known.
Note that at very low Reynolds numbers, the flow becomes laminar and follows the well-known and easily

verified relation

64
4C, =2
TR

¢

(7.30)

However, the transition between laminar and turbulent flow is difficult to predict, and remains a vague

region of the Moody chart. This transition region is denoted by a dotted line in the figure.
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It has been shown that the most widely accepted correlations for pipe flow are all fundamentally based

on the work of Nikuradse. Further, it has been shown that Nikuradse’s work on the fully rough limit forms
the basis for determining the roughness of a given surface. Because the fully rough relation developed by
Nikuradse and included here as Eq. (7.22) forms the foundation for rough-wall flow measurements, any
turbulence model claiming to be capable of modeling surface roughness must match this relation between

the friction factor and surface roughness in the limit as the flow becomes fully rough.

E. Velocity Profile
A wealth of experimental data has shown that the velocity profile follows the law of the wall in the
near-wall region. An empirical correlation from Nikuradse’s data that includes roughness effects is

+
N

+
ut = 2.51n(y—]+8.5 (7.31)
In the near-wall region of fully rough flows, an analytical approximation for the velocity profile can be

developed using mixing-length theory. Using Eq. (7.18) in Eq. (7.19) and integrating subject to the no-slip

boundary condition gives the near-wall fully rough relation

.
L A (7.32)
x k!

Figure 7.4 shows the relations given in Egs. (7.31) and (7.32) along with the experimental velocity profile
data of Nikuradse. Note that the analytical approximation given in Eq. (7.32) only deviates from the
empirical relation given in Eq. (7.31) in the near wall region where the wall coordinate is on the same order
as the roughness. Because this region of the flow is so minute compared to the bulk flow, the integral of
Eq. (7.32) yields a value very close to the bulk velocity. This is the approach taken by Nikuradse in the
development of his relation between bulk Reynolds number, friction factor, and roughness. Also note from
the figure that the experimental data matches the relation given in Eq. (7.32) very well over the entire
region of the flow. Thus, although Eq. (7.32) was derived using the near-wall approximations from mixing-
length theory, it can be used across the entire flow, and lacks only in its ability to satisfy the centerline

symmetry boundary condition.
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The existence of the law of the wall for turbulent flows has been substantiated by many sets of data.

Therefore, any viable turbulence model should be capable of predicting this flow profile for rough flows.
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Fig. 7.4 Velocity profiles in rough pipes at high Reynolds numbers.
F. Turbulent Eddy Viscosity
Equation (7.9) is the Boussinesq-based RANS equation for fully developed flow in a pipe, and holds

independent of any turbulence model. It can be rearranged to yield

du® 2

i v,

. u()=0 (7.33)

where v =v/(u,R), v, =v,/(u,R), and 7=r/R. The goal of any RANS-based turbulence model is to
correctly model the turbulent eddy viscosity such that Eq. (7.33) can be integrated to yield a velocity profile
that matches experimental data. Therefore, Eq. (7.33) can also be seen as a definition for the turbulent eddy
viscosity if a velocity profile is known. Given a velocity profile, the eddy viscosity as a function of radius

can be calculated from

(7.34)



140
In the core region of the pipe where the velocity gradient is small, this method for estimating the turbulent
eddy viscosity becomes very sensitive to small errors in the velocity gradient measurements. As the axis of
the pipe is approached, both 7 and du* /df approach zero, and Eq. (7.34) is indeterminate. Applying
L’Hospital’s rule, it can be shown that at the pipe centerline, the eddy viscosity is related to the second

derivative of the velocity profile according to

R 1
vV, = ———————
Mmoo %yt ) dp?

Therefore, accurate estimates for the eddy viscosity at the center of a pipe are dependent on accurate
estimates for the second derivative of the velocity profile in that region. Because these measurements are
difficult to obtain near the pipe centerline, estimates for the eddy viscosity are more accurate near the pipe
wall than near the pipe centerline.

It can be shown that mixing-length theory predicts a turbulent eddy viscosity for fully rough pipe flow

of

v, = k[Cy + 27k, —(2Cyy — 0.5)7% = (0.5— Cyo )P 172 (7.35)
where C,, is about 0.345. This matches the experimental data of Nikuradse [59] very well over the entire
pipe cross section. Figure 7.5 shows the experimental results of Nikuradse as well as the analytical relation
from mixing-length theory. Note that mixing-length theory predicts a turbulent eddy viscosity of identically
zero at the pipe centerline. This comes as a direct result of the model assumption that the eddy viscosity is
directly proportional to the velocity gradient as can be seen in Eq. (7.16). The symmetry boundary
condition requires that the change in eddy viscosity with respect to radius be zero at the center of the pipe.
In contrast, Eq. (7.35) has an infinite gradient at the pipe centerline. Therefore, this relation cannot be used
in the center of the pipe.

Reichardt [95] correlated sets of experimental data and suggested a simple relation that could be used

to model the eddy-viscosity distribution for a pipe with smooth walls

v, =%(1+f2 —27%)
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Applying Nikuradse’s near-wall results, this relation can be modified to account for roughness effects

v = %(1 —F 427k, )1+ P)(1+272) (7.36)

This relation along with Reichardt’s eddy-viscosity data is also included in Fig. 7.5.
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Fig. 7.5 Eddy-viscosity profiles in fully developed pipe flow.

Note that Eq. (7.36) stays fairly constant over the core of the pipe. Based on this observation, Kays and
Crawford [96] suggest using “a simpler and adequate alternative” which uses a constant value of v, = x/6
over the central region of the pipe combined with an approximation from mixing-length theory near the
wall. A similar formulation that applies to rough walls can be developed as follows.

Near the wall of fully rough flow, the mixing length is a function of the distance from the wall and the

wall roughness

0" =k +yk ) =x[R.(1-7)+yk]] (7.37)

Using this in Eq. (7.16) gives

IR (1= )+ 7k T ||
R | dr

T

(7.38)

d +
vi=r?(y +7k§)2|dz+|=

Combining this with Eq. (7.9) and solving for v* gives an expression for the eddy viscosity near the wall
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yt =,/%+F2f —%, F=x[R.(1-F)+yk]] (7.39)

Although the experimental data in the fully rough limit is limited, assuming that the eddy viscosity is a

constant in the central region of the pipe yields the expression
F=x[R,(1-F)+yk] (7.40)

where 7, is the outer root of

,/%+F2f —%=(K/6)RT, F=«x[R,(1-7) +yk}] (7.41)

Equation (7.40) can alternately be written as
F=x[R,(1-7)+yk/] (7.42)

The relation given in Eq. (7.42) provides a simple approximation for the turbulent-eddy-viscosity profile
and is also shown in Fig. 7.5. Values of x=0.404, y =0.0341, and 4" =27 give results that match
experimental data very well.

One additional method that can be used to estimate the eddy-viscosity profile is through the use of the
empirical correlation to Nikuradse’s velocity profile data. Differentiating Eq. (7.32), using it in Eq. (7.33),
and assuming v << Vv, gives the fully rough turbulent eddy viscosity that will match the velocity profile of
Nikuradse’s data

v, =wr(1-7+2yk,) (7.43)
This relation is also included in Fig. 7.5 for comparison. Any eddy-viscosity distribution that matches this
relation will yield the velocity profile given in Eq. (7.32) for high roughness Reynolds numbers.

Equations (7.35), (7.36), (7.42), and (7.43) give relations for what could be termed eddy-viscosity
models for fully rough pipe flow. These can be used directly in Eq. (7.33) and integrated to yield a velocity
profile, bulk velocity, and friction factor. The velocity profiles that results from these models will be

presented in Chapter 9 for comparison with the results of the energy-vorticity model in consideration.
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Because estimates for the eddy viscosity are strong functions of the velocity gradient and
measurements for the velocity gradient near the pipe centerline are difficult to accurately obtain, the exact
behavior of the eddy viscosity near the central region of fully rough pipe flow is not well established.
Equations (7.35), (7.36), (7.42), and (7.43) provide four approximations for the eddy viscosity that have
been presented in the literature. The approximations based on the findings of Nikuradse given in Egs.
(7.35) and (7.43) are not viable in the central region because it is impossible for the eddy viscosity to go to
zero at the centerline, and for the derivative of the eddy viscosity to have a finite slope at the centerline.
The work of Kays and Crawford presented in Eq. (7.42) is used as a reference in the subsequent
development of the Phillips k-4 model. This was a viable option because it provides a model for the
viscosity which matches most closely the assumptions that were inherent in the development of the velocity
profile given in Eq. (7.32). Because Eq. (7.32) matches experimental data so well, it was expected that an
eddy-viscosity profile similar to that given in Eq. (7.42) would yield results for the velocity profile and
friction factor very near experimental data. However, the work of Reichardt presented in Eq. (7.36) may
also be worth consideration in a future edition of a fully rough turbulence model.

Before leaving the topic of eddy viscosity, it is insightful to consider one additional aspect of mixing-
length theory. Recall that a fundamental approximation for fully rough flow is that the molecular viscosity
is negligible compared to the turbulent eddy viscosity. The mixing length near a wall is very accurate and is
expressed in Eq. (7.37). Using Eq. (7.37) and (7.19) in Eq. (7.16) gives the ratio of turbulent eddy viscosity

to molecular viscosity at the wall

=_1
, =

y =0

=x(y" + k)
y=0

For fully rough flow, this ratio at the wall must be much greater than unity. Using the suggested values of
x =0.404 and y = 0.0341 for the accepted value of fully rough flow &, =70.0, this yields v* = 0.96 at the
wall. This result shows that at k. =70.0, the molecular viscosity is about the same order of magnitude as

the turbulent eddy viscosity at the wall. Using k| =100.0 gives v* =1.4. Based on this mixing-length
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approximation, it is suggested that a better lower limit for fully rough pipe flow is about k; =1000 which

yields a viscosity ratio of v* =14 at the wall.

III. The Phillips £-4 Model for Fully Rough Pipe Flow

The foundational equations for the Phillips k-4 model for steady, incompressible, fully rough pipe flow

include the continuity equation

V-V=0 (7.44)
The Boussinesq-RANS equations
(V-V)V:—%V(ﬁ)+v-[2(v+ v,)SW] (7.45)
an algebraic relation for the eddy viscosity
v, = Ak (7.46)

and the turbulent-kinetic-energy equation in terms of the mean vortex wavelength

(V-V)k = 2v,S(V)-S(V) ~v(C, k/ 22 +4V - L VE -V [y S(V)]}) o
FV (v +v, /o) VE -2V [ ST '

Several possible closing equations for the mean vortex wavelength are included in Chapter 2. In general,
the closing relation for the mean vortex wavelength could take the form of a transport equation similar to
the turbulent-kinetic-energy equation. However, for fully rough pipe flow, it has been found that an
algebraic relation may suffice based on the results of mixing-length theory mentioned in the previous
section. An initial estimate for the mean vortex wavelength distribution was developed for fully rough pipe
flow by combining the algebraic relation for the eddy viscosity given in Eq. (7.42) with the model
equations given in Eqs. (7.44) — (7.47). This provided a complete model that could be solved to yield the
mean vortex wavelength distribution given a relative roughness and roughness Reynolds number. After

correlating several mean vortex wavelength distributions over a range of Reynolds numbers and relative

roughness values, a general algebraic relation for the mean vortex wavelength was developed. It was found
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that the algebraic relation could be a function of a bulk flow parameter that will be termed the core

Reynolds number.

A. Core Reynolds Number
The velocity profile in the pipe is a function of the pressure gradient and eddy viscosity and can be
written as

av. _ 1 dp

V+v = — 7.48
( t)dr 25 dz (7.48)

It has been shown that experimental data suggests that the eddy viscosity in the central region of the pipe is
nearly constant. Assuming that the eddy viscosity is constant near the centerline of the pipe, Eq. (7.48) can
be integrated from the pipe centerline to an arbitrary point in the constant-eddy-viscosity core

L

=yV| 44—
=0 4p(v+v,) dz

r=r z

(7.49)

Note that the velocity profile in this central region of the pipe is parabolic. Dividing this expression by the

velocity at the centerline, V., =V, (0) gives the nondimensional equation

1+ =
nax Ap(V+V, WV dz

%(” ! b, (7.50)

The pressure gradient is constant and negative in fully developed flow. Therefore, Eq. (7.50) yields an

important length scale associated with the core region of the flow

R.= \/— dp(v+v, )Vmax/jﬁ =Ry 2(V+ ¥, Yt o (7.51)

o
This will be called the core radius of the flow. The centerline velocity and the core radius are the important
velocity and length scales in the core region of the pipe. These can be used to form what will be referred to

here as the core Reynolds number

R =Zlmax’ec (752)
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The turbulent properties in the core region of the pipe should also depend on the velocity and length scales
used to develop the core Reynolds number. Therefore, the turbulent kinetic energy and mean vortex

wavelength at the center of the pipe should be a function of the core Reynolds number.

B. Mean Vortex Wavelength Distribution
At the wall of a fully rough flow, the turbulent eddy viscosity can be evaluated from Eq. (7.42).

Applying Eq. (7.12) gives

v
Ll = KD (2, )~k JRD) (7.53)
uTR r=R
which can alternately be written as
=@k ) -1 k) (7.54)
TS =R

Therefore, the turbulent eddy viscosity at the wall is independent of the pipe radius. Also from Eq. (7.42),

the turbulent eddy viscosity at the center of the pipe is assumed independent of the wall effects

Vi

= x/6 (7.55)
r=0

Note that the eddy viscosity is proportional to u_k, at the wall and u_R at the centerline.

In general we can expect the mean vortex wavelength to be a function of both the core Reynolds
number and the roughness Reynolds number. Results from this model compared to experimental results
suggest that the mean vortex wavelength at the centerline is only a function of the core Reynolds number

and the pipe radius
A, =CaR&R (7.56)
where C,; and a,, are model constants. At the wall, experimental data and results from this model suggest

that the mean vortex wavelength is only a function of the surface roughness and roughness Reynolds

number

A,y =Coaki "k

R (7.57)

s
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where C,, and a,, are model constants. In the transition region, agreement with experimental data can be

obtained by using the transition function

A=A _p+ C, ;R (R—r)" (7.58)
where C,,, a,3, and a,, are model constants. Combining Eqs. (7.56) — (7.58) gives the general algebraic

relation for the mean vortex wavelength

2 =min[C,,R%R, C,ok! "k, +C, R (1-r/R)**R] (7.59)

¢
where C,,, a,,, C,,, a,,, C,3, a,5, and a,, are closure coefficients. Equation (7.59) forms the final equation
for the Phillips &-A model for fully rough pipe flow.

Combining Egs. (7.46), (7.53), and (7.59) and solving for the value of the turbulent kinetic energy at
the wall gives the fully rough-wall boundary condition on k&

2
+42 2 +
k|| e’ -1k 760)

2 a.,
u +492
T |p=R 2Cr2ks

which applies in the limit as k| approaches infinity. Note that the wall boundary condition on k is

independent of the pipe radius.

C. Model Summary
The Phillips k-4 model for fully rough pipe flow in dimensional form comprises the following

equations: the Boussinesq-RANS equation including the no-slip wall boundary condition

v, B uf r —

4

dr (v+v) R’ “lr=R

=0 (7.61)

the turbulent-kinetic-energy transport equation and associated boundary conditions

BNE RN PO 3 7% B PO L
3r dr PR gy 1 or Y2 3 dr ar

> (7.62)
dk VUK + @)’ =1k |,
N = 0’ k|r:R = a Ur
dr r=0 zcwers+ "

an algebraic expression for the mean vortex wavelength
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N

and an algebraic expression for the turbulent eddy viscosity

=k

with definitions for the core Reynolds number

R =720 55 7410 70)
v u,R u,

and the roughness Reynolds number

ky =u.k|v
Applying the nondimensional definitions
P Eu,R u+EZ k+EuTkS
;S u,” v
k+5£ ,1*;”7/1 V+Eﬁ
u?’ v’ v
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(7.63)

(7.64)

(7.65)

(7.66)

(7.67)

this model with the associated boundary conditions can be written in nondimensional form in terms of the

independent variable 7 as

du" _ R7F

dr (1+v")

5

I+a,
A =min[C R R., Cokt' " 4 C 4R (1- 7)™ R
vi=2WET

Re. =[2u" ()2 {R.[1+v* (0)]}

with boundary conditions

+ +)2 +
 d (1+V+/ak)fdkA Y 0 R}Cik—+if{ 7
3r dr dr or /1+2 3r dr

2
O Y I B (10 Sl ey et 4
=1 T dr ‘o ’ =1 ZCrzk:a,.z

(7.68)

(7.69)

where the model constants o, C,, C,,, a,;, C,,, a,,, C,3, a,5, and a,, are as of yet unknown. Note that

7 =0 is the value at the centerline and 7 =1 is the value at the wall.
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D. Solution Process
A Fortran code to solve this model is included in Appendix O. The solution process is developed as

follows. Combining like terms, the k-transport equation in the model can be rearranged to yield

+ + +)? +
SCA L L0 P IV U S ST (7.70)
ar\\3 3o, ) dr or at
Defining
+ +
o = LV |adk (7.71)
3 30—/{ d}"

and using this definition along with the Boussinesq-RANS relation for the velocity gradient in Eq. (7.70),
the second-order k-transport equation can be written as two first order transport equations with its

associated boundary conditions

2
VKD +@yr)* ~1/k]

dk+ Q+

= — k+ =
df l+ SV+ I,/: ’::1 2Cr2ks+ar2
3 30y (7.72)
dQ* _ V'R? 5 C,R*k* oot =0
ar  (1+v*h)? 2 7=0

This gives a version of the model that can be solved using a direct numerical integration scheme such as the
fourth-order Runge-Kutta method and comprises the set of algebraic and first-order equations with the

appropriate boundary conditions

dujz_ R,7 ot =0
dr 1+v") 7=l
2
dk* o) WK e’ -1k
2 )’ P a,
dr 1+ Sv f ZCY}QkYJr ’
3 3oy
(1.73)
do*  Vv'R? e _CuRIKT oot =0
i (1+v™)? P #=0

1+a,, aa
A =min[C,R%R,, Cok! " 4+C R (1-7)% R, ]

v* :/1+x/k_+

R, =[2u” ()] (R, [1+v* (0)]}
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Note that the expression for the first derivative of & is singular at the centerline where 7 = 0. In this region,

the turbulent eddy viscosity can be assumed constant, and the Taylor series expansion for k* gives

By = 4k (0) 4 Ak (OB, —242K(0)]

K (F) = k™ (0)+ Ak (0)7% — o+ (7.74)

2 9
where
2 +p2
g =—0GR g 30,V R . (7.75)
4(o, e 8(oy +5v)(1+v")
Thus, the first derivative of k¥ can be approximated at the centerline as
+ + 2743
d; (0) = 24,k*> (0)F — 2 B, — A k* 0y — 2 k(LB ; 24k O o5 o7y 1 (7.76)
7

In the case that v* =0, Eq. (7.76) can be conditionally replaced with dk* / dr (0) = 0. Note that in order to
use Eq. (7.76), estimates for k* and v* at the centerline must be known. Additionally, the mean vortex
wavelength is a function of the core Reynolds number, which is not known until a solution is obtained. For
this purpose, initial estimates for k™ and v at the centerline and the core Reynolds number can be obtained
from

k*(0)=0.205R>"®

v(0) = CpyR, (7.77)
R, =21.26R!"®

ec —

where the shear Reynolds number can be evaluated from the known case parameters

k+
R, =— 7.78
ey (7.78)

r

Because two of the three boundary conditions for the model are specified at the wall, and one is specified at
the centerline, a shooting method is used in conjunction with an integration scheme to obtain the solution to
the system of equations. For such an approach, an initial estimate for O* at the wall is needed. A useful

initial estimate is

0" (1) = 9.4k, 1> (7.79)
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The solution procedure implemented in this work is as follows. Given case values for &, and &, along
with model constants, R, is evaluated from Eq. (7.78). Using the estimates given in Eqs. (7.77) and (7.79),
a fourth-order Runge-Kutta integration scheme is used to integrate the first-order model equations from the
wall (r=1) to the centerline (7 =0). Near the centerline, ie. 7 <0.002, Eq. (7.76) is used instead of the
model equation for k¥ given in Eq. (7.73). Once the integration is complete, estimates for the centerline
values for OF, k™, v*, and the core Reynolds number are updated. This integration process is repeated
using a secant method until the centerline boundary condition Q(0) =0 is adequately satisfied and the
centerline values for k% and the core Reynolds number have stopped changing. It should be noted that a
negative solution to any one of the case variables is non-physical, and a constraint to that end can also be

applied during the solution process.

E. Initial Results
Initial estimates for the closure coefficients that match the velocity and eddy-viscosity profiles of

mixing length theory are

o, =0.01, C,=0.0004, C,, =0.185, a, =-0.0735, C,, =0.0383,
a,, =-0.1039, C,;=1.072, a,; =-0.0753, a,, =1.0

(7.80)
Figure 7.6 shows the velocity profiles for k; =1000 over the range of relative roughness values reported
by Nikuradse and Figure 7.7 shows the corresponding eddy-viscosity profiles. Note the velocity profiles
resemble the relations given in Egs. (7.31) and (7.32). Additionally, the eddy-viscosity distributions over
this range closely resemble the relation give in Eq. (7.42). Even though the velocity and turbulent-eddy-
viscosity profiles have the correct trends, the friction factors for high roughness Reynolds numbers do not
consistently match the Colebrook equation. This can be seen in Fig. 7.8 which shows the results of the
model using these coefficients over a range of relative roughness values and Reynolds numbers. If the
model were correct, the black dots would fall directly on the black lines. Note that the model results are
significantly lower than the results predicted by the Colebrook equation, and that the model predictions get

worse at lower relative roughness values. The experimental data of Nikuradse and Shockling et al. is

included in the plot for comparison.
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Fig. 7.7 Initial eddy-viscosity profile results for the Phillips k-1 model.
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Fig. 7.8 Initial friction factor results for the Phillips -4 model.

IV. Summary and Conclusions

The bulk of what is understood today about fully rough turbulent flow is based on the original work of
Nikuradse [59] who performed a substantial set of experiments for a range of roughness Reynolds numbers.
Nikuradse correlated the friction coefficient, wall roughness, and roughness Reynolds number results
according to the expression given in Eq. (7.24) which in this work is called the Nikuradse number.
Nikuradse found that for fully rough flows, the Nikuradse number was independent of roughness Reynolds
number. This fully rough limit is so ingrained in subsequent work, that it has come to define the meaning of
roughness.

Nikuradse’s work suggests that fully rough flow begins around k; ~70.0 whereas the work of
Colebrook [73] suggests that the fully rough region begins around k" ~100.0. However, it has been shown
analytically that in order for the flow to truly be considered fully rough, it should have a roughness
Reynolds number in the range k. >1000.0.

The empirical relation of Kays and Crawford [96] for the eddy viscosity in fully rough pipe flow was
used to develop estimates for the mean vortex wavelength distribution. From this, an algebraic relation for

the mean vortex wavelength was developed along with initial values for the closure coefficients. This
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complete system of equations constitutes the Phillips k-4 model for fully rough pipe flow. This model along
with the associated boundary conditions is summarized in Eqgs. (7.68) and (7.69). The system of equations
can be solved using a fourth-order Runge-Kutta integration method, as explained above, and initial results
for the model have been shown. Using the initial estimates for the closure coefficients, velocity profiles and
eddy-viscosity distributions were obtained which match empirical relations. However, the friction factor
predicted by the model is significantly in error. This error can be minimized by evaluating more appropriate

closure coefficients for the model.



155

CHAPTER 8

PHILLIPS -4 MODEL CLOSURE COEFFICIENT EVALUATION

I. Introduction

The Phillips k-4 model for fully rough pipe flow in nondimensional form comprises the following

equations and boundary conditions

du’ R
dr (1+v")
+ +)? + +
—iAiA (1+V+/°’k)’:dkA =v" auA - RTZCA d +iA dA ’;dkA
3 dr dr or 2t 3rdr\ dr
ﬂ,Jr = mil’l[crlegl Rr’ Cer:(HaI‘Z) + Cr3Rg£’3 (1 - ;)0,4 Rr] (81)

vt :/Fx/k_+

R =[2u" (0)]V* (R, [1+v" (0)]}2

2
+32 2 +
Lo, x| | NWEDYr@ro? Yk

dict
ut| =0, T -
o =l 2C,, k"

F=l dr

where the model constants are o, C,, C,i, a,, C,5, a,2, C,3, a,3, and a,,. Values for these model

rl>
constants have a significant impact on the accuracy of the model. Therefore, accurate values for these
constants must be evaluated. The influence of C,; on the model solution can be analytically determined.

However, in order to determine acceptable values for the other model constants, computer optimization was

used. This chapter explains the process for evaluating the model constants.
II. The Influence of C, for Fully Rough Pipe Flow

The influence of the closure coefficient C; is most easily seen by considering the fundamental

dimensional equations of the model

v, _u

z

dr v+v) (82)

x|~
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5d dk ov, k 4 d( dk
- - + | = —= | —v|C, —+——|r— 8.3
3 dr[(v v, /o0 dr} v,[ arj v{ iat, dr(rdrﬂ (8.3)

2k + CaREP (1= 7/ RY" R] (8.4)

C

A=min[C,,R¢/'R, C,

r

v, =k (8.5)

Equation (8.4) shows that the mean vortex wavelength is greatest near the centerline and smallest near

the wall. Because the dissipation of turbulent kinetic energy is inversely proportional to the square of the
mean vortex wavelength, Eq. (8.3) shows that the dissipation of turbulent kinetic energy is greatest at the
wall where the mean vortex wavelength is small. Also note that because the turbulent kinetic energy and
mean vortex wavelength are large at the center of the pipe, Eq. (8.5) shows that the turbulent eddy viscosity
is also large at the center of the pipe. Therefore, in the core region of the pipe, the diffusion and generation
terms of the turbulent kinetic energy become the dominant terms. The dissipation term only becomes
significant near the wall where the mean vortex wavelength is much smaller. Therefore, Eq. (8.3) shows
that the turbulent kinetic energy that is generated in the core of the pipe is diffused toward the wall where it
is dissipated. This makes sense from a physical point of view as the energy from the large eddies diffuses
toward the wall where these eddies break down to form the smaller eddies. These small eddies have higher
strain rates and are responsible for much of the dissipation of energy. Thus the bulk of the dissipation of
turbulent kinetic energy takes place in a layer very near the wall. As the roughness Reynolds number is
increased, this dissipation layer becomes thinner. At very high roughness Reynolds numbers, the molecular
viscosity is negligible compared with the turbulent eddy viscosity across most of the flow, and the
dissipation layer becomes infinitesimally thin. At that point, the solution becomes independent of the

molecular viscosity, and Egs. (8.2) and (8.3) simplify to

= 2
v, __ur (8.6)
dr v, R
5 d dk o\
SRR PR M Y (8.7)
3rdri\ o, ) dr or

Using Eq. (8.6) in Eq. (8.7) gives
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d dk 3oulr’
—|vr— :—k—2 (8.8)
dr dr 5v,R

Therefore, at high roughness Reynolds numbers, the solution is independent of the model constant C,. At
lower roughness Reynolds numbers, and particularly in the transition and smooth-wall limits, C, will
significantly affect the solution. Note from Eq. (8.3) that the point that the molecular viscosity becomes
negligible compared to the turbulent eddy viscosity is dependent on the value of C,. Thus, C, determines
to some extent the transition point to fully rough flow. However, as the roughness Reynolds number is
increased, the solution will eventually become independent of C,. Because this work focuses on a model
for the fully rough flow asymptote, for the remainder of this work the solution is assumed independent of

the value for C;.
III. Computer Optimization

Optimization routines are helpful in evaluating optimal values for a set of inputs for a given situation.
These input variables are commonly called the design variables, and the range of viable values for the
design variables is called the design space. In order for an optimization routine to evaluate the best solution
for the design variables within the design space, the relationship between the design variables and the
solution must be expressed quantitatively. Once this solution is obtained for a given set of design variables,
the degree to which that solution matches the desired solution is commonly called the fitness of the
solution. The fitness must be a single number that comes as a direct result from a given set of design
variables. The routine that calculates the fitness as a function of the design variables is commonly called
the fitness function. Fitness functions can be as simple as an algebraic expression, or as complicated as a
turbulence model. The optimization routine itself treats the fitness function as a sort of a “black box” which
given a set of design variables returns a fitness value. Thus, an early step to any optimization problem is to

define the fitness function, which, if minimized, results in the optimal solution.
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A. Model Fitness
It has been shown that the solution for this turbulence model in the fully rough regime is independent
of the model constant C,. Therefore, the design variables for this case are the remaining model constants

oy, C

1> Ar1> Cray @,9, Coay a,5, and a,,. Given values for each of these model constants, a fitness of the

model must be evaluated. The fitness of any given set of closure coefficients was determined by evaluating
how well the model matched the Colebrook equation in the fully rough limit.

For a given set of model constants, 46 cases were run over a range of values for k, and &, that all fall
in the fully rough regime. The values for &, were taken to match the values for the experimental cases of
Nikuradse [59] and Shockling, Allen, and Smits [61] with an additional k, value to fill in the large gap
between the data sets of the researchers. The values for £, began at k; =1000 and were incremented up to
values that resulted in bulk Reynolds numbers at or just above R, =1.0e8, or until at least 3 cases were run.
This provided a range of cases that most nearly match the range of data sets available.

For each of the 46 cases, the resulting friction factor was compared with the friction factor given by the
Colebrook equation at the Reynolds number computed by the model. The percent error in the friction factor
for each case was evaluated, squared, and summed with the errors of the other cases. This total was divided
by 46 and the square root of that value was taken to yield the root-mean-square (RMS) percent error of the
model. This single value was used as the fitness for any given set of model constants.

For example, given the non-optimal model constants

o, =10, C, =0.065, a, =00, C,,=0.002, a,=-0.004,
C.5 =0.063, a,,=-0.003, a,,=1.12

”

(8.9)

produces the results shown in Table 8.1.
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Table 8.1 Sample results for the Phillips k-4 fully rough pipe flow model given a set of non-optimal

model constants

k, k" R. Phillips 4C;  Colebrook 4C; % Error
3.40E-02 1.00E+3.00 3.34E+05 6.20E-02 6.04E-02 2.77E-02
3.40E-02 1.00E+3.25 5.93E+05 6.22E-02 6.03E-02 3.16E-02
3.40E-02 1.00E+3.50 1.05E+06 6.23E-02 6.03E-02 3.37E-02
3.40E-02 1.00E+3.75 1.87E+06 6.24E-02 6.03E-02 3.47E-02
3.40E-02 1.00E+4.00 3.33E+06 6.24E-02 6.03E-02 3.50E-02
3.40E-02 1.00E+4.25 5.92E+06 6.24E-02 6.03E-02 3.50E-02
3.40E-02 1.00E+4.50 1.05E+07 6.24E-02 6.03E-02 3.47E-02
3.40E-02 1.00E+4.75 1.87E+07 6.23E-02 6.03E-02 3.43E-02
3.40E-02 1.00E+5.00 3.33E+07 6.23E-02 6.03E-02 3.39E-02
3.40E-02 1.00E+5.25 5.93E+07 6.23E-02 6.03E-02 3.34E-02
1.60E-02 1.00E+3.00 8.26E+05 4.58E-02 4.48E-02 2.25E-02
1.60E-02 1.00E+3.25 1.47E+06 4.59E-02 4.48E-02 2.59E-02
1.60E-02 1.00E+3.50 2.61E+06 4.60E-02 4.47E-02 2.77E-02
1.60E-02 1.00E+3.75 4.63E+06 4.60E-02 4.47E-02 2.84E-02
1.60E-02 1.00E+4.00 8.24E+06 4.60E-02 4.47E-02 2.85E-02
1.60E-02 1.00E+4.25 1.47E+07 4.60E-02 4.47E-02 2.83E-02
1.60E-02 1.00E+4.50 2.61E+07 4.60E-02 4.47E-02 2.78E-02
1.60E-02 1.00E+4.75 4.64E+07 4.60E-02 4.47E-02 2.73E-02
1.60E-02 1.00E+5.00 8.25E+07 4.59E-02 4.47E-02 2.66E-02
8.30E-03 1.00E+3.00 1.79E+06 3.64E-02 3.57E-02 2.06E-02
8.30E-03 1.00E+3.25 3.17E+06 3.65E-02 3.56E-02 2.36E-02
8.30E-03 1.00E+3.50 5.64E+06 3.65E-02 3.56E-02 2.50E-02
8.30E-03 1.00E+3.75 1.00E+07 3.65E-02 3.56E-02 2.55E-02
8.30E-03 1.00E+4.00 1.78E+07 3.65E-02 3.56E-02 2.54E-02
8.30E-03 1.00E+4.25 3.17E+07 3.65E-02 3.56E-02 2.50E-02
8.30E-03 1.00E+4.50 5.64E+07 3.65E-02 3.56E-02 2.44E-02
3.90E-03 1.00E+3.00 4.27E+06 2.88E-02 2.82E-02 2.01E-02
3.90E-03 1.00E+3.25 7.59E+06 2.89E-02 2.82E-02 2.26E-02
3.90E-03 1.00E+3.50 1.35E+07 2.89E-02 2.82E-02 2.38E-02
3.90E-03 1.00E+3.75 2.40E+07 2.89E-02 2.82E-02 2.41E-02
3.90E-03 1.00E+4.00 4.27E+07 2.89E-02 2.82E-02 2.38E-02
3.90E-03 1.00E+4.25 7.59E+07 2.89E-02 2.82E-02 2.33E-02
2.00E-03 1.00E+3.00 9.14E+06 2.39E-02 2.34E-02 2.02E-02
2.00E-03 1.00E+3.25 1.62E+07 2.40E-02 2.34E-02 2.25E-02
2.00E-03 1.00E+3.50 2.89E+07 2.40E-02 2.34E-02 2.35E-02
2.00E-03 1.00E+3.75 5.14E+07 2.40E-02 2.34E-02 2.36E-02
2.00E-03 1.00E+4.00 9.14E+07 2.40E-02 2.34E-02 2.32E-02
9.80E-04 1.00E+3.00 2.04E+07 1.99E-02 1.96E-02 2.02E-02
9.80E-04 1.00E+3.25 3.63E+07 2.00E-02 1.95E-02 2.23E-02
9.80E-04 1.00E+3.50 6.45E+07 2.00E-02 1.95E-02 2.32E-02
3.00E-04 1.00E+3.00 7.64E+07 1.52E-02 1.49E-02 1.82E-02
3.00E-04 1.00E+3.25 1.36E+08 1.52E-02 1.49E-02 2.03E-02
3.00E-04 1.00E+3.50 2.41E+08 1.53E-02 1.49E-02 2.10E-02
5.80E-05 1.00E+3.00 4.66E+08 1.09E-02 1.08E-02 8.96E-03
5.80E-05 1.00E+3.25 8.28E+08 1.10E-02 1.08E-02 1.15E-02
5.80E-05 1.00E+3.50 1.47E+09 1.10E-02 1.08E-02 1.24E-02
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Squaring and summing each value in the “% Error” column, dividing by 46, and taking the square root
gives 2.5808% RMS error. This is the fitness for this case. Figure 8.1 shows the results of this case with
respect to the Colebrook equation. The results of the model using the constants given in Eq. (8.9) fall just

above the Colebrook equation. A fitness of 0.0% RMS error would show the model results falling directly

on the Colebrook equation.
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Fig. 8.1 Sample friction factor results for the Phillips k-4 fully rough pipe flow model given a set of
non-optimal model constants.

B. Common Optimization Algorithms

Once the fitness has been defined as a function of the design variables, an optimization algorithm can
be used to determine the values for the variables that will minimize the fitness function. Many types of
optimization methods exist which can generally be classified as gradient-based, discrete variable, or
evolutionary methods. Gradient-based optimization algorithms are generally used to solve optimization
problems for which the fitness is a continuous and differentiable function within the design space. Discrete
variable algorithms are used when only discrete values for the design variables are viable options.
Evolutionary routines, sometimes called genetic algorithms, comprise a relatively new branch of
optimization and attempt to mimic nature in a sense of survival of the fittest. These schemes are very useful

for optimization problems for which the design space is discontinuous, has multiple local saddle points and
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minima, or has regions where the fitness function cannot be solved. Because the fitness function for this
turbulence model is expected to be continuous throughout the design space, a gradient-based optimization
algorithm was chosen for the optimization routine.

Three common types of gradient-based methods are steepest decent methods, Newton’s method, and
quasi-Newton methods. The advantages of steepest decent methods are that they make good progress
toward an optimum when they are far from the optimum, they always progress downhill, and will always
eventually converge to a local minimum. However, if the function to be minimized is eccentric, these
methods can require an immense amount of time to reach convergence. The advantage of Newton’s method
is that it can quickly find a point for which the gradient is zero, especially if the function to be minimized is
nearly quadratic. This is commonly made possible through the evaluation of second derivatives to construct
the Hessian matrix of the fitness function. Thus, if it is near an optimum, it will quickly find the optimum
regardless of the eccentricity of the function. However, Newton’s method has several disadvantages. For
example, it cannot differentiate between a maximum, minimum, or saddle point. Thus, it does not
guarantee that it will progress downhill, and it may even converge to a maximum rather than a minimum.
Additionally, it requires the evaluation of second derivatives, which can be computationally expensive.
Quasi-Newton methods combine the advantages of steepest decent methods with those of Newton’s method
and eliminate many of the disadvantages. Quasi-Newton methods, sometimes termed “variable metric
methods”, begin as steepest decent methods, and store first derivative information in order to estimate the
Hessian matrix as the solution progresses. As it approaches the optimum, a quasi-Newton method
resembles a Newton’s method where it can use the Hessian to progress more quickly to the optimum.

In general, quasi-Newton methods allow a direction matrix to be determined and refined as the solution
progresses toward the optimum. This direction matrix is multiplied by the negative of the gradient in order

to evaluate a search direction. In mathematical terms,

s = NV/(%) (8.10)
where Vf(X) is the gradient of the vector of design variables, N is the direction matrix, and § is the search

direction. Note that if the direction matrix is positive definite, the search direction will always point
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downbhill. If the direction matrix is equal to the identity matrix, then the method is a steepest decent method.
If the direction matrix is equal to the inverse of the Hessian, then the method is equivalent to Newton’s
method. Most methods for updating the direction matrix begin with the identity matrix and attempt to
construct the Hessian through the evaluation of first derivatives as the solution progresses. Multiple update
methods have been developed which ensure that the direction matrix is always positive definite. One such

update method was chosen for this work and an overview of this method is included here.

C. Broyden-Fletcher-Goldfarb-Shanno Update Method
One of the best quasi-Newton’s methods to date is the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
update method named after Broyden [97], Fletcher [98], Goldfarb [99], and Shanno [100] who each came

up with the update independently in the same year. This update method can be written as

TN = = AT - =T = asT
= = v N7 || AX;AX; AX;¥; N; + N,;v;Ax;
N =N +| 1+ === |~ —— (8.11)
AX; Y, AX; ¥, AX; Y,

where

AX; =X, - X;
_ _ _ (8.12)
Y =Vf&Xi) - V(X))

and the subscript i is the iteration or step number. This update is commonly combined with a line search
algorithm. Given a search direction, a line search can be performed in that direction until a minimum is
found. The line search in this work included running several cases at specific intervals along the search
direction and fitting a parabola to the three points that comprised the minimum point and the two points to
either side of that minimum point. Once a parabola had been fit to those three points, the minimum of the
parabola was taken as the next step or iteration in the BFGS algorithm. This algorithm is perhaps best
understood by example.

Given the fitness function

F(X)=x7 —2x,x, +4x3 (8.13)

we seek values for the design variables x; and x, that minimize this function. Starting from the point
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-3 -8
i0={1}, Vf(i0)={l4}, f(X) =19 (8.14)

For the first step, the identity matrix is used for the direction matrix

= 1 0
N0={0 1} (8.15)

This gives the search direction

S =NV =-| L TS (8.16)
0 11(/14 -14

A line search is performed in this direction, and a parabola is fit to the minimum of the line search to give

the next point

X, = {_ 2'030}, V() = {_ 2‘664}, f(%,)=3.235 (8.17)
~0.698 ~1.522

Using Eqgs. (8.14) and (8.17) in Eq. (8.12) gives

(0970
AXo =X 7%0 =1} g

(8.18)
T =V G)-V/ G =] o
= X;)— X, =
to : 077 -15.522
Using this in Eq. (8.11) gives the updated direction matrix
= - TINGTo A% ART ) AR TIN, + N7 AxE  [0.957 0.266
Nl:N0+1+0TO—O oT_o _BX%eYo oT_oo 0 _ (8.19)
AXoYo AXy Yo AX) 7o 0.266 0.200

Using this in Eq. (8.10) gives the new search direction

S - NV 0.957 0.266|(—2.664) (2.954 (820)
S =— X = — = .
! . 0.266 0.200 || -1.522[ " |1.015

Performing a line search in this direction brings us within single precision computations of the optimum.

The process can be repeated until double precision is achieved. The optimum for this design space is

z=1° V“—O X)=0 8.21
=it V®=1 1 )= (8:21)

At that point, the algorithm can exit. However, it is interesting to note that if the direction matrix is updated

before exiting, it gives the inverse of the Hessian matrix



164

=H'= (8.22)
0.167 0.167

== {0.667 0.167}

Because the direction matrix is a function of the previous direction matrix, if the nature of the design
space is such that the optimization routine requires several iterations before an optimum is achieved, the
direction matrix may contain information that is not applicable near an optimum. For this reason it can be

helpful to reset the direction matrix to the identity matrix periodically. In this work, the direction matrix
was reset to the identity matrix each time the resulting step size was
|A%,|<1.0e 12 (8.23)
If the direction matrix was equal to the identity matrix and the criteria in Eq. (8.23) was met, the solution
was considered finished and the algorithm exited.
The gradient required by the algorithm in Eq. (8.12) was computed numerically using a second-order
central-differencing method. It was found that a step size of 1.0e-8 for the differencing provided a good
trade-off between truncation and round-off error. This was the step size used for differencing in the code.

Appendix P contains the Fortran code used for the optimization routine.

D. An Example Optimization Run
An example optimization run may be helpful to the reader. Beginning with the non-optimal values for
the constants given in Eq. (8.9) and holding o, =1.0, C,; =0.065, and a,; = 0.0 constant, the optimization

routine took the steps shown in Table 8.2. The resulting model constants for this case are

o, =10, C, =0.065, a, =00, C,,=2.0768E-03, a,, =-3.6480E - 03,
C.3 =62543E-02, a,,=-3.0563E-03, a,, =1.1202E +00

”

(8.24)

which results in an RMS error of 0.2136%. Figure 8.2 shows the model results for the constants evaluated

from the optimization run. Also included are the corresponding results for the Colebrook equation.
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Reynolds Number

iteration Cn a, Cs a3 a4 Fitness
0 2.0000E-03  -4.0000E-03  6.3000E-02  -3.0000E-03 1.1200E+00  2.5808E+00
1 2.1749E-03  -3.9968E-03  6.2986E-02  -3.0155E-03 1.1200E+00 8.0540E-01
2 2.1999E-03  -4.1727E-03  6.3320E-02  -3.0288E-03 1.1202E+00 7.9584E-01
3 2.4371E-03  -8.7041E-03  6.9826E-02  -5.9085E-03 1.1258E+00 5.6610E-01
4 2.5871E-03  -1.2737E-02  7.1871E-02  -6.0652E-03 1.1295E+00 4.3093E-01
5 2.6995E-03  -1.9510E-02  7.2916E-02  -8.5437E-03 1.1236E+00 4.0144E-01
6 2.4684E-03 -1.4187E-02 6.8653E-02 -5.8296E-03 1.1242E+00 2.9050E-01
7 2.4222E-03 -1.4296E-02 6.7363E-02 -5.8726E-03 1.1210E+00 2.7447E-01
8 2.1622E-03 -5.3522E-03 6.4061E-02 -3.4922E-03 1.1218E+00 2.2605E-01
9 2.1307E-03  -4.4432E-03  6.3595E-02  -3.1936E-03 1.1219E+00 2.2352E-01
10 2.1252E-03  -4.6136E-03  6.3391E-02  -3.1418E-03 1.1217E+00 2.1715E-01
11 2.1122E-03  -5.0337E-03  6.3106E-02  -3.5625E-03 1.1198E+00 2.1455E-01
12 2.0867E-03  -3.9178E-03  6.2766E-02  -3.1851E-03 1.1203E+00 2.1377E-01
13 2.0800E-03  -3.7579E-03  6.2596E-02  -3.0954E-03 1.1202E+00 2.1360E-01
14 2.0800E-03  -3.7579E-03  6.2596E-02  -3.0954E-03 1.1202E+00 2.1360E-01
15 2.0799E-03  -3.7579E-03  6.2596E-02  -3.0954E-03 1.1202E+00 2.1360E-01
16 2.0800E-03  -3.7578E-03  6.2596E-02  -3.0950E-03 1.1202E+00 2.1360E-01
17 2.0798E-03  -3.7522E-03  6.2596E-02  -3.0960E-03 1.1202E+00 2.1360E-01
18 2.0775E-03  -3.6923E-03  6.2553E-02  -3.0762E-03 1.1201E+00 2.1359E-01
19 2.0768E-03  -3.6480E-03  6.2543E-02  -3.0563E-03 1.1202E+00 2.1359E-01
20 2.0768E-03  -3.6480E-03  6.2543E-02  -3.0563E-03 1.1202E+00 2.1359E-01
21 2.0768E-03  -3.6480E-03  6.2543E-02  -3.0563E-03 1.1202E+00 2.1359E-01
22 2.0768E-03  -3.6480E-03  6.2543E-02  -3.0563E-03 1.1202E+00 2.1359E-01
(0200 KO 2 s s Y ey
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Fig. 8.2 Friction factor results for the Phillips -4 fully rough pipe flow model with a set of optimal
model constants given in Eq. (8.24).



166
Comparing Figs. 8.1 and 8.2, it is easy to see that these model constants provide a significant improvement

over the original set of model constants given in Eq. (8.9) which resulted in an RMS error of 2.5808%.

E. Resulting Closure Coefficients

Initial estimates for the model constants were obtained by fitting the algebraic relation for A" to results
derived from the mixing length model. Early optimization runs were set to allow all the model constants to
vary except for C,, which was held at the value C; =0.0004. Results from these runs showed that excellent
model fitness could be achieved over a significant range of values for o, and C,;. Hundreds of
optimization cases were run holding both o, and C,; at specified values in the ranges of 0.10< o, <2.0
and 0.0005 < C,; <0.25. These ranges were chosen based on estimates gained from early optimization

runs. Figure 8.3 shows the % RMS error as a function of C,, for several values of o,
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Fig. 8.3 % RMS error over a range of values for C,, and o,.

rl

Figure 8.3 shows two distinct regions of the design space. Note that for a given value of o, the %
RMS error is minimized at low values of C,;. However, for high values of C,;, the % RMS error is

independent of C,;. The region of the design space with high values of C,, is attractive for two reasons.
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First, if the solution at high roughness Reynolds numbers is independent of C,,, the closure coefficient C,,

rls
may be used as an extra degree of freedom for developing a model that transitions to lower roughness
Reynolds numbers. Second, note that the % RMS error for high values of C,; for any given value of o, is
not significantly higher than the best % RMS error possible. In fact, the difference in % RMS error of these
two regions is generally on the order of a few tenths of a percent. Therefore, it appears that using a solution
in the region of small values for C,; does not result in a model that is significantly better than using a
solution with high values of C,,.

In the region where the solution is independent of C,,, it was found that the fitness is also independent

rl>

of a,,. To understand this, it is helpful to consider the algebraic relation for the mean vortex wavelength

(1+a,,

A =min[C,R% R, C, k! +CsR3 (1= )" R (8.25)

If C,, and a,, combine such that C,;R¢' is large enough,

O g o)
CaRE > =+ CaR (=R (8.26)

T

over the entire pipe radius, and the solution becomes independent of both C,; and a,,. In the flat regions of
Fig. 8.3, the optimized results for a,, are identically 0.0 because a,; was initialized to 0.0, and the results
were found to be independent of both C,, and a,,. Initial optimization runs for which both C,, and a,, were
allowed to vary, and for which the product C,;R¢;' was small enough to affect the results, often converged
to solutions for a,, that were on the order of 1.0e-4.

Again note from Fig. 8.3 that even for small values of C,; where a,, was also allowed to vary, the case
fitness values do not significantly improve over the flat region that is independent of both C,, and a,,.
Therefore, it appears that choosing values for the constants that give results in the lower regions of C,; do
not offer significant improvements over the results that can be obtained in the region where the solution is
independent of both C,; and a,,. Overall, the case fitness appears to be a more significant function of o,

than of C,, and a,,, and the case fitness is only a function of ¢, in the region that is perfectly flat.

rl»

Additional optimization cases were run extending the ranges of o, and C,; to 0.02< 0, <4.0 and

0.0005< C,; £0.50. These ranges are expected to bound the domain of probable final values of the
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coefficients. In traditional turbulence models, o, has ranged from 0.5 to 2.0. Thus the bound on o is
likely sufficiently large. Because the mean vortex wavelength is expected to be less than the pipe radius, it
is expected that the upper bound for C,, is about 1.0. Additionally, it was found that the solution is
independent of C,, for C,; >0.50 for all o, >0.02. Therefore, optimization runs for C,; >0.50 are not
needed.

In the region where the solution is independent of C,; and a,;, optimal values for the remaining

r1>
constants and the % RMS error are only functions of o, . Because this region is perfectly flat with respect
to C,,, it will subsequently be referred to as “the flat.” Figures 8.4 through 8.8 show the optimization results
for each of the remaining closure coefficients as a function of o, as well as curves that represent the lines
of best fit for the results on the flat. Details on computing these lines of fit can be found in the Fortran
subroutine included in Appendix Q that uses these lines of fit to calculate each of the closure coefficients as

a function of o, . This method for computing the closure coefficients in this region as a function of o, will

be referred to from here on as computing the closure coefficients from the flat.
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A short discussion on the behaviors of the coefficients a,,, a,5, and a,, may be of interest. Note from

Fig. 8.7 that the value for a,; is zero at o, = 0.75. Because a,; = 0.0 was used for these optimization runs,

choosing o, = 0.75 gives a model that is independent of the core Reynolds number. Similarly, from Fig.

