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Abstract 

Pulmonary hypoplasia is a life threatening 
condition in newborns resulting from a generalized 
underdevelopment of the lungs. The lung disorder is 
usually secondary to conditions outside the lung such 
as thoracic volume reduction. The precise mechanism 
by which thoracic volume reduction prevents normal 
lung development and growth is unknown . As a 
model for human pulmonary hypoplasia associated 
with lethal skeletal dysplasia, a stereoscopic SEM 
study of chondrodystrophic (cha) fetal mouse lungs 
fixed by intratracheal instillation with 3% 
glutaraldehyde was conducted. In comparison with 
lungs of phenotypically normal littermates, the 
mutant's lungs appeared unaffected with respect to 
structure of major bronchiolar airways and in the 
morphology and amount of surfactant precursors 
(multilamellar bodies). The primary saccules within 
the mutant's lungs were significantly smaller and 
more numerous relative to those of normal littermates. 
These observations provide evidence that the lungs for 
this type of pulmonary hypoplasia are ultrastructurally 
normal with respect to upper airways, but that the 
primary sacc ules , or units of function in neonatal 
breathing in the rodent, are significantly smaller. This 
effect, however, does not appear to inhibit 
differentiation of type II pneumocytes or production 
of surfactant. 
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Introduction 

Pulmonary hypoplasia refers to a generalized 
underdevelopment of lung tissue due to inhibited 
cellular proliferation and decreased expansion of the 
future alveolar space. Clinically this disorder is 
considered present if the neonate's lung :body-weight 
ratio is less than 67% of normal and if the volume of 
potential air space for oxygen exchange, estimated 
histologically, is less than normal 5·31·52·102·'°8. This 
condition has been reported associated with other 
congenital malformations such as diaphragmatic 
herni a J.11.1s.2s.Jo.ss.s9, feta! ak i ne si a9,21.6s.69, 
oligohydramnios 35

.4
5·78·83·'°5, prune-belly syndrome 48, 

pleural effusions 10·17
.97, anencephalus 76·84

·
85 certain 

chondrodystrophies 24·25
•
36·87·'°7

, or any combination of the 
aforementioned anomalies 62·80. The severity of 
pulmonary hypoplasia is usually proportional to the 
severity of the associated anomaly 18·37·60·82. 

There are more than eighty genetically distinct 
forms of skeletal dysplasia observed in humans 86·98, 13 
of which are lethal 24·25

•
87

• Some of the more common 
lethal short-limb dwarfisms are thanatophoric 
dysplasia 54·63, short-rib polydactyly syndromes, and 
achondrogenesis. These chondrodystrophies decrease 
the thoracic cavity volume which is thought to cause 
secondary pulmonary hypoplasia that frequently lead s 
to respiratory failure and ultimately death 25

•
34

•
63·64

·
80. 

Only a few cases of pulmonary hypoplasia associated 
with chondrodystrophy have been reported in humans 
and these have only been studied at the clinical 
levels.24,34_ 

At the experimental level studies have been 
carried out in which surgically induced diaphragmatic 
hernia , oligohydramnios, fetal akinesia, pleural 
effusions and diminished fetal breathing have been 
shown to cause secondary pulmonary 
h ypoplasia I o,29,J2.JJ,42,4J.65.69-11.11.1s.1 oJ. w9. These studies 
support the hypothesis that both fetal breathing and 
sufficient thoracic volume are necessary for normal 
lung development. It is possible that the confined 
thoracic space inhibits the development of the 
bronchial tree and alveoli which would contribute to 
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the respiratory distress experienced by newborns with 
pulmonary hypoplasia 51

• 

Another possible consequence of thoracic 
volume reduction is an effect on the production and 
secretion of surfactant, a phospholipid that coats the 
alveolar surface 13

•
49

•
57

•
58

• Surfactant lowers the surface 
tension within the alveoli, allowing them to remain 
open20

·
22

Ao.
53

.
72

•
73

•
79

.
96

• Atelectasis, or defective expansion 
of the alveoli, is often associated with newborns who 
for a number of reasons do not produce enough 
surfactant 12

•
44

•
75

• Surfactant is also thought to keep the 
blood-air barrier of the lung relatively free of surface 
water, thereby increasing the clearance rate of foreign 
particles and allowing better gas exchange 44

