
Utah State University Utah State University

DigitalCommons@USU DigitalCommons@USU

All Graduate Plan B and other Reports Graduate Studies

5-1965

Decision Problems Decision Problems

Lowell Anderson
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/gradreports

 Part of the Other Mathematics Commons

Recommended Citation Recommended Citation
Anderson, Lowell, "Decision Problems" (1965). All Graduate Plan B and other Reports. 1100.
https://digitalcommons.usu.edu/gradreports/1100

This Report is brought to you for free and open
access by the Graduate Studies at
DigitalCommons@USU. It has been accepted for
inclusion in All Graduate Plan B and other Reports by
an authorized administrator of
DigitalCommons@USU. For more information, please
contact digitalcommons@usu.edu.

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/gradreports
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/gradreports?utm_source=digitalcommons.usu.edu%2Fgradreports%2F1100&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/185?utm_source=digitalcommons.usu.edu%2Fgradreports%2F1100&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/gradreports/1100?utm_source=digitalcommons.usu.edu%2Fgradreports%2F1100&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

18

is effective.

The following are some results which follow from the derived rules

of inference so far considered.

Tl.l. l"-'A+(A+B)

Proof:

1. "-'A

2. "-'A+ ("-'B + "-'A)

3. "-'B -+ "-'A

4. ("-'B + "-'A) +(A+ B)

5. A+ B

6. l"-'A +(A+ B)

Tl.2. IA+('\,A+B).

T 1. 3. I '\/\,A + A

Proof:

1. '\/\,A

2. l"-'"-'A +("-'A+ '\,'\/\,A)

3 • "-' A -+ '\I\,'\, A

. 4. ("-'A + '\/\,'\,A) + ("""A + A)

5. '\/\,A+ A

6. A

7. !'\/\,A -+ A

Tl.4. IA+ '\/\,A.

Tl. 5. I (A + B) + ((B + C) -+ (A + C))

Proof:

1. A-+B

2. B + C

3. A

Assumption

PCl

1,2,RI

PC3

3,4,RI

1-5,Metatheorem 1.11.

Assumption

Tl.l

1,2,Metatheorem 1.8

PCJ

3,4,RI

1, 5, RI

1-6,Metatheorem 1.11.

Assumption

Assumption

Assumption

4. B

5. C

6. I (A-+ B) -+ ((B-+ C) -+ (A-+ C))

Tl.6. i'\,A-+ ((B -+ A) -+ 'vB),

Tl. 7. I B -+ ('vC -+ '\,(B -+ C)).

Tl.8. i(B -+A)-+ ((-vB-+A) -+A).

Truth Functions

3, 1, RI

4,2,RI

1-5,Metatheorem 1.11.

In considering the notion of truth function the following defini­

tions are required.

Definition 1.5. Let A be a formula and suppose that the totality

of distinct statement variables occurring in A are P1, P2, • • • , P
n

.

Then the P
i's, 1 < i < n, will be referred to as the prime components

of A.

Let P be an arbitrary statement variable and let V = {0,1}; then

associated with Pis a rule f
p

, from V into V, defined by f
p

(x) = x,

x in V. If f
p

(x) = x, then Pis said to have the truth value x,

denoted u(P) = x, with assignment of truth value x to P. This is

generalized by

19

Definition 1.6. Let A be an arbitrary formula with prime components

p .
n Then associated with A is a rule f

A
' called a truth

function, from Vn into V, where Vn is the set of all ordered n-tuples

with entries from V. u(A) will denote the truth value of A for an

assignment of truth values to the prime components of A. That is,

u(A) = f
A

(x
1, x

2
, • • • x

n
)

where u(Pi) = f
p

(x
i

) = x
i

, x
i

in V, 1 < i < n. Furthermore, u(A) will
i

satisfy the following for a given truth value assignment to the Pi's of A.

1. If A is of the form "'B then

i. u(A) =

ii. u(A)

2. If A is of

i. u(A) =

ii. u(A) =

Definition

typified by the

p -+ q.

1 if and only if u(B) = 0

0 if and only if u(B) = 1.

the form B-+ C then

0 if and only if u(B) = 1 and u(C) = 0

1 if and only if u(B) = 0 or u(B) = 1 and u(C) = 1.

1. 6 gives rise to the notion of truth tables. This

following example: the truth table for the formula,

1
1
0
0

1
0
1
0

1
0
1
1

20

is

The entries under p and q are the possible values that can be

assigned to p and q, while the entries under p-+ q are the values taken

by p-+ q for the given assignments to p and q.

Definition 1.7. Let A be a formula with prime components

P
n

. Then if f A (x
1
, x2, • • • x) = 1 for all possible

n

truth value assignments to the prime components of A, A is said to be a

tautology. This assertion is symbolized by

II A.

Since a formula A has only a finite number of prime components

there will be only a finite number of possible truth value assignments

to these prime components. In view of this and Definitions 1.6-7, then

Metatheorem 1.13. The notion of tautology is effective.

Metatheorem 1,14. If I IA and I IA-+ B then I IB,

Proof: Suppose I IA and I IA-+ B, then u(A) = 1 and u(A-+ B) = 1

for all truth value assignments to the prime components of A and A-+ B.

21

But by Definition 1.6, v(A + B) = 1 if and only if v(B) = 1 when v(A) = 1.

This implies v(B) = 1 for all truth value assignments to the prime com­

ponents of B. Hence, I IB.

To illustrate Definition 1.7, consider the formula p + (q + p).

The truth table for p + (q + p) is given below.

1 1

1 0

0 1

0 0

1

1

0

1

1
1
1
1

By the above then, it is clear that I IP+ (q + p).

The Decision Problem

In order to establish the property that the notion of theorem is

effective the following result will be needed.

Metatheorem 1.15. Let A be a formula with prime components

, p • n Define P� to be Pi
or �pi

according as v(P
i) = 1

o·r v(P.) = O, respectively, and define A' to be A or �A according as
]_

v(A) = 1 or v(A) = O, respectively. Then,

P' P' • • • P' IA'
1' 2' '· n

for each assignment of truth values to the prime components of A.

Proof: The proof will be by induction on the number of occurrences

of '�' and'+' in A. If n = O,then A is just some Pi
and the result is

obvious. Suppose the condition holds for any number of occurrences

less than n and suppose A contains n occurrences.

Case 1. A is of the form �B. Since B contains ·n-1 occurrences and also

the prime components of A,then by induction hypothesis,

P l P' ••• 'P' IB'.
1' 2' n

,'

i. If v(B) = 1, then v(A) = 0 and A' is 1\/\,B, B' is B. But jB + 1\/\,B,

22

P' l'V\.,B• so P' P' ••• , P' IA'.n ' l' 2' n

ii. If v(B) = O, then v(A) = 1 and A' is A, B' is 'vB, hence, B' is A;

so P
1
1

, P' •2, P' IA' since B' is A'.n

Case 2. If A is of the form B -+ C, then by induction hypothesis,

Pi, P2, •

Pi, Pz, •

P' IB'
n

P' le'
n

since both B and C contain less than n occurrences.

i. If u(C) = 1, then u(A) = l; so C' is C and A' is A. But le-+ (B-+ C),

hence, pi' pi, . . P' IB -+
n

ii. If u (B) = 0, then u(A) =

l'vB-+ (B -+ C) , hence, Pi, Pz, .

iii. If u (B) = 1 and u(C) = o,

and A' is 'vA, that is 'v(B -+ C).

use of Metatheorem 1.8, Pi, P2,

C· , so

1. , so

.

,

then

But

Pi, P
2

, . . .

B' is 'vB and A'

P' IA'.n

u(A) = 0, hence,

IB -+ ('vC -+

P' IA'.n

'v(B -+

P' IA�
n

is A. But

B' is B, C' is 'vC

C)); so by repeated

After establishing the foregoing result, there is now sufficient

apparatus to prove the following important result known as the complete-

ness theorem.

Metatheorem 1.16. If I IA then IA,

Proof: Suppose I IA and let P1, P2, • , P be the prime com­n

ponents of A. Define P 1 P' • • • , P' and A' as in Metatheorem 1.15.
l' 2' n

Since I IA, then A' is A, hence by Metatheorem 1.15, Pi, P2,

In particular

Pi, P
2, .

p I

1
>

p IAn- n

Pi, P2, . p I

l'
'vP IAn- n

, P' IA.n

for all truth value assignments to the Pi's. By the deduction theorem,

p
i' P2, . . . P' IP -+ An-1 n

Pi>
P2, . . . P' I 'vP -+ A.

n-1 n

From Tl.8, I (P �A)� ((�P �A)� A), so by repeated use of Meta-n n

theorem 1.8,

. . . p�-1 IA.

Repeating this process of eliminating assumptions yields,

IA,

Metatheorem 1.17. If jA then I jA.

Proof: Suppose jA, It is easy to show that each axiom is a

tautology, Using Metatheorem 1.14 and the fact that each line of the

proof of A is an axiom or inferred from two previous lines by RI the

result follows.

