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T, INTKCLUCTION

The Lebesgue integral is a generalization of the
Riemann integral which extends the collection of functions
which are integrable.

Lebesgue integration differs from Riemann integration
in the way the approximations to the integral are taken.
Riemann approximations use step functions which have a
constant value on any given interval of the domain corres-
ponding to some partition. Lebesgue approximations use
what are called simple functions which, 1like the step
functions, take on only a finite number of values. However,
these values are not necessarily taken on by the function
on intervals of the domain, but rather on arbitrary subsets
of the domain, The integration of simple functions under
the most general circumstances possible necessitates a
generalization of our notion of length of a set when the
set is more complicated than a simple interval., We define
the Iebesgue measure "m" of a set E€ ‘M, where M| is
some collection of sets of real numbers, to be a certain
set function which assigns to E a nonnegative extended
rcal number "mE",

This report consists of the solutions of exercises
found in "Real Analysis", by H. L. Royden. guotations

from the book are all accompanied by the title "Definition"

or "Theorem". The excrcises are all entitled "Froposition"

and all proofs in this report are my own, All theorems




are guoted without proof. The theorems and definitions occur
as they are needed throughout the paper, but some of the
most basic definitions and theorems are lumped together in

section TII.

It is assumed in this paper that the reader is familiar

with the basic concepts of advanced calculus and set theory.




FASIC DLFINITIONG awd THLORALMNS

Lo e

. finition: Tf M 1is any collection cf scis of reoa
and € M , a function "m" whickh
nonnegative, extended real numper "n%’ to Lthe set ©t is
called a set function.

2. Tefinition: The l.ebesgue cuter

of real numbers is defined by m*. 'z by

every aM, &N in 91.
2Very 7ﬂ : i in ?ﬂ

4, Tiefinition: & set ¥ is =aid to be lebes

. . . . o o~
if for each set we have m*4 = m*(4 N + m*{LNE).
m all measurable sets is a

.~ set function m whose domain is the collec-

ﬁn of all measurable sets 1s said to be a countably

if each sequence <:En> of disjoint

sets in qn have m(UE_) = mk

n I

o algeovra ccntalning the open sets,
8. Definition: The family of all countable unions of closed

sets is denoted by Jg .

AN




9. Definition:; The family of all counteble intersections
ol open sets is denoted by éf;.

-

10. Definition: The characteristic function K., of a set E

is defined by An(x) = 1 if x€k, and Ap(x) = O if x 4T,

vi
. Definition: The function P(x) =2 aNp (x) is called
7 1T

a simple function if the sets E. are measurable and
=L

v v = b i ]
Lif‘“j ¢ for i # j, and the values {él,ag....,agg are

distinct and non zero.




MLsbURL THECRY

1. Froposition: Let m be a countably additive measure on a
o algebra 9N. Then if £,B € 9N with ACRB, it follows
that mi € mE.

roof; If ACE, then B = (B-4)UA.

mF = m(F-4) + mi, and

m(E-2)2 0

/.

Therefore mi 2 mi,

2. Froposition: let m be a countably additive measure on a

equence <L, > € T ,

(6]

o algebra M. Then lor any
m( U = £ S mh .

YA O £ _ T -(!TCJ'\'“
Froof: Let Fy N ~(UE )

i<k ™
I g b K ) o . o

ljwn U n and 'ln 1 1 for 1 ,{ J e
m( ) F*) = Y « _ "))
m( UL, ) UELY =Zmiy =Fm(E, - (UFR;)) , but
(- - ikn
\ ,‘_‘,n - ( .LJ \n ) /‘ C _En B

1<n ’
"herefore, m(L. - (U & < mh.

H i<nn n

which implies m(u}?“.n) £ X mI:‘n

This property is called countable subadditivity.

4. Troposition: L.et m be defined as above. If there is a

set /€T such that mi<e, then md = C.

i

Froof: 4 = (/E-¢>U¢) S0

m(L - ®) + m¢ . But
m(t - ¢), which implies
m¢ C.

4., Theorem: If {Ah3 is countatle, m*(Uz‘;n)s Z m*hA,.




5. Theorem: If is countable m*A = O.
6, Troposition: Let A be the set c¢f rationals between O
and 1, and let £ I % be a finite ccllection of cpen intervals

Then 2_ 1(In)2 1,

troof: [0,1]= 2C UT

n
1 =n*(0,1] - wi g e (UI ¢ Tl =% 1T
:Z"]“n\'

Given any and any €>0, there an
set ACE and 3 a
€ Js CG and m*
roof o, let and are dcne.,
< countable collection of

open intervals {zn3 such that AC gin} and
2 1( < m + €, for any e»0.