•
74

•
75

• 

Surfactant is synthesized and assembled as lamellar 
bodies within type II pneumocytes 6,19.38.53.55.56.s9,66,90_ 

These cells become differentiated during the 
pseudoglandular period of development at 
approximately day 14 of gestation in the mouse and 
during week 11 of gestation in human 104

• The ability 
of these cells to synthesize surfactant is apparently 
determined by the source of their epithelium, not by 
epithelial-mesenchymal interactions 47

•
104

• The lamellar 
bodies are secreted into the alveolar lumen as 
concentric layers of membranous structures and have 
been observed to have irregular strands connecting 
them to their secretory cell of origin 16

·
90

·
101

• These 
spheres then disperse to form tubular myelin which 
eventually coats the alveolar lumen8

·
91

·
106

·
110

•
111

• Because 
of relatively new technologies for diagnosing and 
treating infants with immature surfactant systems, the 
occurrence of respiratory distress syndrome is less 
frequent than in the past4

·
23

·
39

·
41

·
67

·
75

·
81

·
92

•
100

• Nevertheless, 
any child born lacking a mature surfactant system is 
at risk for respiratory failure. If the thoracic volume 
reduction impairs the differentiation of type II 
pneumocytes and thereby inhibits the production and 
secretion of lamellar bodies, this could be a factor in 
the respiratory distress of the lethal 
chondrodystrophies. 

To avoid surgically induced artifacts and to 
gain a better understanding of the mechanism(s) by 
which thoracic volume reduction induces pulmonary 
hypoplasia, we are currently studying three genetically 
distinct mouse models of pulmonary hypoplasia, viz. 
cho, cmd, and Dmm14

•
88

•
93

•
95

• Each mutant has thoracic 
dystrophy and dies of respiratory failure. We have 
reported that two of the mutants, cho and cmd, have 
the characteristics of pulmonary hypoplasia 50

•
93 and in 

cho we have reported that thoracic volume reduction 
during the fetal period is associated with the onset of 
pulmonary hypoplasia 46

• The cho mutant has also 
been shown to have a narrowed tracheal lumen which 
may exacerbate the problem of pulmonary hypoplasia 
caused by the decreased thoracic volume 94

• The 
aforementioned parameters of bronchiolar 
development, alveolarization (primary saccule 
maturation in the mouse 2

), and the pulmonary 
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surfactant system have been thought to be vital factors 
for normal lung function. In order to confirm the 
previously reported decrease in size of the cho' s 
primary saccules and to ascertain further abnormalities 
in the mutant bronchiolar lining and surfactant system, 
we performed a stereoscopic SEM study on these 
parameters in cho mouse fetal lungs . 

Materials and Methods 

Tissue Sampling 
Normal and mutant littermate fetuses were 

obtained from timed pregnancies resulting from 
overnight matings of heterozygous ( cho\+) C57BL 
mice. The dams were fed Wayne Breeder Blox and 
water ad libitum and kept under a 12 hour light-dark 
cycle. The day a vaginal plug was observed was 
considere d day O of gestation . 

One day before parturition (gestation day 18) 
the pregnant females were killed by exposure to ether 
for 15 minutes , their uteri were removed and placed 
in Hank's solution, and the fetuses were removed 
from the uteru s and weighed. The lungs , trachea , and 
larynx were removed intact from each of the normal 
and mutant fetuses. 

Intratracheal fixation and processing of lungs for SEM 
A 16 mm, 30 gauge blunt tipped needle was 

inserted into the trachea and the trachea was ligated 
to the needle 61

• The needle was then attached to a 12 
mm I.D. glass column filled to a height of one meter 
with 3% glutaraldehyde in cacodylate buffer, pH 7.3. 
The fixative was introduced into the lungs at a flow 
rate of 7.0 µI/sec, or 30% less than that used for 
fixing adult mouse lungs 7

• The lungs were immersed 
in Hank's solution while being fixed via intratracheal 
instillation, and after two hours the saline bath was 
changed to 3% glutaraldehyde and the lungs were 
fixed for an additional 14 hours26