Metatheorems 1.16-17 show that IA if and only if I IA. By Meta­

theorem 1.13 the notion of tautology is effective, hence, given a

formula A, there is an effective procedure for deciding if A is or is

not a theorem by seeing if A is or is not a tautology.

More generally, Metatheorern 1.15 affords an effective procedure

for providing a proof for a theorem which has been shown to be a

theorem by showing it to be a tautology. Hence,

Metatheorem 1.18. The notion of theorem is effective.

Metatheorern 1.19. The notion of provability is effective.

23

24

THE PREDICATE CALCULUS

Primitive Basis

The propositional calculus can be extended to a more general

theory, this theory being the predicate calculus. As in the case of

the propositional calculus, symbols, devoid of interpretation, will be

used extensively in order to put the theory in a purely formal context.

For this particular formulation the following symbols will be

employed as the primitive symbols of the predicate calculus.

The improper symbols;

() 'v -+

together with the three at most denumerable infinite lists of proper

symbols,

p q r

called statement variables;

X y z x
l

Y
1

z
l

x
2

Y
z

z
2

called individual variables and for each positive integer n, n-place

predicate symbols,

F
l

G
l

H
l

F
l

G
l

H
l

F
l

G
l

H
l

1 1 1 2 2 2

F
2

G
2

H
z

F
2

G
2

H
z

F
2 · 2

H
z

1 1 1 2 ,
G

2 2

called predicate variables. The dots are used to indicate the lists

continue indefinitely.

25

The formation rules are given by the recursive definition:

I. If Q is a statement variable, then (Q) is a formula.

II. If P is an n-place predicate variable, then P(a 1, a2, • • • , an)

is a formula, where a1, a2, • • • , a are individual variables.
n

III. If A is a formula, then (�A) is a formula.

IV. If A and B are formulas, then (A+ B) is a formula.

V. If A is a formula then, (a)A is a formula, where a is an

individual variable.

VI. Only finite strings of primitive symbols which follow from I-V

are formulas.

It is evident from II and V and Metatheorem 1.1 that

Metatheorem 2.1. The notion of formula is effective.

Definition 2.1. If A is a formula then any occurrence of the

individual variable a, in the formula (a)A, is called a bound occurrence

in (a)A. Any individual variable a, which is not a bound occurrence in

a formula, is called a free occurrence.

The axioms of the predicate calculus are given by the following

schema:

Pl. A + (B + A)

P2. (A+ (B + C)) +((A+ B) +(A+ C))

P3. (�A+ �B) + (B + A)

P4. (a)(A + B) +(A+ (a)B), where a is an in9ividual variable

with no free occurrence in A.

PS. (a)A + B, where a is an individual variable, S an individual

variable and Bis obtained from A by replacing each free

occurrence of a in A by S, provided that no free occurrence

of a is in a part of A of the form (S)C.

26

It is to be noted. that, as in the case of the propositional calculus,

certain liberties are taken in regards to the use of the symbols '(' and

Metatheorem 2.2. The notion of axiom is effective.

Proof: This follows immediately from Metatheorem 2.1 and the fact

that axioms will have one of five forms.

In addition to the axioms Pl-PS the predicate calculus will have the

two ruies of inference:

RI. From the formulas A and A+ B, B may be inferred.

UG. (Generalization) From the formula A, (a)A may be inferred where

a is an individual variable.

To infer (a)A from a formula B, B must be just A and by extending

Metatheorem 1.4 to the predicate calculus then

Metatheorem 2.3. The notions of RI and UG are effective.

Definition 2.2. A formal proof is a finite colunm of formulas,

each line of which is an axiom, inferred from two previous lines by RI

or inferred from a single preceding line by UG.

Definition 2.3. A formal theorem is the last line of a formal

proof.

The assertion that A is a theorem will be denoted by

IA,

As a result of the foregoing it can be shown that

l(x)F
1
(x) + (y)F

1
(y).

Proof:

1.

2.

3.

(x)F
1
(x) + F

1
(y)

(y)((x)F
1
(x) + F

1
(y))

(y)((x)F
1
(x) + F

1
(y)) + ((x)F

1
(x) + (y)F

1
(y))

PS

1,UG

P4

4.
1 1 (x)F (x) + (y)F (y) 2,3,RI

The above proof gives rise to a proof schema for the theorem

schema (a)P(a) + (S)P(B), where a, S are arbitrary individual vari­

ables and P an arbitrary 1-place predicate variable.

27

More generally i(a)A + (S)A, provide� no free occurrences of a in

A is in a part of A of the form (S)C and provided S is free in no part

of A.

Since formula, axiom and inference are all effective and since

proofs are finite columns of formulas, then for the predicate calculus

Metatheorem 2.4. The notion of proof is effective.

Deducibili ty

In order to extend the notion of deducibility from a set of assump­

tions to the predicate calculus the following definition is required.

Definition 2.4. A column Y of formulas is called a subcolumn of

a finite column X of formulas provided the formulas of Y appear in X in

precisely the same order as in Y.

Definition 2.5. Let r be a set of formulas, possibly infinite or

empty, and let A be a formula. Define D[f;A] to be the set of all finite

columns X of formulas whose last line is A and where each line of X is

an axiom, a member of r, inferred from two preceding lines by RI or

inferred from a single previous line B, by generalization on any

individual variable, provided that Bis the last line of a subcolumn Y

of X, which is a formal proof.

In case D[f;A] is not empty, then A is said to be deducible from

assumptions r. This assertion is symbolized by

r IA.

Any member of D[f;AJ is called a formal demonstration of A from r.

By the nature of Definition 2.5, Metatheorem 1.6 can be extended

to the predicate calculus and consequently the following derived rules

of inference result.

Metatheorem 2.5. If IA and IA+ B then IB,

Metatheorem 2.6. If r IA and IA+ B then r IB,

More important, however, is that Metatheorem 1.10 can be extended

to give the deduction theorem for the predicate calculus.

28

Metatheorem 2.7. If r is a set of formulas and A and B are formulas

and if ru{A} IB then r IA+ B.

Proof: The proof is obtained from Metatheorem 1.9, along with an

additional case following Case 3.

Case 4. If Ck+l is inferred from a previous line Cj, j 2 k, by generaliza­

tion on an individual variable a, where C. is the last line of a subcolurnn
J

Z of X[Bk+l], which is a formal proof, then Ck+l is just (a)Cj.

Since Z is a formal proof whose last line is C., then the column,
J

<z, (a)C.> is also a formal proof, hence, I (a)C ..
J J

By Pl
?

I (a)C. + (C. + (a)C.); l(c. + (a)C.) +(A+ (C. + (a)C.))
J J J J J J J

and by P2,

l(A + (C. + (a)C.)) +((A+ C.) +(A+ (a)C.)).
J J J J

Repeated use of Metatheorem 2.5 to the above yields,

By induction

I (A+ C.) +(A+ (a)C.).
J J

hypothesis, r IA+ c.,
J

r IA+ (a)C .•
J

hence, by Metatheorem 2.6,

Now if fU{A} IB, then r IA+ C., where C. is any line of a demon-
1 1

stration of B from fU{A}. Therefore, r IA+ B since B will be the

last line.

The preceding result enables Metatheorems 1.11 and 1.12 to be

extended to the predicate calculus, hence

Metatheorem 2.8. A1, A2, • • •

IA
l

-+ (A2
-+ (• • • (A

m
-+ B)•••)).

A IB if and only if
m

Let A and B be formulas and abbreviate the formula, �(A-+ �B),

by A 6 B, From this abbreviation then

Definition 2. 6. If A1, A2, . . . A are fonnulas, define then

29

conjunction, lii Ai, of the formulas A
l

, A
2, . . .

'
A inductively by:

n

ITiAi is A
1

; rrj+lA
1 i is A

j+l
6 <IT{Ai), for j = 1, 2, . ' n-1.

As a consequence of Definition 2.6 and the preceding rules of

inference the following results can be established.

T2.1. IA 6 B-+ A

Proof:

l. l�A-+ (A-+ �B)

2. I (�A-+ (A-+ �B))-+ (�(A-+ �B)-+ A)

3. i�(A-+ �B)-+ A

4. IA 6 B -+ A

Similarly,

T2.2. IA A B-+ B.

T2. 3. I (A -+ (B -+ C)) -+ (A A B -+ C)

Proof:

1. A -+ (B -+ C)

2. A A B

3. IA A B -+ A

4. A

5. B -+ C

6. IA 6 B -+ B

1,2, Metatheorem 2.5

3, definition of A.

Assumption

Assumption

T2.1

2,3, Metatheorem 2.6

4,1, RI

T2.2

7. B

8. C

9. I (A -+ (B -+ C)) -+ (A 6 B -+ C)

T2.4. i(A 6 B-+ C)-+ (A-+ (B-+ C))

Proof:

1. A 6 B -+ C

2. A

3. B

4. IA-+ (B -+ "-'(A -+ "-'B))

5. B-+ "-'(A -+ "-'R)

6. "-'(A -+ "-'B)

7. A 6 B

8. C

9. I (A 6 B-+ C)-+ (A+ (B-+ C))

T2. 5.

