Utah State University

Digital Commons@USU

All Graduate Plan B and other Reports Graduate Studies

5-1965

Decision Problems

Lowell Anderson
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/gradreports

6‘ Part of the Other Mathematics Commons

Recommended Citation

Anderson, Lowell, "Decision Problems" (1965). All Graduate Plan B and other Reports. 1100.
https://digitalcommons.usu.edu/gradreports/1100

This Report is brought to you for free and open
access by the Graduate Studies at
DigitalCommons@USU. It has been accepted for

inclusion in All Graduate Plan B and other Reports by /[x\

an authorized administrator of /\

DigitalCommons@USU. For more information, please W ,))l UtahStateUniversity
contact digitalcommons@usu.edu. /rg:;m" MERRILL-CAZIER LIBRARY

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/gradreports
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/gradreports?utm_source=digitalcommons.usu.edu%2Fgradreports%2F1100&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/185?utm_source=digitalcommons.usu.edu%2Fgradreports%2F1100&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/gradreports/1100?utm_source=digitalcommons.usu.edu%2Fgradreports%2F1100&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

DECISION PROBLEMS
by

Lowell Anderson

Report No. 1 submitted in partial fulfillment
of the requirements for the degree

of
MASTER OF SCIENCE
in
Mathematics

Plan B

UTAH STATE UNIVERSITY
Logan, Utah

1965

ACKNOWLEDGMENT
I wish to express my appreciation to Doctor Konrad Suprunowicz for

serving as my major professor while preparing this report.

Lowell Anderson

TABLE OF CONTENTS

INTRODUCTION

THE PROPOSITIONAL CALCULUS .
Primitive Basis Se e
Deducibility i
Truth Functions S s e
The Decision Problem .

THE PREDICATE CALCULUS
Primitive Basis
Deducibility
Valuation Procedure and Validity .

The Decision Problem .

LITERATURE CITED .

12

19

Z21

24

24

27

INTRODUCTION

From an intuitive point of view the notion of effective procedure
consists of a set of rules or instructions that enables one, in a
finite number of steps and in a purely mechanical way, to answer yes
Oor no to any one of a given class of questions. This procedure requires
no intelligence to carry out the instructions and, in fact, it is con-
ceivable that some mechanical contrivance may be constructed to carry
out these instructions. Should such an effective procedure exist, that
answers either yes or no, then the group of problems in question is said
to be effectively decidable; otherwise not decidable.

In this paper, some of the more important properties of the pro-
positional and predicate calculi will be established with the thought
in mind of considering the notion of effective procedure relative to
these properties. In achieving this end, the propositional and predicate
calculi will be considered in a purely formal context. Formal in the
sense that on the outset the symbols employed within the theories will
be devoid of any interpretation. Later, however, an interpretation will
be placed on these symbols in order to answer certain questions concern-
ing decidability.

In considering the propositional and predicate calculi as formal
theories, a distinction must be drawn between those symbols used in the
particular theory and the language used to describe this theory. The
former use will be referred to as the object language and the latter as

the syntax or metalanguage.

The object language, for the formal theory under consideration, will

be given explicitely, whereas the metalanguage will consist of, only
that portion of the English language needed to clearly describe the
formal system,

In some instances, since no confusion will result, certain symbols
may appear not only in the objeét language but also in the metalanguage.

This will be evident by the two-fold use of the symbols: ¥, . (&).

s ’

3

and Should specific reference be made to some one of the symbols

of the theory, this symbol will be enclosed in single quotes.
Furthermore, the reasoning employed in establishing results about

the formal systems will consist only of those notions which have great

intuitive appeal. Included among these will be mathematical induction.

THE PROPOSITIONAL CALCULUS

Primitive Basis

The primitive symbols of the propositional calculus are the symbols;
L) o o
which will be called improper symbols, together with an at most denumer-
able list of proper symbols;
s 5 4 55 5 5
called statement variables. The three dots are used to indicate the
list continues indefinitely and are not part of the primitive symbols
of the theory.
The formation rules of the propositional calculus are given by the
following recursive definition:
I. If P is a statement variable then (P) is a formula.
II. If A is a formula then (“A) is a formula.
ITI. If A and B are formulas then (A » B) is a formula.
IV. Only finite strings of primitive symbols which follow I-III are
formulas.

Here it is to be noted that the symbols A and B are in the meta-
language and are not part of the apparatus of the propositional calculus.
The above formation rules enable formulas of the propositional
calculus to be constructed from previously constructed formulas, however,
the question might be asked whether a given finite string of primitive

symbols constitutes a formula or not. It would be desirable if this

question could be answered effectively and as will be seen, this is

indeed the case. However, certain conventions and results must first

be developed before this can be done.

Adopt the convention that if A and B are finite strings of primi-
tive symbols then A and B in juxtraposition, written AB, will denote
the string of primitive symbols formed by writing the primitive symbols
of A, in order, followed by the primitive symbols of B in order.

Dl. Let A be a finite string of primitive symbols and let f(A)
denote the total number of occurrences of the symbols '(' and !')'
appearing in A. Call an occurrence of "(' or ')’ in A a T_occurrence

in A.

D2. Let A be a finite string of primitive symBols. Since A is
of finite length, the 7 occurrences in A may be ordered, left to right,

from 1 to f(A). Order them and make the following definitions:

i
1. ZA = Z(—l)e(k), where 0(k) = 1 or 2, according as the k-th 7
i k=1

occurrence in A is ')' or '(', respectively.

2. TA= A,
£(A)
3. JA =34 for all 1 5 £(A).
i
he JA =0 for all i < 0,
i

MIl. For finite strings A and B;

JA > B = JA and JAB = YA for all i, i < f(A).
i 1 i i

JA>B=7JA+ 7B and JAB = JA + }B where i = £(A) + i.
i £(A)] i £(8) j

0B = JA + ¥B and TAB — IA + 3B,

The above assertions are obvious.

MT2. Let A be a formula then ZA = 0. Hence, the number of occurr-

ences of '(' and ')! in A are equal, namely f(A)/2 each.

Proof: Follows directly from the formation rules I-IV.

MI3. Let A be a formula, then JA> 0 for all i, 1 < 1 < £(A).
In fdck, JA = 1 4F 1 < { < £(A). g

i

Proof: 1In view of MT2 and I-IV, the m occurrences in a formula
must be even and greater than zero. Let AZn be any formula such that
f(AZn) = 2n. The proof will be by induction on n.
Basis., If n = 1, then A2 must be of the form (P) for some statement
variable P and clearly EAZ =1>0;
Induction step. Supposé the assertion is true for n = k and consider
A2(k+1)' From II-IV and the Basis, AZ(k+1) must have one of two

forms.
Case 1. |If A2(k+1) is of the form (“B) for a formula B, then

Z(%B) =1+ ZB and by induction hypothesis, MT2 and D2,
i ;

%
2 (k+1) -

i

gﬁli 0 for 0 < i—l < f(B). Hence gAZ(k+1) >0 for 1 <4 < F(A) since

£(B) + 2

If

£(A).
Case 2. 1If AZ(k+1) is of the form (C » D) for formulas C and D, then

ZAZ(k+1) = e pj = 1 +.ZC if 11 < £(C) or, =1 + ZD if i-1 = £(C) + 1.
i i i-1 5
But by induction hypothesis, MI2 and D2,)C > 0 if 0 < i-1 < £(C) and

i-1

)D > 0 if 0 < j < £(D), hence
i

%Az(k+1) >0 for all 1, 1 <1 < £(A)

since £(C) + 1 < £(A) and £(C) + § + 1 < £(C) £ E(D) + 1 = £(A) - 1 < F(A),

1.

Since gAZ(k+1) > 0 clearly gAZ(k+l) >

This proves the theorem since A must be some one of the Azn's.

D3. Let A be a finite string of primitive symbols and suppose
there exist nonempty strings B and C such that f(B) # 0, £(C) # 0,
ZB = IC = 0 and A can be written as (B + C). The occurrence of '-'

between B and C will be called a major occurrence of '>' in A and this

will be referred to as a p occurrence in A. The notation, '3', will
be employed to locate that occurrence of '>' in a string which is a
U occurrence. Thus, (B ﬁ C) will be interpreted as meaning: "The
occurrence of '>' between B and C is a u occurrence in (B » ¢)."

MT4. If A is a finite string of primitive symbols with a u
occurrence then there exists an integer i, 1 < i < f(A) - 1 such that
YA = 1,

i

Proof: By D3, there exist nonempty strings B and C such that

£(B) # 0, £(C) # 0, B = 7€ =0 and A 15 (B > C), where (B K C). Now

E(A) - £(B) 4 £(C) + 3. Choore I - £(B) + 1, then JA =7V(B > O) -
f(B)+1 f(B)+1

L+ JB =1, Since £(B) 40, clearly 1 <1 « £(4) - 1,
f(B)

MI5. A is a formula with no p occurrence if and only if A is of
the form (P) or (vB); P a statement variable and B a formula.

Proof: Suppose A is a formula with no u occurrence, then from
D3 and I-IV, A must be of the form (P) or (vB) since a formula of the
form (C > D) has a u occurrence, namely (C : D).

Conversely, suppose A i; of the form (P) or (vB). Clearly (P) has
no p occurrence since P is a statement variable. Hence, suppose A is

(\B): By MI3, JA > | for all 4, 1 <1 < £(A), But YA = Y(vB) =1 + B,
i i 1 i-1

and when 1 < del < F(B); }B > I Hence, YA > 1 for dll i, 1 <4 < F(A) - 1,
i-1 i

Since XA = 0, then for ZA =1, 1 = £(A) = 1; so by MT4, A cannot have
a |y occurrence. :

MT6. A formula A has a u occurrence if and only if it is of the
form (B + C) for fovmulas B and C. 1In fact (B 3 G)..

Proof: This follows immediately from A being a formula, I-IV
and MT5.

MT7. If A is a formula of the form (B - C), B and C formulas,
then (B z C). Furthermore, this is the only u occurrence in A.

Proof: The first assertion is obvious so suppose there exist

nonempty strings D and E such that £(D) # 0, f(D) # 0, ID = IE = 0

-0

and A can be written as (D > E). Suppose A has n occurrences of '+

and let (B o €) and (D o E) be the j-th and k-th occurrences of '>' in
A, respectively. If j = k, then clearly B and D are the same as are

C and E. Therefore, suppose k < j, then A can be written as (D +> C. - C)

1

for some string C Hence; B is D > C. and f(B) = £(D) + f(Cl) > £(D).

1 1
By MT3, }B > 0 for all 1, 1 < i < £(B) and since ID = 0, then by MT1

i
ZB = ZD - C1 = XD = 0. Therefore, £(B) = f(D) whence, f(Cl) = 0. But
£(D) £(D) £(D)

this is impossible since B is a formula and must end in ')'.

When j < k, a similar argument will show that the formula C cannot
end with ')'. Therefore, the only alternative is for j = k.

Combining MT5-MT7, then if a formula A has a u occurrence it may

be referred to as the p occurrence in A.

MT8. Let A be a formula, then A has a p occurrence if and only if)

there exists an integer i, 1 < i < f(A) - 1, such that ZA = 1. Further-
i
more, the u occurrence will be immediately preceded by the i-th m occurr-

ence in A.

Proof: Suppose A has a u occurrence, then by MT6, A is of the
form (B > C) where B and C are formulas and (B a €). By MIP7 this is
the only u occurrence. Choose i = f(B) + 1, then clearly ZA = 1 and
the p occurrence is preceded by the i-th 7 occurrence. ;

Conversely, suppose A is a formula and suppose there exists an
integer 1, 1 < i < E(A) - 1 such that JA - 1,

‘ Since A is a formula, then by I—Ié, A Is of the form (P) for a

statement variable P, of the form (vB) for a formula B or of the form

(C > D) for formulas C and D. Clearly A cannot be (P) and if A is

(vB), then by the proof of MT5, JA
i
A must be (C » D) and by MT6-7, (C z D) which is the only one. Suppose

1 only for i = f(A) - 1. Hence,

1< <£(A) -1, then JA = J(C D) =1 £ JC1f 1 < |=1<{(E) o
] A 1

JA=1+7JC+JD=1+7JDif j-1 = £(C) + k. Now £(A) = £(C) + £(D) + 2
i £(e) k k

and since j < £(A) = 1, then k < £(D). If 1 =1 -1 < £(C) then by MI3

EC > 1 whence, ZA 21 and if j - 1 = £(C) + k, then~2D > 1 and again
j-1 j k

ZA > 1. Thetrefore, j = £(€) + 1 is the pnly integer with 1 < j < f(A) - 1
such that ZA = 1. Hence, i = j and clearly the u occurrence is preceded
by the i—tﬂ T occurrence.