. The left lung of 
each fetus was processed through a graded series of 
alcohol then critical-point dried and adhered to 12 
mm aluminum stubs. The interior of the lung was 
then exposed by carefully teasing the tissue apart prior 
to being sputter-coated with gold. Lungs from a pair 
of normal-mutant littermates from three litters were 
exami ned with a JEOL SEM. We assumed the 
fracturing of the lungs to be random and the primary 
saccules to be spherical. This allowed the 
measurement of 10 primary saccule diameters from 
each of several intermediate magnification (180 X) 
scanning electronmicrographs per fetus (n=3,3). 
Differences between normal and mutant mean saccule 
diameters were tested for significance by the t-test. 
A probability of 0.05 or less was considered 
significant. 
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Processing of lungs for Transmission Electron 
Microscopy 

For transmission electron microscopy, whole 
lungs were fixed without intratracheal instillation in 
2% glutaraldehyde and 3% acrolein in cacodylate 
buffer, pH 7.3. The tissues were processed through a 
graded alcohol series, cleared in acetone, and 
embedded in Spurr's epoxy99

• Thin sections were 
stained with lead citrate and uranyl acetate. Lungs 
from a pair of normal-mutant littermates from four 
litters were examined with a Philips 400 EM. The 
diameter of 10 individual lamellar bodies was 
estimated from several electron micrographs at a final 
magnification of 16,200 for each fetus (n=4,4) . The 
t-test was used to detect differences between normal 
and mutant with a 0.05 probability being considered 
significant. 

Results 

Gross internal lung morphology 
The primary bronchus of the normal lung 

fractured frontally and examined with SEM was large 
and well distended, and further patent airway 
branching was evident in the secondary bronchi. 
Associated with these airways were large blood 
vessels . Most of the lung interior was comprised of 
well distended primary saccules (Fig. IA). 

The mutant's lung interior appeared markedly 
affected (Fig. 18). The primary saccules appeared 
more numerous and much smaller than normal . 
Blood vessels and the bronchial airways appeared 
normal in the mutant, however, no attempt was made 
to assess this morphometrically . 

Airways and primary saccules 
Bronchiolar passages could be distinguished 

from primary saccules by the difference in their 
lumenal surface at higher magnification (200 X; Fig. 
2A vs. SA). The lumenal surface of a normal 
primary bronchus was convoluted (Fig. 2A) and 
showed numerous tufts of cilia and distinct cellular 
boundaries (Figs. 3A, 4A). Whereas, primary saccules 
had no convolutions or cilia but did contain 
multilamellar bodies (SA, 6A). The average primary 
saccule diameter from three normal fetuses was 59.9 
± 2.8 µm (n=3). 

The mutant's bronchial lumenal surface 
appeared normal with respect to convolution, tufts of 
cilia, and cellular boundaries (Fig . 2B, 3B, 4B). The 
average diameter per primary saccule from three 
mutant fetuses was 29.9 ± 4.0 µm, or 50% of normal. 
The difference in size of primary saccules between 
normal and mutant at 200 magnification was apparent 
(Figs. SA, SB). 
Evidence for lung maturation: the surfactant system 

Surfactant precursors, or multilamellar bodies, 
were predominantly observed within the primary 

saccules of normal fetal mouse lungs, in associat10n 
with the lumenal wall (Figs. 6A, 7 A) . However, it 
was not uncommon to observe them within the 
bronchiolar airways. These multilamellar bodies were 
comprised of a cluster of numerous single lamellar 
bodies with diameters ranging from .22-1.00 µm 
(n=3). Strands of tubular myelin, like those in Figure 
8B, that presumably unwound from the tightly 
compacted multilamellar bodies, were frequently 
observed throughout the normal lungs. In addition, 
more loosely organized material was also observed 
within the normal 's primary saccules (Fig . 8A, 9A). 
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In the mutant, multilamellar bodies of 
comparable size, shape, and number, relative to the 
normal, were also observed within the primary 
saccules (n=3; Figs. 6B, 7B). Strands of tubular 
myelin in contact with multilamellar bodies and 
loosely organized material were also frequently 
observed throughout the mutant lungs (Figs. 7B, 8B, 
9B) . 