Proof:

1.

2.

(Aj +l -+ B)

3. Aj+l 6Tf{Ai

4. jAj+l 6TfiAi
-+ Aj+l

5.

6.

7.

' 8.

9.

Aj+l

jAj+l 61T{Ai
-+ Tf{Ai

Tf{Ai

. ·+1
10. j <TrIAi -+ (Aj+l -+ B)) -+ <Tri Ai -+ B)

T2.6. j <Tr{
+1Ai -+ B) -+ <Tr{Ai -+ (Aj+l -+ B))

2,6, Metatheorem 2.6

7, 5, RI

30

1-8, Metatheorem 2.8.

Assumption

Assumption

Assumption

2,4, Metatheorem 2.6

3,5, RI

6, definition of 6

7,1, RI

1-8, Metatheorem 2.8.

Assumption

Assumption

2, Definition 2.6

T2.1

3,4, Metatheorem 2.6

T2.2

3,6, Metatheorem 2.6

7,1, RI

5,8, RI

1-9, Meta theorem 2. 8.

Proof:

1.

2.

3.

4.

lTj
+l

A
1 i

m.Ai

Aj+l

Aj+l t:,

-+ B

TT{Ai
-+ B

5. j (Aj+l 6 lT{Aj -+ B) -+ (Aj+l
-+ <TT{Ai

-+

6. Aj+l
-+ <TT{Ai

-+ B)

7. IT{Ai -+ B

8. B

9. I <1T{
+1

Ai -+ B) -+ <lT{Ai
-+ (Aj+l -+ B))

Meta theorem 2. 9. Al' A2, . ' A IB if n

Assumption

Assumption

Assumption

1, Definition 2.6

B))

T2.4

4,5, Metatheorem

6,3, RI

2,7, RI

1-8, Meta theorem

and only if IIT;Ai

Proof: The proof will be by induction on n. When n = 1 it is

obvious that A
1

jB implies ITTiAi-+ B.

Suppose the assertion is true for all k < n and suppose

A IB,
n

By the deduction theorem

Al, A2'
. A IA

-+ B, so from the induction hypothesis,n-1 n

1m
-l

Ai
-+ (An-+ B) and by T2.5 and Metatheorem 2.5,

JWi
Ai

-+ B.

31

2.6

2.8.

-+ B.

Conversely; for n = 1, JlTiAi -+ B gives A1 IB, Suppose the asser-

tion is true for all k < n and suppose IIT;Ai
-+ B. From T2. 6 and

Meta theorem 2.5, then ITfi
-l

Ai
-+ (A -+ B). Hence, by inductionn

hypothesis, Al' A2, . . . A IA -+ B. But then ' n-1 n

Al, A2, . . .

' A l' A IA -+ B and Al, A2'
• . . A IA ' so byn- n n n n

Metatheorem l.6iii extended to the predicate calculus,

• , A jB.
n

Metatheorem 2.9 is equivalent to Metatheorem 2.8 but with a

difference in notation.

Metatheorem 2.10. If r IA and a is an individual variable not

free in any formula of r then r I (a)A.

Proof: Supposer JA and a is an individual variable not free in

any formula of r. By Metatheorem l.6vi, extended to the predicate

calculus, there exists a finite subset, Al' A2,
. A of r, such

n

that Al
, A2'

. .

A I A. By Metatheorem 2.9, !WiAi
-+ A, which is

n

a formal theorem. Let X be the proof of this theorem. Since a is not

free in any of the A. Is' 1 < i < n, then a is not free in 111{Ai so the
l.

column,

<X, (a) (TfIA
i-+A), (a) <lTIA

i
-+A)-+(TfIA

i-+(a)A), "fliAi-+(a)A>

is a formal proof, hence JTT1{A
i

-+ (a)A is a formal theorem. By Meta­

theorem 2.9 this implies that, A
1
, A

2
, • • • , An I (a)A and by Meta­

theorem l.6iv extended to the predicate calculus, then r I (a)A.

In view of the preceding metatheorem, it is evident that if A is

a formula with a free occurrence of an individual variable a, then in

32

a demonstration which involves A, as an assumption formula, no general­

ization on a can be made. In this case, a is said to have a conditional

interpretation. In contrast, if a has a free occurrence in a formula A,

which is an axiom, then A in intended to mean the same as (a)A. In this

case, a is said to have a generality interpretation.

Definition 2.7. If A is a formula and its distinct free individual

variables occur in the order of a1, a
2

, a then the formula,
n

(a
1)(a

2
)•••(a

n)A, is called the closure of A. This is symbolized by

M.

n IA.

Under the generality interpretation A and AA are synonymous.

Metatheorem 2.11. If r IA and n IB for every formula B in r, then

Proof: Supposer IA and a IB for each formula B in r. Since

r IA there exists a finite subset, A1, A2, • A of r, such thatn

, A IA. From Metatheorem 2.8 then,. n

IA
1

+ (A
2

+ (• • • (A
n

+ A)•••)). Now, a jB for each formula B in r

so in particular, a !A
i for each i, 1 < i < n. Therefore, a IA1 and

IA1 + (A2 + (· • • (An+ A)•••)) so by Metatheorem 2.6,

a IA
2

+ A
3

+ (• • • (A
n

+ A)•••)). From this and the fact that

a jA
2

, Metatheorem l.6iii, extended to the predicate calculus, gives

a IA
3

+ (A4 + (• • • (An
+ A)•••)). Again from this and the fact

that a IA3, then a IA4 �(As
+ (• •

this process yields a IA,

• (A + A)•••)).n

Metatheorem 2.12. If rU{A} jB, then r jAA + B.

Continuing

Proof: Suppose fU{A} jB. From PS, (a)A + A, provided no part

of. A is of the form (a)C. Let the distinct free individual variables

Since each a., 1 < i < n, is free in A it will appear in no part of A
i - -

of the form (a.)C. Hence, by repeated use of RI and PS, then AA jA.
1

Let C be a formula of fU{A}. If C is a member of r then r jc hence,

fU{AA} jc. If C is A, then since AA jA, ru{AA} jc. Therefore,

ru{A} IB and for every formula C in ru{A}; rU{AA} le so by Meta­

theorem 2.11, fU{AA} IB and by the deduction theorem r IAA + B.

33

As evidenced by the preceding metatheorems, the notion of deducibility

is reduced to the notion of provability and conversely.

Valuation Procedure and Validity

Suppose that associated with the predicate calculus is some nonempty

set D, called a domain, such that the individual variables are associated

in some way with the elements of D. Let V = {0,1} be a set of truth

34

values and suppose that for every n-place predicate variable P there is

associated a logical function A, where A is a function from D
n

into V.

Furthermore, assume that a truth value from V can be assigned to a

formula, P(a
1

, a
2

, • • • , a
n

), relative to an assignment of an element

of D to each distinct individual variable among a
1

, a
2

, •

in the following way. If d
i

' in D, is assigned to a
i

, in

P(a
1

, a
2

, • • • , a
n

), and if A is assigned to P then the truth value

of P(a
1

, a
2

, • • • , a
n

) is A(d
1

, d
2

, • • • , d
n

).

Let C be a formula of the predicate calculus. Then from the

foregoing it is assumed that a domain D is given, to each predicate

variable appearing in C is assigned a logical function and to each

distinct free occurrence of an individual variable in C is assigned

an element from D. This constitutes an assignment to C and gives rise

to a valuation procedure for assigning a truth value u(C), to C.

A truth value is assigned to C in the following way:

1. If P(a
1

, a
2

, • • • a) is a part of C and if A is assigned
n

to P, d
i

in D assigned to a., 1 < i < n, then the truth value assigned
1

d).
n

2. To the statement variables of C is assigned either O or 1.

3. For a given assignment to the predicate variables, distinct

free individual variables and the statement variables of C then if C

is of the form �A, u(C) = 0 if and only if u(A) = 1 and u(C) = 1 if

and only if u(A) = O. If C is of the form A+ B then u(C) = 0 if and

only if u(A) = 1 and u(B) = O; u(C) = 1 if and only if u(A) = 0 or

u(A) = 1 and u(B) = 1. If C is of the form (a)A, then u(C) = 1 if and

only if u(A) = 1 for every assignment to a; u(C) = 0 if and only if

u(A) = 0 for at least one assignment to a.

Thus, consider the formu la 1 1
(x)F (x)-+ (y)F (y) for a domain

D = {a,b }, of two individuals. The possible logical functions A,

from D into V are tabulated by:

X

A
1(x) A

Z (x) A3(x) \ (x)

a 1 1 0 0

b 1 0 1 0

The possible truth value assignments are given by:

Fl
F1

X Fl 1 1
X F X X F X -+

a a 1 1

A
l

a b 1 1
1 1 1 1 1

b a 1 1

b b 1 1

a a 1 1

A
z

a b 1 0
0 0 0 1 0 b a 0 1

b b 0 0

a a 0 0

A3
a b 0 1

0 0 0 1 0
b a 1 0

b b 1 1

a a 0 0

A4 a b 0 0 0 0 0 1 0
b a 0 0

b b 0 0

where the hotizontal blocks constitute an assignment of a logical

function to F1
, together with the possible assignments to x and y.

