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is effective. 

The following are some results which follow from the derived rules 

of inference so far considered. 

Tl.l. l"-'A+(A+B) 

Proof: 

1. "-'A

2. "-'A+ ("-'B + "-'A)

3. "-'B -+ "-'A

4. ("-'B + "-'A) +(A+ B)

5. A+ B

6. l"-'A +(A+ B)

Tl.2. IA+('\,A+B). 

T 1. 3. I '\/\,A + A

Proof: 

1. '\/\,A

2. l"-'"-'A +("-'A+ '\,'\/\,A)

3 • "-' A -+ '\I\,'\, A

. 4. ( "-'A + '\/\,'\,A) + ( """A + A) 

5. '\/\,A+ A

6. A

7. !'\/\,A -+ A

Tl.4. IA+ '\/\,A. 

Tl. 5. I (A + B) + ( (B + C) -+ (A + C))

Proof: 

1. A-+B

2. B + C

3. A

Assumption 

PCl 

1,2,RI 

PC3 

3,4,RI 

1-5,Metatheorem 1.11. 

Assumption 

Tl.l 

1,2,Metatheorem 1.8 

PCJ 

3,4,RI 

1, 5, RI 

1-6,Metatheorem 1.11. 

Assumption 

Assumption 

Assumption 



4. B

5. C

6. I (A-+ B) -+ ((B-+ C) -+ (A-+ C) )

Tl.6. i'\,A-+ ((B -+ A) -+ 'vB), 

Tl. 7. I B -+ ('vC -+ '\,(B -+ C) ). 

Tl.8. i(B -+A)-+ ((-vB-+A) -+A). 

Truth Functions 

3, 1, RI 

4,2,RI 

1-5,Metatheorem 1.11.

In considering the notion of truth function the following defini­

tions are required. 

Definition 1.5. Let A be a formula and suppose that the totality 

of distinct statement variables occurring in A are P1, P2, • • • , P
n

. 

Then the P
i's, 1 < i < n, will be referred to as the prime components 

of A. 

Let P be an arbitrary statement variable and let V = {0,1}; then 

associated with Pis a rule f
p

, from V into V, defined by f
p

(x) = x, 

x in V. If f
p

(x) = x, then Pis said to have the truth value x, 

denoted u(P) = x, with assignment of truth value x to P. This is 

generalized by 
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Definition 1.6. Let A be an arbitrary formula with prime components 

p . 
n Then associated with A is a rule f

A
' called a truth

function, from Vn into V, where Vn is the set of all ordered n-tuples 

with entries from V. u(A) will denote the truth value of A for an 

assignment of truth values to the prime components of A. That is, 

u(A) = f
A

(x
1, x

2
, • • • x

n
) 

where u(Pi) = f
p 

(x
i

) = x
i

, x
i 

in V, 1 < i < n. Furthermore, u(A) will 
i 

satisfy the following for a given truth value assignment to the Pi's of A.

1. If A is of the form "'B then



i. u(A) = 

ii. u(A)

2. If A is of

i. u(A) = 

ii. u(A) =

Definition 

typified by the 

p -+ q. 

1 if and only if u(B) = 0 

0 if and only if u(B) = 1.

the form B-+ C then 

0 if and only if u(B) = 1 and u(C) = 0 

1 if and only if u(B) = 0 or u(B) = 1 and u(C) = 1.

1. 6 gives rise to the notion of truth tables. This

following example: the truth table for the formula, 

1 
1 
0 
0 

1 
0 
1 
0 

1 
0 
1 
1 
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is 

The entries under p and q are the possible values that can be 

assigned to p and q, while the entries under p-+ q are the values taken 

by p-+ q for the given assignments to p and q. 

Definition 1.7. Let A be a formula with prime components 

P 
n

. Then if f A (x
1
, x2, • • • x) = 1 for all possible 

n 

truth value assignments to the prime components of A, A is said to be a 

tautology. This assertion is symbolized by 

II A. 

Since a formula A has only a finite number of prime components 

there will be only a finite number of possible truth value assignments 

to these prime components. In view of this and Definitions 1.6-7, then 

Metatheorem 1.13. The notion of tautology is effective. 

Metatheorem 1,14. If I IA and I IA-+ B then I IB, 

Proof: Suppose I IA and I IA-+ B, then u(A) = 1 and u(A-+ B) = 1 

for all truth value assignments to the prime components of A and A-+ B. 
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But by Definition 1.6, v(A + B) = 1 if and only if v(B) = 1 when v(A) = 1. 

This implies v(B) = 1 for all truth value assignments to the prime com­

ponents of B. Hence, I IB. 

To illustrate Definition 1.7, consider the formula p + (q + p). 

The truth table for p + (q + p) is given below. 

1 1 

1 0 

0 1 

0 0 

1 

1 

0 

1 

1 
1 
1 
1 

By the above then, it is clear that I IP+ (q + p). 

The Decision Problem 

In order to establish the property that the notion of theorem is 

effective the following result will be needed. 

Metatheorem 1.15. Let A be a formula with prime components 

, p • n Define P� to be Pi 
or �pi 

according as v(P
i) = 1

o·r v(P.) = O, respectively, and define A' to be A or �A according as
]_ 

v(A) = 1 or v(A) = O, respectively. Then, 

P' P' • • • P' IA' 
1' 2' '· n 

for each assignment of truth values to the prime components of A. 

Proof: The proof will be by induction on the number of occurrences 

of '�' and'+' in A. If n = O,then A is just some Pi 
and the result is

obvious. Suppose the condition holds for any number of occurrences 

less than n and suppose A contains n occurrences. 

Case 1. A is of the form �B. Since B contains ·n-1 occurrences and also 

the prime components of A,then by induction hypothesis, 

P l P' ••• 'P' IB'.
1' 2' n 

,' 

i. If v(B) = 1, then v(A) = 0 and A' is 1\/\,B, B' is B. But jB + 1\/\,B,
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P' l'V\.,B• so P' P' ••• , P' IA'.n ' l' 2' n 

ii. If v(B) = O, then v(A) = 1 and A' is A, B' is 'vB, hence, B' is A; 

so P
1
1

, P' •2, P' IA' since B' is A'.n 

Case 2. If A is of the form B -+ C, then by induction hypothesis, 

Pi, P2, •

Pi, Pz, • 

P' IB'
n 

P' le' 
n 

since both B and C contain less than n occurrences. 

i. If u(C) = 1, then u(A) = l; so C' is C and A' is A. But le-+ (B-+ C),

hence, pi' pi, . . P' IB -+
n 

ii. If u (B) = 0, then u(A) =

l'vB-+ (B -+ C) , hence, Pi, Pz, . 

iii. If u (B) = 1 and u(C) = o,

and A' is 'vA, that is 'v(B -+ C). 

use of Metatheorem 1.8, Pi, P2, 

C· , so 

1. , so 

. 

, 

then 

But 

Pi, P
2

, . . . 

B' is 'vB and A' 

P' IA'.n 

u(A) = 0, hence, 

IB -+ ( 'vC -+ 

P' IA'.n 

'v(B -+ 

P' IA�
n 

is A. But 

B' is B, C' is 'vC 

C)); so by repeated 

After establishing the foregoing result, there is now sufficient 

apparatus to prove the following important result known as the complete-

ness theorem. 

Metatheorem 1.16. If I IA then IA, 

Proof: Suppose I IA and let P1, P2, • , P be the prime com­n 

ponents of A. Define P 1 P' • • • , P' and A' as in Metatheorem 1.15. 
l' 2' n 

Since I IA, then A' is A, hence by Metatheorem 1.15, Pi, P2,

In particular 

Pi, P
2, . 

p I 

1
> 

p IAn- n 

Pi, P2, . p I 

l' 
'vP IAn- n 

, P' IA.n 

for all truth value assignments to the Pi's. By the deduction theorem,

p
i' P2, . . . P' IP -+ An-1 n 

Pi> 
P2, . . . P' I 'vP -+ A.

n-1 n 



From Tl.8, I (P �A)� ((�P �A)� A), so by repeated use of Meta-n n 

theorem 1.8, 

. . . p�-1 IA.

Repeating this process of eliminating assumptions yields, 

IA, 

Metatheorem 1.17. If jA then I jA. 

Proof: Suppose jA, It is easy to show that each axiom is a 

tautology, Using Metatheorem 1.14 and the fact that each line of the 

proof of A is an axiom or inferred from two previous lines by RI the 

result follows. 

Metatheorems 1.16-17 show that IA if and only if I IA. By Meta­

theorem 1.13 the notion of tautology is effective, hence, given a 

formula A, there is an effective procedure for deciding if A is or is 

not a theorem by seeing if A is or is not a tautology. 

More generally, Metatheorern 1.15 affords an effective procedure 

for providing a proof for a theorem which has been shown to be a 

theorem by showing it to be a tautology. Hence, 

Metatheorem 1.18. The notion of theorem is effective. 

Metatheorern 1.19. The notion of provability is effective. 

23 
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THE PREDICATE CALCULUS 

Primitive Basis 

The propositional calculus can be extended to a more general 

theory, this theory being the predicate calculus. As in the case of 

the propositional calculus, symbols, devoid of interpretation, will be 

used extensively in order to put the theory in a purely formal context. 