With transmission electron microscopy, the 
primary saccules of the normal contained multilamellar 
bodies consisting of varying numbers of single 
lamellar bodies that ranged in diameter from .25-1.23 
µm (n=4). Most lamellar bodies were coiled, but 
some showed tubular myelin in a cross-hatched 
configuration (Fig. 10). There was no apparent 
difference between normal and mutant with respect to 
size or ultrastructure of multilamellar bodies (n=4,4). 

Discussion 

In previous studies we compared the gross 
morphological, histological, and biochemical 
parameters of hypoplastic lungs in chondrodystrophic 
mouse fetuses with that of unaffected littermates 46·50

.93_ 

These studies confirmed the presence of pulmonary 
hypoplasia in two forms of chondrodystrophy, cho and 
cmd. The present SEM study confirms our previous 
observations of relatively smaller, more numerous 
primary saccules within the lungs of mouse fetuses 
with pulmonary hypoplasia46.so,93.94_ 

The mutant's bronchiolar airways, viewed under 
SEM, did not appear atypical. The lumenal surface 
of the bronchial tree appeared normal in the mutant, 
despite its airways developing in a relatively confined 
space. The patent state of the mutant's airways , 
however, may not be representative of the in situ 
condition. The intratracheal fixation technique used 
in the present study may have caused some of the 
mutant's possibly collapsed airways to appear 
normal 94. However, since no attempt was made to 
measure the diameter of bronchiolar airways, we do 
not know how they compare between normal and 
mutant. We are presently performing 3-D computer 
reconstructions of serial sections and microcastings of 
the bronchiolar airways to determine if there are any 
volumetric or branching differences between normal 
and mutant. 
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Figure 1. SEM stereopairs of the superior left lobe of day-18 fetal mouse lungs. The 
normal lung (A), fractured frontally, shows the primary bronchus (PB), blood vessel (BV), 
secondary bronchi (SB), and numerous primary saccules (PS). The hypoplastic lung (B), 
fractured frontally, shows typical primary bronchi (PB), secondary bronchi (SB), blood 
vessels (BV), visceral pleura (VP), and atypically reduced primary saccules (PS). (Bar = 
100 µm). 

1120 
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Figure 2. Primary bronchi (PB) of normal (A) and hypoplastic (B) fetal mouse lungs. The 
internal linings of the bronchi from normal and mutant fetuses appear convoluted. (Bar 
= 100 µm) . 
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Figure 3. Lumenal surface of normal (A) and hypoplastic (B) fetal bronchi. No 
differences in overall structure or spatial relationship of cilia (C) were observed between 
normal and mutant. (Bar = IO µm). 
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Figure 4. Cells lining the bronchiolar airways of normal (A) and hypoplastic (B) fetal 
mouse lungs. No difference was observed between the normal and mutant with respect to 
bronchiolar cilia (C) and microvilli (MV). (Bar = 10 µm). 
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Figure 5. Stereopairs of primary saccules of day-18 fetal mouse lungs. The well­
distended primary saccules (PS) shown are typical for a normal lung (A) in contrast with 
the relatively undistended primary saccules (PS) of the hypoplastic lung (B) . Normal 
appearing bronchiole (B) and blood vessel (BY) are depicted in the mutant. (Bar = 100 
µm) . 
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Figure 6. Compact multilamellar bodies (MLB) were routinely observed within primary 
saccule s of both normal (A) and mutant (B) fetal lungs . (Bar = 10 µm). 
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Figure 7. Multilamellar body (MLB) shown within a primary saccule of the normal lung 
(A). In the mutant (B) MLB's appeared normal . This particular MLB spanned the primary 
saccule. Note the strand of tubular myelin (arrow) connecting two clusters of lamellar 
bodies. (Bar = 5 µm). 
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Figure 8. Multilamellar bodies (MLB) less compact than those shown in Figs . 6 and 7 
were found throughout the primary saccules of both normal (A) and hypoplastic lungs (B). 
(Bar = 10 µm). 
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Figure 9. Higher magnification of less compact multilamellar bodies shown in Figure 8. 
In both normal (A) and mutant (B) the MLB also appears in a more diffuse configuration . 
(Bar = IO µm) . 
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Figure 10. Transmission electronmicrograph of a multilamellar body (MLB; cf. Figs. 6-
7) within the lumen of a primary saccule. Note the type II pneumocytes surrounding the 
lumen and their secretory product, the multilamellar body. As shown with SEM, the MLB 
consist s of many single lamellar bodie s (LB) which appear to be in the process of 
unwinding to form tubular myelin (TM). Tubular myelin in thin section appears cross­
hatched and is presumed to be the surfactant precursor. 
(Bar= I µm ). 