The preceding results will be used along with induction to establish
that the notion of formula is effective. 1In view of I-IV, only finite
strings beginning with '(' and ending in ')' need be considered.

Let An be a finite string‘of primitive symbols with n occurrences

of '*! or '%' and such that A begins with (' and ends in ')'.

Basis. If n = 0 then AO must be of the form (P) for some statement

variable P, which is clearly effective.

Induction step. Suppose the assertion is true for all occurrences less
than n and consider An' In view of the preceding there are only two
cases to consider.

Case 1. ZAn #1 for all #, 1 <4 « £CA) ~ 1. By M4 and MI5, A must
be of thelform (P) for a statement variable P, which is effective, or
of the form (vB) for some string B. But B has n - 1 occurrence, hence,
by induction hypothesis, B is effective. Thus, by IT. An is effective.
Case 2. ZAH =1 for some 1, 1 < 1 < f(An)—l. Now from the preceding
results, An must have a p occurrence, whence Arl is of the form (B »> C).
But B and C have less than n occurrences and therefore, by induction
hypothesis they are effective; so by III, An is effective.

This establishes the following result.

Metatheorem 1.1. The notion of formula is effective.

By MT7, there is an additional result, that of

Metatheorem 1.2. A formula of the form (A - B) can be written in

one and only one way.
The axioms for’the propositional calculus are given by the following:
PCl. A > (B > A)
PC2. (A+ (B>C)) > ((A+DB) > (A>€))
PC3. (vA > nB) = (B > A) '
where A, B and C are arbitrary formulas.
More correctly, the above should be referfed to as axiom schema
in as much as A, B and C are arbitrary formulas and'hence, give rise
to an infinite number of axioms in the propositional calculus. For
example, as a special case of PCi, not‘only is

p>(q>p)

an axiom, but also

10

b+ d) = (e > q,) »(p > q))

In the strictest sense of the word, it is evident from I-IV that
PC1-PC3 are not formulas. However, since the use of '(' and ')' can
become both tedious and superfluous, PC1-PC3 will be considered as
formulas by the following convention.

Without further agreement, if no ambiguities result, P will be
written instead of (P), nA will be written instead of (vA), A will
be written instead of (v(vA)), and A > B instead of (A > B), etc.
However, in replacing A or B by strings of primitive symbols which are
formulas, where ambiguities may result from abbreviations then '(' and
')! must, by necessity, be furnished. For example, while no ambiguity
results in writing p or p >+ q, if In A> B, A is p > q and B is r > 9,
then

(B @) (1 ¢ q;)
must be written instead of
P> qQ *TI. > 4
Similarly, if in A, A is p » q, then “(p > q) must be written instead
of vp * q.

In the sense of the above abbreviations then, PC1-PC3 are formulas.
Furthermore, they give rise to an infinite number of axioms. However,
since the notion of formula is effective and axioms must have one of
three forms, then

Metatheorem 1.3. The notion of axiom is effective.

The propositional calculus will include the following rule of
inference.

RI. From the formulas A and A > B, B may be inferred.

Combining Metatheorems 1.1 and 1.2, then to infer B from two

11

formulas A and €, C must be of the form A > B or A of the form € * B,

hence,

Metatheorem 1.4. The notion of inference is effective.
In view of the preceding, the notions of formal proof and formal
theorem are made precise by the following definitions.

Definition 1.1. A formal proof is a finite column of formulas,

each line of which is an axiom or can be inferred from two previous
lines by RI.

Definition 1.2. A formal theorem is the last line of a formal

proof.

Formal proof and formal theorem will be referred to as just proof
and theorem respectively.

The assertion that a formula A is a theorem will be symbolized by

|A.

Since the notion of formula and of inference is effective, and
since only finite columns of finite strings of primitive symbols will
be considered, then

Metatheorem 1.5. The notion of proof is effective.

As of yet there is not sufficient means to show that the notion of
theorem is effective, so this must be delayed until a few important
results are established. It may be mentioned, however, that in larger
logistic systems, the notion of theorem is not effective.

By way of illustration, consider the following:

|vp > (p > @)

Proof:

1. ((ud ¥ np) = (p »q)) = (vp + ((vg +p) = (b + 4))) EBCl

2. (’\;q > '\;p) > (p 5 q) PC3

12

s %p &+ ((d * vp) o (D + q)) - 2, 1.k

4. (vp > ((vq > vp)>(p > q)))>((vp > (vg > vp))+(vp > (p + q)))

PC2
5. (vwp > (vqg > vp)) > (vp > (p *> q)) . 3,4,RI
6. p > (g + wpy) PC1
7« p + (p > q) ‘ . 6,5,RI

When a proof is given, an analysis can be given in parallel.
However, since formula, proof and inference are all effective, this
implies there is an effective procedure for supplying an analysis.
Hence, this is usually not necessary.

By using the form of the above theorem as a guide, it is easy to
prove; lm(p +q) > ((p+>q) »> 1), Imrl > (rl + (p - q)) and so on.
That is, if A and B are arbitrary formulas, the above proof gives rise
to a proof schema of the theorem schema VA > (A + B), where a theorem
results for a particular choice of formulas for A and B.

Deducibility

The notion of theorem will now be extended to include a more
generalized notion, that of a formula being deducible from a set of
assumptions.

Definition 1.3. Let A be a formula and let T be a set of formulas,

possibly infinite or empty. Let D[I';A] be the set of all finite columns
X, of formulas, where the last line of X is A and each line of X is a
member of T, an axiom or can be inferred from two previous lines by RI.

If D[T;A] is not empty then A is said to be deducible from assumptions

I' and is symbolized by

£ A,

A member of D[T;A] is called a formal demonstration of A from T.

13

Henceforth demonstrations will mean formal demonstrations.

Metatheorem 1.6.

1. If membership in I is effective then for each formula A there is
an effective procedure for determining if a finite column of
formulas is a member of D[T;A].

ii. T |A whenever A is a member of T.
iii. IfT |A and T |A > B then I |B.
iv. If T |A then for any set of formulas @, TUQ |A.

v If T !A and I' is empty then iA.

Vi.: If P lA then there exists a finite subset T, of T such that

1
I, JA,

1

Proof :

i. Suppose membership in I' is effective. Any finite column X of
formulas must, by necessity, end in A to be in D[r';A]. Since formula,
membership in ', axiom and inference are all effective, and the fact
that X is finite, then membership in D[I';A] is effective.

ii. Suppose A is a member of T'. Let X be just A. Then X is in
D[T;A], which is therefore not empty and hence, T IA.

iii. Suppose I' |A and I' |A > B, then neither D[T;A] nor D[T;A » B]
are empty so let X and Y be members of them respectively. Let Z be the
column consisting of X followed by Y followed byIB, that is, Z = <X,Y,B>.
Clearly, Z is in D[T;B] which is then not empty, hence, T lB.

iv. Suppose T [A and let @ be a set of formulas. Since T IA,
D[I';A] is not empty so let X be a demonstration of A from T, Since

lines of X, which are members of L, aré also members of T'yQ then clearly

X is in D[Ir'yQ;A], therefore, rue IA.

V. Suppose I' is empty. Then if T]A, D[T;A] is not empty so let X

14

be a demonstration. Then each line of X is an axiom or is inferred from
two previous lines by RI. Hence, X is a proof. But since X ends in
A, A,

vi. Suppose I' |A, then D[T;A] is not empty. Let X be a member of
D[T';A]. Define Fl to be one formula B from I' together with those lines
of X which are also members of I'. Since X is finite then Pl will be

finite and by definition a subset of . Let Y be the column <B X>.

A.

1

Clearly, Y is a member of D[FI;A] and therefore, T
Within the formal system itself, formal demonstrations and formal

proofs of even a simple nature tend to become long and tedious. However,

having defined explicitly what constitutes a deduction from assumptions

and hence formal proof, it is not always necessary to appeal directly

to the definition. Instead, the above properties of deducibility may

be considered to establish certain metatheorems called derived rules of

inference.

Metatheorem 1.7. If IA and IA + B, then iB.

Proof: This follows immediately from Metatheorems 1.6iii and 1.6v.

Metatheorem 1.8. If I' |A and |A > B, then T |B.

Proof: Let @ be the empty set. Since |A > B there 1s a proof X
whose last line is A > B. Now each line of X is an axiom or inferred
from two previous lines by RI. It is clear then that X is a member of
D[Q;A -~ B], hence @ IA > B. Thus in view of Metatheorem 1.6iy I'U® |A
and T UQ !A > B, hence T'UQ]B by Metatheorem 1.6iii. But since 9 is
empty, 'UQ is just T, so T !B,

The following definition is motivated by a metatheorem which will

be stated and proved following the definition.

Definition 1.4. Let I be a set of formulas and let pt be the set of

15

all formulas deducible from T such that, C is a member of I if and only

if there exists a demonstration X[€l, in DI T.,C], with exactly n lines,

To make the definition complete, FO = ¢, ¢ the empty set, since a
formula deducible from I' must have a demonstration from I with at least
one line. Furthermore, s # ¢ for all n, n = 1 2, 3, <= ¢ . and in
fact, ¢ = FOC: FlC: FZCL F3 s . This is true because Fl will con-
sist of all the formulas of TI' together with every axiom of the system.
Furthermore, any demonstration X, of a formula from Fs with k lines,
results in a demonstration, of the same formula from I', with k + 1 lines,
by affixing an axiom or a member of T to it; not as the last line,

however.

Metatheorem 1.9. Let B be a member of [T'U{A}]", n > 1, then

r |A - Ci for all i, I < 1 < n, where X[Bn] is a member of D[FLJ{A};BH]

and X[B] = €., C, * * + , C >} a demonstration of B from r'U{A} with
n 1 2 n n

exactly n lines. (The existence of X[Bn] is guaranteed by the comment
following Definition 1.4.)

Proof: The proof will be by induction on n.
Basis. Suppose n = 1 and let B1 be a member of [FL){A}]l, then there
exists X(Bl) in D[TLJ{A};Bl] with exactly one line. This line must be

just Bl'

Case 1. [f B1 is an axiom or a member of T let Y be the column

<B1,B »(A—>B1),A->B>.

1 1
Clearly, Y is a member of D[T;A > Bl]’ hence, T IA > Bl'

Case 2., 1If B1 is A, let Y be the proof of |A » A, that is, |A > Bl'

Y is then a member of D[I;A - Bl] so, T IA > BI'

Induction step. Suppose the assertion is true for n = k and let

16

Bk+1 be a member of [FLJ{A}]k+1. Therefore, there exists a k + 1 line
demonstration X[Bk+1], in D[FL){A};Bk+1]. Let

MBpl = 96,, G, ¢ ¢ ¢ 6,0
and consider the column X[Ck] = <C (6 C,>. Clearly, X[Ck]

1’ 2, L) L] L] 9 k
is a member of D[FLJ{A};Ck], and Ck a member of [FLJ{A}]k, hence, by
induction hypothesis
T |A~> G, (1)
i
tor all 1, 1 =1 = kg

S : ; : r
Now Ck+1 is just Bk+1’ so if Ck+1 1s an axiom or a member of T,

is A, then

r il s .
then |A > Ck+1 by an argument similar to Case 1 If Ck+1

again T IA e Ck+1 by an argument similar to Case 2.

Case 3. 'If Ck+1 is inferred from two previous lines Cj and Cm, then

Now j,m < k so

without loss of generality assume Cm is Cj > Ck+1'
by (1)
I |k 30 (@)
2| s
and
I .
A ~> (cj) (3)

By PC2, it is clear that

G =6,) s (G c) @ c), (4)
s0 applying Metatheorem 1.8 to (3) and (4)
e oy a6 (5)

Finally, applying Metatheorem 1.61iii to (2) and (5)

I A
i Ck+1'

Combining this and (1) yields, T IA > Ci tor dall i, | = { =k + 1

which completes the proof.

A derived rule of inference, one which plays an important role

in the material which follows, is the following metatheorem referred

17

to as the deduction theorem for the propositional calculus.

Metatheorem 1.10. If ''U{A} |B then T |A -+ B.

Proof: Let X be a member of D[T'U{A};B], then since X has only

a finite number of lines, let X = <C C $ v Cn>. By Metatheorem

122
1.9,
I A+ C,

Tor all 1, | < | < n and in particular T !A > Cn which is just
r |A > B

By repeated application of Metatheorem 1.10, the following result
is easily established.