For this particular formulation the following symbols will be 

employed as the primitive symbols of the predicate calculus. 

The improper symbols; 

( ) 'v -+ 

together with the three at most denumerable infinite lists of proper 

symbols, 

p q r 

called statement variables; 

X y z x
l 

Y
1 

z
l 

x
2 

Y
z 

z
2 

called individual variables and for each positive integer n, n-place 

predicate symbols, 

F
l 

G
l 

H
l 

F
l 

G
l 

H
l 

F
l 

G
l 

H
l 

1 1 1 2 2 2 

F
2 

G
2 

H
z 

F
2 

G
2 

H
z 

F
2 · 2 

H
z 

1 1 1 2 , 
G

2 2 

called predicate variables. The dots are used to indicate the lists 

continue indefinitely. 
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The formation rules are given by the recursive definition: 

I. If Q is a statement variable, then (Q) is a formula.

II. If P is an n-place predicate variable, then P( a 1, a2, • • • , an)

is a formula, where a1, a2, • • • , a are individual variables.
n 

III. If A is a formula, then (�A) is a formula.

IV. If A and B are formulas, then (A+ B) is a formula.

V. If A is a formula then, (a)A is a formula, where a is an

individual variable.

VI. Only finite strings of primitive symbols which follow from I-V

are formulas.

It is evident from II and V and Metatheorem 1.1 that 

Metatheorem 2.1. The notion of formula is effective. 

Definition 2.1. If A is a formula then any occurrence of the 

individual variable a, in the formula (a)A, is called a bound occurrence 

in (a)A. Any individual variable a, which is not a bound occurrence in 

a formula, is called a free occurrence. 

The axioms of the predicate calculus are given by the following 

schema: 

Pl. A + (B + A) 

P2. (A+ (B + C)) +((A+ B) +(A+ C)) 

P3. (�A+ �B) + (B + A) 

P4. (a)(A + B) +(A+ (a)B), where a is an in9ividual variable 

with no free occurrence in A. 

PS. (a)A + B, where a is an individual variable, S an individual

variable and Bis obtained from A by replacing each free 

occurrence of a in A by S, provided that no free occurrence 

of a is in a part of A of the form (S)C. 
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It is to be noted. that, as in the case of the propositional calculus, 

certain liberties are taken in regards to the use of the symbols '(' and 

Metatheorem 2.2. The notion of axiom is effective. 

Proof: This follows immediately from Metatheorem 2.1 and the fact 

that axioms will have one of five forms. 

In addition to the axioms Pl-PS the predicate calculus will have the 

two ruies of inference: 

RI. From the formulas A and A+ B, B may be inferred. 

UG. (Generalization) From the formula A, (a)A may be inferred where 

a is an individual variable. 

To infer (a)A from a formula B, B must be just A and by extending 

Metatheorem 1.4 to the predicate calculus then 

Metatheorem 2.3. The notions of RI and UG are effective. 

Definition 2.2. A formal proof is a finite colunm of formulas, 

each line of which is an axiom, inferred from two previous lines by RI

or inferred from a single preceding line by UG. 

Definition 2.3. A formal theorem is the last line of a formal 

proof. 

The assertion that A is a theorem will be denoted by 

IA, 

As a result of the foregoing it can be shown that 

l(x)F
1
(x) + (y)F

1
(y).

Proof: 

1. 

2. 

3. 

(x)F
1
(x) + F

1
(y)

(y)((x)F
1
(x) + F

1
(y))

(y)((x)F
1
(x) + F

1
(y)) + ((x)F

1
(x) + (y)F

1
(y))

PS 

1,UG 

P4 



4. 
1 1 (x)F (x) + (y)F (y) 2,3,RI 

The above proof gives rise to a proof schema for the theorem 

schema (a)P(a) + (S)P(B), where a, S are arbitrary individual vari­

ables and P an arbitrary 1-place predicate variable. 

27 

More generally i(a)A + (S)A, provide� no free occurrences of a in 

A is in a part of A of the form (S)C and provided S is free in no part 

of A. 

Since formula, axiom and inference are all effective and since 

proofs are finite columns of formulas, then for the predicate calculus 

Metatheorem 2.4. The notion of proof is effective. 

Deducibili ty 

In order to extend the notion of deducibility from a set of assump­

tions to the predicate calculus the following definition is required. 

Definition 2.4. A column Y of formulas is called a subcolumn of 

a finite column X of formulas provided the formulas of Y appear in X in 

precisely the same order as in Y. 

Definition 2.5. Let r be a set of formulas, possibly infinite or 

empty, and let A be a formula. Define D[f;A] to be the set of all finite 

columns X of formulas whose last line is A and where each line of X is 

an axiom, a member of r, inferred from two preceding lines by RI or 

inferred from a single previous line B, by generalization on any 

individual variable, provided that Bis the last line of a subcolumn Y 

of X, which is a formal proof. 

In case D[f;A] is not empty, then A is said to be deducible from 

assumptions r. This assertion is symbolized by 

r IA. 

Any member of D[f;AJ is called a formal demonstration of A from r.



By the nature of Definition 2.5, Metatheorem 1.6 can be extended 

to the predicate calculus and consequently the following derived rules 

of inference result. 

Metatheorem 2.5. If IA and IA+ B then IB, 

Metatheorem 2.6. If r IA and IA+ B then r IB, 

More important, however, is that Metatheorem 1.10 can be extended 

to give the deduction theorem for the predicate calculus. 
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Metatheorem 2.7. If r is a set of formulas and A and B are formulas 

and if ru{A} IB then r IA+ B. 

Proof: The proof is obtained from Metatheorem 1.9, along with an 

additional case following Case 3. 

Case 4. If Ck+l is inferred from a previous line Cj, j 2 k, by generaliza­

tion on an individual variable a, where C. is the last line of a subcolurnn 
J 

Z of X[Bk+l], which is a formal proof, then Ck+l is just (a)Cj.

Since Z is a formal proof whose last line is C., then the column, 
J 

<z, (a)C.> is also a formal proof, hence, I (a)C .. 
J J 

By Pl
? 

I (a)C. + (C. + (a)C.); l(c. + (a)C.) +(A+ (C. + (a)C.)) 
J J J J J J J 

and by P2, 

l(A + (C. + (a)C.)) +((A+ C.) +(A+ (a)C.)). 
J J J J 

Repeated use of Metatheorem 2.5 to the above yields, 

By induction 

I (A+ C.) +(A+ (a)C.). 
J J 

hypothesis, r IA+ c., 
J 

r IA+ (a)C .• 
J 

hence, by Metatheorem 2.6, 

Now if fU{A} IB, then r IA+ C., where C. is any line of a demon-
1 1 

stration of B from fU{A}. Therefore, r IA+ B since B will be the 

last line. 



The preceding result enables Metatheorems 1.11 and 1.12 to be 

extended to the predicate calculus, hence 

Metatheorem 2.8. A1, A2, • • •

IA
l

-+ (A2
-+ (• • • (A

m
-+ B)•••)).

A IB if and only if 
m 

Let A and B be formulas and abbreviate the formula, �(A-+ �B), 

by A 6 B, From this abbreviation then 

Definition 2. 6. If A1, A2, . . . A are fonnulas, define then 

29 

conjunction, lii Ai, of the formulas A
l

, A
2, . . .

' 
A inductively by:

n 

ITiAi is A
1

; rrj+lA 
1 i is A

j+l 
6 <IT{Ai), for j = 1, 2, . ' n-1.

As a consequence of Definition 2.6 and the preceding rules of 

inference the following results can be established. 

T2.1. IA 6 B-+ A 

Proof: 

l. l�A-+ (A-+ �B)

2. I (�A-+ (A-+ �B))-+ (�(A-+ �B)-+ A)

3. i�(A-+ �B)-+ A

4. IA 6 B -+ A

Similarly,

T2.2. IA A B-+ B.

T2. 3. I (A -+ (B -+ C)) -+ (A A B -+ C) 

Proof: 

1. A -+ (B -+ C)

2. A A B

3. IA A B -+ A

4. A

5. B -+ C

6. IA 6 B -+ B

1,2, Metatheorem 2.5 

3, definition of A. 

Assumption 

Assumption 

T2.1 

2,3, Metatheorem 2.6 

4,1, RI 

T2.2 



7. B

8. C

9. I (A -+ (B -+ C)) -+ (A 6 B -+ C)

T2.4. i(A 6 B-+ C)-+ (A-+ (B-+ C))

Proof:

1. A 6 B -+ C 

2. A

3. B

4. IA-+ (B -+ "-'(A -+ "-'B))

5. B-+ "-'(A -+ "-'R)

6. "-'(A -+ "-'B)

7. A 6 B 

8. C

9. I (A 6 B-+ C)-+ (A+ (B-+ C))

T2. 5.

Proof:

1. 

2. 

(Aj +l -+ B) 

3. Aj+l 6Tf{Ai

4. jAj+l 6TfiAi
-+ Aj+l

5. 

6. 

7. 

' 8. 

9. 