=UET 3.
Then m*B =3 l([n , which implies

< 'm* + € o

Now let € = 1/n
Then to each n there correspgonds a Ln = Uf Img
that Zl(lm) < m* 1

(Bn> i a countable sequence, and since each Bn is
countable, {Bn_i is countable.

Let G n{BHB,

Then G € fs and 4CG.

G = (G-A)UaA

m*G = m*(G-4A) + m*A

Suppose m*(G=A)> 0 , Then thereis a d> O such that




~J

But there exists an integer n such that

m*(Bn - A) «1l/ncgd .

and since G =N §B. 3 , m*(G - L) g ax{F, - < l/n<¢ @
Ll di
which contradicts our assumption thet w* (G - ¢>2l8) -

Therefore n*(G - £) = O.
It follows thal m*G = m*!
. Troposition: m* is translation invariant.

Iroof: For any oven intervel

L( n\ =
[n FoxX o= (an X, b X, and
oA r , o , R
.'L(Tn +x) = (L)n LX) - (an b K = bl’l - an ( F>
lso, if 1CQ VI, then (. x)C:[J(Tn .
Therefore, > 1{T > = Z1(TI_+ x) ]
U TRt (T e

Then m*/ infZ1(1_) ¢ + K)o,
cu1, YT +x)

that i1s, »* .5 & lower bound for T 1(7, )
(+x B U L+
which impiies m*i €m*{( 4
reversing the roles of and .. +x in the above

arguement we obtain m*{: + x)¢m*(.) by the same

reasoning., But then,

9. I'rovosition: If m*s: = O, then m*(AUE) = m*B.
Froof: m*(4 U m*A + m*L.
RC ./ UB, which implies m*B<&m*(2UR).
Therefore, m*(4L( = mEE .

~1lthough the l.ebesgue outer measure m* is defined

for all sets it is not countably additive as will be




demonstrated shortly. However it is countably additive when

restricted to a class called measurable sets.

10. Theorem: If m*E = O, then E is measurable.
Theorem: If El and E2 are measurable, so is E1L1E2.

12. Theorem: The set of measurable sets is a @ algebra.

13, Theorem: Let A be any set, and El"‘”"En a finite

sequence of disjoint measurable sets. Then,

m* (2 NLU E,] Z w(ANE).

l4. Theorem: The interval (a,oc0) is measurable.

15. Theorem: Every Borel set is measurable.

16. Froposition: If E is measurable, then E + y is measur-

Proof:l.et A be any set. Then,

m*(L + y) = m*A = m*(ANE) + m*(ANT)

=m*((ANE) +y) + m*((ANTE) + y)

m*(& + yNE + y) m* ( yf]% + y)

= (t +y L+y)+m(h+y BF7)

which implies that B + y is measurable,
17, Tropecsition: If El and Lg are measurable, then
m(E,U E5) + m(E,MNE,) = mE; + mE,.

roof: m(LlLlhg) = m(ElU.E2f1E1) + m(Elklng\El)

mE; + m(E;NE;). And
nE, = m(E,N E) + m(ExA E)). Then adding, we obtain

- T = (F 2 Y ™ 7
I ‘,t <+ TP ‘P - m\ ,l U }.? ‘/ -4- m( ‘g”l n J‘ N\

S E e

Now we are in a position to define the Lebesgue

measure mi to be the outer measure m*E, where E € QY[




(where ™M is the family of measurable gets).
18. Theorem: m(L}Ei) = E:mEi when <E€> is a sequence
of pairwise disjoint, measurable sevs.

Now we will construct a nonmeasurable set., prara-
phrasing material in Royden.

Let x,y € [0,1]

o
Let x =

y =x+y if x + y<1.

et x 2y =x+y -1if x + y=2 1.

Let (~) be an equivalence relation such that for
any X,ye;[O,lj, X~y 1iff x and y differ by a rational
number. (~) splits [0,1) into disjcint eguivalence
classes., By the axiom of choice there is a set I' with

one element from each eguivalance class.,

Let <ri> be a sequence of rational numbers contained

3t [0,1) such that each rational is exactly one T
o
Let P. = P

1

since svery element in T differs by an irrational
number, Eif\fj = ®» for i # J.