Metatheorem 1.11. 1If Al iByy Ay, co0 s A |B then
ja, > W S, o (A)

Another important result is the following.

Metatheorem 1.12. If IA1 @ (B, 7 C = F (4 By fi))) then

Ay A, 8, F - & |B.

Proof: Let I' consist of the formulas Al’ AZ’ e Am and let

X be the proof of

4 @ = 6 Ca i o iy,

1
If Y is the column
K, Apy Apr(Air(s o 0 (ADB)or)), Ayy Ar(A(c ¢ ¢ (ASB)eer)), o v -

_)(A —)(u e o (Am-—)B)coo))’ e e o

i+2
f e 0 A

then clearly Y is a demonstration of B from I', hence, D[I';B] is not empty

and therefore, I' |B; that is, Al’ A2, s e W Aﬁ |B.

In view of Metatheorems 1.11 and 1.12, the notion of deducibility

can be reduced to the notion of provability and conversely. It is this

important result that aids in establishing that the notion of theorem

18

is effective.
The following are some results which follow from the derived rules
of inference so far considered.

Tl.1. |vA > (A > B)

Proof:

1. A Assumption

2. "A > (vB > "A) PC1

3. "B > A 1,2,RI

4, (B > vA) > (A > B) PC3

5. A~>B 3,4,RI

6. |%A -+ (A > B) 1-5,Metatheorem 1.11.

T1.2. |A > (vA > B).

T1.3. |wvwA + A

Proof:

1. A Assumption

2. |vA > (VA > annA) Tl.1

3. "MVA o VWA 1,2,Metatheorem 1.8
4, (VA > vnA) > (WA > A) PC3

5. A > A 3,4,RI

6. A 1,5,RI

7. A > A 1-6,Metatheorem 1.11.

Tl.4. |A > A,

T1.5. |(A > B) » ((B > C) + (A > C))

Proof:
1. A->B Assumption
2. B~>C Assumption

3. A Assumption

19

4. B 3,1,RI

5. C 4,2 ,R1

6. |(A > B) - ((B~>C) > (A~—+0C)) 1-5,Metatheorem 1.11.
T1.6. “A > ((B » A) > AB),

T1.7. |B » (vC > ~(B » C)).
T1.8. |(B > A) » ((vB + A) ~+ A),

Truth Functions

In considering the notion of truth function the following defini-
tions are required.

Definition 1.5. Let A be a formula and suppose that the totality

of distinct statement variables occurring in A are Pl’ PZ’ ol ol d g Pn'
Then the Pi's, 1 <1 <n, will be referred to as the prime components
of A.

Let P be an arbitrary statement variable and let V = {0,1}; then
associated with P is a rule fP’ from V into V, defined by fP(x) = x,
x in V. If fP(x) = X, then P is said to have the truth value x,
denoted v(P) = x, with assignment of truth value x to P. This is

generalized by

Definition 1.6. Let A be an arbitrary formula with prime components

P. Pn. Then associated with A is a rule f called a truth

1) P29 I -] A’

function, from v" into V, where V" is the set of all ordered n-tuples
with entries from V. v(A) will denote the truth value of A for an
assignment of truth values to the prime components of A. That is,
v(A) = £, (x X sl e
A 1°? 2° ’ Xn)
where v(P,) = f_ (x,) = x,, X, in V, 1 <1 < n. Furthermore, v(A) will
i Pi i i i - -

satisfy the following for a given truth value assignment to the Pi's of A.

1. If A is of the form VB then

20

i. v(A) 1 if and only if u(B)

]
=)

]

ii. v(A) 0 if and only if u(B)

I
=
.

2. If A is of the form B = C then

i. v(A)

0 if and only if v(B)

1 and v(C) =0

ii. v(A)

1 if and only if v(B)

0 or v(B) = 1 and v(C) = 1.

Definition 1.6 gives rise to the notion of truth tables. This is

typified by the following example: the truth table for the formula,

P * q.

piiq 2q
1 1 1
1 0 0
0 1 1
0O O 1

The entries under p and q are the possible values that can be
assigned to p and q, while the entries under p > q are the values taken
by p > q for the given assignments to p and q.

Definition 1.7. Let A be a formula with prime components

Pl, PZ’ IR Pn' Then if fA(xl’ Xos * 00 Xn) = 1 for all possible
truth value assignments to the prime components of A, A is said to be a
tautology. This assertion is symbolized by
| |A.
Since a formula A has only a finite number of prime components
there will be only a finite number of possible truth value assignments

to these prime components. In view of this and Definitions 1.6-7, then

Metatheorem 1.13. The notion of tautology is effective.

Metatheorem 1,14. If ||A and ||A =+ B then ||B.

Proof: Suppose ||A and IIA -+ B, then v(A) = 1 and v(A > B) =1

for all truth value assignments to the prime components of A and A -+ B.

21

But by Definition 1.6, v(A > B) = 1 if and only if v(B) = 1 when v(A) = 1.
This implies v(B) = 1 for all truth value assignments to the prime com-
ponents of B. Hence, ‘|B.

To illustrate Definition 1.7, consider the formula p >~ (q + p).

The truth table for p > (q > p) is given below.

pioiga e pe ip e g 90p)
§al 1 1
1 0 1 1
0 1 0 1
0 0 1 1

By the above then, it is clear that ||p > (q > p).

The Decision Problem

In order to establish the property that the notion of theorem is

effective the following result will be needed.

Metatheorem 1.15. Let A be a formula with prime components
Pl’ P2, ohe; tolls Pn. Define Pi to be Pi or %Pi according as U(Pi) =1
or U(Pi) = 0, respectively, and define A' to be A or VA according as
v(A) = 1 or v(A) = 0, respectively. Then,

Pi’ Pé’ o o o ’<P;1 lA'
for each assignment of truth values to the prime components of A.

Proof: The proof will be by induction on the number of occurrences
of '"v' and '»' in A, If n = O,then A is just some P, and the result is
obvious. Suppose the condition holds for any number of occurrences
less than n and suppose A contains n occurrences.

Case 1. A is of the form “B. Since B contains n-1 occurrences and also

the prime components of A,then by induction hypothesis,

Pi, Pé, e e P; IB.

i. 1If u(B) = 1, then v(A) = 0 and A’ is VB, B' is B. But [B » B,

22

hence, Pi, Pé, I T P; |vvB; so Pi,

ii. If u(B) = 0, then v(A) =1 and A' is A, B' is B, hence, B' is A;

Pé, e e P; |A'.

so Pi, Pé, o e P; IA' since B' is A'.

Case 2. If A is of the form B = C, then by induction hypothesis,

P', P!, « « « , P IB'
n

IR
Pis Py, = = ¢, P! |C

since both B and C contain less than n occurrences.

i. If u(C) = 1, then v(A) 1; so C' is C and A' is A. But |C > (B + C),

hence, Pi, Pi, DRNCHEE: T P; |B > C; so Pi, Pé, o e v P; Al

ii. If uv(B) = 0, then v(A) 1l; so B' is B and A' is A. But

i%B + (B > C), hence, Pi, Pé, o e e P; |A'.
iii. If uv(B) = 1 and v(C) = 0, then u(A) = 0, hence, B' is B, C' is ~C
and A" is VA, that is v(B > C). But IB + (vC > V(B > C)); so by repeated
use of Metatheorem 1.8, P!, Pé, e . Pé |[A'.

After establishing the foregoing result, there is now sufficient
apparatus to prove the following important result known as the complete-

ness theorem.

Metatheorem 1.16. If ||A then IA.

Proof: Suppose ||A and let P 0 o Pn be the prime com-

1’ P2!

ponents of A. Define Pi, P!y, ¢« o o, P; and A' as in Metatheorem 1.15.

Since ||A, then A' is A, hence by Metatheorem 1.15, P!, Pé, I RTINS Pé |A.

In particular

P!, P!, « «« ,P' , P |A

1° 2 n-1* "n
o Pp t t s By o, 1A

for all truth value assignments to the Pi's. By the deduction theorem,

] L O 3 o L]
P1s Pas » Piog [P > A

Pi, Pé, e e P;_l |m1>n + A,

23

From T1.8, |(Pn > A) > (('\JPrl > A) > A), so by repeated use of Meta-
theorem 1.8,
' ' e s o '
Pl’ Pza 3 Pl’l"‘l IA'
Repeating this process of eliminating assumptions yields,

|A.

Metatheorem 1.17. If |A then ||A.

Proof: Suppose |A. It is easy to show that each axiom is a
tautology. Using Metatheorem 1.14 and the fact that each line of the
proof of A is an axiom or inferred from two previous lines by RI the
result follows.

Metatheorems 1.16-17 show that |A if and only if IlA. By Meta-
theorem 1.13 the notion of tautology is effective, hence, given a
formula A, there is an effective procedure for deciding if A is or is
not a theorem by seeing if A is or is not a tautology.

More generally, Metatheorem 1.15 affords an effective procedure
for providing a proof for a theorem which has been shown to be a
theorem by showing it to be a tautology. Hence,

Metatheorem 1.18. The notion of theorem is effective.

Metatheorem 1.19. The notion of provability is effective.

24

THE PREDICATE CALCULUS

Primitive Basis

The propositional calculus can be extended to a more general
theory, this theory being the predicate calculus. As in the case of
the propositional calculus, symbols, devoid of interpretation, will be
used extensively in order to put the theory in a purely formal context.

For this particular formulation the following symbols will be
employed as the primitive symbols of the predicate calculus.

The improper symbols;

() ~ 7
together with the three at most denumerable infinite lists of proper
symbols,
P a4 r Py 9 F Py 9 T O
called statement variables;:
L AR AT R R
called individual variables and for each positive integer n, n-place

predicate symbols,

1 1 1 1 1 1 1 1 1
F G H F1 G1 H1 F2 G2 H2
2 2 2 2 2 2 2 a2 2
F G~ H F1 G1 H1 F24 G2 H2
n N Snteneen =oR n

called predicate variables. The dots are used to indicate the lists

continue indefinitely.

25

The formation rules are given by the recursive definition:
I. If Q is a statement variable, then (Q) is a formula.
II. If P is an n-place predicate variable, then P(Ays Ops * 0t an)
is a formula, where aps @y, * °° , o are individual variables.
III. If A is a formula, then (vA) is a formula.
IV. If A and B are formulas, then (A > B) is a formula.
V. If A is a formula then, (o)A is a formula, where a is an
individual variable.
VI. Only finite strings of primitive symbols which follow from I-V
are formulas.

It is evident from II and V and Metatheorem 1.1 that

Metatheorem 2.1. The notion of formula is effective.

Definition 2.1. If A is a formula then any occurrence of the

individual variable a, in the formula (a)A, is called a bound occurrence
in (a)A. Any individual variable a, which is not a bound occurrence in
a formula, is called a free occurrence.
The axioms of the predicate calculus are given by the following
schema:
P1. A > (B > A)
P2. (A~> (B~>C)) > ((A~>B) > (A~>C))
P3. (vA -+ aB) > (B > A)
P4. (a)(A > B) > (A > (a)B), where a is an individual variable
with no free occurrence in A.
P5. (a)A - B, where o is an individual variable, B an individual
variable and B is obtained from A by replacing each free

occurrence of o in A by B, provided that no free occurrence

of a is in a part of A of the form (B)C.

26

It is to be noted that, as in the case of the propositional calculus,
certain liberties are taken in regards to the use of the symbols '(' and
"Y' Hewever, this fwiist be doAe with diseretion,

Metatheorem 2.2. The notion of axiom is effective.

Proof: This follows immediately from Metatheorem 2.1 and the fact
that axioms will have one of five forms.

In addition to the axioms P1-P5 the predicate calculus will have the
two rules of inference:

RI. From the formulas A and A -~ B, B may be inferred.

UG. (Generalization) From the formula A, (a)A may be inferred where
a is an individual variable.

To infer (a)A from a formula B, B must be just A and by extending
Metatheorem 1.4 to the predicate calculus then

Metatheorem 2.3. The notions of RI and UG are effective.

Definition 2.2. A formal proof is a finite column of formulas,

each line of which is an axiomy, inferred from two previous lines by RI
or inferred from a single preceding line by UG.

Definition 2.3. A formal theorem is the last line of a formal

proof.
The assertion that A is a theorem will be denoted by
A.
As a result of the foregoing it can be shown that

| FLx) >)F ().