Aj+l

jAj+l 61T{Ai
-+ Tf{Ai

Tf{Ai

. ·+1 
10. j <TrIAi -+ (Aj+l -+ B)) -+ <Tri Ai -+ B) 

T2.6. j <Tr{
+1Ai -+ B) -+ <Tr{Ai -+ (Aj+l -+ B))

2,6, Metatheorem 2.6 

7, 5, RI 
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1-8, Metatheorem 2.8.

Assumption 

Assumption 

Assumption 

2,4, Metatheorem 2.6 

3,5, RI

6, definition of 6 

7,1, RI

1-8, Metatheorem 2.8.

Assumption 

Assumption 

2, Definition 2.6 

T2.1 

3,4, Metatheorem 2.6 

T2.2 

3,6, Metatheorem 2.6 

7,1, RI

5,8, RI

1-9, Meta theorem 2. 8.



Proof: 

1. 

2. 

3. 

4. 

lTj
+l

A 
1 i 

m.Ai 

Aj+l 

Aj+l t:, 

-+ B 

TT{Ai 
-+ B

5. j (Aj+l 6 lT{Aj -+ B) -+ (Aj+l
-+ <TT{Ai 

-+

6. Aj+l
-+ <TT{Ai 

-+ B) 

7. IT{Ai -+ B

8. B

9. I <1T{
+1

Ai -+ B) -+ <lT{Ai 
-+ (Aj+l -+ B)) 

Meta theorem 2. 9. Al' A2, . ' A IB if n 

Assumption 

Assumption 

Assumption 

1, Definition 2.6 

B)) 

T2.4 

4,5, Metatheorem 

6,3, RI

2,7, RI

1-8, Meta theorem 

and only if IIT;Ai 

Proof: The proof will be by induction on n. When n = 1 it is 

obvious that A
1 

jB implies ITTiAi-+ B. 

Suppose the assertion is true for all k < n and suppose 

A IB, 
n 

By the deduction theorem 

Al, A2' 
. A IA 

-+ B, so from the induction hypothesis,n-1 n 

1m
-l

Ai
-+ (An-+ B) and by T2.5 and Metatheorem 2.5, 

JWi
Ai

-+ B.
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2.6 

2.8. 

-+ B.

Conversely; for n = 1, JlTiAi -+ B gives A1 IB, Suppose the asser-

tion is true for all k < n and suppose IIT;Ai
-+ B. From T2. 6 and

Meta theorem 2.5, then ITfi
-l

Ai 
-+ (A -+ B). Hence, by inductionn 

hypothesis, Al' A2, . . . A IA -+ B. But then ' n-1 n 

Al, A2, . . . 

' A l' A IA -+ B and Al, A2'
• . . A IA ' so byn- n n n n 

Metatheorem l.6iii extended to the predicate calculus, 

• , A jB.
n 

Metatheorem 2.9 is equivalent to Metatheorem 2.8 but with a 

difference in notation. 



Metatheorem 2.10. If r IA and a is an individual variable not 

free in any formula of r then r I (a)A. 

Proof: Supposer JA and a is an individual variable not free in 

any formula of r. By Metatheorem l.6vi, extended to the predicate 

calculus, there exists a finite subset, Al' A2,
. A of r, such

n 

that Al
, A2'

. . 

A I A. By Metatheorem 2.9, !WiAi 
-+ A, which is

n 

a formal theorem. Let X be the proof of this theorem. Since a is not 

free in any of the A. Is' 1 < i < n, then a is not free in 111{Ai so the
l. 

column, 

<X, (a) (TfIA
i-+A), (a) <lTIA

i
-+A)-+(TfIA

i-+(a)A), "fliAi-+(a)A>

is a formal proof, hence JTT1{A
i

-+ (a)A is a formal theorem. By Meta­

theorem 2.9 this implies that, A
1
, A

2
, • • • , An I (a)A and by Meta­

theorem l.6iv extended to the predicate calculus, then r I (a)A. 

In view of the preceding metatheorem, it is evident that if A is 

a formula with a free occurrence of an individual variable a, then in 

32 

a demonstration which involves A, as an assumption formula, no general­

ization on a can be made. In this case, a is said to have a conditional 

interpretation. In contrast, if a has a free occurrence in a formula A, 

which is an axiom, then A in intended to mean the same as (a)A. In this 

case, a is said to have a generality interpretation. 

Definition 2.7. If A is a formula and its distinct free individual 

variables occur in the order of a1, a
2

, a then the formula,
n 

(a
1)(a

2
)•••(a

n)A, is called the closure of A. This is symbolized by

M. 

n IA. 

Under the generality interpretation A and AA are synonymous. 

Metatheorem 2.11. If r IA and n IB for every formula B in r, then 



Proof: Supposer IA and a IB for each formula B in r. Since 

r IA there exists a finite subset, A1, A2, • A of r, such thatn 

, A IA. From Metatheorem 2.8 then,. n 

IA
1 

+ (A
2 

+ ( • • • (A
n

+ A)•••)). Now, a jB for each formula B in r

so in particular, a !A
i for each i, 1 < i < n. Therefore, a IA1 and

IA1 + (A2 + ( · • • (An+ A)•••)) so by Metatheorem 2.6,

a IA
2 

+ A
3 

+ ( • • • (A
n

+ A)•••)). From this and the fact that

a jA
2

, Metatheorem l.6iii, extended to the predicate calculus, gives

a IA
3 

+ (A4 + ( • • • (An
+ A)•••)). Again from this and the fact

that a IA3, then a IA4 �(As
+ ( • • 

this process yields a IA, 

• (A + A)•••)).n 

Metatheorem 2.12. If rU{A} jB, then r jAA + B. 

Continuing 

Proof: Suppose fU{A} jB. From PS, (a)A + A, provided no part 

of. A is of the form (a)C. Let the distinct free individual variables 

Since each a., 1 < i < n, is free in A it will appear in no part of A 
i - -

of the form (a.)C. Hence, by repeated use of RI and PS, then AA jA. 
1 

Let C be a formula of fU{A}. If C is a member of r then r jc hence, 

fU{AA} jc. If C is A, then since AA jA, ru{AA} jc. Therefore, 

ru{A} IB and for every formula C in ru{A}; rU{AA} le so by Meta­

theorem 2.11, fU{AA} IB and by the deduction theorem r IAA + B. 
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As evidenced by the preceding metatheorems, the notion of deducibility 

is reduced to the notion of provability and conversely. 

Valuation Procedure and Validity 

Suppose that associated with the predicate calculus is some nonempty 

set D, called a domain, such that the individual variables are associated 

in some way with the elements of D. Let V = {0,1} be a set of truth 
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values and suppose that for every n-place predicate variable P there is 

associated a logical function A, where A is a function from D
n 

into V. 

Furthermore, assume that a truth value from V can be assigned to a 

formula, P(a
1

, a
2

, • • • , a
n

), relative to an assignment of an element 

of D to each distinct individual variable among a
1

, a
2

, • 

in the following way. If d
i

' in D, is assigned to a
i

, in 

P(a
1

, a
2

, • • • , a
n

), and if A is assigned to P then the truth value 

of P(a
1

, a
2

, • • • , a
n

) is A(d
1

, d
2

, • • • , d
n

). 

Let C be a formula of the predicate calculus. Then from the 

foregoing it is assumed that a domain D is given, to each predicate 

variable appearing in C is assigned a logical function and to each 

distinct free occurrence of an individual variable in C is assigned 

an element from D. This constitutes an assignment to C and gives rise 

to a valuation procedure for assigning a truth value u(C), to C. 

A truth value is assigned to C in the following way: 

1. If P(a
1

, a
2

, • • • a )  is a part of C and if A is assigned
n 

to P, d
i 

in D assigned to a., 1 < i < n, then the truth value assigned 
1 

d ). 
n 

2. To the statement variables of C is assigned either O or 1.

3. For a given assignment to the predicate variables, distinct

free individual variables and the statement variables of C then if C 

is of the form �A, u(C) = 0 if and only if u(A) = 1 and u(C) = 1 if 

and only if u(A) = O. If C is of the form A+ B then u(C) = 0 if and 

only if u(A) = 1 and u(B) = O; u(C) = 1 if and only if u(A) = 0 or 

u(A) = 1 and u(B) = 1. If C is of the form (a)A, then u(C) = 1 if and 

only if u(A) = 1 for every assignment to a; u(C) = 0 if and only if 

u(A) = 0 for at least one assignment to a. 



Thus, consider the formu la 1 1 
(x)F (x)-+ (y)F (y) for a domain

D = {a,b }, of two individuals. The possible logical functions A, 

from D into V are tabulated by: 

X 

A
1(x) A

Z (x) A3(x) \ (x) 

a 1 1 0 0 

b 1 0 1 0 

The possible truth value assignments are given by: 

Fl 
F1 

X Fl 1 1
X F X X F X -+ 

a a 1 1 

A
l 

a b 1 1 
1 1 1 1 1 

b a 1 1 

b b 1 1 

a a 1 1 

A
z 

a b 1 0 
0 0 0 1 0 b a 0 1 

b b 0 0 

a a 0 0 

A3 
a b 0 1 

0 0 0 1 0 
b a 1 0 

b b 1 1 

a a 0 0 

A4 a b 0 0 0 0 0 1 0 
b a 0 0 

b b 0 0 

where the hotizontal blocks constitute an assignment of a logical 

function to F1
, together with the possible assignments to x and y. 