As another example consider p-+ (x)F
2

(x,y) for D = {a,b}.

The possible logical functions from D
2

into V are:

Al Az
A3 A4 A

S
A

6
A7 A

8
Ag, • Al5

(a,a) 1 1 1 1 1 1 1 1 0 0

(a,b) 1 1 1 1 0 0 0 0 1 0

(b ,a) 1 1 0 0 1 1 0 0 1 0

(b ,b) 1 0 1 0 1 0 1 0 1 1

A
l6
0

0

0

0

35

The truth value assignments for an assignment of >-
1

, >-
6

, and "s

F
2

' b 1 to are given e ow:

F
2

X

a a
a b
b a

"1 b b
a a
a b

b a
b b

a a
b

b a

"6 b b
a a

b

b a
b b

a a
a b
b a

"s b b

a a
a b
b a
b b

2
F (x,v)

1
1
1
1
1
1
1
1

1

0

1

0

1

0

1
0

1

0

0

0

1

0

0

0

2 2
(x)F (x,y) p -+ (x)F (x,y)

1 1 1 1 1 1

1 1 1 1 1 1

1 0 1 1
0 1

1 0 1 1
0 1

0
1 0

0
1 0

0
1 0

0 1 0

0
0 1

0
0 1

0
0 1

0
0 1

0
1 0

0 1 0

0
1 0

0 1 0

0
0 1
0 1

0
0

l.

0
0 1

Definition 2.8. A formula C is said to be valid in a domain D

provided u(C) = 1 for all assignments of logical functions to the

predicate variables of C, for all assignments of elements of D to the

distinct free individual variables of C and for all assignments of

0 and 1 to the statement variables of C.

Definition 2.9. A formula C is said to be universally valid or

simply valid if and only if it is valid in every domain. This is

symbolized by

11 c.

As was the case for the propositional calculus, in the predicate

36

37

calculus, the notion of provability reduces to the notion of validity

and conversely. This important result is known as Godel's Completeness

Theorem and will be stated without proof.

Metatheorem 2.13. IA if and only if I jA.

The Decision Problem

When considering the notion of validity in the predicate calculus,

for a formula C to be valid, the valuation procedure must include all

domains. This means that infinite domains must be considered, but

in view of the valuation procedure this suggests that in valuating C,

no method exists which involves only a finite number of steps and in

general this is indeed the case. However, in the predicate calculus·

with only 1-place predicate variables the notion of theorem is

effective.

Metatheorem 2.14. In the predicate calculus the notion of

theorem is not effective.

It might be pointed out, however, that for formulas of a certain

form there exists an effective procedure for deciding whether a

formula of this form is or is not valid and consequently if it is

or is not a theorem.

LITERATURE CITED

Church, A. 1956. Introduction to Mathematical Logic. Princeton

University Press, Princeton, New Jersey.

Stoll, R, R. 1961. Set Theory and Logic. W. H. Freeman and Company,
San Francisco and London.

38

TURING MACHINES AND RECURSIVE FUNCTIONS

by

Lowell Anderson

Report No. 2 submitted in partial fulfillment

of the requirements for the degree

of

MASTER OF SCIENCE

in

Mathematics

Plan B

-

UTAH STATE UNIVERSITY

Logan, Utah

1967

TABLE OF CONTENTS

INTRODUCTION

TURING MACHINES AND COMPUTABILITY

Turing machines

Computable and partially computable functions

Additional properties of Turing machines •

RECURSIVE FUNCTIONS

Composition and rninimalization

Special classes of functions •

LITERATURE CITED

1

3

3

9

21

32

32

40

44

I

INTRODUCTION

Let there be given a function, defined on some domain, then the

ques�ion might be asked: "Does there exist a finite set of rules or

instructions for calculating, in a finite number of steps, the

functional values of the function?" If such a set of instructions

exist, then the function is said to be effectively calculable and the

instructions are referred to as an algorithm or effective computa­

tional procedure.

One requirement of an algorithm is that it be purely mechanical;

mechanical in the sense that, at least in principle, a computing

device could be constructed to carry out the instructions, with no

intelligence or creativity needed to follow them.

There is, perhaps, one shortcoming to most if not -all algorithms.

This being, although the algorithm will furnish an answer if an

answer is forthcoming, it may have one compute indefinitely should

no answer be forthcoming.

With the notion of effective computational procedure in mind

a class of objects, called Turing machines, is considered. A Turing

machine will afford an effective procedure for computing the functional

values of a certain class of functions. Such funcMons will be called

Turing computable or merely computable.

In particular, a class of functions· called recursive functions

will be considered and it will be shown that these functions are

Turing computable.

Throughout this paper some of the more fundamental concepts

of sets and functions will be assumed. Moreover, only functions

defined on n-tuples of non-negative integers will be considered.

Also, when no confusion results, a function's name and its functional

notation will be used interchangeably.

2

TURING MACHINES AND COMPUTABILITY

Turing machines

Intuitively, one may think of a Turing machine as a computing

device which is capable of printing (or erasing) only a finite sequence

of given symbols, onto a linear tape; the tape being infinite in both

directions and ruled into a two-way infinite sequence of squares.

The following figure is suggestive of this infinite tape.

This machine will be "sensitive" to only one square at a time,

thus, being able to print (or erase) only one symbol to a square, the

square being scanned. Further, this machine will be capable of assum­

ing only a finite number of machine states or internal configurations,

where the next act or operation that the machine will perform is

completely determined by the machine state together with the symbol

that appears on the square being scanned. Also, the machine will be

capable of only the following: a complete halt of operation, a change

of the symbol on the square being scanned, a move one square to the

right or left of the square being scanned; where in each case the

machine will enter into a new machine state.

The symbols q
1

, q
2

, q
3

,
•

will be used to denote possible

machine states and the symbols s
0

, s
1

, s
2

, • •
•

will be used to denote

the symbols the machine will be capable of printing. The letters

R and L will denote one move to the right or left respectively.

3

With the foregoing remarks as an intuitive basis, the notion of

a Turing machine will be given a precise description. However, prior

to defining a Turing machine, two definitions are necessary.

Definition 1.1. An expression is a finite sequence of symbols

(possibly empty), from the symbols q
1

,q
2

,q
3

, ••• ; s
0

,s
1

,s
2

, ..• ; R, L.

Definition 1.2. A quadruple is an expression having one of the

following four forms:

(1)

(2)

(3)

(4)

q. S . S
k

q
1. J m

q.S
j
R q

1. m

q.S .L q
1. J m

q. S.q
k

q .
1. J m

Definition 1. 3. A Turing machine is a finite, nonempty set of

quadruples such that no two quadruples have their first two symbols

the same. (This eliminates the possibility of a machine reaching a

"confused state".)

The q. 's which appear in the quadruples of a Turing machine will
1.

be called its machine states and the S. 's its alphabet.
1.

Definition 1.4. A Turing machine that consists entirely of

quadruples of the form (1)-(3), is called simple.

Consider now, the following definitions.

Definition 1.5. An instantaneous description is an expression

consisting of exactly one q
i

' neither R nor L and such that q
i

is not

the rightmost symbol.

Definition 1.6. An expression which consists entirely of S
i

's

is called a tape expression.

4

5

Definition 1. 7. Let Z be a Turing machine and let a be an

instantaneous description. If the q. in a is a machine state of Z
1

and the S. 's in a belong to the alphabet of Z, then a is called an
1

instantaneous description of z.

Definition 1,8, Let Z be a Turing machine and let a be an

instantaneous description of z. Let q
i

be the machine state of Z in

a and S. the symbol immedia tely to the right of q .. Then q. is called
J 1 1

the machine state of Z at a, S. the symbol scanned by Z at a and the
J

expression obtained by deleting q
i

from a is called the expression

on the tape of Z at a.

From an intuitive point of view, Definition 1.8 affords a means

by which an instantaneous description a may be thought of as precisely

describing the status of a Turing machine at some particular time in

its operation; where a gives the machine's state, the expression on

its tape and the symbol being scanned.

Earlier 9 the tape of a Turing machine was described as being

infinite in both directions. However, in view of Definitions 1.1 and

1.5, an instantaneous description is always finite. Hence, these

definitions, together with Definition 1.8, dictate that a Turing machine

scan only those squares on which symbols have been printed. This

means that a Turing machine is not capable of scanning blank squares.

However, this limitation can be overcome by adopting the following

convention.

Since the expression on the tape of a Turing machine at an

instantaneous description a is always finite, think of the tape as

being finite where, when the Turing machine is about to run off the

end of its tape it is capable of splicing on a new square on which the

6

symbol s
0

has been printed.

The symbol s0 then, will be reserved to stand for a blank square;

B will also be written in place of s0•

The following definition will allow an instantaneous description

of a Turing machine to be replaced by a succeeding instantaneous

description.