Proof:
% GOE G > PG PS5
2. (MRF @ > F () 1,UG

3. M@ > Fre) » (F) + OF o) P4

27

b OF () > (DFLY) 2,3,RT

The above proof gives rise to a proof schema for the theorem
schema (a)P(a) > (B)P(B), where a, B are arbitrary individual vari-
ables and P an arbitrary l-place predicate variable.

More generally |(a)A -+ (B)A, provided no free occurrences of o in
A is in a part of A of the form (B)C and provided B is free in no part
of A.

Since formula, axiom and inference are all effective and since
proofs are finite columns of formulas, then for the predicate calculus

Metatheorem 2.4. The notion of proof is effective.

Deducibility

In order to extend the notion of deducibility from a set of assump-
tions to the predicate calculus the following definition is required.

Definition 2.4. A column Y of formulas is called a subcolumn of

a finite column X of formulas provided the formulas of Y appear in X in
precisely the same order as in Y.

Definition 2.5. Let I be a set of formulas, possibly infinite or

empty, and let A be a formula. Define D[T;A] to be the set of all finite
columns X of formulas whose last line is A and where each line of X is

an axiom, a member of I'y inferred from two preceding lines by RI or
inferred from a single previous line B, by generalization on any
individual variable, provided that B is the last line of a subcolumn Y

of X, which is a formal proof.

In case D[T';A] is not empty, then A is said to be deducible from

assumptions I'. This assertion is symbolized by

r |a.

Any member of D[T'j;A] is called a formal demonstration of A from T.

28

By the nature of Definition 2.5, Metatheorem 1.6 can be extended
to the predicate calculus and consequently the following derived rules

of inference result.

Metatheorem 2.5. If |A and |A > B then |B.

Metatheorem 2.6. If I' |A and |A + B then T |B.

More important, however, is that Metatheorem 1.10 can be extended
to give the deduction theorem for the predicate calculus.

Metatheorem 2.7. If TI' is a set of formulas and A and B are formulas

and if TU{A)} |B then I |A > B.

Proof: The proof is obtained from Metatheorem 1.9, along with an
additional case following Case 3.
Case 4. 1If Ck+1 is inferred from a previous line Cj’ j < k, by generaliza-
tion on an individual variable o, where Cj is the last line of a subcolumn

Z of X[Bk+1]’ which is a formal proof, then C is just (a)Cj.

k+1

Since Z is a formal proof whose last line is Cj’ then the column,

<Z, (a)Cj> is also a formal proof, hence, I(a)Cj.

By P1,
|(oc)Cj > (Cj > (a)Cj); I(Cj > (a)Cj) > (A > (Cj > (a)Cj))
and by P2,

(A > (c, > (0)C,)) > ((A~>C,) > (A~ (a)C.)).
J J J J
Repeated use of Metatheorem 2.5 to the above yields,
(A >C,) > (A~ (a)C)).
J J
By induction hypothesis, T |A > Cj’ hence, by Metatheorem 2.6,
r |A - (a)c,.
A
Now if TU{A} |B, then T |A > Ci’ where Ci is any line of a demon-

stration of B from ''U{A}. Therefore, T |A > B since B will be the

last 1line.

29

The preceding result enables Metatheorems 1.11 and 1.12 to be
extended to the predicate calculus, hence

Metatheorem 2.8. A : Am B if and only if

1) Az)
|A1 > (B 2 G 00 A S mman)).

Let A and B be formulas and abbreviate the formula, ~(A > ~B),
by A A B. From this abbreviation then

Definition 2.6. I1If A., A,, = * *+ , A are formulas, define the
1 2 n

conjunction, TT? Ai’ of the formulas Al’ A2, ORORORN An inductively by:
TTiAi is A 1T{+1Ai is A o (TTgAi), for j =1, 2, » + * , n-l.

As a consequence of Definition 2.6 and the preceding rules of
inference the following results can be established.

T2.1. |A A B> A

Proof:

. |vA > (A > B)

2. | (A > (A > AB)) > (V(A > B) »> A)

3. |~(A > ~B) > A 1,2, Metatheorem 2.5

4. |AaB->A 3, definition of A.

Similarly,

T2.2. |A A B > B.

T2.3. |(A> (B>C)) + (A AB ~+0C)

Proof:

1. A-> (B> Q) Assump tion

2. AAB Assumption

3. |[AaB-~>A T2.1

4. A 2,3, Metatheorem 2.6
5) i SRR (6 4,1, RI

6. |AAB~>B W22

7. B
8. C

9. |(A> (B~>C)) > (AAB~>C)

T2. |(AaB~>cC) > (A~>(B~>C))
Proof:

1. AAB->C

2. A

3. B

4, |A > (B > (A > B))

5. B > (A > B)

6. (A > "B)

7. AAB

8. C

9. |[(AAB~>C) > (A> (B~>C))

2.5, |(JTiA, ~ (A > B) > T, » B
Proof:

1. TT{Ai > (A > B)

2. | 1+1Ai

3. AJ,HATT?LAi

b |Aj+1ATT2Ai > A

5. A

6. |Aj+1ATT{Ai ” TTiAi

7. TT{Ai

8. Aj+1 -+ B

9. B
10. |(TT{A. > (A, > B) - (TT{HAi > B)

i j

.6 [AT{ 5 > (T > (hyyy 00

30

2,6, Metatheorem 2.6
7,5, RI

1-8, Metatheorem 2.8.

Assumption
Assumption

Assumption

2,4, Metatheorem 2.6
3,5, RI

6, definition of A
7,1, RI

1-8, Metatheorem 2.8.

Assumption
Assumption

2, Definition 2.6
T2.1

3,4, Metatheorem 2.6
T2.2

3,6, Metatheorem 2.6
7,1, RI

5,8, RI

1-9, Metatheorem 2.8.

31

Proof:
1. TT{+1Ai - B Assumption
2o TTgAi Assumption
3. Aj+1 Assumption
be Ay 0 T1§Ai > B 1, Definition 2.6
5. ltayyy 0 TTA; > B) > (A, > (THA; > B)
T2.4
6. Aj+1 +(TTJiAi - B) 4,5, Metatheorem 2.6
7. TPa, > 8 6,3, RI
8. B 2,7, RI

41 .
9. I(TT{ Ai > B) ~» (TT{Ai -> (Aj+1 > B)) 1-8, Metatheorem 2.8.

Metatheorem 2.9. A, A , A |B if and only if]TT‘llAi > B.

2)

Proof: The proof will be by induction on n. When n =1 it is
obvious that A1 |B implies ITT%Ai - B.
Suppose the assertion is true for all k < n and suppose
Aly A2, wloe e An lBo By the deduction theorem
Al’ A2, = ey g An—l lAn -+ B, so from the induction hypothesis,
-1
ITT? Ai = (An » B) and by T2.5 and Metatheorem 2.5, |TT?A1 -+ B.
Conversely; for n = 1, |TT}Ai -+ B gives A1 lB. Suppose the asser-
tion is true for all k < n and suppose | IlAi + B. From T2.6 and
-1
Metatheorem 2.5, then l 1 Ai -> (An + B). Hence, by induction
A

hypothesis, A OGO An—l |An -+ B. But then

1° %20
Ay Ayy = 0 0 s A1 A lAn + B and Aj, Ay, ¢ 0 0, A lAn, so by

Metatheorem 1.61ii extended to the predicate calculus,

A19 Az’ e w !An IB.

Metatheorem 2.9 is equivalent to Metatheorem 2.8 but with a

difference in notation.

32

Metatheorem 2.10. If I' |A and o is an individual variable not

free in any formula of I' then I' |(a)A.

Proof: Suppose T |A and o is an individual variable not free in
any formula of I'. By Metatheorem 1.6vi, extended to the predicate
calculus, there exists a finite subset, Al’ A2, o m & o An of I'y such

that A, Ay, = = =, A |A. By Metatheorem 2.9,]ll‘l‘Ai + A, which is
a formal theorem. Let X be the proof of this theorem. Since a is not

free in any of the A,'s, 1 < i < n, then a is not free in TT?Ai so the

i

column,
<X, (@) (TT7a;28), (@) (T7A8)>(TT7A, >()4), TT A, >(0)A>

is a formal proof, hence ITTTAi + (a)A is a formal theorem. By Meta-
theorem 2.9 this implies that, Al’ A2, LN An | (0)A and by Meta-
theorem 1.6iv extended to the predicate calculus, then T I(a)A.

In view of the preceding metatheorem, it is evident that if A is
a formula with a free occurrence of an individual variable a, then in
a demonstration which involves A, as an assumption formula, no general-
ization on o can be made. In this case, o is said to have a conditional
interpretation. In contrast, if a has a free occurrence in a formula A,
which is an axiom, then A in intended to mean the same as (a)A. In this
case, o is said to have a generality interpretation.

Definition 2.7. If A is a formula and its distinct free individual

variables occur in the order of o 8 e an then the formula,

10 ’
(al)(az)"‘(an)A, is called the closure of A. This is symbolized by
M.

Under the generality interpretation A and AA are synonymous.

Metatheorem 2.11. TIf T |A and Q |B for every formula B in T, then

Q |A.

33

Proof: Suppose I' |A and @ |B for each formula B in T. Since
r |A there exists a finite subset, Al’ AZ’ OO S An of T, such that
Al’ A2, o Il Arl |A. From Metatheorem 2.8 then,
|A1 > (A2 > (o e (An > A)e+*)). Now, Q |B for each formula B in T

so in particular, @ |A, for each i, 1 < i < n. Therefore, Q |A, and

i
|A1 > (Ay > (+ =+ (A > A):+")) so by Metatheorem 2.6,

Q |A2 > A3 > (o e (An + A)e++*)). From this and the fact that

Q |A2, Metatheorem 1.6iii, extended to the predicate calculus, gives
Q |A3 > (AA e G (An -+ A)++*)). Again from this and the fact
that Q |A3, then Q |A4 > (A5 el G (An -+ A)e+++)). Continuing

this process yields 2 |A.

Metatheorem 2.12, 1I1f TU{A} |B, then I' |AA > B.

Proof: Suppose 'U{A} |B. From P5, (a)A + A, provided no part
of, A is of the form (a)C. Let the distinct free individual variables

of A be Ay, @ *+ co in that order, than NA is just (al)(az)"'(an)A.

22
Since each a s 1 <i<n, is free in A it will appear in no part of A
of the form (ai)C. Hence, by repeated use of RI and P5, then AA |A.
Let C be a formula of TU{A}. If C is a member of I' then T |C hence,
rU{AA} |c. 1If C is A, then since AA |A, TU{AA} |C. Therefore,
r'U{A} |B and for every formula C in T'U{A}; TU{AA} |C so by Meta-
theorem 2.11, T'U{AA} |B and by the deduction theorem I' |AA » B.
As evidenced by the preceding metatheorems, the notion of deducibility

is reduced to the notion of provability and conversely.

Valuation Procedure and Validity

Suppose that associated with the predicate calculus is some nonempty

set D, called a domain, such that the individual variables are associated

in some way with the elements of D. Let V = {0,1} be a set of truth

34

values and suppose that for every n-place predicate variable P there is
associated a logical function A, where A is a function from D" into V.
Furthermore, assume that a truth value from V can be assigned to a

formula, P(al, a 3 an), relative to an assignment of an element

2,

of D to each distinct individual variable among Ups Gys 0 00, O,
in the following way. 1If d in D, is assigned to « in

i’ i’

P(al, Gps * 0, an), and if A is assigned to P then the truth value

of P(al, Ayttt an) is X(dl, d2,

Let C be a formula of the predicate calculus. Then from the

« , d).
n

foregoing it is assumed that a domain D is given, to each predicate
variable appearing in C is assigned a logical function and to each
distinct free occurrence of an individual variable in C is assigned

an element from D. This constitutes an assignment to C and gives rise
to a valuation procedure for assigning a truth value v(C), to C.

A truth value is assigned to C in the following way:

1. If P(al, o LI I an) is a part of C and if A is assigned

2)
to P, di in D assigned to as 1 < i < n, then the truth value assigned

to P(al, Ty an) is A(dl, d L dn)'

23
2. To the statement variables of C is assigned either 0 or 1.

3. For a given assignment to the predicate variables, distinct
free individual variables and the statement variables of C then if C

is of the form “A, v(C) = 0 if and only if v(A) = 1 and v(C) = 1 if

and only if v(A) = 0. If C is of the form A +- B then v(C) = 0 if and

only if v(A) = 1 and vu(B) 0; v(C) =1 if and only if v (A) 0 or

v(A) =1 and v(B) = 1. 1If C is of the form (a)A, then u(C) 1 if and

only if v(A) = 1 for every assignment to a; u(C) = 0 if and only if

v(A) = 0 for at least one assignment to a.