As another example consider p-+ (x)F
2

(x,y) for D = {a,b}. 

The possible logical functions from D
2 

into V are: 

Al Az
A3 A4 A

S
A

6
A7 A

8
Ag, • Al5

(a,a) 1 1 1 1 1 1 1 1 0 0 

(a,b) 1 1 1 1 0 0 0 0 1 0 

(b ,a) 1 1 0 0 1 1 0 0 1 0 

(b ,b) 1 0 1 0 1 0 1 0 1 1 

A
l6
0 

0 

0 

0 
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The truth value assignments for an assignment of >-
1

, >-
6

, and "s 

F
2 

' b 1 to are given e ow: 

F
2 

X 

a a 
a b 
b a 

"1 b b 
a a 
a b 

b a 
b b 

a a 
b 

b a 

"6 b b 
a a 

b 

b a 
b b 

a a 
a b 
b a 

"s b b 

a a 
a b 
b a 
b b 

2 
F (x,v) 

1 
1 
1 
1 
1 
1 
1 
1 

1 

0 

1 

0 

1 

0 

1 
0 

1 

0 

0 

0 

1 

0 

0 

0 

2 2 
(x)F (x,y) p -+ (x)F (x,y)

1 1 1 1 1 1 

1 1 1 1 1 1

1 0 1 1 
0 1 

1 0 1 1 
0 1 

0 
1 0 

0 
1 0 

0 
1 0 

0 1 0 

0 
0 1 

0 
0 1 

0 
0 1 

0 
0 1 

0 
1 0 

0 1 0 

0 
1 0 

0 1 0 

0 
0 1 
0 1 

0 
0 

l. 

0 
0 1 

Definition 2.8. A formula C is said to be valid in a domain D 

provided u(C) = 1 for all assignments of logical functions to the 

predicate variables of C, for all assignments of elements of D to the 

distinct free individual variables of C and for all assignments of 

0 and 1 to the statement variables of C. 

Definition 2.9. A formula C is said to be universally valid or 

simply valid if and only if it is valid in every domain. This is 

symbolized by 

11 c.

As was the case for the propositional calculus, in the predicate 

36 
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calculus, the notion of provability reduces to the notion of validity 

and conversely. This important result is known as Godel's Completeness 

Theorem and will be stated without proof. 

Metatheorem 2.13. IA if and only if I jA. 

The Decision Problem 

When considering the notion of validity in the predicate calculus, 

for a formula C to be valid, the valuation procedure must include all 

domains. This means that infinite domains must be considered, but 

in view of the valuation procedure this suggests that in valuating C, 

no method exists which involves only a finite number of steps and in 

general this is indeed the case. However, in the predicate calculus· 

with only 1-place predicate variables the notion of theorem is 

effective. 

Metatheorem 2.14. In the predicate calculus the notion of 

theorem is not effective. 

It might be pointed out, however, that for formulas of a certain 

form there exists an effective procedure for deciding whether a 

formula of this form is or is not valid and consequently if it is 

or is not a theorem. 
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INTRODUCTION 

Let there be given a function, defined on some domain, then the 

ques�ion might be asked: "Does there exist a finite set of rules or 

instructions for calculating, in a finite number of steps, the 

functional values of the function?" If such a set of instructions 

exist, then the function is said to be effectively calculable and the 

instructions are referred to as an algorithm or effective computa­

tional procedure. 

One requirement of an algorithm is that it be purely mechanical; 

mechanical in the sense that, at least in principle, a computing 

device could be constructed to carry out the instructions, with no 

intelligence or creativity needed to follow them. 

There is, perhaps, one shortcoming to most if not -all algorithms. 

This being, although the algorithm will furnish an answer if an 

answer is forthcoming, it may have one compute indefinitely should 

no answer be forthcoming. 

With the notion of effective computational procedure in mind 

a class of objects, called Turing machines, is considered. A Turing 

machine will afford an effective procedure for computing the functional 

values of a certain class of functions. Such funcMons will be called 

Turing computable or merely computable. 

In particular, a class of functions· called recursive functions 

will be considered and it will be shown that these functions are 

Turing computable. 



Throughout this paper some of the more fundamental concepts 

of sets and functions will be assumed. Moreover, only functions 

defined on n-tuples of non-negative integers will be considered. 

Also, when no confusion results, a function's name and its functional 

notation will be used interchangeably. 

2 



TURING MACHINES AND COMPUTABILITY 

Turing machines 

Intuitively, one may think of a Turing machine as a computing 

device which is capable of printing (or erasing) only a finite sequence 

of given symbols, onto a linear tape; the tape being infinite in both 

directions and ruled into a two-way infinite sequence of squares. 

The following figure is suggestive of this infinite tape. 

This machine will be "sensitive" to only one square at a time, 

thus, being able to print (or erase) only one symbol to a square, the 

square being scanned. Further, this machine will be capable of assum­

ing only a finite number of machine states or internal configurations, 

where the next act or operation that the machine will perform is 

completely determined by the machine state together with the symbol 

that appears on the square being scanned. Also, the machine will be 

capable of only the following: a complete halt of operation, a change 

of the symbol on the square being scanned, a move one square to the 

right or left of the square being scanned; where in each case the 

machine will enter into a new machine state. 

The symbols q
1

, q
2

, q
3

, 
• 

will be used to denote possible 

machine states and the symbols s
0

, s
1

, s
2

, • •
• 

will be used to denote 

the symbols the machine will be capable of printing. The letters 

R and L will denote one move to the right or left respectively. 

3 



With the foregoing remarks as an intuitive basis, the notion of 

a Turing machine will be given a precise description. However, prior 

to defining a Turing machine, two definitions are necessary. 

Definition 1.1. An expression is a finite sequence of symbols 

(possibly empty), from the symbols q
1

,q
2

,q
3

, ••• ; s
0

,s
1

,s
2

, ..• ; R, L.

Definition 1.2. A quadruple is an expression having one of the 

following four forms: 

( 1) 

(2) 

(3) 

(4) 

q. S . S
k

q 
1. J m 

q.S
j
R q 

1. m

q.S .L q
1. J m

q. S.q
k

q . 
1. J m 

Definition 1. 3. A Turing machine is a finite, nonempty set of 

quadruples such that no two quadruples have their first two symbols 

the same. (This eliminates the possibility of a machine reaching a 

"confused state".) 

The q. 's which appear in the quadruples of a Turing machine will
1. 

be called its machine states and the S. 's its alphabet. 
1. 

Definition 1.4. A Turing machine that consists entirely of 

quadruples of the form (1)-(3), is called simple. 

Consider now, the following definitions. 

Definition 1.5. An instantaneous description is an expression 

consisting of exactly one q
i

' neither R nor L and such that q
i 

is not 

the rightmost symbol. 

Definition 1.6. An expression which consists entirely of S
i

's 

is called a tape expression. 

4 



5 

Definition 1. 7. Let Z be a Turing machine and let a be an 

instantaneous description. If the q. in a is a machine state of Z 
1 

and the S. 's in a belong to the alphabet of Z, then a is called an 
1 

instantaneous description of z.

Definition 1,8, Let Z be a Turing machine and let a be an 

instantaneous description of z. Let q
i 

be the machine state of Z in 

a and S. the symbol immedia tely to the right of q .. Then q. is called 
J 1 1 

the machine state of Z at a, S. the symbol scanned by Z at a and the 
J 

expression obtained by deleting q
i 

from a is called the expression 

on the tape of Z at a. 

From an intuitive point of view, Definition 1.8 affords a means 

by which an instantaneous description a may be thought of as precisely 

describing the status of a Turing machine at some particular time in 

its operation; where a gives the machine's state, the expression on 

its tape and the symbol being scanned. 

Earlier 9 the tape of a Turing machine was described as being 

infinite in both directions. However, in view of Definitions 1.1 and 

1.5, an instantaneous description is always finite. Hence, these 

definitions, together with Definition 1.8, dictate that a Turing machine 

scan only those squares on which symbols have been printed. This 

means that a Turing machine is not capable of scanning blank squares. 

However, this limitation can be overcome by adopting the following 

convention. 

Since the expression on the tape of a Turing machine at an 

instantaneous description a is always finite, think of the tape as 

being finite where, when the Turing machine is about to run off the 

end of its tape it is capable of splicing on a new square on which the 
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symbol s
0 

has been printed.

The symbol s0 then, will be reserved to stand for a blank square;

B will also be written in place of s0•

The following definition will allow an instantaneous description 

of a Turing machine to be replaced by a succeeding instantaneous 

description. 

Definition 1.9. Let Z be a Turing machine and a, B instantaneous 

descriptions. Then a is replaced with 8 by Z, symbolized a+ B(Z), 

or when no confusion results, merely as a+ 8, provided there exist 

tape expressions P and Q (possibly empty) such that one of the follow­

ing holds: 

(1) a is

(2) a is

(3) a is

(4) a is

(5) a is 

Pq. S .Q, 
1 J q. S . Skq E: 

1 J m z and B 

Pq. S. SkQ, 
1 J q.S.R 

1 J 

Pq. S ., 
1 J q.S .R q 

1 J rn 

q
rn E: 

Z and 

E: Z and 8 

is 

B 

is 

PSkq
i

S
j

Q, q. S .L q E: 
1 J m Z and B 

q. S .Q, 
1 J 

q. S .L q E: 
1 J m Z and B is 

Pq�SkQ 

is PS .q SkQ
J m 

PS .q s0J rn 

is Pq SkS .Q
m J 

q s
0

s.Q.
m .J 

(reprint) 

(right search) 

(left search) 

It may be noted that Definition 1.9 makes no mention of quadruples 

of the form qiS
j

qkqm. Turing machines having quadruples of this form 

will be considered later. For the present, however, only Turing 

machines that are simple will be dealt wl,th. 