8.5 it can be seen that choosing o, = 0.85 gives a,, = 0.0 which results in a model where the mean vortex

wavelength at the wall is a linear function of the roughness Reynolds number. Finally, note from Fig. 8.8
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that a,, is within 14% of 1.0 over the entire range included in this study. This result suggests that the mean
vortex wavelength close to the wall is nearly a linear function of distance from the wall. In fact, in the

region where the solution is independent of C,, and a,,, this result gives a model where the characteristic

r1>
length of the turbulence is nearly a linear function of radius over the entire pipe cross section. This could be
significant because of its similarity to Prandtl’s original mixing-length theory. Prandtl hypothesized that
near a smooth wall, the turbulent characteristic length is directly proportional to the distance from the wall.
For roughened pipes, wall effects could be expected to extend further from the wall than for smooth pipes,
affecting a larger region of the flow cross section. For fully rough pipe flow, it is probable that the wall
effects extend across the entire pipe and that the characteristic length of the energy-bearing eddies would be
directly proportional or very nearly proportional to the distance from the wall. Optimal results for the
Phillips k-4 model suggest a value within 14% of a,, =1.0 which results in a model where the mean vortex
wavelength, or characteristic length of the energy-bearing eddies, is nearly directly proportional to the
distance from the wall. Thus, this model for fully rough pipe flow resembles Prandtl’s hypothesis for wall-
bounded turbulence.

In the flat region of Fig. 8.3, the case fitness is a function of only o . Figure 8.9 shows the % RMS

error of the model as a function of o, . Note that even at the upper limit of o, = 4.0, the % RMS error is

less than 1%.
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The relations shown in results of Figs. 8.4 through 8.9 were developed for the range where the solution

is totally independent of C,, and a,,. However, if C,,R¢' is small enough, the solution is affected as
demonstrated in Fig. 8.3. Therefore, the relations shown in Figs. 8.4 through 8.9 cannot be expected to
produce valid results for small values of C,;. The discussion following Fig. 8.8 provides some justification
as to why the fully rough solution may be expected to be independent of C,,. However, at lower roughness
Reynolds numbers, C,; may become increasingly important as the flow transitions towards the smooth-wall
asymptote, and the presence of the wall affects a smaller portion of the flow. Therefore, it is of worth to
examine the % RMS error of the model for small values of C,; using the coefficient relations from the flat.
Figure 8.10 shows the % RMS error of the model as a function of C,, for several values of o, . The closure
coefficients over the entire range shown in Fig. 8.10 were evaluated using the flat with a,; = 0.0. Note that
the error of the model increases rapidly for low values of C,;. It appears that the range of values

0.5 <o, <1.0 give the best model fitness over the widest range of values for C,;.
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One point of interest apparent from Fig. 8.3 is the minimum % RMS error in the design space shown in

that figure. This occurs at o, =0.1 and C,; = 0.03. This point is significant because it presents an optimal
point where the value of C,, is small enough to affect the solution. The % RMS error at that point is 0.129.
It appears that this is very near the best solution possible with this turbulence model, and the model results

at this point along with select points from the flat will be considered in the following chapter.

IV. Summary and Conclusions

The closure coefficients for the Phillips k-4 model are o, C,, C,;, a,1, C,,, a1, C,3, a,3, and a,,.
The closure coefficient C,; only influences the solution through the dissipation term in the turbulent-
kinetic-energy transport equation. Because the bulk of the dissipation of turbulent kinetic energy takes
place in a very small region near the wall in fully rough pipe flow, the influence of C, is negligible for
fully rough pipe flow. This has been shown analytically and confirmed numerically. However, at lower
roughness Reynolds numbers, and especially in the smooth-wall limit, the influence of C, will be
extremely important.

Values for the remaining closure coefficients, o, C,, a,;, C,,, a,,, C,3, a,3, and a,, were evaluated
using a quasi-Newton, gradient-based optimization algorithm. This algorithm employed the BFGS update
method which begins as the steepest-decent method and stores information about the first derivative
throughout the design space to estimate the Hessian. As the solution progresses, the stored information
allows more intelligent steps to be taken until an optimum is reached.

Hundreds of optimization cases were run over a range of values for the closure coefficients. The results
of this optimization study showed that the model results are independent of C,; and a,; over a wide range
of the design space. In that region, the model predicts that the mean vortex wavelength is nearly directly
proportional to the distance from the wall, which is similar to the fundamental hypothesis of Prandtl’s
mixing-length model. Additionally, in that region, optimal values for the remaining closure coefficients can
be expressed as a function of o, . These relationships are shown in Figs. 8.4 through 8.8 and details on the

lines of best fit for the closure coefficients can be found in Appendix Q. Choosing a value for o, in the



174
range of 0.5 < o, <1.0 appears to give a model with the best fit to experimental data over a wide range of
values for C,,. Additionally, choosing a value of o = 0.75 gives a,; = 0.0 which results in a model that is
independent of the core Reynolds number.

Perhaps the best point in the design space is that for o, = 0.1 and C,; = 0.03. The optimal values of the
closure coefficients at this point result in a model with the minimum % RMS error in the design space of
this study. The results of the model at this point along with points from the flat are considered in detail in

the following chapter.
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CHAPTER 9

PHILLIPS -4 MODEL RESULTS AND CONCLUSIONS

I. Introduction

The Phillips k-1 model and accompanying closure coefficient relations presented in the previous
chapter provides an accurate method for predicting the friction factor of fully rough pipe flow. The results
of the previous section show that there is a range of values for the closure coefficients that results in a
model that has less than 1% RMS error for fully rough flows. If C,,; is large enough that it does not affect
the solution, the closure coefficients that provide the best fit are only a function of & . Four points of
interest in the design space may be worth considering to evaluate the overall performance of the model.
Three of these values are values on the flat for o, =0.1, o, =4, and o, =0.75. These constitute a small
value for o, a large value for o, and a convenient point in between that minimizes error while making
the model nearly independent of the core Reynolds number. The final point of interest is the minimum %
RMS error point in Fig. 8.3 with o, =0.1 and C,; =0.03. Results for each of these points are discussed

here and the model results are compared to results from the Wilcox 1998 and 2006 models.

II. Model Results at Points of Interest

A. Low Value on the Flat: ¢, =0.1

Setting o, =0.1 and evaluating the other closure coefficients from the flat gives model results with a
% RMS error of 0.158 over the range of fully rough flows studied. Figure 9.1 shows the friction factor
results for these closure coefficient values. Figures 9.2 and 9.3 show the nondimensional velocity and eddy-
viscosity profiles for k; =1000 over a range of relative roughness values. The empirical correlations from
Chapter 7 are also included for comparison. Note that although the friction factor results match the
Colebrook equation extremely well and are easily within the scatter of the experimental data, the velocity

profiles do not match the law of the wall and the eddy-viscosity profiles deviate significantly from the



176
empirical relations far from the wall. These characteristics of the model are typical for results computed on
the flat as will be shown in the following subsections. The characteristics displayed in Figs. 8.12 and 8.13

reveal significant traits of the model and will be discussed once other plots computed from the flat have all

been presented.
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B. High Value on the Flat: ¢, =4

Setting o, =4.00 (which is likely larger than it will need to be to allow the model to transition to
smoother walls) and evaluating the other closure coefficients from the flat gives friction factor results with
a % RMS error of 0.670. Figure 9.4 shows the friction factor results along with published experimental
data. Note that the friction factor results deviate noticeably more from the Colebrook equation than those
for o, =0.1. However, they could reasonably be considered within the scatter of the experimental data.
Figures 9.5 and 9.6 show the velocity and eddy-viscosity profile results for k;” =1000. Again, note that the
velocity profiles do not match the law of the wall, and the eddy-viscosity results do not match the empirical

relations far from the wall.
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C. Point of Interest on the Flat: ¢, =0.75

0.6

0.8

1.0

179

Setting o, = 0.75 and evaluating the other closure coefficients from the flat gives friction factor results

with a % RMS error of 0.186. The friction factor results are shown in Fig. 9.7. Again, the model results

match the fully rough limit of the experimental data within the accuracy of the experimental data. Figures

9.8 and 9.9 show the results for the velocity and eddy-viscosity profiles.
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The results of the model with coefficients computed from the flat reveal some important characteristics
of the model. Recall that the flat portion of the optimal design space is a region where the solution is
independent of C,,. If C,, is large enough, the mean vortex wavelength is nearly a linear function of the
distance from the wall, which results in a mean vortex wavelength distribution that does not satisfy the
centerline symmetry boundary condition. Although this can be seen from Eq. (8.25), the fact that it did not
satisfy the centerline symmetry boundary condition was not realized until the results for the eddy-viscosity
profiles were considered. The fact that the mean vortex wavelength has a finite slope at the centerline
causes the eddy-viscosity profile to have a finite slope at the centerline, which is obviously not correct. At
the centerline, all the turbulence properties must satisfy the symmetry boundary condition which, in
mathematical terms, means that the gradient at the centerline must be zero.
The fact that the velocity profiles on the flat do not match the law of the wall is very apparent in Figs.
9.2, 9.5, and 9.8. To understand why, recall that Eq. (7.32) was derived making two major assumptions.
First, it was assumed that the eddy viscosity is a linear function of the distance from the wall, and second, it
was assumed that y* / R, is small compared to unity. Even though these assumptions do not match reality
far from the wall, somehow the resulting equation for the velocity profile matches experimental data over
the entire flow cross section as can be seen in Fig. 7.4. This fact suggests that the effects of one assumption
must be cancelling the effects of the other assumption in the solution far from the wall. Therefore, if the
eddy viscosity were assumed linear but the assumption that y* / R, is small compared to unity were
neglected, the closed-form solution for the velocity profile would likely be in significant error far from the
wall. Such an assumption is similar to the results of this model with coefficients computed from the flat.
Note that the eddy viscosity of the model is nearly linear over the entire flow cross section and that it
matches the near-wall eddy viscosity of the empirical relations very well. However, in the numerical
integration, the y™ / R, term is included, and the solution gives a velocity profile that does not match Eq.
(7.32) in the region where y™* / R, is significant compared to unity.
These results show that although the results from the flat portion of the optimal design space match the

friction factor very well, this region creates a non-physical mean vortex wavelength profile which in turn
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causes the eddy-viscosity and velocity profiles to deviate significantly from experimental data and
empirical relations. Therefore, a point in the optimum design space where C,, is small enough to cause the
mean vortex wavelength profile to satisfy the centerline symmetry boundary condition is worth

considering.

D. Point of Minimum % RMS Error

The point with the smallest % RMS error for the friction factor shown in Fig. 8.3 is that for o, =0.1
and C,; =0.03. This point is significant because it is not on the flat portion of the optimal design space, and
therefore, the value for C,; is small enough to affect the solution. The optimal closure coefficients for this

point to three significant figures are

o, =0.1, C,, =0.03, a,, =7.54E-03, C,, =4.96E - 03, a,, =6.51E - 03,

9.1)
C.;=1.70E-01, a,;=2.17E-03, a,, =1.12

Figure 9.10 shows the friction factor results for high roughness Reynolds numbers. The % RMS error for

this set of closure coefficients is 0.129. Note that the results match the Colebrook equation extremely well.
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Fig. 9.10 Friction factor results for the Phillips k-A model at the point of minimum % RMS error.

Figures 9.11 and 9.12 show the velocity and eddy-viscosity profiles for the model with £ =1000 over

a range of values for the relative roughness. Note that the velocity profiles appear to match the law of the
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wall marginally better than the results for the velocity profiles on the flat, with the greatest improvement
being apparent near the centerline of the pipe. Also note from Fig. 9.12 that the eddy-viscosity profiles with
this set of closure coefficients are much closer to the empirical relations than the profiles resulting from

closure coefficients on the flat.

Fig. 9.11 Velocity results for the Phillips £-4 model at the point of minimum % RMS error with

k; =1000.

Fig. 9.12 Eddy-viscosity results for the Phillips 4-4 model at the point of minimum % RMS error

with & =1000.
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Of particular note is that the region of the velocity profiles that deviates the most from the law of the
wall corresponds to the region of the eddy-viscosity profile of 0.02<y/R<0.2. Note that the model
predicts an eddy-viscosity distribution in this region that is nearly linear while the experimental data shown
in Fig. 7.5 displays a more parabolic distribution. Because the velocity distribution is a function of the
eddy-viscosity distribution, if the law of the wall is to be correctly predicted, the eddy viscosity must also
be accurately predicted in this region. Recall that the mean vortex wavelength function was based on
matching the eddy-viscosity distribution to the approximation of Kays and Crawford in Eq. (7.42). Because
the Kays and Crawford approximation is nearly linear, the resulting model has near-linear mean-vortex-
wavelength and eddy-viscosity distributions in this region. Because the eddy viscosity is directly
proportional to the mean vortex wavelength, if the law of the wall is to be obtained, the fundamental
equation for the mean vortex wavelength given in Eq. (7.59) must be altered to a more general profile that
would allow for a parabolic eddy-viscosity distribution. This appears to be the fundamental limitation of
the model closure.

Near the center of the pipe where the velocity gradient is small, the dependence of the velocity profile
on the eddy viscosity becomes weaker. In this region, there appears to be significant scatter in the data for
the eddy viscosity as can be seen in Fig. 7.5. Therefore, it is expected that the exact distribution of the eddy
viscosity and mean vortex wavelength in the region y/R > 0.5 is less important than that in the region
0.02< y/R<0.2.

Given the current limitations of this turbulence model, it appears that the set of closure coefficients
given in Eq. (9.1) are the best set of closure coefficients for this model. Significant improvements could be
made to the model if the mean vortex wavelength equation were altered. However, without that flexibility,

it is unlikely that any other set of closure coefficients would significantly improve the results of the model.
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III. Comparison to Other Models

A. Wilcox k- Model

Traditionally, the k- model has been accepted as the model most capable of modeling rough-wall
effects without implementing wall functions. The effects of surface roughness are commonly incorporated
into the k-w model by simply altering the surface boundary condition on w. For example, Wilcox [35]

suggests using the relation for " at a rough wall of

2
2, i 55
k; ’
+ K

= (9.2)

= 2

y'=0

100, )(200)° 100 o g s
ki |UkS ;

N

The Wilcox 1998 k-w model is likely the most widely used model for rough walls, and there is perhaps no
better way to evaluate the Wilcox 1998 model than by using code distributed by Wilcox. Along with his
book on turbulence modeling, Wilcox distributes a CD with a number of computer programs capable of
running his model for various flows. Among these programs is a fully-developed-pipe-flow code which
allows the user to model roughness effects by specifying @™ at the wall. This code was used to evaluate the
Wilcox 1998 model in comparison to the experimental cases of Nikuradse. For each &, value, cases were
run starting at R, =1.0 and incrementing R_ until the computer code would no longer converge. For each
case, o' at the wall was evaluated using Eq. (9.2) as suggested by Wilcox. It was found that grid-
converged results for the code could be obtained using 801 nodes, and therefore, each case was run using
this grid size. Figure 9.13 shows the results of this study. The results of this model appear to be nearly
within the scatter of the experimental data for high Reynolds numbers. However, the results exhibit a trend
with a positive slope that causes the deviation from the Colebrook equation to increase with increasing
Reynolds number. Additionally, the code did not converge for higher Reynolds numbers than those shown
in the figure.

In 2006 Wilcox published a revised model which has not as yet been as widely implemented as his

1998 model [35]. Using his code for his 2006 model, the computations explained above were repeated.
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Figure 9.14 shows the results of this model compared to experimental data. Note that this revised model

deviates significantly from the Colebrook equation, and the deviation increases with increasing Reynolds

number. The code did not converge for Reynolds numbers higher than those shown in the figure.
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Comparing the results of the Wilcox 1998 and 2006 k- models seen in Figs. 9.13 and 9.14 to the
results of the Phillips k-4 model seen in Figs. 9.1, 9.4, 9.7, and 9.10 shows that the Phillips k-4 model
provides a significant improvement over traditional methods for modeling the bulk-flow properties of fully
rough pipe flow. Figure 9.15 shows the results of the model predictions for the Nikuradse number as a
function of roughness Reynolds number. For these results, the optimal model constants given in Eq. (9.1)
were used. The plot also includes the data sets of Nikuradse and Shockling, et al. Note that the Phillips &-4
model is within the scatter of the experimental data for fully rough flows, whereas the k- models deviate

significantly from the Colebrook equation and the experimental data.
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Fig. 9.15 Nikuradse number results of the Phillips £-4 model with optimum model constants.
B. Eddy-Viscosity Models

Four eddy-viscosity models for fully rough pipe flow were given in Chapter 7. Equation (7.35) is a
model that fits Nikuradse’s eddy-viscosity estimates, Eq. (7.36) is a model that fits the estimates of
Reichardt, Eq. (7.42) is a model suggested by Kays and Crawford, and Eq. (7.43) is a model that can be
developed from the law of the wall. It is insightful to observe how well each of these models compares to
the Phillips £~ model presented here. Because the deviation for each of these eddy-viscosity profiles as a

function of roughness is almost imperceptible when shown on a plot similar to Fig. 7.5, the eddy-viscosity
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profiles are not included here. Figures 9.16 — 9.19 show the velocity profiles produced by each of the
models for a range of k, values where &k =1000. Each of these cases was run with the traditional values of

x =0.40 and y =0.0334. The code to run each of these cases is included in Appendix O.
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Fig. 9.16 Velocity results for the eddy-viscosity model given in Eq. (7.35) with k£ =1000.
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Fig. 9.18 Velocity results for the eddy-viscosity model given in Eq. (7.42) with k] =1000.
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2 103

Because each of these models was developed from velocity profile measurements, each model also
reconstructs the velocity profile fairly well. Note particularly the results in Fig. 9.19. As the value for &, is

increased, the model results approach the law-of-the-wall equations also included in the plot. This behavior
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is not surprising because the model given in Eq. (7.43) was derived directly from the law-of-the-wall
velocity profile with the fully rough flow assumption. Each of these velocity profiles from the eddy-
viscosity models appears to be a significant improvement over the velocity profiles predicted by the
Phillips k-4 model shown in Fig. 9.11.

Although each of these models reconstructs the velocity profile fairly well, the relationship between
friction factor and Reynolds number is not extremely accurate. Figures 9.20 — 9.23 show the friction factor
results for each of these models. Note that the models based on Nikuradse’s and Reichardt’s
approximations for the eddy viscosity given in Egs. (7.35) and (7.36) result in significant errors in the
friction factor as a function of Reynolds number. These yield % RMS errors of 5.46 and 7.81 respectively.
The model based on the work of Kays and Crawford given in Eq. (7.42) gives reasonable results with a %
RMS error of 1.81, but is noticeably less accurate than the Phillips £-4 model. The model derived from the
law of the wall with results shown in Fig. 9.23 has a % RMS error of 0.826. This model is a significant
improvement over the other three models, but has a % RMS error that is six times that of the Phillips £-4
model. Therefore, the Phillips £-4 model included in this work provides a significant improvement over

other models for predicting the relationship between the Reynolds number and friction factor for fully

rough pipe flow.
0.10r|| rorrrrrn e o e o e
0.08
50-cmm 0.034
— 0.06 ® ¢ o o 0 0 0 0 o
% : 4
& 0016 @
< ® 060606000 0 0 3
" )
LT-< 004 0.0083 E
g ® o000 0 o ’ 50
= i 5 00030 3
° 1 ® o0 0 0 0 R -
— \}
k2 y s 0.0020 ©
=
5 0.02 o o o 0.00098 3
= ' qu
O  k_=0.034, Nikuradse — 0.00030
A A k,=0.016, Nikuradse °7e o
O k., =0.0083, Nikuradse
v k,=0.0039, Nikuradse
¢ k,=0.0020, Nikuradse L +++ + HHETFTT o of 0000058
0.01 f— & %.=0.00098, Nikuradse
-+ k,.=0.000058, Shockling et al 7
11] L1 L 1lll] L 11 1l]] L 11111l | ) L 11111l L1 1 1ll]1]
10° 104 10° 106 107 108 10°

Reynolds Number
Fig. 9.20 Friction factor results for the eddy-viscosity model given in Eq. (7.35).



Darcy Friction Factor

Darcy Friction Factor

0.]0r|| rorrrren e o e rorrrren e
0.08
0.06 SR 0.034
L ] e e oo 0 0 o
32y AT 20001 0.016
a & ®
0.04 ® 0 00 0 0 0 o ]
0.0083
® © 00 0 0 o
-] 0.0039
® o0 0 0 ¢
0.0020
® o 0 ¢ o
0.02 { 0.00098
® o o
O  k,=0.034, Nikuradse 0.00030
A k,.=0.016, Nikuradse ®
0O k,=0.0083, Nikuradse
VvV  k,=0.0039, Nikuradse
¢ k,=0.0020, Nikuradse G 44+ AHITTTT > o 0.000058
0.01 f—e  %.=0.00098, Nikuradse
- + k,=0.000058, Shockling et al N
111 1 1 111l 1 1 | 11ll] 1 1 1 11ll] ] 1 1 1 11ll] 1 1 1111l
10° 104 10° 106 107 108 10°
Reynolds Number
Fig. 9.21 Friction factor results for the eddy-viscosity model given in Eq. (7.36).
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Fig. 9.23 Friction factor results for the eddy-viscosity model given in Eq. (7.43).

IV. Summary and Conclusions

The focus of this work has been to evaluate the performance of an alternate energy-vorticity turbulence
model. One significant benefit to the current turbulence model is that it is based on modeling the vorticity
of the flow. Many RANS-based turbulence models in use today model the dissipation of turbulent kinetic
energy as a transport property. This is simply not physically correct because dissipation is not a transport
property. Furthermore, it has been shown that traditional smooth-wall boundary conditions for dissipation-
based turbulence models are incorrect. The correct smooth-wall boundary conditions for turbulence models
were presented in Chapter 5, and are boundary conditions that force both k and its first derivative to zero at
a smooth wall. The behavior of the present turbulence model near a smooth wall has been considered, and
justification for developing a model for rough walls was given in Chapter 6. The development of the
Phillips k-4 model for fully rough pipe flow was presented in detail in Chapter 7 and includes an algebraic
relation for the mean vortex wavelength as a function of distance from the wall. A gradient-based
optimization routine was presented that was used to evaluate optimal values for the closure coefficients.

Finally, the results of the model have been presented and compared to experimental results, empirical

correlations, and other rough-wall models.
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The resulting model provides a very accurate method for predicting the bulk flow properties of fully
rough pipe flow. The % RMS error of the model is less than 1% over a range of values for C,, and o, as
shown in Fig. 8.10. The model is significantly more accurate for predicting the relationship between
Reynolds number and friction coefficient for fully rough pipe flow than the Wilcox 1998 and 2006 k-w
models as well as the eddy-viscosity models of Nikurase, Reichardt, and Kays and Crawford. However, the
resulting velocity profiles of the Phillips k-4 model do not match the expected law of the wall for fully
rough pipe flow. One result of the model that will likely lead to future research is the fact that if C,, is large
enough that it does not affect the solution, the mean vortex wavelength equation does not satisfy the
centerline symmetry boundary condition. This is a fundamental limitation in the model which must be
addressed in a future revision of the model. The fact that the mean vortex wavelength does not satisfy the
centerline boundary condition in this situation leads to a result for the eddy viscosity that also does not
satisfy this centerline boundary condition. This is clearly a fundamental inconsistency with the model and
should be addressed in future work.

The current limitations of the model suggest areas of future work that could produce promising results.
First, a fully rough model must be developed which has the flexibility of matching the parabolic nature of
the eddy-viscosity distribution in the law-of-the-wall region of the flow. This will most likely be achieved
by developing a closing equation for the mean vortex wavelength that, when coupled with the turbulent-
kinetic-energy transport equation, results in a parabolic distribution for the eddy viscosity. This can be
accomplished using a method similar to that presented in Chapter 8, but using the distribution of Reichardt
[95] or a distribution that matches the data of Nikuradse [59] rather than the approximation suggested by
Kays and Crawford [96]. Once a relation for the mean vortex wavelength has been developed, the
optimization routine included in this work can be used to evaluate optimal closure coefficients for the
model. The resulting model will likely match the velocity and eddy-viscosity profiles better than the model
presented here, and may even match the friction factor results given by the Colebrook equation better than

the current model.
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Once a robust model for fully rough pipe flow has been obtained, a transition model could be
developed that allows the model to predict the flow properties at lower roughness Reynolds numbers. In the
limit as the roughness approaches zero, this model should match results for hydraulically smooth walls. It is
unlikely that a model will need to be developed for perfectly smooth walls, as no experimental data exists
for such walls, and such a wall is currently impossible to manufacture.
Once a complete turbulence model for transitionally rough pipe flows has been developed, the model
characteristics can be extended to channel and other boundary layer flows. It is possible that such an
approach to developing future turbulence models can result in models that are more robust and accurate

over a wide range of flow scenarios.
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APPENDIX A

MATHEMATICAL IDENTITIES

I. Vector Identities

V-(UV)=(U-V)V+V(V-U) (A.1)
V(sV)=(V-V)s+s(V-V) (A.2)
V-(6-V)=6-(VV)+V(V-06) (A.3)

oU G
Uw{5;+(V~V)U}=E;(;U4)+(V.VX;UQ) (A4)

I1. Ensemble Averaging Identities

$=0 (A5)
_:__+_:+:_+ﬁ
oY =y Z oY +oy (A.6)
=y +oy
VS = PG +PUG + W Pe +PUE + Py (A7)
d_T (A.8)
ox Ox

III. Flowfield Properties

The strain-rate tensor is given by

(ov, ov.\ (ov, oV, (ov, ov.)\]
— S| | = — | —=+—=
ox  Ox oy  Ox oz Ox
= ov, ov, oV, ov.
svy=1| [T D) (2o, ) [ 2 O (A9)
2\ ox oy oy oy oz oy
ov, oV, ov, adv, ov, oy,
+— —4 +— +—=
ox Oz oy 0Oz 0z 0Oz

The Jacobian tensor of a vector field is



The rotation tensor is

(

o

~_

<

N

Il
| —

This can be written in terms of vorticity

EZ(V) =

Note that

The squared magnitude of the strain-rate tensor is given the symbol S,% and is defined as

;

52 =S(V)-S(V)

V)
ov.
ox

Q2 =0(V)- (V) =

X ? aVy ’ aVz
H =] +| =%

oy oz
The squared magnitude of the rotation tensor is given the symbol Q,z/ and is defined as

2 2
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This can also be written as one-half of the squared magnitude of the vorticity vector
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APPENDIX B

TRADITIONAL TURBULENCE MODELS

I. The k-& Model

A. The General k-¢ Model Equations

The k-¢ model was first made popular by Jones and Launder [15] and has become one of the most
widely used turbulence models. In its general, steady-state, incompressible form, the complete k-¢ model
includes the continuity equation, the RANS equations, the turbulent kinetic energy equation, the dissipation

transport equation, and the closing kinematic viscosity equation

V-v=0

(V-V)V =—Vp/ p+V-[2(v+v,) S(V)]
V-V)k =2v8(V)-S(V) =&+ V-[(v +V, /o, VK] (B.1)
(V-V)e = 2cglv,%§(V)~§(V)—ch§+v [ +v,[o,)Ve]
v,=C P K’ / &
This model has difficulty near wall boundaries and is generally modified in one of two ways depending on
the flow Reynolds number. For high Reynolds number flows, Launder and Spalding [101] suggest the use
of wall functions. For low Reynolds number flows, damping functions are employed which allow the
model to be integrated to the wall. Because this work is more comparable to models capable of integration
to the wall, special attention is given here to damping function models. Several damping function models
exist including those by Jones and Launder [15], Launder and Sharma [69], Lam and Bremhorst [68], and

Chien [102]. Patel et al. [84] compare the performance of several models.

Many low Reynolds number k-& models can be written in the form

(V-V)k =20, S(V)-S(V) & — &, +V[(v+V, /o, VK]
- — 2
(V-V)e=2C,,fv, %S(V) SV -C,, 5 %+ E+V-[(v+v,/o,)Ve] (B.2)

v, :Cﬂfﬂ kz/g
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where the models differ only in their definitions of f w Jio fas E, &, and the closure constants, C_;, C

el> “~g2s

Cy, oy, and 0. In this work, only the low-Reynolds number models of Launder and Sharma [69] and Lam

and Bremhorst [68] are included.

B. Fully Developed Channel Flow
The k-¢ model with damping functions can be written in its general form for incompressible, steady-

state flow as

(V-V)k =2vS(V)-S(V) - -z, +V [(v +Vv, /0, VK] (B.3)

_ _ 2
(V-V)e =2C,, fiv, %S(V) SV -C,. 1, ‘% +E+V-[(v+v,/0,)VeE] (B.4)
v, =C, [,k e (B.5)

The k and ¢ transport equations can be written for 2-D flow in Cartesian coordinates as

_ M 2 — 2]
av. k av.
&, )=2V; Py | LA 4V —g—,go+i (v+v,/ak)% (B.6)
dy dy 2\ dy dy dy
d(7,¢) (a7, 1(a7. V) 2 d d
. :chlﬁvti —=| o= _ngfzg_+E+_ (V+Vt/58)_g (B.7)
dy ki av | 2 ay k dy dy

For fully developed channel flow, the transport property gradients with respect to x are much smaller than
those with respect to y. Therefore, eliminating the x-derivatives and using Eq. (C.20) gives the two-

dimensional fully developed k and ¢ transport equations

—\2
_4 (v+v,/0'k)ﬁ =v, vy -&-¢, (B.8)
dy dy dy
—\2
_d v+v,/o )f =C fvﬁde -C fi+E (B.9)
dy t £ dy elJ1 tk dy £2J2 I :
Using the nondimensional definitions
2
k+si2,g+zg—j,g;zgof,E+=E‘; R =L (B.10)
uT uT uf T v
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and substituting in the results of Eq. (C.31), gives the nondimensional fully developed k-¢ model

2
+ ot
dd+ [(1+v+/0k)jk+}:g++aﬁ—v*(%} (B.11)
ly ly U+v
d de* e et R —y* ?
FI:(1+V+/O-S)d_+:|:C‘EZfzk_‘*'_Cglf‘lVJrk_"'(#_*_);‘*)] —E'+ (B12)
y y T
vi=C, £k e (B.13)

In order to close this formulation, the damping functions f,, f;, f5, E*, and &, must be specified.
Various functions have been proposed, and the subsequent sections will discuss one such proposal. In

addition to the definitions of the damping functions, four boundary conditions must be specified. These are

dk*

+

Ly

+ +
dk (R,>=0,Z%(R,>=o, K (0)=0,

+

(0)=0 (B.14)

+

The first two conditions are a result of symmetry at the centerline of the channel. The third and fourth
conditions are a result of the definition of k and the fact that the velocity fluctuations must go to zero at the
wall. The final boundary condition for k£ is not widely recognized in the literature. The most common
approaches include examining the near-wall behavior of ¢ and specifying this behavior as a boundary
condition. However, such an approach is mathematically incorrect. The governing equations cannot be used

to invoke a boundary condition at the wall as discussed in Chapter 5.

C. Fully Developed Pipe Flow
Several low-Reynolds number versions of the k-¢ model exist and can be written in the form

Vv, =Cﬂf# k2/£

(V-V)k =20,S(V)-S(V) - s — &, +V-[(v +V, /o, VK] (B.15)
_ _ 2
(V-V)e=2C,, fiv, %S(V) SV)-C.r 1, %+ E+V [(v+v,/o,)Ve]

where the models differ only in their definitions of f w fi» f2, E, &,, and the closure constants, C,, C,,,
Cy, oy, and o,. The turbulent-kinetic-energy and dissipation-frequency transport equations can be written

in cylindrical coordinates as
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—\2 - —\2
V%JFVH Ok Vzﬁzzvt oV, N 10V, +ﬂ 8V
or r 00 0z or rog r 0z
— —\2 — —\2 —\2
1( oW,/r)y 10V, 1(1aV, oV, v, Lo
| =L |24 O + —Z
2 or r 06 2\r 060 oz 82 or (B.16)

10 Ok 1 0 1 ok
-£-¢, +;E[(v+v,/ak)r—r}+—£{( +v,[o)— 60}

0 Ok
E[w,%}
o V,06 -0 v, 1o, 7.\ (ov.Y
e HoZe o e
o r 00 ‘oz or r o0 r 0z
_ —\2 — = \2 = =2
1( oW,/r) 10V, ) 110V, ov,\  1(ov, ov.
+—| r + +— T— | TS +
20 o roee) 20ree o) 206 o (B.17)

10 0
—Coofy— +E+—5{(v+v,/a )iz ri|+—£|:(l/+l/t/0') 62}

0 &
+g|:(V+Vt/U£)a—Zi|

Applying the simplifications for fully developed flow in a pipe, these equations can be written as

M, —\2 —\2 —\2]
IZ%=2V, L I L Y L —g—.so+li (v+v,/o—k)r%
or or r 2\ or r or or
- - (B.18)
_ o¢ o7 Y (V.Y 1(a7. ) & 10 oe
V,—=2C I el i Bl R —+E+—|(v+Vv, /o) r—
or i { or ] { r J 2( or j o2/ k 7 or {( t/ 2l 8r}
Applying Eq. (C.59) gives
10 ok o, Y
75{—(v+v,/ak)r5}:v{ aer -e-¢,
, (B.19)
10 e oV, &?
——|-(v+v C.fiv,i—|—=| -C —+F
ra’[ ( t/o- )Var} s1J1 tk( ar] e2)> X

The k-& formulation with the remaining boundary conditions can be written as
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av. ___ui v
dr v+v,)R
Vv, =Cﬂfﬂ kz/g
—\2
10 ok ov,
75[—(v+v,/ak)r5}:v,( e j —e-¢, (B.20)
10 og el o, ? &?
7E|:_(V+Vl/ag)r5j|:Cglﬁvt;(a_rz] _Cszsz“LE

= dk dk de
V,(R)=0, k(R)=0, ;(R) =0, ;(O) =0, ;(0) =0

Applying the nondimensional parameter definitions

2
k &v gV Ev
k+E—,8+E—’$+E 0 ,E+E B.21
2 4 %o 4 6
u‘l’ uT uT uf

with those given in Eq. (C.68), the formulation can be written as

du’ R
dr (1+v")
2
vi=C, f k" /g+
2
1d dk* du”*
—— | -+ f—|=v"* -t —¢f B.22
;ﬁ{( /@Vﬁ} (WJ ; (B.22)
2 2
1d ~do* e* ([ du* e*
;EIZ—(IJFW/O}U)”F:‘:Cglfl"JrkT[ de —ngfzk_++E+
dk* dk* des*
ut()=0, k*(1)=0, 7 =0, W(O)=0, 7 0)=0

D. Sample Models

1. The Launder-Sharma k-¢ Model

The Launder-Sharma [69] turbulence model is a special case of Eq. (B.2) where

fu=exp[-3.4/(1+R,[50)’], f,=1.0, f,=1-03exp(-R}),
5 2 P 2
R, :k—, g, =2v & , E=2vy, a—sz , (B.23)
ve 0% oy
C,=0.09, C,=144, C;,=192, 0,=10, 0,=13
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where y is the coordinate measured normal to the wall and I7x is the velocity tangential to the wall. This

formulation can be written in terms of the k and ¢ transport equations given in Table F.1 and is a special

J

case where

ok
Ju=2v, fio :5+21{
y

2 277
£ oV,
fgl = ZCSIC/lfHk’ f52 = ng[l—O.3€Xp(—th)]7—2VVt( ayZ ] ’ (B24)
k2 2 2
Ri=—\ vi=C,f,k e, f,=exp[~3.4/(1+R,[50)*],

C,=009, C, =144, C,,=192, 0,=10, 0,=13
This model was designed so that £ - 0 as y — 0. Therefore, the near-wall approximation for ¢ is
Jeo =0 (B.25)
This is not a boundary condition. It is simply a near-wall approximation for ¢ and can be applied at a no-
slip wall.

The Launder-Sharma turbulence model can be written for two-dimensional fully developed channel

flow as
9 v+ v,)ﬂ -1
dy dy | pdx
2 2
_i (V+Vt/o-k)% =v, @ _g_L 6—k (B26)
dy dy dy 2k \ oy
2 2
d ds e du &’ o%u
_d—y|:(l/+vt/0'6)d—y:|=Cglf]l/t;[d—yJ —C52f27+2]/vt(6y—2]
where

f.=exp[-34/(1+R,/50)*], f,=1.0, f,=1-0.3exp(-R}),
K2 2 (B.27)
Vt=Cquﬂ?, Rt:;

and the closure constants are
Cﬂ =0.09, C,,=144,C,, =192, 0, =10, 0, =13 (B.28)

Using the change of variables, /# = ¢, Eq. (B.26) is a special case of Eq. (E.1) where
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K? 1 dp
fV:0'09f/47’ Ju :_;d_];’ Jun=r, Jfia=h fiz=v
2
S =0.1296 1k,  fi,=1.92[1-03 exp(—R,z)]h?, Sz =2vv,, (B.29)
kz

fu =exp[-34/(1+R,[50)*], R, =—
Vh

Because / is not singular at the wall, the near-wall solution only needs to be used for the value of / at the
wall. Therefore, we set m;, =0. In the limit as y — 0, the k equation reduces to

hy=0 (B.30)
Figures B.1-B.3 show the nondimensional results of a grid-resolution study for the model as a function of
y* where u=.001, p=.1, /=0.5, and d]%/dx =—7.2. The logscale axes are helpful for seeing how the

model behaves near the wall.
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Fig. B.1 Nondimensional mean velocity results from the Launder-Sharma model.
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Fig. B.2 Nondimensional turbulent kinetic energy results from the Launder-Sharma model.
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Nondimensional dissipation results from the Launder-Sharma model.
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The Launder-Sharma turbulence model is a special case of Eq. (B.20) where

fu=exp[-34/(1+R,[/50)’], fi=10, f,=1-03exp(-R}),

5 2 ) y—\2
Rt :k_’ &, =2v a\/; :L[%J ) EZZVVt 0 Zz ,
Ve or 2k \ or or

C,=009, C, =144, C,, =192, 0,=10, o,=13

In nondimensional form, it is a special case of Eq. (B.22) where

From the differential equations, it can be shown that the near-wall asymptotic solution for £* is

f.=exp[-3.4/(1+R,[50)*], f,=1.0, f,=1-03exp(-R)),

2 2
K 2falke | (e} oo
g R oF 26*RE\ o7 ) R o

C,=0.09, C, =144, C;,=192, 0,=10, o,=13

£(0)=0

This model is a special case of Eq. (D.1) where

2 2
du” e
Sh :Cglcﬂf#k-k(?] _ngfzk_++E+

f. =exp[-3.4/(1+R,[50)*], f,=1-03exp(-R)),

2 2
L 2 [k 1 (ot . (ot
N 50 = — ~ = ~ . E =
gt R\ or 2k*R*\ oF R} or?

T

C,=009, C,=144, C,,=192, ¢, =10, o,=13

J

J
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(B.31)

(B.32)

(B.33)

(B.34)

The algorithms given in Egs. (D.18)—~(D.20) can be used to solve this model where the functions are

defined as



214

£, =C,yexp[-3.4/(1+ R, [50) 1! [et

2 k'f',z
S, =viut —et-——L (B.35)
J%i J Zk;Rf
) 2 ) g*.'z o2
Sy =CyC, exp[— 3.4/(1+R,/50) ]kj-uj- —C,,[1-0.3exp(—R, )]kj_+ + —iuj
7 T
S =0.0
C,=009, C,=144, C, =192, 0,=10, o0,=13
and m,, =1 should be used.
2. The Lam-Bremhorst k-¢ Model
The Lam-Bremhorst [68] turbulence model is a special case of Eq. (E.2) where
f =[1-exp(—.0165R )I’[1+20.5/R,1, f, =1+(.05/ £ fr=1-exp(-R)),
2 2
v=Cf o r =2 Ry:&, £,=0, E=0, (B.36)
& ve 1%

C,=009, C,=144, C,=192, 0,=10, o,=13
where y is the coordinate measured normal to the wall. This formulation can be written in terms of the &
and ¢ transport equations given in Table F.1 and is a special case where
Ja=2v, fia=é,
2

fur =2C4C, [ 1+ (0S) £, Wk, fy = ng[l—eXp(—Rf)]%,

) ) (B.37)
k k Wk 2
v, = Cﬂfﬂ?, R, =;, R, =7, Sy =[1—exp(—.0165R,)] [1+20.5/R,],
C,=009, C,=144, C,,=192, 0,=10, o0,=13
In the limit as y — 0, the k equation reduces to give the near-wall approximation for &
d*k
feo=| =% (B.38)
dy 0

This is not a boundary condition. It is simply a near-wall approximation for & and can be applied at a
smooth, no-slip wall. Some have implemented de/dy (0)=0 as a boundary condition. However, this is

mathematically incorrect and has no physical basis as pointed out in Chapter 5. Using Egs. (F.10) and
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(F.11) along with the approximations given in Eqgs. (H.22) and (H.23), Eq. (B.38) can be evaluated along

the south boundary as
d*k d ( dk
e I e e
" ), dy\ dy 0

(B.39)

. 8y +9, =y \( =8ky +9k —ky | | Jo 72ky 120k, + 60k, — 12k,
>0 3A7 3AR 15A7?

where the subscript 0 is the value at the wall, and the subscripts 1, 2, and 3 represent the values at the first,
second, and third cells off of the wall respectively. As a final note, it is important to mention that near the
wall, R, and R, approach zero and cause some of the functions in Eq. (B.37) to be singular. Therefore,
near-wall approximations must be used. The following criteria were applied on a 32-bit computer
performing double-precision computations for the case of R, < 20.5E-16

2 2
7 2205000165222, v =1845001652 2K
U k t

1% 1%

B.40
P 0.1296(0.05)° kv 7 _]92k_3 (840
T (205)2(0.0165) yie?T TP T2

The Lam-Bremhorst turbulence model can be written for two-dimensional fully developed channel

flow as

ﬁ{(w)ﬂ}:i@
dy

dy | pdx
2
_ 4 (V+v,/0'k)ﬁ =v, du - (B.41)
dy dy dy

du

2
d de & &2
—d—y[(VJrVr/O'g)d—y} =Cufiv, Z[dy} —ngsz

where
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fu =[1-exp(=.0165R )I[1+20.5/R,], fi=1+ (.05/ £ fo=1-exp(-R}),

2 2 y\/; (B.42)
Vt ZCﬂf#?, Rt :;, Ry :T
and the closure constants are
C,=0.09, C, =144, C,, =192, 0, =10, 0, =13 (B.43)

Using the change of variables, # = ¢, Eq. (B.41) is a special case of Eq. (E.1) where

k> 1 dp
£y =0.09f,~—. fy=——L fu=tp fo=h fiz=0
h p dx
h2
Fn = 0.1296[1+ (05 £,)°1f, k. fin =1.92[1 - exp(—Rf)]? fiz =0, (B.44)

k? y\/E

fu =[1-exp(=.0165R )I’[1+20.5/R,], R,:W, R, = y

Because / is not singular at the wall, the near-wall solution only needs to be used for the value of / at the
wall. Therefore, we set m;, =0. In the limit as y — 0, the k equation reduces to
hy = [d_zl;J (B.45)
dy” ),
which can be evaluated from Eq. (E.49). As a final note on the Lam-Bremhorst model, it is important to
mention that near the wall, R, and R, approach zero and cause some of the functions in Eq. (B.44) to be
singular. Therefore, the near-wall approximations must be used. The following criteria were applied on a

32-bit computer performing double-precision computations for the case of R, < 20.5E-16

2 2
£, =205(0.0165)> Yho e 84500165y 2K
vk g (B.46)
io- 0.1296(0.05)°  k°v? i 92k_3 '
M 20.5)2(0.0165) yR2T TP T2

Figures B.4-B.6 show the nodimensional results of a grid-resolution study for the model as a function of

y* where 1 =.001, p=.1,/=0.5, and dp/dx = —7.2.
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Fig. B.4 Nondimensional mean velocity results from the Lam-Bremhorst model.
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Fig. B.S Nondimensional turbulent kinetic energy results from the Lam-Bremhorst model.
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Fig. B.6 Nondimensional dissipation results from the Lam-Bremhorst model.

The Lam-Brembhorst turbulence model is a special case of Eq. (B.20) where

S =[1=exp(<0.0165R ) (1+20.5/R,), f, =1+(0.05/1,)°, f,=1-exp(~R}),

2
R =K Ry:y*/;, g,=0, E=0, (B.47)
ve 14

C,=0.09, C,=144, C,=192, 0,=10, o,=13

In nondimensional form, it is a special case of Eq. (B.22) where

S =[1—exp(<0.0165R ) (1+20.5/R,), f, =1+(0.05/1,)°, f,=1—exp(-R}),

2
k+
R=" R, =y k", & =0, E"=0, (B.48)

C,=0.09, C,=144, C,, =192, 0,=10, o0,=13
From the differential equations, it can be shown that the near-wall asymptotic solution for £* is
eT(0)=k" (0) (B.49)

where the double-prime represents a derivative with respect to y*. This model is a special case of Eq. (D.1)

where
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dr
2 2
o du” et
Sh = Cglc,uflf,uk [?j - CngZ k_+ (BSO)

[, =[1—exp(=0.0165R )I*(1+20.5/R,), f, =1+(0.05/£,)°,
42

fr=1-exp(-R}), Rt:k_’ R, =y™k",
£

+

C,=0.09, C,=144, C,,=192, 0,=10, o,=13

The algorithms given in Egs. (D.18)—(D.20) can be used to solve this model where the functions are

defined as
2
kt 112
_ J _ + +
R = o R, =k; y;

f, = C R [1-exp(~0.0165R ) (1+20.5/R,)
2
Sp=vjuj —é&; (B.51)
2

_ 3 2 N 2 ‘9;
i = CaC,ll+ (0.03/ 1,101 = exp(-0.0163R, P (14 20.5/ R)kju} - = Coall = exp(-R7 )]

J

’

Jno = k;
Cﬂ =0.09, C,=144, C,,=192, 0,=10, o0.=13

and m,, =1 should be used. As a final note on the Lam-Bremhorst model, it is important to mention that
near the wall, R, and R,, approach zero and cause some of the functions to be singular. Therefore, near-wall
approximations must be used for these functions. The leading-order terms in the near-wall Taylor series

expansion for &k and the near-wall asymptotic solution for ¢ give

" 2
k+ :m+...
2 (B.52)
et =k (0)+---

Using these leading-order terms in the definitions of R, and R, shows that as yt =0
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et 4

(B.53)
R (O)er2
R, =k" y =—F—

TR

4 2
This shows that as y* — 0, R, >0 as y* and R, —>0as y*". Looking at the asymptotic behavior of f p

R, =

for double-precision computations gives

if R, < 2.71E-6 £, =(0.0165R)’[1+20.5/R,]
5 20.5 (B.54)

t

if (R, < 205B-15)and (R, < 2.71E-6) f, =(0.0165R,)

These approximations can be used in Eq. (B.50) to give conditional statements for f,

if R, < 2.71E-6
£ =(0.0165R )°[1+20.5/R,]

2
k+
Fv=Cutu e

if (R, < 20.5E-15)and (R, < 2.71E-6)

(B.55)

,20.5 K+
1 &"

2
=20.5C,,(0.0165R,)

£, =C,(0.0165R))

Approximations from Eq. (B.54) can be used in Eq. (B.50) to give conditional statements for £, f ﬂk+.

Details are shown here.
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if R, < 2.71E-6

fifuk™ =11+ 05/ £,)°1(0.0165R,)*[1+20.5/ R, 1k *
if (R, < 20.5E-15)and (R, < 2.71E-6)

3
(0.05) 001658, )? 20.5

2 20.5 1
R

k+

AfkT =11+

[(0.0165Ry)

t

(0.05)°
2 20.5€+
s

,20.5

=1+ . k"
+

L0165y

{(0.0165k+1/ )

3,43
= (0.0165)%y*°20.55 {1+ 005k -
(0.0165)° y™ (20.5)°&*

3
" 2
+ +
(0.05)3 %

—(0.0165)% 220,561+

3
(0.0165)° y*6(2o.5)3(k+ (0))
(B.56)

3
= (0.0165)% 20,551+ (0'056) -
8(0.0165)°(20.5)

Likewise, double-precision computations gives

2
et

. — i (B.57)

if R, < 2.11E-4  [1—exp(-R})]

II. The k- Model

A. The General k- Model Equations

The k-w model was first developed by Kolmogorov [16] and has been revised by many others
including Saffman [103], Wilcox [35,39,40,45], Speziale et al. [34], Peng et al. [42], Kok [43], and
Hellsten [44]. In its general, steady-state, incompressible form, the complete k-w model includes the
continuity equation, the RANS equations, the turbulent kinetic energy equation, the dissipation frequency

transport equation, and the closing kinematic viscosity equation
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V-V=0

A

(V-V)V =-Vp/ p+V-[2(v +v,) S(V)]
(V-V)k =2v,S(V)-S(V) ~ C, ko + V -[(v +V, /0, VK] (B.58)

V-Vyo=2C,v, %§(V) SV)=C 0 +V [(v+V,[5,)V o]
k
v, =—
w

where C , C

1> ol

C 2, 0y, and o, are the closure coefficients. Because this model does not naturally exhibit

2>
the correct behavior in the near-wall region, functions are typically included that are similar to the wall
damping functions employed in the k-¢ model. These damping functions modify the equations above to

yield a variation of the turbulent kinetic energy equation, the dissipation frequency transport equation, and

the closing kinematic viscosity equation

(V-V)k =20, 8(V)-S(V) - C,, fyko +V -[(v +V, /6, )VK]

(V-V)o=2C, fv, %§(V) SV)=Cpp fo0* +V - [(v+V,/T,)V o] (B.59)

Vi= .f:u -

B. Fully Developed Channel Flow

The k and w transport equations can be written for 2-D flow in Cartesian coordinates as

o k ov, v,
ok | o, )=2Vt (%] +[—y] +l[ y+an] —Cufiko

ox 0 ox 20 ox
4 v v (B.60)
0 ok 0 ok
+—|(v+v —|+—|(v+v —
o [( /o) 6x} Y {( /%) Gy}
7o) o .0) AN ARG A, A
w
M+ y :chlfivtﬁ aVV + _r +l _y+% — a)Zfza)z
Ox oy k|| ox oy 2\ o&x Oy
(B.61)

0 ow 0 0w
+§{(V +Vr/0'w)a} +5{(v + vt/o-a,)a}

For fully developed channel flow, the transport property gradients with respect to x are much smaller than
those with respect to y. Therefore, eliminating the x-derivatives and using Eq. (C.20), gives the two-

dimensional fully developed &k and w transport equations
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0 ow w( oV, ? 2
_5{(1/4.1/1/0”)5} = Cw1f1V,;( 8ny —C o fr0 (B.63)
Using the nondimensional definitions
k= uiz w* Eu—;’ (B.64)
z r

and substituting in the results of Eq. (C.31), gives the nondimensional fully developed k-« model

2
d dk™* R, —y"
dy+ [(1+V+/O-k)dy_+}zc/lfkk+a)+ —V+(mJ (B65)
2
0 ow* 2 o[ R —y"
> [(l+v+/aw) o }: Confyt0™ —Cy fiv F(TKW)J (B.66)
+
v :fﬂ; (B.67)

In order to close this formulation, the damping functions f,,, f}, f5, and f}, must be specified. Various
functions have been proposed, and the subsequent sections will discuss one such proposal. In addition to

the definitions of the damping functions, four boundary conditions must be specified. These are

+ + +
ZI;T(R”:O’ %(Rrho, k=0, &

0)=0 (B.68)

+

Again, the final boundary condition in Eq. (B.68) is not widely recognized in the literature, and the near-

wall behavior of w is often referred to as a boundary condition. This is incorrect as discussed in Chapter 5.