If x¢ [0,1), x~vy for some y€F,

X -y =r; for some i, and

X = 5y 1. e UL_L

Therefore, [0,1)C LJPj.

Now there is a theorem that states that m(E + y) = mE
for a measurable set E and some y¢& [C,1).

Then F. 1s measurable if P is, and will have the same
measure. But then , 1 m0,1) =m(LJ}i) = Z:mPi = 2. mF.

If mF # O, then mI' = oo . This contradiction shows
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that P cannot be measurable for any measure m such
that m[0,1)< 00,

19, Froposition: If E is measurable and ECPF, Then mT = C.

Froof: Let E;, = E 2 r, , for r.€ <:Pj> as defined
above.

Then mEﬁ = mE.
i} =
E.CUP; = [0,1)

m{ U Ei) ZmEi

ZuwE m[0,1) =1
Now if mk O , nE =g which is a contradiction.
Therefore, mE = O,
20, Proposition: It is possible that m*(L}Ei)< Z’m*Ei for
a disjoint sequence <Ei>.
Froof: Let Ei = Pi where Pi is defined above.
Then U ¥, = [0,1)
1 = m*[0,1) m*(k}Pi} £ Zn*P, = Zm*P = 0O, since
2 n*P = 0 is a contradiction.
Therefore, m*(UPi) < Zm*}i.
21, Definition: A function f is said to be lLebesgue
measurable if its domain is measurable and the set
{X: f(x)>cx§ is measurable for each real numve. o¢ .
22, Theorem: The set §x: f(x,>x% in definition 21 may
be replaced by §x: f(x)zch ; gx: f(x)<:0r3, or
fx: f(x)¢er 8.

2%, Theorem: Let ¢ be a constant and f and g two measur-
able real valued functions defined on the same domain.
Then the functions f + ¢, ¢cf, f + g, and fg, are measurable.

24. Theorem: Let <fﬁ> be a sequence of measurable functions




with the same domain of definition. Then supgf},.n.,F .

inf{fJ’...,fng, suUp fn‘ inf fn' lim fn‘ L im fﬁ, ra all
n el

measurable.

25. Theorem: If f is measurable and f £ &.2. ainnsy
everywhere), then g is measurable.

26. Proposition: Tet DI be a dense set of real numbers that
is, a set of real numbers sucn that every interval conteains
an ¢lement of D. Let f te an extended real valued function
on such thzst §x: f(x)»>e? is measurable for each e €

Then f is measurable.

Proof: lor every r€ R, there is an incrzasing sequence
<oc; > in D such that <°(j> - r.

ivery set fx: f(x})c{ig is measurable

Then 11l X F?r“>OQ g = {x: f(x)>r} neasur-

im0

27. tropositicn: (1) Xinn = XAp

PR o}

) (2\1 \ R = X + X";; -
Proof: (1) x€EANE & %€ and e E.

X¢ NE & x¢h or x €7 or both.

Therefore, Xﬁf]B = X, A= -

(2) x€E LV

ta

&> (a) X€ £ or X€B or (b) both.
\ —

(o) Ay yr = %y * ng = X Xp-

But in case (a), X,A~ = O. Therefore,

Arus T At X - X s

(3) x€ <=2 X¢}L

Therefore, Xr = 1 - %,




(4

N
3

3. Froposition: The sum and product of simpie functions are

Troof: Let § = ZO(‘)\ afd @ = 3.8

ham= B0 W 2B e

: i
T, - (B T Z B1/(a - Us)
Z.Z. O<i /8 X N C

U ) for i = 1l,...,K

AR 1R(@); Il ly...,% and J 1R e o gl
; @ J runs consecutively for each 1.
S. o< . for i = 1,...5 N,

) A, for i = l,...,M.
2 oc., - for = 1,.., ané | 1%
~e.o1 where J runs consecutively for each i.

l 6 =T 8 poere i = dy. o .~

—

608 - Z e BX, A igl, j¢U and if
i i ]
el T ) = ) whe
ince N . a Kﬂ By ) d» hen any one
cf the subscripts i or J is different from kx or 1, and
1 A3, kK A 1.