Two results that follow from the preceding definition are the 

. following theorems. 

Theorem 1.1. If a+ B(Z) and a+ y(Z), then Bandy are the same 

instantaneous descriptions. 

Theorem 1. 2. If z
1 and z2 are Turing machines such that z1 C. z2

and if a+ B(Z1), then a+ B(Z
2).



Definition 1.10. An instantaneous description a is called 

terminal with respect to Zif, for all instantaneous descriptions S, 

it is not the case that a +  S(Z). 

Definition 1.11 . Let Z be a Turing machine, then a computation 

of Z will be a finite sequence a
1

,a2, ••• ,a
n 

of instantaneous descrip­

tions such that a. + a.+1
(z) for i = 1,2, ••• ,n-l and where a is

i i n 

terminal with respect to z. If such be the case, then 

will be written and a
n 

will be called the resultant of a
1 

with respect 

to Z; a
1 

will also be called the input and a0 the output with respect 

to Z. 

In what follows, the symbol q1 
will denote the machine state at

instantaneous description a
1
. Moreover, a

1 
will be assumed as input. 

Consider the following example, where Z is the Turing machine 

consisting of the quadruples:

qlSlL ql

q1
S2L ql

q1
S3L ql

ql
SOR q2

q2S
1

S0q3

q2S2S0q3 

q2S3S0q3 

q3SOR q2'
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Let 

al
= S2SlqlS3,

then the following is a computation with respect to Z: 

al 
= S2

S
lqlS3 

+ S2q1S1S3 

+ 

qlS2SlS3 

+ ql 
SOS2Sl S3

+ soq2s i183

+ soqios1 s3 

+ SOSOq2SlS3 

+ SOSOq3SOS3 

+ SOSOSOq2S3 

+ SOSOSOq3SO 

+ S OSOSOSOq2S
0

which is terminal, hence, 

The effect of Z on a1 is to move left untit a blank is encountered,

then proceed right, erasing everything until a blank is again encount­

ered. 

Should the quadruple q2s
0

R q2 be added to Z, the machine would

compute indefinitely and Resi(a1) would not be defined. This illus­

trates the fact that Theorem 1.2 does not extend to computation. 

That is, if z1 C. z2, then a computation of z1 need not necessarily be

a computation of z2.



Computable and partially computable functions 

In order for a Turing machine to perform numerical computations, 

a symbolic representation must be introduced so that to a given integer 

n, there can be associated an appropriate tape expression. 

n Henceforth, 1 will be written instead of s
1 

and Si shall denote

the tape expression S.S .••. S., consisting of n occurrences of the 
l. l. l. 

symbol S
i, with S� being the empty expression.

For convenience, J will denote the set of all non-negative 

n integers and J ,  n a positive integer, will denote the set of all

ordered n-tuples of J. 

Definition 1.12. To each non-negative integer n, associate the 

n+l tape expression n where n = 1 = 111 ••. 1 (n + 1 occurrences of 1).

Definition 1.13. To each k-tuple (n1,n2, ••• ,�) of non-negative

integers, associate the tape expression (n1,n2, ••• ,�) where

and 

For example, by the above definitions, it follows that 

4 = 1 4+ l 
= 11111

(0,3,2) = OB3B2 = lBllllBlll. 

Definition 1.14. Let P be any expression. Then <P> will be the 

number of occurrences of the symbol 1 in the expression P. 

As a consequence of this definition, it is obvious that for 

expressions P and Q, <PQ> = <P> + <Q>. Also, for any positive integer 

m, <m - I> = m. 

9 



Definition 1.15, Let Z be a Turing machine and let n be a 

positive integer. Associate with Z an n�ary function w� in the

following way. 

then 

(1) If there exfsts a computation a
1

, a2, • • •  '°i< of Z, set

(2) If the above does not hold, that is, if Res
2

(a
1

) is not

defined, then leave w; at (m
1

,m2,··· ,m
n

) undefined.

When n = 1, wz will be written instead of w�.

Definition 1.16. Let f be an n-ary function defined on a subset 

n D of J ,  then f is called a partial function. Should f be defined

n 
on the whole of J ,  then f is called a total function.

Taking the usual definition for equality of functions, to say 

two partial functions are equal implies, among other things, that 

their domains are identical. 

Definition 1.17. Let f be an n-ary partial function and suppose 

there exists a Turing machine Z such that 

n f = w
2

, 

then f is said to be partially computable and Z is said to partially 

compute f. Should f be total, then f is said to be computable and 

Z is said to compute f. 

The preceding definitions show how the computability of functions 

can be expressed in terms of Turing machines. 
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Following are some examples of computable and partially comput­

able functions. 

Example 1.1. The successor function S, defined on J by 

S(x) = x + 1, 

is a computable function. 

Let m £ J and choose a Turing machine Z such that q1
m is terminal

with respect to Z. Then q1m is a computation of Z and

Since m was arbitrary, Sis computable. 

Example 1.2. The total function o, defined on J
2 

by 

o(x,y) = x + y, 

is a computable function. 

2
Let (m,n) £ J and let Z be the Turing machine consisting of 

the following quadruples:

qll B ql

qlB 
R q2

q2
1 R q2

q2B 
R q3

q3
1 B q3

and let 

Then, 

11 



a 
= 

1 
ql 1

m+1B1
n+l

-+ q1
B1�11

n 

-+ Bq21�11
n 

-+ 

-+ Bl
m 

B1ln 

q2 

-+ Bl�q
3

11n 

-+ Bl�q
3

Bln,

which is tenninal with respect to Z. Whence, 

and so o is computable. 

Example 1. 3. n n The n-ary function Ui , defined on J by

for 1 .2. i .2. n, is a computable function. 

Let (m
1

,m2, ... ,m
n

) £ Jn and let

m .+1 
If a Turing machine Z can be constructed to erase all blocks 1 J 

j Ii, and on ly the initial 1 from the i-th block, then clearly_ 
m. 

1. 
Res

2
(a

1
) will be 1 and

so the computability of U
i

n will be established.

The required Turing machine is given by the following quadruples, 

where j runs through all integers not equal to i such that 1 < j < n : 

12 



q.l B q2n+j J 

q. B R qj+l J 

q2n+l 
R 

qj 

q.l B qi1. 

q. B R q2n+i1. 

q2n+i1 R q2n+i 

q2n+i
B 

R qi+l 

(erase the j-th block of l's) 

(erase the initial 1 in the i-th block) 

(proceed to the i+lst block of l's). 

A computation will terminate in machine state qn+l since each

quadruple begins with qk, where 1 < k <n or k > 2n.

is computable. 

H U.
n

ence, 
1. 

Two more examples are given below. However, they will be 

discussed only briefly. 

Example 1.4. The partial function f, defined by 

f(x,y) = X - y, 

is partially computable. 

Let (m,n) be any ordered pair in J
2 

and let 

A Turing machine could be constructed to erase a 1 from the 

right-hand block of.l's each time a 1 is erased from the left-hand 

block of l's, stopping or continuing indefinitely if the right-hand 

or left-hand block is exhausted first, respectively, Hence, f would 

only be partially computable since it would not be defined for those 

2ordered pairs (m,n) of J with m < n. 

13 



If the Turing machine had been constructed to erase everything 

and stop, should the left-hand block have been exhausted first, then 

it would compute the total function 6, defined by 

where 

o(x,y) = X � Y,

X .  y = X - y if X.::.. y and 

X - y = 0 if X < Y• 

This function is referred to as the proper subtraction function 

and is called the completion of the partially computable subtraction 

function f(x,y) = x - y. 

Example 1.5. The function g, defined on J
2 

by

g(x,y) = (x + l)(y + 1), 

is a computable function. 

14 

In as much as Oy = xO = O, (x + l)(y + 1) will be easier to 

consider than xy. However, the computability of xy will be established 

later on. 

Construction of the Turing machine to compute g is based on the 

fact that 

(x + l)(y + 1) = (y + 1) + (y + 1) + . . .  + (y + 1) 

x + 1 times. 

2 
Let (m,n) E J and let 

Then a Turing machine could be constructed to erase the leftmost 1, and 

for each 1 remaining in the left-hand block, erase it and at the same 



time copy the rightmost block on the left. This would require using 

special markers in order to shift the copied l's.to the left to make

room for the next 1 to be copied from the rightmost block. 

This would result in m + 1 blocks of n + 1 l's. Hence, 

2 
�z(m,n) = (m + l)(n + 1) = g(m,n)

and the computability of g would be established. 

Definition 1.9 will now be extended to include the more general 

form of Turing machines; namely, those incorporating quadruples of 

the form q. S .qkq . This will result in the more general notion ofi J m 

computability, that of relative· computability. 