35

Thus, consider the formula (x)Fl(x) -> (y)Fl(y) for a domain
D = {a,b}, of two individuals. The possible logical functions A,

from D into V are tabulated by:

| xl(x) Az(x) A3(x) Aa(x)

1 1 0 0
1 0 1 0

X
a
b

The possible truth value assignments are given by:

1 1 1 1 1 1 1
Foox vy | F(x) F(v) (XF(x) @F (v) (xX)F (x} = (Y)F (y)
a a 1 il
a b 1 1
Al b a 1 1 1 1 i 1 1
b b 1 1
a a 1 1
a b 1 0
Az = 0 1 0 0 0 1 0
b b 0 0
a a 0 0
ale b 0 1
A3 b a 1 0 0 0 0 1 0
b b 1 1
a a 0 0
a b 0 0
A& I 0 0 0 0 0 1 0
b b 0 0

where the hotizontal blocks constitute an assignment of a logical
function to Fl, together with the possible assignments to x and y.
As another example consider p =+ (x)Fz(x,y) for D = {a,b}.

The possible logical functions from D2 into V are:

Alx,

(x.y)(- Ay o Mp e Bt wAg s ASsANpR elpasc F G Mg, B
5 T 1 1 1 1 1 1 1 0 & s % 0 0
(A,b)) 01 '1"0o o0r0 @ 1 % & ® 0 o
(b 3a) 1 1. 0 0 1 1 0 0 1 + « « 0 0
(b.b) 1 0 1 0 1 0 1 0 1 + = +« 1 o

36

The truth value assignments for an assignment of Al, A6’ and A8
2 d
to F~ are given below:

2 2 2 2

F y X F LXxY) (x)F LXJ.X) P + (AF (x,y)
a a 1 1 1
a b 1 4 il 1 !
b a 1 1 1

Al b b 1 . 1 1 .
a a 1 1 0 1 1
a b 1 0 1
b a il 0 il
b b 1 1 0 1 !
a a 1 1 0
a b 0 ¢ 1 0 .
b a 1 1 0

A6 b b 0 . 1 0 ¢
a a 1 0 0 1 0
d b 0 0 1
b a 1 0 1
b b 0 0 0 1 0
a a 1 1 0
a b 0 v 1 0 ¢
b a 0 1 0

AB b b 0 . 1 0 0
a a 1 0 0 1 0
a_b 0 01 '
b a 0 0 i
b b 0 . 0 1 v .

Definition 2.8. A formula C is said to be valid in a domain D

provided v(C) = 1 for all assignments of logical functions to the
predicate variables of C, for all assignments of elements of D to the
distinct free individual variables of C and for all assignments of

0 and 1 to the statement variables of C.

Definition 2.9. A formula C is said to be universally valid or

simply valid if and only if it is valid in every domain. This is

symbolized by

|lc.

As was the case for the propositional calculus, in the predicate

37

calculus, the notion of provability reduces to the notion of validity
and conversely. This important result is known as Gddel's Completeness
Theorem and will be stated without proof.

Metatheorem 2.13. |A if and only if ||A.

The Decision Problem

When considering the notion of validity in the predicate calculus,
for a formula C to be valid, the valuation procedure must include all
domains. This means that infinite domains must be considered, but
in view of the valuation procedure this suggests that in valuating C,
no method exists which involves only a finite number of steps and in
general this is indeed the case. However, in the predicate calculus
with only l-place predicate variables the notion of theorem is
effective.

Metatheorem 2.14. In the predicate calculus the notion of

theorem is not effective.
It might be pointed out, however, that for formulas of a certain
form there exists an effective procedure for deciding whether a

formula of this form is or is not valid and consequently if it is

or 1s not a theorem.

38

LITERATURE CITED

Church, A. 1956. Introduction to Mathematical Logic. Princeton
University Press, Princeton, New Jersey.

Stoll, R. R. 1961. Set Theory and Logic. W. H. Freeman and Company,
San Francisco and London.

TURING MACHINES AND RECURSIVE FUNCTIONS
by

Lowell Anderson

Report No. 2 submitted in partial fulfillment
of the requirements for the degree

of
MASTER OF SCIENCE
in
Mathematics

Plan B

UTAH STATE UNIVERSITY
Logan, Utah

1967

TABLE OF CONTENTS

INTRODUCTION
TURING MACHINES AND COMPUTABILITY .
Turing machines
Computable and partially computable functions
Additional properties of Turing machines .
RECURSIVE FUNCTIONS
Composition and minimalization
Special classes of functions .

LITERATURE CITED

21

32

32

40

44

INTRODUCTION

Let there be given a function, defined on some domain, then the
question might be asked: '"Does there exist a finite set of rules or
instructions for calculating, in a finite number of steps, the
functional values of the function?" If such a set of instructions
exist, then the function is said to be effectively calculable and the
instructions are referred to as an algorithm or effective computa-
tional procedure.

One requirement of an algorithm is that it be purely mechanical;
mechanical in the sense that, at least in principle, a computing
device could be constructed to carry out the instructions, with no
intelligence or creativity needed to follow them.

There is, perhaps, one shortcoming to most if not all algorithms.
This being, although the algorithm will furnish an answer if an
answer is forthcoming, it may have one compute indefinitely should
no answer be forthcoming.

With the notion of effective computational procedure in mind

a class of objects, called Turing machines, is considered. A Turing

machine will afford an effective procedure for computing the functional
values of a certain class of functions. Such funcedons will be called

Turing computable or merely computable.

In particular, a class of functions called recursive functions

will be considered and it will be shown that these functions are

Turing computable.

Throughout this paper some of the more fundamental concepts
of sets and functions will be assumed. Moreover, only functions
defined on n-tuples of non-negative integers will be considered.

Also, when no confusion results, a function's name and its functional

notation will be used interchangeably.

TURING MACHINES AND COMPUTABILITY

Turing machines

Intuitively, one may think of a Turing machine as a computing
device which is capable of printing (or erasing) only a finite sequence
of given symbols, onto a linear tape; the tape being infinite in both
directions and ruled into a two-way infinite sequence of squares.

The following figure is suggestive of this infinite tape.

This machine will be '"sensitive' to only one square at a time,
thus, being able to print (or erase) only one symbol to a square, the
square being scanned. Further, this machine will be capable of assum-
ing only a finite number of machine states or internal configurations,
where the next act or operation that the machine will perform is
completely determined by the machine state together with the symbol
that appears on the square being scanned. Also, the machine will be
capable of only the following: a complete halt of operation, a change
of the symbol on the square being scanned, a move one square to the
right or left of the square being scanned; where in each case the
machine will enter into a new machine state.

The symbols Ays dgs Ggs ¢ o+ - will be used to denote possible

machine states and the symbols S will be used to denote

0> 517 Sy -

the symbols the machine will be capable of printing. The letters

R and L will denote one move to the right or left respectively.

With the foregoing remarks as an intuitive basis, the notion of
a Turing machine will be given a precise description. However, prior
to defining a Turing machine, two definitions are necessary.

Definition 1.1. An expression is a finite sequence of symbols

(possibly empty), from the symbols SPEL UYL PYRERE SO’SI’SZ""; R, L.

Definition 1.2. A quadruple is an expression having one of the

following four forms:

(1) ;5,59
(2) qiSjR q
(3) qiSjL q
(4) 93849 9y

Definition 1.3. A Turing machine is a finite, nonempty set of

quadruples such that no two quadruples have their first two symbols
the same. (This eliminates the possibility of a machine reaching a
"confused state".)

The qi's which appear in the quadruples of a Turing machine will

be called its machine states and the Si's its alphabet.

Definition 1.4. A Turing machine that consists entirely of

quadruples of the form (1)-(3), is called simple.
Consider now, the following definitions.

Definition 1.5. An instantaneous description is an expression

consisting of exactly one 9y neither R nor L and such that 9, is not

the rightmost symbol.

Definition 1.6. An expression which consists entirely of Si's

is called a tape expression.

Definition 1.7. Let Z be a Turing machine and let o be an

instantaneous description. If the 9y in o is a machine state of Z
and the Si's in o belong to the alphabet of Z, then o is called an

instantaneous description of Z.

Definition 1.8. Let Z be a Turing machine and let o be an

instantaneous description of Z. Let 9y be the machine state of Z in
o and Sj the symbol immediately to the right of q; - Then q9; is called

the machine state of Z at a, Sj the symbol scanned by Z at o and the

expression obtained by deleting 9y from a is called the expression

on the tape of Z at a.

From an intuitive point of view, Definition 1.8 affords a means
by which an instantaneous description o may be thought of as precisely
describing the status of a Turing machine at some particular time in
its operation; where a gives the machine's state, the expression on
its tape and the symbol being scanned.

Earlier, the tape of a Turing machine was described as being
infinite in both directions. However, in view of Definitions 1.1 and
1.5, an instantaneous description is always finite. Hence, these
definitions, together with Definition 1.8, dictate that a Turing machine
scan only those squares on which symbols have been printed. This
means that a Turing machine is not capable of scanning blank squares.
However, this limitation can be overcome by adopting the following
convention.

Since the expression on the tape of a Turing machine at an
instantaneous description o is always finite, think of the tape as

being finite where, when the Turing machine is about to run off the

end of its tape it is capable of splicing on a new square on which the

symbol S, has been printed.

0

The symbol S, then, will be reserved to stand for a blank square;

0
B will also be written in place of SO.

The following definition will allow an instantaneous description
of a Turing machine to be replaced by a succeeding instantaneous

description.

Definition 1.9. Let Z be a Turing machine and o, g instantaneous

descriptions. Then o is replaced with g by Z, symbolized o + B(Z),
or when no confusion results, merely as o > B, provided there exist
tape expressions P and Q (possibly empty) such that one of the follow-

ing holds:

(1) o is PqiSjQ’ qiSJ_Skqm ¢ Z and g is PqﬁSkQ (reprint)

(2) o is PqistkQ’ qiSjR q € Z and B is Pqu%SkQ (right search)
(3) a is PqiSj, qiSjR q. ¢ 2 and g is PqumS0
(4) o is PskqiSjQ’ qiSjL q. € Z and B is quSijQ (left search)

(5) o is qiSjQ’ qiSjL q. € Z and B is quOSjQ'

It may be noted that Definition 1.9 makes no mention of quadruples
of the form qiqukqm. Turing machines having quadruples of this form
will be considered later. For the present, however, only Turing
machines that are simple will bé dealt with.

Two results that follow from the preceding definition are the
following theorems.

Theorem 1.1. If a - B(Z) and o -+ y(Z), then B and y are the same

instantaneous descriptions.

Theorem 1.2, If Z1 and 22 are Turing machines such that 21(: 22

and if o -+ B(Zl)’ then o > B(ZZ)'

Definition 1.10. An instantaneous description a is called

terminal with respect to Z if, for all instantaneous descriptions B,

it is not the case that a = B(Z) .

Definition 1.11. Let Z be a Turing machine, then a computation

of Z will be a finite sequence a,a FLN of instantaneous descrip-

g

tions such that a, - ai+1(2) for i = 1,2,...,n-1 and where a is

terminal with respect to Z. If such be the case, then
L Resz(al)

will be written and a will be called the resultant of o, with respect
I

to 73 ay will also be called the input and a the output with respect
to Z.

In what follows, the symbol 4, will denote the machine state at
instantaneous description a

Moreover, o, will be assumed as input.

it 1
Consider the following example, where Z is the Turing machine

consisting of the quadruples:

195:L 9
15,1 9
4353k 94
4150R 9,
42515093
25,5093

1253503

4350R 4.

Let

@) = 55519;54

then the following is a computation with respect to Z:

& = 5 11°3
52915153
> 9152515,

> 9;505,5,5;3

5092575153

5093505153
5050925153
5050935053
> SOSOSOqZS3
5050509359
505080509250

which is terminal, hence,

Resz(5251q1b3) = bOSOSOSOqZSO'

The effect of Z on ay is to move left until a blank is encountered,

then proceed right, erasing everything until a blank is again encount-
ered.

Should the quadruple qZSOR q, be added to Z, the machine would
compute indefinitely and Resz(al) would not be defined. This illus-
trates the fact that Theorem 1.2 does not extend to computation.