£9. TFropoeiticn: Let and I be measurable sets and f a

furiction with domain Dy £. Then f is measurable iff its

restrictions tco and are measurable.
Proof': f| yr LS measurable then

NfEx: £(x)>oc¢ , f‘ UEg =€X: f<X>>a(’ f‘DB
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is measurable since the intersection of two measurable

sets 1s measuraole,
Similarly EN {x: f(x)>ex leU .3
{x: £(x)> o, £ ﬂg is measurable.
If f|, and f|; are measurable, then
{X: f(x)>o, le%U {X: f{x)>oc, fl};?
= {x: fix)>e, f‘DUE}} is meesurable.
420. - roposition: Tet f be a function with measurable
domain D. Show that f is measurable iff the function
f(x) for x€ED and g(x) O for X¢D is measursble.
troof: If f is measurable, the sets
{X: g(x)>9(§ EX: f(x))&} for er»o0 are measur-
able, and the sets {f g(x)>o¢? = $x: f(x)> x3 U D
for X< 0O are meacurable. This implies that g is
measurable.
f g is measurable, the sets {X: f(x)>0(} = g}:: g(x)>0(3
for ¢2 0 are measurable, and the sets
{x: f(x)>o<3 = {X: g(x)>°f3 N D for o¢cL0 are
measurable. Then f is measurable,
31. Froposition: I.et f be a measurable function on [a,b]
which takes the values %00 only on a set of measure zero.,
Then given € >0, there is an M such that |f| ¢ M except
cn a sct of measure less than € /3.
Proof: Surpose false. Then there is an €>0 such that
for every M» 0, mfx: |T(x)| > M } 2 €/3.
;’snd'mgm )f(x)' oo} =mlﬂg] | £(x)| > M} 2 €/3 £ 0

whiiehlty il spfad clonitmadal e titoms,




32. Froposition: Let f be a measurable functicn on {a,b!.

Given €>0 and M, there is a simple function § such that

| £(x

— ¢(Xﬂ < € except where \f(x)L; M. If mg f ¢M, then

we may take ¢ such that me< § € M.

5%,
is a
on a

take

Proof: If € 22M, let @(x) = 0 for all x such that

x€ [a,b] - {x:\f(x)\z M 3.

If e <2M, let N = [2M/e)] + 1.

Let ¢(x) = (ne - M) if (ne - M) € £(x) < ((n+l)e - M)
for any integer n such that O ¢ n <& N and when
|£(x)] <

Then \f(x) = @(x))< €.

" _ix; ¢(x) = ne - M3 .

Then ¢ z (ne - M)X,

n=0 -n
Tf me<f<€M, let ¥ = (M - m)/e)] + 1.

Let A

Then we use m instead cf M in the above discussions.

“roposition: Given a simple function ¢ on [a,b], there

step function g on [a,b] such that g(x) = ¢(X) except

set of measure less than &/%. If m¢ ¢ €M, then we can

g so that mg& g < M,

Froof: Let {al,.,,ﬁHgbe the set of values of §.

Let &, = §x: P(x) = a 3 -

Then L)Ak = ML

For every € >0 there exists UOk 5 ) Ak of disjoint,

izl "’

oren i * ) = (m-1)

T intervals, and m (}é%k,i Ak) < €/6(m-1),
finite subcover can be picked such that a € Ok i

3

for some O r
k,1

Let ay be the left end roint and bl the right one.

14




Pick the next open intc-val cuch that 25 and b2 are thea

end points with 32<b2 and b2 is farther to the right

than sny other interval with 326(‘&1"31)' Tick the

succeeding intervals the same way. This process nust

end with some interval (_am,bm‘, since a finite number

of intervals cover [a,b}. Tt must be that be(am.bm,‘

s3ince 1f b b would not be in the cover.

This procedure gives us 81< 85< .08 and

b1< b2< ..... SO,

Let g(x) = a, if XE(a by ) C O 2 for any i, and

(a _1D94 1)f'\(a ) and X¢(a.,bi)ﬂ(ai+l,bi+l).
Y = 0 if XE(a1 l’ )ﬂ(a bi) or

:»:E(a. >ﬂ<al+l’ 1+l)

Let g(x)

Tl gt VoL, 1
{(}g’ok’ k)u<g<>L,i-nL>? ¢ mr g‘on s =H )
’-L&J)E\Hi—ﬁﬁ{} < €/6(m-1) + €/6(mn-1) = €/3(m-1).

In particular, if (a 510k jCsz'Ok,.’ and

(ewl, 1>CUOV . . then v

m= N o )f\(al 1205177 € m*”}{,.ok,ﬂn(g,ou.j

2 5/5(m~l) for any i,
m~| -1\

m * ) 1T < ~-1) = €/24
Then m [glﬂai’bﬁn<ai+l’bj,+l)3“‘ E €/3(m-1) /8
Then m*fx: g(x) = 03< €3,
If m <¢~ M, then in the above definition fecr g, let
g(x) m whenever the definition would have set
g(x) = 0 and we have m£g £M.