In effect, the quadruple q1S
j

qkqm will allow the Turing machine

to choose between alternate paths in the course of its operation. 

This, in the sense that, for a given set of integers A, the machine 

may inquire as to the membership of an integer n in A. If n E A 

the machine will enter into machine state qk, hence, one path of 

operation. If ni A, the machine will enter into machine state q ,
m 

whence, the alternate path of operation. 

This is made precise by the following definition, where A denotes 

an arbitrary but fixed set of non-negative integers. 

Definition 1.18. Let Z be a Turing machine and let a, 8, be 

instantaneous descriptions. Then a A S(Z) will be written, provided

there exist tape expressions P and Q (possibly empty) such that a 

is Pqi
SjQ, 

q
i

S
jqkqm E Z and either

(1) <a> E A, in which case 8 is PqkS
jQ, or

(2) <a> i A and 8 is Pq S.Q.m J 

15 



Definition 1.19. An instantaneous description a is said to be 

final with respect to Z, Z a Turing machine, provided a is of the form 

Pq
iS

j
Q, for tape expressions P and Q (possibly empty), and Z has no

quadruple whose first two symbols are q
i

S
j

. 

Theorem 1.3. If Z is a simple Turing machine, then an instan­

taneous description a is terminal with respect to Z if and only if a 

is final with respect to Z. 

Proof: Obvious 

Theorem 1.4. Let Z be a Turing machine and a an instantaneous 

description, then a is final with respect to Z if and only if 

(1) a is terminal with respect to Z and

(2) For each set of non-negative integers A, there is no

instantaneous description S such that a A S(Z).

Proof: If Z is simple the theorem follows immediately from 

Theorem 1.3. Therefore, suppose Z is not simple and a is of the 

form Pq.S.Q. If a is final, then Z contains no quadruple of the forml J 

q.S. and (1), (2) are obvious. 
l. J- -

Conversely, if (1) and (2) hold and a is Pq.S.Q, then by (1), the 
l J

only quadruple in Z beginning with q.S. must be q,S.qkq for some qk
1 J 1 J m 

and 
�-

But by (2) this is impossible. Hence, a is final. 

Definition 1.20. Let Z be a Turing machine and let A be a set 

of non-negative integers. Then an A-computation of Z shall mean 

a finite sequence a
1

, a
2

, • . •  , ak of instantaneous descriptions 

such that 

for each i, 1 < i < k, with ak being final with respect to Z.

16 



If such be the case, ak will be called the A-resultant of a
1 

with

respect to Zand this will be symbolized by 

Should Z be a simple Turing machine, then the computation will 

be independent of A and 

Definition 1.21. Let Z be a Turing machine and A an arbitrary 

set of non-negative integers. For each positive integer n, associate 

with Zan n-ary function �Z�A as follows:

then 

Z let 

For each n-tuple (rn
1
,m

2
, •.. ,rnn) set

(1) If there exists an A-computation of a
1 

with respect to

(2) If the above does not hold, that is, if Res
2
A(a

1
) is not

n defined, then leave �Z;A at (m1,m2, ••. ,mn) undefined.

In case n = 1 write �
Z;A in place of Wz�A'

If Z is a simple Turing machine, then �z7A 
is independent of

A and 

17 



Definition 1.22. Let f be an n-ary function defined on a subset 

D of J
n

. If there exists a Turing machine Z such that for some subset 

A of J, 

then f is said to be partially A-computable and Z is said to partially 

A-compute f. Should D = J
n

! then f is said to be A-computable and Z 

is said to A-compute f. 

Theorem 1.5. Let f be an n-ary function, then 

(1) If f is partially computable, it is partially A-computable.

(2) If f is computable, then it is A-computable.

Proof: This follows immediately from the fact that, if f is 

partially computable or computable, then w� is independent of A,

whence, 

f = ,,,
n ,,, 

n
o/Z 

= o/Z;A"

Theorem 1.6. Let Z be a Turing machine, then there exists 

a simple Turing machine Z* such that for the empty set�' 

Proof: If Z is simple, choose Z* = z. If Z contains quadruples 

of the form q. S .q
k

q , then choose Z* to be Z with each quadruple of 
i J m

the form q. S .q
k

q in Z replaced by quadruples of the form q. S .S ,q . 
i J m i J J m 

Thus, Z* is simple and since� is empty, <a> t � for all instantan-

eous descriptions a, so clearly 



Theorem 1. 7. Let f be an n-ary function, then 

(1) The function f is partially computable if and only if it

is partially ¢-computable. 

(2) The function f is computable if and only if it is ¢-comput

able. 

Proof: This follows directly from Theorems 1.5 and 1.6. 

Definition 1.23. Let S be a set and define the characteristic 

function of S by 

c8(x) 0 if and only if x £ S and

c8(x) - 1 if and only if x t S.

Definition 1.24. Let S be a set, then S is said to be computable 

or A-computable, according as its characteristic function c8 is

computable or A-computable. 

Theorem 1.8. For every set A of non-negative integers, A is 

A-computable.

Proof: Let Z be the Turing machine consisting of the quadruples:

ql
l B ql

qlB q2q3 

q2B 
R 

q4

q4
1 B q2

q3B 
R 

q5

qsl B q3

qSB 1 q3
.
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n 
Now <q

1
Bl > = n so suppose n E A, then 

which is final. 
n+l 

But <B q
4

B> = O, whence,

For the case when n i A, then 

which is final. 

n n 
q

1
Bl 

t. 
q

3
Bl 

n 
-+ Bq

5
1 

-+ B Bl
n-l

q
3 

-+ 

-+ B
n+2 

B q
s 

n+2 
B q

3
1, 

n+2 
Hence, <B q

3
1> = 1 and

Therefore, A is A-computable. 

In view of Theorem 1.7, it is evident that computability and 

partial computability are special cases of the more general notions, 

A-computability and partial A-computability, respectively. Therefore, 

only Turing machines involving A-computations will be considered from 

now on. 



Additional properties of Turing machines 

In as much as Turing machines can perform computations on 

instantaneous descriptions, which involve ordered n-tuples, it is 

conceivable that the output from one Turing machine may be used as 

input for some other Turing machine. This notion leads to the 

subsequent definitions. However, the following conventions will 

first be adopted. 

21 

Final blanks in an instantaneous description will be omitted 

except for the case of that blank, if any, preceded by a q
i. On the

other hand, an initial blank will not be omitted. Thus, s
3

11s2
q

3
1 will

be written instead of s
3

11s2q3
1BB, but the expression BS

3
1q5B must

remain unchanged. 

Definition 1.25. Let Z be a Turing machine and let 8(Z) denote 

the largest integer such that qe
(Z) 

is a machine state of z. Then for

each positive integer n, Z is said to be n-regular, provided no 

quadruple of Z begins with qe
(Z) and for any n-tuple (m

1
,m2, .•. ,m

n

)'

whenever Res
2

A[q
1

(m
1

,m2
, •.• m

n
)] is defined, it has the form

qe(Z)(t
1

,t2, ... ,t
s

) for some positive integer s and suitable t
i

's.

Here, of course, qe
(Z)

(t1,t2, •.. ,ts) may contain additional

occurrences of B on the right but qe(Z) 
must be the leftmost symbol.

Definition 1.26. Let Z be a Turing machine and for each integer 

n > O, define Zn to be the Turing machine obtained from Z by replacing

each machine state q. in Z by machine state q +·· 
1 n i 

0 
From this definition it follows that Z = z.

Theorem 1.9. Let Z be a Turing machine, then there exists a 

Turing machine Z* such that, for each integer n > 0, Z* is n-regular 

and in fact 



Proof: Let A, µ denote the first two symbols s2, s3, , , ,

22 

which are not in the alphabet of Z and let z
1 

consist of the quadruples: 

qll L ql

ql B A ql

q1
A R q2 (print A on the left)

q21 R q2

q2B R q3

q31 R q2

q3B L q4 (move right to a double blank)

q4B 
JJ 

q5 
(printµ on the right)

q5
µ L q5 

q
5

1 L q5 

q5
B L q

5 

q5t.. R q6 (move left and find 1..).

Then with respect to z1�

a = q (m m m ) � . • • � 1..q6
(m

1,m2, •.• ,m
n

)µ, 1 1 l' 2''''' n 

which is final. 

Now z
5 

will be like Z except it will begin with machine state q6

instead of machine state q1
• Let k = 8(Z

5
) and let z

2 
be the quadruples 

5 of Z together with the following quadruples, where qi
may be any 

machine state of z
5

: 



qi" B qk+i ( erase >.)

qk+i
B L q2k+i

q2k+i
B A q2k+i (move A left one square)

q2k+i" 
R qi (resume main computation) 

qiµ B q3k+i (erase µ)

q3k+iB R q4k+i

q4k+i 
B µ q4k+i 

(move µ right one square)

q4k+iµ L q. 
1. 

(resume main computation) .

5 This last set of quadruples allows for a computation of Z to

remain within the markers A and µ. 

A
Now should Resz [q1

(m
1, m2, ..• ,m

n
)] be defined and if

then with respect to z
2

which is final. 