That is, if Z]‘c: Z2’ then a computation of Z1 need not necessarily be

a computation of Z

2"

Computable and partially computable functions

In order for a Turing machine to perform numerical computations,

a symbolic representation must be introduced so that to a given integer
n, there can be associated an appropriate tape expression.

Henceforth, 1 will be written instead of S1 and S? shall denote
the tape expression SiSi°"Si’ consisting of n occurrences of the
symbol Si’ with S? being the empty expression.

For convenience, J will denote the set of all non-negative
integers and Jn, n a positive integer, will denote the set of all
ordered n—-tuples of J.

Definition 1.12. To each non-negative integer n, associate the

tape expression n where n = 1n+1 = 111...1 (n + 1 occurrences of 1).

Definition 1.13. To each k-tuple (nl,n .,nk) of non-negative

g3

integers, associate the tape expression (nl,nz,...,nk) where

(nl,nz,...,nk) = nanzB...Bnk.
For example, by the above definitions, it follows that

el SRR

4
and

(0,3,2) = OB3B2 = 1B1111B111.

Definition 1.14. Let P be any expression. Then <P> will be the

number of occurrences of the symbol 1 in the expression P.
As a consequence of this definition, it is obvious that for

expressions P and Q, <PQ> = <P> + <Q>. Also, for any positive integer

m, <m - I> = m.

10

Definition 1.15. Let Z be a Turing machine and let n be a

N n
positive integer. Associate with Z an n-ary function wz in the
following way.

For each n-tuple (ml,mz,...,mn) let

al 3 ql(ml’mZ"..'mn)’
then

(1) If there exists a computation Ups Ops o v o 50y of Z, set

n
wz(ml,mz,...,mn) N foaue - <Resz(a1)>.

(2) 1f the above does not hold, that is, if Resz(al) is not
defined, then leave w; at (ml’mZ"°°’mn) undefined.

When n = 1, wz will be written instead of w;.

Definition 1.16. Let f be an n-ary function defined on a subset

D of Jn, then f is called a partial function. Should f be defined

on the whole of Jn, then f is called a total function.

Taking the usual definition for equality of functions, to say
two partial functions are equal implies, among other things, that
their domains are identical.

Definition 1.17. Let f be an n-ary partial function and suppose

there exists a Turing machine Z such that
n
f=‘pz)

then f is said to be partially computable and Z is said to partially

compute f. Should f be total, then f is said to be computable and

Z is said to compute f.

The preceding definitions show how thne computability of functions

can be expressed in terms of Turing machines.

11

Following are some examples of computable and partially comput-
able functions.

Example 1.1. The successor function S, defined on J by
S(x) =x+ 1,

is a computable function.
Let m ¢ J and choose a Turing machine Z such that qla is terminal

with respect to Z. Then q1H is a computation of Z and

by (m) = <qm> = AT Rl =

Since m was arbitrary, S is computable.

Example 1.2. The total function o, defined on J2 by
o(x,y) = x +y,

is a computable function.
Let (m,n) ¢ J2 and let Z be the Turing machine consisting of

the following quadruples:

and let

12

e
_ q11m+lBln 1

> qlBlmBlln

> qulmBlln

£ B1mq2311n
> B1mBq311“

> BlmBq3Bln,
which is terminal with respect to Z. Whence,
2 my n_
wz\m,n) = <Bl q381 > =m + n = o(m,n)

and so ¢ is computable.

Example 1.3. The n-ary function Uin, defined on J" by

n
U, (XisX550s09X = X,
i (1) 2’ ’ n) i

for 1 < i < n, is a computable function.
n
Let (ml,mz,...,mn) e J and let

m]+1 mi+1 mn+1
= ql(ml,...,mi,...,mn) =1 Biw Bl Biwe Bl

1

m.+1
If a Turing machine Z can be constructed to erase all blocks 1 3 §

j # 1, and only the initial 1 from the i-th block, then clearly

m,
Res,(a,) will be 1 L and

n s i it
wz(ml,mz,...,mn) = <Reszka1)> = m, Ui (ml’mZ"°"mn)

so the computability of Uirl will be established.

The required Turing machine is given by the following quadruples,

where j runs through all integers not equal to i such that 1 < j < n:

)

qj1 Y q2n+j
9.8 R,
- '
q2n+j qJ (erase the j~th block of 1's)
9l B g
qu R Qpnti (erase the initial 1 in the i-th block)

Un+il R doneg

q2n+iB 941 (proceed to the i+lst block of 1's).

A computation will terminate in machine state 941 since each
quadruple begins with qy s where 1 < k < n or k > 2n. Hence, Uin
is computable.

Two more examples are given below. However, they will be
discussed only briefly.

Example 1.4. The partial function f, defined by
f(x,y) = x -y,

is partially computable.

Let (m,n) be any ordered pair in JZ and let

4 S ol - n+l
s ql(m,n) = qll B1 .

A Turing machine could be constructed to erase a 1 from the
right-hand block of .1's each time a 1 is erased from the left-hand
block of 1's, stopping or continuing indefinitely if the right-hand
or left-~hand block is exhausted first, respectively. Hence, f would

only be partially computable since it would not be defined for those

ordered pairs (m,n) of J2 with m < n.

14

If the Turing machine had been constructed to erase everything
and stop, should the left-hand block have been exhausted first, then

it would compute the total function §, defined by
(S(X,Y) =x = Y
where

x=-y=x-yif x>y and

b
|
<
]

0 if x < y.

This function is referred to as the proper subtraction function
and is called the completion of the partially computable subtraction
function f(x,y) = x - vy.

Example 1.5. The function g, defined on J2 by

g(x,y) = (x+ D(y + 1),

is a computable function.

In as much as Oy = x0 = 0, (x + 1)(y + 1) will be easier to
consider than xy. However, the computability of xy will be established
later on.

Construction of the Turing machine to compute g is based on the

fact that
x+ D +1D)=(@@+D)+(y+1)+...+((y+1)

x + 1 times.
2
Let (myn) ¢ J and let

mtl__nt+l
a; = ql(m,n) =q.1 B 3

4

Then a Turing machine could be constructed to erase the leftmost 1, and

for each 1 remaining in the left-hand block, erase it and at the same

15

time copy the rightmost block on the left. This would require using
special markers in order to shift the copied 1's.to the left to make
room for the next 1 to be copied from the rightmost block.

This would result in m + 1 blocks of n + 1 1's. . Hence,
2 : .
wz(m,n) = (m+ 1)(n + 1) = g(m,n)

and the computability of g would be established.

Definition 1.9 will now be extended to include the more general
form of Turing machines; namely, those incorporating quadruples of
the form qiqukqm. This will result in the more general notion of
computability, that of relative computability.

In effect, the quadruple qiqukqm will allow the Turing machine
to choose between alternate paths in the course of its operation.
This, in the sense that, for a given set of integers A, the machine
may inquire as to the membership of an integer n in A. If n ¢ A
the machine will enter into machine state Q5 hence, one path of
operation. If n ¢ A, the machine will enter into machine state q.s
whence, the alternate path of operation.

This is made precise by the following definition, where A denotes
an arbitrary but fixed set of non-negative integers.

Definition 1.18. Let Z be a Turing machine and let a, B, be

instantaneous descriptions. Then o 1 B(Z) will be written, provided

there exist tape expressions P and Q (possibly empty) such that a

is PqiSjQ’ q S'qkqm € Z and either

i
(1) <o> € A, in which case B is quSjQ’ or

(2) <o0> ¢ A and B is quSjQ°

16

Definition 1.19. An instantaneous description o is said to be

final with respect to Z, Z a Turing machine, provided o is of the form

PqiSjQ’ for tape expressions P and Q (possibly empty), and Z has no
quadruple whose first two symbols are qisj'

Theorem 1.3. If Z is a simple Turing machine, then an instan-
taneous description g is terminal with respect to Z if and only if o
is final with respect to Z.

Proof: Obvious

Theorem 1.4. Let Z be a Turing machine and o an instantaneous

description, then o is final with respect to Z if and only if

(1) o is terminal with respect to Z and

(2) For each set of non-negative integers A, there is no
instantaneous description g such that o 3 B(Z).

Proof: If Z is simple the theorem follows immediately from
Theorem 1.3. Therefore, suppose Z is not simple and a is of the
form PqiSan If a is final, then Z contains no quadruple of the form
qiSj_____ and (1), (2) are obvious.

Conversely, if (1) and (2) hold and a is PqiSjQ’ then by (1), the
only quadruple in Z beginning with qiSj must be qiqukqm for some 9
and q_- But by (2) this is impossible. Hence, a is final.

Definition 1.20. Let Z be a Turing machine and let A be a set

of non-negative integers. Then an A-computation of Z shall mean

a finite sequence Ay Qps + « ¢ 5 Q of instantaneous descriptions

k

such that

(2)

ay > 0;,,(2) or oy foag,

for each i, 1 < i < k, with o being final with respect to Z.

k

If such be the case, a, will be called the A-resultant of o, with
L

k

respect to Z and this will be symbolized by

A
= ResZ (al).

Should Z be a simple Turing machine, then the computation will

be independent of A and

A(a)

Resz(al) = ResZ 1

Definition 1.21, Let Z be a Turing machine and A an arbitrary

set of non-negative integers. For each positive integer n, associate

n

Z;A as follows:

with Z an n-ary function {

For each n-tuple (ml,mz,...,mn) set

al = ql(ml,mz,...,mn),

then
(1) 1If there exists an A-computation of ay with respect to
Z let
n.., A
(T = >4
wZ;A\ml,ng...,mn) ResZ (al)

(2) 1If the above does not hold, that is, if ResZA(al) is not

; n :
defined, then leave wZ;A at (ml,mz,...,mn) undefined.
1
_ . . :
In case n 1 write wZ;A in place of wZ;A'

If Z is a simple Turing machine, then wZ?A is independent of
9

A and

17

18

Definition 1.22. Let f be an n-ary function defined on a subset

D of J". If there exists a Turing machine Z such that for some subset

A of J,

n
L Yz;A°

then f is said to be partially A-computable and Z is said to partially

A-compute f. Should D = Jn, then f is said to be A-computable and Z

is said to A-compute f.

Theorem 1.5. Let f be an n-ary function, then

(1) If f is partially computable, it is partially A-computable.

(2) 1If f is computable, then it is A-computable.

Proof: This follows immediately from the fact that, if f is
partially computable or computable, then ¢; is independent of A,

whence,

n n
£= by = wZ;A'

Theorem 1.6. Let Z be a Turing machine, then there exists

a simple Turing machine Z* such that for the empty set ¢,

n)
Vzx T Vg5t

Proof: 1If Z is simple, choose Z* = Z. 1If Z contains quadruples

of the form qiS 9 9,0 then choose Z* to be Z with each quadruple of

3

the form qiSJ.qkqm in Z replaced by quadruples of the form qiSijqm.

Thus, Z* is simple and since ¢ is empty, <a> ¢ ¢ for all instantan-

eous descriptions a, so clearly

s R

Var = Yz

Theorem 1.7. Let f be an n-ary function, then

(1) The function f is partially computable if and only if it
is partially ¢-computable.

(2) The function f is computable if and only if it is ¢-comput
able.

Proof: This follows directly from Theorems 1.5 and 1.6.

Definition 1.23. Let S be a set and define the characteristic

function of S by

Cs(x) = 0 if and only if x ¢ S and

CS(x) 1 if and only if x ¢ S.

]

Definition 1.24. Let S be a set, then S is said to be computable

or A-computable, according as its characteristic function CS is
computable or A-computable.
Theorem 1.8. For every set A of non-negative integers, A is

A-computable.

Proof: Let Z be the Turing machine consisting of the quadruples:

q;1 B q,
9,8 9,494
18 R g,
9, B a,
948 R qg

95l B qq

19

20

Now <qlBln> = n so suppose n ¢ A, then

n 1
q,B1" } q,B1

> Bq41n

> quBln.—1

+
i Bn 1q4B,

+
which is final. But <B" 1an> = 0, whence,

bz, 4™ =0 = c,(n).

For the case when n ¢ A, then

n n
qlBl % q3B1

> Bq51

n+
which is final. Hence, <" 2q31> = 1 and

wZ;A(n) =1 = CA(n).

Therefore;, A is A-computable.

In view of Theorem 1.7, it is evident that computability and
partial computability are special cases of the more general notions,
A-computability and partial A-computability, respectively. Therefore,

only Turing machines involving A~computations will be considered from

now omn.

