Evaluation of a Proprietary Slow-Release Oxytocin Formulation on Corpus Luteum Function in Mares

Brendan Sarnecky
Dirk K. Vanderwall, Holly M. Mason, Stephen M. Kirschner, Benson Ambrose, Theda L. Parker

Utah State University
ANIMAL, DAIRY & VETERINARY SCIENCES
Mare Estrous Cycle

- 21 days
 - 1 week estrus (i.e., “heat”)
 - Follicular phase
 - Follicle- Estrogen
 - 2 weeks diestrus
 - Luteal phase
 - Corpus Luteum (CL)- Progesterone
- Uterus
 - Prostaglandin (PGF2α)
 - Measured as PGFM
 - Luteolysis
- Posterior Pituitary- Oxytocin
 - Role in luteolysis

Adapted from Neely, 1985
Mare Estrous Cycle

Images of Ultrasonographic Morphology

Follicle

Corpus Luteum

Equine Estrous Cycle

![Graph showing the changes in Progesterone and PGFM levels over days after ovulation.](Image)

- **Progesterone**
- **PGFM**

- Ovulation
- Days After Ovulation

Adapted from Neely, 1985
Estrous Behavior (i.e., in heat)

Courtesy of Dr. Vanderwall

The Horse Magazine: March 2017
Estrous Behavior (i.e., in heat)

Courtesy of Dr. Vanderwall

The Horse Magazine: March 2017
Estrus Suppression in the Performance Mare

The Horse Magazine: March 2017
Methods of Estrus Suppression

• Administration of exogenous progesterone/progestins
 ▫ E.g., Oral Altrenogest
• Extending the functional span of the corpus luteum (CL)
 ▫ Intrauterine glass ball
 ▫ Oxytocin
Methods of Estrus Suppression

- Administration of exogenous progesterone/progestins
 - I.e. Oral Altrenogest
- Extending the functional span of the corpus luteum (CL)
 - Intrauterine glass ball
 - Oxytocin

Courtesy of Dr. Vanderwall
Oxytocin

- Released from the posterior pituitary gland
- Pulsatile nature
- Very short half-life
- Functions
 - Milk let-down
 - Stimulates uterine contractions
 - Oxytocin-Prostaglandin luteolytic pathway
- Therapeutic use to prolong CL function
 - 8-Day Protocol (1x daily: days 7-14)
 - Slow-release Oxytocin (SR-OT: two treatments)
Original Research

Evaluation of a Proprietary Slow-Release Oxytocin Formulation on Corpus Luteum Function in Mares

Brendan A. Sarneckya, Dirk K. Vanderwalla,\ast, Holly M. Masona, Stephen M. Kirschnerb, Benson Ambrosea, Theda L. Parkera

a Department of Animal, Dairy and Veterinary Sciences, School of Veterinary Medicine, Utah State University, Logan, UT
b Wildlife Pharmaceuticals, Inc, R & D Department, Windsor, CO
Hypothesis

• A two-injection proprietary SR-OT protocol will deliver an appropriate amount of oxytocin for a sufficient duration of time to inhibit luteolysis

Objectives

• Determine if IM administration of 2,400 IU of SR-OT once on days 7 and 10 after ovulation would prolong CL function in treated mares compared to a non-treated control group
• Reduce number of injections from previous aqueous oxytocin methods
Ovulation
Detected via trans-rectal ultrasound/palpation

Collect Blood
3 times per week
Until day 50

Day 0

Day 7 SR-OT
2400 IU (1 CC) Intramuscular

Day 10 SR-OT
2400 IU (1 CC) Intramuscular

Groups
Control n=8 mares
SR-OT Treatment n=8 mares

Serum Progesterone
concentration evaluated via chemiluminescent enzyme immunoassay (Immulite Progesterone)
Results

- 0/8 control mares with prolonged luteal function*
- 6/8 treated mares with prolonged luteal function*

Prolonged luteal function defined as >1 ng/ml for over 30 days
- * Prolonged function compared with Fisher’s exact test; P < .01
Conclusions

- SR-OT administered on days 7 and 10 is an effective method of prolonging luteal function
- This proprietary SR-OT formulation provides a 75% reduction in number of treatments needed in previous aqueous oxytocin methods
Acknowledgements

- Utah Agricultural Experiment Station (Project # UTA01157)
- Wildlife Pharmaceuticals, Windsor, CO.
- JoAnna Buschmann, Ashlee Buist, Sherrie Petty, and Bettina Conrad
Conclusions

• SR-OT administered on days 7 and 10 is an effective method of prolonging luteal function
• This proprietary SR-OT formulation provides a 75% reduction in number of treatments needed in previous aqueous oxytocin methods
Supporting Slides
Pro- vs Anti-Luteolytic Functions of Oxytocin

Pro-Luteolytic
- Oxytocin after day 10
 - Binds to oxytocin receptor at endometrial epithelium
 - Stimulates secondary messengers associated with PGF2α synthesis
 - COX II
 - PGF2α circulates through the blood stream and targets the CL
 - CL undergoes luteolysis

Adapted from Neely, 1985
Pro- vs Anti-Luteolytic

Anti-Luteolytic
- Oxytocin administered before day 10 and continued
 - Binds to oxytocin receptor at endometrial epithelium
 - Lack of secondary messenger
 - Inhibits the upregulation of secondary messengers
 - Specifically COX II
 - No “spontaneous” luteolysis
 - CL has prolonged function
 - Up to 90 days

Adapted from Neely, 1985