A 
Moreover, if Resz [q1

(m
1

,m
2

, ••. ,m
n

)] is undefined, then so is

A 
ResZ

z 
[>.ql(ml

,m
2

, •.• ,m
n)µ],

Let t =  Sk + 1 and let z3 consist of all quadruples of the form

where qi 
is any machine state of z

2
, S

j 
is in the alphabet of z

2 
but

such that no quadruple of z
2 

starts with q.S .• This is possible,
1. J 

elsewise, no instantaneous description would be final with respect 

to z
2

• Now, if >.Pqi
Qµ is any instantaneous description which is final
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with respect to z2, then

which is final with respect to z
3

.

Finally, let z4 consist of the following quadruples, where S

denotes any symbol in the alphabet of Z other than 1 or B : 

qtl L qt

q s L qt t

q B L qt t 

qt\ R qt+l

qt+1
5 B qt+l

qt+lB R qt+l

qt+l 1 B qt+2

qt+lµ B qt+4

qt+2B L qt+2 

qt+2 1 R qt+3

qt+2>- R qt+3

qt+3B l qt+3

qt+i R qt+l

qt+4B L qt+4 

qt+41 L qt+4 

(find the left marker>.) 

(move right looking for a 1) 

(find the block of l's) 

(add 1 to the block of l's) 

qt+4A 1 qt+S
(add 1 and terminate). 

Now z4 will collect the l's on the tape into a single block, add

an additional 1, erase everything else and terminate. Hence, taking 

,.·· 
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then 

Since Z* is clearly n-regular, the theorem follows. 

Theorem 1.10. For each n-regular Turing machine Z and each integer 

k > 0, there exists a (k + n)-regular Turing machine Zk such that

whenever 

it is also true that 

A Furthermore, whenever Resz [q1(m1,m2, ... ,mn)] is undefined, so

is Resz
k 

[q1(r1,r2
, ... ,rk,m1,m2

, ... ,mn)].

Proof: Let A andµ denote distinct symbols not in the alphabet of 

Z and let Y1 consist of the following quadruples, where i runs through

all integers such that 1 < i < k: 

qll A ql

qlA R 
q2 (replace the leftmost 1 by the marker A) 

q.l 
1 

µ qi 

qiµ R 
qi

qi
B R 

qi+l 
(replace l byµ for 1 < i 2.. k)



qk+l 1 µ qk+l

qk+lµ R qk+l

qk+lB µ qk+2 

qk+2µ R qk+3 (replace the k-th block of l's by µ's).

Now, with respect to Y1

k+2 
Let p = 8(Z ) and let Y2 consist of the following quadruples,

h b h. t f zk+2 .. w ere qi may e any mac 1ne s ate o 

(interupt main computation) 

q +· l L q +· 
p 1 p 1 

qp+iµ L qp+i

qp+iB L qp+i

qp+iA B q2p+i (search for the marker A)

q2p+iB L q3p+i

q3p+i B A q3p+i

qJp+i
A R q4p+i 

(move A left one square)

q5p+iµ 

q5p+iB 

q5p+i1 

R q5p+i

B q. 
1 

L q6p+i

L q7p+i

L q6p+i

(resume main computation) 

(encountering µ, prepare 

(encountering B, prepare 

(encountering 1, prepare 

to 

to 

to 

copy it)

copy it)

resume main computation) 
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q6p+iµ µ q8p+i

q6p+iB µ q8p+i (copy. µ)

q7p+iµ B q8p+i 

q7p+iB B q8p+i (copy B )

q8p+iµ R q4p+i 

qBp+iB R q4p+i (repeat until a 1 is encountered).

Thus, Y
2 

will move the first k blocks of l's one square to the

left whenever Zk+2 tries to print over them. Hence, taking

then with respect to Y3

·q1(r1, r2,···, r
k

, ml,m2, .•. ,m
n)-+

-+ Qµqk+3(ml, m2, .•. ,mn)

-+ 

r1 r2+1
which is final, where Q is Aµ Bµ B 

rk+l 
Bµ • Moreover, it

27 

will be defined whenever Res2
A[q1(m1, m2, ••. ,m0)] is defined. Elsewise,

there can be no A-computation of Y
3 

beginning with the instantaneous

description q1(r1,r2, ••• , r
k

,ml,m2, •.. ,mn).

It remains to construct a Turing machine Z
k 

which will compute 

like Y
3 

but in addition, replace all occurrences of A and µ by 1. 

Let v = 0(Y
3

) and choose Zk to be Y
3 

togethe r with the following

quadruples:



q 1 L qp p 

qpµ 
B qv+l (restore B ) 

qv+l8 L qv+l 

qv+lµ 1 qv+l

qv+l l L qv+l

qv+l\ 1 qv+2 (restore each \ and
µ 

by 1 ) .

Since 8(Zk) 
= V + 2, then with respect to Zk

which is final. Hence, the theorem is established. 

Theorem 1.11. For each integer n > 0 and each integer k .::_ O, 

there exists a (k + n) -regular Turing machine Ck such that

A 
Res Ck [ q 1 ( r 1 ' r 2 ' . • . ' r k ' m 1 ' m2 ' • • . ' m n) ]

= q 8 (Ck) 
( m 

1 'm2 ' • • · ' m 
n ' r 

1' r 2 ' • • · ' r k' ml '
rn2 ' • · • ' m 

n) ·

Theorem 1.12. Let n be a positive integer, then for each integer 

k > 0 there exists a (k + n)-regular Turing machine 1\ such that

A 
Res

� 

[ q 1 ( r 
1, r 2 , ... , r k , m1 , 

m2 , ••• , m 
n) ]

= q 8 ( 
�

) 
( m 

1 ' m2 ' • · · ' m 
n ' r 

1 ' r 2 ' • • • ' r k) •

Construction of the Turing machines satisfying the conditions 

of Theorems 1.11 and 1.12 is straight forward but quite long. There­

fore, these two theorems will be stated without proof. 

Theorem 1.13. For each n-regular Turing machine Z, there exists 

an n-regular Turing machine Z* such that whenever 



it is also true that 

Furthermore, whenever Res Z A[ q1 (m1, m2, •.. , m0)] is· defined or undefined

A so is Res
Z

* [q
1

(m
1

,m2, ..• ,m
n) ] defined or undefined, respectively.

Proof: By Theorem 1.10, there exists a Zn-regular Turing machine 

Y such that 

Using Theorem 1.11 and 1.12, taking 

then with respect to c0

e(c )-1
and with respect to Y 0 

-+ 

• -+

Finally, with respect to R e(CO ) -Z+e(Y)
n 

-+ 
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which is final with respect to Z*. The second part of the theorem 

follows irrnnediately. 

Theorem 1.14. Let z 1, z2, . . .  , Z
k 

be Turing machines, then

for each integer n > 0 there exists an n-regular Turing machine Z* 

such that 

Proof: The proof will be by induction on k. 

Basis: Suppose k = 1, then this reduces to nothing more than Theorem 

1.9. 

Induction step: Suppose the assertion is true fork = j. Let the 

Turing machines z
1

, z
2

, • . . , Z
j+l

be given and set 

where 1 < i � j + 1. 

By the induction hypothesis, there exists an n-regular Turing 

machine Y
1 

such that 

Hence, by Theorem 1.13, there exists an n-regular Turing machine Y
2 

such that 

Moreover, by Theorem 1.9, there exists an n-regular Turing machine Y
3 

such that 
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Finally, by Theorem 1.10, there exists an n-regular Turing machine Y
4 

such that 

By talcing 

Z* = y U y 8(Y2)-1
2 4 

' 

then the assertion is true fork = j + 1, hence, the theorem. 
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RECURSIVE FUNCTIONS 

Composition and minimalization 

Two operations, �omposition and minimalization, will now be 

considered which afford a means for constructing a large class of 

Turing computable functions. Moreover, by applying Theorems 1.9-

1.14, it will be possible to show that functions from this class 

are computable or partially computable without having to appeal 

directly to the definition of computability. 

Let f and g be unary functions, then by composition of f with 

g will be the function h, defined by 

h(x) = f(g(x)), 

where it is understood that the domain of h consists of those values 

of x, in the domain of g, for which g(x) is in the domain of f. 

This is made more general by the following definition. 

Definition 2. 1. Let f be an m-ary function and let 

. 
' 

g be m n-ary functions. m 
Then the operation of

composition gives a new function h, defined by 

It is understood, of course, that the domain of h is precisely 

those n-tuples in the domain of each g. such that the m-tuple 
1. 

domain of f. 

32 



Theorem 2.1. Let f be an n-ary function and g1, g2, . . , , gm

m n-ary functions. Suppose these functions are partially A-comput­

able for some subset A 0£ J, Then the function h, defined by 

is partially A-computable. 

Proof: Let Z be the Turing machine which partially A-computes 

f and let Z. be the Turing machine which partially A-computes g., 
i i 

i = 1,2, .•. ,m. Therefore, f = wz7A 
and for i = 1,2, ... ,m gi = Wz�;A'

i 
Now by Theorem 1,14, there exists an n-regular Turing machine 

Z* such that 

Let (x1,x2, .•• ,xn) be an n-tuple satisfying (1) and let

Z' = Z*U z 0 (Z*)-1_

-+ 

-+ 

-+ a 

where 
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< a> = f ( g 1 ( x 1 ' x 2 ' ' ' ' ' xn 
) ' g 2 ( x 1 ' x 2 ' ' ' ' ' x 

n) ' ' ' ' ' gm 
( x 1 ' x 2 ' ' ' ' ' x 

n) ) '

defined, otherwise it is not defined. Thus, his seen to be partially 

A-computable.