21

Additional properties of Turing machines

In as much as Turing machines can perform computations on
instantaneous descriptions, which involve ordered n-tuples, it is
conceivable that the output from one Turing machine may be used as
input for some other Turing machine. This notion leads to the
subsequent definitions. However, the following conventions will
first be adopted.

Final blanks in an instantaneous description will be omitted
except for the case of that blank, if any, preceded by a q; - On the

other hand, an initial blank will not be omitted. Thus, S 1152q 1 will

3 3

be written instead of S_,11S 1BB, but the expression BS 1q5B must

3 293 3

remain unchanged.

Definition 1.25. Let Z be a Turing machine and let 8(Z) denote

the largest integer such that qe(z) is a machine state of Z. Then for
each positive integer n, Z is said to be n-regular, provided no
quadruple of Z begins with qe(z) and for any n-tuple (ml,mz,...,mn),

A ———r————— - q -
whenever ResZ [ql(ml,mz,...mn)] is defined, it has the form

qe(z)(tl,tz,...,ts) for some positive integer s and suitable t,'s.

Here, of course, qe(Z)(tl’tZ""’ts) may contain additional
occurrences of B on the right but qG(Z) must be the leftmost symbol.

Definition 1.26. Let Z be a Turing machine and for each integer

n > 0, define z" to be the Turing machine obtained from Z by replacing
each machine state q; in Z by machine state 9pi®

From this definition it follows that ZO = Z.

Theorem 1.9. Let Z be a Turing machine, then there exists a

Turing machine Z* such that, for each integer n > 0, Z* is n-regular

and in fact

20

A - n
Resz* [ql(ml’mZ""’mn)] = qe(Z*)wZ;A(ml’mZ"'"mn)'

Proof: Let A, u denote the first two symbols S,, S

2, 3, . . .

which are not in the alphabet of Z and let Z, consist of the quadruples:

1

qlA R q, (print A on the left)

q3B L q, (move right to a double blank)

qAB W odg (print p on the right)
qgH L qq
951 L qq
qcB L qg
qSA R q (move left and find A).

Then with respect to Z19

a, = ql(ml’mZ""’mn) %X a5 Aq6(m1,m2,...,mn)u,

which is final.
Now 25 will be like Z except it will begin with machine state Qg

instead of machine state q;- Let k = S(ZS) and let Z_, be the quadruples

2

of Z5 together with the following quadruples, where q; may be any

. 5
machine state of Z7:

%3

q.x B Uri (erase))

B L

et Dop+i

q2k+iB A DUopai (move) left one square)

q2k+iA R q; (resume main computation)
q;u B SR (erase)

Dap+iB R Yyperi

q4k+iB u q4k+i (move , right one square)

QM L q9; (resume main computation).

This last set of quadruples allows for a computation of Z5 to

remain within the markers) and y.

A . :
Now should ResZ [ql(ml'mZ""’mn)] be defined and if

A
o= RESZ [ql(mlymz"",mn)]s

then with respect to 22

Aq6(m1,m2,...,mn)u S« « o > Aoy

which is final.

Moreover, if ResZA[ql(ml,mz,...,mn)] is undefined, then so is

A
ReSZZ [Aql(m]_’mz)"-smn)ll]'

Let t = 5k + 1 and let 23 consist of all quadruples of the form

9g=50 e

where q; is any machine state of 22, Sj is in the alphabet of 22 but

such that no quadruple of Z

2 starts with qiSj. This is possible,

elsewise, no instantaneous description would be final with respect

to 2 Now, if APquu is any instantaneous description which is final

2°

24

with respect to ZZ’ then

APq.LQu > qutQu (Z3)

which is final with respect to Z3.

Finally, let Z4 consist of the following quadruples, where S

denotes any symbol in the alphabet of Z other than 1 or B:

(find the left marker))

Us15 B 9y

B R

Qet1 Q41

1 Bgq

Qe+1 t+2

(move right looking for a 1)

Ter1H ® e+

BLgq

42 t+2

1R

42 943

(find the block of 1's)

Ueg* R qpqg

Q3B 1 qpyg

(add 1 to the block of 1's)

dppst R ey

TpasB T Ay

LIETLIR L PV

(add 1 and terminate).

Qg 1 dpys

Now Z4 will collect the 1's on the tape into a single block, add

an additional 1, erase everything else and terminate. Hence, taking

75}

N
*
]

Zlu ZZLJ Z3U ZZ&’

then

A
A D <Res. [q.(m. m....oem)]>¥1
Resz* [ql(ml,mz,...,mn)] = qt+51 Z | [) n

= n
qe(Z*)wZ;A(ml’mZ""’mn)

Since Z* is clearly n-regular, the theorem follows.

Theorem 1.10. For each n-regular Turing machine Z and each integer

k > 0, there exists a (k + n)-regular Turing machine Zk such that

whenever

Res A[

2 ql(ml,mz,...,mn)] = qe(Z)(tl’t2’°"’tr)’

it is also true that

A[()] = (£,k t.)
7 lag(ry,ry,ee,r,m,my,.ea,m)] = qe(zk) TsTyseneslatysto,enn,t).

Res
k

Furthermore, whenever ResZA[ql(ml,mz,...,mn)] is undefined, so

A
is ResZk [ql(rl,rz,...,rk,ml,mz,...,mn)].
Proof: Let A and p denote distinct symbols not in the alphabet of

Z and let Y1 consist of the following quadruples, where i runs through

all integers such that 1 < i < k¢

4l A

qIA R q, (replace the leftmost 1 by the marker))
q;l woq

qlLl L qi

qu R 9441 (replace 1 by u for 1 < i < k)

Now, with respect to Y

Byl ¥ Y

" R Yy

U+1B ¥ Qg

QeoH R Qqg

replace the k-t ock o s by s).
(1 he k-th block of 1's by u's)

1

ql(

where P

Let p = 6(Zk+2) and let Y

TisTyseee

r
is Au

,rk,ml,mz,...,mn) = SR quk+3(m1,m2,...,mn),

r2+1 rk+1

1Bu B .+ « + By

consist of the following quadruples,

k+2

2

where q; may be any machine state of 2]

q;m

B Lq

L qp+i

L qp+i

L qp+i
pti

92p+i

= q3p+i
A q3p+i

q4p+i

q5p+i

8 q5p+i

q6p+i

= q7p+i

L q6p+i

(interupt main computation)

(search for the marker \)

(move X left one square)

(resume main computation)

(encountering p, prepare to copy it)
(encountering B, prepare to copy it)

(encountering 1, prepare to resume main computation)

26

27

=

Qop+i¥ ¥ dgp+i

=

q6p+iB q8p+i (copy. U)

q7p+iu B q8p+i

B B (copy B)

q7p+i q8p+i

Agp+i* B yp4g

B R (repeat until a 1 is encountered).

Igp+i” © Tup+i

Thus, Y2 will move the first k blocks of 1's one square to the

+2 . . .
left whenever Zk tries to print over them. Hence, taking

Nere i G o) 4

3 1 2

then with respect to Y3

ql(rl,rz,...,rk,ml,mz,...,mn) -

+

Quay g4 (my,myyeee,m)

3

Qqu(tl’tzﬁ"’“ ’ts)

£ r2+1 rk+1
which is final, where Q is Ay "By B % s « Bp . Moreover, it

will be defined whenever ReSZA[ql(ml’mZ""’mn)] is defined. Elsewise,

there can be no A-computation of Y, beginning with the instantaneous

3

m).

description ql(rl,rz,...,rk,ml,mz,..., .

It remains to construct a Turing machine Z, which will compute

k

like Y3 but in addition, replace all occurrences of A and p by 1.

Let v = 9(Y3) and choose Zk to be Y3 together with the following

quadruples:

28

1L
qp qP

qpu B dyq1 (restore B)

qv+1B I qv+1
qV+1u 1 qV+1
Q1! by

qv+1A 1 9449 (restore each A and p by 1).

Since G(Zk) = v + 2, then with respect to Zk

ql(rl,rz,...,rk,ml,mz,...,mn) > . e . > qe(zk)(rl’rZ""’rs’tl’tZ""’ts)

which is final. Hence, the theorem is established.

Theorem 1.11. For each integer n > 0 and each integer k > O,

there exists a (k + n)-regular Turing machine Ck such that

A
ResCk [ql(rl,rz,...,rk,ml,mz,...,mn)]

= qe(ck) (mlamzao.oymnsrlyrzao. . ,rk,ml,mz,.. .,mn).

Theorem 1.12. Let n be a positive integer, then for each integer

k > 0 there exists a (k + n)-regular Turing machine Rk such that

A
Rest [ql(rl,rz,...,rk,ml,mz,...,mn)]

qe(Rk)(ml,mz,.--,mn,rl,rz,...,rk).

Construction of the Turing machines satisfying the conditions
of Theorems 1.11 and 1.12 is straight forward but quite long. There-
fore, these two theorems will be stated without proof.

Theorem 1.13. For each n-regular Turing machine Z, there exists

an n-regular Turing machine Z* such that whenever

29

S 2%
ResZ [ql(ml,mz,...,mn)] = qe(Z)(tl’tZ""’ts)

it is also true that

A
ResZ* [ql(ml,mz,...,mn)] = qe(Z*)(tl’tZ""’ts’ml’mZ""’mn)'

Furthermore, whenever Res A[ql(ml’mz""’mn)] is defined or undefined

z

. A . . :
so is Resz* [ql(ml,mz,...,mn)] defined or undefined, respectively.
Proof: By Theorem 1.10, there exists a 2n-regular Turing machine

Y such that

A
ResY [ql(ml,mz,,..,mn,ml,mz,...,mn)]

= qe(Y)(ml’mZ"'°’mn’t1’t2"°"ts)'
Using Theorem 1.11 and 1.12, taking

2% = CyU yale =1 Rne(co)—2+e(Y)’

then with respect to C0

ql(ml,mz,...,mn) N qe(CO)(ml’mZ""’mn’ml’mZ"°"mn)’

and with respect to Ye(CO)_1

i

qG(CO)(ml’mZ""’mn’ml’mZ"°"mn)

- qe(Ye(CO)—l)\ml,mz,...,mn,tl,tz,...,ts).

Finally, with respect to RDG(CO)-2+8(Y)

qe(Ye(CO)—l)(ml,mz,...,mn,tl,tz,...,ts)

> qe(z*)(tl’t2’°°"ts’ml’mZ""’mn)

30

which is final with respect to Z*. The second part of the theorem
follows immediately.

Theorem 1.14. Let Z Z, be Turing machines, then

o Bl L8 ST

for each integer n > 0 there exists an n-regular Turing machine Z*

such that

A
Resz* [ql(ml’mZ""’mn)]

= n n
qe(z*)(wzl;A(ml,mz,...,mn),...,wzk;A(ml,mz,...,mn)).

Proof: The proof will be by induction on k.
Basis: Suppose k = 1, then this reduces to nothing more than Theorem
ibo®c
Induction step: Suppose the assertion is true for k = j. Let the
Z

Turing machines Z Z be given and set

1 20 0t E]

t, = 9.t ()
; wzi;A My sMyseeesM)y

where 1 < i < j + 1.
By the induction hypothesis, there exists an n-regular Turing

machine Y1 such that

A
ResY [ql(ml,mz,...,mn)] =

1 (tl,t7,...,tj).

q
S(Yl) 2

Hence, by Theorem 1.13, there exists an n-regular Turing machine Y2

such that

A
ResY2 [ql(ml,mz,...,mn)] = qe(Yz)(tl’tZ"'°’Lj’ml’mZ""’mn)°

Moreover, by Theorem 1.9, there exists an n-regular Turing machine Y

3

such that

31

A ——
ResY3 [ql(ml’mZ"°"mn)] = qe(Y3)tk+1'

Finally, by Theorem 1.10, there exists an n-regular Turing machine YQ

such that

A g
ResYa [ql(tl,tz,...,tj,ml,mz,...,mn)] = qe(Ya)(tl’t2""’tj’tj+1)'

By taking

~ 8(Y.)-1
z* = Y, 7,020,

then the assertion is true for k = j + 1, hence, the theorem.

32

RECURSIVE FUNCTIONS

Composition and minimalization

Two operations, composition and minimalization, will now be
considered which afford a means for constructing a large class of
Turing computable functions. Moreover, by applying Theorems 1.9-
1.14, it will be possible to show that functions from this class
are computable or partially computable without having to appeal
directly to the definition of computability.

Let f and g be unary functions, then by composition of f with

g will be the function h, defined by

h(x) = f(g(x)),

where it is understood that the domain of h consists of those values
of x, in the domain of g, for which g(x) is in the domain of f.
This is made more general by the following definition.