Definition 1.9. Let Z be a Turing machine and a, B instantaneous

descriptions. Then a is replaced with 8 by Z, symbolized a+ B(Z),

or when no confusion results, merely as a+ 8, provided there exist

tape expressions P and Q (possibly empty) such that one of the follow­

ing holds:

(1) a is

(2) a is

(3) a is

(4) a is

(5) a is

Pq. S .Q,
1 J q. S . Skq E:

1 J m z and B

Pq. S. SkQ,
1 J q.S.R

1 J

Pq. S .,
1 J q.S .R q

1 J rn

q
rn E:

Z and

E: Z and 8

is

B

is

PSkq
i

S
j

Q, q. S .L q E:
1 J m Z and B

q. S .Q,
1 J

q. S .L q E:
1 J m Z and B is

Pq�SkQ

is PS .q SkQ
J m

PS .q s0J rn

is Pq SkS .Q
m J

q s
0

s.Q.
m .J

(reprint)

(right search)

(left search)

It may be noted that Definition 1.9 makes no mention of quadruples

of the form qiS
j

qkqm. Turing machines having quadruples of this form

will be considered later. For the present, however, only Turing

machines that are simple will be dealt wl,th.

Two results that follow from the preceding definition are the

. following theorems.

Theorem 1.1. If a+ B(Z) and a+ y(Z), then Bandy are the same

instantaneous descriptions.

Theorem 1. 2. If z
1 and z2 are Turing machines such that z1 C. z2

and if a+ B(Z1), then a+ B(Z
2).

Definition 1.10. An instantaneous description a is called

terminal with respect to Zif, for all instantaneous descriptions S,

it is not the case that a + S(Z).

Definition 1.11 . Let Z be a Turing machine, then a computation

of Z will be a finite sequence a
1

,a2, ••• ,a
n

of instantaneous descrip­

tions such that a. + a.+1
(z) for i = 1,2, ••• ,n-l and where a is

i i n

terminal with respect to z. If such be the case, then

will be written and a
n

will be called the resultant of a
1

with respect

to Z; a
1

will also be called the input and a0 the output with respect

to Z.

In what follows, the symbol q1
will denote the machine state at

instantaneous description a
1
. Moreover, a

1
will be assumed as input.

Consider the following example, where Z is the Turing machine

consisting of the quadruples:

qlSlL ql

q1
S2L ql

q1
S3L ql

ql
SOR q2

q2S
1

S0q3

q2S2S0q3

q2S3S0q3

q3SOR q2'

8

Let

al
= S2SlqlS3,

then the following is a computation with respect to Z:

al
= S2

S
lqlS3

+ S2q1S1S3

+

qlS2SlS3

+ ql
SOS2Sl S3

+ soq2s i183

+ soqios1 s3

+ SOSOq2SlS3

+ SOSOq3SOS3

+ SOSOSOq2S3

+ SOSOSOq3SO

+ S OSOSOSOq2S
0

which is terminal, hence,

The effect of Z on a1 is to move left untit a blank is encountered,

then proceed right, erasing everything until a blank is again encount­

ered.

Should the quadruple q2s
0

R q2 be added to Z, the machine would

compute indefinitely and Resi(a1) would not be defined. This illus­

trates the fact that Theorem 1.2 does not extend to computation.

That is, if z1 C. z2, then a computation of z1 need not necessarily be

a computation of z2.

Computable and partially computable functions

In order for a Turing machine to perform numerical computations,

a symbolic representation must be introduced so that to a given integer

n, there can be associated an appropriate tape expression.

n Henceforth, 1 will be written instead of s
1

and Si shall denote

the tape expression S.S .••. S., consisting of n occurrences of the
l. l. l.

symbol S
i, with S� being the empty expression.

For convenience, J will denote the set of all non-negative

n integers and J , n a positive integer, will denote the set of all

ordered n-tuples of J.

Definition 1.12. To each non-negative integer n, associate the

n+l tape expression n where n = 1 = 111 ••. 1 (n + 1 occurrences of 1).

Definition 1.13. To each k-tuple (n1,n2, ••• ,�) of non-negative

integers, associate the tape expression (n1,n2, ••• ,�) where

and

For example, by the above definitions, it follows that

4 = 1 4+ l
= 11111

(0,3,2) = OB3B2 = lBllllBlll.

Definition 1.14. Let P be any expression. Then <P> will be the

number of occurrences of the symbol 1 in the expression P.

As a consequence of this definition, it is obvious that for

expressions P and Q, <PQ> = <P> + <Q>. Also, for any positive integer

m, <m - I> = m.

9

Definition 1.15, Let Z be a Turing machine and let n be a

positive integer. Associate with Z an n�ary function w� in the

following way.

then

(1) If there exfsts a computation a
1

, a2, • • • '°i< of Z, set

(2) If the above does not hold, that is, if Res
2

(a
1

) is not

defined, then leave w; at (m
1

,m2,··· ,m
n

) undefined.

When n = 1, wz will be written instead of w�.

Definition 1.16. Let f be an n-ary function defined on a subset

n D of J , then f is called a partial function. Should f be defined

n
on the whole of J , then f is called a total function.

Taking the usual definition for equality of functions, to say

two partial functions are equal implies, among other things, that

their domains are identical.

Definition 1.17. Let f be an n-ary partial function and suppose

there exists a Turing machine Z such that

n f = w
2

,

then f is said to be partially computable and Z is said to partially

compute f. Should f be total, then f is said to be computable and

Z is said to compute f.

The preceding definitions show how the computability of functions

can be expressed in terms of Turing machines.

10

Following are some examples of computable and partially comput­

able functions.

Example 1.1. The successor function S, defined on J by

S(x) = x + 1,

is a computable function.

Let m £ J and choose a Turing machine Z such that q1
m is terminal

with respect to Z. Then q1m is a computation of Z and

Since m was arbitrary, Sis computable.

Example 1.2. The total function o, defined on J
2

by

o(x,y) = x + y,

is a computable function.

2
Let (m,n) £ J and let Z be the Turing machine consisting of

the following quadruples:

qll B ql

qlB
R q2

q2
1 R q2

q2B
R q3

q3
1 B q3

and let

Then,

11

a
=

1
ql 1

m+1B1
n+l

-+ q1
B1�11

n

-+ Bq21�11
n

-+

-+ Bl
m

B1ln

q2

-+ Bl�q
3

11n

-+ Bl�q
3

Bln,

which is tenninal with respect to Z. Whence,

and so o is computable.

Example 1. 3. n n The n-ary function Ui , defined on J by

for 1 .2. i .2. n, is a computable function.

Let (m
1

,m2, ... ,m
n

) £ Jn and let

m .+1
If a Turing machine Z can be constructed to erase all blocks 1 J

j Ii, and on ly the initial 1 from the i-th block, then clearly_
m.

1.
Res

2
(a

1
) will be 1 and

so the computability of U
i

n will be established.

The required Turing machine is given by the following quadruples,

where j runs through all integers not equal to i such that 1 < j < n :

12

q.l B q2n+j J

q. B R qj+l J

q2n+l
R

qj

q.l B qi1.

q. B R q2n+i1.

q2n+i1 R q2n+i

q2n+i
B

R qi+l

(erase the j-th block of l's)

(erase the initial 1 in the i-th block)

(proceed to the i+lst block of l's).

A computation will terminate in machine state qn+l since each

quadruple begins with qk, where 1 < k <n or k > 2n.

is computable.

H U.
n

ence,
1.

Two more examples are given below. However, they will be

discussed only briefly.

Example 1.4. The partial function f, defined by

f(x,y) = X - y,

is partially computable.

Let (m,n) be any ordered pair in J
2

and let

A Turing machine could be constructed to erase a 1 from the

right-hand block of.l's each time a 1 is erased from the left-hand

block of l's, stopping or continuing indefinitely if the right-hand

or left-hand block is exhausted first, respectively, Hence, f would

only be partially computable since it would not be defined for those

2ordered pairs (m,n) of J with m < n.

13

If the Turing machine had been constructed to erase everything

and stop, should the left-hand block have been exhausted first, then

it would compute the total function 6, defined by

where

o(x,y) = X � Y,

X . y = X - y if X.::.. y and

X - y = 0 if X < Y•

This function is referred to as the proper subtraction function

and is called the completion of the partially computable subtraction

function f(x,y) = x - y.

Example 1.5. The function g, defined on J
2

by

g(x,y) = (x + l)(y + 1),

is a computable function.

14

In as much as Oy = xO = O, (x + l)(y + 1) will be easier to

consider than xy. However, the computability of xy will be established

later on.

Construction of the Turing machine to compute g is based on the

fact that

(x + l)(y + 1) = (y + 1) + (y + 1) + . . . + (y + 1)

x + 1 times.

2
Let (m,n) E J and let

Then a Turing machine could be constructed to erase the leftmost 1, and

for each 1 remaining in the left-hand block, erase it and at the same

time copy the rightmost block on the left. This would require using

special markers in order to shift the copied l's.to the left to make

room for the next 1 to be copied from the rightmost block.