If the functions f, g1
, g2, , g are A-computable, then

m 

clearly h is A-computable. Hence, the following corollary. 

Corollary 2.1. The class of partially A-computable functions 

and the class of A-computable functions are both closed under the 

operation of composition. 

Example 2.1. The function µ, defined by 

µ(x,y) = xy, 

is computable. 

It has been shown in previous examples that.the functions 6, p, 

S and u
2 

, defined by 

6 (x, y) = X y 

p(x,y) (x + l)(y + 1) 

S(x) = x + 1 

2 
u

2 (x,y) = y,

are all computable. 

Let g be the function defined by 

g(x,y) = S(U
2 

(x,y)) 

2 
+ 1= u

2 (x,y) 

= y + 1, 
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then by Corollary 2.1, g is computable. 

Let h be the function defined by 

h(x,y) = o(p(x,y),g(x,y)) 

= p(x,y) � g(x,y) 

(x + l)(y + 1) • (y + 1) 

= xy + x, 

then by Corollary 2.1, h is computable. 

Finally, letµ be defined by 

µ(x,y) = o(h(x,y),x) 

= h(x,y) � X 

= (xy + x) · · x 

= xy. 

Hence, by Corollary 2,1, µ is computable, 

Definition 2.2. Let f be an (n+l)-ary total function. Then 

the operation of minimalization gives a new function h, defined by 

That is, for a given n-tuple (x1 ,x2, ... ,xn), h associates the least.

value of y for which 

Definition 2.3. In Definition 2.2, if h is a total function, 

then f is called a regular function. 

As in the case of composition, the operation of minimalization 

allows for the construction of a large class of computable and 
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partially computable functions. This is characterized by the follow­

ing theorem. 

Theotem 2.2. Let f be an (n+l)-ary function that is total and 

A-computable. Then the function h, defined by

is partially A-computable. Moreover, if f is regular, then h is 

A-computable.

Proof: A Turing machine will be constructed which successively 

is obtained. 

Let R be the Turing machine consisting of the quadruples:

qll L ql

qlB L q2

q2B 1 q3.

Then with respect to R 

which is final. 

By Theorems 1.9 and 1,13, there exists an (n+l)-regular Turing 

machine S such that 

Therefore, if N 
2 2 = 0(S ), then with respect to S 
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which is final. 

Let T be the Turing machine consisting of the following quad­

ruples: 

qNl B qN

qNB R qN+l

qN+l
1 l qN+2

qN+l
B R qN+4

.

Now if f(y,x
1

,x2, .•. ,x
n

) = k, where k > 0, then with respect to T

+ 

which is final. However, should f(y,x1,x2, ... ,xn) = 0, then with

respect to T 

+ 

Let Q be the Turing machine consisting of the quadruples:

Then with respect to Q 

qN+21 B qN+3

qN+2B l q3

qN+3B 
I
R qN+2'
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L t  U.
m 

be the bl f · d f. db e m-ary computa e unction, e ine y
i 

m 

U, (x
1
,x

2
, ••• ,x) = x., 

i m i

where 1 < i < m. Then by Theorem 1.9, there exists an (n+l)-reqular

Turing machine Y such that 

n+l 
= qe(Y)Ul (y, x

l,x2,•••,x
n

)

= qe(Y)1 
y+l 

Finally, let W consist of all the quadruples of Y together with

the quadruple

qe(Y)1 B qe(Y)' 

N+3 . _N+3 Then with respect to W , letting K = e(w- ), 

Let 

Z = R U S 
2 

U T U Q U �
+ 3

and suppose (x
1

,x2, ••• ,xn) is arbitrary but fixed. Let

for i = 1,2, ..• and suppose r0 # O, r1 # O, .• • , rk-l 
# O, rk = 0.

Then with respect to Z 

(using R) 
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-+ 

(using s
2) 

-+ 

( using T) 

-+ 

(using Q) 

.-+ 

-+ 

(using s2 )

-+ 

(using T) 

-+, 

N+3 
(using W ). 

Therefore, 

,1, n (x X X) = <qKBlk> "'Z;A 1' 2'"'' n 

= k 

= min [f(y,x1
,x

2
, ••• ,x )  = O]

y - n 

= h(x1
,x2, ••. ,xn

).

If r. # 0 for all i, i = 1,2, .•. , then Z will never be in 
]. 

machine state qN+4 and will compute indefinitely. n Thus, both ijlZ·A

and h would be undefined at (x1,x2, ... ,xn), hence, h is partially

A-computable. If f is a regular function, the A-computablity of h

is obvious. 



Example 2.2. The function f, defined by 

f(x)=[h], 

is computable, where [t] means the largest integer:::_ t. 

Let x be an arbitrary element of J, then to say that y is the 

largest integer :5_ rx is equivalent to saying y is the largest integer 

2 
such that y < x. From this it follows that y is the minimum value 

for which (y + 1)
2 > x, or equivalently that y is the minimum value

such that (y + 1)
2 • x is not zero. But, this is true if and only 

if y is the minimum value such that 

1 � ((y + 1)
2 

� x) = 0.

Therefore, 

[ix) = min [ly 
. 

((y + 1) 
2 • x) = 0] '

which by Theorem 2.2 is computable since 

1 · ((y + 1)
2 

• x) 
2 2 

6(1,o(µ(S(U
2 

(x,y)),S(U2 (x,y))),x))

is clearly total and by Corollary 2.1, computable. 

Special classes of functions 

Using the operations of composition and minimalization on an 

initial set of partially A-computable and A-computable functions, 

a certain class of Turing computable functions, which are of partic­

ular interest, can be obtained. This is characterized by the follow­

ing definitions and theorems. 

Definition 2.4. A function f is said to be A-partial recursive 

or partial recursive in A, provided it can be obtained from a finite 
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number of applications of composition or minimalization on functions 

beginning with functions from the following list: 

(1) C
A(x), the characteristic function of the set A

(2) S(x) = x + 1

(3) 

(4) o(x,y) = x + y

(5) 6(x,y) = X y 

(6) µ(x,y) xy. 

41 

Theorem 2.3. The functions S, U.
n

, a, 6 andµ, in Definition 2.4, 
l. 

are computable; hence, partially computable, partially A-computable 

and A-computable. 

Proof: Examples 1.1, 1.3, 1.2, 1.4 and 2.1 established the 

computability of these functions, respectively. The remainder of the 

assertion follows from Theorem 1.5. 

Theorem 2.4. The characteristic function C
¢ 

of the empty set¢, 

is computable; hence, partially computable, partially A-computable 

and A-computable. 

Proof: Definition 1.24 and Theorem 1.8 imply C
¢ 

is ¢-computable. 

Whence, the assertion follows from Theorems 1.7 and 1.5. 

Definition 2.5. A function is said to be partial recursive, 

provided it is ¢-partial recursive. 

Definition 2.6. A function is said to be A-recursive or 

recursive in A, provided it can be obtained from a finite number of 

applications of composition or minimalization on regular functions 

beginning with functions from the list of Definition 2.4. 



Theorem 2.5. An A-recursive function is total and A-partial 

recursive. 

Proof: Since all the functions listed in Definition 2.4 are 

total functions, this follows from definition. 

Although no attempt will be made to establish the fact, the 

converse of Theorem 2.5 is also true. Since this is the case, the 

notion of A-partial recursive functions might seem artificial. 

However, they are considered for their relati6n to computability 

as shown by the following theorem. 

able. 

Theorem 2.6. Let f be a function, then 

(1) If f is A-partial recursive, then it is partially A-comput-

(2) If f is partial recursive, then it is partially computable.

(3) If f is A-recursive, then it is A-computable.

(4) If f is recursive, then it is computable.

Proof: This follows from Theorems 2.1, 2.2, 2.3, 2.4 and 

definition. 

Below is an exrunple of a recursive function. 

Example 2.3. T�e function f, defined by 

f(x,y) = [x/y], 

is recursive, where [x/y] = the greatest integer < ,.x/y if y t- 0 

and [x/y] = 0 if y = O. It is understood that x/y is a rational 

number. 

Let 

A ( x) = 6 (1, x) 

= l .:. x. 
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That is, 

\(0) = 1, 

A (x) = 0 if x > 0. 

Thus, 

[x/y] = min [y = 0 or y(z + 1) > x] z 

= min (y = 0 or y(z + 1) .:.. 
X 'F OJ

z 

= min [y = 0 \(y(z + 1) 
. 

x) = OJ or 
z 

= min [y·>..(o(µ(y,S(z)),x)) = OJ
z 

= min (µ(y,\(o(µ(y,S(z)),x))) = OJ. 
z 

Hence, f is recursive. Moreover, by Theorem 2.6, f is computable. 

In view of Theorem 2.6, if f is a recursive function, then there 

exists an algorithm in the form of a Turing machine for computing 

the functional values of f. Furthermore, the converse of this also 

holds. Hence, the notions of computable and recursive functions 

are equivalent. 
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