One of the parameters thought to be of greatest 
consequence to the demise of human newborns with 
pulmonary hypoplasia is the size of the alveoli. From 
histological sections, the area of the mutant' s primary 
sacc ules (precursors of alveoli) was estimated to be 
24% of normal 93

, which equates to a diameter 49 % of 
normal. From scanning electronmicrographs the 
mutant's lungs showed a comparable decrease in 
average saccule diameter (50% of normal). 
Stereoscopic visual evidence also showed the mutant's 
primary saccules to have less volume. 

Remnants of multilamellar bodies were found 
within the bronchial tree. Their presence at a site 
other than the primary saccule is most likely due to 
the flow of fluid in and out of the fetal lungs. The 
net flow of fluid in the fetal lungs has been reported 
to be outward 1

• The finding of multilamellar bodies 
in the airways indicates that the material was not 

1129 

drastically mobilized by the intratracheal fixation 
procedure. 

The mutant's multil amellar bodie s observed 
under SEM were morphom etrically similar to those 
observed in the normal . They were present in both 
mutant and normal lung s in similar quantities and 
configuration, thus ruling out atelectasis, caused by a 
lack of surfactant, as a possible factor in the lethality 
of the cho' s disorder. 

The present stereoscopic SEM study has 
provided a new perspective of pulmonary hypoplasia 
in chondrodystrophic mice. The observations made in 
the present study support our previous findings of 
reduced primary saccule size in pulmonary hypoplasia. 
The mechanism by which the reduction in thoracic 
volume inhibits growth but not differentiation (i.e. 
surfactant system) of the type II pneumocytes remains 
to be demonstrated . 
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Discussion with Reviewers 

M .R. Harrison: Are there other demonstrable changes 
in the pulmonary vascular bed of the mutant mice 
compared to normals? One might expect to see a 
decreased number of vessels per unit lung. 
Authors: The present study did not lend itself to 
such a morphometric assessment. We are, however, 
presently carrying out research which addresses this 
very question. We will use a computer-aided 3-D 
image analyzing system to reconstruct serial sections 
of lungs. We are also attempting to create 
microvascular casts of the lungs. Both of these 
methods should allow the assessment of branching and 
measurement of the volume of the vasculature . 

D.E. Schraufnagel: How are the mutants detected? 
Authors: At day 18 the mutants are detected by the 
presence of cleft palates, micromelia, and a shortened 
snout, all of which are 100% penetrent. These 
parameters can be used to distinguish the mutants as 
early as day 15, however, detection of days 13 and 
14 mutants must be accomplished through a 
histological screen of the cartilage. See Seegmiller et 
al., 1971, 95. 
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D.E. Schraufnagel: Could the fetal lungs have been 
inflated with fixative before they were excised? 
Authors: This is a possibility. It should be 
performed to provide an estimate of the mutant's lung 
capacity to expand in vivo. 

Reviewer III: Are there data to demonstrate that the 
structures observed by SEM are, as stated, actually 
lamellar bodies? 
Authors: Based on TEM we conclude that the 
structures viewed with SEM are lamellar bodies of 
varying size (.22-1.23 µm). We are presently carrying 
out a phospholipid assay of the lungs to determine 
their surfactant content. We are also attempting to 
reconstruct a 3-D computer generated image of serial 
sectioned multilamellar bodies viewed with TEM. 

Reviewer IV: Why was such a high 
perfusion/fixation pressure (100 cm) required? 
Authors: The "high pressure" was required to 
overcome the resistance of the 30 gauge needle, 
which was greatly reduced in size compared to that 
used in previous experiments. The flow rate achieved 
by this procedure was comparable to previously 
reported flow rates. 

Reviewer V: How may a reader obtain information 
cited in reference number 26? 
Authors: The information can be found in a book (in 
press) entitled Models of Lung Disease: Microscopy 
and Structural Methods, In: Lung Biology in Health 
and Disease Series, Joan Gill, ed., Marcel Dekker, 
New York. 
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