C. Fully Developed Pipe Flow
The k- model includes an expression for the kinematic eddy viscosity, the turbulent-kinetic-energy

equation, and the dissipation-frequency-transport equation
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v, = fuklo
(V-V)k =20, 8V)-S(V) - C, fiko +V -[(v +V, /6, )VK] (B.69)

V-VYo=2C,, fv, %é(V) SV)=C,p o> +V - [(v+v, [0, )V o]

The turbulent-kinetic-energy and dissipation-frequency transport equations can be written in cylindrical

coordinates as

_ —\2 — —\2 —\2
2%4_&%4_[26_](:21/[ aVr + 1%4_& + aVz
or r 00 0z or r 00 r 0z

— —\2 — — \2 — — \2
1[5(V_/)15LJ i(ia_VaLJ 1(%%}
(B.70)

2 or r 00 2(r 00 oz 2\ oz or

10 ok| 10 1 ok
—Clufkka)'i';EI:(V+Vt/O'k)l"E:l+;£[(V+Vt/0'k);£:l

0 ok
+E|:(V+Vt/0k)a—z:|

_ —\2 - —\2 —\2
za_w+ﬁa_a)+[7za_a)zzcw1fivt2 aVr + l%.}.ﬂ + aVz
or r 00 0z k|\ or r ol r Oz

1 aw,/ry 1ov.Y 1(107. ov,\ 1(ov. o)
+—|r——=——L | | ——E+—2 | | L +—=
2 or r 06 2\r 00 oz 2\ 6z or (B.71)

10 ow 1 0 1 0w

e 2,2 = flhtiad

w2 Sr® +rar[(v+vt/0'w)r 6r}+r89[(v+vt/o-”)r69}
0 ow
+—|(v+ —
o |:(V v/04) aZ:|

Applying the simplifications for fully developed flow in a pipe, these equations can be written as
dk ANIARICA 1d dk
V.—=2w|| =L | +| L | +—|—=]| |- ko+—— | (v+v, /o )r—
" dr tl( er (rJ 2(0{}’) ] ”fk rdr{( t/ ©) dr}

—\2 =12 —\2
— do o|(dVv, |4 1(dy, » 1d dw
V. —=2C —| =L +|=L| +—=|—=| |-C +——| (v+ —
s a)lflvtk[( drj (Vj 2{ ar j] 02/20 rdr{(v Vi[o,)r dr}

Applying Eq. (C.59) gives

(B.72)
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1 d dk dv.
7;[—(1/“/,/0',{);’;}:1/,( " ] -C, fiko

— \2
1d do o(dv,
7;{— v+ Vt/o-a))r;:l =Co/iVy ;(7} ~Copfo0°

The k- formulation with the remaining boundary conditions can be written as

v, up r
dr v+v,)R
Vt:f,uk/w
—\2
1 d dk dv.
7;{—(‘/""@/0’1{)”;}:‘/{ " j -C, fiko

—\2
d do o|dy,
7;{—(V+Vt/0'w)r;}:Cwlfle;(W) _szfza)2

7.Ry=0. kR)=0. %(ry=0, % 0)=0, ?(0)=0
dr dr dr
Applying the nondimensional parameter definitions

14
, 0" =—-

2
Ur

kT =

S| =

with those given in Eq. (C.68), the formulation can be written as

du’ _ R7F
dr (I+v")
v+:fﬂk+/a)+
2
1d . ~dk* o du” 24+ 4
S|y Jo )P || | Gl

2
1d ~do” du”® 2
Epr {—(1+V+/O'a;)’” 7 }=Cw1f1f#[¥J ~CofrR} 0"

+ + +
w1y=0, kKm=0, ¥ =0, * =0, 9 (0)=0
dr dar dr

D. Sample Models

1. The Traditional k-« Model

The traditional k- turbulence model is a special case of Eq. (B.59) where

225

(B.73)

(B.74)

(B.75)

(B.76)
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fu=10, f,=10, fi=10, f,=10,

(B.77)
€, =009, C, =052 C,,=0072, 0,=20, o,=2.0

This formulation can be written in terms of the k& and w transport equations given in Table F.1 and is a

special case where

k
fkl =2Vt’ fk2 =C,ukw’ fa)l =2Ca)1: fa)Z =Ca)2w29 Vs 25

’ (B.78)
¢,=009, C, =052, C,=0072, 0,=20, 0,=2.0
In the limit as y — 0, w becomes singular. The near-wall asymptotic behavior for w can be written
6v
foo=—— (B.79)
7 0.072)2

where y is the coordinate measured normal to the wall. Fluent uses this near-wall approximation for the
first cell off of a smooth wall.

The traditional k~w model can be written for two-dimensional fully developed channel flow as

Al )] 1
dy dy p dx

2
_4 (v+v,/0k)ﬁ =v, du -C ko (B.80)
dy dy dy
2
_i (V+Vt/o-w)d_a) :Ca)lvt2 ﬂ _sza)Z
dy dy k\ dy
where
v =k (B.81)
w
and the closure constants are
c,=009, C, =052, C,, =0.072, 6, =2.0, 7, =2.0 (B.82)

Using the change of variables, # = @, Eq. (B.80) is a special case of Eq. (E.1) where

k 1 dp
==, fu=——7F, =1, =0.09kh, =0
o= ) s fa=rn fe Ji3 (B.83)

fu =052, f,,=0072k%, f,3=0
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Because / is singular at the wall, the near-wall solution must be used for the value of / near the wall. In the

limit as y — 0, the near-wall asymptotic behavior can be written for w in the form of Eq. (E.34) as

(B.84)

Fluent uses Eq. (B.84) for the first node off of a smooth wall. This is equivalent to setting m, =1. Figures
B.7-B.9 show the nondimensional results of a grid-resolution study for the model as a function of y*

where 41=.001, p=.1,/=0.5, and dp/dx = —7.2.
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Fig. B.7 Nondimensional mean velocity results from the traditional k- model.
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Fig. B.8 Nondimensional turbulent kinetic energy results from the traditional k- model.

107 : : ;
4 [ . 25cells © ]
1071 S0cells o ]
I 0 100 cells © ]
10° . 200 cells . 4
i 9 ]
10% £ ]

+
®

10' ;
10° F -
107 F ]

10—2 , i , i , R |

0.1 1.0 10.0 100.0
+
y

Fig. B.9 Nondimensional dissipation frequency results from the traditional k- model.
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2. The Wilcox 1998 k- Model
The Wilcox 1998 k-w model [45] including shear-flow corrections is a special case of Eq. (B.59)

where

4 , v <0
_0.024+R,/6 _ MRS 680y/2
TR e TR | s v o]
+ t/ 1+(Rt/8) 1+4001//1§ k
1/9+ R, /2.95 Vk-Vo k
1:#’ =10, y, = 7 Ri=— (B.85)
f.(1+R,/2.95) @ Vo

c,=0.09, C, =052, C,=0072, 0,=20, 0,=2.0
This formulation can be written in terms of the k& and w transport equations given in Table F.1 and is a

special case where

4/15+ (R, /8)* ’ Vie=0
fa =2 fio=C ko221 1+ 680y :
1+(R,/8) 7> V>0
14400y
1/9+R,/2.95 5 k(0.024+R,/6
= _—, :C a , Vv, =— —_ - , (B.86)
Jor =2Can 1+R,/2.95 Jor = Con "ol 1+R/6
Vk-Vao k
Vi = 3 ’ Rt =7 >
1) 120
¢,=0.09, C,=052 C,=0072, 0,=20, 0,=20
In the limit as y — 0, w becomes singular. The near-wall asymptotic behavior for @ can be written
6v
fg=——— (B.87)
7 0.072)2

where y is the coordinate measured normal to the wall. Fluent uses this near-wall approximation for the
first cell off of a smooth wall. Wilcox [86] suggests using this leading-order solution for the first 7 to 10
grid points off the surface to avoid numerical errors that can develop from using the central differencing
scheme near a wall boundary. Wilcox states that this approximation is only good for grid points where
y* <2.5. Therefore, it is recommended that the grid be fine enough to ensure that at least 7 grid points are
within this constraint.

As an alternative, Wilcox suggests using the slightly rough wall boundary condition
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2
2
o(x.0)= 42290 4 o5 (B.88)
v
where
o = ks (B.89)
1%

is the scaled surface roughness height. The condition k' <5 gives results for a hydraulically smooth

surface.

Fluent 6.3 [85] implements the boundary conditions a similar way. Fluent sets the first node off of the

wall, y;, to
2
w2
o(x, 1) = mln[ U 25 3 0 6—V2J k<25 (B.90)
; Cwa
where
k= max(l.O, “kaj (B.91)
14

The current research is not concerned about rough surfaces. Therefore, the boundary conditions for rough
walls are not included here.

The shear-flow corrections included in this model are dependent on the quantity

Vk-Vo
Vi=——s (B.92)

This scalar quantity can be written in Cartesian coordinates as

k| |22
1 |ox o 1|0k ow Ok Oow
_ . - | ===, B.93
VT ok (o [T ax ax oy oy .
o) oy
Applying Eqgs. (F.10) and (F.11) gives
| TTeETT e T ot o

(B.94)

S| kw5 Ok dw
@

__+ —_—
| Pregar o oy
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This is discretized using the second-order differencing schemes explained in Appendix H.
The Wilcox 1998 k-w model with wall damping functions without shear flow corrections can be

written for two-dimensional fully developed channel flow as

i[(w)(@ﬂ;@
dy dy p dx

2
d dk d
_d—y{(v+v,/0'k)d—y}=v{d—z] =C,frko (B.95)

2
d do o du >
-——|(v+v —=C  fiv,—| — | —C ,fr®
dy|:( t/o-a)) dy:| a)lfl tk(dyJ a)2f2

where
0.024+R, /6 1/9+ R, /2.95
fﬂ: r/ | = / t/ , f2:1.0,
1+R,/6 fﬂ(1+R,/2.95)
4 (B.96)
4/15+(R,/8) k k
k= o4 Vt:f:u_’ R =—
1+(R,/8) ® 170)
and the closure constants are
¢,=0.09, C, =052, C,, =0.072, 0, =2.0, 0, =2.0 (B.97)
Using the change of variables, # = @, Eq. (B.95) is a special case of Eq. (E.1) where
k(0.024+R,/6 1 dp 4/15+ (R, /8)*
fvz_ t/ > fuz___p7 fklzfva fk2=0'09 / ( t/4) kh, fk3=0
h 1+R, /6 p dx 1+ (R, /8) (B.98)
1/9+R,/2.95 X k '
=052 —r=—" =0.072h", =0, R=—
I (1+ R, /2.95) T2 S T

Because / is singular at the wall, the near-wall solution must be used for the value of / near the wall. In the

limit as y — 0, the near-wall asymptotic behavior can be written for w in the form of Eq. (E.34) as

6v

fro= s
" 0,072y

(B.99)

Fluent uses Eq. (B.99) for the first node off of a smooth wall. This is equivalent to setting m, =1. Figures
B.10-B.12 show the nodimensional results of a grid-resolution study for the model as a function of y*

where 41=.001, p=.1,1=0.5, and dp/dx = —7.2.
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Fig. B.10 Nondimensional mean velocity results from the Wilcox 1998 model.
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Fig. B.11 Nondimensional turbulent kinetic energy results from the Wilcox 1998 model.
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Fig. B.12 Nondimensional dissipation frequency results from the Wilcox 1998 model.

The Wilcox 1998 k-w model is a special case of Eq. (B.76) where

k Vk-Va 0.024+R, /6
R =, =, — t
'S e U > Fu 1R /6
415+ (R, /8)" y Vie=0 1/9+R, /2.95
+ + '
=T we Le680i -, op fl:f(th/Z%)’ fr=1 (B.100)
RS a0y M Jul+ R, /2.

€, =009, C, =052 C,,=0072, 0,=20, o,=2.0

ol —

The shear-flow correction term in the damping equations can be written in cylindrical coordinates as

Vk‘Va): 1 (ak ow 1 ok 0w Ok aa)j (B.101)

— + +
VisT e o \arar 20000 oz ez
For fully developed pipe flow, derivatives with respect to 6 and z are zero. Applying these simplifications

to Eq. (B.101) and applying the nondimensional parameters gives

VkVo 1 okdo 1 ok o'
VST To oo og oF o

(B.102)

This model is a special case of Eq. (D.1) where



="

fy=f ko

2
o du” 2+ o+
Sk:V 7 _C,uferk w

2
du” 2
Sh :Cwlflf,{7] _Caz2f2R12w+
k* 1 ok* oot 0.024+R, /6
Ri=—7, Vi=——F———F— f,,=—t/
» o R OF OF 1+R, /6
1, v, <0
4/15+ (R, /8)* 1/9+R,/2.95
Je= /1 1§ ts/‘*) L 680 vy >0[ fl:f/<1+Rt//295>’
RS | aoopz M TR

C,=0.09, C, =052 C,=0072, 0,=20, o,=20

fo=
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(B.103)

The algorithms given in Eqgs. (D.18)—~(D.20) can be used to solve this model where the functions are

defined as

T+

J .

3
+2 p2
®; R;

_kj 0.024+R,/6
Y a);' ]+R,/6

2 4 , v <0
Sy =viul —0.09R3k;w;w 1+ 680y}
1+(R, /8" |7 2> V>0
1+400y;
1/9+R,/2.95 .~
5, =052 0 RI295 7 7 2t
1+R, /295 -
6
fh0:—2
0.072y;-r

and m,, =7 can be used because " is singular at the wall.

(B.104)
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APPENDIX C

COMMON CASE STUDIES

I. Boundary Layer Flow over an Infinite Flat Plate

A. Case Description

Boundary layer flow is often one of the first scenarios considered for evaluating a turbulence model.
The test case is rather simple consisting of an infinite flat plate placed in-line with the velocity vector of a
uniform flow. As the flow advances along the plate, the momentum deficit from the skin drag on the plate
causes a boundary layer to develop. The profile of this boundary layer has been studied in great detail and
much experimental data exists for this case. Experimental results show that the boundary layer profile is
self-similar and a function of the skin friction along the plate.

Because of the behavior of the boundary layer profile, certain approximations can be applied to the
RANS equations and the resulting simplified equations can be written in a similarity form. The nature of
the boundary layer equations allows a solution to be obtained by directly integrating the equations in space.
This solution method allows for the effect of turbulence model closure coefficients to be quickly assessed
because any one solution requires only a matter of seconds to compute with modern computers. However,
this method suffers from the fact that approximations about the flowfield must be assumed in order to
develop the boundary layer equations.

The boundary layer flow case in a two-dimensional CFD solver can be constructed on a rectangular
domain as shown in Fig. C.1. On the west side of the domain a velocity inlet boundary condition is
specified. At this boundary condition, all freestream properties of the flow must be specified. In this case,
uniform properties of the flow are specified across the inlet boundary. Along the south side of the domain,
a no-slip wall boundary condition is specified. Along the north and east sides of the domain, pressure outlet
boundary conditions are specified. Once the solution has reached a converged state, there should be no flow

entering the domain from the north and east boundaries. However, during the solution process, freestream
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Fig. C.1 Boundary layer case description.

conditions must be specified along these boundaries in the case that during any given iteration, backflow
develops along one of these boundaries. Figure C.1 shows the setup for this case.

Two of the most significant parameters of interest in flat-plate boundary layer flow are the prediction
of the skin friction along the plate, and the prediction of the nondimensional velocity profile. According to
convention, R, is defined as the Reynolds number at any x-position along the plate where the x-position is
measured from the leading edge of the plate along the direction of flow. This Reynolds number can be

expressed as

RX

Vx/v (C.1)
Here we define R; as the Reynolds number based on the length of the plate, L, which can be expressed as
R, =V, L[v (C.2)
The friction coefficient is defined as
C,=2,/(pV2) (C3)
Plots of the nondimensional velocity profile, u*, as a function of y* where u* =V, /u, and y* = yu, /v in

comparison with experimental data are often included. There is a wealth of experimental data for boundary
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layer flows. For example, results of boundary layer flow can be compared to experimental data by

Klebanoff [53], Bradshaw [54], Marusic and Hutchins [55], and Guala et al. [56].

B. Laminar Flow
The laminar case for boundary layers was studied in detail by Blasius [104]. Applying the boundary
layer equations, Blasius developed an expression for the friction coefficient in terms of the Reynolds

number along the plate

(C.4)

A laminar case was run in both ICESS and Fluent using the following dimensional properties:

domain width =1.0 m, domain height=0.2 m,
v, =100.0 m/s, p=0.1kg/m>, 12=0.001 N-s/m?, (C.5)
L=1.0m, R, =le4

Figures C.2 and C.3 show grid resolution results from ICESS and Fluent for the case and include grid
resolutions of 25x25, 50x 50, and 100x100. The figures show the friction coefficient as a function of
Reynolds number along the plate and include the Blasius solution. Figure C.4 compares the grid-resolved

results from ICESS to those from Fluent, both on grids of 100x 100 cells.
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Fig. C.2 Grid resolution results from ICESS for the laminar boundary layer.
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Fig. C.3 Grid resolution results from Fluent for the laminar boundary layer.

Fig. C.4 Grid-resolved results from ICESS and Fluent for the laminar boundary layer.
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C. Turbulent Flow
The turbulent boundary layer case has been studied in detail including both analytical studies and
experimental studies. Several approximations for the friction coefficient exist. For example, White [105]

develops the relation

0.455

~— 00 (C.6)
7 1n%(0.06R, )
Kays and Crawford [106] develop the relation
0.0574
Schultz-Grunow [107] obtains the relation
0.37
f (C.8)

" [log(R)P™
It is well understood that the nondimensional velocity profile of a turbulent boundary layer is a

function of the nondimensional wall coordinate. In the laminar sublayer, this profile follows the expression

ut=y", yt<~5 (C.9)

In the log layer, the velocity profile follows what is known as the law of the wall

u” =lln(y+)+C, 30 <yt <~500 (C.10)
K

Based on modern experimental data, it is generally accepted that the best values for the constants in the

law-of-the-wall equation are x =0.41 and C =5.0.
II. Fully Developed Channel Flow

A. Case Description

Fully developed flow in a channel is a common case for evaluating a turbulence model. This case is a
two-dimensional flow which is identical to the three-dimensional flow between two infinite flat plates. As
flow enters a channel, a boundary layer develops on each channel wall. As the flow moves downstream, the

two boundary layers eventually meet, and the flow reaches the fully developed state.
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This flow case in two dimensions can be constructed on a rectangular domain as shown in Fig. C.5.
Along the south side of the domain, a no-slip wall boundary condition is applied. Because this case is
symmetrical along the centerline of the channel, only half of the channel is modeled, and a symmetry
boundary condition is applied along the north side of the domain. The east and west sides of the domain are

then specified as periodic boundary conditions. This boundary condition forces the properties of the flow
exiting one side of the domain to be equal to those entering the other side of the domain. The use of
periodic boundary conditions requires either a pressure drop across the domain to be specified, or a mass

flux across the periodic boundary to be specified. Figure C.5 shows the setup for this case in Cartesian

coordinates.
For fully developed channel flow, gradients in the flow properties with respect to the flow direction
disappear, and the profiles of flow properties become dependent only on the coordinate normal to the wall.
Therefore, the governing equations can be simplified to a one-dimensional problem and the solution can be

obtained numerically very quickly on modern computers. The formulation can be discretized into a banded
system of equations and solved quite rapidly where the full two-dimensional problem may take a

significantly longer amount of time. Therefore, this one-dimensional test case is ideal for the optimization

process of closure coefficients.
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Fig. C.5 Fully developed channel flow case description.



B. The Continuity and RANS Equations
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The steady-state, incompressible continuity and Boussinesq-RANS equations can be written in vector

format as

V-V=0

(V-V)V =-Vp/ p+V-[2v+v,) S(V)]

These can be written for two-dimensional flow in Cartesian coordinates as

ov, o,
_+—_
Oox oy
AN oo 7|
6(VXVX)+ ( y x) :_i@-i-i 2(V+ Vt)an
o oy pOx Ox| ox
o) oWy, 5o
7 y)+ &y y):_l@+i 2(v+v,)—=
ox oy poy | o

L+

v+ V,)(aI7

W+m{

v,
— 4+
oy

o7,
ox

y
ox

|

_VJ_

(C.11)

(C.12)

(C.13)

(C.14)

(C.15)

where the y-coordinate is the normal coordinate measured outward from the wall of the channel and the x-

coordinate is the coordinate along the channel. For fully developed flow in a pipe, the gradients of transport

properties with respect to x are zero, and these equations can be simplified to

o,y
oy B

o)

oy

1o, 0
pox oy
1 0

poy Oy

{(v +v, )(

+—|:2(v+ v, )@}
t ay

0

The no-slip boundary conditions at the wall of the pipe, y =0, are

7,(0)=0
7,(00=0

X

3

Applying the I7y boundary condition to the integral of Eq. (C.16) gives

v, =

0

(C.16)

(C.17)

(C.18)

(C.19)

(C.20)
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Applying this result to Eq. (C.18) gives

=0 (C.21)

2|

This shows that p = p(x). Using Egs. (C.20) and (C.21) in Eq. (C.17) gives

d )L
& I:(V+ Vv, )( & j:l > d (C.22)

Integrating Eq. (C.22) from the wall to some arbitrary distance, y, gives

(C.23)

{(v+ V) agj‘ L_y —{(v+ v,) d;

Because the turbulent eddy viscosity goes to zero at a no-slip wall, the second term on the left-hand side of

Eq. (C.23) evaluated at the wall can be written in terms of the friction velocity or the wall shear stress

{(VJ,Vt)de} S Tw g2 (C.24)
4y P

Using this in Eq. (C.23) gives the relation

(V+V,)%:i@y+u,2 (C.25)
dy pdx

The velocity boundary condition at the center of the channel, y =L, is

dv,

Zxl 20 (C.26)
dy =L
Applying this to Eq. (C.25) gives
2 2
ldp __u (C.27)
p dx L
Finally, applying this relation to Eq. (C.25) gives
_ 20
av, _u(-y/L) (C.28)

dy v+v)
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The friction velocity is commonly used to nondimensionalize the parameters of a wall-bounded flow.

Defining the nondimensional parameters

L R I L (C29)
u, v v v pu; dx
Using these definitions, Egs. (C.27) and (C.28) can be rewritten as
p =-1R, (C.30)
+ ot
du_+ = % (C31)
dy 1+v

The most significant parameters of interest for the channel flow case are the ability of a model to
predict the correct relation between flow Reynolds number and the friction coefficient, and the ability of

the model to predict the correct nondimensional velocity profile. The channel Reynolds number is defined

as
R, = VoD /v (C32)
where
_ 1 _
Vot = 7). Vidy (C.33)
is the bulk velocity, and
D, =4L (C34)

is the hydraulic diameter based on the channel half-width, L. The Fanning friction factor is defined as

2 2u}
Cp=—t =2 (C.35)

T 52 T2
Plouk Vou

The Darcy friction factor is defined as

D dp
fo =t | -Z (C.36)
EpVbulk dx

Using Egs. (C.27) and (C.34) in this definition gives an alternate form for channel flow
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8uf
fp==—=4C, (C.37)

Vbulk

Using the nondimensional parameters given in Eq. (C.29) as well as the definition

il = Yo L jR Cutdyt (C.38)
U, RT yt =0

in Egs. (C.32), (C.35), and (C.37) gives the expressions

R, = 4up R, (C.39)
Cp= 22 (C.40)
+
Upylk
8
n :_+2 =4C, (C41)
Upulk

C. Laminar Flow
For laminar flow, the turbulent eddy viscosity is zero throughout the flow. Integrating Eq. (C.28) for

laminar flow and applying Eq. (C.27) gives the laminar fully developed channel flow solution

2 2 - 2
A I R )
v 2L pdx| 2

(C42)
v
+ +
u =y -
7 2R,
Evaluating Eq. (C.42) at y = L gives the centerline velocity
goul_ L d
2v 24 dx (C.43)
u; = R
2
Dividing Eq. (C.42) by Eq. (C.43) gives a normalized expression for the velocity profile
Ve Y[, ¥
v, L L
. (C.44)

The bulk velocity can be evaluated by integrating Eq. (C.42)
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— 1 u? y2 u’l r d]%
Vialk = — ‘Ll y-——ldy="T—=—-———
bulk =7 J:-:o (y Y )y

1% 3y ﬁ dx
| y+2 . (C45)
ur o= J'R’ 2 gyt =o
bulk R. b0 y 2R y 3
Using Eq. (C.45) along with Eq. (C.32) in Eq. (C.35) gives
24
C,r=— C.46
Y (C.46)
The fully developed channel flow case was run in ICESS using the following properties
£ =0.001 kg/(m-s), p=0.1 kg/m3, L=0.5m, dﬁ/dx:—7.2Pa/m (A7)

r,=3.6Pa/m, u,=6.0m/s, R, =300.0
Figure C.6 shows the nondimensional velocity profile results for a grid with 50 cells using logarithmic

clustering near the wall.
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Fig. C.6 Normalized velocity profile for fully developed channel flow.

D. Turbulent Flow
Two-equation RANS-based turbulence models can be coupled with Eq. (C.31). A general form for the

complete system of equations including boundary conditions can often be written in the form



246
du” 1—y+/RT
dy_+: 1+v*
vi=1,

d dk*

e {—(l+v+/0'k)—dy+ } =S, (C.48)
d dh”

& {—(uw/ah) x } =5,

+ + +
*_0)=0, ‘j‘—+<Rf)=o, dh
y

ut(0)=0, k(0)=0, (R.)=0

+

Ly

+

where 4" represents the second turbulence variable and f,, S,, and S, are model-dependent functions. For

sample results, see Appendix B.

III. Fully Developed Pipe Flow

A. Case Description

The fully developed pipe flow case is very closely related to the fully developed channel flow case. As
flow enters a pipe, a boundary layer develops along the pipe wall. As the flow moves downstream, the
boundary layer eventually fills the entire pipe, and the flow reaches the fully developed state. In this state,
there are no gradients in the azimuthal direction of the pipe, and the case can be simplified to a two-
dimensional flow in cylindrical coordinates.

This flow case in two dimensions can be constructed on a rectangular domain as shown in Fig. C.7.
Along the north side of the domain, a no-slip wall boundary condition is applied. Because this case is
symmetrical along the centerline of the pipe, only half of the pipe is modeled, and a symmetry boundary
condition is applied along the south side of the domain. This side of the domain is also the axis of rotation
of the pipe. The east and west sides of the domain are then specified as periodic boundary conditions where
either a pressure drop across the domain or a mass flux across the periodic boundary must be specified.

Figure C.7 shows the setup for this case in cylindrical coordinates.
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Fig. C.7 Fully developed pipe flow case description.

For fully developed pipe flow, gradients in the flow properties with respect to the flow direction
disappear, and the profiles of flow properties become dependent only on the coordinate normal to the axis
of symmetry. Therefore, the governing equations can be simplified to a one-dimensional problem and the

solution can be obtained numerically very quickly on modern computers. Because solutions to this case can

be quickly obtained, this test case is ideal for evaluating closure coefficients.

B. The Continuity and RANS Equations

The governing steady-state, incompressible continuity and Boussinesq-RANS equations can be written
in vector form as

V-V=0

(C.49)
(V-V)V =-Vp/p+V-[2(v +v,) S(V)]

(C.50)
These can be written for flow in a pipe in cylindrical coordinates including the continuity equation
_ 7 _
1oGV,) 1oV OV, _

(C.51)
r or r 080 0oz
and the three components of the Boussinesq-RANS equations
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10 2 0p/r) OV,
+ Y, [(v+ v, )[r o + 20 ]:I (C.52)
Oz or 0z 72 00

7y Vydly Wy Wy 13 10 [(th)r[l ov, +r8(V6/r)H

"or r 00 7 oz r p ol ror r 06 or
10 1oV, V.
f——|2(v+v,) —L+-— C.53
rae[ v Vt)[r 20 rj:l (€33)
L0 +v) 16VZ+6V9 L) %+r26(Vg/r)
0z r 06 Oz r2 06 or

Z%+Q%+Z%:_i@+li (V+Vt)}" aVr +%
or r 06 oz p oz ror oz or

+li v+v,) aﬁ+l&L +i 2(v+wv) oV,
r 06 oz r 00 oz Oz

For fully developed flow in a pipe, the gradients of transport properties with respect to z are zero.

(C.54)

Additionally, all gradients with respect to € are zero and 17,9 =0. Therefore, Egs. (C.51)~(C.54) can be

simplified to
daav,) _ 0 (C.55)
dr
—dv. : V.l 2 _
A A UYL L B Can Y (C.56)
dr por rdr dr 2
g A 1P 1dl .9 (C.57)
dr p Oz rdr dr
The no-slip boundary conditions at the wall of the pipe, =R, are
V.(R)=0
! &) (C.58)
V.(R)=0

Applying the 17, boundary condition to the integral of Eq. (C.55) gives ¥, =0 and the governing equations

can be written as
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V. =0 (C.59)
P _ (C.60)
or
Ldl iy dle| L (C.61)
rdr dr p dz

The results of Eq. (C.60) show that fa = f?(z) which has been used in Eq. (C.61). The coordinate r is the
normal coordinate measured outward from the center of the pipe. The velocity boundary condition at the

center of the pipe, r=0, is

“gz 0)=0 (C.62)

Integrating Eq. (C.61) from the centerline to some arbitrary distance, r, gives

J.r 4 (V+Vt)rde = J‘r rdp
r=0dr dr =0 p dz

7 - 2
(V+V,)rde :idﬁ[r +CJ

(C.63)

dar p d| 2
where C is an arbitrary constant. Applying the boundary condition given in Eq. (C.62) gives C =0 and Eq.

(C.63) can be written

av, 1 dp

+ -
(v+v) dar 2p dzr

(C.64)

The left-hand side of Eq. (C.64) evaluated at the wall is related to the shear stress at the wall which can also

be written in terms of the friction velocity

Ve (Ry=-Tw =2 (C.65)
dr 0

v+v)

Using this in Eq. (C.64) evaluated at »=R gives the relationship

Liﬁ = —ﬁ (C.66)
2p dz R

Using this in Eq. (C.64) gives the formulation and the remaining boundary condition

av, u?

V.(R)=0 (C.67)

,
dr (V+Vt)E,
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This can be written in nondimensional form using the following parameters

;EL’ Rr = uTR, ut EZ’ vt Eﬁ,
R v u, v
u (R-r) u.R(1-r/R n
MR _uRATR) gy, (C.68)
v
o v wul v 2
"l R wr R
Using these nondimensional parameters, Eq. (C.67) can be written as
+ R
du” R ray=0 (C.69)
ar (1+v")

The most significant parameters of interest for the pipe flow case are the ability of a model to predict
the correct relation between flow Reynolds number and the friction coefficient, and the ability of the model

to predict the correct nondimensional velocity distribution. The pipe Reynolds number is defined as

R, =Vour Dy /v (C.70)
where
Vioulk Eiz f V_rdr (C.71)
R? =0
is the bulk velocity, and
(C.72)

D, =2R

is the hydraulic diameter based on the pipe radius, R. Again, the Fanning friction factor is defined as

2. 2u’
Cp=—2—==rt (C.73)
PVouk Voux

The Darcy friction factor is defined as

D dp
fo= #[— d—"} (C.74)
5 PVbulk o

Using Egs. (C.66) and (C.72) in this definition gives an alternate form for pipe flow
(C.75)

=30 _4c
D~ 72 TS
Vbilk
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Using the nondimensional parameters given in Eq. (C.68) as well as the definition

4 . e
U = Z“lk =2 ffé*rdr (C.76)
. N

in Egs. (C.70), (C.73), and (C.75) gives the expressions

Re = 2I/ll‘;—ulkRz' (C77)
2
Cr=—3 (C.78)
Upulk
8
I = —2 = 4C, (C.79)
Upulk

C. Laminar Flow
For laminar flow, the turbulent eddy viscosity is zero throughout the flow. Integrating Eq. (C.67) for
laminar flow gives

2.2
- U e (C.80)
2VR

Wl

Applying the boundary condition I7Z(R) =0 gives C = ufR / 2v and the laminar fully developed pipe flow

solution can be expressed as

) .
7=t (R? - r?) :L@(ﬁ —R?)
2vR 4u dz (C.81)
+ Rr ~2
u =—"—1-r
2 (1=r7)
Evaluating Eq. (C.81) at » = 0 gives the centerline velocity
y_uR__Rdp
2v 4u dz (C.82)
u = R
c 2

Dividing Eq. (C.81) by Eq. (C.82) gives a normalized expression for the velocity profile



The bulk velocity can be evaluated by integrating Eq. (C.81)

— 2 z Ru}  R* dp
Vouk =—5 u—T(RZ —VZ)Vd”Zﬁ:——@
R* $=02vR 4v 8u dz

onon R
Upk = R, .Ezo(l—rz)rdr = TT

Using Eq. (C.84) along with Eq. (C.70) in Eq. (C.73) gives

16
R

¢

Cy

A laminar fully developed pipe flow case was run in ICESS using the following properties

£ =0.001 kg/(m-s), p=0.1kg/m>, R=05m, dp/dz=-144Pa/m

r,=3.6Pa/m, u,=60m/s, R, =300.0
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(C.83)

(C.84)

(C.85)

(C.86)

Figure C.8 shows the nondimensional velocity profile results for a grid with 50 cells using logarithmic

clustering near the wall.
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u /u,
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T

Fig. C.8 Normalized velocity profile for fully developed pipe flow.
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D. Turbulent Flow
Two-equation RANS-based turbulence models can be coupled with Eq. (C.69). A general form for the

complete system of equations including boundary conditions can often be written in the form

du’ R
dr (1+vh
V+:fv
.
li —(1+v+/ak)fdkA =S, (C.87)
v dr dr
1d dn*
4 _A+vt/o, )P =S
fd{ ( V/O'h)’” df} A
+ + +
=0, k'M=0, % =0, * =0, ¥ (0)=0
dr dr dr

where /™" represents the second turbulence variable and f,, S,, and S, are model-dependent functions. For

sample models, see Appendix B.

IV. Plane Jet Flow

A. Case Description

The plane jet flow case is a valuable case for testing the ability of the model to predict shear flows. The
case consists of a two-dimensional jet of fluid entering a quiescent fluid. As the jet of fluid advances into
the quiescent fluid, the momentum of the jet is diffused outward normal to the jet axis. The jet centerline
velocity decreases as the flow moves downstream, and the width of the jet grows. Eventually, the core of
the jet profile becomes self-similar. The boundary layer equations are often applied to this case in order to
develop a similarity solution for the jet profile. However, these equations are based on the assumption that
the fluid velocity normal to the jet axis is much smaller than the fluid velocity in the direction of the jet
axis. This assumption holds near the center of the jet, but is obviously not correct far from the jet
centerline. In fact, in the regions far from the jet centerline, the fluid velocity normal to the axis of the jet is
much greater than the fluid velocity in the direction of the jet axis. This is caused from the fluid

entrainment surrounding the jet. The fact that the boundary layer equations don’t hold outside of the core of
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the jet is seldom mentioned in the literature, and the similarity solution for the jet is often used to evaluate
the performance of a turbulence model for the plane jet case. The similarity solutions provide a system of
equations that can be quickly solved to give the self-similar jet profile. However, in this work, a full two-
dimensional RANS solver will be used to evaluate the performance of the new turbulence model. This

solver will give more accurate results for the spreading rate of the jet because it is not based on the

similarity solution.

This flow case in two dimensions can be constructed on a rectangular domain by assigning a separate
boundary condition to each side of the domain. For our purposes here, we assume the jet is moving in the x-
direction and the y-coordinate is measured normal to the centerline of the jet. Along the west side of the
domain, an initial profile for the jet is specified along with inlet conditions for any flow parameters. This
initial profile can be taken from the similarity solution for the jet or from experimental data. Along the
south side of the domain, a symmetry boundary condition is applied. The east and north sides of the domain

are specified as pressure boundary conditions. Figure C.9 shows the setup for this case in Cartesian

coordinates.
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} { { | } { i i { {

} i i i { { { { { §

{ i { i i i } § b \

{ { { { { } 4 4 \ \ 5
5 } | } § \ | \ \ N\ =
= § } | | \ \ \ \ NN o)
2 y { \ \ \ N N ~ x g
S b\ \ \ N X X x > > = 2
R U S S e S gl B
SR 2 2 2 2 2 2 =2 2=
BE==E=ETEE T T T T

[

Symmetry

Fig. C.9 Plane jet flow case description.
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Some of the most significant parameters of interest in plane jet flow are the prediction of the jet
velocity along the centerline of the jet, the prediction of the jet spread rate, and the prediction of the jet
velocity profile. Defining w as the span of the jet in the third dimension, the specific x-momentum flux per

unit span is defined as
M/W =2
e A (C.88)
p 0

where M is the total momentum flux. From conservation of momentum, the momentum flux across each x
cross section must remain constant. The mass flux across each x cross section is a function of the distance
downstream of the jet because as the jet moves downstream, it entrains flow. The volume flow rate is

defined as

Q:wfﬁw/ (C.89)
Because of fluid entrainment, the volume flow rate increases as the fluid moves downstream. The volume

flow rate is commonly written in nondimensional form to give a local Reynolds number of the jet flow

&ng (C.90)
1%

In order to define a spread rate for the jet, the width of the jet must be defined. Here we define the jet
width, y,, as the y-coordinate at which the velocity in the direction of the jet centerline is equal to half the

velocity along the jet centerline

V. (x,3,) = 0.5V, (x,0) (C.91)
The spread rate can then be evaluated by plotting the jet width as a function of distance along the jet
centerline. The jet velocity profile is commonly reported in nondimensional form where the velocity has
been nondimensionalized by the centerline velocity, and the distance from the jet centerline is
nondimensionalized by the jet width. Results for the plane jet can be compared to data by Bradbury [62]

and Heskestad [63].
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B. Laminar Flow
An approximation to the laminar plane jet solution can be found by using boundary layer theory and

applying a similarity analysis. Schlichting [108] gives a solution where the velocity field can be written as

T
Z=(3K ] sech’ ()

32w
(C.92)
— Kv V3
v, = (—ZJ [2ssech?(7) — tanh(y)]
6x
where
1/3
R S
7= (481/2 j X7 (€99
Using this solution in Eq. (C.89), the volume flow rate per unit span of the jet is
0/w= f V. dy = (36K )" (C.94)
and the local Reynolds number of the jet flow is
1/3
R =9 [36{5’1 (C.95)
v 14

The right-hand side of this expression reveals an important length scale for the plane jet case. Because both
K and v are constants related to the flow field, they can be used to give a scale by which length parameters
can be nondimensionalized. The nondimensional form of a length parameter where this characteristic
length has been used will be given the symbol H. For example, the nondimensional position, x, can be

expressed as

Kx

X
V2

H (C.96)

Using Eq. (C.95) in Egs. (C.92) and (C.93), the velocity field can be rewritten in terms of Reynolds number

I7x = %%sech2 §2)
o (C.97)

v, = %Wmch2 (7) — tanh(y)]
X

where
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R, y
=x 7 C.98
rEL (C.98)
At the centerline, y = 0 which can be used in Eq. (C.97) to give the centerline velocity of the jet.
= = 3 K
V.=V .(x,0)==— C.99
e =V (x,0) 2R, (C.99)

The x-velocity profile can be nondimensionalized by dividing the profile by the centerline velocity yielding

ELsechz(j/)

I7')c _ 2 VRx _ 2
7 = 3K =sech”(y) (C.100)
2 VR,

Here we define the width of the jet to be the point at which the x-velocity is 50% of the centerline velocity

=sech’(»)=05=y = sech_l(\/0.5>; 0.88 (C.101)

AT

Using this in Eq. (C.98) gives the y-coordinate at which the x-velocity of the jet is only 50% of the

centerline velocity

y, =sech™ («/o.s)llf—x; 10.58Ri (C.102)

As a side note, it is sometimes useful to know the point at which the x-velocity of the jet is only 1% of the

centerline velocity. Following the procedure above, we obtain

* —sech?(y)=0.01=y = sech_l(«/0.0l); 2.99

Y1y, =sech”! (\/0.01)1;—" = 35.92Ri

X X

SIS

(C.103)

The most significant parameters of this flowfield can be plotted in nondimensional format. Once the

width of the jet has been found, the nondimensional velocity profile at any x-coordinate can be found

R.y(10.58x/R
* _sech? —y(%J =sech2(o.881J (C.104)
12x Vh Y

SIS

The velocity at the centerline as a function of x can be written in nondimensional form by rearranging

Eq. (C.99)
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1/3 -1/3 1/3
Vv _ 3 (3 )V(K) T _(_3 (C.105)
K 2R, \32) L2 32H,

X

Finally, the jet width as a function of x can be written in nondimensional form by dividing Eq. (C.102) by

the length scale given in Eq. (C.96)

Kyh (\/— 12x 12H . 12H

GeH, )"

A laminar plane jet case was run in ICESS using the following properties

- o0.ssasm? )’ (C.106)

£ =0.001 kg/(m-s), p=0.1kg/m’>, K=10m>/s (C.107)
The case was run on a grid of 100x100 cells and a grid of 200x200 cells using logarithmic clustering near
the wall. Figure C.10 shows the nondimensional velocity profile solution of the fine grid at several
locations along the jet. The analytical solution is that given in Eq. (C.104). Note that in the core of the jet,
the results match the analytical solution almost perfectly. However, far from the jet, the numerical solution
deviates somewhat from the analytical solution. This deviation is due to the assumptions made in order to
develop the analytical solution. Figure C.11 shows the nondimensional centerline velocity as a function of
distance along the jet centerline where the analytical solution is that given in Eq. (C.105). Figure C.12
shows the nondimensional spread rate of the jet as a function of distance along the jet where the analytical

solution is given in Eq. (C.106).

0.8

0NN DR

0.6
Analytical

VIV,
04
02
0.0 1 1 1 1 1 ? -
0.0 0.5 1.0 1.5 2.0 2.5 3.0
Yy

Fig. C.10 Numerical results for the nondimensional x-velocity profile for the plane laminar jet.
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Fig. C.12 Numerical results for the nondimensional plane laminar jet spread rate.
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V. Round Jet Flow

A. Case Description

The round jet flow case is very similar to the plane jet, but examines an axisymmetric jet rather than a
two-dimensional jet. Just like the plane jet, as the jet of fluid advances into the quiescent fluid, the
momentum of the jet is diffused outward normal to the jet axis. The jet centerline velocity decreases as the
flow moves downstream, and the radius of the jet grows. Eventually, the core of the jet profile becomes
self-similar. Because the jet is axisymmetric, the case can be simplified to a two-dimensional problem in
cylindrical coordinates. The boundary layer equations are often applied to this case in order to develop a
similarity solution for the jet profile. However, just like the case of the plane jet, these equations do not
hold far from the jet centerline. The similarity solutions provide a system of equations that can be quickly
solved to give the self-similar jet profile. However, in this work, an axisymmetric two-dimensional RANS
solver will be used to evaluate the performance of the new turbulence model. This solver will give more
accurate results for the spreading rate of the jet because it is not based on the similarity solution.

This flow case in two dimensions can be constructed on a rectangular domain by assigning a separate
boundary condition to each side of the domain. We assume the jet is moving in the z-direction and the 7-
coordinate is measured normal to the centerline of the jet. Along the west side of the domain, an initial
profile for the jet is specified along with inlet conditions for any flow parameters. This initial profile can be
taken from the similarity solution for the jet or from experimental data. Along the south side of the domain,
a symmetry boundary condition is applied. The south side of the domain is the axis of rotation for the case.
The east and north sides of the domain are specified as pressure boundary conditions. Figure C.13 shows
the setup for this case in cylindrical coordinates.

Some of the most significant parameters of interest in plane jet flow are the prediction of the jet
velocity along the centerline of the jet, the prediction of the jet spread rate, and the prediction of the jet

velocity profile. The specific z-momentum flux is defined as

k=M_ fl72227zrdr (C.108)
P
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Fig. C.13 Round jet flow case description.

where M is the momentum flux. From conservation of momentum, the momentum flux across each z cross
section must remain constant. The mass flux across each z cross section is a function of the distance

downstream of the jet because as the jet moves downstream, it entrains flow. The volume flow rate is

defined as

0= f V. 2mdr (C.109)

Results for the round jet can be compared to data by Wygnanski and Fiedler [64] and Rodi [65].

B. Laminar Flow

An approximation for the laminar round jet can be found by using boundary layer theory and applying

a similarity analysis. Schlichting [108] gives a solution where the velocity field can be written as

— 3K 1
V=
8zvz (1+ %)
V2 , (C.110)
7oL 3_Kj y(-7°)
T2z z ) (1+p?)

where
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12
3K r
= = C.111
4 (647rv2j z ( )

Using Eq. (C.110) in Eq. (C.109) gives the volume flow rate

Q= |V.2mdr=8mvz (C.112)
)

This shows that the volume flow rate is directly proportional to the distance along the centerline from the
virtual origin. In general, the position of the virtual origin is not known a priori. However, the initial

volume flow rate at the physical origin of the jet, z , can be defined as

0, =8nz, (C.113)
Any downstream position, Z, measured relative to the physical origin of the jet can now be expressed

relative to the virtual origin, z = 0, as

z=z+ 9 (C.114)
8v

At the centerline, ¥ = 0 which can be used in Eq. (C.110) to give the centerline velocity of the jet.

V=7 (2.0) = —% (C.115)

vz

This can be rewritten in terms of the distance downstream of the physical origin by applying Eq. (C.114)

2

I7C:3K 1 _3 K2 1 C.116)

8nv(2+ Qo) sz\ov’)( K2 | K
8xv o,v 712

This can be rearranged to give the nondimensional form of the centerline velocity as a function of z.

oV

[

- C.117
K? (Kz K J ( )
87| =2+

The z-velocity profile can be written in nondimensional form by dividing the profile by the centerline

velocity. This gives

3k 1
8mz (+yY)? 1
3K (1+7%)°
8mvz

(C.118)

SIS
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Using Eq. (C.112) in Eq. (C.111) gives the relation

1/2
y=0mr L (C.119)
Applying this to Eq. (C.118) gives the nondimensional form of the jet velocity profile
Ve _ ! . (C.120)
Vc Kl/zl” 2
1+ 37|
Q

Here we define the width of the jet to be the point at which the z-velocity is 50% of the centerline velocity

1

2 (V2 .
:mzo.sjyz(z/ —1)' ~0.64 (C.121)

SIS

Using this in Eq. (C.113) gives the r-coordinate at which the z-velocity of the jet is only 50% of the

centerline velocity

3K

22 T2 NV
, ={M2—1)} =2.97z(ﬂ; J (C.122)

Using Eq. (C.114) in Eq. (C.122) and rearranging gives a nondimensional form of the spread rate

) 1/2 n
K 999 2 K, X (C.123)
Q,v K ) Qv 8z

As a side note, it is sometimes useful to know the point at which the z-velocity of the jet is only 1% of the

centerline velocity. Following the procedure above, we obtain

L:%2001:>j/=3
Ve (I+y7)
5 1/2 (C124)
h =32 64y
1 3K
A laminar round jet case was run in ICESS using the following properties
1 =0.001 kg/(m-s), p=0.1kg/m>, K=10m*/s®>, 0, =025m’/s (C.125)

The case was run on a grid of 100x100 cells and a grid of 200x200 cells using logarithmic clustering near

the jet center. Figure C.14 shows the nondimensional velocity profile solution of the fine grid at several
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locations along the jet. The analytical solution is that given in Eq. (C.120). Figure C.15 shows the
nondimensional centerline velocity as a function of distance along the jet centerline where the analytical
solution is that given in Eq. (C.117). Figure C.16 shows the nondimensional spread rate of the jet as a

function of distance along the jet where the analytical solution is given in Eq. (C.123).
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Fig. C.14 Numerical results for the nondimensional z-velocity profile for the round laminar jet.
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Fig. C.15 Numerical results for the nondimensional round laminar jet centerline velocity.
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APPENDIX D

ONE-DIMENSIONAL FINITE-DIFFERENCE FORMULATIONS

I. A Second-Order Formulation

A general formulation for fully developed pipe and channel flow can be written to allow

implementation of several two-equation turbulence models. This formulation takes the form

+ ~ + + R.7
y :Rr(l_r)y 14 :fa u =— £
Y (1+vh)

+' ’ + ! + ”n
Yk —é(lﬂ-}k* —[1+V—]k+ =5,
O-k r O-k O-k

+' ! + ! + n
Yo —l{u"—}ﬁ —(1+‘”—jh* =5,
O-a) r O-h O-h

wr(1)=0, k*(1)=0, k*(1)=0, kT (0)=0, h* (0)=0

(D.1)

where /™" represents the second turbulence variable, the primes represent derivatives with respect to 7, and
/- Sk, and S, are model-dependent functions. Equation (D.1) can be solved numerically using the finite-
difference method on a non-uniform grid. Here we define a one-dimensional domain discretized by m
nodes. Node 1 is located at 7 = 0, and node m is located at 7 =1. Applying second-order forward difference

approximations, the first and second derivatives of any variable, ¢, can be approximated at node 1 as

or, =i —nR, Oh=r—K, OL=r—H

, OF} — OF2 — 0 oF?
H = e an Pt o aa b
or; or, — or, or, or; or, —ory or, or; on, —ory or,
4 = 2(07, + OF, + OF.) b+ 2(07, + OF.) y (D.2)
OF OF,OF. OF (OF, — O, )(OF, —OF,) °
2(0F, + OF,) 2(07, + 07,
+ - Py

OF, (OF, —OF.)(OF, —OF,) '~ OF.(0F, — OF.)(OF, — OF, )
Applying second-order forward difference approximations, the first and second derivatives of any variable,

@, can be approximated at node 2 as
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Or, =R —1, Of=Pr—r, OF.=ih—h

PO R} O} — OF? bt OF? ’
P OR20R, —OFZOF, | OFZOR, —ORIOR,  ORGF, —OFFOR,
" 2(57, + OF,) 2(57, + 07, + OF.) (D.3)
¢ = T on — ¢+ PP )
or,,(or, — or, )(oF, — oF,) Or,,01,0F,
2(OF, +OF,) 2(OF, + OF,)

OF, (OF, — OF, )(OF, — F,)

Applying second-order finite difference approximations,

can be approximated at an interior node, j, as

7. (OF, — OF, )(OF. — OF,) g

the first and second derivatives of any variable, ¢,

>
>

a =T 77 i1 Ty 0T =Ty =Ty
A2 ~2 A2 ~2
. or or, —or,; or; p (D.4)
[T oA oA A2 oA j—1 A2 oA A oA A oA A2 on j+1 :
L OR20R, —ORFOF, T OF2OR, —ORZOF, T OF20R, — ORtoF, !