34, Proposition:Given a step function g on [a,b], there

a continuous function h such that g(x) = h(x) except on
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a set of measure less thsn €/3. If m< g<M, then we may
take h so that m< h €M,
Proof: let ag = XO<:xl<».... 4xn_l< X, = b be the
partition corresponding to g.
! ’ N Id
Then let S =1} E(Xj- E/2(n—l,,xi+ €/2(n-1) z -
A=t -
{X.: %x. 1is an isolated point}.
i i
€” can be made small enough that all elements of S
Nn-|
are disjoint. Then m*3 :Efnﬂ(xi~ 5/2(n—1),x{+67?(n—1))
4= q
N} 7 "
2 €/(n-1) € < €/3.
A=\
Let h(x) = g(x) for x €la,b] - S.

Tet h(xi—é?VE(n—l))

g(xi— €/2(n-1)).

Let h(x;+ €/2(n-1)) = g(x;+ €/2(n-1)).

Tet h(x) = g(xi- ¢'/2(n-1)) +[[g(xi+ €/2(n-1)) -

g(%;- €72(n-1))1/( €7/2(n-1))1[x - (x;- €/2(n-1))1.
Then h 1s continuos except on a set = Exi: X5 is an
isolated point} which has measure less than €&/3%.

If mg¢gs<sM, then m¢h £,

We can conclude from propositions 31, 32, 3%, and 34
that for a given measurable function f, defined on
[a,bl, which takes on the values * @ on a set of
measure zero, then for all €> 0, there is a M2 O such
that lf(x)‘(Wl except on a set of measure <€ /%, And
there is a simple function @ such that \f(x)—@(x)\< €
except where lf(x)l; M, which is a set of measure less
than €/3, There is a step function g(x) = ¢(X) except

on a set o measure less than €/% . Now

| £(0)-g(x)] = [ (£GO-0(x)) + (P(x)-g(x)) ]|




<) f( ~0(x)\ lo(x)-g(x)| ¢ € ¢ = €, excert on a
set of measure less than €/3% +&/% = 2¢/3 < €,

Also, there exists a continuous function h such that
h(x) = g(x) except on a set of measure less than €/3.
Then, |f(x)-h(x)|] = Jf(x)-g(x) + g{x)-h(x)|

€ | (x)-g(x)| + |&e(x)-h(x)| €« €+ 0 = €, except on a
set of measure less than 2€& /3 + E/B = €,

Now since we can select Q such that mé(t)SM whenever
mg¢f €M, and we can find a g such that m<€ g€ M whenever
m<Q €M, and we can find an h such that m¢h ¢
whenever m £ g £ we have by transitivity, mggg

and m<€ h €Y whenever m<€ f g¢M,

We can sum up much of what we have said by stating
ILittlewood's Three Frinciples.

(1 Every measurable set is nearly a. finlite union of
intervals.

(2) Every measurable function is nearly continuous.

(3) Zvery convergent secuence of measurable functions
is nearly uniformly convergent.

To illustrate the third principle we give the follow-
ing theorem,
55. Theorem: Let E be a measurable set of finite measure,
and <fﬁ> a seguence of measurable real valued functions
such that for each x in E, we have fn(x) —f(x). Then,
given € > 0 and 4> 0, there is a measurable set ACE with

mi<d and an integer N such that for all x ¢ A and all




WV
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IV. LEBEGCUE INTEGRATIOR

o~ .

The l.ebesgue integral is a generalization cf ths
Riemann integral in that every Riemann integreble funcition
is Lebesgue integrable, but not converszly, and for such a
function the Riemann and Lebesgue integrals are enuval. For

this reason we recall the definition of the Wiemann integral.

a < B o A 3 b

Let m. = inf f(x) for x, <& X< X,.

over all vossible subdivisions of [a,b].
if R) f(x) dx = WS.F(X> ¢x, we say that f 1s Rieman
(=N
integrable, and we define the common value to be “5 f(x) dx.
2. Froposition: If i (x) = O when x is irrational and
. : , b, . .
when X raticnal. thex Si\x‘ dz b - &

a,
b,
and Qj—iax, éx =0

T e
5

and

3
Q
(D)
o)
)

-

L
(o9}
&
o
Q.
e
<}
v
c
S
=
i}
n
S
T
4y
Zay
>
—

]
[




5. Proposition: Construct a sequence <fn> of nonnegative
Riemann integrable functions such that(fﬁ?increases mono-
tonically to f.
Let <ri>°:. be a sequence of all rational numbers in
i a B,

Let fn(x) O for all x in [a,b]- {fl,r2,...,rn3.