Definition 2.1. Let f be an m-ary function and let

B1s Bos ¢ ¢ ¢ s B be m n-ary functions. Then the operation of

composition gives a new function h, defined by
h(xl,xz,...,xn)
= f(gl(xl’XZ"""Xn)’g2(xl’x2""’xn)’°°°’gm(xl’XZ"“”xn))'

It is understood, of course, that the domain of h is precisely

those n-tuples in the domain of each 85 such that the m-tuple

(gl(xl,xz,...,Xn),gz(xl,xz,...,xn),...,gm(xl,xz,...,xn)) is in the

domain of f.

33

Theorem 2.1. Let f be an n-ary function and 81s Bys + + + 5 B
m n-ary functions. Suppose these functions are partially A-comput-

able for some subset A of J. Then the function h, defined by

h(xl,xz,...,xn)'

= f(gl(xl’XZ"°°’Xn)’gZ(Xl’XZ""’Xn)""’gm(xl’XZ""’xn)) (1)

is partially A-computable.
Proof: Let Z be the Turing machine which partially A-computes
f and let Zi be the Turing machine which partially A-computes 8so

i=1,2,...,m. Therefore, f =

n . = s
wZ;A and for i = 1,2,...,m 8 b, A

i
Now by Theorem 1.14, there exists an n-regular Turing machine

Z* such that

A
Res, . [q4;(xy,%)50005%)]

= qe(z*)(gl(xl’xz""’Xn)’gZ(Xl’XZ""’Xn)”""gm(xl’XZ""’Xn))'

Let (xl,x "’Xn) be an n-tuple satisfying (1) and let

2’

*) —
2t = zxy z8(F9 1,

If oy = ql(xl’XZ"°"Xn)’ then with respect to Z'

a, = ql(xl’XZ""’Xn)

=2

®

> qe(z*)(gl(xl’x2’°'"Xn)’gZ(Xl’XZ""’xn)"'°’gm(xl’XZ""’xn))

where

34

<a> = f(gl(xl,xz,...,xn),gz(xl,xz,...,xn),...,gm(xl,xz,...,xn)).

Hence, if (x],x "Xn) gsatisfies (1), then Res A(al) is

2" 2!
defined, otherwise it is not defined. Thus, h is seen to be partially
A-computable.

If the functions f, 81> Bps + + + » B are A-computable, then

clearly h is A-computablie. Hence, the following corollary.

Corollary 2.1. The class of partially A-computable functions

and the class of A-computable functions are both closed under the
operation of composition.

Example 2.1. The function pu, defined by

u(x,y) = xy,

is computable.
It has been shown in previous examples that the functions §, p,

S and Uzz, defined by

6(x,y) = x =y
p(X’Y) = (X -+ 1)(y + 1)

S(x)

i

x + 1

2
U2 (X’Y) =Y

are all computable.

Let g be the function defined by

gC,y) = S(U,°(x,y))

U22(x,y) +1

=y + 1,

35

then by Corollary 2.1, g is computable.

Let h be the function defined by

h(x,y) = 6 (p(x,y),g(x,y))

O(X,y) = g(x,y)

(x+ Dy +1) = (y+1)

xy + x,

then by Corollary 2.1, h is computable.

Finally, let y be defined by

n(x,y) 8§ (h(x,y),x)

h(x,y) = x

(xy + x) = x
= xy.

Hence, by Corollary 2.1, u is computable.

Definition 2.2. Let f be an (nt+l)-ary total function. Then

the operation of minimalization gives a new function h, defined by

il 5
h(xl’XZ"°"Xn) mlny[f(y,xquzge..,xn; 0]

That is, for a given n-tuple (xl,x .,xn), h associates the least

gsee

value of y for which

f(y,xl,xz,...,xn) = 0.

Definition 2.3. 1In Definition 2.2, if h is a total function,

then f is called a regular function.

As in the case of composition, the operation of minimalization

allows for the construction of a large class of computable and

36

partially computable functions. This is characterized by the follow-
ing theorem.
Theorem 2.2. lLet f be an (n+l)-ary function that is total and

A-computable. Then the function h, defined by

h(x .,xn) = min f(y,xl,xz,...,xn) = 0],

1;X2"' y[
is partially A-computable. Moreover, if f is regular, then h is
A-computable.

Proof: A Turing machine will be constructed which successively

computes f(O,xl,x .,xn), f(l,xl,xz,...,xn), . « « until a zero

g3
is obtained.

Let R be the Turing machine consisting of the quadruples:

q;1 L q4
9,8 L q,

qu 1 q3.

Then with respect to R

X >
ql(xl’XZ’...,xn) e e qj(o’xl’XZ’..'gxn)s

which is final.
By Theorems 1.9 and 1.13, there exists an (n+l)-regular Turing

machine S such that

A
ReSS [ql(y’x1:X29~°',Xn)] w qe(s)(f(y9xlsx23'°"Xn)QY9x1)X2a"-axn))‘

Therefore, if N = 6(52), then with respect to 82

q3(y,x1,x2,...,xn) SN e »—qN(f(y,xl,xz,...,xn),y,xl,xz,...,xn)),

37

which is final.
Let T be the Turing machine consisting of the following quad-

ruples:

Nt B ay
B Roayy,y
SITE R L

It B R Gy

Now if f(y,xl,x ,xn) = k, where k > 0, then with respect to T

gree

- k
qN(f(y,xl,xz,...,xn),y,xl.xz,...,xn) qul B(y,xl,xz,...,xn)

¥

k
qN+21 B(Y9X1’X29- . -’Xn)a

which is final. However, should f(y’XI’XZ""’Xn) = 0, then with

respect to T

qN(f(y’xl’XZ""’Xn)’y’xl’XZ"'°’Xn) quB(y,xl,Xz,...,xn)

- . .

He qN+4(y’Xl,X2’...’Xn)‘

Let Q be the Turing machine consisting of the quadruples:

Iyl B dy43
In42B 1 95

Ine3® R dyyp-

Then with respect to Q

k
qN+21 B(y,xl,xz,...,xn) Y q3(y+1,x1,x2,...,xn).

38
Let Uim be the m—-ary computable function, defined by
m
Ui (Xl’XZ""’Xm) = X

where 1 < i < m. Then by Theorem 1.9, there exists an (n+l)-reqular

Turing machine Y such that

A T N1 o n+1
ReoY [ql(y,xl,xz,...,xn)] = qe(Y)U1 (y,xl,xz,...,xn)

y+1
qe(Y)l .

Finally, let W consist of all the quadruples of Y together with

the quadruple

vyt B gy

N+3

+ +
Then with respect to W , letting K = e(wN .

) s

Y
qN+A(y’X1’X2""’Xn) > e e > qKBl ?
Let

z=RUS2UTuquW‘3

and suppose (xl,x ,xn) is arbitrary but fixed. Let

gseee

for i = 1,2,... and suppose T # 0, r, #0, . « «, ro_1 £ 0, r, = 0.

Then with respect to Z)

ql(xl,xz,...,xn)

=¥ . . .

> q3(0,x1,x2,...,xn) (using R)

39

. 2
> qN(rO’O’Xl’XZ""’Xn) (using S7)
= . . .
> qN+2(r0—1,O,x1,x2,...,xn) (using T)
>
> q3(1,xl,x2,...,xn) (using Q)
>
>
> q3(k,x1,x2,...,xn)

* qelr s Kexs o X X) (usin Sz)
N k, S 19-2"") n g
= quB(k,Xl,xz,...,xn)
.+ . X &
> qN+4(k’X1’X2"°"Xn) (using T)
>
> qKBlk ' (using WN+3).

Therefore,

n k
wZ;A(xl,xz,...,xn) <qKB1 >

=k

miny[f(y,xl,xz,...,xn) = 0]

h(xl,xz,...,xn).

If r, # 0 for all i, i 1,2,... , then Z will never be in

. P 3 n
machine state A4s and will compute indefinitely. Thus, both wZ;A
and h would be undefined at (Xl’XZ""’Xn)’ hence, h is partially

A-computable. If f is a regular function, the A-computablity of h

is obvious.

40

Example 2.2. The function f, defined by
f(x) = [vx],

is computable, where [t] means the largest integer < t.

Let x be an arbitrary element of J, then to say that y is the
largest integer i_/; is equivalent to saying y is the largest integer
such that y2 < x. From this it follows that y is the minimum value
for which (y + 1)2 > x, or equivalently that y is the minimum value
such that (y + 1)2 = x is not zero. But, this is true if and only

if y is the minimum value such that
. 2 .
1= ((y +1)" = x) =0.
Therefore,
i . . 2 5
(Vx] = mlny[l S ((y+1)° ~x) =0],
which by Theorem 2.2 is computable since
. 2 . 2 2
1=-((y+1) =-x) = 6(1,6(u(S(U2 (X,y)),S(U2 (x,¥))),%))
is clearly total and by Corollary 2.1, computable.

Special classes of functions

Using the operations of composition and minimalization on an
initial set of partially A-computable and A-computable functions,
a certain class of Turing computable functions, which are of partic-
ular interest, can be obtained. This is characterized by the follow-
ing definitions and theorems.

Definition 2.4. A function f is said to be A-partial recursive

or partial recursive in A, provided it can be obtained from a finite

41

number of applications of composition or minimalization on functions

beginning with functions from the following 1list:

(1) CA(x), the characteristic function of the set A
(2) S(x) =x+1

n
(3) Ui (xl’XZ""’Xn) =% 1 <1 <R

(4) olx,y) = x+y

(5) &8(x,y) X =y

(6) u(x,y) = xy.

Theorem 2.3. The functions S, Uin, o, § and p, in Definition 2.4,

are computable; hence, partially computable, partially A-computable
and A-computable.

Proof: Examples 1.1, 1.3, 1.2, 1.4 and 2.1 established the
computability of these functions, respectively. The remainder of the
assertion follows from Theorem 1.5.

Theorem 2.4. The characteristic function C¢ of the empty set ¢,
is computable; hence, partially computable, partially A-computable)
and A-computable.

Proof: Definition 1.24 and Theorem 1.8 imply C¢ is ¢—computable.
Whence, the assertion follows from Theorems 1.7 and 1.5.

Definition 2.5. A function is said to be partial recursive,

provided it is ¢-partial recursive.

Definition 2.6. A function is said to be A-recursive or

recursive in A, provided it can be obtained from a finite number of

applications of composition or minimalization on regular functions

beginning with functions from the list of Definition 2.4.

42

Theorem 2.5. An A-recursive function is total and A-partial
recursive.

Proof: Since all the functions listed in Definition 2.4 are
total functions, this follows from definition.

Although no attempt will be made to establish the fact, the
converse of Theorem 2.5 is also true. Since this is the case, the
notion of A-partial recursive functions might seem artificial.
However, they are considered for their relatidén to computability
as shown by the following theorem.

Theorem 2.6. Let f be a function, then

(1) If f is A-partial recursive, then it is partially A-comput-
able.

(2) 1If f is partial recursive, then it is partially computable.

(3) If f is A-recursive, then it is A-computable.

(4) 1If f is recursive, then it is computable.

Proof: This follows from Theorems 2.1, 2.2, 2.3, 2.4 and
definition.

Below is an example of a recursive function.

Example 2.3. The function f, defined by
f(x,y) = [x/yl,

is recursive, where [x/y] = the greatest integer <,x/y if y # 0
and [x/y] = 0 if y = 0. It is understood that x/y is a rational
number.

Let

A(x) = §(1,x%)

=1 - x,

43

That is,
A(0) =1,
A(x) =0 1if x> 0.
Thus,
[x/y] = minz[y =0 or y(z + 1).> x]
= minz[y =0 or y(z+ 1) - x # 0]
= minz[y =0 or A(y(z + 1) =~ x) = 0]
= minz[y'k(é(u(y,s(z)),x)) = 0]

= min_[u(y,A(8(u(y,S(2)),%))) = 0].

Hence, f 1s recursive. Moreover, by Theorem 2.6, f 1s computable.

In view of Theorem 2.6, if f is a recursive function, then there
exists an algorithm in the form of a Turing machine for computing
the functional values of f. Furthermore, the converse of this also

holds. Hence, the notions of computable and recursive functions

are equivalent.

44

LITERATURE CITED

Davis, M. 1958. Computability and Unsolvability. McGraw-Hill Book
Company, Inc. New York.

	Decision Problems
	Recommended Citation

	tmp.1504204389.pdf.47rbw