¢ " o_ 2(6fa +5fh)
! OR.(F, — OF.)(OF, — OF,)
N 2(0F, + OF, + OF.)

P2+

257, + OF.)
OF, (OF, — OF, )(OF. — OF,)
2(6%, + OF,)

-1

OF, 07, OF.,

4+

OF, (OF, — OF, )(OF, — o) Pt

Applying second-order backward difference approximations, the first and second derivatives of any

variable, ¢, can be approximated at node m as

505 m—1"Tm> 5bEVm—2_Vm’ 5rcErm—3_rm
~2 ~2 ~2 ~2
or, —or, or; —or
4 a b b a
¢m ¢m—2+ ¢m—1+ ¢m

T T2 on AD on
or; or, — 0ry; or,

" 2(07, + o7,
¢m _ ( b)

AD on AD on
or;, o, — 0ry; o,

0208, — OF2OF,
(D.5)

= +
OF,(OF, — OF. )(OF, — OF,) I3
2(5%, + OF.)

OF, (OF, — OF, \(OF, — OF, )

2(OF. +or,) 4
m—2

2(0F,, + OF, + OF,)

OF (0%, — OF, )(OF. — OF,)

¢m—1 + ¢m

OF, 07, 07,

Any number of algorithms can be used for grid generation. An algorithm that works well for the

present study clusters the nodes near the wall and can be written as

(D.6)

forl<j<m
_Jl o (BHD-(B-DIBD/B-DTT
nj_m_l’ rm+l—j_

where f is a clustering parameter.

L+[(B+D/(B-D]"

ymH—j :Rr(l_FmH—j)

Once the 7 array has been filled out, the following coefficient arrays can also be filled out
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or,=r—n, On=r—n, OL.=I—N
(07, +07,)
— — — a b
Cr21=0, Cpyy =0, Cpy =—
or,, or,

oy (D.7)

>

C = — 07, _
sk (o, —07,) TP OF, (08, — 07, )
2(07, + OF, + OF,.) 2(0r, + OF.)
AL3,1 =0, ALZ,I =0, ALl,l =0, AD,l EA—AbAa ULl = r o bA ~ ~
Or, 01,07, or,(0r, —or, )(or, —dr,)

2(67, + OF,) 2(67, + 673,)
AU2,1 =i oA = ~ ~~ > AUl =~ A = ~ =
or, (01, — or, )(0F, — n) or, (or, — or,)(Jr, —or,)

Or, =1 —1, Of=Pr—r, OF.=i—h
—(or, + 1)

-0, Cco =
D) D’Z - 1)

C,=20,Cpy=—2——
r2 2SR, (OF, - OF, ) OF, 7,
or,
C, =—4 =0 (DS)
U or (o8, -0,
2(0#, + OF,) 2(0F,, + OF, + OF,)
AL3,2 =0, AL2,2 =0, AL1,2 =" on bA < ~~> “4po E+,
or,(or, —or, )(or, —dr,) Or,,0r, 07,

A = 2(07, + OF,) _ 2(0%, + 07,) A =0

U2 67, (0, — 0. )(0F, —0F,) " U2 T OF.(OF, — RO, —or,) " U T

for3<;<m-1
Oy =T =T, Oy =Ty —F;, O, =T _,—7;
—Or, — (07, +07,)
CLZ,j =0, CLl,j = o oo b NN CD,j EA—Ab,
or, (or, —or,) or, 0,
o,
C, =—a =0 (D.9)
UM sk (o7, =0, 0
A 20 A = 2(0F, + 01y, _ 2(0F, + OF,)
13, =Y A =S e s AL S T o ea v en A
or,(or, — or,)(or, — oF,) or,(or, — on, )(or, — or,)
4 _52(5Pa+5fb+5ﬁc) o 2(07, + 0r,) A =0 A =0
D7 OR0R0F, UM T SR (O, — 0RO, —oR,) T U T T U
a’"b% e b\Y"'h c a b
5ﬁazfm—l_;m’ 5;b5fm—2_fm’ 6ACEAm—3_;m
c, = O _ _ — (0%, +0%)
RSk 0, —oh) T oR (08, =07, T OR0R,
Cum =0, Cyp,, =0
(D.10)

_ 2SR 407
L2 Sk (08, — OF.)(OF, — 0F,)
_ 2(0F, + 0%, + 07,
T OF0R,07,

- 2(F, +0%,)
E3m = 5768, — 07 )(OF, — oF,)

4 - 2(0F, + OF.)
LSk (O, — 07 N(OF. — OF,) " P
Aym =0, Ays =0, Ays,, =0

B
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Using Egs. (D.7)—~(D.10) in Egs. (D.2)«(D.5) gives second-order approximations for the first and second

derivatives of any variable, ¢

#' = Cp1o +Cpy116: +Cyaads
¢ = Ap 1 + AyraPs + AyraPs + AysaPs
¢ = Criah +Cpady +Cpiafy

$," = Ap2h + Ap 2ty + Ay 25 + Ay 29y
for3<j<m-1 (D.11)

¢j' =Cp,;9;4+Cp 0, +Cyy ;Pjn
¢j" =App 12+ A ;9 + Ap 0+ Ay 9
¢m’ = CLZ,m¢m—2 + CLl,m¢m—1 + CD,m¢m

G = Az mbus + Ay b + Apmbus + Ap
Beginning with initial estimates for k* and h* along with the known arrays of 7 and y*, initial
estimates for v* and u* can be found from

forl<j<m

T — .12
P T e

If the model requires the second derivative of ™ to be calculated, it can be estimated using Eq. (D.11)

+H _ +f +f +’
uy =Cpuy +Cyyguy +Cyy s
for2<j<m-1

e N r N (D.13)
uy =Cpujy +Cpyu; +Cyy ity
+,

’ + ’ + ’ +/
U, = CLZ,mum—2 +CL1,mum—1 +CD,mum

Likewise, in light of the boundary conditions, the first derivatives for k¥, 4", and v* can be estimated
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! ’ ’
kK'=0, n'=0, vi' =0
for2<j<m-1
+ + + +
kj =Cukja+Cp sk +Cuy ki
+/ + + +
hj =Cphja+Cp hy +Cyyjhj
D.14)
+ + + + ( .
Vi =Chvja+Cp Vi +CyVin
k=0
=
+' + + +
hm - CLZ,mhm—2 + CLl,mhm—l + CD,mhm
+! + + +
Vim = CLZ,me—Z + CLl,me—l + CD,me

The k-transport equation can now be written in terms of the second-order finite-difference

approximations expressed above including the boundary conditions on &

CD,llir + CUl,lk; + CU2,1k3+ =0

vt 1 vy
- L(CLszf + CD,zkz+ + CU1,2k3+) —T(l + —ZJ(CLl,zkfr + CD,zkz+ + CU1,2k3+)
Gk V2 Gk

+
) [1 + ;-_2](ALI,2]‘1Jr + AD,Zk; + AUl,zks+ + AUZ,ZkI) =Sk
k

for3<;j<m-2

, (D.15)
; 1 VJ‘r + + +

——L(Cpy ko + Cp kT +Cyy ko) ——| 1+ =2 (Cpy ki + Cp k| +Cu ko)
Oy ry Oy

N
V.
J + + + + oy
-1+ o (ALZ,jkj—Z + ALl,jkj—l + AD,jkj + AUl,jkj+1) =8
k

+ + +
CL2,mkm—2 + CLl,mkm—l + CD,mkm =0

k) =0
The h-transport equation can also be written in terms of the second-order finite-difference approximations

expressed above including the boundary conditions on 4
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CD,1h1+ + CUl,lh; + CU2,1h3+ =0

+

' 1 v
- L(Cu,zh;r + CD,zhz+ + CU],Zh;) - A—(l + _ZJ(CLIJhIJr + CD,2h£r + CU1,2h3+)
Op r Op

V+
) {1 " o-_z](f‘lm,zlﬁ+ + Apohy + Ay ohs + Aysohi) =S,
h

for3<j<m-m,
(D.16)

+

v 1 v
——L—(Cypy jhi 1+ Cp k] +Cyy ) —7[1 + —/J(CLL]-h;_1 +Cp hj +Cyy his)
Oy Yy Ch
v
-1 +0'—] (Apa, jhj o + Ay jhi oy + Ap jhy + Ay ki) =S,
h

form—m,+1<j<m

h; = f h0
where £}, is the near-wall asymptotic solution for 4" at node j, and m, is an integer that determines how
many nodes are calculated from the near-wall solution. The integer m,, > 7 should be used if the asymptotic
solution of 4" is singular. Otherwise, m, =1 can generally be used.

The formulations given in Egs. (D.15) and (D.16) are for fully developed flow in a pipe. This
formulation can be used to calculate fully developed flow in a channel by making minor modifications.
Here we define P as an array that can be conditionally evaluated and used for the terms in the pipe
formulation that are different than those in the channel formulation. For example, in the k-equation P; can
be evaluated as follows

forl<j<m

. 1, v
if pipe flow; P, = = 1+ o (D.17)
b k

if channel flow; P,=0

The systems of equations given in Egs. (D.15) and (D.16) can be solved through an iterative process by
lagging certain terms. The systems reduce to tridiagonal systems if any terms other than the tridiagonal
terms are lagged (moved to the right-hand side of the system) along with the source terms. The solution
process becomes more stable if part of the off-diagonals of the resulting tridiagonal system are also lagged.
In the following algorithms, £ is a relaxation factor, and /" is a blending factor. Given initial estimates for

’ ”

k*,h*, u* u* k", and h", the following arrays can be calculated
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forl<j<m;v;=f,; uj =—R1Fj/(1+v}“)

+ +' + Yoot ot~ vt
ul = CD’lul + CUI,I”Z + CU2’1u3 N kl = 0, hl = 0, Vl = 0
. R +! +' + 0+ + + +
for2<j<m-Yu; =Cpu;y +Cpu; +Cyy iy ki =Cpy ki +Cp ki +Cpy ki

(D.18)

+ + + + . + + +
h; =Cpy jhj +Cp jhy +Cyyjhjas v =Cry vy +Cp vy +Cyy Via

+/I _ + ’ + ’ +'. +I _
U, = CL2,m”m—2 + CLl,mum—l + CD,mu km =0

m >
+/ + + +. 4 + + +
hm = CLZ,mhm—Z + C'Ll,mhm—l + C'D,mhm> Vin = CL2,me—2 + CLl,me—l + CD,me
Using the notation 7k, +Tpk; +Tyk;, =B; as row j in the tridiagonal system, the following

algorithm can be used to obtain an improved estimate for k*

for1< j<m; if pipe flow; Pj:(1+v}'/0'k)/fj; else; P, =0
T, =0 Tm:CD,l; TU1:CU1,1; BIZ_CUZ,lk;

’

!
+ + + +
_ |V Vi . _ | Va .
Tpy=—|—+h CLl,Z_[1+_jAL1,27 Tpy=- +b CD,Z—(IJF_ Ap s
c o o c

k k k k
+ +
Va &)
Ty, =— + P |Cyip—| 1+ —= [4y1»
oy oy

+

B, =S, + [1 + V—ZJAUZ’ZkZ
Oy

for3<;j<m-2

’ ’

vy vy vy vi
Tyy=~——+8 (Coy |1+ ——|Ap ;3 Tpy=———+P [Cp;—|1+—4p ;;
oy oy o

’

vi v
Ty =~ ==+ |Coy —| 1+ == v 5

O k

v
B, =8, + 1+U—f Aps ki
k

TLm—l = CL2,m; TDm—l = CLl,m; TUm—l = CD,m; Bm—l =
TLm:O; Tszl; TUm:(); Bm=0 (Dlg)
for2<j<m-1; T, =0T, Ty =TTy Bj=Bj—(I_Fk)(Tij;‘:l+TUjk+ )

J+l1
Kyg=k; k=[T]"'B; k=K, +2 k-Ky)
The new estimate for k* is used in Eq. (D.18) to update the arrays in that equation. A similar tridiagonal

algorithm can then be used to evaluate an improved estimate for h™
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for1<j<m; if pipeflow; P;=(1+v]/c,)/f;; else; P, =0
T,,=0, Tp = CD,I; Ty, = CUl,l; B =_CU2,1hs+

’ ’
+ + + +
Vo Vo . Vo Va .
Tpo=——=—+P |Cpia—|1+—= |42 Tpy=———+PF [Cpr—|1+—|4p,;
Op O Op Op

’
+ +
Va Va
Ty, == ——+B |Cyp —| 1+—= |4y1»
Op Op

+

O

for3<j<m-m,,

! !

vy vy vy vy
Ty=———+P |Cpy;—|1+—— |4y ;3 Tpj=———+P; |Cp,—|1+—=|4p
. J . . ) J J J
Op O Op

h

’
vi vi
Ty == =+ |Couy = | 1+ —= o3

+

v; N
szSh+ 1+—— ALZ,j 2
Op

form—m, +1< j<m;
T,; =0, Tp=1; Ty =0, B, =fy (D.20)

hyg=h; h=[T]"'B; h=hyy+Q,(h-hyy)
The algorithms given in Egs. (D.18)—~(D.20) are repeated until a converged solution is obtained. Upon

completion, u”* can be found by direct numerical integration using the trapezoidal rule

+_
u, =0

. P A (D.21)
form-12j21; u; =uj+1+5(rj—rj+1)(uj +uj)

I1. Higher-Order Formulations

A. Motivation
Second-order approximations are generally used in numerical methods to solve computational fluid
dynamics problems. However, near a wall, second-order approximations are limited in their ability to

capture higher-order phenomena. Many turbulence models are based on modeled turbulence parameters
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that approach the wall as powers of y2 or less. Therefore, second-order methods are often sufficient for
capturing the model behavior. However, the model presented in this research includes higher-order
phenomena near a wall. Therefore, higher-order methods must be used in this region. The following

sections present the method used here for developing higher-order finite-differencing methods.

B. An n™-Order First Derivative Approximation
The second-order approximation for the first derivative at a point can be obtained by retaining the first

three terms in the Taylor series at two points near the point of interest, y ;. This gives

dg d’¢) My 3
= A= | — | Ay | — | =+ O0(Ay;)+---
=0y, +Ar) =9, (dyl V| (dyz]' > (A7)
) ’ . (D.22)
d d A
b =00, + A =g, +| DL | Ay, | T | AL oapd -
dv ), d’ ), 2
This system of equations can be rearranged to yield
-1
(?j A Ailz 2 2
Y ); _ V1 ) h—9; _ 1 Ay; AN || B9 (D.23)
a9 ay, D3| ] A - aviar, [ =280, 28 1424
a? | )
J
This gives
[@J A+ 4, (A - A3) - Ay (D24)
dv ), AviAyy —AVi A,

This can be used to obtain the second-order central difference formula for the first derivative on a
uniform grid. Setting the y-distances in Eq. (D.24) as unit distances from the central node, gives

Ay, =—1Ay and Ay, =1Ay. The function values are ¢ =¢;_; and ¢, =¢,,,. Using this in Eq. (D.24) gives

@ _ ¢j+l B ¢j—l (D.25)
dy ), 2Ay '

This method can be used to obtain forward-difference and backward-difference formulas. For example, the
forward-difference formula can be obtained from Eq. (D.24) by using Ay; = 1Ay and Ay, = 2Ay where the

function values are ¢y =@\, §, =¢;.,.
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In general, the n"-order approximation for the first derivative can be developed by retaining n+1 terms

in the Taylor series at n points about the point of interest

d d*¢) Ayi d" .,
h=0(y;+A)=¢;+ a9 Ay, + —f AT f +0(Ay Typ.
dy j dy ; 2! dy ; !
d d*¢) A d" ;
G =9(y;+A,) =9, + a9 Ay, + L4 yz ¢ +O(Ay g
dy j dy ; dy
: (D.26)
d¢ d’¢) by, [d" y | -
G =9y, + A, ) =¢; +(—J Ay, +[—2J Znol Pl Zt oy v
dy j dy dy
d¢ d2¢ A dn¢ y n+1
= FAY,)=¢, +| — | Ay, + ”+0A
P, =0y, +Av,)=¢; (dy J,- Vi (dyz l [dy" ( )+
This system of equations can be rewritten as
[ﬁ] _ Ayt N
dy ; Ay, 34 1 1
a4 2! (n=1)! n!
2 n—1 n
[dyz ] ay, DL M2 M 4 -9,
2! (n—1)! n! _
¢ =9,
= 5 : : : (D.27)
n— n ¢n— _¢
d"'y A T ER e R N - by
el T n-D!  nl n b
dy ) 1
Ay Ayn— Ayn
A n n n
d’¢ Y 2! (n-n! a
day” - -

The solution to this system of equations gives the n™-order approximation for the first derivative at a point.
It should be noted that this method is not constrained to uniform grids. However, uniform grids are
commonly used, and results are included in a subsequent section for 2"-, 4™- 6™-, and 8™-order

approximations for uniform grid spacing.

C. An n™-Order Second Derivative Approximation
The second-order finite-difference approximation for the second derivative at a point can be developed

by considering the Taylor series expansion of the function about the point y ;. Given the location of three
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discrete points at distances Ay,, Ay,, and Ay, along with the values of the function at those points, ¢, ¢,,

and ¢, the system of equations can be written by retaining the first four terms in the Taylor series

2 2 3 3
¢15¢(yj+Ay1):¢j+(fl_fj Ay1+(MJ Ai+{ﬂ} A:;L'I+O(Ayl4)+---
j ) -3

&) 2 )
b=, + Avs) =4, +(@J Av, +(d—2fJ Ai{d—ﬂ Mo (D28)
dy ), &), 2 (4 3
¢3E¢(J’j+AJ’3):¢j+(ﬁj A)@*‘[d_z?] AL%‘F(CZ_}?J A_J);+O(Ayg)+"‘
dy ), &), 2 )

This can be rearranged to yield

d¢ - ) 37
[dyj» by A
J 2! 3! —
d2¢ Ay2 Ay3 ¢l ¢/
(58] [ % 5] e o2
J 2 3| |4—¢;
Ay; Ay 39
3 3 23
[d—f] AT
&) |t .

The solution of this system of equations gives the second-order finite difference approximations for the first

and second derivatives of the function.

( d¢ j AVIAYS (Ays —Ay))  —ATAYT (Ays —Ay)  AVTAY; (Ay, — Ayy)
dv ). || =200 (A3 = AVD) 280815 (AV3 - AvT) = 281A,(Av; — Ay
{d%} 6AV, Av3(Ay; —Ayy)  —6AN AV (Ay; —Ayy ) 6ANAY, (Ay, —Ayy) Zl Zj (D30)
- L~ 4. b (D.
B )| AnAYAYS(Ays — Av) = Ay Ay (s — ) + Ay by Ay (s =) | )
J
3
dy ;

This can be used to obtain the second-order central difference formula for the second derivative on a
uniform grid. Setting the y-distances in Eq. (D.30) as distances from the central node, gives Ay, = —1Ay,
Ay, =1Ay, and Ay; =2Ay, where the function values are ¢, =¢;_,, ¢, =¢,,,, and ¢; =¢,,. Using this in

Eq. (D.30) gives



a9 o1 ]
b, f Ay 6A
(dzqﬁj A T L
— | (=l— —5 0 |49
a’y2 . Ay2 Ay / /
, J 1 23 1 42— 9;
d¢ 3 23 3
3 A AT Ay
y j - -
Or, after simplifying,
d2¢ _ Pio1=20,+ P
dy? ; AY?
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(D.31)

(D.32)

This method can be used to obtain forward-difference and backward-difference formulas. For example, the

forward-difference formula can be obtained from Eq. (D.30) by using Ay, =1Ay, Ay, =2Ay, and

Ayy = 3Ay, where the function values are ¢,

= ¢j+1’ 9,

= ¢j+2’ and ¢ = ¢j+3'

In general, the n"-order approximation for the second derivative can be developed by retaining n+2

terms in the Taylor series at n+1 points.

d
b=00r; + M) =, + (d—flAyl + [?j

h

d
P =9y, +A,) =9, +[d—f]jAJ/2 +(dy2

d d2

bo =00, + A9 ) =, +("¢j A +[—¢J
dy ; d .

This system of equations can be rewritten as

J

Ayl n+1 n+2
N ( J +O0(Ay, )+
n+1
Ayz d +O(A n+2)+“.
2 dy" +1)!
(D.33)
Ayn Hl (y"+2)+...
2! dy ( +1)'
Ayn+1 +- d"* ¢ Ay:tlill +0(A Vl+2)+_”
21 dynH ; ( 1)| W]



)
ay" ;

(dn+l¢J Ayn-H
n+l o
dy i

Ay,

Ay,

Ay

n

Avi

2
Av3
2

Ay,
2!

Ayn+l

2!

n+l T

Ay
(n+1)!
Aygﬂ
(n+1)!

n+l

Ay,
(n+1)!

n+l

Ayn+1
(n+1)! ]
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$—9;
¢2 _¢j
: (D.34)
¢n _¢j
¢n+1 _¢j

The solution to this system of equations gives the nth-order approximation for the second derivative at a

point. Again, this method is not constrained to uniform grids. However, tabulated solutions for 2“d-, 4“‘—,

6"-, and 8"™-order approximations are included in the next section.

D. Uniform-Grid Tabulated Approximations

Table D.1 Second-order approximation for the first derivative

Forward Central Backward
Difference | Difference | Difference
¢ j+2 -1
P 4 1
9 -3 0 3
Pia -1 -4
92 1
Denominator 2Ay

Table D.2 Second-order approximation for the second derivative

Forward Central Backward
Difference | Difference | Difference
Piis -1
Piir 4
P -5 1
9, 2 2 2
Pi 1 -5
¢ j-2 4
Pis -1
Denominator Ay 2
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Table D.3 Fourth-order approximation for the first derivative

Forward Difference Dii;:gi; Backward Difference

¢ i +4 -3
bis3 16 1
Pin -36 -6 -1
P 48 18 8 3

9 25 -10 0 10 25
P 3 -8 -18 -48
) 1 6 36
93 -1 -16
¢ -4 3

Denominator 12Ay

Table D.4 Fourth-order approximation for the second derivative

Forward Difference Dict“ef::;;illlce Backward Difference

Diss -10
P4 61 1
D3 -156 -6
$iin 214 14 -1
b -154 -4 16 10

9, 45 -15 -30 -15 45
b 10 16 -4 -154
b2 -1 14 214
b3 -6 -156
b4 1 61
dis -10

Denominator 12002




Table D.5 Sixth-order approximation for the first derivative

Forward Difference ngfzél;;?llc:e Backward Difference
Pive -10
Piis 72 2
Piia 225 | <15 | -1
Piis 400 50 8 1
P -450 | -100 | -30 9 2
P 360 | 150 | 80 45 24 10

9, -147 | <77 | 35 0 35 | 77 147
[ -10 | 24 -45 80 | -150 | -360
b, s 2 9 30 | 100 | 450
P 3 -1 8 | -50 | -400
P4 1 15 225
Pis -2 -72
Pi-6 10

Denominator 60Ay

Table D.6 Sixth-order approximation for the second derivative

Forward Difference DiC;E:rter:ilce Backward Difference

Pisr -126

P 1019 11

Piss 23618 | -90 2

Pira 7380 | 324 16

Pis3 9490 | -670 | -54 2

e 7911 | 855 | 85 27 -11

P -4014 | -486 | 130 270 214 | 126

9, 938 270 | -378 -490 378 | =70 938
P 126 | 214 270 130 | -486 | -4014
P> -11 27 85 855 | 7911
Pi3 2 =54 | -670 | -9490
Pi s 16 324 | 7380
Pi_s 2 90 | -3618
Pis 11 1019
P -126
Denominator 1 80Ay2
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Table D.7 Eighth-order approximation for the first derivative

Forward Difference Di(i;:rter:ie Backward Difference
Piis -105
P 960 15
Pivs 23920 | -140 -5
Piis 9408 588 48 3
Diia -14700 | -1470 | 210 | -30 -3
b3 15680 | 2450 | 560 | 140 32 5
Pisa -11760 | -2940 | -1050 | -420 -168 -60 -15
[ 6720 | 2940 | 1680 | 1050 672 420 240 | 105
9, 2283 | -1338 | -798 | -378 0 378 798 | 1338 | 2283
b, 2105 | -240 | -420 -672 21050 | -1680 | -2940 | -6720
b2 15 60 168 420 1050 | 2940 | 11760
b3 -5 -32 -140 -560 | -2450 | -15680
b4 3 30 210 | 1470 | 14700
$is -3 48 | -588 | -9408
Pi s 5 140 3920
$iq -15 -960
$is 105
Denominator 840Ay
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Table D.8 Eighth-order approximation for the second derivative

Forward Difference Dﬁ';;l;;ilce Backward Difference

Do -3044

Piig 30663 223

D7 -139248 | -2268 | -38

b6 375704 | 10424 | 389 9

Diis -667800 | -28560 | -1800 | -90

D4 818874 | 51786 | 4956 | 396 9

43 -704368 | -65128 | -8932 | -952 128 38

b2 422568 | 57288 | 10458 | 882 -1008 603 | -223

i -165924 | -28944 | -2184 | 5796 8064 6984 | 5274 | 3044

9 32575 | 2135 | -7900 | -12460 | -14350 | -12460 | -7900 | 2135 | 32575

[ 3044 | 5274 | 6984 8064 5796 | -2184 | -28944 | -165924

9 223 | -603 -1008 882 | 10458 | 57288 | 422568

b3 38 128 952 | -8932 | -65128 | -704368

b4 -9 396 | 4956 | 51786 | 818874

;s 290 | -1800 | -28560 | -667800

b6 9 389 | 10424 | 375704

b7 38 | -2268 | -139248

$is 223 30663

P 3044
Denominator 5040Ay2

E. Example Results
To illustrate the effects of the order of the approximation, consider using a finite-difference algorithm
to solve the differential equation
2
d—?za(a—l)y"*2 —a*y?! (D.35)
dy

where a is an arbitrary constant and the boundary conditions are

9 1= 0 (D.36)

po=0. =

This can be solved analytically to give




283

¢=y“—aily”1 (D.37)

Choosing a = 2 gives a third-order solution. However, as y — 0, the solution approaches second-order. The
solution for this case is easily solved using a second-order numerical method. However, choosing a =3
gives a fourth-order solution that approaches third-order as y — 0. A second-order numerical method
cannot resolve the near-wall solution to this equation because the approximation truncates higher-order
terms. Therefore, the truncation error of this method is too great to resolve cases of Eq. (D.35) where a > 2.
Solutions to this equation for 2 < a < 6 using a second-order finite-difference method are shown in Fig. D.1
using double-precision computations on a uniform grid with 1601 nodes. Note the evidence of truncation
error in the higher-order solutions.

The turbulence model by Phillips suggests that k approaches the wall as y°. Therefore, the ability to
capture the solution to Eq. (D.35) with a = 6 is of interest. Figures D.2-D.7 demonstrate the limitations of

using lower-order differencing methods to approximate the equation

u=y*—=y’ (D.38)

100 T T T T T T T T L |
107 f -
107 | .
u
107 1
; : D2 3
_ g K ; < yony °
1078 F ° . . vyt e T
4 5
° y —4/5y °
5 6
y =5/6y
6 7
-10 | L Yoy
10 T3 0 V= 0
10~ 10~ 10~ 10
y

Fig. D.1 Near-wall results of a second-order finite-difference algorithm.
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Figure D.2 shows the results of the second-order finite-difference solver with several grid densities
using double-precision computations. Figure D.3 shows the same calculations using quad-precision
computations. Note that regardless of the grid density, the first few points from the wall do not follow the

6"-order near-wall solution. This is true whether double- or quad-precision computations are used.

10 T T
1072
107+
107 +
u 1078 b
Z10 | 101
10 201 -
401 -
10712 + 801 - T
1601 -
14 | 3201 -
10 , 6401
~16 L u=sy =6/7y" ——
10710 ) - 0
10 10 10 10
y
10
1073 1072 107! 10°

Fig. D.3 Second-order results using quad-precision computations.
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Figure D.4 shows the results of the fourth-order finite-difference solver using double-precision
computations, and Fig. D.5 shows the same computations as Fig. D.4, but with quad-precision. Again, note

that the first few nodes nearest the wall do not follow the correct solution regardless of the grid density.

Fig. D.5 Fourth-order results using quad-precision computations.
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Figure D.6 shows results using the eighth-order finite-difference solver with double-precision
computations, and Fig. D.7 shows these same calculations using quad-precision computations. Here, the
discrepancies seen in the finest grid of Fig. D.6 are no longer truncation errors, but round-off errors. This is
shown by comparing the results of Figure 6 to those given in Fig. D.7 where the same computations were
made using quad precision.

Figure D.8 shows the results of using the eighth-order method to approximate the equation

u=y" —%y“ (D.39)

with varying grid resolutions using logarithmic grid clustering. Note that these results look very similar to
the results of using a second-order method to approximate a higher-order equation. To demonstrate that the
method used to obtain Fig. D.8 is in fact eighth-order, the RMS error of the solution is plotted as a function
of Ay® in Fig. D.9. A line passing through the data points obtained from the two finest grids is
superimposed on the plot. The fact that the error approaches this line as Ay — 0 shows that the solution

method is eighth-order.

Fig. D.6 Eighth-order results using double-precision computations.



T
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u 1078
1071 |
1072 51
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10 . 4017
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Fig. D.7 Eighth-order results using quad-precision computations
10° .
107 F . i
w1070 + . .
51 o
101 e
107" 200 o
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10 16%
10720 o u=y —10/11y""
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Fig. D.8 Eighth-order results of a tenth-order near-wall equation using quad-precision

computations.
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RMS Error

Fig. D.9 Eighth-order finite-difference RMS error as a function of grid spacing.

As a final note on the difficulties associated with using a lower-order method to estimate a higher-
order solution, consider again the results shown in Fig D.8. Many of the most important approximations in
fluid mechanics are based on the behavior of the data nearest the wall. The data points nearest the wall
from any of the data sets in Fig. D.8 are actually negative, and therefore do not appear on the logarithmic
plot shown in Fig. D.8. The fact that the near-wall solution is negative can be very troublesome because it
appears that if the order of the solution near the wall is greater than the order of the numerical
approximations, the correct sign of the solution nearest the wall can’t even be obtained. In order to observe
the behavior of the near-wall data obtained from the scenario shown in Fig. D.§, the near-wall data is
plotted in Fig. D.10 on a logarithmic plot with a negative y-axis. Note that the error of the first node off of
the wall still converges in an eighth-order fashion. However, it appears that regardless of how fine the grid
is, the solution very near the wall will always have the wrong sign. For this reason it is important to ensure

that the numerical method is always higher order than the order of the solution very near a wall.
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Fig. D.10 Negative near-wall results of an eighth-order approximation to a tenth-order near-wall

solution.

III. Sample Code

The following Fortran code can be used to solve the Wilcox 1998 turbulence model for smooth walls

using an arbitrary order of finite differencing. The variable “approx” in the main code is used to set the

finite difference order. Subroutines for basic matrix operations such as inverting a matrix or solving a

system of equations in matrix form have not been included.

PROGRAM Wilcox1998
IMPLICIT NONE
INTEGER: :m,mh,mk, j,iter, itermax

,limit nu, limit k,

limit h,filesize,line,coord,ierror,titer,iprint,cont,eligiblepts, approx
REAL: :Rtau,beta,u bulk,Re,Cf,cbeta, fD,eta, fitness,dy,dzeta

REAL: : gammak, omegak, sigmak, rmsk
REAL: :gammah, omegah, sigmah, rmsh

REAL: : fnu, Sk, Sh, £k0, fh0 !Function Subroutines

REAL::yval,uval, kval,hval,nuval
REAL, allocatable, dimension(:)
REAL, allocatable, dimension(:)
REAL, allocatable, dimension(:)
REAL, ALLOCATABLE, DIMENSION(:,
CHARACTER* (20) : : rec,init
CHARACTER (LEN=100) : : fn

ALLOCATE (const (4)) ;
ALLOCATE (VDconst (2)) ;

- Set Defaults ------

m = 51 ! Number
Rtau = 300.0 ! Length
mh = 7 ! Number

,yvalold,uvalold, kvalold,hvalold, nuvalold, frac !File vars

::y,B,nu,nuprime, zeta

::k,k old, kprime,h,h old,hprime,u,uprime, P, udprime, kdprime
::const,VDu,VDconst

:)::A,FD1,FD2

of nodes

of nodes to use assymptotic solution for h



! Number of nodes to use assymptotic solution for k

mk =1

approx = 6

const(l) = 0.52 !C_omegal

const(2) = 0.072 !C_omega2
const(3) = 0.0 'not used

const(4) = 0.09 !'C nu

sigmak = 2.0 Isigma_k

sigmah = 2.0 !sigma_ omega
VDconst (1) = 0.41 ! kappa

VDconst (2) = 26.0 !'Aplus

gammak = 0.99 ! Blending Factor
gammah = 0.99 ! Blending Factor
omegak = 0.05 ! Relaxation Factor
omegah = 0.05 ! Relaxation Factor
itermax = 100

iprint = 1

beta = 1.02

init = 'none'

coord = 0 ! =

cont = 0 I =

200 FORMAT (1X, 1000110)
100 FORMAT (1X, 1000ES20.12)
110 FORMAT (1X, 110, 4ES20.12, 3I10)

lmmmmm - User Inputs —------------

write(*,*) 'Wilcox 1998"'
write(*,*) 'Channel flow or pipe flow?
read(5,"'(a) ') rec
if(rec .ne. ' ') then
read(rec, *) coord
end if
write(*,*) 'Finite-Difference order (', approx,
read(5,"'(a)') rec
if(rec .ne. ' ') then
read(rec, *) approx
end if
write (*,*) 'Number of nodes (',m,' ):'
read(5,"'(a)') rec
if(rec .ne. ' ') then
read(rec,*) m
end if
write(*,*) 'R tau (',Rtau,' ):'
read(5,"'(a)') rec
if(rec .ne. ' ') then
read(rec, *) Rtau
end if
write(*,*) 'Stretching Factor (',beta,' ):'
read(5,"'(a) ') rec
if(rec .ne. ' ') then
read(rec, *) beta
end if
write(*,*) 'Enter C omegal (',const(l), ) !
read(5,"'(a)') rec
if(rec .ne. ' ') then
read(rec, *) const (1)
end if
write(*,*) 'Enter C omegaZ2 (',const(2), ) !
read(5,"'(a) ') rec
if(rec .ne. ' ') then
read(rec, *) const(2)
end if

write (*,*)
read (5, ' (a)
if (rec .ne.

read (rec, *)

end if

'Enter C omega3 (',const(3),'

")

rec

")

const (3)

)t

1 if pipe, =0 if channel
1 if continue until convergence is reached is selected

(O=channel,
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write(*,*) 'Enter C nu (',const(4),"' ):'
read(5,'(a)') rec
if (rec .ne. ' ') then
read(rec, *) const (4)
end 1if
write(*,*) 'Enter sigma k (',sigmak,' ):'
read(5,'(a)') rec
if (rec .ne. ' ') then
read (rec,*) sigmak
end 1if
write(*,*) 'Enter sigma omega (',sigmah,' ):'
read(5,'(a)') rec
if (rec .ne. ' ') then
read (rec,*) sigmah
end 1if
write(*,*) 'Enter mh (',mh,"' ):'
read(5,'(a)') rec
if (rec .ne. ' ') then
read(rec, *) mh
end 1if
write(*,*) 'Enter mk (',mk,"' ):'
read(5,'(a)') rec
if (rec .ne. ' ') then
read(rec, *) mk
end 1if
write(*,*) 'Initialize from a file (enter [none] for automated guess) (',init,"'):
read(5,'(a)') rec

if (rec .ne. ' ') then
read(rec, *) init
end 1if

'Allocate Memory

ALLOCATE (y (m) ) ; ALLOCATE (B (m)) ;

ALLOCATE (k (m) ) ; ALLOCATE (k_old(m)); ALLOCATE (kprime (m)); ALLOCATE (kdprime (m)) ;
ALLOCATE (h (m) ) ; ALLOCATE (h_old(m)); ALLOCATE (hprime (m)) ;

ALLOCATE (u(m)) ; ALLOCATE(uprlme(m)), ALLOCATE (udprime (m) ) ;

ALLOCATE (nu(m) ) ; ALLOCATE (nuprime (m)); ALLOCATE (zeta(m)); ALLOCATE (P(m)) ;
ALLOCATE (VDu (m) ) ;

ALLOCATE (A (m, m) ) ; ALLOCATE (FD1 (m, m) ) ;ALLOCATE (FD2 (m, m) )

dzeta = 1.0/real (m-1)
dy = Rtau*dzeta
!Create Grid

do j=1,m,1
eta = real(j-1)/real (m-1)
cbeta = ((beta+1.0)/(beta-1.0))**(1.0-eta)
if (beta .eqg. 0) then
zeta(m+l-j) = 1.0 - real(j-1)*dzeta
else
zeta(m+l-3) = 1.0 - (beta+l.0 - (beta-1.0)*cbeta)/ (1.0 + cbeta);
end if
y(m+l-j) = Rtau*(l.0-zeta(m+1-3j))
k(m+1-j) = 0.01*y (m+1-3) ! £k0 (m+1-
j,m,Rtau, vy, k,h,nu,uprime, udprime, kprime, kdprime, hprime, const, coord)
h(m+1-j) = fhO (m+1-

j,m,Rtau, vy, k,h,nu,uprime, udprime, kprime, kdprime, hprime, const, coord)
end do

CALL FDMatrix (approx,m,zeta,l,FDIl)
CALL FDMatrix (approx,m,zeta,2,FD2)

call VanDriestSolution (m,y,VDconst,VDu)

if (init .ne. 'none') then
open(l,FILE=init)

(
read(l,*) filesize
read(1l,*)
read (1, *)
read (1, *)
read(l,*)yvalold,uvalold, kvalold, hvalold,nuvalold

u(m) = uvalold; k(m) = kvalold; h(m) = hvalold; nu(m) = nuvalold;
do line=2,filesize,1

read(l,*)yval,uval, kval, hval,nuval

do j=2,m-1,1

2901
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if((y(m+tl-3j) < yval) .and. (y(m+l-j) > yvalold)) then

frac = (y(m+l-j) - yvalold)/(yval-yvalold)
u(m+l-j) = frac*(uval-uvalold)+uvalold
k(m+1-3) = frac*(kval-kvalold)+kvalold
h(m+1-3) = frac* (hval-hvalold)+hvalold
nu(m+1l-j) = frac* (nuval-nuvalold)+nuvalold
end 1if
end do
yvalold = yval; uvalold = uval; kvalold = kval; hvalold = hval; nuvalold = nuval;
end do
u(l) = uval; k(1) = kval; h(l) = hval; nu(l) = nuval;
do j=1,m,1
uprime (j) = -Rtau*zeta(j)/(1.0+nu(j));
end do

do j=m-mh+1,m
h(j3)=fh0(j,m,Rtau, vy, k,h,nu,uprime, udprime, kprime, kdprime, hprime, const, coord)

end do
end if
write(*,*) 'Number of iterations before pause (',itermax,' ):'
write(*,*) ' Enter zero to exit'
write(*,*) ' Enter -1 to run to convergence'
read(5,"'(a)') rec
if (rec .ne. ' ') then
read(rec, *) itermax
end if
if (itermax<0) then
cont = 1; itermax = 1;
end if

titer=0 !total iterations
do while (itermax>0)

write(*,*) 'Number of iterations per print (',iprint,"' ):'
read(5,"'(a)') rec
if(rec .ne. ' ') then
read(rec, *) iprint
end if
write(*,*) 'Blending Factor (',gammak,' ):'
read(5,'(a)') rec
if (rec .ne. ' ') then
read (rec, *) gammak
end if
gammah = gammak
write(*,*) 'Relaxation Factor (',omegak,' ):'
read(5,"'(a)') rec
if (rec .ne. ' ') then
read (rec, *) omegak
end if
omegah = omegak
iter = 0
write(*,*) 'iterations k rms h rms centerline k &
&centerline h limit k limit h limit nu'

do while (iter < itermax)
limit nu = 0; limit k = 0; limit h = 0;
rmsk = 0.0; rmsh = 0.0;

!Update Arrays

do j=1,m,1
nu(j) = fnu(j,m,y,k,h,uprime,udprime, kprime, kdprime, hprime, const, coord) ;
if(nu(j) > 1le5) then
nu(j) = le5; limit nu = limit nu+l;
end 1if
uprime (j) = -Rtau*zeta(j)/(1.0+nu(j));
end do

call Derivative (m,FD1l,nu,nuprime)

call Derivative (m,FD1l,uprime, udprime)

call Derivative (m,FD1,k, kprime)

call Derivative (m,FD2,k, kdprime)

call Derivative (m,FD1l,h,hprime)

kprime (1)=0.0; hprime(1)=0.0; nuprime(1)=0.0; kprime (m)=0.0;

'k solver
if (coord .eg. 1) then
do j=1,m,1
P(j) = (1.0+nu(j)/sigmak)/zeta(]);
end do
else
P=0.0;

end 1if
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D1(1,:); B(l) = 0.0 !centerline boundary condition

= - (nuprime (j)/sigmak+P(j))*FD1(j,:) - (1.0 + nu(j)/sigmak)*FD2 (], :)

= ( ); B(m-1) = 0.0 !kprime=0 at wall
A(m,:) = 0.0; A(mm) = 1.0; B(m) = 0.0 !'k=0 at wall

k old = k;
CALL MatrixBlend (m,gammak, A, k,B)
CALL AXB(m,A,B,k);

k = k_old + omegak*(k - k old);
do j=1,m,1 !Usual limiter on k
if(k(j) < 0.0) then

k(j) = 1le-30;
limit k = limit k +1;
end if B -
end do
!Update Arrays
do j=1,m,1
nu(j) = fnu(j,m,y, %k, h,uprime, udprime, kprime, kdprime, hprime, const, coord) ;
if(nu(j) > le5) then
nu(j) = le5; limit nu = limit nu+l;
end 1if
uprime (j) = -Rtau*zeta(j)/(1.0+nu(j));
end do

call Derivative (m, FD1l,nu,nuprime)

call Derivative (m,FD1l,uprime,udprime)

call Derivative (m,FD1,k, kprime)

call Derivative (m,FD2, k, kdprime)

call Derivative (m,FD1,h,hprime)

kprime (1)=0.0; hprime(1)=0.0; nuprime(1)=0.0; kprime (m)=0.0;

'h solver
if (coord .eg. 1) then
do j=1,m,1
P(j) = (1.0+nu(j)/sigmah)/zeta(J);
end do
else
pP=0.0;
end if
A(l,:) = FD1(1,:); B(l) = 0.0 !centerline boundary condition
do j=2,m-mh
A(j,:) = —(nuprime(j)/sigmah+P(j))*FD1(j,:) - (1.0 + nu(j)/sigmah)*FD2 (], :)
B(j)=Sh(j,m,Rtau,y,k,h,nu,uprime,udprime, kprime, kdprime, hprime, const, coord)
end do
do j=m-mh+1,m
A(j,:) = 0.0; A(3,]J) = 1.0;
B(j)=fh0(j,m,Rtau,y, k,h,nu,uprime, udprime, kprime, kdprime, hprime, const, coord) !near-wall
end do
h old = h;

CALL MatrixBlend (m,gammah,A,h,B)
CALL AXB(m,A,B,h);

h = h old + omegah*(h - h old);
do j=1,m-mh,1l !'usual limiter on h
if(h(j) < 0.0) then

h(j) = 1le-30;
limit h = limit h +1;
end if - -
end do
do j=1,m,1
rmsk = rmsk + (k(Jj) - k_old(j))**2
end do
do j=1,m-mh,1
rmsh = rmsh + (h(j) - h_old(j))**2
end do
rmsk = sqgrt(rmsk/m); rmsh = sqgrt(rmsh/m);

if (rmsk .ne. rmsk) exit; if(rmsh .ne. rmsh) exit;
if((rmsk < 1.0e-18) .and. (rmsh < 1.0e-18)) then
write(*,110) titer,rmsk,rmsh,k(1l),h(1l),1limit k,limit h,limit nu; exit;

end 1if
iter = iter + 1; titer = titer+l;
if (cont .eqg. 1) itermax = itermax + 1

if (mod(real(iter),real (iprint)) .eq.0.0) then



write(fn,*) iter
fn = trim(adjustl (fn))//'.txt'

open(unit = 10, File = "results.txt", status="replace", action = "write",
iostat = ierror)

write(10,*) m,' nodes'

write (10,*) ' y _plus u_prime k plus
h plus nu_plus'

do j=1,m

write(10,100) y(m+1-j),uprime (m+1-73),k(m+1-j),h(m+1-3),nu(m+1l-7j)

end do

close (10)

write(*,110) titer,rmsk,rmsh,k(1l),h(1l),1limit k,limit h,limit nu

end 1if

end do

print *, char(7) !Makes a noise
if (cont.eqg.l) exit;

write (*,*) 'Number of iterations before pause (',itermax,' ):'
write(*,*) ' Enter zero to exit'
write(*,*) ' Enter -1 to run to convergence'
read(5,"'(a)"') rec
if(rec .ne. ' ') then
read(rec, *) itermax
end if
if (itermax<0) then
cont = 1; itermax = 1;
end if
end do
!integrate u
u(m) = 0.0;
do j=2,m
u(m+l-j) = u(m-j+2) + 0.5* (zeta(m+l-j)-zeta(m-j+2))* (uprime (m+1-3j) + uprime (m-j+2))
!Physical Domain
end do
if (coord .eg. 1) then !Pipe
write(*,*) '—-—-—-—————————— Pipe Flow Results —--—---—-———---- !
u bulk = 0.0;
do j=2,m
u bulk = u bulk + (zeta(j)-zeta(j-1))*(zeta(j)*u(j) + zeta(j-1)*u(j-1))
end do
Re = 2.0*u_bulk*Rtau
else !Channel flow
write(*,*) '-————————————— Channel Flow Results —--—-———-———————- !
u _bulk = 0.0;
do j=2,m
u bulk = u bulk + 0.5*(zeta(j)-zeta(j-1))*(u(j) + u(j-1))
end do
Re = 4.0*u bulk*Rtau
end if B

Cf = 2.0/u _bulk**2
fD = 4.0*Cf

!Calculate fitness against Van Driest Solution
fitness = 0.0; eligiblepts = 0;

do j=1,m
if(y(m+1-3) < 500) then
fitness = fitness + (u(m+l-3j) - VDu(mtl-3j))**2
eligiblepts = eligiblepts+l
end 1if
end do
fitness = sqgrt(fitness/eligiblepts)
write (*,*) ' R tau = ',Rtau
write (*,*) ' nodes = ',m
write(*,*) ' u+_bulk = ',u bulk
write (*,*) ' Reynolds number, Re = ', Re
write(*,*) 'Fanning friction factor, Cf = ',Cf
write(*,*) ' Darcy friction factor, £ D = ',fD
write(*,*) ' Fitness against Van Driest = ', fitness
write(*,*) '-—-mmmmmmmm e e '
open (unit = 10, File = "results.txt", status="replace", action = "write", iostat =
ierror)

write (10,*) m,' nodes'

write(10,*) fitness,' fitness against Van Driest'

write(10,*) 'nodes=',m,' Cnu=',const(4),' Cl=',const(l),"' C2=',const(2),' C3=',const (3)
sigmak="',sigmak,' sigmaw=',sigmah
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write (10,*) ' y_plus u_plus k plus h plus
nu_plus Van Driest'
do j=1,m

write(10,100) y(m+l1-3j),u(m+1-j),k(m+1l-73),h(m+1-j),nu(m+1l-3j),VDu(m+1l-3j)
end do
close (10)
write (*,*)
write(*,*) 'Results written to results.txt in local directory.'
write (*,*)

!Deallocate Memory

DEALLOCATE (y) ; DEALLOCATE (B) ; DEALLOCATE (k)

DEALLOCATE (k_old); DEALLOCATE (h); DEALLOCATE (h_old); DEALLOCATE (nu)
STOP

END PROGRAM Wilcox1998

et P FUNCTIONS ——-———————————m—mm oo

REAL FUNCTION fnu(j,m,y,k,h,uprime,udprime, kprime, kdprime, hprime, const, coord)

IMPLICIT NONE; INTEGER::j,m,coord;

REAL, DIMENSION (m) : :y, k,h,uprime, udprime, kprime, kdprime, hprime; REAL,DIMENSION (4) ::const;
Real::Rt

Rt = k(3)/h(3)
if(j.eqg.m) then
fnu = 0.0
else
fnu = Rt*(0.024 + Rt/6.0)/(1.0 + Rt/6.0)
end 1if

RETURN; END FUNCTION fnu

REAL FUNCTION Sk(j,m,Rtau,y,k,h,nu,uprime,udprime, kprime, kdprime, hprime, const, coord)
IMPLICIT NONE; INTEGER::j,m,coord;

REAL, DIMENSION (m) : :y, k,h,nu, uprime, udprime, kprime, kdprime, hprime;

REAL, DIMENSION (4) : :const;

Real::Rtau,r,Rt,chi

Rt = k(j)/h(3j)

chi = kprime (j)*hprime (J)/ (h(j)**3*Rtau**2)

if(chi > 0.0) then

chi = (1.0+680.0*chi**2)/(1.0+400.0*chi**2)
else

chi = 1.0;
end if

Sk = nu(j)*uprime(j)**2 - const(4)*Rtau**2*k(j)*h(j)*(4.0/15.0 + (Rt/8.0)**4)/ (1.0 +
(Rt/8.0) **4) *chi
RETURN; END FUNCTION Sk