This would result in m + 1 blocks of n + 1 l's. Hence,

2
�z(m,n) = (m + l)(n + 1) = g(m,n)

and the computability of g would be established.

Definition 1.9 will now be extended to include the more general

form of Turing machines; namely, those incorporating quadruples of

the form q. S .qkq . This will result in the more general notion ofi J m

computability, that of relative· computability.

In effect, the quadruple q1S
j

qkqm will allow the Turing machine

to choose between alternate paths in the course of its operation.

This, in the sense that, for a given set of integers A, the machine

may inquire as to the membership of an integer n in A. If n E A

the machine will enter into machine state qk, hence, one path of

operation. If ni A, the machine will enter into machine state q ,
m

whence, the alternate path of operation.

This is made precise by the following definition, where A denotes

an arbitrary but fixed set of non-negative integers.

Definition 1.18. Let Z be a Turing machine and let a, 8, be

instantaneous descriptions. Then a A S(Z) will be written, provided

there exist tape expressions P and Q (possibly empty) such that a

is Pqi
SjQ,

q
i

S
jqkqm E Z and either

(1) <a> E A, in which case 8 is PqkS
jQ, or

(2) <a> i A and 8 is Pq S.Q.m J

15

Definition 1.19. An instantaneous description a is said to be

final with respect to Z, Z a Turing machine, provided a is of the form

Pq
iS

j
Q, for tape expressions P and Q (possibly empty), and Z has no

quadruple whose first two symbols are q
i

S
j

.

Theorem 1.3. If Z is a simple Turing machine, then an instan­

taneous description a is terminal with respect to Z if and only if a

is final with respect to Z.

Proof: Obvious

Theorem 1.4. Let Z be a Turing machine and a an instantaneous

description, then a is final with respect to Z if and only if

(1) a is terminal with respect to Z and

(2) For each set of non-negative integers A, there is no

instantaneous description S such that a A S(Z).

Proof: If Z is simple the theorem follows immediately from

Theorem 1.3. Therefore, suppose Z is not simple and a is of the

form Pq.S.Q. If a is final, then Z contains no quadruple of the forml J

q.S. and (1), (2) are obvious.
l. J- -

Conversely, if (1) and (2) hold and a is Pq.S.Q, then by (1), the
l J

only quadruple in Z beginning with q.S. must be q,S.qkq for some qk
1 J 1 J m

and
�-

But by (2) this is impossible. Hence, a is final.

Definition 1.20. Let Z be a Turing machine and let A be a set

of non-negative integers. Then an A-computation of Z shall mean

a finite sequence a
1

, a
2

, • . • , ak of instantaneous descriptions

such that

for each i, 1 < i < k, with ak being final with respect to Z.

16

If such be the case, ak will be called the A-resultant of a
1

with

respect to Zand this will be symbolized by

Should Z be a simple Turing machine, then the computation will

be independent of A and

Definition 1.21. Let Z be a Turing machine and A an arbitrary

set of non-negative integers. For each positive integer n, associate

with Zan n-ary function �Z�A as follows:

then

Z let

For each n-tuple (rn
1
,m

2
, •.. ,rnn) set

(1) If there exists an A-computation of a
1

with respect to

(2) If the above does not hold, that is, if Res
2
A(a

1
) is not

n defined, then leave �Z;A at (m1,m2, ••. ,mn) undefined.

In case n = 1 write �
Z;A in place of Wz�A'

If Z is a simple Turing machine, then �z7A
is independent of

A and

17

Definition 1.22. Let f be an n-ary function defined on a subset

D of J
n

. If there exists a Turing machine Z such that for some subset

A of J,

then f is said to be partially A-computable and Z is said to partially

A-compute f. Should D = J
n

! then f is said to be A-computable and Z

is said to A-compute f.

Theorem 1.5. Let f be an n-ary function, then

(1) If f is partially computable, it is partially A-computable.

(2) If f is computable, then it is A-computable.

Proof: This follows immediately from the fact that, if f is

partially computable or computable, then w� is independent of A,

whence,

f = ,,,
n ,,,

n
o/Z

= o/Z;A"

Theorem 1.6. Let Z be a Turing machine, then there exists

a simple Turing machine Z* such that for the empty set�'

Proof: If Z is simple, choose Z* = z. If Z contains quadruples

of the form q. S .q
k

q , then choose Z* to be Z with each quadruple of
i J m

the form q. S .q
k

q in Z replaced by quadruples of the form q. S .S ,q .
i J m i J J m

Thus, Z* is simple and since� is empty, <a> t � for all instantan-

eous descriptions a, so clearly

Theorem 1. 7. Let f be an n-ary function, then

(1) The function f is partially computable if and only if it

is partially ¢-computable.

(2) The function f is computable if and only if it is ¢-comput

able.

Proof: This follows directly from Theorems 1.5 and 1.6.

Definition 1.23. Let S be a set and define the characteristic

function of S by

c8(x) 0 if and only if x £ S and

c8(x) - 1 if and only if x t S.

Definition 1.24. Let S be a set, then S is said to be computable

or A-computable, according as its characteristic function c8 is

computable or A-computable.

Theorem 1.8. For every set A of non-negative integers, A is

A-computable.

Proof: Let Z be the Turing machine consisting of the quadruples:

ql
l B ql

qlB q2q3

q2B
R

q4

q4
1 B q2

q3B
R

q5

qsl B q3

qSB 1 q3
.

19

n
Now <q

1
Bl > = n so suppose n E A, then

which is final.
n+l

But <B q
4

B> = O, whence,

For the case when n i A, then

which is final.

n n
q

1
Bl

t.
q

3
Bl

n
-+ Bq

5
1

-+ B Bl
n-l

q
3

-+

-+ B
n+2

B q
s

n+2
B q

3
1,

n+2
Hence, <B q

3
1> = 1 and

Therefore, A is A-computable.

In view of Theorem 1.7, it is evident that computability and

partial computability are special cases of the more general notions,

A-computability and partial A-computability, respectively. Therefore,

only Turing machines involving A-computations will be considered from

now on.

Additional properties of Turing machines

In as much as Turing machines can perform computations on

instantaneous descriptions, which involve ordered n-tuples, it is

conceivable that the output from one Turing machine may be used as

input for some other Turing machine. This notion leads to the

subsequent definitions. However, the following conventions will

first be adopted.

21

Final blanks in an instantaneous description will be omitted

except for the case of that blank, if any, preceded by a q
i. On the

other hand, an initial blank will not be omitted. Thus, s
3

11s2
q

3
1 will

be written instead of s
3

11s2q3
1BB, but the expression BS

3
1q5B must

remain unchanged.

Definition 1.25. Let Z be a Turing machine and let 8(Z) denote

the largest integer such that qe
(Z)

is a machine state of z. Then for

each positive integer n, Z is said to be n-regular, provided no

quadruple of Z begins with qe
(Z) and for any n-tuple (m

1
,m2, .•. ,m

n

)'

whenever Res
2

A[q
1

(m
1

,m2
, •.• m

n
)] is defined, it has the form

qe(Z)(t
1

,t2, ... ,t
s

) for some positive integer s and suitable t
i

's.

Here, of course, qe
(Z)

(t1,t2, •.. ,ts) may contain additional

occurrences of B on the right but qe(Z)
must be the leftmost symbol.

Definition 1.26. Let Z be a Turing machine and for each integer

n > O, define Zn to be the Turing machine obtained from Z by replacing

each machine state q. in Z by machine state q +··
1 n i

0
From this definition it follows that Z = z.

Theorem 1.9. Let Z be a Turing machine, then there exists a

Turing machine Z* such that, for each integer n > 0, Z* is n-regular

and in fact

Proof: Let A, µ denote the first two symbols s2, s3, , , ,

22

which are not in the alphabet of Z and let z
1

consist of the quadruples:

qll L ql

ql B A ql

q1
A R q2 (print A on the left)

q21 R q2

q2B R q3

q31 R q2

q3B L q4 (move right to a double blank)

q4B
JJ

q5
(printµ on the right)

q5
µ L q5

q
5

1 L q5

q5
B L q

5

q5t.. R q6 (move left and find 1..).

Then with respect to z1�

a = q (m m m) � . • • � 1..q6
(m

1,m2, •.• ,m
n

)µ, 1 1 l' 2''''' n

which is final.

Now z
5

will be like Z except it will begin with machine state q6

instead of machine state q1
• Let k = 8(Z

5
) and let z

2
be the quadruples

5 of Z together with the following quadruples, where qi
may be any

machine state of z
5

:

qi" B qk+i (erase >.)

qk+i
B L q2k+i

q2k+i
B A q2k+i (move A left one square)

q2k+i"
R qi (resume main computation)

qiµ B q3k+i (erase µ)

q3k+iB R q4k+i

q4k+i
B µ q4k+i

(move µ right one square)

q4k+iµ L q.
1.

(resume main computation) .