REAL FUNCTION Sh(j,m,Rtau,y,k,h,nu,uprime,udprime, kprime, kdprime, hprime, const, coord)
IMPLICIT NONE; INTEGER::j,m,coord;

REAL, DIMENSION (m) ::y, k,h,nu,uprime,udprime, kprime, kdprime, hprime;

REAL, DIMENSION (4) : :const;

Real::Rtau, r,Rt

Rt = k(J)/h(j)

Sh = const(1)*(1.0/9.0 + Rt/2.95)/(1.0 + Rt/2.95)*uprime (j)**2 - const (2) *Rtau**2*h(j) **2
RETURN; END FUNCTION Sh

REAL FUNCTION fkO(j,m,Rtau,y,k,h,nu,uprime,udprime, kprime, kdprime, hprime, const, coord)
IMPLICIT NONE; INTEGER::j,m,coord;

REAL, DIMENSION (m) ::y, k,h,nu,uprime,udprime, kprime, kdprime, hprime;

REAL, DIMENSION (4) : :const;

Real::Rtau

fk0 = 0.0

RETURN; END FUNCTION fkO

REAL FUNCTION fhO(j,m,Rtau,y,k,h,nu,uprime,udprime, kprime, kdprime, hprime, const, coord)
IMPLICIT NONE; INTEGER::j,m,coord;
REAL, DIMENSION (m) : :y, k,h,nu, uprime, udprime, kprime, kdprime, hprime;
REAL, DIMENSION (4) : :const;
Real::Rtau
if(y(j)<le-15) then
fhO = 1.0e33
else
fho = 6.0/ (const (2) *y (j) **2)
end 1if
RETURN; END FUNCTION fhO

e Van Driest SOLUTION----—----—-—-—--

SUBROUTINE VanDriestSolution (m, yplus,VDconst,VDu)
IMPLICIT NONE
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INTEGER: :m, J
REAL, DIMENSION (m) : : yplus, VDu
REAL, DIMENSION (2) : :VDconst
REAL::du(4),u,dy
VDu(m) = 0.0
do j=2,m,1
dy = yplus (m-j+1)-yplus (m-j+2)
call rnkta4 (1,VDconst,yplus (m-j+2),VDu(m-j+2),dy,du,u)
VDu (m-j+1) = u
end do
END SUBROUTINE VanDriestSolution

Van Driest called from Runge-kutta--------------------——~
REAL FUNCTION f (i,const,yplus,uplus)

implicit none

INTEGER: : i

REAL: :yplus,uplus, kappa, Aplus,a,b, c

REAL, DIMENSION (2) : :const

kappa = const (1)

Aplus = const (2)

a = kappa**2*yplus**2* (1.0-exp (-yplus/Aplus)) **2

b =1.0
c =-1.0
f = max((-b + sqgrt(b**2 - 4.0*a*c))/(2.0*%a), (-b - sqrt(b**2 - 4.0*a*c))/(2.0%*a))
if (yplus .eqg. 0) then
f=1.0
end 1if

RETURN; END FUNCTION f

! Finite Difference Support —----—--——--—--———-
SUBROUTINE FDMatrix (order,m,y,deriv,ans)
!This subroutine calculates the 8th Order Coefficient matrix of Finite Differences
!m = size of vector of y coordinates
!y = vector of coordinates
!deriv = 1 for 1st Deriv, 2 for 2nd deriv
lans = output matrix mxm of finite difference coefficients
IMPLICIT NONE
INTEGER: :order,m,deriv, j, index, n, lower, upper
REAL, DIMENSION (m) ::y
REAL, DIMENSION (m,m) : :ans
REAL, DIMENSION (order+2) ::ans_vec
if(deriv .eg. 1) then ! 1st Derivative
n = order+l
index=order/2
lower = order/2
upper = order/2
end if
if(deriv .eg. 2) then ! 2nd Derivative
n = order+2
index=n/2

lower = (n-2)/2
upper = n/2
end if
'write(*,*) 'n = ',n
'write(*,*) 'index = ',index
'write(*,*) 'lower = ', lower
'write (*,*) 'upper = ',upper

do j=1,index
CALL FiniteDifference(n,j,y(l:n),deriv,ans vec)
ans(j,1l:n)=ans _vec(:)

end do

do j=index+l,m-index
CALL FiniteDifference (n,lower+l,y(j-lower:j+upper),deriv,ans_vec)
ans (j,j-lower:j+upper) = ans_vec(:)

end do

do j=m-index+1l,m
CALL FiniteDifference(n,n-(m-j),y(m-n+l:m),deriv,ans_vec)
ans (j,m-n+l:m) = ans_vec(:)

end do

RETURN

END SUBROUTINE FDMatrix

SUBROUTINE FiniteDifference(n, index, pts, deriv, ans)
!deriv = 1 for 1lst Derivative

!deriv = 2 for 2nd Derivative

'n = size of array being passed in
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!index = indice of "point of interest" within array
'pts = array of coordinate points
lans = coefficients for each of the array of points

!0rder of approximation is n-1 for 1lst derivative
!Order of approximation is n-2 for 2nd derivative
IMPLICIT NONE
INTEGER: :n, index,1i,j,deriv
REAL, DIMENSION (n) : :pts, ans
REAL, DIMENSION (n-1,n-1):: A,Ainv
REAL: :factorial
A= 0.0
do i=1,n-1
do j=1,n-1
A(i,j) = (pts(i)-pts(index))**j/Factorial (7)
end do
end do
do i=index+1,n
do j=1,n-1
A(i-1,3) = (pts(i)-pts(index))**j/Factorial (j)
end do
end do
CALL matinv(n-1,A,Ainv)
ans (:) = Ainv(deriv, :)
ans (index+1:n)=Ainv (deriv, index:n-1)
ans (index) = —-sum(Ainv (deriv, :))
RETURN
END SUBROUTINE FiniteDifference

SUBROUTINE Derivative (m, FD,phi, ans)
'm = size of vector
!FD = Finite Difference Matrix size mxm
!'phi = vector of funtion values
lans = output vector size m of derivative values
IMPLICIT NONE
INTEGER: :m, j
REAL, DIMENSION (m, m) : : FD
REAL, DIMENSION (m) : :phi, ans

REAL: :dot
do j=1,m
ans(j) = dot(m,EFD(3j,:),phi(:))
lwrite(*,*) 'ans(',j,')="',ans(j)
end do
RETURN

END SUBROUTINE Derivative

- Matrix Support ---------------————————-
SUBROUTINE MatrixBlend (m,gamma, A, x,B)
Im = size of matrix (mxm)

!gamma = relaxation factor
'A = matrix mxm
!x = current solution vector

!B = Right-Hand Side vector
IMPLICIT NONE
INTEGER: :m, J, 1
REAL: :gamma, temp, dot
REAL, DIMENSION (m,m) : :A
REAL, DIMENSION (m) ::x,B

do j=1,m
temp = A(3,3)
B(j) = B(3)-(1.0-gamma) * (dot (m,A (], :),x)-temp*x (7))
A(jl:) = gam-ma*A(jl:)
A(j,J) = temp
end do
RETURN

END SUBROUTINE MatrixBlend

REAL FUNCTION Factorial (n)
IMPLICIT NONE
INTEGER: :n, i
Factorial=1.0
do i=1,n
Factorial = Factorial*real (1)
end do
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END FUNCTION Factorial

REAL FUNCTION dot(n,vl,v2)
IMPLICIT NONE
INTEGER: :n, i
REAL, DIMENSION (n) ::v1,v2
dot=0.0
do i=1,n

dot = dot + vl (i)*v2 (i)

end do

END FUNCTION dot

- Runge-Kutta Solver -----—----————————————————

subroutine rnkta4(n,a,t0,y0,dt,dy,y)

This single precision subroutine computes a value for the n component
vector y(tO+dt) from a known value of the vector y(t0)=y0. The solution
is based on a fourth order Runge-Kutta solution to the system of n
differential equations,

dy(i)/dt = £(i,a,t,y) i=1,2,3,...,n

where a is a coefficient array passed to the functuon f. The single
precision function subprogram f(i,a,t,y) must be provided by the user.

real f,a(*),t0,y0(n),dt,dy(n,4),y(n),c(4)
c(l) = 1.0/6.0
c(2) =1.0/3.0
c(3) = c(2)
c(4) = c(1)
do j=1,n
dY(j11)=f(jlaltolyo)*dt
v(3)=y0(J)+dy(3,1)/2.
end do
do j=1,n
dy (3,2)=f(j,a,t0+dt/2.,y)*dt
end do
do j=1,n
v (3)=y0(3)+dy(3,2)/2
end do
do j=1,n
dy (3,3)=f(j,a,t0+dt/2.,y)*dt
end do
do j=1,n
v (3)=y0(j)+dy(3,3)
end do
do j=1,n
dy(j,4)=£f(j,a,t0+dt,y) *dt
end do
do j=1,n
vy (3)=y0(3J)
do i=1,4
y(3)=y(3)+c (i) *dy (3, 1)
end do
end do
return

end subroutine rnktaéd
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APPENDIX E

ONE-DIMENSIONAL FINITE-VOLUME FORMULATION

I. Governing Equations

A fairly general system of equations for fully developed turbulent channel flow can be written in
dimensional form for Cartesian coordinates including the momentum transport equation, turbulent kinetic

energy equation, and one additional transport equation as

d du
—d—yl:(‘“r v )(d_yj:l = f,(u,y)

2 2
d dk du Jia(ke,hv,y)( dk
- + /| = kahn ) - - koha s - . |
dy{(v Vt/o-k)dy} Ji( v y)(dyj Jia( V,») Y & (E.1)
d dh '} du)
u u
- (V+Vt/o-h)_ :fhl(k7h=vay) - _ﬁ12(knhavay)+fh3(knhavay) )
dy dy dy dy
Vt =fv(k’hay)
with the boundary conditions
u(0)=0, k(0)=0, ﬁ(O) =0, ﬂ(!) =0, %(1) =0, ﬁ(l) =0 (E.2)
dy dy dy dy

where & represents the second turbulence variable ¢ or w and / is the channel half-width.
II. Coordinate Transformation

A general transport equation for any variable, ¢, for fully developed channel flow can be written in

Cartesian coordinates as

—i{r@} _ Sk, v, ) (E.3)
dy| dy

where I' is the diffusion coefficient, S includes the source terms, and C is an array of constants. We wish to
solve this equation numerically using the finite-volume method. This method requires the domain to be

discretized into a finite number of control volumes which will be referred to as cells. To facilitate variable



300
cell sizes, it is beneficial to rewrite Eq. (E.3) in terms of the independent variable # where y = y(77). This
provides a coordinate transformation from the physical domain in Cartesian coordinates to the
computational domain in the transformed coordinate system. However, in order to apply this coordinate
transformation, the one-dimensional physical domain must be divided into cells using variable spacing in y
such that y(77) and its first derivative are continuous. The Jacobian of the one-dimensional transformation is

a scalar defined as

d
d_y (E-4)

J

From this coordinate transformation, the first derivative of any continuous function, ¢ = ¢@(y), can be

written as

d _dg dvdn _ ,dg E3)
dy dydndy dn

Applying Eq. (E.5) to Eq. (E.3) gives the general transport equation for any variable, ¢, for fully developed

channel flow in the transformed coordinate system

—Ji{l".]ﬁ} =S (E.0)
dn dn

This equation can be solved numerically using the finite volume method. Once a solution in the
computational domain has been attained, the solution must be transformed to the physical domain to be of
practical use. Details on a method for transforming from the computational domain to the physical domain
or vice versa is included in Appendix F and will not be repeated here. This development will continue by

presenting a method for solving Eq. (E.6) numerically in the computational domain.
II1. Discretization

The finite-volume method is applied to this one-dimensional problem by integrating Eq. (E.6) across a

control volume in the #-direction. This can be written as

_ 49|
H o {FJdn} S}dry (E.7)
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Before continuing, the control volumes for the integration must be defined. In this case, the domain is
divided into m cells with variable spacing in the physical domain. The definition of the coordinate
transformation requires the transformation function to be continuous. Because the central difference
scheme is only second order for midpoint calculations, uniform spacing in # is chosen. For simplicity, the
grid spacing in the computational domain is set to A7 =1.0. Each cell has a node P placed at the cell center
in the computational domain at which the values of the dependent variables will be evaluated. Additionally,
each cell has a north and south face denoted by points » and 5. Neighboring north and south cell centers are
denoted here as nodes N and S respectively. The subscript j is used here as the index variable. In the
transformed coordinate system, node j =1 is located at 7 =0.5, and node j = m is located at 7 =m —0.5.
Figure E.1 shows the relationship between the physical domain and computational domain as well as the
cell nomenclature. Note that the centers of the cells in the computational domain do not correspond to

centers of the cells in the physical domain.

N O
N O
n —e—
n —e— T
P O An
P O S —v—l
9 s O
y S O n
Physical Domain Computational Domain

Fig. E.1 Comparison of physical and transformed domains.
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Applying the transformation

(B+D)=(B-DIB+D/(B-DI""™) E3)
[(B+D)/(B-D]""" +1 '

v =1

where f is a grid-stretching factor with the limits 1 < < oo, gives

I8 +1- (/YA -1+ (/D (E9)

70y =m- n[(8+ /(A1)

The Jacobian must be nonzero over the domain to ensure that the transformation is not singular. Taking the

derivative of Eq. (E.9) with respect to y gives

J_dn _ i 22'"/” (E.10)
dy B~ -[1-(y/DI yIn[(B+1)/(B-D]
The derivative of the Jacobian with respect to 7 is
g _dl fdy _td) A= (y/D)] (E.11)

Cdn dy/ &y Jdy 1B -[1-(y/D)
where the prime represents a derivative with respect to 7. Equations (E.10) and (E.11) are exact for the
transformation given in Egs. (E.8) and (E.9). However, for an arbitrary transformation, the Jacobian and its
derivative with respect to # can be estimated to second-order accuracy where the y-coordinates of the grid

are known at the cell faces. For node P, second-order differencing gives

J, =21 (E.12)

Y= Vs

Once the Jacobian is known at every node, the derivative of the Jacobian with respect to # can be calculated

using the second-order differences given in Eqs. (H.13) and (H.16). Usingj as the index,

_—AJy+3J+J,

J =1
3An

Jog—=Ji
J;.:—”;A iy 2<j<m—1 (E.13)
' n

J, —J
J =tm m—l, P
" Ap J="

where J, is the estimate for the Jacobian at the wall given by
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Jy :3‘]17_‘]2 (E.14)

The finite volume method continues by evaluating Eq. (E.7) for a single cell

|9 fidn (E.15)
dn .o d

Applying the central difference approximations given in Egs. (H.18) and (H.19) to the left-hand side and

the midpoint rule given in Eq. (H.29) to the right-hand side of Eq. (E.15) and simplifying gives the

discretized form of the transport equation for the cells2 < j <m —1

Ty +Tp) Uy +Jp) (¢N_¢P)+(FS+FP) (s +Jp) (p —¢5) =Spﬂ (E.16)

2 2 An 2 2 An Jp

Using the subscript j as an index value, Eq. (E.16) can be rewritten as

for 2<j<m-1

O 4T +0) | ot D+ E17
4An 4An / '
_(Fj+1+rj)(']j+l+‘]j) . _(Fj—l"'rf)(*]j—l*'t]j) ' =S»M
47 s 477 R,

For the cells j=1 and j=m, discretization of Eq. (E.15) must account for the influence of the
boundary. Because all transport properties are symmetric about the centerline, ¢,,., = ¢,,. Applying this to

Eq. (E.17) gives the discretized equation for cell m

(Fm—l +Fm)(‘]m—1 +Jm):|¢ _ (Fm—l +Fm)(‘]m—l +‘]m) ¢ = S ﬂ (Elg)

4An 4An J

m

The wall boundary conditions affect the discretized equation for the first cell off of the boundary and are

dependent on the transport property. These will be discussed in the appropriate sections below.

IV. Transport Equations

A. x-Momentum

The x-momentum equation is a special case of Eq. (E.3) where

g=u,U'=v+v,, S=f,(u,y) (E.19)
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Using these definitions, the right-hand side of Eq. (E.16) can be written for any cell, j as

;5= htuer) 5 (E.20)
For the cell adjacent to the wall boundary, Eq. (E.15) must be discretized using forward difference
approximations. Here we define the points such that u, is the velocity at the wall, u, is the velocity at the
center of the first cell, and u, is the velocity at the center of the second cell. Values and derivatives on the
cell faces are estimated by using the forward difference approximations given in Eqgs. (H.21) and (H.22) for
the boundary face, and the central difference approximations given in Eqs. (H.18) and (H.19) for the face

opposite the boundary face. Applying these relations gives the discretized form of the x-momentum

equation for the cell adjacent to the wall boundary

-+ 0) U+ ) (uy —uy) + G -135) BJy = Jy) (8ug +%uy —uy)
2 2 An 2 2 3An

A
= futw. )= (E21)
1

This can be rewritten as

{(rz +T)(5 +J) |, 96T ~T5)3, - h)}ul

4An 12An
(E.22)
L, +)(J, +J, ar, -1,)3J,-J 8GIL -1,)3J, - J A
@G+, 1)+(  —1)GJ ) Y = (B -T,)@3J, Z)M()+fu(ul7yl)_77
4An 12An 12An Ji

The no-slip boundary condition at the wall is imposed by setting #, = 0.0.
In summary, Egs. (E.17), (E.18), and (E.22) can be used to get an improved estimate for the velocity
distribution given an estimate for the dependent variables. These equations can be written as a tridiagonal

system of equations including a conventional underrelaxation factor, 2,, and a blending factor, I”,. When

I', =1, the method becomes a pure traditional tridiagonal algorithm. When I", =0, the method is a

pointwise successive underrelaxation algorithm. Using the notation 7j;u ;_, + Tpu ; + Tyu ;. = B, for row j,

the algorithm can be written as
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forl<j<m; I, =v+f,(k;,h;,y;); B; :fu(ujayj)Aﬂ/Jj;

T, =0; Tp = (F2+F1)(J2+J1)+9(3F1 -15,)3J, - J3) :
4An 12An
T (F2+1"1)(J2+J1)+(3T1—T2)(3J1—J2) )
Ul — >
4An 12An

for2<j<m-1;
(T AT+ ) T _ W4T+

7, = ; = i Tn =—T,, —T,;; (E.23)
Lj 4A7 U 4A7 Dj Lty
o + LD + )
TLm:_ ! 4A7] ! 5 TDm:_TLm; TUm:O;

B, =B, -(1-a,)Tyuy); Ty =Ty
for2<j<m-1 B, =B, —(1-1,)Tyu; +Tyu;.,); Ty;=1Ty T,;=I,Ty;
Bm :Bm _(I_Fu)(TLmum—l); TLm = FuTLm;

-1
Ugg =u; u=[T]"B; u=u,y+Q,-ugy);
Once an estimate for the velocity profile has been obtained, an estimate for the shear velocity at the
wall can be calculated. The shear velocity is related to the shear stress according to u, = 4/7,,/p . The shear

stress can be calculated at the wall as

Ou ou
o = (0= Jopi 1 (0) (E24)

Using the second-order forward difference approximations given in Egs. (H.21) and (H.22), the wall shear

stress can be calculated for a given velocity profile as

ro=p QG —T5)3J; = J5) (Bug +9uy —u,) =p QL ~T5)BJ, = J5) Ouy —uy)
Y 4 3An 4 3A7

(E.25)

B. Turbulent Kinetic Energy

The turbulent-kinetic-energy equation is a special case of Eq. (E.3) where

2 2
du k,h,V, dk
p=k. T=viv,jo, . S= futkhv)| 2| = ooy, - L&V LAY g )
dy 2k dy

Using these definitions and rearranging the last term in the source term, the right-hand side of Eq. (E.16)

can be written for any cell, j as

A ’ A r
S, —J’7 = fua(k vy 2 AT —sz(k_,-,h,-,v,-,y_,)—J” =2 fiskj by v IRV T AR (B.27)
j .

J
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where the prime represents a derivative with respect to #, and the relationship k'/ (2kl/ 2) = (kl/ 2)' has been
applied. The first derivative for any property is estimated by the central difference approximation given in
Eq. (H.13) for cells 2 <j<m and the forward difference approximation given in Eq. (H.16) for the cell
j =1. Applying these equations to the derivatives in Eq. (E.27) as well as the symmetry boundary condition

at node m, gives the finite difference approximations

12 12, 212
o g 3uy tuy g 2y o _4k0/ +3k1/ +k2/ =1
Uy =——- 1 A > J
3An n
2 12
U, 1 —U; k'l —k L
u; :M’ (kl/z)'j :M, 2<j<m-1 (E.28)
2A7n 2An
P U U kY2 k2
u :M, 12y _ "m m—1 .
m 2A7n (k") = 207 > J=m

The no-slip boundary condition for the turbulent kinetic energy requires that & and its first derivative
both be zero at the wall. Using the forward difference approximation given in Eq. (H.22) imposes the
following relationship between the wall value of &, denoted here as k, and the first two nodes off of the

wall, k, and k, respectively

k0=O
—8ky + 9k, —ky =0

(E.29)
This relationship constrains the value of &, relative to k,. Therefore, the governing transport equation for £
need not be solved for the first node off of the wall when the correct boundary conditions are applied. Some
implementations of turbulence models neglect to enforce the second equation in Eq. (E.29) and solve the
governing turbulent kinetic energy equation with &k, =0 as the only boundary condition. In that case, the
governing equation is discretized similar to Eq. (E.24). However, this is incorrect. Both equations in Eq.
(E.29) must be enforced to correctly model the no-slip boundary condition. Correct implementation of the
no-slip boundary condition for & at the wall eliminates the need for the first equations in Eq. (E.28) because
the source term given in Eq. (E.27) need not be evaluated for the cell adjacent to the boundary.

In summary, Egs. (E.17), (E.27), and (E.29) can be used to get an improved estimate for the turbulent

kinetic energy distribution given an estimate for the dependent variables. Just as was done with the x-
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momentum equations, these equations can be written as a tridiagonal system of equations including a

conventional underrelaxation factor, £,, and a blending factor, I”;. The algorithm can be written as

forl<j<m; T, =v+f,(k;,h;,y;) 0
(correct no - slip boundary condition)
T,,=0; Tp,=9; T, =-1 B =0

(incorrect no - slip boundary condition)

T B : 3Ap
T, =0, Ty = I+, + ) + 931 -15)(3J, - J5) :
4An 12An
T - (L +) +J)) + G -1,)EJ = J5) |,
UL = ;
4An 12An

’ A ’
B = fkl(k1,h1,V1,Y1)”12J1A’7—sz(kbhb‘/b)ﬁ)J—n—2fk3(k1,h1aV1ay1)[(kl/2)1]2J1A77;
1

for2<j<m-1

1/2 1/2
u'_ _ I/lj+1 _uj—l . (kl/z)'_ _ kj/+l _kj/—l ]
/ 2Ap / 20
T +THJ o +J5) T +rHJ g +J5)
TLj:_ J J J J : TUj:_ Jt J Jt J : TDj:_TLj_TUj;
4An 4An
_ 12 712
l/l;” :—um Um-1 5 (kl/z)'m :—km km—l 5 TLm =— (Fm—l +Fm)(Jm_] +Jm), TDm = _TLm; TUm = O,
2An 2An 4An

for2<j<m

) An '
By = fualkyshyV oy 5 0 = fia ooy ) =5 = 2 fa Gy v DG 12 A

; (E.30)

By =B (1=, )Tyiky); Tin =y Tyns

for2<j<m-1; B, =B, —(1- )Tk, + Tk ) Ty =Ty Ty =Ty
B, =B, —(1= T )T pkp-1); Ty =TT

k.4 =k; k:[T]le; k=k,q+92,(k-kgq);

where both the correct and incorrect implementations of the no-slip boundary condition on k are given. This

gives an improved estimate for £ based on an estimate for the dependent variables.

C. Second Turbulence Variable, &

The second turbulence variable transport equation is a special case of Eq. (E.3) where

2 2
du d’u
¢:h9 1—‘:V-i-vt/o-h > S:fhl(kahovay)(d_y] _th(kahavay)+fh3(kahavay)(WJ (E31)
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Using these definitions and expanding the second derivative in the last term in the source terms, the right-

hand side of Eq. (E.16) can be written for any cell, j as

An / An

S == Ty hyv oy DO T A0 = fia Ky o9 ) —=
J J (E.32)

* ity hyov oy )+ ) S A

where the prime represents a derivative with respect to #. The derivative in the first term on the right-hand
side is calculated using Eq. (E.28). The last term on the right-hand side can be calculated using the central
difference approximations given in Eqgs. (H.13) and (H.14) for cells 2< j <m and the forward difference
approximations given in Eqs. (H.16) and (H.17) for the cell j=1. Applying these equations to the

derivatives in Eq. (E.32) as well as the symmetry boundary condition at node m, and the no-slip boundary

condition #,, = 0, gives the finite difference approximations

o (=T5uy +30uy —3uy)

u; = =1
' 15A7°
U, —2u.+u;
u",:( J / f“), 2<j<m-1 (E.33)
J 2
An
u’!’;l:(_um""z;m—l), j:m
An

Some cases are singular near a wall and require special treatment. In these cases, the asymptotic behavior
of the % equation near the wall can be used in the near-wall region rather than solving the differential
equation. Depending on the second transport variable, a predetermined number of cells off of the wall, m,,,

will simply be set to the asymptotic solution for /4

h; = fr(khy), 1<j<m, (E.34)

If the second turbulence variable and its governing equation are not singular at the wall, the governing

equation is discretized similar to Eq. (E.22) and the asymptotic value of % is only needed to calculate / at
the wall, /1y = f},0(0,k,h,y).

In summary, an algorithm can be written to get an improved estimate for the second turbulence

variable distribution given an estimate for the dependent variables. Just as was done above, the equations

can be written as a tridiagonal system of equations including a conventional underrelaxation factor, ©,,, and
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a blending factor, I7;,. If m; > 0, the near-wall asymptotic solution is used for the cells j <m,,. Otherwise,

the asymptotic solution is only used at the wall. The algorithm can be written as

forl<j<m; T;=v+f (k; h;,y;)/ 04
if m, >0

forl<j<m,; T, =0; Tp =1 Ty;=0; B;=f,(.khy);
else

hy = fro(0,K,h,y);

 _Butuy (TS 30m =3us) (Ao +30,+0)
ul_ ) 141— ’ 1=

3AR 15A7* 3An
T, =0; Ty, = (F2+F1)(J2+J1)+9(3F1—F2)(3J1—J2) ;
4An 12An
7 |G+ GL-TH)E —J)) |
Ul =
4An 12An

83, -I,)(3J, - J , A
LY lé)A(nl 2)}10+fhl(kls}11"’1,)’1)(“1)2J1A’7—fhz(kbhh‘/hyl)J—77
1

+ fua Uk by vy, y)(J g + J1”1")2J1A772

for max(m;, +1,2) < j<m—1

By

u,A:ujH_uj—l. u,{:(uj+l_2uj+uj—l)' J,_:(Jj+1_Jj—|).

J 2A77 > J A772 > J 2A77 ’

T':_(Fj—l—i_rj)(‘]j—l-i_‘]j). @t THY a4y I T

Lj 4A77 ’ U 4A7] ’ Dj Lj yj»
u' :um_um—l. u" :(_um+um—1). J' :(']m_‘]m—l).
" 2oy " Ap?> " 20
TLm:_(Fm_l+Fm)(Jm_l+JM); TDm:_TLm; TUm:O;

4An

for max(m;, +1,2)< j<m
" / o (E.35)
B]:fhl(kj’hjavjayj)(u;)z']jAn_th(kjshjavjayj)J_

J
+ fua (ko hyv iy W5+ J ) J A
By =B —(1-a;,)Tyih); Tyy = oy
for2<j<m-1, B, =B, —(=[)Tyh, +Tyh;); Ty=1Ty Ty=1Ty;
B, =B, —(=T)Tpuhy-1); Tpw =3I

hyg=h; h=[T]"'B; h=hg,+Q,(h—hg);

This gives an improved estimate for / given estimates for the dependent variables.
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Equations (E.23), (E.30), and (E.35) provide algorithms for obtaining an improved estimate for the

dependent variables u, k, and 4 respectively given an estimate for all the dependent variables. Given an

initial guess, these three equations are used in turn to improve the estimate for the dependent variables. The

process is repeated iteratively until a converged solution is obtained.

VI. Sample Results

It is helpful to test the code on equations with a known analytical solution such that the accuracy of the

code can be determined. Three such cases are included here. Results for four turbulence models which

were solved using this finite-volume algorithm can be found in Appendix B.

A. Laminar Flow

The governing equation and boundary conditions for fully developed laminar flow in a channel can be
written

d fdu)|_1dp
dy| \dy p dx
u(0)=0, ﬂ(l) =0
dy
Equation (E.36) is a special case of Eq. (E.1) where

A

1 dp
f,=0, f,=——2

p dx

and k and / are irrelevant. Because it is a second-order equation and f, does not contain any “lagging”

(E.36)

(E.37)

(E.38)

variables, the numerical solution to this case can be obtained by applying a single iteration of Eq. (E.23).

The closed-form solution to this case is

1 dp()?
M”_ym[z %

which can be used to evaluate the accuracy of the method.

(E.39)
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B. A Second-Order Test Case

Consider the system of equations

2 2 2
_ d_g‘ -1 - d—lz‘ =8, - d—f =03 (E.40)
dy dy dy

with the boundary conditions
w0 =0, k0=0. “oy=8, “m=0, Lay=0, % 1)=0 (EA41)
dy dy dy dy

This system of equations is second-order in each variable. Equation (E.40) is a special case of Eq. (E.1)

where
=1, v=1, fv =0, fu =1, fk1 =0, sz =-8, fk3 =0, fh1 =0, fhz =03, fh3 =0 (E42)
The closed-form solution to this system of equations is

2

_y_
u(y)=y 5
k(y)=8y—4y> (E.43)

h(y)=0.20—0.30y +0.15y>
This can be used to evaluate the accuracy of numerical solutions. Because / is not singular at the wall, the
near-wall solution only needs to be used for the value of / at the wall. Therefore, we set m;, = 0. In the limit

as y—0,

hy =0.20 (E.44)

C. A Closed-Form k-¢ Analogy

Consider the system of equations

2 2 2 2 2
ST R =y4[ﬂJ S =y2[ﬂj ~ " (E45)
dy dy dy dy dy

with the boundary conditions

dk du dk dh
u(0)=0, k(0)=0, d_y(o) =0, d—y(l) =0, d—y(l) =0, d—y(l) =0 (E.46)
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This system of equations is similar in order to the Lam-Bremhorst [68] turbulence model. Equation (E.45)
is a special case of Eq. (E.1) where

v=L f,=0, f,=1 Ju =% Joo=h [fiz=0, fu =y T2 =’ Jiz=0 (EA4T)

Because /4 is not singular at the wall, the near-wall solution only needs to be used for the value of # at the

wall. Therefore, we set m;, = 0. In the limit as y — 0, the k equation reduces to

2
%:{igJ (E.48)
dy” ),

This is not a boundary condition. However, it can be used to calculate /,. Using Eq. (E.5) along with the
forward difference approximations given in Eqgs. (H.22) and (H.23), the asymptotic solution for % at the

wall is discretized as

d’k
dy 0

=Jy(Joky + Jokg) (E.49)
—8Jy+9J, —J, \[ —8ky + 9k —k, 72ky —120k; + 60k, —12k;
=J, +J, 3
3An 3An 15An

where J, = (3J, —J,)/2 is the finite difference approximation for the Jacobian at the wall. The closed-form
solution to this system of equations is

2

u= —_
77
169y —92y° —182y° +252y7 —93y% + y!°
k= 69y y =182y +252y' =93y +y (E.50)
5040
h_169—276y—210y4+252y5—84y6+45y8
2520

This can be used to evaluate the accuracy of numerical solutions.

VII. Sample Code

The following sample C++ code can be used to solve the Wilcox 1998 model for smooth walls.

#include <iostream>
#include <math.h>
using namespace std;
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//kw model
double fu(double L, int j, double rho, double nu, double dpdx, double y, double k, double
h, double ut, int &limit) {

return -1.0/rho*dpdx; }
double fnu(double L, int j, double rho, double nu, double dpdx, double y, double k,
double h, double ut, int &limit) {

double Rt = k/(nu*h);

return k/h*(.024 + Rt/6.0)/(1.0 + Rt/6.0);}
double fkl (double L, int j, double rho, double nu, double dpdx, double y, double k,
double h, double ut, int &limit) {

return fnu(L,j,rho,nu,dpdx,v,k,h,ut,limit) ;}
double fk2 (double L, int j, double rho, double nu, double dpdx, double y, double k,
double h, double ut, int &limit) {

double Rt = k/(nu*h);

return 0.09*k*h* (4.0/15.0 + pow(Rt/8.0,4))/(1.0 + pow(Rt/8.0,4));}
double fk3(double L, int j, double rho, double nu, double dpdx, double y, double k,
double h, double ut, int &limit) {

return 0.0;}
double fhl (double L, int j, double rho, double nu, double dpdx, double y, double k,
double h, double ut, int &limit) {

double Rt = k/(nu*h);

return 0.52*(1.0/9.0 + Rt/2.95)/(1.0 + Rt/2.95);}
double fh2 (double L, int j, double rho, double nu, double dpdx, double y, double k,
double h, double ut, int &limit) {

return 0.072*h*h;}
double fh3(double L, int j, double rho, double nu, double dpdx, double y, double k,
double h, double ut, int &limit) {

return 0.0;}
double fhO(int j, double* k, double* h, double* y, double* J, double nu, double ut) {

return 6.0*nu/ (.072*y[31*yI[J]):}
double U Exact (double L, int j, double rho, double nu, double dpdx, double y, double k,
double h, double ut, int &limit) {

return 1.0/rho/nu*dpdx* (y*y/2.0 - L*y);} //laminar solution
double K Exact (double L, int j, double rho, double nu, double dpdx, double y, double k,
double h, double ut, int &limit) {

return 0.0;}
double H Exact (double L, int j, double rho, double nu, double dpdx, double y, double k,
double h, double ut, int &limit) {

return 6.0*.01/(.072*y*y) ;}
double U Init(double L, int Jj, double rho, double nu, double dpdx, double y, double k,
double h, double ut, int &limit) {

return 1.0/rho/nu*dpdx* (y*y/2.0 - L*y);}
double K Init(double L, int Jj, double rho, double nu, double dpdx, double y, double k,
double h, double ut, int &limit) {

return y/L*ut*ut;}
double H Init(double L, int Jj, double rho, double nu, double dpdx, double y, double k,
double h, double ut, int &limit) {

return 6.0*.01/(.072*y*y) ;}

int TriDiagSolver (int n, double* a, double* b, double* ¢, double* x, double* d)
//returns x=[A]"-1 B

// n = size of matrix

// a = Lower Diagonal

// b = Diagonal

// ¢ = Upper Diagonal

// d = Right-Hand Side

// x = vector of unknowns

int k;
double m;
for(k = 2; k <=n; k++)

m = alk]/bl[k-17;
b[k] = b[k] - m*c[k-1];
d[k] = d[k] - m*d[k-1];
}
x[n] = d[n]/bln];
for(k = n-1; k > 0; k--) x[k] = (d[k] - clk]l*x[k+1])/b[k];

return 0;

int initzero(int size, double* a)

for(int i = 0; 1 < size; i++) al[i] = 0.0;
return 0;
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int Jacobian Exact (int n, double length, double growth, double* y face, double* ynodes,
double* Jfaces, double* Jnodes) //Exact Roberts
{

int i;

//Exact Roberts Transformation

for(i = 0; 1 <= n; i++) Jfaces[i] = double(n)*2.0*growth/ (length* (growth*growth -
pow((1.0 - (y_face[i]/length)),2))*log((growth + 1.0)/(growth - 1.0)));

for(i = 1; i <= n; i++) Jnodes[i] = double(n)*2.0*growth/ (length* (growth*growth -
pow((1.0 - (ynodes[i]/length)),2))*log((growth + 1.0)/(growth - 1.0)));

return 0;

}

int Jacobian Difference(int n, double length, double growth, double* y face, double*
ynodes, double* Jfaces, double* Jnodes) //Central Difference Approximation

{

int i;

//Numerical approximation for J

Jfaces[0] = 2.0/(—3.0*y_face[0] + 4.0*y face[l] - y face[2]);

for(i = 1; i < n; i++) Jfaces[i] = 2.0/ (y_face[i+l] - y face[i-1]);
Jfaces[n] = -2.0/(-3.0*y face[n] + 4.0*y face[n-1] - y face[n-2]);

Jnodes[1] = 3.0/ (-4.0*ynodes[0] + 3.0*ynodes[1] + ynodes[2]);

for(i = 2; i < n; i++) Jnodes[i] = 2.0/ (ynodes[i+1l] - ynodes[i-1]);
Jnodes[n] = -3.0/(-4.0*ynodes[n+1] + 3.0*ynodes[n] + ynodes[n-1]);

return 0;

}

int Jacobian Coarse (int n, double length, double growth, double* y face, double* ynodes,
double* Jfaces, double* Jnodes) //Central Difference Approximation - very coarse

{

int i;

//Numerical approximation for J

Jfaces([0] = 2.0/ (-3.0*y face[0] + 4.0*y face[l] - y face[2]);

for(i = 1; i < n; i++) Jfaces[i] = 2.0/ (y face[i+l] - y facel[i-11);

Jfaces[n] = —2.0/(—3.0*y_face[n] + 4.0*y face[n-1] - y face[n-2]);

for(i = 1; i <= n; i++) Jnodes[i] = 1.0/ (y_facel[i] - y facel[i-1]); //very coarse
approximation!

return 0;

}

int UniformGrid(int n, double length, double growth, double* y face, double* ynodes,
double* Jfaces, double* Jnodes) //Central Difference Approximation - very coarse

{

int i;

//uniform grid

for(i = 0; i <= n; i++) //faces

{
y face[i] = length/double (n)*double (i) ;
Jfaces[i] = double(n)/length;

}

for(i = 1; i <= n; i++) //nodes

{
ynodes[i] = length/double (n)* (double (i)-.5);
Jnodes[i] = double (n)/length;

}

ynodes[0] = y facel[0];

ynodes[n+l] =y face[n];

Jnodes[0] = Jfaces[0];

Jnodes [n+1] = Jfaces[n];

return 0;

}

int makegrid(int n, double length, double growth, double* y face, double* ynodes, double*
Jfaces, double* Jnodes)
{

int i;

double sum = 0.0;

for(i = 1; i <= n; i++) sum += pow(growth,i);

double mult = length/sum;

// y face[0] = 0.0;

// for (i = 1; i < n; i++) y face[i] = y face[i-1]+pow(growth,i)*mult; //exponential
growth

// y face[n] = length;

// for(i = 0; i <= n; i++) y face[i] = length*double(i*i)/double (n*n); //quadratic

growth
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//Exact Roberts Transformation

for(i = 0; 1 <= n; i++) y face[i] = le ngth*((growth + 1.0) - (growth -
1.0)* (pow (((growth + 1. O)/(growth 1.0)),1.0- double( ) /double (n))))/ (pow(((growth +
1.0)/(growth - 1.0)),1.0-double (i) /double (n + 1.0);

for(i = 1; i <= n; i++) ynodes[ ] = length*((growth + 1.0) - (growth -
1.0)* (pow (((growth + 1.0)/ (growth- l O)),l - (double (i)-.5) /double(n))))/ (pow(((growth +
1.0)/(growth - 1.0)),1.0-(double(i)-.5)/do uble(n)) + 1.0);

ynodes[0] = y face[0];

ynodes[n+l] =y face[n];
// Jacobian Exact (n,length,growth,y face,ynodes,Jfaces, Jnodes) ;
// Jacobian Difference (n,length,growth,y face,ynodes,Jfaces,Jnodes);

Jacobian Coarse(n length, growth,y face, ynodes, Jfaces, Jnodes),

Jnodes[0] = Jfaces[0];

Jnodes [n+1] = Jfaces[n];
// UniformGrid(n,length,growth,y face,ynodes,Jfaces, Jnodes);

return 0;

}

int Transport (int n, double* phi, double alpha, double omega, double* TU, double* TL,
double* TD, double* B, int print, inté& limit)
{

int 3

double* phi old = new double[n+2];

f (print)
{
for(j = 1; j <= n; Jj++)

{
printf("°l3 l4f * $13.14f + $13.14f * $13.14f + %13.14f ~*
$13.14f\n",TL[]],phi[j-1],TD[3],phi[3],TU[F],phi[F+1]);
printf (" = /13 14f vs %13. 14f\n", B[31,TL[j]1*phi[]-
11+TD[J]*phi[jJ]1+TU[J] *phi[j+1]);

= B[1l] - (1.0 - alpha)*TU[1l]*phi[2]; TU[1] = alpha*TU[1l];
for(j = 2; j < n; J++)

B[j] B[j] - (1.0-alpha)*(TL[Jj]*phi[Jj-1] + TU[J]*phi[j+1]);
TL[]] = alpha*TLI[j];
TU[Jj] = alpha*TU[]];
}
B[n] = B[n] - (1.0 - alpha)*TL[n]*phi[n-1]; TL[n] = alpha*TL[n];
for(j = 1; j <= n; j++) phi_old[j] = phil[j];
TribiagSolver (n,TL,TD,TU,phi,B);
for(j = 1; 3 <= n; j++)
{
f(phi[j] != philj])
cout<<endl<<" —--————- > NAN detected. "<<Jj<<" "<<phi[j]<<endl;
return 1;
}
phi[j] = phi_old[j] + omega* (phi[j] - phi_old[Jj]);

if (limit > 0)
{ if(phi[j] < 0.0)
{ phi[j] = 1.0e-16;
limit ++4;
}
delete phi old;

return 0;

int main (int argc, char * const argv[])

int i,Jj,iter,ulimit,klimit,hlimit,limit;
double alphau, alphak, alphah;
// double omegau, omegak, omegah;
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double omega,J0;
double urms, krms,hrms, urms face, krms face, hrms face;
double L = 0.5;
double growth = 1.02;
int n = 25; //number of cells
int itermax = 100000;
int print = 1000;
//Blending factors (1 TDA) (0 = PSUR)
alphau = alphak = alphah = 0.5;
//Relaxation Factors
omegau = omegak = omegah = .001;
omega = 0.05;
FILE* pfile;
int initfile = 1; //set to 0 for algebraic initialization

int m h = 1;
int forcekp =
double dkpdyp
int ulimiter
int klimiter

1; //force k prime if this is set to 1
= 0.0; //dk+/dy+ if it is forced
0; // 1 limits to positive numbers

F
1;
;

int hlimiter = 1;

double nu = .01;

double rho = .1;

double dpdx = -7.2;

double tw = -dpdx*L;

double ut = sqgrt(tw/rho);

double sigmak = 2.0;

double sigmah = 2.0;

double* y face = new double[n+2];
double* y = new double[n+2];
double* Jfaces = new double[n+2];
double* J = new double[n+2];
double* dy = new double[n+2];
double* u = new double[n+2];
double* k = new double[n+2];
double* h = new double[n+2];
double* u face = new double[n+2];
double* k face = new double[n+2];
double* h face = new double[n+2];
double* up = new double[n+2];
double* upp = new double[n+2];
double* kp = new double[n+2];
double* Jp = new double[n+2];
double* Gamma = new double[n+2];
double* TU = new double[n+2];
double* TD = new double[n+2];
double* TL = new double[n+2];
double* B = new double[n+2];
double* exactu = new double[n+2];
double* exactk = new double[n+2];
double* exacth = new double[n+2];
double* exactu face = new double[n+2];
double* exactk face = new double[n+2];
double* exacth face = new double[n+2];
initzero(n+2,y face);
initzero(n+2,vy);

initzero (n+2,Jfaces) ;

initzero (n+2,J);
initzero(n+2,dy);

initzero (n+2,u);
initzero(n+2,up);

initzero (n+2,upp) ;

initzero (n+2,Xk);
initzero(n+2,kp);
initzero(n+2,Jp);

initzero (n+2,h);
initzero (n+2, Gamma) ;

initzero (n+2,TU) ;



initzero (n+2,TD) ;

initzero (n+2,TL) ;

initzero (n+2,B);

initzero (n+2,exactu);
initzero (n+2,exactk) ;
initzero (n+2,exacth);
initzero(n+2,exactu_face);
initzero(n+2,exactk face);
initzero (n+2,exacth _face);

makegrid(n,L,growth,y face,y,Jfaces,J);
JO0 = (3.0*J[1] - JI[2]1)/2.0;

//write Fluent grid file

double dx = L/double(n);

FILE* ffile;

ffile = fopen("msh _paste.txt","w");

fprintf (ffile,"info: %d x %d grld cells\n",n,5);
fprintf (ffile,"dx = %13.14e\n",dx);
(
(

fprintf (ffile, "growth (beta) = %13.14e\n",growth);

fprintf (ffile, "length (L) = %$13.14e\n",L);

fprintf (ffile, " %$13.14e %$13.14e\n",5.0*dx,y face[0]);
fprintf (ffile, " $13.14e %$13.14e\n",0.0,y facel0]);
for(j = 1; 3 < 5; j++) fprintf(ffile," %13.14e

.l4e\n",double (j) *dx,y face[0]);

[

nl);

fprintf (ffile, " $13.14e %$13.14e\n",0.0,y faceln]);
fprintf (ffile," $13.14e %$13.14e\n",5.0*dx,y face
for(j = 4; 3 > 0; j—-) fprintf(ffile," %$13.14e

.1l4e\n",double (j) *dx,y face[n]);

for(j = 1; j < n; j++) fprintf(ffile," %$13.14e
for (j 1; jJ < n; j++) fprintf(ffile," %13.14e
for (i n-1; i > 0; i--)

{

for(j = 1; 5; j++) fprintf(ffile," %$13.14e

J <
.1l4e\n",double (j) *dx,y face[i]);

}
fclose (ffile);

//initialize
for(j = 0; J <= n+l; Jj++)
{

]
j ]

%13.14e\n",
%$13.14e\n",

);

’

ut,limit);
,ut,limit) ;
,ut,limit) ;

exactulj] = U _Exact(L,j,rho,nu,dpdx,y[3],k [j] h[j]l,ut,limit
exactk[j] = K Exact(L,Jj,rho,nu,dpdx,y[J],k[J],h[]],ut,limit);
exacth[j] = H Exact(L,Jj,rho,nu,dpdx,y[J],k[J],h[]],ut,limit);
exactu face([j] = U Exact(L,Jj,rho,nu,dpdx,y facel[j],k[]j], h[j]
exactk _face[j] = KiExact( ,J,rho,nu,dpdx,y face[j],k[]j],h([]
exacth face[j] = H Exact(L,Jj,rho,nu,dpdx,y facelj],k[j],h[]
ulj] = U Init(L,j,rho,nu,dpdx,y facel[j],k[j],h[]],ut,limit);
k[j] = K Init(L,j,rho,nu,dpdx,y facel[j],k[j],h[j],ut,limit);
h(j] = H Init(L,j,rho,nu,dpdx,y facelj]l,k[j],h[]j],ut,limit);

}
if(initfile)
{
string enter;
pfile = fopen("rstrt 1998 100.txt","r");
double ycur, yprev, ucur uprev kcur, kprev hcur, hprev;

fscanf (pfile,"%1f %1f $1f $1f", &ycur, &ucur, &kcur, &hcur) ;

ul[0] = ucur; k[0] = kcur; h[0] = hcur;
j=1
while (§<n+1)
{
while (ycur > y[3j])
{

}

yprev = ycur; uprev = ucur; kprev = kcur; hprev

ulj] = (y[J] - yprev)/(ycur - yprev)*(ucur - uprev)
k[3]1 = (y[j] - yprev)/(ycur - yprev)* (kcur - kprev)
h{j] = (y[j] - yprev)/(ycur - yprev)* (hcur - hprev)
J++;

hcur;

fscanf (pfile,"%1f %1f $1f %1f", &ycur, &ucur, &kcur, &hcur) ;

}

fclose (pfile);
}
u[n+l] = uln]; k[n+l] = k[n]; h[n+l] = h[n];
do{

for(iter = 0; iter < itermax; iter++)

+ uprev;
+ kprev;
+ hprev;

0.0,y_face([j]);
5.0*dx,y facel[]

1)s
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ulimit = ulimiter;
klimit = klimiter;
hlimit = hlimiter;

//u solver
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limit = 0;
for(j = 1; j <= n; J++)
{
Gamma[j] = nu + fnu(L,Jj,rho,nu,dpdx,yI[jl,k[J],h[]],ut,limit);
B[j] = fu(L,Jj,rho,nu,dpdx,y[j],k[j],h[j],ut,limit)/J[J]
}
TL[1] = 0.0;
TD[1] = (Gamma[2] + Gammal[l])*(J[2] + J[1])/4.0 + 9.0*(3.0*Gamma[l] -
[2])*(3.0*J[1] - J[2])/12.0;
TU[1l] = -(Gamma[2] + Gammal[l])*(J[2] + J[1])/4.0 - 1.0*(3.0*Gamma[l] -
[2])*(3.0*J[1] - J[2])/12.0;
for(j = 2; j <= n-1; J++)
{
TL[j] = -(Gamma[j-1] + Gamma[]j])*(J[j-1] + J[31)/4.0;
TU[j] = -(Gamma[j+1] + Gammal[j])*(J[j+1] + J[3])/4.0;
TD[J] = -TL[J]1-TU[J];
}
TL[n] = -(Gamma[n-1] + Gamma[n])* (J[n-1] + J[n])/4.0;
TD[n] = -TL[n];
TU[n] = 0.0;
if(Transport(n, u, alphau, omega, TU, TL, TD, B, 0, ulimit)) break;
tw = rho*(3.0*Gamma[l] - Gamma[2])*J0/2.0*(9.0*u[l] - u[2])/3.0;
ut = sqgrt(tw/rho);
//k solver
for(j = 1; j <= n; j++) Gammal[j] = nu +

fnu(L,j,rho,nu,dpdx,y[j]l,k[j],h[J],ut,limit) /sigmak;

if (forcekp) //correct no-slip boundary conditions

{
L1l =

0.0; TD[1] = 9.0; TU[1] =-1.0; BI[1l] =

3.0*dkpdyp*pow ( ut 3) / (nu*Jo) ;

else //incorrect no-slip boundary conditions

{

up[1l] = (3.0*ull] + u[2])/3.0; kp[l] = (3.0*sqrt(k[1]) + sqrt(k[2]))/3.0;

TL[1] = 0.0;

TD[1] = (Gamma[2] + Gammal[l])*(J[2] + J[1])/4.0 + 9.0*(3.0*Gamma[l] -
Gamma [2]) *(3.0*J[1] - J[2]1)/12.0;

TU[1l] = —-(Gamma[2] + Gamma[l])*(J[2] + J[1])/4.0 - 1.0*(3.0*Gamma[l] -
Gamma [2]) * (3.0*J[1] - J )/12.0;

B[1] =

21)
k1 (

fk2(L 1,rho,nu,dpdx,y[1 ] k[1],h[1],ut,limit)/J[1] -
[1

.0*fk3 (L, 1, rho,nu,dpdx,y

fk2 (L,

1, k[1],h[1],ut,limit) *kp[1]*kp[1]*J[
}

for(j = 2; j <= n-1; j++)

11

0;

L,1,rho,nu,dpdx,y[1],k[1],h[1],ut,limit) *up[l]*upl[l]1*J[1] -

up[j] = (ulj+1] - ul3-11)/2.0; kpl3] (sqgrt (k[
TL[J] = -(Gamma[]j-1] + Gamma([j])*(J[J-1]1 + J[]]
TU[J] = - (Gamma [j+1] + Gammal[j])* (J[j+1] + J[J]
TD[3] = -TLI3]1-TUI[3];

}

up[n] = (uln] - uln-11)/2.0; kp[n] = (sqgrt(k[n]) - sagrt(k[n-11))/2.0;

TL[n] = - (Gamma[n-1] + Gamma[n])*(J[n-1] + J[n])/4.

TD[n] = -TL[n];

TU[n] = 0.0;

for(j = 2; J <= n; j++)

{

B[j] = fk1(L,3,
j,rho,nu,dpdx,vyI[Jj], k[]],h[ ],ut,limit) /J[J] -
2.0*fk3 (L, j,rho,nu,dpdx,y[J]1,k[J]1,h[Jj],ut,limit) *kp[j]l*kp[J]1*J[
}
if(Transport(n, k, alphak, omega, TU, TL, TD, B, O,
//h solver
for(j = 1; j <= n; j++) Gamma[j] = nu +

fnu (L

+J,rho,nu,dpdx,y[3]1,k[3]1,h(j],ut,limit) /sigmah;
if(m_h > 0) //near-wall asymptotic solution is used
{
for(j = 1; j <= m h; j++)
{
TL[j] = 0.0; TD[J] = 1.0; TU[Jj] = 0.0; B[]]

jl;
k1l

rho,nu,dpdx,yv[Jj],k[j],h[J],ut,limit) *upl[jl*upljl*J[j] -

imit)) break;

fh0(j,k,h,y,J,nu,ut);
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else //near-wall asymptotic solution only used directly on boundary
{

h[{0] = £h0(0,k,h,y,J,nu,ut) ;

up[l] = (3.0*u[l] + u[2])/3.0; u p[l] = ( 75.0*%ufl] + 30.0*u[2] -
3.0*u[3])/15.0; Jp[l] = (-4.0*J[0] + 3.0*J[1] + J[2])/3.0

TL[1] = 0.0;

TD[1] = (Gamma[2] + Gamma[1l])*(J[2] + J[1])/4.0 + 9.0*(3.0*Gamma[1] -
Gamma [2]) *(3.0*J[1] - J[2])/12.0;

TU[1l] = -(Gamma[2] + Gammal[l])*(J[2] + J[1])/4.0 - 1.0*(3.0*Gamma[l] -
Gamma [2]) *(3.0*J[1] - J[2]1)/12.0;

B[1l] = 8.0/12.0*(3. O*Gamma[l] - Ga a[ 1)*(3.0*J3[1] - JI[2])*h[0] +
fhl1(L,1,rho,nu,dpdx,y[1],k[1],h[1],ut,limit)*up[l]*up[l]*J[1] -
fh2(L,1,rho,nu,dpdx,y[1],k[1],h[1],ut,limit) /J[1];

B[1] += fh3(L,1,rho,nu,dpdx,yI[1],k[1],h[1],ut,limit)*pow((Jp[l]*up[l] +

J[1]1*upp[1]),2)*J[1];
}

for(j = max(m h+1,2); j <= n-1; j++)

up[j] = (ulj+1] - ul3-11)/2.0; upplj] = (ulj+1] - 2.0*ulj] + ulj-11);
Jpljl = (J[3+1] - J[3-11)/2.0;
TL[§] = -(Gamma[j-1] + Gammal[j])*(J[j-1]1 + J[j1)/4.0;
TU[J] = (Gama[]+l] + Gamma[j])*(J[J+1] + J[31)/4.0;
TD[3] = -TL[J]1-TU[]];
}
y up[n] = (uln] - uln-11)/2.0; uppln] = (-u[n] + uln-1]1); Jpln] = (J[n] - J[n-
11)/2.0;
TL[n] = -(Gamma[n-1] + Gamma[n])* (J[n-1] + J[n])/4.0;
TD[n] = -TL[n];
TU[n] = 0.0;
for(j = max(m h+1,2); j <= n; j++)
{
B[j] = fhl(L ,j,rho nu,dpdx,y[j],k[j],h[j],ut,limit) *up[jl*upl(jl1*J[j] -
fh2 (L, j,rho,nu,dpdx,y[j],k[J],h[J],ut,limit) /J[J];
B[j] += £h3(L,j,rho,nu,dpdx,y[j],k[j],h[]j],ut,limit) *pow ((Jp[j]*upl[j] +

J[31*upp(31),2)*J[J];
}
if(Transport(n, h, alphah, omega, TU, TL, TD, B, 0, hlimit)) break;

//Interpolate to faces

u_face[0] = 0.0;

k face[0] = 0.0;

h face[0] = £h0(0,k,h,y,J,nu,ut);

for(j = 1; 3 < n; j++)

{
u face[j] = .5*(ulj] + ulj+1]);
k face([j] = .5*(k[]J] + k[3+1]);
h face[j] = .5*(h[j] + h[j+1]);

}

u_facel[n]
k face[n]
h face[n]

(3.0*u[n] - uln-11)/2.0;
(3.0*k[n] - k[n-1])/2.0;
(3.0*h[n] - h[n-11)/2.0;

//Calculate Error
urms = krms = hrms = urms_ face = krms face = hrms face = 0.0;
for(j = 1; J <= n; j++)
{
urms += pow (exactul] u
krms += pow(exactk[j] - k
hrms += pow(exacthl[]j h

for(j = 0; J <= n; j++)

{
urms_face += pow(exactu face[]j] - u facel[] ;
krms_ face += pow(exactk face[j] - k facel]j],2);
hrms face += pow(exacth face[j] - h facel[]

}

urms = sqgrt(urms/n); krms = sqrt(krms/n); hrms = sqrt (hrms/n);

urms_face = sqrt (urms_face/(n+l)); krms face = sqrt(krms_face/ (n+l));

hrms face = sqgrt(hrms_face/(n+l));

}

cout<<"writing face.txt"<<endl;

//write results to file

pfile = fopen("face.txt","w");

fprlntf(pflle,"l\ty faces\tu\tk\th\ty plus\tu plus\tkiplus\te plus\tw plus\tnut\n");
for (j 0; j <= n; J++) fprintf(pfile,"% %$13.14e %13.14e $13.14e $13.14e %13.1l4e
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%$13.14e %13.14e %13.14e %13.14e %13.14e\n",j,y face[jl,u face[jl,k face[jl,h face[]j],
y face[j]l*ut/nu, u facel[j]/ut, k facel[j]/ut/ut,
h:face[j]*nu/pow(u€,4),hiface[j]inu/ut/ut,fnu(L,j,rho,nu,dpdx,yiface[j],kiface[jj,hiface[
jl,ut,limit));

fclose (pfile);

cout<<"writing cell.txt"<<endl;

//write results to file

pfile = fopen("cell.txt","w");

fprintf(pfile, "i\ty cell\tul\tk\th\ty plus\tu plus\tk plus\te plus\tw_plus\tnut\n");

for(j = 1; j <= n; j++) fprintf(pfile,"% $13.14e %$13.14e %13.14e %13.14e %13.1l4e
%$13.14e %$13.14e %$13.14e %$13.14e %13.14e\n",j,y[jl,uldl,k[31,h(3], yvI[Jjl*ut/nu, uljl/ut,
k[j]1/ut/ut,
h[3]*nu/pow (ut, 4),h[3]*nu/ut/ut, fnu (L, j, rho,nu,dpdx, v[j1,k[j],h[j],ut, limit));

fclose (pfile);

cout<<"writing rstrt.txt"<<endl;

//write rstrt file

pfile = fopen("rstrt.txt","w");

for(j = 0; J <= n; j++) fprintf(pfile,"%$13.14e %13.14e $%$13.1l4e
%$13.14e\n",y face[j],u face[j],k face[]j],h facel]j]);

fclose (pfile);

printf("\n iter %d exact u = %13.14e k = %13.14e h =
%13.14e\n", iter, exactu face[n],exactk face[n],exacth facel[n]);

printf (" iter %d calc u = %13.14e k = %13.14e h =
%$13.14e\n\n",iter,u face[n],k faceln],h face[n]);

cout<<"error info at nodes: "<<endl;
printf ("$13.14e %$13.14e %13.14e %13.14e\n",double(L)/double (n),urms, krms,hrms) ;
cout<<"error info at faces: "<<endl;
printf ("%$13.14e %$13.14e %13.1l4e
%$13.14e\n",double (L) /double (n) ,urms_face, krms face,hrms face);
cout<<endl<<"tw \t\t y+ (1) \t\t u+(l) \t\t k+ (1) \t\t h+(1l)"<<endl;
printf ("$13.14e %13.14e %13.14e %13.14e %13.14e\n", tw, y face[n]*ut/nu,
u face[n]/ut, k face[n]/ut/ut, h face[n]*nu/pow(ut,4));
- cout<<"enter omega ("<<omega<<") (0 -> quit):";
cin>>omega;
}while (omega > 0.0);

return 0;
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APPENDIX F

COORDINATE TRANSFORMATIONS IN CARTESIAN COORDINATES

I. Transformation Definitions

Complex geometries are often modeled using a body-fitted coordinate system known as curvilinear

coordinates. In two dimensions, this coordinate system is created by assuming that a computational domain

(£,1m) can be defined by a transformation of the physical domain (x,y) where

x=x(&,1)
y=y(&n)

as

(F.1)
The coordinate transformation function must be continuous over the entire domain. The determinant of the
Jacobian transformation matrix, referred to here as simply the Jacobian and given the symbol J, is defined

&) _|5x S
/= =l g |Toy T E (F.2)
o(x,y) [mx m,l TN YT
The Jacobian can be evaluated from
X: X
J=472/anﬁ=1’f | !
J 6(55 77) y,§ y,”

= (F.3)
XeVg — X

by using second-order central differences in the computational domain. Using the chain rule, partial
derivatives can be expressed as

O 90, 9
ax oo o
o, 0. 0
a = 5’ }7

(F4)
The metrics & ., & ,, 17, and 77 ,, can be evaluated by applying the relationship

-1
§,x §,y _ x,{: x,n _ J y,r] - x,?] (FS)
’7,){ ﬂ,y y,§ y,q _y,§ x,f
This gives



322

Ee=dy,

Sy =My (F.6)
77,x = _Jy,f

Ny = Jx’g

Therefore, partial derivatives of any continuously differentiable scalar, ¢, in the physical domain can be
written as partial derivatives in the computational domain according to

o¢

a = ¢,x = J(y,)]¢,§ - y,§¢,77)

(F.7)
)
a_f =0y =J(xby-x,05)

In this work, the grids are confined to orthogonal, rectilinear grids. Therefore, x = x(£), y = y(n7), and

¢, =n, =0. Equations (F.2) and (F.3) simplify to

A& |6x 0
7= =&, (E.8)
o(x,y) |0 m,
X 0
J:L_1=1/a(x’y)=1 S 1 (F.9)
J 6(5, 77) 0 y,?] x,g)’,;;
Partial derivatives can be expressed as
0 0
5 = g,x %
(F.10)
9_,9
v "on
where
X = J
o =W (F.11)
77 ¥ = Jxﬂi

In this work, the contravariant velocity components are defined as

(F.12)

SN
oo
=
Ea =
NI
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II. Scalar Transport Coordinate Transformations

A. General Scalar Transport
The general steady-state scalar transport equation is written in vector form as
(V-V)p=V-(TVP)+S (F.13)
The two-dimensional steady-state transport equation for any scalar, ¢, can be written in Cartesian

coordinates as

8(Z¢)+5(’7y¢) :i(r%}ri rol. g (F.14)
Ox oy ox\ ox) oyl 0oy .

where I' is the diffusion coefficient and S represents the source terms. Applying Eq. (F.10) to Eq. (F.14)

gives

g AT . of.. 08\ o(. o
S oz +17, an _g’xaf(ré"agj”“an(rﬂﬂyaq}s (F.15)

Applying Eq. (F.11) gives

o 8
an g

sy 209

+Jx
517 ag <

FJyU% +Jx¢i FJxéﬁ +S (F.16)
"¢ Ton\ o T on
Simplifying gives the two-dimensional steady-state scalar transport equation in the transformed coordinate

system

a(g?é) +%;77@ =y %(FJ%)+X’2§ %(FJ%)+§ (F.17)
B. Source Terms

Each transport equation has its own definition for a transport property, ¢, diffusion coefficient, I', and
source term, S. Table F.1 shows these definitions in Cartesian coordinates for the transport equations used
in this research. The source term in many of the turbulence models includes the squared magnitude of the

strain-rate tensor. For conciseness, this magnitude is given the symbol Sﬁ and is defined as

52 =S(V)-S(V) (F.18)



Table F.1. Transport equation terms

Transport Equation ¢ I S
Continuity 1 0 0
v lop o oV,| 0.0V
X-Momentum Vi V+v, L S | AT I o]
pOox Ox Ox Oy ox
v, 1op 0.0V, | of.oV,
Y-Momentum Y vV+v, UL CANCAN | i IS ) i
poy oyl oy ) ox( oy
Kinetic Energy k | v+v /oy faSt = fa
Dissipation 3 v+v, /o, fg155 —fe2
Dissipation Frequency | @ | v+v,/o, FrSE = fon
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The source term in some turbulence models includes the squared magnitude of the rotation tensor. For

conciseness, this magnitude is given the symbol QIZ, and is defined as

02 = Q(V)-Q(V)

(F.19)

All derivatives in the source terms must be converted from Cartesian coordinates to the transformed

coordinate system. These transformations are shown in this section.

1. Continuity

Applying the continuity equation definitions given in Table F.1 to Eq. (F.17) gives the continuity

equation in curvilinear coordinates

e [ _
o

(F.20)
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2. x-Momentum

Applying Egs. (F.10) and (F.11) to the x-momentum source terms gives
5 7 ov,
Sx =— la_p + i T % + i T _J
pOx oOx| Ox oy Ox

o,
B _% "o %{ 65} ’yan[ & _fJ

OV
:_‘]yn 1 617 +Jy”66§[r‘]yﬂaaV§J+J faa [fo ]

(F.21)

pOg o5

5 v v,
:—Jyﬂlzu%7 0 LA PRCE Fied
pog os\ o on\ 9§

3. y-Momentum

Applying Egs. (F.10) and (F.11) to the y-momentum source terms gives

v, 7

Sy:_ia_p+ 0 l"_y +i r‘an
p oy Oy Oy Ox oy
15 d ov, a( v,
=-1, +7 n, +So—|Tn,—
Y pon yan[ yan oc\ " on

7 0
=—Jx§i£+Jx§ 0 FJx,‘f—y +Jx 6 —
pon on on

(F.22)

4. Strain-Rate Tensor

The strain-rate tensor can be written for two-dimensional flow in Cartesian coordinates as

—\2 — \2 — \2

ov. ov.
V| | L + oV, —% 4 (F.23)
Ox oy oy  Ox

S2 =S(V)-S(V) = (

Applying Egs. (F.10) and (F.11) gives
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— 2 — \2 _ — \2
ov, oV,
- fxan oy, x| by Dy = (F.24)
t o0& Y on 2\ M on 7Y oé

5. Rotation Tensor

The rotation tensor can be written for two-dimensional flow in Cartesian coordinates as

— —\2
= = 1(oV, o,
Q; =Q(V)-Q(V) = E(a_xy -a—;] (F.25)

Applying Egs. (F.10) and (F.11) gives

— —\2
ool 6%%}

2\ ox Oy

o or. ?
e 2oy (F.26)
205 8 o

_ _\2
av.

Sy o= e

¢ on
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APPENDIX G

COORDINATE TRANSFORMATIONS IN CYLINDRICAL COORDINATES

I. Transformation Definitions

Complex geometries are often modeled using a body-fitted coordinate system known as curvilinear
coordinates. For axisymmetric flow in cylindrical coordinates, this coordinate system is created by
assuming that a computational domain (£,7) can be defined by a transformation of the physical domain

(z,r) where

z=2z(&,1)

G.1
r=r(g.m) @D

The coordinate transformation function must be continuous over the entire domain. The determinant of the
Jacobian transformation matrix, referred to here as simply the Jacobian and given the symbol J, is defined

as

A&, S: &,
g=2&m g, -Em. G2)
o(z,r) 1. 1,
The Jacobian can be evaluated from
Z z
J:L_lzl/a(z’r) | A — (G3)
J o(&,m) Fe Tal Zelp—Zple

by using second-order central differences in the computational domain. Using the chain rule, partial

derivatives can be expressed as

(G.4)

The metrics &, ., 17, and 77, can be evaluated by applying the relationship

-1
z z r —Z
é:z é:’ — . s1 =J 1 >7 (GS)
Nz M, Ye Ty e I
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This gives
s.=Jr,
gr =-Jz
’ 5 (G.6)
n.=-Jre
77,r = JZ,f

Therefore, partial derivatives of any continuously differentiable scalar, ¢, in the physical domain can be

written as partial derivatives in the computational domain according to

0

8_5 = ¢,z = J(?:,7¢’§ B r’§¢”7)

- (G.7)
E = ¢,r = J(Z,§¢J7 - 2’77¢’§)

In this work, the grids are confined to orthogonal, rectilinear grids. Therefore, z = z(£), » = r(7), and

&, =n_,=0.Equations (G.2) and (G.3) simplify to

aémn |6 0
gAem e g (G8)
ozr)y |0 7n,
z 0
J:lel/a(z’r)=1 © 1 (G.9)
J” a&.m 0 7y zery
Partial derivatives can be expressed as
0 0
E = é:,z %
(G.10)
o_, 0
o on
where
,=Jr
b= (G.11)
n,=Jz¢

In this work, the contravariant velocity components are defined as

(G.12)

NIV
ll Ml
N N\
PR
SN
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II. Scalar Transport Coordinate Transformations

A. General Scalar Transport

The general steady-state scalar transport equation is written in vector form as
(V-V)p=V-TVg)+S (G.13)
where I" is the diffusion coefficient and S represents the source terms. The steady-state transport equation

for any scalar, ¢, can be written in cylindrical coordinates as

17,%+E%+172%:li 01, L0 (L1 00) 000, g (G.14)
or r 06 0z ror or) rod\r 00) 0z\ 0z
For axisymmetric flow, ¥, = 0, and Eq. (G.14) reduces to
y o,y 00 _10(p00), 000, ¢ (G.15)
"or oz ror or) oz\ oz
Applying Eq. (G.10) to Eq. (G.15) gives
V77, o V§ o -1 ri T o9 +&,—|T¢, 6¢ (G.106)
on ¢ v oy on 35 05
Applying Eq. (G.11) gives
VJZ§%+VJ776¢=1JZ¢£ rFJzéﬁ +Jr, — 0 FJ,78¢ +S (G.17)
on o r T any = on 0¢ &

Simplifying gives the two-dimensional steady-state transport equation in the transformed coordinate system

v, — 00 Vga‘é 21 a[ J%] r (FJ(MJ = (G.18)
Ton o rom on ¢ oc) J

Note that the left-hand side of Eq. (G.13) can be written according to the identity

(V-V)g=V-(V)-¢(V-V) (G.13)

Applying continuity to this expression gives an alternate form for the right-hand side of Eq. (G.13)

1a(rV¢) 10(Vg9) , 0(V-9) ¢18(VV) ¢15V9 ¢@ (G.13)

v (¢V) o V) or r 00 0z r or 06 0z

Assuming axisymmetric flow
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Using the chain rule for the first two terms on the left-hand side gives

1 a(rV) o) 1 o QAN

+I7%—¢—

v (¢V) - V) ¢ P Oz +rVr78r ? 0z r or ¢6_zz
Simplifying gives
V) -7 V) =7, S 7 22
Oz

B. Source Terms

1. Continuity

The continuity equation can be written in cylindrical coordinates as

1o(rV,) 10V, oV,
r or r 080 oz

=0
For axisymmetric flow, this reduces to

RuAN.A
r or Oz

=0

Applying Egs. (G.10), (G.11), and (G.12) gives

a(rV)
on fz (5

1
r
1. 807, o,
"

Jz, +Jr

lJ a(Z,frl/r)_i_'-] (r,r] z) _
F " on o8

5 — —
Loy o7
PP FEAPY

=0

2. Momentum
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(G.13)

(G.13)

(G.13)

(G.19)

(G.20)

(G.21)

The steady-state RANS equation is a vector equation and can be written in cylindrical coordinates as
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+ inli(l/-i- v, )[r2 oWs/r) r) + %H (G.22)
r* 0 r

S A R s
oz or 0z r? 00

7y Vydly Wy Wy 13 10 l:(V+Vt)r[l ov, +r8(V9/r)H

"or r 00 7 oz r p ol ror r 06 or
10 1oV, V.
f——|2(v+v,) —L+-— G.23
rae[ v Vt)[r 20 rj:l (G.23)
L0 +v) 16VZ+6V9 L) %+r26(Vg/r)
0z r 06 Oz r2 06 or

ZaL_FQ%-’-Z%:_i@-FLE (V+Vt)}" aVV +%
or r 06 oz p oz ror oz or

+li|:(v ,)[an 1 @ﬂ +i[2(v+ v, )[8172 ﬂ
r 06 0z o0 oz Oz

For axisymmetric flow, these equations reduce to only two equations

7 g el P L0y ey O iy e || 20V (7) 05
r z por ror or 0z or 0Oz 2
I7r 6VZ +I7z aVZ :_l@+li (V+ v, )r aVr aVZ +i 2(V+ Vt) % (G26)
or 0z p Oz ror 0z  Or 0z 0z
These can be written in the form of Eq. (G.15) to yield
7, 0 7, e Ly P Ly D s, (G27)
or oz ror or oz 0z
v, V., V. ¥ 10 v+v)r—= P\ 2 v+v)— o +5, (G.28)
or 0z ror or 62 0z
where
1p 10 ov, | o 2v+v) (7
S =——E  ~ v+ —|(v+vV, —FW
" p or r8r|:(v i 61’} oz {( t) } 2 (r)
] - (G.29)
Szz—laﬁ-l-li (v+v, o, 3 (V+Vt)aVZ
p Oz ror oz 82 oz
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Applying Egs. (G.10) and (G.11) to the momentum source terms gives

Srz—lJz‘,;@+lJz§i (V+V,)rJz§aL +Jr,7i (v+v,)Jz§aVZ ——2(‘/2‘/’)([2)
p Con r °on > on " oE = on r
=—Jz§ia—p+lJz§ 2 P Jr, 9 (v+v,)77,aV —2(”2‘/’)(17,) (G.30)
T pon r Con on To& on r
=—Jz§la—p+lJ22§i v+v, Ve lesl v+, t) —2(1/4;1/,)(12)
T pon r "oy on o& on r

S :—iJr a—p+lJZ§i v+vordr, —- v, +Jr, 9 (v+v,
; ol " og Tog 6

gy L] 2
= J”p6§+rj |:(V+Vt 5} Jry aé{(V Vi } (G.31)
=—J i@JrlJ 0 v+v, o, T (v+v,)JaV

"poE r on o T os og

3. Strain-Rate Tensor

The squared magnitude of the strain-rate tensor is given the symbol S,% and is defined as

52 =S(V)-S(V) (G.32)

The squared magnitude of the strain-rate tensor can be written in cylindrical coordinates as

—\2 —_ —\2
52 = v\ (Lo V) v,
or r o r 62
) , , (G.33)
1( a(,/r) 107, 1(1oV, oV, 1(ov, oV,
+—|r—+—r| = ——=3+—"| +=| L+
2 or r 060 r 060 0z 0z or

For axisymmetric flow, this can be written as
ANIANCARICATA)
Rr el L B L B /AN (G34)
or r oz 2\ 0z  or
Applying Egs. (G.10) and (G.11) gives
ANANPE AN ANA
N e R e R R R e
T on r o0& 2\ 08 7 On

—\2 =2 —\2 — —\2
=|Jz; o, + A +| Jr, o, +l Jr,]al+ng o, (G.35)
7 on o& 20 "o = on

~N
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APPENDIX H

FINITE-VOLUME DISCRETIZATION

I. Domain Discretization

We wish to solve transport equations written in the computational coordinate system using the finite-
volume method. This method requires the domain to be discretized into a finite number of control volumes
which will be referred to as cells. These cells may vary in size in the physical domain, but the reader is
reminded that the definition of the coordinate transformation requires the transformation function to be
continuous. In order to facilitate the second-order central difference scheme, uniform cell spacing in the
computational domain is chosen. Because the cell size is arbitrary, for simplicity it is set to AS = A =1.0.
Each cell has a node P placed at the cell center in the computational domain at which the values of the
dependent variables will be evaluated. Additionally, each cell has a north, south, east, and west faces
denoted by points #n, s, e, and w. Neighboring cell centers are denoted here as nodes N, S, E, and W
respectively. Figures H.1 and H.2 show the relationship between the physical domain and computational
domain as well as the cell nomenclature. Figures H.3 and H.4 show the physical and computational
domains of an arbitrary rectilinear domain with logarithmic grid spacing. The points in the figure represent
the cell nodes and are centered in the computational domain. Note that the centers of the cells in the
computational domain do not correspond to centers of the cells in the physical domain.

Nodes are also placed along the boundaries of the domain at which boundary conditions are applied.
The boundary nodes can be thought of as cells with a cell center directly on the boundary and a cell area of
zero. Therefore, for cells adjacent to a boundary, the value at the boundary node is equal to the value at the
face of the cell. For example, for a cell adjacent to the north boundary, ¢y = ¢,. Thus the nomenclature N

and » can be used interchangeably for a cell adjacent to the north boundary.
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Fig. H.1 Physical domain discretization and nomenclature.
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Fig. H.2 Computational domain discretization and nomenclature.
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Fig. H.3 Physical domain of an example rectilinear grid with logarithmic spacing.
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Fig. H.4 Computational domain of an example rectilinear grid with logarithmic spacing.
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II. Discretization Schemes

A. Differencing

The Taylor series expansion for a function, ¢(y) about a point y for the value at y+ Ay can be written

¢(y+Ay)=¢(y>+(%J w| 2) B2, iﬁ’] L (H.1)
oy y oy y 2 oy ) 6

This equation can be written in several discrete forms in order to yield useful approximations for values and

derivatives near a point. Writing an equation for the Taylor series expansion at points a and b about point j

gives
- _ o 0’| Ava [ Ava
¢a _¢(yj +Aya)_¢j (ayJ Ay +[6y2 j/ 2 (ay )] 6 +O(Aya)+ (Hz)
iy _ 4 .| 09 0| Ay () Ay
¢b - ¢(y/ + Ayb) ¢j (ay j] Ay + [6)}2 Jj ) [6)} jj 6 + O(A Vi ) +- (HS)

Subtracting the product of Eq. (H.3) and Ay, from the product of Eq. (H.2) and Ay, gives

Ay, Av? — Ay, Ay?
B Ay — By, = &, (A, — Ay,,)+(6y¢J (Ayphye - . Yo%) | oap*) + - (H4)
J
Solving for ¢; gives
g = als — Ay, [O6] (Anpdyva—Bya9i) (ES)
T (A Ay Loy 2(Avy = Av,)

Because the second term on the right-hand side of Eq. (H.5) is of order Ayz, dropping it yields the second-

order approximation for the value at a point.

_:¢aAyb_¢bAya H.6
?) Ay, —Ay,) (10

This relationship is called linear interpolation if the point j lies between points a and b. Otherwise it is
called linear extrapolation.

Subtracting the product of Eq. (H.3) and Ayi from the product of Eq. (H.2) and Ay}f gives
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0 D9 ANV - Ay}
B.AV; — B AVZ = ¢,(Avs —Ay§)+(—¢j (Av; Ay, — AviAy,) + —f Poa " ab 4. (1)
), ), 6
Solving for the first derivative at j gives
(%] _ 4 —hAva — 4, (Ayy — Ay) _[ﬂj A& =YY oay e (HS)
), (A Ay, = Avap,) v’ ), 6(Av; Ay, — Avadwy)

Because the second term on the right-hand side of Eq. (H.5) is of order Ay?, dropping it yields the second-

order approximation for the first derivative at a point

(H.9)

( @j A — AL — ¢, (A —AVD)
%» J (AyifAYa_AygA)’b)

In order to develop a second-order approximation for the second derivative at point j, an additional

equation must be added to Egs. (H.2) and (H.3) for the Taylor series expansion at point ¢

_ 4402 Po| ai [O0) A optyy
¢C_¢(y_1+Ayc)_¢]+(ayj]Ayc+[6y2Jl 2 +[6y3jj 6 +O(Ayc)+ (HIO)

After a considerable amount of algebra, Eqs. (H.2) (H.3) and (H.10) can be used to give the following

second-order approximation for the second derivative at a point

(ﬁ} _ 2, A+ AV 2(Avy +Ay,) y

217 Ay AVA T Ay (Ay, — Ay YAy, —Ay )

ay J ya yb yc ya( ya yb)( yc ya) (H]])
2(Ayc+Aya) + 2(Aya+Ayb) ¢C+O(Ay2)+"'

b

Ay (Ayp = Ay XAy, = Ayp) Ay (Ayy = Ay Ay, — Ay,)

The applications of the differencing approximations presented above will be discussed in detail in the
following section for the case of one-dimensional approximations. The two-dimensional approximations

are straight-forward and are included in the following section with less detail.

1. Cell Centers
In the notation implemented here, discrete values are used to represent an internal point, P, and its
north (N) and south (S) neighboring points on a uniform grid with spacing equal to Az . Using this notation,

the equations from the previous section can be used with the uniform grid definitions Ay, =-Ar7,
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Ay, =An, ¢; =¢p, ¢, = @5, and ¢, = §. Using these definitions in Egs. (H.6), (H.9), and (H.11) gives the

second-order central difference approximations at an internal node P

g =22 (H12)
% — ¢N _¢S (H 13)
on), 2An )
0 -2
ERE

For a cell adjacent to a boundary, the uniform grid definitions cannot be applied. Instead we define the
points such that ¢, is the value at the wall, ¢, is the value at the center of the first cell, ¢, is the value at the
center of the second cell, and ¢ is the value at the center of the third cell. The near-wall definitions can be
applied ¢, = ¢y, ¢, = ¢y, ¢ = ¢, and ¢, = ¢; with grid spacing Ay, = —An/2, Ay, =An, and Ay, = 2A7.
Using these near-wall definitions in Egs. (H.6), (H.9), and (H.11) gives the second-order forward difference

approximations for a cell adjacent to a boundary

é :—2¢03+ % (H.15)

% :_4¢0+3¢1+¢2 (H 16)
on ), 3An '

0’9 | _ 484y — 754 +30¢, —3¢ H1T)
on’ ), 15A7? '

2. Cell Faces

Consider an internal face, », which is the north face of cell P and the south face of cell N. With
uniform grid spacing equal to Az, point n is the midpoint of nodes N and P. Using this notation, the
equations from the previous section can be used with the uniform grid definitions Ay, =-An/2,
Ay, =An/2, $; =@, $, = ¢p, and ¢, = ¢ Using these definitions in Egs. (H.6), (H.9), and (H.11) gives

the second-order central difference approximations for an internal face
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g, - Bt (H.18)
% — ¢N _¢P (H 19)
on ), An )
O’p | _4gy —84,+44p
(8772 l = A?]z (H.20)

Boundary faces must be treated differently. Consider a cell adjacent to a boundary. Here we define the
points such that @, is the value at the wall, ¢, is the value at the center of the first cell, ¢, is the value at the
center of the second cell, and ¢ is the value at the center of the third cell. The near-wall definitions can be
applied ¢, =dy, 4, =¢, ¢, =¢, and ¢.=¢; with grid spacing Ay, =An/2, Ay, =3An/2, and
Ay, =5An/2. Using these near-wall definitions in Egs. (H.6), (H.9), and (H.11) gives the second-order
forward difference approximations for a boundary face where the transport property, @, is known at cell

centers

gy =9 (H.21)
2
0P| _ 8+ ¢, (H.22)
on ), 3An |
0’9 | _ 724, —1204, +60¢, 124, (H.23)
on’ ), 15A7? |

In the case where ¢ is known at the cell faces on a uniform grid and not at the cell centers (as may be
the case with estimating the Jacobian), the near-wall definitions can be applied ¢, = ¢, 4, = ¢, ¢, = ¢,,
and ¢, = ¢, with grid spacing Ay, = An, Ay, =2An, and Ay, =3An. Using these near-wall definitions in
Egs. (H.6), (H.9), and (H.11) gives the second-order forward difference approximations for a boundary face

where the transport property, @, is known at cell faces

b =26-9 (H.24)

% :_3¢0+4¢1_¢2 (H 25)
on ), 2An )
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( 62¢] _ 2¢) =54 +44, — ¢ (H.26)
0

8772 A?]z

B. Integration
The integral of a Taylor series expansion for a function, ¢(y) about a point j from the point y, to y,

can be written

2 gl (ag) 3¢) 0y () 0-y)

Integrating Eq. (H.12) gives

2 A2
[ 90y = 4, —Aya>+(g_fJ i)
2 3 3 / 3 4 4 (HZS)
+ 8_? M+ ¢ M+O(Ay5)+...
o J 6 8y3 ; 24

Global error for integration is one order less than local truncation error. Therefore, for uniform grid
spacing, only the first term on the right-hand side of the Eq. (H.28) must be retained for second-order
accuracy. For a cell of size An with the value specified at the midpoint, P, the integral over the cell volume
can be evaluated by applying the definitions ¢, =¢p, Ay, =An/2, and Ay, =-An/2. Using these

definitions in Eq. (H.28) gives the second-order midpoint rule for an integral over a cell

n/2
d(n)dn = gpAn (H.29)
An/2

C. Approximations in Two Dimensions

1. Cell Centers

Applying Eq. (H.13) at a node, P, that is not adjacent to a boundary gives
oc ). 2AZ

AN
on ), 2An

(@] b~
P (H.30)



For a cell adjacent to the north boundary, applying Eq. (H.16) gives

9\ _4dy —3dp —ds
on )p 3An

For a cell adjacent to the south boundary, applying Eq. (H.16) gives

0P| _ =445 +3¢p + 4y
on ), 3An

For a cell adjacent to the east boundary, applying Eq. (H.16) gives

A
o), 3AE

For a cell adjacent to the west boundary, applying Eq. (H.16) gives

@J _ 48y +30p+ 4
¢ ), 3AE

2. Cell Faces

Applying Eq. (H.18) at a node, P, that is not adjacent to a boundary gives

g, - Bt
g -t

For a cell adjacent to the north boundary, applying Eq. (H.21) gives

3000y

2

For a cell adjacent to the south boundary, applying Eq. (H.21) gives

j by

2

For a cell adjacent to the east boundary, applying Eq. (H.21) gives

g~ o

2
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(H.31)

(H.32)

(H.33)

(H.34)

(H.35)

(H.36)

(H.37)

(H.38)
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For a cell adjacent to the west boundary, applying Eq. (H.21) gives

Applying Eq. (H.19) at a node, P, that is not adjacent to a boundary gives

0P| _Iv—¢p
on), An
9 j o5
0 A
75 7 (H.40)
09| _dp—¢p
), A
AR
o¢ ), A&
For a cell adjacent to the north boundary, applying Eq. (H.22) gives
% — 8¢N _9¢P+¢S (H41)
on ), 3An
For a cell adjacent to the south boundary, applying Eq. (H.22) gives
% __ 8¢S + 9¢P _ ¢N (H42)
on ), 3An
For a cell adjacent to the east boundary, applying Eq. (H.22) gives
% — 8¢E — 9¢P + ¢W (H.43)
05 ), 3A¢E
For a cell adjacent to the west boundary, applying Eq. (H.22) gives
% — _8¢W +9¢P _¢E (H44)
o), 3AE

Values at cell corners are simply the average of all neighboring cells. Therefore, cross-derivative terms are

calculated for cell faces not on or adjacent to a boundary by applying Eq. (H.13)



For a cell faces on or adjacent to the north boundary, Eqs. (H.13) and (H.16) give

09| _ Pne —bww

&, 2AE

0P| _ 4oy +Pyp) =3(Pp + 8r) = (bs + bsi)
on|, 6An

0P| _ APy +vw) =3(Bp + ) — (&5 + s )
on|, 6AnR

For a cell faces on or adjacent to the south boundary, Egs. (H.13) and (H.16) give

09| _ Psp —bsw

28| = 2ne

0P| _ =MPs +&sp) +3(dp + Pp) + By + Onip)
on|, 6An

0P| _ —4Ps + bsw) +3(Pp + b)) + (D + bvw)
on|, 6AnR

For a cell faces on or adjacent to the east boundary, Eqs. (H.13) and (H.16) give

99|

6776

op
o¢|,
op
o¢|,

For a cell faces on or adjacent to the west boundary, Egs. (H.13) and (H.16) give

el
g,
o
&),
99
6776

o

on|,

_ Pne —Pw + P — by

4AE

_ P —Psw + P~y
4NE

_ Pve —Pse + v — s
4An

_ Pvw —Psw + Py —¥s

4An

_ e —Pse
2An

_ AP + i) =3P + Py) — (D + Iaw)

6An

_ AP+ bsp) = 3(8p + &5) — By + bsw)

6An
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(H.45)

(H.46)

(H.47)

(H.48)



09 _ Dvw — bsw
on|, 2An

o9 _ — 4Py + Ovw) +3(Pp + Iy ) + (P + i)

05|, 6A7R

o9 _ — 4Py + Psw) +3(dp + P) + (P + dsi)

og|, 6An
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(H.49)

Corners of the grid require yet another treatment. At the north-east corner of the grid, Eq. (H.16) gives

4| _ Adng —3Pp — s
on|, 3An

09| _ Adng =30y —dyw
os|, 3An

At the north-west corner of the grid, Eq. (H.16) gives

39| _ 4w —3bw — b
on|, 3An
09| _ —4Pyw +3Py + Ine
05|, 3An

At the south-east corner of the grid, Eq. (H.16) gives
09| _ —4dsp +30r +Ini
on|, 3An
09| _ 445 —305 —don
0s|, 3An

At the south-west corner of the grid, Eq. (H.16) gives

09| _ —Adsw + 3w +dvw
on|, 3An

09| _ = 45w + 305 + s
05|, 3An

3. Integration

In two dimensions Eq. (H.29) becomes

/2 g2
[ [ wemdedn=gunenn
An/2 &-AE/2

(H.50)

(H.51)

(H.52)

(H.53)

(H.54)
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APPENDIX I

THE FINITE-VOLUME METHOD IN CARTESIAN COORDINATES

I. General Scalar Transport

The transport equation for any scalar, ¢, can be written in curvilinear coordinates as

6(V;¢)+0(Vn¢) 2 0 (r 6¢J 5@ [r 5¢] = (1.1)
n

I T T on
The finite volume method is used in this work to solve the governing equations. This method is applied by

integrating about a rectangular control volume in the £ and 7 directions

n/2 @M&2 0(V§¢) 5(V¢) , 0 o9 2i a¢ s
fn/Zfé/Z{ o2& on y”ag(”agj”’f 677[ aﬂ} }dfd’? (12)

This gives

AE+S (1.3)

A

A?]+x2§(FJ%j
i) 877

w

<E¢ﬁAn+«E¢ﬂAé=y3@Ug§J

where

fn/z f§/2 [ jd (1.4)
Anf2 &-Ag)2 '
The convection terms can be rewritten by defining the average volume flux terms on each face of the

control volume

ti, =V, Ay
m,, EZ&,AU
- (1.5)
m, = Y, A&
=V, A&

Using these definitions for the volume flux and applying the second-order central differencing scheme to
the diffusion terms gives the discretized form of the governing equation for any cell, P, not adjacent to

a boundary
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m,@, — m,@,, + m,d, —mp, = (y,z,,){l"eJe .¢EA_§¢P r,J, ¢PA§¢W } n

(1.6)
i (ng)P|:ran v —9p _ I.J, M}Af +S
’ An An
The convection terms are calculated using deferred correction.
me¢e_mw¢w+mn¢n_ms¢s :FL +ﬂ(F13 _Ff) (17)

The subscripts H and L stand for higher- and lower-order approximations and f is the blending factor.
Several higher- and lower-order approximations could be used in this formulation. In this work, first-order
upwinding has been implemented for the lower-order approximation, and second-order upwinding has been
implemented for the higher-order approximation. The first-order upwinding approximation is calculated by

retaining only the first term in the Taylor Series expansion about the upwind cell center

F, = max[m,,0]l¢p — max[-71,,0]4;
+ max[-m,,,0]¢p — max[m,,,0]dy (1.8)

+ max[n1,,0]¢p — max[—m,,0]@y

+ maX[_ms 70]¢P - maX[l’hs 70]¢S
The second-order upwinding approximation is calculated by retaining the first two terms in a Taylor Series

expansion about the upwind cell center to approximate the value at the face

. A ) A
Fy = max[me,O][@) + % . 75} - max[—me,O][¢E - % . %J
+ max[—mw,O](m) "o Aj j max [, ,0](¢W 6§ A ]
P
(1.9)
+ max[#1,,0] [(bp 2$ 5 J max[— [¢N —% %J
P N
+max([-, ,0](¢p Zi AZ”] max][ ,O][¢S + % %J
P N

The values in Eq. (I1.9) contain derivatives estimated at cell centers. These are calculated according to the
methods presented in Appendix H. The terms in the parentheses of Eq. (I.7) are calculated from the

previous iteration as denoted by the superscript o and can be included as source terms.

S.=BFy — 1) (1.10)
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Using Egs. (I.7) — (1.10) in Eq. (1.6) gives

Apdp = Apdp + Ay Py + Aydy + Asps = S, + S (L11)

where

. A
AE = max[_me 90] + (y,zq )P _nFeJe

A
A, =max[in, 0]+ (v2), 21 g
w wo n/P Af wY w
Ay = max[—71,,,0]+ (x7) Pi—fran (1.12)
n

) A
Ag =max[m,,0]+ (xzé)P—él“SJS
> AT]
Ap = Ap + Ay + Ay + Ag

Solving Eq. (I.11) for ¢, gives

Pp = AL(AE¢E + Aty + Aydy + Asps — S, + S) (L13)
p

Note that in the convection terms, the ¢, coefficients have been modified according to the equality

(max[m,,0]+ max[-m,,,0] + max[m1,,0] + max[—#1,,0])@p
= (max[—m,,0] + max[m,,,0]+ max[—-m,,,0] + max[r,,0])@p (1.14)

+(m, —m,, +m, —m,)@p
in order to facilitate the summation in Eq. (I.12). The second-half of the right-hand side of Eq. (I1.14)
contains the continuity equation and is equal to zero for incompressible flows. Applying an under-

relaxation variable, &, and the previous solution, ¢p, gives an under-relaxation form of Eq. (1.13),

dp = (- +A1<AE¢E + Ay dy + Ayy + Asds —S. +5) (L15)
P

I1. Boundary Condition Implementation

Two types of boundary conditions can be applied. A Dirichlet boundary condition exists when the
value of the transport property is known at the boundary. A Neumann boundary condition exists when the
gradient of the transport property is known at the boundary. The implementation of each of these conditions

will be discussed here.
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A. The Dirichlet Boundary Condition
For a cell adjacent to a boundary at which a Dirichlet boundary condition should be applied, the
discretization method presented above is used, but the second-order differencing scheme for the boundary
is employed. For example, using the approximation given in Eq. (H.42), the discretized form of Eq. (1.3)

for a cell adjacent to the south boundary is
me¢e - mw¢w + mn¢n - ms¢s = (y,277 )P|:Fe‘] ¢EA§¢P I_‘w']w %}AU

+(x2§){rnjn ¢NA_¢P ~TJ, — 8¢ ;z(ép ¢y }A§+SA'
| n n

(1.16)

where ¢ is the value of the transport property at the south wall. Using the same methods as presented

above for the convection terms, Eq. (I.16) can be rewritten to match Eq. (I.11) where

Ap = max[-m,,0]+ (J’,ZU)PF J A1

ev e Af
. A
Ay =max[sin, 01+ (v2), T, WAZ
A
Ay =max[—ni, 0]+ (x%) p —= J Fan+—FSJSj 1.17)
An 3
. A& 8
Ag =max[r 0]+ (x) p A_ngrsJS

Ap =Ap + Ay + Ay + Ag

Likewise, for a cell adjacent to the north boundary,

4y = max[—ri, 0]+ (v2) T, 2L

e €A§

Ay =ma 0]+ wl

w = X[mw ] (y )P Aé

Ay =max[- mn,0]+(x§)P A¢ 8FJ (I.18)
An 3

Ag = max[m, 0]+ (x%) 1 r.J, +lran
’S An 3
Ap = A + Ay + Ay + Ay

For a cell adjacent to the east boundary,



. A
Ay = max[—ir, 0] + (yfﬂ)PA—”§r J

§&3°°

. An
Ay =max[m,, 01+ (y*)p—=| T, J,, +=T,J,
w [ w ] (y,q)P Af[ 3

Ay = max[rin, 0]+ (%), i—im

. A
Ag =max[r,0]+(x) p A_ir“'J

N

Ap =Ap + Ay + Ay + 4

For a cell adjacent to the west boundary
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)

(1.19)

. An 1
A, =max[-m,, 0]+ (y2)p—| T,J, +—TJ
E [ e ] (y,)y)P Ag( e’e 3 w Wj

. An 8
Ay =max[m,, 0]+ (y>)p—=—T,J,,
w [ w ] (y,q)P Aé 3
Ay = max[—ri, O]+ () p 2T,
Y
. A
Ag =max[ri,, 0]+ (x%)p A—irSJS

Ap=Ap+ Ay + Ay + A

B. The Neumann Boundary Condition

(1.20)

For a cell adjacent to a boundary at which a Neumann boundary condition should be applied, the

discretization method presented above is used, but the gradient along the boundary is directly applied. For

example, if a Neumann condition is known at the south boundary, the discretized form of Eq. (I.3) for a cell

adjacent to the south boundary is

+(x2§){rn.1,, I =tr g
: A L

(1.21)

% A
[%MA&LS

A common Neumann boundary condition is the zero gradient boundary condition, for example, at a

symmetry boundary. For a zero gradient boundary condition on the south boundary,
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FeJeM_FWJWM}AU
A A

+(x% )P{ran % - O}Azj +S

Mm@, = m@,, +m,d, —mp = (y,zzy)P|:
(1.22)

Using the same methods as presented above for the convection terms, Eq. (I.22) can be rewritten to match

Eq. (I.11) where

AE = max[_meso] + (y,zr])P ﬂr J

Ag e e
. 2\ Any
AW = max[mw,O] + (y 77)P _rw‘]w
E} Af
. A
Ay =max[-ni,,0]+ (x%)p A—iran (1.23)
Ag = max[m,,0]
Ap = Ay + Ay + Ay + Ag
Likewise, for a cell adjacent to the north boundary,
. An
Ay = max[—r,,0]+(y%) p —=T,J
E [ e ] (y,;y)PAé: e’e
A, =max[i, 0]+ (2 ), 21T g
w wo n/P Aé wY w
Ay =max[—i, 0] (1.24)

: A
Ag =max[ri1 0]+ (x)p —erJS
£ AT]
Ap = Ap + Ay + Ay + Ag

For a cell adjacent to the east boundary,

Ap = max[-m,,0]
. A
Ay =max[m,,,0]+ (y,2,7 )p A_gFWJW

Ay =max[-r, 0]+ (x%) i—jr”J” (1.25)

. A
Ag =max[rm, 0]+ (x3)p A—irSJs

Ap=Ap + Ay + Ay + 4

For a cell adjacent to the west boundary,



351
. 2, A7y
AE = max[—me,O] + (y,U)P A—(EreJe

Ay = max[m,,,0]

w2

Ay = max[—1, 0]+ (x) A r,J

a (1.26)

n

. 2. A&
AS = max[ms aO] + (x,g)P _rst
An
Ap = Ay + Ay + Ay + Ag
Another common Neumann boundary condition is the constant gradient boundary condition where the
gradient of the transport property normal to the boundary is assumed constant over the cell. This condition
is sometimes used at a pressure boundary. For a constant gradient boundary condition on the north

boundary of the domain, the gradient on the north face of each cell along the boundary is equal to the

gradient on the south face of the cell.

99| _ 99

|,
" g (1.27)

P B )
on ), on ),
This can be applied to give the discretized form of Eq. (I.3) for a cell adjacent to a north boundary
me¢e - mw¢w + mn¢n - ms¢s = (y,zr] )P|:F8Je % - l—‘w‘]w %}A?]

(1.28)

+<x,%>{(r,, T, %}A&ﬁ

Using the same methods as presented above for the convection terms, Eq. (I.28) can be rewritten to match

Eq. (I.11) where

Ap = max[-m,,0]+ (y,f] )p i_gre‘]e
. 2, An
Ay =max[m,,,0]+(y))p A_.frWJW
Ay = max[-m,,,0] (1.29)
Ag = max[rm, 0]+ (xé)PA—f(FS -7
El A’]
Ap = Ag + Ay + Ay + Ag

For a cell adjacent to a south boundary with a constant gradient boundary condition,
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. A
AE = max[_me 90] + (y,277 )P _UFeJe

A
Ay =maxpin, 0]+ (v2), 2L,
UV
Ay = max[—71,, 0]+ (x) p i—i(rn -T,)J, (1.31)

Ag = max[m,,0]

Ap = Ay + Ay + Ay + Ag
For a cell adjacent to an east constant gradient boundary,

Ap = max[-m,,0]

. A
Ay = max[ri, .01+ (1) A_Z(FW ~T)J,

Ay = max[—71,,0]+ (x) p i—iran (1.32)

. A
Ag = max[ri 0]+ (x7) p A—irst
Ap = Ay + Ay + Ay + Ag

For a cell adjacent to a west constant gradient boundary,

. A
Ag = max[—ri, 01+ (v2) A—g(re ~T,)J,
Ay = max[m,,,0]

(1.33)

n“n

Ay = max[—r,,0]+ (xig)PA—‘fr J
E} A’]

AT7 sTSs

Ap = Ay + Ay + Ay + Ag

AS = max[ms 50] + (x,zgf)P

C. Velocity Inlet
At a velocity inlet, the properties of the flow must be known. Therefore, a velocity inlet boundary

condition is modeled using Dirichlet boundary conditions on all transport properties of the flow.