5 This last set of quadruples allows for a computation of Z to

remain within the markers A and µ.

A
Now should Resz [q1

(m
1, m2, ..• ,m

n
)] be defined and if

then with respect to z
2

which is final.

A
Moreover, if Resz [q1

(m
1

,m
2

, ••. ,m
n

)] is undefined, then so is

A
ResZ

z
[>.ql(ml

,m
2

, •.• ,m
n)µ],

Let t = Sk + 1 and let z3 consist of all quadruples of the form

where qi
is any machine state of z

2
, S

j
is in the alphabet of z

2
but

such that no quadruple of z
2

starts with q.S .• This is possible,
1. J

elsewise, no instantaneous description would be final with respect

to z
2

• Now, if >.Pqi
Qµ is any instantaneous description which is final

23

with respect to z2, then

which is final with respect to z
3

.

Finally, let z4 consist of the following quadruples, where S

denotes any symbol in the alphabet of Z other than 1 or B :

qtl L qt

q s L qt t

q B L qt t

qt\ R qt+l

qt+1
5 B qt+l

qt+lB R qt+l

qt+l 1 B qt+2

qt+lµ B qt+4

qt+2B L qt+2

qt+2 1 R qt+3

qt+2>- R qt+3

qt+3B l qt+3

qt+i R qt+l

qt+4B L qt+4

qt+41 L qt+4

(find the left marker>.)

(move right looking for a 1)

(find the block of l's)

(add 1 to the block of l's)

qt+4A 1 qt+S
(add 1 and terminate).

Now z4 will collect the l's on the tape into a single block, add

an additional 1, erase everything else and terminate. Hence, taking

,.··

25

then

Since Z* is clearly n-regular, the theorem follows.

Theorem 1.10. For each n-regular Turing machine Z and each integer

k > 0, there exists a (k + n)-regular Turing machine Zk such that

whenever

it is also true that

A Furthermore, whenever Resz [q1(m1,m2, ... ,mn)] is undefined, so

is Resz
k

[q1(r1,r2
, ... ,rk,m1,m2

, ... ,mn)].

Proof: Let A andµ denote distinct symbols not in the alphabet of

Z and let Y1 consist of the following quadruples, where i runs through

all integers such that 1 < i < k:

qll A ql

qlA R
q2 (replace the leftmost 1 by the marker A)

q.l
1

µ qi

qiµ R
qi

qi
B R

qi+l
(replace l byµ for 1 < i 2.. k)

qk+l 1 µ qk+l

qk+lµ R qk+l

qk+lB µ qk+2

qk+2µ R qk+3 (replace the k-th block of l's by µ's).

Now, with respect to Y1

k+2
Let p = 8(Z) and let Y2 consist of the following quadruples,

h b h. t f zk+2 .. w ere qi may e any mac 1ne s ate o

(interupt main computation)

q +· l L q +·
p 1 p 1

qp+iµ L qp+i

qp+iB L qp+i

qp+iA B q2p+i (search for the marker A)

q2p+iB L q3p+i

q3p+i B A q3p+i

qJp+i
A R q4p+i

(move A left one square)

q5p+iµ

q5p+iB

q5p+i1

R q5p+i

B q.
1

L q6p+i

L q7p+i

L q6p+i

(resume main computation)

(encountering µ, prepare

(encountering B, prepare

(encountering 1, prepare

to

to

to

copy it)

copy it)

resume main computation)

26

q6p+iµ µ q8p+i

q6p+iB µ q8p+i (copy. µ)

q7p+iµ B q8p+i

q7p+iB B q8p+i (copy B)

q8p+iµ R q4p+i

qBp+iB R q4p+i (repeat until a 1 is encountered).

Thus, Y
2

will move the first k blocks of l's one square to the

left whenever Zk+2 tries to print over them. Hence, taking

then with respect to Y3

·q1(r1, r2,···, r
k

, ml,m2, .•. ,m
n)-+

-+ Qµqk+3(ml, m2, .•. ,mn)

-+

r1 r2+1
which is final, where Q is Aµ Bµ B

rk+l
Bµ • Moreover, it

27

will be defined whenever Res2
A[q1(m1, m2, ••. ,m0)] is defined. Elsewise,

there can be no A-computation of Y
3

beginning with the instantaneous

description q1(r1,r2, ••• , r
k

,ml,m2, •.. ,mn).

It remains to construct a Turing machine Z
k

which will compute

like Y
3

but in addition, replace all occurrences of A and µ by 1.

Let v = 0(Y
3

) and choose Zk to be Y
3

togethe r with the following

quadruples:

q 1 L qp p

qpµ
B qv+l (restore B)

qv+l8 L qv+l

qv+lµ 1 qv+l

qv+l l L qv+l

qv+l\ 1 qv+2 (restore each \ and
µ

by 1) .

Since 8(Zk)
= V + 2, then with respect to Zk

which is final. Hence, the theorem is established.

Theorem 1.11. For each integer n > 0 and each integer k .::_ O,

there exists a (k + n) -regular Turing machine Ck such that

A
Res Ck [q 1 (r 1 ' r 2 ' . • . ' r k ' m 1 ' m2 ' • • . ' m n)]

= q 8 (Ck)
(m

1 'm2 ' • • · ' m
n ' r

1' r 2 ' • • · ' r k' ml '
rn2 ' • · • ' m

n) ·

Theorem 1.12. Let n be a positive integer, then for each integer

k > 0 there exists a (k + n)-regular Turing machine 1\ such that

A
Res

�

[q 1 (r
1, r 2 , ... , r k , m1 ,

m2 , ••• , m
n)]

= q 8 (
�

)
(m

1 ' m2 ' • · · ' m
n ' r

1 ' r 2 ' • • • ' r k) •

Construction of the Turing machines satisfying the conditions

of Theorems 1.11 and 1.12 is straight forward but quite long. There­

fore, these two theorems will be stated without proof.

Theorem 1.13. For each n-regular Turing machine Z, there exists

an n-regular Turing machine Z* such that whenever

it is also true that

Furthermore, whenever Res Z A[q1 (m1, m2, •.. , m0)] is· defined or undefined

A so is Res
Z

* [q
1

(m
1

,m2, ..• ,m
n)] defined or undefined, respectively.

Proof: By Theorem 1.10, there exists a Zn-regular Turing machine

Y such that

Using Theorem 1.11 and 1.12, taking

then with respect to c0

e(c)-1
and with respect to Y 0

-+

• -+

Finally, with respect to R e(CO) -Z+e(Y)
n

-+

29

which is final with respect to Z*. The second part of the theorem

follows irrnnediately.

Theorem 1.14. Let z 1, z2, . . . , Z
k

be Turing machines, then

for each integer n > 0 there exists an n-regular Turing machine Z*

such that

Proof: The proof will be by induction on k.

Basis: Suppose k = 1, then this reduces to nothing more than Theorem

1.9.

Induction step: Suppose the assertion is true fork = j. Let the

Turing machines z
1

, z
2

, • . . , Z
j+l

be given and set

where 1 < i � j + 1.

By the induction hypothesis, there exists an n-regular Turing

machine Y
1

such that

Hence, by Theorem 1.13, there exists an n-regular Turing machine Y
2

such that

Moreover, by Theorem 1.9, there exists an n-regular Turing machine Y
3

such that

30

Finally, by Theorem 1.10, there exists an n-regular Turing machine Y
4

such that

By talcing

Z* = y U y 8(Y2)-1
2 4

'

then the assertion is true fork = j + 1, hence, the theorem.

31

RECURSIVE FUNCTIONS

Composition and minimalization

Two operations, �omposition and minimalization, will now be

considered which afford a means for constructing a large class of

Turing computable functions. Moreover, by applying Theorems 1.9-

1.14, it will be possible to show that functions from this class

are computable or partially computable without having to appeal

directly to the definition of computability.

Let f and g be unary functions, then by composition of f with

g will be the function h, defined by

h(x) = f(g(x)),

where it is understood that the domain of h consists of those values

of x, in the domain of g, for which g(x) is in the domain of f.

This is made more general by the following definition.

Definition 2. 1. Let f be an m-ary function and let

.
'

g be m n-ary functions. m
Then the operation of

composition gives a new function h, defined by

It is understood, of course, that the domain of h is precisely

those n-tuples in the domain of each g. such that the m-tuple
1.

domain of f.

32

Theorem 2.1. Let f be an n-ary function and g1, g2, . . , , gm

m n-ary functions. Suppose these functions are partially A-comput­

able for some subset A 0£ J, Then the function h, defined by

is partially A-computable.

Proof: Let Z be the Turing machine which partially A-computes

f and let Z. be the Turing machine which partially A-computes g.,
i i

i = 1,2, .•. ,m. Therefore, f = wz7A
and for i = 1,2, ... ,m gi = Wz�;A'

i
Now by Theorem 1,14, there exists an n-regular Turing machine

Z* such that

Let (x1,x2, .•• ,xn) be an n-tuple satisfying (1) and let

Z' = Z*U z 0 (Z*)-1_

-+

-+

-+ a

where

33

< a> = f (g 1 (x 1 ' x 2 ' ' ' ' ' xn
) ' g 2 (x 1 ' x 2 ' ' ' ' ' x

n) ' ' ' ' ' gm
(x 1 ' x 2 ' ' ' ' ' x

n)) '

defined, otherwise it is not defined. Thus, his seen to be partially

A-computable.