D. Outlet
At an outlet, the flow is assumed to be in a fully developed state. In other words, it is assumed that
there are no gradients in the flow normal to the boundary at an outlet. Therefore, all flow properties are

modeled using Neumann boundary conditions where the gradient normal to the boundary is equal to zero.
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E. Smooth, No-Slip Wall

At a smooth wall, the velocity and turbulent velocity fluctuations must go to zero. Therefore, at a wall,

the Dirichlet boundary conditions
Ve=V,=0 (1.34)
are applied for the x- and y-momentum transport equations.

Smooth-wall boundary conditions for the turbulent kinetic energy require that both & and its first
derivative go to zero at the wall. Therefore, the value of k at a cell adjacent to a wall boundary is specified
simply from the value of & at the second cell off of the wall. If k, is the value of k at the wall, k, is the value
of k at the first cell off of the wall, and k, is the value of & at the second cell off of the wall, Eq. (H.22) can
be applied to develop the following two relationships which must be enforced to correctly model the no-

slip boundary condition

k():o
—8ky + 9k —ky =0

(1.35)

A Dirichlet boundary condition is often applied for the second transport equation at a wall. However, it

is incorrect to refer to the value of the second transport property (e, w, {, @, etc.) at a wall as a boundary
condition. Because of the order of the system of equations and because two boundary conditions are
applied to the turbulent kinetic energy, £, it is mathematically incorrect to apply a boundary condition to the
second transport property at a wall. However, examining the model equations often gives a near-wall
approximation for the second transport property. This near-wall function is dependent on the model and is

applied in the same way a Dirichlet boundary condition is applied. In this work the value of ¢ at a wall will

be given the symbol f,, and the value of w at a wall will be given the symbol f,.

F. Symmetry
A symmetry boundary conditions assumes that gradients in the flow normal to the boundary are zero,
and that no mass crosses the boundary. Because the x- and y-momentum equations combine to form a

vector equation, the process for implementing a symmetry boundary condition includes both a Neumann
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condition and a Dirichlet condition. For example, at a line of symmetry on the north or south boundary, the

boundary conditions are

Neumann vy =0
dn (136)
Dirichlet 7, =0

At a line of symmetry on the east or west boundary, the boundary conditions are

Neumann —Z =0
dn (1.37)
Dirichlet 7, =0

For any other transport property, a Neumann condition is applied with the gradient normal to the boundary

equal to zero.

G. Pressure

Generally, a pressure boundary condition is used to represent a boundary across which the pressure is
known, and across which the flow is allowed to enter or exit. In this work, it was helpful to specify two
different types of pressure boundary conditions. A pressure inlet is a constant-pressure boundary across
which flow is entering. A pressure outlet is a constant-pressure boundary across which flow is exiting. This
differentiation between the two types of pressure boundary conditions helped to simplify the
implementation of a pressure boundary condition.

At a pressure inlet, the properties of the flow must be known. In this work, it is assumed that at a
pressure inlet, the flow enters the domain normal to the boundary. Applying mass conservation, this
requires that the gradient of the normal velocity component must be zero at the boundary. For example, if
the north side of a domain is specified as a pressure inlet boundary, flow must enter the domain without any

x-velocity component. Continuity requires that

d7, = —ﬂ (1.38)
dx dy

Since it is assumed that the flow enters the domain in a uniform fashion along the boundary, this means that

the left-hand side of Eq. (I.38) must be zero. Therefore, the y-velocity component must have a zero gradient
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at the pressure boundary. This same procedure could be applied to any side of the flow domain to show that
the velocity normal to the boundary must have a zero gradient normal to the boundary across the inlet
pressure boundary if the flow enters normal to the boundary. Therefore, a pressure inlet boundary requires
that a Dirichlet condition be applied to one of the flow velocity components, while a Neumann condition of
zero gradient be applied to the other flow velocity component. All other transport properties must be
specified at a pressure inlet boundary, and a Dirichlet condition is applied for these transport properties.

A pressure outlet boundary is specified across a side of the domain where the pressure is known and it
is assumed that flow is exiting but the gradients of the flow properties are unknown. In this work, a
Neumann condition is applied at a pressure outlet and the gradient is assumed constant across the cell
adjacent to the boundary. Without knowing the exact solution to the flowfield, it is difficult to improve
upon this type of implementation of a pressure outlet. Some codes assume a constant gradient of the
properties, similar to how an outlet boundary condition is implemented here. However, such an
implementation assumes that the flow has reached a fully developed state, which is not realistic for many

outlet boundary scenarios.
II1. Transport Equations

A. Momentum

The x-momentum equation is a special case of Eq. (I.1) where ¢ = I7X and I' = v + v,. The y-momentum
equation is a special case of Eq. (I.1) where ¢ = I7y and I' =v +v,. The x- and y-momentum source terms
include pressure source terms and viscous source terms and can be written in the transformed coordinate

system as

5 7 v,
Sx:—Jy”l@+Jy2,7i(FJ GVXJ”ﬁ r—~
Tpog oS ¢ on\ o¢

_ (1.39)
SR i(r _y},i[m]

s\ an

Integrating about a rectangular control volume in the £ and 7 directions gives
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(1.40)
/2 é/2 7 V.
:[Anf _gla_p 2561_ y+6 v, dédn
An/2 &-A&/2 pon on on | o0&\ 0O
which can be approximated as
A 1~ e 2 617 ’
Se ==y, — () An+y ( J An+|T——| AS
" p a7+ 2 ). 5
(1.41)
S 1(L)nA§ 2 rJ(317 A§ (
=—x,.—(p +x —_— +
y sé:p \ S 677
and rearranged to give
; | [PESS v, v,
szy _(Pw_Pe)AUJFJ’, FJ{ J F J ( j A’]
"p [ % ). % ),
v, v,
+|T,| =2 | -T, Ag
o0& 65
! (1.42)

N L h—PoAg x| T Po) [P AE
=X £ — — + X —_ —
y ,fpps Py | P nYn 877 sYs P

n s

+|T, o, -T, o, An
an ), on ),

These derivatives are calculated according to the methods presented earlier in this appendix.

Once an estimate for the velocity field has been obtained, the shear stress along any grid boundary can

be estimated. For example, the shear stress can be written in the computational domain along the south

boundary as
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ov,
7, =| p(v+v,)—
Oy

0

ov.
=|p(v+vn, —’“} (1.43)
on 0

- o7
=l pv+v,)Jx
on 0

Applying Eq. (H.42) gives the discretized form

o L TS T, T >
w_p(V+Vt)s sx,fs 3A7] ( )

Likewise, along a north boundary the shear stress can be calculated as

7 = T, P 7 Vg 1.45
w_p(V+Vt)n nx,§” 3A7] ( . )

Along an east boundary the shear stress can be calculated as

8, =%, + V),
7, = pWV+V) Sy, 3AE (1.46)

Along a west boundary the shear stress can be calculated as

=8y, +9,, =y,
= PV V)T, — (147)

B. Turbulent Kinetic Energy
The turbulent kinetic energy equation is a special case of Eq. (I.1) where ¢ =k, I =v +v, /o, and

the source term is

Sk = faSP = fr (1.48)

Integrating about a rectangular control volume in the £ and 7 directions gives
§ 77/2 5/2 S
Fal e
77/2 Ag/2
n/2 g2 S; f
f f JuSr = fio &
An/2 &AE)2

(1.49)

Applying Eq. (H.29) gives
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C. Dissipation
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(1.50)

The dissipation equation is a special case of Eq. (I.1) where ¢ =¢, T =v+v,/o,, and the source

term is

Sa :f:r;ISl% _fEZ

Integrating about a rectangular control volume in the £ and 7 directions gives
§ 77/2 §/2 [ jdf
¢ n/z Agf2
n/2 A&f2 SaSy = Jie S?2
f f JeSy fks edn
An/2 &AE2
Applying Eq. (H.29) gives

= (fngV fgz) AfAn

D. Dissipation Frequency

The dissipation frequency equation is a special case of Eq. (I.1) where ¢ = 0, T =v +v, /o,

source term 1is

Sw :waSIg _wa

Integrating about a rectangular control volume in the & and 7 directions gives
§ - f7/2 5/2 ( jd'«f
. 77/2 A¢/2
/2 A2
fﬂ f fa)lSV fka) §d77
An/2 &-Ag/2
Applying Eq. (H.29) gives

AéAn

ﬁw:(fwlslg_fw2) 7

1.51)

(1.52)

(L53)

, and the

(1.54)

(1.55)

(L56)
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APPENDIXJ

FINITE-VOLUME METHOD IN CYLINDRICAL COORDINATES

I. General Scalar Transport
The transport equation for any scalar, ¢, can be written in curvilinear coordinates as

7,00, 700 20 (p 0], 210 (p,00).S (1)
oc  Ton Mo\ T o) T<ron on) J

The finite volume method is used in this work to solve the governing equations. This method is applied by

integrating about a rectangular control volume in the £ and 7 directions

n/2 (AS/2 % og 210 op). S
f”/z f 5/2{ 677 " o0& [FJ aéJ “r an( " anj+ }dfd’? (J.2)
This gives
— e _ " 6‘ e 6 A
V5(¢)|WA77+V77(¢)|3 Aé‘:;@%[TJ%)WAU_,_ Y ( mJ azlA§+S (J.3)
where

n/2 @ME2
f f J.4)
An/2 S-Ag/2
The convection terms can be rewritten by defining the average volume flux terms on each face of the
control volume

my = 17 AI]
T (1.5)

my, =V, A&

Using these definitions for the volume flux and applying the second-order central differencing scheme to

the diffusion terms gives the discretized form of the governing equation for any cell, P, not adjacent to

a boundary
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m§(¢e - ¢w) + mq (¢n - ¢s) = (r,?])P|:reJe %—FWJW %}An

2 J.6)
d 2] rg, e p g =05 agy s
r An An
P
The convection terms are calculated using deferred correction.
m§¢e_m§¢w+mn¢n_mn¢s :FL+ﬂ(F13 _FLO) (J7)

The subscripts H and L stand for higher- and lower-order approximations and S is the blending factor.
Several higher- and lower-order approximations could be used in this formulation. In this work, first-order
upwinding has been implemented for the lower-order approximation, and second-order upwinding has been
implemented for the higher-order approximation. The first-order upwinding approximation is calculated by

retaining only the first term in the Taylor Series expansion about the upwind cell center

F, = max[r; ,0]¢p — max[—7ir, 0],
+ max[—rir ,0]¢p — max[ri: 0y 18)
+ max([rir,,,0]¢p — max[—rr, 0lpy .

+ max[-m, ,0]¢p — max[m, ,0]¢s
The second-order upwinding approximation is calculated by retaining the first two terms in a Taylor Series

expansion about the upwind cell center to approximate the value at the face

Fy = max[m, ,O][(bp + g—? %J — max[-m; ,0][¢E - % ATgJ
P E

. op| A . ol A

+ max[—mé,O][¢P - % ; TgJ — max{n; ,O](¢W + a—g 5 75]
J.9)
+max[ri, ,O]{¢P + % ﬂj max[—r, ,0][¢N _ % Azn]
P N

. op| A . op| A

+ max[-m, ,O][¢P - % . TUJ — max[m, ,0][¢S + % . Tﬂ}

The values in Eq. (J.9) contain derivatives estimated at cell centers. These are calculated according to the
methods presented earlier in this appendix. The terms in the parentheses of Eq. (J.7) are calculated from the

previous iteration as denoted by the superscript o and can be included as source terms.

S, = B(Ff ~ F{) (1.10)



Using Egs. (J.7) — (J.10) in Eq. (J.6) gives

Apdp = Apdp + Ay Py + Aydy + Asps = S, + S

where

Solving Eq. (J.11) for ¢, gives

1 A
Pp = A_(AE¢E + Ay dy + APy + Agds =S, +S)
Note that in the convection terms, the ¢, coefficients have been modified according to the equality

(max[n;,0]+ max[-m,,0] + max[n,,0] + max[-m, ,0])@p

= (max[-m,0] + max[m,,0] + max[-m, 0] + max[m, ,0])¢p

Ay = max[—m-0]+ (r2), i—;’ue

Ay = maxing 0]+ (), 22T,

¢

2
z
Ay = max[i, 0] + (75] i—irnran
P

2
z
Ag = max[ri,),0] + [—‘fJ i—‘fr_,r J,
r

Ap = Ap + Ay + Ay + Ag

P
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J.11)

(J.12)

(J.13)

(J.14)

in order to facilitate the summation in Eq. (J.12). Applying an under-relaxation variable, «, and the

previous solution, @7, gives an under-relaxation form of Eq. (J.13),

¢p =(1-a)dp +A1(AE¢E + Ay by + Ayy + Asps = S, +§)

P

I1. Boundary Condition Implementation

(J.15)

Two types of boundary conditions can be applied. A Dirichlet boundary condition exists when the

value of the transport property is known at the boundary. A Neumann boundary condition exists when the

gradient of the transport property is known at the boundary. The implementation of each of these conditions

will be discussed here.
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A. The Dirichlet Boundary Condition
For a cell adjacent to a boundary at which a Dirichlet boundary condition should be applied, the
discretization method presented above is used, but the second-order differencing scheme for the boundary
is employed. For example, using the approximation given in Eq. (H.42), the discretized form of Eq. (J.3)

for a cell adjacent to the south boundary is

fhg (¢e B ¢W) + m’l (¢” - ¢S) = (7;,27 )P|:re‘]e % - rwa ¢PA_§¢W :|A77

X (J.16)
{_g] [mum M}A“
P

r An o 3An

where ¢ is the value of the transport property at the south wall. Using the same methods as presented

above for the convection terms, Eq. (J.16) can be rewritten to match Eq. (J.11) where

. A
Ay =max[—ri. 0]+ (r2) p 2L g
E & n/P eve

A&
Ay =maxlri 0]+ (), 20T
R/ Af wYw
. (zé] Aej( 1 ]
Ay =max[-m, 0]+| = | —|n,J, +—r[J J.17)
r An 3

2
z
Ag = max[ri, 0]+ | == A8
r An3° "
P
Ap = Ap + Ay + Ay + Ag

Likewise, for a cell adjacent to the north boundary,

Ay = max[—m- 0]+ (2)p 20T,

AS
A = . 2, A7
w =max[mgz 0]+ (r;,)p—1,J,,
o Af
2
z

Ay = max[—rir, 0]+ [—‘fJ A—"g§rnran (J.18)

r An3

2
Ac =maxpi 0]+ 25| A,y vl py
S n r A77 st sYs 3 n-nYn
P

Ap =Ap + Ay + Ay + A4

For a cell adjacent to the east boundary,
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8
Ay = max[—r1 0]+ (r2) 231}19

Ay = max[ri 0]+ () AZ(F J, +3ri

2
Ay = max[—r 0]+[Z‘5J AS.r (J.19)
A

2
: z A
Ag = max[ri, 0]+ [—ﬂ A r
r An
P
Ap = Ay + Ay + Ay + Ag

For a cell adjacent to the west boundary

Ap = max[~ri;,0] + (r2) Pi—g(FeJe +lrwaj

3
An 8
Ay = max[m;,0]+ (r =I,J,
y = max[niz 0]+ () p—— A3
22 Ag
Ay = max[-7ir, 0] +[£J =5, T,J, (1.20)
r PA?]

2
Ay = max(rin, 0]+ == | B8.r
§ g r A
Ry

Ap =Ap + Ay + Ay + A4

B. The Neumann Boundary Condition

For a cell adjacent to a boundary at which a Neumann boundary condition should be applied, the
discretization method presented above is used, but the gradient along the boundary is directly applied. For
example, if a Neumann condition is known at the south boundary, the discretized form of Eq. (J.3) for a cell

adjacent to the south boundary is

mf<¢e—¢w>+mn<¢n—¢s>=(ﬁi)f’[re~’ ¢EA§¢P ro, A;W}A"

2
+[z—§] {rnFan W=t 1 (wj }A&S
r), An on ),

A common Neumann boundary condition is the zero gradient boundary condition, for example, at a

(J.21)

symmetry boundary. For a zero gradient boundary condition on the south boundary,
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=, =4, + 1y (6, — ) = <n§>{w e -r }A”

2
R Y il R I
P An

7

(J.22)

Using the same methods as presented above for the convection terms, Eq. (J.22) can be rewritten to match

Eq. (J.11) where
Ay = max—in- 01+ (2) i—gwe

wew

Ay = max[m5,01+(¢37)Pi—gr J

Ze | Ag
Ay =max[-7in, 0] +| =5 | ==p T (1.23)
P

r Ai] n-n-n
Ag = max[m, 0]
Ap = A + Ay + Ay + Ay

Likewise, for a cell adjacent to the north boundary,
. An
Ay = max[—-m.,0]+ 2y, =r g
E [ m§ ] (”:;7 )P Af eve
. 2 A n
Ay =max[m; 0]+ (r;)p —TJ,,
> A§
Ay = max[-m, 0] (J.24)

2

y4
Ag = max[rm, ,0]+| == ASry
S n - A77 stsYs

Ap = Ay + Ay + Ay + Ag
For a cell adjacent to the east boundary,
Ap = max[-m;,0]
Ay =max[ri1z,01+ (r7)p i—grwJW

22 A§
Ay = max[—r, ,0]+| == | ==rT,J, (1.25)
r An
P
. 2% | A&
Ag = max[m, ,0]+| = | —r[J
r An
P
Ap = Ap + Ay + Ay + Ag

For a cell adjacent to the west boundary,
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, 2y An
AE = max[—m§,0]+(r’,7)P A—fl"gJe

Ay = max[m;.0]

22 A§
Ay = max[7i, 0]+ [—5J =5 T, J, (1.26)
r An
P
. % | A&
Ag = max[m, ,0]+| = | —r[J
r An

Ap = Ap + Ay + Ay + Ag
Another common Neumann boundary condition is the constant gradient boundary condition where the
gradient of the transport property normal to the boundary is assumed constant over the cell. This condition
is sometimes used at a pressure boundary. For a constant gradient boundary condition on the north
boundary of the domain, the gradient on the north face of each cell along the boundary is equal to the

gradient on the south face of the cell.

99| _99
or|, or|,
5 5 J.27)
Jz g —¢ =|Jz; —¢
on), = on ),
This can be applied to give the discretized form of Eq. (J.3) for a cell adjacent to a north boundary
: : 2 br—¢ ¢~y
m§(¢e - ¢w) + mr](¢n - ¢s‘) - (r,r])P|:reJe EA—§P—FWJW A—§ A77

(J.28)

2
+ (2—1 [(r,,r,, ~ R, M}Aé +38
"), An

Using the same methods as presented above for the convection terms, Eq. (J.28) can be rewritten to match

Eq. (J.11) where

An

Ay = max[-m 0]+ (”,;27 )p A_gl—‘e‘]e

Ay =max[rirz,01+(r7)p ﬂrij
B A§

Ay = max[i, 0] (!:29)
2

Ag = max[m, 0]+ [z—f] A—g(”srs =1,
r » An

Ap = Ay + Ay + Ay + Ag



For a cell adjacent to a south boundary with a constant gradient boundary condition,
_ : 2, Ang
AE - max[—mé 0]+ (}’:,7 )P A_gr‘e‘]e

wew

Ay =max[m§,O]+(rjy)Pi—gr J

A
_5 (Vnrn - rjsrs )Jn
An

: %
Ay = max[-m, 0]+ | —=
-
P

Ag = max[m, 0]

Ap = Ap + Ay + Ay + Ag
For a cell adjacent to an east constant gradient boundary,

Ap = max([-m;,0]

Ay = maxlri 0]+ (2) 5 i—Z(rw 1)/,

2

z
Ay =max[—m, 0] +| == A1y
N n - A77 n-nYn

2
z
Ag = max[ri, 0] {—5} AS L r
r An
P
Ap = Ap + Ay + Ay + Ag

For a cell adjacent to a west constant gradient boundary,

Ay = max[—m 01+ (r2), i—Z(re -T,)J,
Ay = max[m;,0]

2
z
AN:max[—lhn,O]+{ ’5] i—‘frrJ
Y

2
zZ
A = max[rm, ,0]+| == Aty
S n , A K
L AN

Ap = Ap + Ay + Ay + Ag
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(J.30)

(J.31)

(1.32)

For the cases of interest in this work, the boundary conditions for a velocity inlet, outlet, smooth-wall,

symmetry, and pressure outlet are the same as for the Cartesian formulation. However, the pressure inlet

condition across the north side of the domain requires special attention.

It is assumed that at a pressure inlet, the flow enters the domain normal to the boundary and the

properties of the flow are known across the boundary. If the north side of a domain is specified as a
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pressure inlet boundary, flow must enter the domain without any z-velocity component. Continuity requires

that
v __ " (1.33)
dr r

Applying Eq. (G.10) gives this relationship in the transformed coordinate system

o, =Jz, v, =—£ (J.34)
or > on r

Applying Eq. (H.22) across the north side of the domain gives

Jz g v ¥
> on r
_ _ _ (J.35)
&V, =9V, +V, Vv,
z N P s "'~
ne 3An Iy
Rearranging gives
z _
— ;A’gn (9Vrl‘ - Vs)
V. o= n (J.36)
N an,gn 8 1
3An r
Using that in this:
. . 2 Pe —Pp Pp —Pw
- + —-¢,)= r,J -T,J A
m§ (¢e ¢w) mr] (¢n ¢s) (’:n)P|: eve A§ wY w A(;: n
5 o 9 J.37)
z - + - 3
+[,_§] |:rn1—~an ¢N ¢P ¢S _KYFSJS ¢P ¢S :|A§+S
r 3An An
P
gives
. . 2 P —op dp — by
- + - = rJj—~——-Ir,.J, ——IA
mf (¢e ¢w) mn (¢n ¢s) (r,?] )P|: eve A§ w¥ w Af n
(J.38)

2
+ Z’—é [Vnran(l/C_l)M_rsrst M}Aé—i_ﬁ
r, 3An An

where
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1
= 1—— .
C ey (J.39)
8, e
3An

It is recommended that the developer use a Dirichlet boundary condition for both velocity components on
the north face and update it every iteration according to

JpZe — —
_ 3T’"(9Vrp V)
7 n

T (e g 1 (J.40)
3An 7

n

All other transport properties must be specified at a pressure inlet boundary, and a Dirichlet condition is

applied for these transport properties.
III. Transport Equations

The z-momentum equation is a special case of Eq. (J.1) where ¢ = 172 and I' = v +v,. The r-momentum
equation is a special case of Eq. (J.1) where ¢ = I7r and I' =v +v,. The z- and -momentum source terms

include pressure source terms and viscous source terms and can be written in the transformed coordinate

system as

S, =~Jr l@+1Ji(rr aVr]+Jr’,27 %[FJ%j

Tpoé r 0 0 0
p0g n 4 f_ - 141)
S, =—Jz§l£+ L Z— o JaV PR FoLE _zer,
pon r on on o0&\ on r
Integrating about a rectangular control volume in the £ and 7 directions gives
- 77/2 5/2
S, =
n/2 6/2[ )dé
/2 (AE/2 V.
:fn Iy, 61_7+li FraV’ +r37i o7, dé&dn
ap2dagn| " po&é  ron o0& oé o0&
(J.42)

/2 pAg/2 D
:f" f SR AP S PARL IR L TN PP
Anj2 Lagf2 T pon r °0on 877 65 677 Jr?
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which can be approximated as

j— e j— n
S, =—r,7l(;%)rAn+r37 o) ap s Y e o
M : o& r\ o8&
" ‘ (1.43)
. S A ov.\ . orv
S, =—z:—(p) A§+—zi§(ru - j A§+(F - j An—==CAéAn
p K r n s n W Jr

and rearranged to give

A oA ov. ov.
(pw—pg)Amrf{FeJe( ang —FWJW(—ZJ }An

o¢
r oc ). o ).

A 1 ~ = 1 o7, %,
S, =z:—(p, —pn)A‘f"L_Z’z{rnrnJ"( g ] _FSVSJS( J }Ag
yel r n n $

on
+| T, ¥, -I, , An—zr? AéAn
on ), on ), Jr

These derivatives are discretized according to the discretization methods presented in Appendix H.

(J.44)

The same no-slip wall boundary conditions apply as in Cartesian coordinates, and the wall shear stress
is estimated the same way. For example, the shear stress can be written in the computational domain along

the south boundary as

[ ov.
7=\ P V) 62}
L r r=0

v,
=\ p(v+vn,—= (J.45)
on

L r=0

- o7
=l p(v+v,)Jz s 5 }
n r=0

Applying Eq. (H.42) gives the discretized form

-8V, +9V, -V,
S P

T, =p(V+Vv,),Jz — J.46
w p( t)s 54,8 3A77 ( )
Likewise, along a north boundary the shear stress can be calculated as
8V, —9V, +V,
T, =pV+v),J,z . — E 5 (J.47)

3An
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Along an east boundary the shear stress can be calculated as

8V, 9V, +V.
P W

T, =pWV+V,),J, r d 1.48
w p( t)e e,n, 3A§ ( )
Along a west boundary the shear stress can be calculated as
8V, +9V,, -V,
Ty =PV +V)d iy r = £ (J.49)

3A¢
The source terms and boundary conditions for the other transport equations in cylindrical coordinates

are identical to those in Cartesian coordinates.
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APPENDIX K

THE SIMPLE ALGORITHM IN CARTESIAN COORDINATES

I. Development of the SIMPLE Algorithm

The conservation of momentum equations can be written for any cell as

APIZCP = AEI7xE + AWZW + ANVXN + ASVxS +8, =S,

_ _ _ _ _ . (K.1)
ApVyp = AEVyE + AWVyW + ANVyN + ASVyS + Sy - Scy
Neglecting all source terms other than pressure, these equations can be rewritten as
A7, =N A7+, - A
PV xp T nb” x,, o Dy = DP)AN
" (K.2)

AV, ZAbV G - pAE

where the subscript, nb, stands for the neighboring boundaries, N, S, E, and W. At some point during the
solution procedure, approximate values for the pressure and velocities are known. The actual values of the

pressure and velocities can be written as

Vo=V Y,
L=V, (K.3)
p=p+p

where the starred values indicate the present approximate or “guessed” values and the prime values indicate
correction factors. Therefore, at any given time during the solution procedure, instead of Eq. (K.2) we

actually have

API7 ZAnb +_(pw _pe)An
(K.4)
AWy =D AV f(ﬁ: - PAS
nb

Subtracting Eq. (K.4) from Eq. (K.2) gives the momentum equations in terms of the correction factors
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A7, ZAnbV ALY
(K.5)
AV, ZAbV LG o pAe
Neglecting the summation terms gives expressions for the velocity correction terms
— y AT] ~
pr = ’7 (p\V pt?)
App
(K.6)
— X§A§ )
Vyp APp (ps pn)

From the definition of the contravariant velocity components given in Eq. (F.12), the correction to the
contravariant velocity components can be written in terms of the correction to the physical velocity

components.

VfP = y>’7VxP (K 7)
V’?P = xs‘fVJ’P
Using Eq. (K.6) in Eq. (K.7) gives
. Y A77 N
pr - A (pw )
PP (K.8)
— X§A§ A
v,
"= (s =Py

Equation (K.8) is a velocity correction equation for the cell center in terms of pressure values at the faces.
Using a similar method to that presented here in Egs. (K.1) through (K.8), expressions can be written for
the velocity correction on the cell faces in terms of pressure values at cell centers for any cell face that is

not a boundary.

— Yy A?}
Ve = (PP PE)
T Ap
— Yy A77 A
Ve, = (pW Pp)
" Ap
(K.9)
e s
= Pp— PN
" Ap
— X Acf ~
V, = < (ps — Pr)

s Ap

s



Now consider the average continuity equation for incompressible flow
V-V=0
For two-dimensional flow, this can be written in curvilinear coordinates as

ov. ov,
_§+_77: 0
o5 0on

Integrating around the boundary of a cell gives

ov; oV,
J' T T 0 lagdn
dg  0n
AV, =Ve )+ AL, =7, ) =0

Using Eq. (K.3) in Eq. (K.12) gives

AV, + Ve, =Ve, =Ve )+ A&y, + 7y, =V =V, )=0

Rearranging yields
AV =V )+ AE(, =V, )+5,=0
where

Sp =An(e, =V )+ AW, =Vy)
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(K.10)

(K.11)

(K.12)

(K.13)

(K.14)

(K.15)

is the imbalance of mass in the cell and approaches zero as the solution converges. Notice that this mass

imbalance equation (the source term in the pressure solver) is dependent on knowing the contravariant

velocity components at the faces of the cell. Obtaining these velocities through interpolations from the cell

center can result in pressure oscillations for collocated grid arrangements. Employing a staggered grid

arrangement eliminates this problem. To remedy the pressure oscillation problem on collocated grids, Rhie

and Chow [80] suggest calculating the velocities at the cell faces by adding in some additional factors. This

method has been widely adopted for collocated grids, and will be used here. The velocities at the cell faces

are calculated from



374
=,y Pr—Pr
v _i* i E_Fp —*
Ve =Ve -, MM[—‘ P,g“]

8 o5
= Pr— Dy
V., =V - AeAp| 2B Bt
a7V 7, & ’7( s bs
) . . (K.16)
o Xg Py —Pp  -x
V., =V, —="-AfAnp -
M M A,,,O g n 577 pa”
- X2 p* p*
7N p—Ds _
Vo=V —=AAp H——=—
T, g ’7[ on p,nJ
where the curved bar represents an interpolated value to the cell face.
Using Eq. (K.9) in Eq. (K.14) gives
242 242
2 A77 A A g A 2
nAp (pp—Pr)— 1 (Pw — pp)
¢ " (K.17)
x,zéAcfz PO x,zéAcfz PO
+ (Pp—pPNn)— (ps—pp)+S,=0
n 4p
Collecting terms and rearranging gives
Dppp =Dgpg + Dy Py + Dypy + Dsps = Sp (K.18)
where
_ oA
Dy =
4.p
_ v
Dy, =
4,p
2 A g2
X%A
Dy =% ¢ (K.19)
4,p
2 A g2
XEA
DS = 3 é
4p
Dp =Dp + Dy + Dy + Dg
Therefore,
Y] 1 ] Y] ] Y]
pp= D_(DEPE + Dy py +Dypy +Dsps —S,) (K.20)

P

Note that Eq. (K.20) is linear and therefore requires no relaxation factor. Once the pressure correction terms

are converged, they are added to the previous pressure terms using an under-relaxation factor, «,,
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Pr=Dp+a,pp (K.21)

Using Eq. (K.9), the contravariant velocity terms are then corrected without relaxation (the under-
relaxation for the velocity terms takes place in the momentum solver).

2

— —x y AT] ~r 2~
Ve =Ve + T—(pp—DPr)
2
= — YA A A
Ve =Ve + 1 (pw —pp)

Sw w A,p

(K.22)
— xf,:Ag A A
Vo, =Vn, + = - (Pp =Py
2

— . X2AE A A

Vo=V +=2(ps—D

7, 7, Asp (pS pP)

These velocities are now mass-conserving velocities and can be averaged to find the contravariant velocity
components at the center of the cell. The contravariant velocity components are then used to calculate the

corrected velocities in rectilinear coordinates using Eq. (F.12).

I1. Boundary Treatment

Several different types of boundary conditions exist for pressure, however, they all require similar
treatment. If the velocity at the boundary is fixed, then the velocity need not be updated, and the
corresponding last term on the right-hand side of Eq. (K.22) is zero. Likewise, if the pressure gradient
normal to the boundary is zero, then the corresponding last term on the right-hand side of Eq. (K.22) is
zero. For example, if the east boundary is an outlet, the pressure gradient is zero and Eq. (K.20) can be
solved by setting Dy =0. The same would be true if the east boundary were a velocity inlet (velocity
specified), a wall (velocity = 0, and the normal pressure gradient is zero), or a line of symmetry (normal

pressure gradient is zero).
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APPENDIX L

THE SIMPLE ALGORITHM IN CYLINDRICAL COORDINATES

I. Development of the SIMPLE Algorithm

The conservation of momentum equations can be written for any cell as

APIZP = AEI7ZE + AWI7ZW + ANZN + ASZS + ‘§z =S..

— _ — _ . (L.1)
ApV,, = AV, + AyV, + AV, + AV, +S, =S,
Neglecting all source terms other than pressure, these equations can be rewritten as
= rp o~ =~
ATy =D AV, + = (Pu=PIA
(L.2)

= = Zg ~ 2
AV, = A, +7§<ps — PAE
nb

where the subscript, nb, stands for the neighboring boundaries, N, S, E, and W. At some point during the
solution procedure, approximate values for the pressure and velocities are known. The actual values of the

pressure and velocities can be written as

(L.3)

where the starred values indicate the present approximate or “guessed” values and the prime values indicate
correction factors. Therefore, at any given time during the solution procedure, instead of Eq. (L.2) we
actually have
2x
Z Anb V + —Pe )A n

(L.4)
AWy = AV, +’7§(ﬁf — PAE
nb

Subtracting Eq. (L.4) from Eq. (L.2) gives the momentum equations in terms of the correction factors
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P DIAT
(L.5)
~ DAE

Neglecting the summation terms gives expressions for the velocity correction terms

v, ==

zZp

—

=

_ZAS -

rA77

(P -
App

unp (P, -

7.
(L.6)

)

From the definition of the contravariant velocity components given in Eq. (G.12), the correction to the

contravariant velocity components can be written in terms of the correction to the physical velocity

components.

Using Eq. (L.6) in Eq. (L.7) gives

’7.v

z §A§
App

(7 -

(L.7)

(L.8)
7

Equation (L.8) is a velocity correction equation for the cell center in terms of pressure values at the faces.

Using a similar method to that presented here in Eqgs. (L.1) through (L.8), expressions can be written for the

velocity correction on the cell faces in terms of pressure values at cell centers for any cell face that is not a

boundary.

rA?]

Ap (PP

rA?]
A.p

zAf
A,p

Z§A§
Ap

s

(PW

(PP

(s —

pE)
pP)

(L.9)
Py)

Pr)



Now consider the average continuity equation for incompressible flow

V-V=0

For two-dimensional axisymmetric flow, this can be written in curvilinear coordinates as

1007V, OV,
—_—_— =
roon 0

Integrating around the boundary of a cell gives
o, oV
r on o0&
- AE — —
AN, T )+ 0T, <) =0
P

Using Eq. (L.3) in Eq. (L.12) gives

k.

—x — —* — Ag —* = b =
AT 4T TV ~Ve )+ =27 w1y =y =17y ) =0

’71
Tp

Rearranging yields
= = AE — —
An(Ve, =Ve )+ r—(rnVﬂn -V, )+S,=0
P
where

—x — A — —x
S, =807 -T2+ 250,77
P
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(L.10)

(L.11)

(L.12)

(L.13)

(L.14)

(L.15)

is the imbalance of mass in the cell and approaches zero as the solution converges. Notice that this mass

imbalance equation (the source term in the pressure solver) is dependent on knowing the contravariant

velocity components at the faces of the cell. Obtaining these velocities through interpolations from the cell

center can result in pressure oscillations for collocated grid arrangements. Employing a staggered grid

arrangement eliminates this problem. To remedy the pressure oscillation problem on collocated grids, Rhie

and Chow [80] suggest calculating the velocities at the cell faces by adding in some additional factors. This

method has been widely adopted for collocated grids, and will be used here. The velocities at the cell faces

are calculated from
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(L.16)

where the curved bar represents an interpolated value to the cell face.

Using Eq. (L.9) in Eq. (L.14) gives

2 2 2 2 2 2 2 2

reAnT A A roAnT A 4 z:AET, A A 2 AETF, A A

L (pp = Pi) —~L——(py — Pp) + =" (pp — D) (s~ Pp)+ S, =0 (L.17)
Aep Awp rPAnp }"PASp

Collecting terms and rearranging gives

Dppp =Dgpg + Dy py +Dypy +Dsps —Sp (L.18)
where
r,27A772
Dy =-1"_
4.p
20,2
_ ryAn
T A
2 A g2
z7ANET,
py =2 (L.19)
rPAnp
Z%Aézrs
Dg=—5—275
rPAsp
Dp=Dg+ Dy + Dy + Dy
Therefore,
A 1 A 2~ 2~ 2
pPp= D_(DEPE + Dy py + Dypy +Dsps —S,) (L.20)
P

Note that Eq. (L.20) is linear and therefore requires no relaxation factor. Once the pressure correction terms

are converged, they are added to the previous pressure terms using an under-relaxation factor, &,

Pp=Dp+a,Dp (L21)
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Using Eq. (L.9), the contravariant velocity terms are then corrected without relaxation (the under-relaxation

for the velocity terms takes place in the momentum solver).

AR A P

& Tre T, (Pp = PE)
2

= —  TpAR A, 2

ng =V: + T—(pw — Pp)
. (L.22)

A A

= Ty (pp—pN)
2

— —x Z Aé 2 2

V== (s pp)

These velocities are now mass-conserving velocities and can be averaged to find the contravariant velocity
components at the center of the cell. The contravariant velocity components are then used to calculate the

corrected velocities in rectilinear coordinates using Eq. (G.12).

I1. Boundary Treatment

Several different types of boundary conditions exist for pressure, however, they all require similar
treatment. If the velocity at the boundary is fixed, then the velocity need not be updated, and the
corresponding last term on the right-hand side of Eq. (L.22) is zero. Likewise, if the pressure gradient
normal to the boundary is zero, then the corresponding last term on the right-hand side of Eq. (L.22) is
zero. For example, if the east boundary is an outlet, the pressure gradient is zero and Eq. (L.20) can be
solved by setting D, =0. The same would be true if the east boundary were a velocity inlet (velocity
specified), a wall (velocity = 0, and the normal pressure gradient is zero), or a line of symmetry (normal

pressure gradient is zero).
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APPENDIX M

VORTICITY TRANSPORT

I. Laminar Flow Algorithm

The steady-state, incompressible continuity and Navier-Stokes equations can be written in vector
format as
V-V=0 (M.1)

aa—\;+ (V-VIV =-Vp/ p+V-[2vS(V)] M2)

Vorticity is defined as the curl of the velocity vector

Q=VxV (M.3)
The vorticity transport equation for incompressible flow can be developed by taking the curl of the Navier-
Stokes equations. After considerable algebra and the application of vector multiplication identities, the

vorticity transport equation can be written as

aa—?+(V-V)Q =(Q-V)V+ W2+ Vv x(VEV)+2Vx[Vy- S(V)] (M.4)

For two-dimensional, steady-state flow in Cartesian coordinates,

0 ox 5
Q=<0 V=<0y¢, 5:0 (M.5)
Q 0

Assuming that the fluid properties are constant throughout the flow (ie. laminar flow, Vv =0), and using

Eq. (M.5) in Eq. (M.4) gives the scalar two-dimensional vorticity transport equation for steady-state flow

(V-V)Q=wW?3Q (M.6)

This can be written in Cartesian coordinates as

2 2
Vva—Q+Vya—Q= _8 !22+_8 i) M.7)
T ox oy Ox oy
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By definition,
VxQ=Vx(VxV)=V(V-V)=V?*V (M.8)
Applying the continuity equation for incompressible flow to Eq. (M.8) gives

VxQ=-VV (M.9)

This vector equation can be written as two scalar equations in Cartesian coordinates as

oQ o', o',
—_— = ’+

= M.10
>k o (M.10)

o, o
2 _ R (M.11)
ox  ox oy

Equations (M.7), (M.10), and (M.11) can be discretized and rearranged to yield three equations that
can be used to obtain better estimates for the three unknown values, €, V., and V.. For example, given an
estimate for the three variables, Eq. (M.7) can be used to calculate an improved estimate for Q. Likewise,
Eq. (M.10) can be used to calculate an improved estimate for V., and Eq. (M.11) can be used to calculate

an improved estimate for V/,,.
II. Turbulent Flow Algorithm

A. The Ensemble Average Vorticity Transport Equation

Taking the ensemble average of Eq. (M.4) gives
aﬁ — — = = — — = = = — = —
E+(V~V)Q+(V-V)Q =(Q-V)V+(Q-V)V+ W Q+Vrx(VV)+2Vx[Vv:-S(V)] (M.12)
Applying Eq. (M.5) gives the steady-state two-dimensional equation

(V-V)Q+(V-V)Q = W20 + Vv x(VV) + 2V x[Vv- S(V)] (M.13)
In order to use this equation in an algorithm to predict turbulent flow, the quantity (\7 . V)SNI must
somehow be modeled. An alternate approach is to develop the vorticity transport equation from the RANS

equations directly as follows.
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B. The RANS Ensemble Average Vorticity Transport Equation
The steady-state, incompressible continuity and Boussinesq-based RANS equations can be written in

vector format as
V-V=0 M.14)

a@—‘;+(V-V)V=—V]LJ//)+V'[2(V+V[)§(‘_’)] (M.15)

The ensemble average of the vorticity is defined as the curl of the ensemble average of the velocity vector

Q=VxV (M.16)
The ensemble average vorticity transport equation for incompressible flow can be developed by taking the
curl of the Boussinesq-based RANS equations. Following the development of Phillips, after considerable
algebra and the application of vector multiplication identities, the ensemble average vorticity transport

equation can be written as

%—?+(V~V)§:(ﬁ-V)V+(v+v,)V2§+V(V+V,)X(VZV)+2V><[V(V+V,)' SV)]  (M.17)

For two-dimensional, steady-state flow in Cartesian coordinates,

0 ox 5
Q=10}, V=40pt, a_:() (M.18)
Q 0 !

Using Eq. (M.18) in Eq. (M.17) gives the scalar two-dimensional vorticity transport equation for steady-

state flow

(V-V)Q = (v +v, )V Q+ V(v +v,)x (VIV) + 2V x[V(v +v,)- SV)] (M.19)

This can be written in Cartesian coordinates as



@

V.24V, ——=(+Vv,)
Yoy “laxr 92 ox ot P Oy

+i M 6_17;4_% +2M%
ox ox oy  Ox oy oy

_0],005v) OV, oy (O, O,
Oy ox Ox oy ox Oy

By definition,
VxQ=Vx(VxV)=V(V-V)-V?V
Applying the continuity equation for incompressible flow to Eq. (M.21) gives
VxQ=-VV
This vector equation can be written as two scalar equations in Cartesian coordinates as

oQ o, o,
J— +

X

ot o

— 277 257
o0 _6 v, 0 v,

—= +
x  ax? ot

— — — 27 A2
00 (azgﬁzg}a(vw,)(a v, 0 Vy]_a(vw,)[
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(M.20)

(M.21)

(M.22)

(M.23)

(M.24)

Equations (M.20), (M.23), and (M.24) can be discretized and rearranged to yield three equations that

can be used to obtain better estimates for the three unknown values, Q, l7x, and I7y For example, given an

estimate for the three variables, Eq. (M.20) can be used to calculate an improved estimate for Q. Likewise,

Eq. (M.23) can be used to calculate an improved estimate for I7x, and Eq. (M.24) can be used to calculate

an improved estimate for 7/, .
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APPENDIX N

ONE-DIMENSIONAL DIRECT INTEGRATION METHOD

I. The k-¢ Model Equations

Combining Eq. (C.31) with Egs. (B.11) and (B.12) gives one first-order equation and two second-order
equations. This system of equations can be rewritten as a system of five first-order equations by introducing

the change of variables

+
gt =—(1 +V+/Gk) Zk+
y
. (N.1)
&
0" =~(1+v"[o,)
Directly substituting the definition for v, the five first-order equations can be written as
dut e (R.—y")
+ 2
7 R +C f k")
2
qur _ C’,uf,ukJr g+(Rr _y+)2 _g+ _€+
+ 2 o
v’ Rie"+C, [, k")
dk* o g’
—=- ke 4 : (N.2)
& ot +C, f k"
6" Cofuk's” R~y ) A
d+: alfl 5 4 22 - f:2f2k_++E
y R (e"+C, [ k")
ds* o0
&' ot Cuf
and the boundary conditions can be written as
u"(0)=0, ¢"(0)=0, k7(0)=0, ¢"(R,)=0, 0" (R,)=0 (N.3)

Once the damping functions f,, f;, />, £ *, and ¢, have been specified, the system of equations given by
Eq. (N.2) along with the boundary conditions in Eq. (N.3) could likely be directly integrated using a
numerical integration method such as the fourth-order Runge-Kutta algorithm. Various damping functions

have been proposed and one is included in the following section.
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The model proposed by Lam and Brembhorst [68] can be written in nondimensional form as

4ﬂ,=U—emx<0MﬁRﬂfU+20ﬂRJ,vﬂ:1+(0yykf, £y =1—exp(-R}),

) (N4)
R =k* /g+, R,=y"Nk*, E'=¢,=0
and the closure coefficients are
C,=0.09, C,=144, C,, =192, 0, =10, 0, =13, (N.5)
Lam and Bremhorst propose the boundary condition
d*k*
£"(0)=—-(0) (N.6)
dy”

However, this is not a boundary condition and can be derived directly by examining the transport equations
as they approach the wall. This relation is satisfied by virtue of the equations, and cannot be used as a
boundary condition. Equation (N.6) can be used as a near-wall approximation for ¢ to replace the governing
equation for & near the wall. However, it is not a boundary condition and should not be referred to as a

boundary condition. Others have used the boundary condition

de

+(0)=0 (N.7)

+

This is also incorrect. It has no physical basis and is employed most often because it is easy to implement.
The Lam-Bremhorst model is indeterminate at the wall. Near the wall, approximations for the damping

functions can be written as

2 3
20.5(0.0165)%&ty* 0.05)° k™" kKt
_ 20.5( VeV s (0.05) L fr=t (N.8)

3
Kt (20.5)%(0.0165)° £ y*° P

Ju

Note that f,, and f; are still indeterminate at the wall where both y* and k" approach zero. The Taylor

Series expansion of k™ near the wall can be written as

+ 27+
K 0=k O+ 2 0y 42 0y N.9)
dy 2 dy
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The first two terms in this series are zero from the boundary condition definitions. The third term can be

written in terms of ¢ because the turbulent eddy viscosity approaches zero near a wall. Near a wall, Eq.

(B.12) can be combined with the Taylor Series expansion of k" to yield

27+ +2
k*(y*)z%d oy =2

£"(0)
dy 2

(N.10)

Using this in Eq. (N.8) gives the final near-wall approximations for the damping functions

4
(0.05)°
£, =001116225, fi=l+———2 __ f =
¢ Y 0011162257 "7

% (N.11)
&

Note that f, and f; are simply constants and can be used in the five first-order system of equations.

Substituting the near-wall approximation for f, into the fourth equation in Eq. (N.2) gives the near-wall
approximation for that equation

do*

2
s Cofuk e (R, —y")
dy* ¢

3
. 7~ Cok” (N.12)
RX " +C f, k")

II. The k- Model Equations
Combining Eq. (C.31) with Egs. (B.65) and (B.66) gives one first-order equation and two second-order

equations. This system of equations can be rewritten as a system of five first-order equations by introducing
the change of variables

.
q" E—(1+V+/O'k) Zﬁ+

- (N.13)
wt E—(l+v+/0'w) @

ay*

The five first-order equations can be written as
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du+ :1_y+/R‘r Eu+'

dy* 1+v*

dq”* :

dz+ — V+(u+ )2 _ C’ufkk+a)+
dk* ovq”

MR/ My S (N.14)
dy otV

oy’ | 2
al)/;_ = Cwlflf:u (u+ )2 - C(02f20)+

+ +
da)+ ___oW ; PRt
dy o,+V

Or, by substituting the definition for v* directly,

dut @ (1-y*/R))
&t o+ kT

L
=u

dq* (1-y'/R)
—+:fyk+a’+%—cyfkk+w+
dy (0" +f,k")
dk* w'oq" .

P + =k (N.15)
dy o o+ [k

oy” , 2
a)l/j_,. = a)lflf,u(u+ )2 _C(02f2a)+
do* ooy’ o

= — =@
dy* 0o, + fk*

The latter formulation is better suited, because w approaches zero at the channel centerline. The boundary

conditions are

u"(0)=0, ¢*(0)=0, k7 (0)=0, ¢"(R,)=0, y"(R,)=0 (N.16)
At the wall, " and do* / dy™ are singular. Therefore, near-wall approximations for the model must be
used until some specified distance away from the wall. The leading-order terms of the dependent variables

are
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42

ut (v = + Y
)=y 2,
a o= 0yt
dy*
K=k 2(0) » (N.17)
b4y do” 12
l//(y )_ dy+_c f(O) +3
w2J2V)Y
o ()=
Cor 5(0)y

Once the damping functions f,, f, f, and f; have been specified, the system of equations given by Eq.
(N.17) along with the boundary conditions in Eq. (N.16) could likely be directly integrated using a
numerical integration method such as the fourth-order Runge-Kutta algorithm. Various damping functions
have been proposed and one is included in the following section.

The Wilcox 1998 model [45] can be written in nondimensional form as

_0.024+R, /6

_ 1/9+R,/2.95
Su= 1+R,/6 » i

~ fu(1+R,/2.95)
1, v, <0
1+ 680y7
1+ 400y}
1 dk* do* k*

Vi = do_ =t
k a)+3 der der T ot

S =1

_ 415+ (R, /8)°*

’ 1+ (R, /8)*

v 0P (N.18)

and the closure constants are
¢,=009, C, =052, C,, =0.072, 0, =2.0, 7, =2.0 (N.19)
Near a wall, the damping functions approach

f,=0.024, f,=0216, f, =1, f, =4/15 (N.20)

At the wall, " and do* / dy™ are singular. Wilcox [86] suggests using the leading-order solution

6 -2 6 -2
o = +2__0 21
C.fh. 00727 N2
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for the first 7 to 10 grid points off the surface to avoid numerical errors near a wall boundary. Wilcox states
that the approximation given in Eq. (N.21) is only good for grid points where y* <2.5. Therefore, it is

recommended that the grid be fine enough to ensure that at least 7 grid points are within this constraint.
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APPENDIX O

CODE FOR SOLVING THE PHILLIPS k-4 MODEL

The following code can be used to solve the Phillips £-4 model for fully rough pipe flow. The code can
also be used to give solutions for the eddy-viscosity models included as Egs. (7.35), (7.36), (7.42), and
(7.43).

!gfortran -fdefault-real-8 solver.f90 main solve.f90
module solver
IMPLICIT NONE

integer :: m,nplot

integer :: model

integer :: modelcase

real :: Rtau, kr, ksp,beta,nu_hat, ximax, nutmax
real :: kappa, gamma,Cl0

real :: sigmak,Clambda

real :: kc,kw !kcenter, kwall

real :: Re bulk,Re max,Re core,R c,Cf4
real :: ypl

real :: AA,BB

real :: Crl,Cr2,Cr3,arl,ar2,ar3,ard
real :: AO,Al,a,rc,BO

CHARACTER* (80) :: rec,init,file r

CHARACTER (LEN=100) : : fn

real, allocatable, dimension ::r_hat,yplus

()
real, allocatable, dimension(:)::k,kprime
real, allocatable, dimension(:)::q,gprime
real, allocatable, dimension(:)::u,uprime
real, allocatable, dimension(:)::nut hat
(:):

real, allocatable, dimension : :omega, lambda

real, allocatable, dimension(:)::vRe,vCF,vksp,vNi, vRebulk, vkr
contains
subroutine solver allocate()

!Allocate Memory

ALLOCATE (r hat (m)); ALLOCATE (yplus (m)
)); ALLOCATE (kprime (m

( )
ALLOCATE (k (m) ) ; ( ));
ALLOCATE (g (m) ) ; ALLOCATE (gprime (m) ) ;
ALLOCATE (u (m) ) ; ALLOCATE (uprime (m)) ;
nut hat (m));

ALLOCATE (omega (m) ) ; ALLOCATE (lambda (m)) ;

ALLOCATE (vRe (nplot)) ; ALLOCATE (vCF (nplot) ) ;

ALLOCATE (vksp (nplot)) ; ALLOCATE (VNi (nplot)) ;

ALLOCATE (vkr (nplot)) ; ALLOCATE (vRebulk (nplot))
end subroutine solver allocate

(
(
(
ALLOCATE (
(
(
(

subroutine solver deallocate()
!Deallocate Memory
DEALLOCATE (r hat); DEALLOCATE (yplus)

( ;

DEALLOCATE(kT; DEALLOCATE (kprime) ;
DEALLOCATE (q) ; DEALLOCATE (gprime) ;
DEALLOCATE (u) ; DEALLOCATE (uprime) ;
DEALLOCATE (nut_hat);

DEALLOCATE (omega) ; DEALLOCATE (lambda) ;
DEALLOCATE (vRe) ; DEALLOCATE (vCF) ;
DEALLOCATE (vksp) ; DEALLOCATE (VvNi) ;

(

DEALLOCATE (vkr) ; DEALLOCATE (vRebulk)
end subroutine solver deallocate

subroutine create grid()
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integer :: j
real :: eta,cbeta,dzeta

dzeta = 1.0/real (m-1)
!Create Grid

do j=1,m,1
eta = real (m-j)/real (m-1)
cbeta = ((beta+l1.0)/(beta-1.0))**(1.0-eta)
if (beta .eqg. 0.0) then
r hat(j) = 1.0 - real(j-1)*dzeta
else
r hat(j) = 1.0 - (beta+l.0 - (beta-1.0)*cbeta)/ (1.0 + cbeta)
end 1if
end do
r hat(l) = 0.0

end subroutine create grid

trrerrrprprprrrrirititl phillips Model !PrPrbrbrrirrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrnd
subroutine Phillips kl (iprint,niter)

real :: x1,x2,f1l,£f2,slope,xnew,Re old, relaxation
integer :: iter,niter,iprint,oiter
! write(*,*) '--------—- Newton Solver —-------
if (iprint.eqg.l) then
write(*,*) ' iter g wall q_center
k_center &
& Re core 4CF'

end 1if
relaxation = 1.0
niter = 100
oiter = 0
x2 = 0.0
do while(((niter.eq.100) .0or.(x2.ne.x2)) .and. (oiter<5)) !under relax if solution not
found
Rtau = 0.5*ksp/kr
nu_hat = 1.0/Rtau
Re_core = 21.26*Rtau**(1.078)

nut hat(l) = Cl0 !initialize so that near-centerline approx for k works

k(1) = 0.205*Rtau**0.158
kw = ((sqgrt(l.0/ksp**2 + 4.0* (kappa*gamma)**2)-1.0/ksp)/ (2.0*Cr2*ksp**ar2))**2
x1 9.4*kr**(-0.152)

x2 x1*(1.0+0.000001)

call p_integrate k fromwall (x1,fl)

call p_integrate k fromwall (x1,fl) !Call twice so that fl is based off of
practical Re core

Re old = 0.0

if (iprint.eq.l) write(*,*) "relax = ",relaxation

iter =1

do while(((abs(fl).gt.1.0e-9).or. (abs(Re core-Re old)/Re core.gt.l.0e-
13)) .and. (iter.1t.100) .and. (x2.eq.x2)) ! secant method for finding root

Re_old = Re_core
call p_integrate k fromwall (x2,£f2)
slope = (f2-f1)/(x2-x1)
xnew = x2 - relaxation*f2/slope
if (abs ((x1-x2)/x1).1t.1.0e-15) xnew = x2
x1l = x2; x2 = xnew; fl = f2
if (iprint.eq.1l) write(*,*) iter,xnew,f2,k(1l),Re core,Cf4
iter = iter + 1
end do
niter = iter
relaxation = relaxation - 0.05
oiter = oiter + 1
end do
! call p log check()
end subroutine Phillips_kl

subroutine p_ vksp(iprint,ngood,error)
integer :: iprint,ngood,niter
real :: error,power

power = 3.0
ksp = 10**power
Re_bulk = 0.0



ngood = 1
error = 0.0
if (iprint.eq.1l) write(*,*) ' ngood kr ksp
g wall g center &
B - & Re bulk 4CF
Colebrook error &
& num_iter'’
do while (((Re _bulk<l.0e8) .and. (ngood<=nplot)) .or. (ngood<5))
call Phillips k1(0,niter)
vRebulk (ngood) = Re bulk
vCF (ngood) = Cf4
if ((Re_bulk<l.0e8) .or. (ngood<4)) error = error + (abs(func Colebrook(Re bulk)
vCF (ngood) ) /func_Colebrook (Re _bulk))**2 !new corrected
! if ((Re_bulk<1l.0e8) .or. (ngood<4)) error = error + (abs(func_Colebrook(Re_bulk)
vCF (ngood) ) /vCF (ngood) ) **2 !old

if(abs(g(l)).gt.1.0e-8)
the optimization will halt
if (iprint.eqg.l) write(*,*)

error

sgrt (-error)

'puts a NAN in the output so that

ngood, kr, ksp,q(m),q(1l),Re_bulk,Cf4, func Colebrook (Re bulk),error,niter

ngood = ngood + 1
power = power + 0.25

ksp = 10.0**power
end do
ngood = ngood - 2

end subroutine p_vksp

subroutine p log check()
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ypmin, logypmin, logrtau,dlog, yprealmin,dxi, xi, yp,dyp,ans0(4) ,ansl (4),du(4,4),dumnny (2) ,ump,

real
nut

integer i, lower

ypmin = 0.1

lower = (m-1)/100

logypmin = 1oglO (ypmin)

logrtau = loglO (Rtau)

dlog = (logrtau-logypmin)/real (m-1-1

yprealmin = logypmin- (lower-1)*dlog

ans0 (1) = k(m)

ans0(2) = g(m)

ans0(3) = 0.0 'wall value

ans0(4) = 0.0 !wall value

yp = 0.0

xi = 1.0

do i=m,2,-1
dyp = 10.0** (yprealmin+real (m-1)
dxi = 1.0-(yp+dyp)/Rtau - xi
call rn
ans0(:) = ansl(:)
yp = 10.0** (yprealmin+real (m-1i)*
xi = 1.0-yp/Rtau

end do

ump = -—-ansl (4)

Cf4 = 8.0/ (ump**2)

Re bulk = 2.0*ump/nu_hat
Re max = 2.0*ansl(3)/nu hat
nut = func p nut(0.0,ansl (1)

R c sgrt (2.0* (nu_hat+nut) *ans1(3))

Re_core = R c*Re_max

write(*,*) 'Log Grid Check:'

write(*,*) 1,g(m),ansl(2),ansl(1l),Re
end subroutine p log check

subroutine p update ()

ower)

*dlog) ypP

dlog)

_core,Cf4

))
), qa(i))
))

integer i

real xi,nut

do i=1,m
xi = r hat(i)
lambda (i) = func_p_lambda (xi)
nut = func p nut(xi,k(i))
nut hat (i) = nut
yplus (i) = Rtau*(1.0-r hat(i))
uprime (i) = func p uprime (xi, k(i
kprime (i) = func p kprime (xi, k(i
gprime (i) = func p gprime (xi, k(i
omega (1) = sqgrt(Clambda*k(i))/lambda (i)

end do

kprime (1) = 0.0

end subroutine p update

kta4 (func_rnkta p,4,dummy, xi,ans0,dxi,du,ansl)



subroutine p_integrate k fromwall (gwall, gcenter)
real :: gwall, gcenter,dxi,xi,ans0(4),ansl(4),du(4,4),dunny(2),unp

integer :: i
k(m) = kw 'k wall value
g(m) = gwall
u(m) = 0.0
ans0 (1) = k(m)
ans0(2) = g(m)
ans0 (3) 0.0 'wall value
ans0(4) = 0.0 !wall value
xi = 0.0
do i=m,2,-1
xi = r hat (i)
dxi = r hat(i-1)-r hat (i)
call rnkta4d
ans0(:) = ansl(:)
k(i-1) = ansl (1)
g(i-1) = ansl(2)
u(i-1) = ansl(3)
end do

gcenter = g(1l)

call p update ()

ump = -ansl (4)

Cf4 = 8.0/ (ump**2)

Re bulk = 2.0*ump/nu_hat
Re max = 2.0*u(l)/nu_hat

R c = sqrt(2.0*(nu_h5t+nut_hat(l))*u(l))

Re core = R c*Re max

end subroutine p integrate k fromwall

real function func_p nut(xi,k local)
real :: xi,k local

func_p nut = func p_ lambda(xi)*sqrt (k_local)

if (k_local.lt.0.0) func p nut =
return; end function func p nut

real function func_p lambda (xi)
real :: xi

func p_ lambda = min(Crl*Re core**arl, 2.0*kr*Cr2*ksp**ar2 + Cr3*Re_core**ar3*(1.0-

xi)**ard)
return; end function func p lambda

real function func rnkta p(n,i,dummy,xi,curr)

integer :: n,i
real :: xi,curr(n),dummy(2)
if(i.eq.l) then !k eqgn

func rnkta p = func p kprime (xi,curr(l),curr(2))
! if(xi.eq.0.0) func rnkta p = 0.0

elseif(i.eqg.2) then !g eqn

func rnkta p = func p gprime (xi,curr(1l)
elseif(i.eqg.3) then !u eqn

func rnkta p = func p uprime (xi,curr(1l)
else I'Cf ean

func_rnkta p = 2.0*curr(3)*xi
end 1if

return; end function func_ rnkta p

real function func_p kprime(xi,k_local,q local)

real :: xi,k local,q local,nut
nut = func_p nut(xi,k local)

func_p kprime = -g local/xi/(nu _hat/3.0 + 5.0/3.0*nut/sigmak)

if(x1i.1t.0.002) then

AA = 3.0*sigmak*clambda*nu_hat/(4.0*(sigmak*nu_hat+5.0*nut)*nut**2)
BB = 3.0*sigmak*nut/(8.0* (sigmak*nu_hat+5.0*nut) * (nu_hat+nut) **2)
func p kprime = 2.0%AA*k (1) **2*xi - 2.0* (BB-AA**2*k (1) **3) *xi**3

if (nut.eq.0.0) func p kprime
end if
return; end function func_p kprime

real function func_p_ gprime (xi,k_local)

real :: xi,k local,nut,lam
lam = func p lambda (xi)
nut = func p nut(xi, k local)

func_p gprime = nut*xi**3/(nu_hat+nut)**2 - xi*nu hat*Clambda*k local/lam**2

return; end function func p gprime

real function func p uprime(xi,k local)

real :: xi,k local,nut

(func_rnkta p,4,dummy, xi,ans0,dxi,du,ansl)
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nut = func_p nut(xi,k local)
func_p uprime = -xi/(nu_hat+nut)
return; end function func_p uprime

trrrrrrrrrrrrrrri il Viscosity Models PrPrbrbrprrrrrririrrrrrrrrrrrrrrrrrrrnnt
subroutine Viscosity Model ()
real :: dxi,xi,ans0(2),ansl(2),du(2,4),dunny(2),umnp

integer :: 1

Rtau = 0.5*ksp/kr
nu _hat = 1.0/Rtau

if (model.eqg.4) then !Kays and Crawford must find root
call KaysCrawford root ()

end 1if
u(m) = 0.0
ans0(1) = 0.0 'wall value
ans0(2) = 0.0 !wall value
xi = 0.0
do i=m,2,-1
xi = r hat (i)
dxi = r hat(i-1)-r hat (i)
call rnkta4 (func_rnkta v,2,dummy,xi,ans0,dxi,du,ansl)
ansO(:) = ansl(:)
u(i-1) = ansl (1)
end do
call v_update ()
ump = -ansl (2)

Cf4 = 8.0/ (ump**2)
Re bulk = 2.0*ump/nu_hat
Re max = 2.0*u(l)/nu_hat
R ¢ = sqgrt(2.0* (nu_hat+nut _hat (1)) *u(l))
Re core = R c*Re max
end subroutine Viscosity Model

subroutine v_update ()

integer :: i
real :: xi,nut
do i=1,m
xi = r hat(i)
nut = func v nut(xi)
nut hat (i) = nut
yplus (i) = Rtau*(1.0-r hat(i))
uprime (i) = -xi/(nu_hat+nut)
end do

end subroutine v_update

real function func rnkta v(n,i,dummy,xi,curr)

integer :: n,i
real :: xi,curr(n),dummy(2),nut
if(i.eq.l) then !u eqn
nut = func_v_nut (xi)
func_rnkta v = -xi/(nu_hat+nut)
else ICf ean
func rnkta v = 2.0*curr(1l)*xi
end 1if

return; end function func_rnkta v

real function func_ v nut (xi)
real :: xi
if (model.eqg.2) then !Nikuradse Eg. 7.35
func_v_nut = kappa* (Cl0+2.0*gamma*kr-(2.0*C10-0.5) *xi**2-(0.5-
Cl0) *xi**4) *xi** (0.5)
elseif (model.eq.3) then !Reichardt Eg. 7.36
func_v_nut = kappa/6.0* (1.0-xi+2.0*gamma*kr) * (1.0+x1i) * (1.0+2.0*xi**2)
elseif (model.eq.4) then !Kays and Crawford Eq. 7.42
func v _nut = func KC nut (xi)
elseif (model.eq.5) then !Log-Law Model Eqg. 7.43
func v _nut = kappa*xi* (1.0-xi+2.0*gamma*kr)
elseif (model.eqg.6) then !Blending Function suggested by Phillips
func_v_nut = func v_nut blend(xi)
end 1if
return; end function func_v_nut

real function func_v_nut_blend(xi)
real :: xi,rh,ksh,vyh,yc,vc,vcp,A2,A3,B1,B2
rh = xi
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ksh = 2.0*kr
vh 1.0-rh
yc 1.0-rc
A2 = 2.0*A0 - 0.5* (1.0 + a*gamma*ksh)

A3 = 0.5%(1.0 + a*gamma*ksh) - A0
vce = kappa* (A0 + gamma*ksh + Al*yc**2 - A2*rc**2 - A3*rc**4)*rc**(0.5+a)
vep = (0.5+a) *kappa* (A0+gamma*ksh+Al*yc**2-A2*rc**2-A3*rc**4) *rc** (a-0.5) -

2.0*kappa* (Al*yc + A2*rc + 2.0*A3*rc**3)*rc** (0.5+a)
Bl = 3.0*(vc-B0)/rc**2 - vcp/rc;
B2 = vcp/rc**2 - 2.0* (vc-B0) /rc**3
if(rh.ge.rc) then
func v _nut blend = kappa* (A0 + gamma*ksh + Al*yh**2 - A2*rh**2 -
A3*rh**4) *rh** (0.5+a)
else
func v _nut blend = BO + Bl*rh**2 + B2*rh**3
end if
end function func_v_nut blend

subroutine KaysCrawford root ()
real :: x1,x2,xnew,fl,f2,slope

ximax = 0.0
xl = 0.2
x2 = 0.4
fl = func_KC nut prime (x1)
do while (abs(fl) > 1.0e-12) !'secant method for finding root
£f2 = func KC nut prime (x2)
slope = (f2-f1l)/(x2-x1)
xnew = x2 - f2/slope
x1 = x2; x2 = xnew; fl = f2
end do
ximax = xnew; nutmax = func KC_nut (ximax)
end subroutine KaysCrawford root

real function func_KC_nut (xi)
real :: xi,F

if(xi.lt.ximax) then
func_KC_nut = nutmax

else

F = kappa* (1.0-xi+2.0*gamma*kr)

func KC nut = sqgrt((kr/ksp)**2 + F**2*xi) - kr/ksp
end 1if

if (func_KC nut.gt.kappa/6.0) func KC nut = kappa/6.0
return; end function func KC nut

real function func_KC_nut_ prime (xi)
real :: xi,F,Fp

F = kappa* (1.0-xi+2.0*gamma*kr)
Fp = -kappa

func_KC nut prime = (F**2 + 2.0*F*Fp*xi)/(2.0*sqrt ((kr/ksp)**2 + F**2*xi))

return; end function func_KC_nut prime

trrrrrrrirriir bbbl General Functions !PDDPDIULIULRIULRILLRRLLELILL

real function func_Colebrook (Re)

real :: Re,o0ld,new

if (Re<100.0) then
func Colebrook = 64.0/Re

else
new = (-1.8*1ogl0((kr/3.7)**(1.11) + 6.9/Re))**(-2.0)
old = 10.0
do while (abs ((new-old)/new) .gt. 1.0e-5)

old = new

new = (-2.0*1logl0(kr/3.7 + 2.51/(Re*sqrt(old))))**(-2.0)
end do
func Colebrook = new

end if
return; end function func Colebrook

real function maximum(n,vec)
integer :: i,n
real :: vec(n)
maximum = vec (1)
do i=1,n
if(vec (i) .gt.maximum) maximum = vec (1)
end do
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return

real f
in
re
mi
do

en
return

subrou

end su

end mo

; end function maximum

unction minimum (n, vec)
teger :: i,n
al :: vec(n)
nimum = vec (1)
i=1,n
if(vec(i).lt.minimum) minimum = vec (i)
d do
; end function minimum

tine rnkta4 (func,n,a,t0,y0,dt,dy,vy)

This single precision subroutine computes a value for the n component
vector y(t0+dt) from a known value of the vector y(t0)=y0. The solution
is based on a fourth order Runge-Kutta solution to the system of n
differential equations,

dy(i)/dt = £(i,a,t,y) i=1,2,3,...,n
where a 1s a coefficient array passed to the functuon f. The single

precision function subprogram f(i,a,t,y) must be provided by the user.
func is a function pointer to be called

integer :: n,j,1i
real :: a(*),t0,y0(n),dt,dy(n,4),y(n),c(4)
interface
real function func(n,i,a,t,y)
integer :: n,i
real :: a(*),t,y(n)

end function
end interface

c(l) =1.0/6.0
c(2) =1.0/3.0
c(3) = c(2)
c(4) = c(1)
do j=1,n
dy (j,1l)=func(n,j,a,t0,y0)*dt
y(3)=y0(3)+dy(3,1) /2.
end do
do j=1,n
dy (j,2)=func(n,j,a,t0+dt/2.,y) *dt
end do
do j=1,n
vy (3)=y0(3)+dy(3,2) /2.
end do
do j=1,n
dy (j,3)=func(n,j,a, t0+dt/2.,y) *dt
end do
do j=1,n
vy (3)=y0(3)+dy (3, 3)
end do
do j=1,n
dy (j,4)=func(n,j,a,t0+dt,y)*dt
end do
do j=1,n
vy (3)=y0(3)
do i=1,4
y(3)=y(3)+c(i)*dy(J,1)
end do
end do
return

broutine rnkta4

dule solver
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program main

us
im]
in

ID

e solver
plicit none
teger :: ID,ierror,irun

=0

irun = 3

ca

11 set_defaults()



call solver_allocate()
call create grid()

write (*,*)
write (*,*)
write(*,*) '|-———————— |
write(*,*) '| Fully Rough Pipe Flow Solver |
write(*,*) '| By: Doug Hunsaker July 2011 |
write(*,*) '|-———————— |
write (*,*)
write(*,*) 'Select model (',model,') : '
write(*,*) ' 1: Phillips k-lambda Model'
write(*,*) ' 2: Nikuradse (Eg. 7.35) —1|"
write(*,*) ' 3: Reichardt (Egq. 7.36) —-|"
write(*,*) ' 4: Kays/Crawford (Eq. 7.42) -]- Eddy Viscosity Models'
write(*,*) ' 5: Log-Law (Eq. 7.43) -|"
! write(*,*) ' 6: Blending Function (Eg. P.75) -|' !This function was suggested by
Phillips
read(5,"'(a)') rec
if(rec .ne. ' ') read(rec,*) model
if (model.eqg.1l) then
kappa = 0.404
gamma = 0.0341
write(*,*) 'Enter kappa (',kappa,') : '
read(5,"'(a)') rec
if(rec .ne. ' ') read(rec,*) kappa
write(*,*) 'Enter gamma (',gamma,') : '
read(5,"'(a) ') rec
if(rec .ne. ' ') read(rec,*) gamma
write(*,*) 'Enter sigmak (',sigmak,') : '
read(5,"'(a)"') rec
if (rec .ne. ' ') read(rec,*) sigmak
write(*,*) 'Enter C lambda (',Clambda,') : '
read(5,"'(a)') rec
if(rec .ne. ' ') read(rec,*) Clambda
write(*,*) 'Enter Crl (',Crl,'") : '
read(5,"'(a)') rec
if(rec .ne. ' ') read(rec,*) Crl
write(*,*) 'Enter arl (',arl,') : '
read(5,"'(a) ') rec
if(rec .ne. ' ') read(rec,*) arl
write(*,*) 'Enter Cr2 (',Cr2,'") : '
read(5,"'(a)') rec
if(rec .ne. ' ') read(rec,*) Cr2
write(*,*) 'Enter ar2 (',ar2,') : '
read(5,"'(a)') rec
if(rec .ne. ' ') read(rec,*) ar2
write(*,*) 'Enter Cr3 (',Cr3,') : '
read(5,"'(a)"') rec
if(rec .ne. ' ') read(rec,*) Cr3
write(*,*) 'Enter ar3 (',ar3,') : '
read(5,"'(a)') rec
if(rec .ne. ' ') read(rec,*) ar3
write(*,*) 'Enter ar4 (',ar4,') : '
read(5,"'(a) ') rec
if (rec .ne. ' ') read(rec,*) ar4
end 1if
if (model.eqg.6) then
write(*,*) 'Select case for constant values (',modelcase,') : '
write(*,*) ' O0: Enter specific constants'
write(*,*) ' 1: Empirical correlation for Nikuradse eddy viscosity (Eg. 7.35)"
write(*,*) ' 2: Empirical fit to Nikuradse Velocity Profile'
write(*,*) ' 3: Approximation for Reichardt eddy viscosity profile'
write(*,*) ' 4: Fit to Nikuradse and Reichardt eddy viscotiy data'
read(5,"'(a)') rec
if(rec .ne. ' ') read(rec,*) modelcase
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if (modelcase.eq.0) then

write(*,*) 'Enter kappa (', kappa,')
read(5,"'(a)"') rec
if(rec .ne. ' ') read(rec,*) kappa
write(*,*) 'Enter gamma (',gamma,')
read(5,"'(a)"') rec
if(rec .ne. ' ') read(rec,*) gamma
write(*,*) 'Enter A0 (',A0,'") : '
read(5,"'(a) ') rec
if(rec .ne. ' ') read(rec,*) AO
write(*,*) 'Enter A1 (',Al,'") : '
read(5,"'(a) ') rec
if(rec .ne. ' ') read(rec,*) Al
write(*,*) 'Enter a (',a,"') '
read(5,"'(a)"') rec
if(rec .ne. ' ') read(rec,*) a
write(*,*) 'Enter rc (',rc,') : '
read(5,"'(a)"') rec
if(rec .ne. ' ') read(rec,*) rc
write(*,*) 'Enter BO (',BO,'") : '
read(5,"'(a)') rec
if(rec .ne. ' ') read(rec,*) BO
elseif (modelcase.eqg.l) then
A0 = 0.345
Al = 0.0
a=20.0
rc = 0.0
BO = 0.0
elseif (modelcase.eq.2) then
A0 = 0.5+0.5*gamma*kr
Al = A0
a=20.5
rc = 0.0
BO 0.0
elseif (modelcase.eq.3) then
A0 = 0.297
Al = 0.0
a=20.0
rc = 0.57
BO = .0667
elseif (modelcase.eqg.4) then
A0 = 0.36
Al = 0.36
a=20.5
rc = 0.7
BO = 0.057
end if
end if
write(*,*) 'Select what to run (',irun,") '
write(*,*) ' 1: Single case for specific kr and ks+'
write(*,*) ' 2: Nikuradse kr values at constant ks+'
write(*,*) ' 3: Nikuradse, Shockling,
write(*,*) ' (#3 returns the % RMS error)'
read(5,"'(a)"') rec
if(rec .ne. ' ') read(rec,*) irun
if((irun.eq.l) .or. (irun.eq.2)) then
if (irun.eqg.l) then
write(*,*) 'Enter kr (', kr,') : '
read(5,"'(a)') rec
if(rec .ne. ' ') read(rec,*) kr
end if
write(*,*) 'Enter ks+ (', ksp,') '

read(5,"'(a)")

if (rec .ne.

elseif (irun.eq.3)

write (*,*)

read(5,"'(a)")

if (rec .ne.
end if

if (irun.eqg.l) then

call runl ()

elseif (irun.eq.2)

call run2()

elseif (irun.eq.3)
call run3(ID)

rec
') read(rec,*) ksp
then
'Enter a case ID number

rec

') read(rec,*) ID

then

then

(used by the optimization routine)

399

and other kr values over a range of ks+>1000"



end if
call solver deallocate()

end program main
|
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subroutine runl ()
use solver
implicit none
integer :: ierror,i
real :: local velocity(m,1), local viscosity(m,1)

character* (50) :: filenamel,filename2

100 FORMAT (1X, 1000ES25.15)
filenamel 'viscosity.txt'
filename2 'velocity.txt'

open (unit = 10, File = filenamel, status="replace", action =
ierror)

open (unit = 20, File = filename?2, status="replace", action =
ierror)

write (10,%*) ' y/R kr=',kr,"' ks+=',ksp

write (20, *) ' y/R kr=',kr,' ks+=',ksp

call run case(local viscosity(:,1),local velocity(:,1),1)

do i=m,1,-1

write(10,100) 1.0-r hat(i),local viscosity(i,:)
write(20,100) 1.0-r hat(i),local velocity(i,:)
end do
close (10)
close (20)

end subroutine runl
|

"write", iostat =

"write", iostat =
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subroutine run?2 ()
use solver
implicit none

integer :: ierror,i

real :: local velocity(m,6), local viscosity(m,6), krvals(6)
character* (50) :: filenamel, filename2

krvals(l) = 0.034

krvals(2) = 0.016

krvals(3) = 0.0083

krvals(4) = 0.0039

krvals(5) = 0.0020

krvals(6) = 0.00098

100 FORMAT (1X, 1000ES25.15)

filenamel = 'viscosity.txt'

filename2 = 'velocity.txt'

open(unit = 10, File = filenamel, status="replace", action =
ierror)

open (unit = 20, File = filename2, status="replace", action =
ierror)

write (10, *) ' y/R kr=0.034
kr=0.0083 &
kr=0.0039 kr=0.0020
write (20, %) ' y/R kr=0.034
kr=0.0083 &
kr=0.0039 kr=0.0020
do i=1,6
kr = krvals (i)
call run case(local viscosity(:,1i),local velocity(:,1),1)
end do

do i=m,1,-1

write (10,100) 1.0-r hat(i),local viscosity(i,:)
write(20,100) 1.0-r hat(i),local velocity(i,:)
end do
close (10)

close (20)

"write", iostat =

"write", iostat =

.016

.00098"
.016

.00098"
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end subroutine run2
|
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subroutine run3 (ID)
use solver
implicit none

integer :: ierror,i,ID,ngood,total
real :: local velocity(m,1), local viscosity(m,1), krvals(8)
real :: fitness,power,Ni rough
character* (50) :: filename
krvals(l) = 0.034

krvals(2) = 0.016

krvals(3) = 0.0083

krvals(4) = 0.0039

krvals(5) = 0.0020

krvals(6) = 0.00098

krvals(7) = 0.00030

krvals (8) 0.000058

100 FORMAT (1000ES25.15)
write (filename, *) ID

filename = 'case '//trim(adjustl(filename))//'.txt'
open (unit = 10, File = filename, status="replace", action = "write", iostat = ierror)
write (10,*) ' kr Re bulk 4CF
Nikuradse_ FullyRough Colebrook'
fitness = 0.0
total = 0
do i=1,8
power = 3.0
kr = krvals (i)
Ni rough = (2.0*1ogl0(3.7/kr))**(-2.0)
ngood = 0

do while ((Re bulk<1.0e8).or. (ngood<3))
ksp = 10**power
call run case(local viscosity(:,1),local velocity(:,1),0)
if ((Re_bulk<l.0e8) .or. (ngood<3)) then

Ni rough = func Colebrook(Re bulk) !This line should be commented out in the future, but
in the original work, the fitness

!was based on the deviation from the Colebrook equation, not the Nikuradse number. So
leaving that line uncommented

!yields results from the original work, where in the future, it should be compared to the
Nikuradse number

fitness = fitness + (abs(Ni rough-Cf4)/Ni rough) **2
ngood = ngood + 1
power = power + 0.25
write (10,100) kr,Re bulk,Cf4,Ni rough, func Colebrook (Re bulk)
end 1if
end do
! write (10,100)
total = total + ngood
end do
close (10)

fitness = 100.0*sqgrt (fitness/real (total))

write (filename, *) ID

filename = 'fitness '//trim(adjustl(filename))//'.txt'

open(unit = 20, File = filename, status="replace", action = "write", iostat = ierror)
write(20,*) fitness,' = % RMS Error'

close (20)

write(*,*) '$ RMS Error = ', fitness

end subroutine run3
|

L N ...
subroutine run case(local viscosity,local velocity,iprint)

use solver

implicit none

integer :: niter,iprint

real :: local viscosity(m),local velocity (m)

if (model.eqg.1l) then

call Phillips kl (iprint,niter)



else
call Viscosity Model ()
end if -
local viscosity(:) = nut hat(:)
local velocity(:) = u(:)
if (iprint.eg.l) then
write(*,*) '—-——-—-—-mm '
write(*,*) ' kr = ', kr
write(*,*) ' Re bulk = ',Re bulk
write (*,*) ' 4*Cf = ',Cf4
write(*,*) ' Nikuradse 4*CF = ', (2.0*1ogl0(3.7/kr))**(-2.0)
write(*,*) ' Colebrook = ', func Colebrook (Re_bulk)
write(*,*) 'Nikuradse Num (Ni) = ',2.0*1ogl0(3.7/kr)-1.0/sqrt(Cf4)
end if

end subroutine run_ case
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subroutine set defaults()
use solver
implicit none

model
modelcase

kr

ksp
nu_hat
Rtau

beta

1
1

0
1
2
1

1

.016
000.0
.0*kr/ksp
.0/nu_hat

.000002

!Historical values: kappa = 0.40, gamma = 0.0334
!'Values suggested by Phillips: kappa = 0.404, gamma = 0.0341

kappa = 0.4
gamma = 0.0334
Cl0 = 0.345
'Phillips k-1 Model Constants
sigmak = 0.1
Clambda = 0.0004
Crl = 0.03
arl = 7.5443542322312E-03
Cr2 = 4.9611260553165E-03
ar2 = 6.5146629434291E-03
Cr3 = 1.6958276273121E-01
ar3 = 2.1743956148901E-03
ar4 = 1.1194408014358E+00
'Eddy Viscosity Model Constants
A0 = 0.345
Al = 0.0
a=20.0
rc = 0.0
BO = 0.0
m = 3201
nplot = 51
end subroutine set defaults

L T e I I A I A I



APPENDIX P

OPTIMIZATION CODE
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The following Fortran code can be used in conjunction with an a.out executable to optimize input

parameters.

module bfgs
implicit none
integer :: nvars
integer :: diff scheme !1 = central difference. 0 = forward difference
integer :: iter
integer :: nsearch

real :: default_alpha
real :: diff delta
real :: fitness curr
real :: stop delta
real :: alpha

integer,allocatable :: opton(:)
real,allocatable :: grad(:)
real,allocatable :: wvars(:)
real,allocatable :: s(:)

contains

subroutine opt allocate()
allocate (opton (nvars)
allocate (grad(nvars))
allocate (vars (nvars))
allocate (s (nvars))
opton = 0; vars = 0.0; grad = 0.0; s = 0.0
end subroutine opt allocate

)

subroutine opt deallocate ()
deallocate (opton)
deallocate (grad)
deallocate (vars)
deallocate(s)

end subroutine opt deallocate

subroutine opt run()

integer :: i iter,o iter,i,ierror

real :: vars orig(nvars),vars old(nvars),grad old(nvars)

real :: dx(nvars,1l),NG(nvars,1l),N(nvars,nvars),gamma (nvars,l)
real :: mag_dx,denom

character (LEN=50) : : fn, command
110 format (1X, I10, 100ES22.13)

fn = 'optimization.txt'
open (unit = 1001, File = fn, action = "write", iostat = ierror)
write (1001,*) 'iter o it i it sigma_k Crl
Cr2 &
&ar?2 Cr3
ar4d &
&kr Fitness
mag (dx) '
close (1001)
open (unit = 1001, File = 'gradient.txt', action = "write", iostat = ierror)
write (1001,*) 'iter o it i it sigma k Crl

Cr2 &

arl
ar3

alpha

arl



&ar2 Cr3
ard &
&kr Fitness
mag (dx) '
close (1001)
command = 'rm input * output * case * fitness *'

call system(command)

write(*,*) 'Beginning Optimization Routine'
write(*,*) 'Optimization Variables: '
do i=1,nvars

write(*,110) opton(i),vars(i)

end do

write(*,*) ' default alpha ',default alpha
write(*,*) 'differenceing delta ',diff delta
write(*,*) 'differencing scheme : ',diff scheme
write (*,*) ' stopping delta ',stop delta
write(*,*) 'simultaneous search ', nsearch

o iter =0

mag dx = 1.0
do while(mag dx > stop delta)
vars orig = vars
i iter = 0
do while(mag dx > stop_delta)
call gradient()
call append file(fn,o iter,i iter,mag dx)

if(i_iter .eq. 0) then !set N=identity

N = 0.0
do i=1,nvars
N(i,i) = 1.0 !N = identity matrix
end do
else
dx(:,1) = vars(:) - vars_old(:)
gamma (:,1) = grad(:) - grad old(:)
NG(:,1) = matmul(N,gamma(:,1)
denom = dot product (dx(:,1),gamma(:,1))

! N = N + matmul (dx-NG, transpose (dx-NG) ) /dot_ product (dx(:,1)-

NG(:,1),gamma(:,1)) !Rank One Hessian Inverse Update

1
N N +
(1.0+dot_product (gamma (:,1),NG(:,1))/denom) * (matmul (dx, transpose (dx) ) /denom)
Update
& - ( matmul (dx,matmul (transpose (gamma) ,N)) +
matmul (NG, transpose (dx))) /denom
end if
s(:) = -matmul (N, grad)
vars_old = vars
grad old = grad
call line search()
dx(:,1) = vars(:) - vars_old(:)
mag _dx = sqrt(dot product(dx(:,1),dx(:,1)))
i iter = i iter + 1
iter = iter + 1
end do
call append file(fn,o iter,i iter,mag dx)
dx(:,1) = vars(:) - vars orig(:)
mag dx = sqrt(dot product(dx(:,1),dx(:,1)))
o _iter = o iter + 1
end do

call sleep(l)

fitness curr = case fitness single(0)

call append file(fn,o iter,i iter,mag dx)
end subroutine opt_run

subroutine write bfgs file(fn)
character (50) :: fn
integer :: ierror
110 format (100ES22.13)
120 format (100I22)

ar3

alpha

& !BEFGS

404



405

fn = trim(adjustl (fn))

write(*,*) 'writing ', fn
open (unit = 200, File = fn, status = "replace", action = "write", iostat = ierror)
write (200,*) nvars,' num vars'

write (200,*) 'Variable names can be inserted on this line'
write (200,110) wvars(:)

(

(
write (200,120) opton(:)
write (200, *) default alpha, ' default line search alpha'
write (200,*) diff delta, ' delta step size used for gradient calculations'
write(200,*) diff scheme,’ differencing scheme (l=central diff, O=forward diff)'
write (200,*) stop delta,’ stop delta'
write (200, *) nsearch,' number of simultaneous cases in the line search'

close (200)
end subroutine write bfgs_ file

subroutine append file(fn,o iter,i iter,mag dx)

character (50) :: fn

real :: mag dx

integer :: o iter,i iter,ierror

110 format (3I5, 100ES22.13)

write(* ,110) iter,o iter,i iter,vars(:),fitness curr,alpha,mag dx

open(unit = 1001, File = fn, status = "OLD", access = "append", iostat = ierror)

write(1001,110) iter,o iter,i iter,vars(:),fitness curr,alpha,mag_dx

close (1001)

open (unit = 1001, File = 'gradient.txt', status = "OLD", access = "append", iostat =
ierror)

write(1001,110) iter,o iter,i iter,grad(:),fitness curr,alpha,mag dx

close (1001)

end subroutine append file

real function case fitness(case num)
integer :: case num,ierror
character (50) : : filename

write (filename, *) case num

filename = 'fitness '//trim(adjustl(filename))//'.txt'

open (unit = 10, File = filename, action = "read", iostat = ierror)
read(10,*) case fitness

close (10)

end function case fitness

subroutine forward diff ()

integer :: i

character (50) :: command
real :: vars orig(nvars)
vars_orig(:) = vars(:)
grad = 0.0

call start case(0)
do i=1,nvars
if (opton(i).eq.1l) then

vars (i) = vars(i) + diff delta
call start case(i)
vars(:) = vars orig(:)

end 1if

end do

do while(.not.all done())
call sleep(l)

end do
call sleep(l) lone more time to ensure all files are totally written
fitness curr = case_fitness(0)
do i=1,nvars
if (opton (i) .eq.l) grad(i) = (case fitness(i) - fitness curr)/diff delta
end do
call sleep(l)
command = 'mv case 0.txt curr case.txt'
call system(command)
command = 'rm input * output * case * fitness *'

call system(command)



end subroutine forward diff

subroutine gradient ()
real :: temp(nvars)
call forward diff ()
if (diff_ scheme.eqg.l) then
temp (:) = grad(:)
diff delta = -diff delta
call forward diff ()

grad(:) = 0.5*(grad(:) + temp(:))
diff delta = -diff delta
end 1if

end subroutine gradient

subroutine line search()

real :: local fitness,fl,f2,£3,al,a2,a3,da

real :: xval(0O:nsearch),yval(0O:nsearch),vars orig(nvars)

integer :: i,j,mincoord

write(*,*) 'line search ————————————
alpha = max(default_alpha,l.l*stop_delta/sqrt(dot_product(s(:),s(:))))

vars orig(:) = vars(:)

xval (0) = 0.0; yval(0) = fitness_ curr

do

call run mult cases(nsearch,alpha,vars orig,xval(l:nsearch),yval(l:nsearch))
do j=0,nsearch
write(*,*) j,xval(j),yval(j)

end do
if(yval(l)>yval(0)) then
if (alpha*sqgrt (dot product(s(:),s(:))) < stop delta) then
write(*,*) 'Line search within stopping tolerance : alpha = ',alpha
return
end 1if

write(*,*) 'Too big of a step. Reducing Alpha'
alpha = 0.5*alpha

else
mincoord = minimum coordinate (nsearch+l,yval)-1
write(*,*) 'mincoord = ',mincoord
if (mincoord.ne.nsearch) exit
alpha = 2.0*alpha

end 1if
end do
al = xval (mincoord-1)
a2 = xval (mincoord)
a3 = xval (mincoord+1)
fl = yval (mincoord-1)
f2 = yval (mincoord)
£f3 = yval (mincoord+l)
da = a2-al
alpha = al+da* (4.0*£f2-£3-3.0*f1)/(2.0*(2.0*£2-£3-f1))
if ((alpha > a3).or.(alpha < al)) then !For parabolas whose min is not in bounds
alpha = a2
if(f2 > fl1) alpha = al
end if
vars(:) = vars_orig(:) + alpha*s(:)
write(*,*) 'final alpha = ',alpha

end subroutine line_search

integer function minimum coordinate (num,vals)

integer :: num,i

real :: vals(num),minval
minval = vals (1)

minimum coordinate = 1

do i=2,num
if (vals (i)<minval) then
minval = vals (i)
minimum coordinate = i
else
exit
end if
end do



end function minimum coordinate

subroutine run mult cases (ncases,start alpha,vars orig, x,y)
integer :: ncases,i
real :: start alpha,vars_orig(nvars)
real ::x(ncases),y(ncases)
character (50) :: command

do i=1,ncases

x (i) = real(i)*start alpha
vars(:) = vars_orig(:) + x(i)*s(:)
call start case(i)

end do

vars(:) = vars_orig(:)

do while(.not.mult done (ncases))
call sleep(1l)
end do
call sleep(1l) !one more time to ensure all files are totally written

do i=1,ncases

y(i) = case fitness(i)
end do
call sleep(l)

command = 'rm input * output * case * fitness *'
call system(command)
end subroutine run mult cases

logical function mult done (ncases)
implicit none
integer :: ncases,ios(ncases),i
character (50) : : filename

do i=1,ncases
write(filename, *) i

filename = 'fitness '//trim(adjustl(filename))//'.txt'
open (i*100,file=filename, status='old',iostat=ios(i))
end do
if (count (ios==0)==size (ios)) then
mult done = .true.
else
mult done = .false.
end if

do i=1,ncases
if (ios (i) /=0) cycle
close (1i*100)
end do
end function mult done

real function case fitness single(case num)
integer :: case num,ierror
character (50) : : filename, command

call start case(case num)
do while(.not.one done(case num))
call sleep(l)

end do

call sleep(l) lone more time to ensure file is totally written
case fitness single = case fitness(case num)

command = 'rm input * output * case * fitness *'

call system(command)
end function case_fitness_single

subroutine start case(case num)
implicit none
integer :: case num,ierror,i
character (50)::file i,file o, command

write(file o,*) case num
file i = 'input '//trim(adjustl(file o))//'.txt'
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file o = 'output '//trim(adjustl(file o))//'.txt'
open(unit = 10, File = file i, status="replace", action = "write", iostat = ierror)
do i=1,nvars

write (10,*) wvars (i)

end do

write (10,*) case num

close (10)

command = './a.out < '//trim(adjustl(file i))//' > '//trim(adjustl(file o))//"' &'

! write (*,*) command
call system(command)
end subroutine start case

logical function one done (case num)
implicit none N
integer::case num, ios
character (50) : : filename

write (filename, *) case num

filename = 'fitness '//trim(adjustl(filename))//'.txt'
open (100, file=filename, status='old',iostat=1ios)
if (ios==0) then
one done = .true.
close (100)
else
one done = .false.
end if

end function one done

logical function all done ()
implicit none
integer ::ios(nvars+l),i
character (50) : : filename

!Check for 0_ file
open (100, file="fitness 0.txt",status='old',6 iostat=ios(nvars+l))
if (ios (nvars+1)==0) close (100)

do i=1,nvars
if (opton(i).eq.1l) then
write(filename, *) 1

filename = 'fitness '//trim(adjustl(filename))//'.txt'
open (1*100, file=filename,status='old',iostat=ios (1))
else
ios (1)=0
end if
end do
if (count (ios==0)==size (ios)) then
all done = .true.
else
all done = .false.
end if

do i=1,nvars
if(ios (i) /=0) cycle
close (1*100)
end do
end function all done

end module bfgs

program main

use bfgs

implicit none
character* (50) :: rec,fn
integer :: i,ierror
!Defaults

iter = 0

default alpha = 1.0e-8
diff delta = 1.0e-8
diff scheme = 1

stop delta = 1.0e-12
nsearch = 8
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fn = 'none'
write(*,*) 'Enter filename (none=use interactive console instead of file) (', fn,"' )
read(5,"'(a)') rec
if(rec .ne. ' ') read(rec,*) fn
if (fn.ne.'none') then
open (unit = 10, File = fn, action = "read", iostat = ierror)
read (10, *) nvars
read (10, *) !names of variables

call opt allocate()

read (10, *) wvars(l:nvars)
read (10, *) opton(l:nvars)
read(10,*) default alpha
read(10,*) diff delta
read(10,*) diff scheme
read(10,*) stop_delta

read (10, *) nsearch

close (10)
else
write(*,*) 'Enter number of variables :'
read(5,"'(a)') rec
if(rec .ne. ' ') read(rec,*) nvars

call opt allocate()

do i=1,nvars

write(*,*) 'Enter variable ',i,' :'
read(5,"'(a)') rec
if(rec .ne. ' ') read(rec,*) vars(i)
write(*,*) 'Optimize this variable? (l=yes,0O=no) (',opton(i),"') :'
read(5,"'(a)') rec
if (rec .ne. ' ') read(rec,*) opton(i)
end do
write(*,*) 'Enter default line search alpha (',default alpha,') :'
read(5,"'(a)') rec
if (rec .ne. ' ') read(rec,*) default alpha
write(*,*) 'Enter delta step size used for gradient calculations (',diff delta,’')
L}
read(5,'(a)') rec
if(rec .ne. ' ') read(rec,*) diff delta

write(*,*) 'Enter differencing scheme (l=central diff, O=forward diff)
(',diff scheme,') :'

read(5,"'(a) ') rec
if(rec .ne. ' ') read(rec,*) diff scheme
write(*,*) 'Enter stop delta (',stop delta,') :'
read(5,"'(a)') rec
if(rec .ne. ' ') read(rec,*) stop delta
write(*,*) 'Enter number of simultaneous cases in the line search (',nsearch,"')
read(5,"'(a)"') rec
if(rec .ne. ' ') read(rec,*) nsearch
end if

fn = 'bfgs start.txt'; call write bfgs file(fn)
call opt run()
fn = 'bfgs end.txt'; call write bfgs file(fn)

call opt deallocate()
end program main
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APPENDIX Q

CLOSURE COEFFICIENT EVALUATION ON THE FLAT

The following code can be used to evaluate the closure coefficients on the flat given a value for o,.

subroutine Flat(sigma k,C r2,a r2,C r3,a r3,a r4)
implicit none I B n a n
real sigma k,C r2,a r2,C r3,a r3,a r4
if (sigma k.le.0.10)then
a r2=-0.048511567*sigma_k**2 + 0.001955827*sigma k + 0.012102649
else if (sigma k.1lt.1.75)then
a r2=-0.000206593*sigma_k**4 + 0.004754408*sigma_k**3 - 0.018765359*sigma_k**2 &
-0.001559875*sigma _k + 0.012141171
else if(sigma k.le.2.00)then
a r2=-0.028076632*sigma_k + 0.024614722
else
a r2=-0.000061468*sigma_k**4 + 0.000684628*sigma_k**3 - 0.000750473*sigma_k**2 &
-0.031056442*sigma_k + 0.029083802
end if
if (sigma k.le.0.10)then
a r3=0.010523059*sigma_k**2 - 0.004315527*sigma_k + 0.005620078
else if(sigma k.lt.1. 75) then
a r3=-0.000357793*sigma_k**4 + 0.003598258*sigma_k**3 - 0.010812353*sigma_k**2 &
-0.000967269*sigma k + 0.005489307
else if (sigma k.le.2.00)then
a r3=-0.013340859*sigma_k + 0.009956552
else
a r3=-0.000003988*sigma k**4 - 0.000034537*sigma k**3 + 0.001537985*sigma k**2 &
-0.018724532*sigma_k + 0.014912497
end 1if
if (sigma _k.le.0.10) then
a r4=-0.01893511*sigma_k**2 - 0.00127611*sigma k + 1.13352452
else if(sigma k.lt.1.75)then
a r4=-0.00053239*sigma _k**4 + 0.00534831*sigma k**3 - 0.01699619*sigma k**2 &
-0.00109238*sigma_k + 1.13347404
else if(sigma k.le.2.00) then
a r4=-0.02288151*sigma k + 1.14322147
else
a r4=-0.00001166*sigma k**4 + 0.0001342*sigma k**3 + 0.00070418*sigma k**2 &
-0.02678935*sigma k + 1.14733412
end 1if
if (sigma_k.1t.0.10) then
C r2=0.00173260*sigma k**(-0.49813563)
else if(sigma k.le.0.25)then
C r2=0.00179141*sigma k**(-0.48401989)
else if(sigma k.le.2.00)then
C r2=0.00179141*sigma_k**(-0.48401989) + 0.0000271629*sigma k**4 -
0.0001736396*sigma k**3 &
+0.0003974614*sigma_k**2 + 0.0000754681*sigma _k - 0.0000412428
else
C r2=0.00179141*sigma k**(-0.48401989) + 0.0000002950*sigma k**4 -
0.0000011327*sigma_k**3 &
-0.0000292549*sigma_k**2 + 0.0005645091*sigma _k - 0.0002627585
end 1if
if(sigma k.1t.0.10) then
C r3=0.0558450*sigma k** (-0.4986960)
else if (sigma k.le.0.25)then
C r3=0.0571034*sigma_ k** (-0.4892824)
else if(sigma k.le.2.00)then
C r3=0.0571034*sigma_k** (-0.4892824) + 0.00073867*sigma_k**4 - 0.00434008*sigma_k**3 &
+0.00809117*sigma_k**2 + 0.00185242*sigma _k - 0.00090757
else
C r3=0.0571034*sigma k**(-0.4892824) - 0.00002129*sigma k**4 + 0.00039801*sigma k**3 &
-0.00311039*sigma k**2 + 0.01389982*sigma k - 0.00594463
end 1if
return
end
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