If the functions f, g1
, g2, , g are A-computable, then

m

clearly h is A-computable. Hence, the following corollary.

Corollary 2.1. The class of partially A-computable functions

and the class of A-computable functions are both closed under the

operation of composition.

Example 2.1. The function µ, defined by

µ(x,y) = xy,

is computable.

It has been shown in previous examples that.the functions 6, p,

S and u
2

, defined by

6 (x, y) = X y

p(x,y) (x + l)(y + 1)

S(x) = x + 1

2
u

2 (x,y) = y,

are all computable.

Let g be the function defined by

g(x,y) = S(U
2

(x,y))

2
+ 1= u

2 (x,y)

= y + 1,

34

then by Corollary 2.1, g is computable.

Let h be the function defined by

h(x,y) = o(p(x,y),g(x,y))

= p(x,y) � g(x,y)

(x + l)(y + 1) • (y + 1)

= xy + x,

then by Corollary 2.1, h is computable.

Finally, letµ be defined by

µ(x,y) = o(h(x,y),x)

= h(x,y) � X

= (xy + x) · · x

= xy.

Hence, by Corollary 2,1, µ is computable,

Definition 2.2. Let f be an (n+l)-ary total function. Then

the operation of minimalization gives a new function h, defined by

That is, for a given n-tuple (x1 ,x2, ... ,xn), h associates the least.

value of y for which

Definition 2.3. In Definition 2.2, if h is a total function,

then f is called a regular function.

As in the case of composition, the operation of minimalization

allows for the construction of a large class of computable and

35

partially computable functions. This is characterized by the follow­

ing theorem.

Theotem 2.2. Let f be an (n+l)-ary function that is total and

A-computable. Then the function h, defined by

is partially A-computable. Moreover, if f is regular, then h is

A-computable.

Proof: A Turing machine will be constructed which successively

is obtained.

Let R be the Turing machine consisting of the quadruples:

qll L ql

qlB L q2

q2B 1 q3.

Then with respect to R

which is final.

By Theorems 1.9 and 1,13, there exists an (n+l)-regular Turing

machine S such that

Therefore, if N
2 2 = 0(S), then with respect to S

36

which is final.

Let T be the Turing machine consisting of the following quad­

ruples:

qNl B qN

qNB R qN+l

qN+l
1 l qN+2

qN+l
B R qN+4

.

Now if f(y,x
1

,x2, .•. ,x
n

) = k, where k > 0, then with respect to T

+

which is final. However, should f(y,x1,x2, ... ,xn) = 0, then with

respect to T

+

Let Q be the Turing machine consisting of the quadruples:

Then with respect to Q

qN+21 B qN+3

qN+2B l q3

qN+3B
I
R qN+2'

37

L t U.
m

be the bl f · d f. db e m-ary computa e unction, e ine y
i

m

U, (x
1
,x

2
, ••• ,x) = x.,

i m i

where 1 < i < m. Then by Theorem 1.9, there exists an (n+l)-reqular

Turing machine Y such that

n+l
= qe(Y)Ul (y, x

l,x2,•••,x
n

)

= qe(Y)1
y+l

Finally, let W consist of all the quadruples of Y together with

the quadruple

qe(Y)1 B qe(Y)'

N+3 . _N+3 Then with respect to W , letting K = e(w-),

Let

Z = R U S
2

U T U Q U �
+ 3

and suppose (x
1

,x2, ••• ,xn) is arbitrary but fixed. Let

for i = 1,2, ..• and suppose r0 # O, r1 # O, .• • , rk-l
O, rk = 0.

Then with respect to Z

(using R)

38

39

-+

(using s
2)

-+

(using T)

-+

(using Q)

.-+

-+

(using s2)

-+

(using T)

-+,

N+3
(using W).

Therefore,

,1, n (x X X) = <qKBlk> "'Z;A 1' 2'"'' n

= k

= min [f(y,x1
,x

2
, ••• ,x) = O]

y - n

= h(x1
,x2, ••. ,xn

).

If r. # 0 for all i, i = 1,2, .•. , then Z will never be in
].

machine state qN+4 and will compute indefinitely. n Thus, both ijlZ·A

and h would be undefined at (x1,x2, ... ,xn), hence, h is partially

A-computable. If f is a regular function, the A-computablity of h

is obvious.

Example 2.2. The function f, defined by

f(x)=[h],

is computable, where [t] means the largest integer:::_ t.

Let x be an arbitrary element of J, then to say that y is the

largest integer :5_ rx is equivalent to saying y is the largest integer

2
such that y < x. From this it follows that y is the minimum value

for which (y + 1)
2 > x, or equivalently that y is the minimum value

such that (y + 1)
2 • x is not zero. But, this is true if and only

if y is the minimum value such that

1 � ((y + 1)
2

� x) = 0.

Therefore,

[ix) = min [ly
.

((y + 1)
2 • x) = 0] '

which by Theorem 2.2 is computable since

1 · ((y + 1)
2

• x)
2 2

6(1,o(µ(S(U
2

(x,y)),S(U2 (x,y))),x))

is clearly total and by Corollary 2.1, computable.

Special classes of functions

Using the operations of composition and minimalization on an

initial set of partially A-computable and A-computable functions,

a certain class of Turing computable functions, which are of partic­

ular interest, can be obtained. This is characterized by the follow­

ing definitions and theorems.

Definition 2.4. A function f is said to be A-partial recursive

or partial recursive in A, provided it can be obtained from a finite

40

number of applications of composition or minimalization on functions

beginning with functions from the following list:

(1) C
A(x), the characteristic function of the set A

(2) S(x) = x + 1

(3)

(4) o(x,y) = x + y

(5) 6(x,y) = X y

(6) µ(x,y) xy.

41

Theorem 2.3. The functions S, U.
n

, a, 6 andµ, in Definition 2.4,
l.

are computable; hence, partially computable, partially A-computable

and A-computable.

Proof: Examples 1.1, 1.3, 1.2, 1.4 and 2.1 established the

computability of these functions, respectively. The remainder of the

assertion follows from Theorem 1.5.

Theorem 2.4. The characteristic function C
¢

of the empty set¢,

is computable; hence, partially computable, partially A-computable

and A-computable.

Proof: Definition 1.24 and Theorem 1.8 imply C
¢

is ¢-computable.

Whence, the assertion follows from Theorems 1.7 and 1.5.

Definition 2.5. A function is said to be partial recursive,

provided it is ¢-partial recursive.

Definition 2.6. A function is said to be A-recursive or

recursive in A, provided it can be obtained from a finite number of

applications of composition or minimalization on regular functions

beginning with functions from the list of Definition 2.4.

Theorem 2.5. An A-recursive function is total and A-partial

recursive.

Proof: Since all the functions listed in Definition 2.4 are

total functions, this follows from definition.

Although no attempt will be made to establish the fact, the

converse of Theorem 2.5 is also true. Since this is the case, the

notion of A-partial recursive functions might seem artificial.

However, they are considered for their relati6n to computability

as shown by the following theorem.

able.

Theorem 2.6. Let f be a function, then

(1) If f is A-partial recursive, then it is partially A-comput-

(2) If f is partial recursive, then it is partially computable.

(3) If f is A-recursive, then it is A-computable.

(4) If f is recursive, then it is computable.

Proof: This follows from Theorems 2.1, 2.2, 2.3, 2.4 and

definition.

Below is an exrunple of a recursive function.

Example 2.3. T�e function f, defined by

f(x,y) = [x/y],

is recursive, where [x/y] = the greatest integer < ,.x/y if y t- 0

and [x/y] = 0 if y = O. It is understood that x/y is a rational

number.

Let

A (x) = 6 (1, x)

= l .:. x.

42

That is,

\(0) = 1,

A (x) = 0 if x > 0.

Thus,

[x/y] = min [y = 0 or y(z + 1) > x] z

= min (y = 0 or y(z + 1) .:..
X 'F OJ

z

= min [y = 0 \(y(z + 1)
.

x) = OJ or
z

= min [y·>..(o(µ(y,S(z)),x)) = OJ
z

= min (µ(y,\(o(µ(y,S(z)),x))) = OJ.
z

Hence, f is recursive. Moreover, by Theorem 2.6, f is computable.

In view of Theorem 2.6, if f is a recursive function, then there

exists an algorithm in the form of a Turing machine for computing

the functional values of f. Furthermore, the converse of this also

holds. Hence, the notions of computable and recursive functions

are equivalent.

43

LITERATURE CITED

Davis, M. 1958. Computability and Unsolvability. McGraw-Hill Book

Company, Inc. New York . .

44

	Decision Problems
	Recommended Citation

	tmp.1504204389.pdf.47rbw