Let fn(x) 1l for all x in {rl’PE""’rn3°

Then fn is Riemann integrable for all n,

fn(x) <$f (x), and 1lim fn(x) = f(x).

n+1l

T

Now lim[ inf Z:(Xi - Xi_l) sup fn(%) 1 =0
g e

# j:f(x) dx = b - a, which implies that the limiting
process cannot be interchanged with the process of
integration, This demcnstrates some of the difficulties
with the Riemann integral.

4, Definition: The function ¢(X) = éiaiXE.<X> is called

a simple function if the sets are meastrable, Eifiﬂj = ¢,

and the set of values {ai,ag,.,.ﬁa % are distinct and non-

5. Lefinition: We define the Lebesgue integral of a simpie

"

function ¢ by, 5¢(X> dx = Z:ajm.].

6. Theorem: Let ¢ T anE ., with Eir]Ej = ¢ for i # j.
Jj -1

bSuppose each set Ej is a measurable set of finite measure,
Then j(T p a;ml, .
7. Theorem: Let ¢ and Y be simple functions which vanish

outside a set of finite measure. Then j-(a@ + by ) = af¢ +

bfy.
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l Z’w:\ : S@ =2 a.m, 50 the restriction that

. function f. on & measurable

lLebespgue integrable if inf Sﬁpr supj'm¢ where
L
Y2F e £

® and ¥ are simple functions.

1n;£ﬂ\y m&;;f
nec

function on
a measurable set E with mi, finite, we define the l.ebesgue
by j f(x) dx = inf_gf\q/(x) dx for
T
1C. Trheorenr: let f be a bounded Tunction defined on [a.,bl.
If £ is Riemann integrable on {&,b], then it is measurable
b b;'/v\
< \ay)
Q a

Lt1. Theorem: I [ and g are bounded, measurable functions

te then:

N
“
IN
S

(3a) | fr | <z

€E, then Amg ¢ {..f £ BmE .

N

disjeint measurable sets of finite

measure, then [, of =7 £ +] ¢

20
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12, Theorem: Let <fn> be a sequence of measurable functions
defined on a set of finite measure, and suppose that there
is a real number M such that [fn(le e M for all n ahd ald
x. If £(x) = lim f_(x) for each x in E, then [ f = lim{ .f
1%. Definition: TLet f be a real valued function defined on
[a,b]. Then the function h(y) = inf sup f(x) is called the

S720 lx—yl LY
upper envelope of f.

14, Froposition: T.et f be & bounded function on [a,b] and
let h be the upper envelope of f. Then Rj:f = jh.
Froof: If($3i?is a step function, then Qz h except
for a finite number of points, since it may happen
that if a = x5<¢ %< ... <%, = Db is a partition of (a,b],
f<Xi><'h(Xi)' If @(Xi) = f(Xi), then we have
h(xi) > ¢(Xi>. However, h(x) > ¢(x) only if x = Xy
where Xy is a pcint in the partition. Therefore the

nurber of such points is finite. Then, since any step

. : . . te. . b _ b
function is simple, ¥?5 f ¢ inf fkys.lnf v = Lah.
* a
Yz £ Y2 h

Now there is a decreasing seqguence <¢n> of ster
functions such that ¢n Lh' anc @n) h for all n.
= —b!‘ B =
Then ﬂjgl < _L\¢n for ajl Al -
Therefore, R§"f ¢ lim {°¢_ - [ h, which implies
a @ 'N A

fbh = Rﬁbf.

R R
15, Troposition: bounded function f on [a,b] is Riemann
integrable iff the set of points at which f is discontinuous

has measure zero.

Froof: T.et K be the lower envelope of f, which is
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defined by reversing the roles of inf and sup in
definition 13.
Then R‘i? = K:K by similar reasoning as in proposition
14, F
If f is a bounded, Riemann integrable function,

o b b b
§f=LK=Lf=Lh.
Now h has a finite number of points ml(n) such that
h(Xi) » @n(xi) > f(Xi> for some step function @n.
Similarly K(Xi)c‘Vn(Xi) < f(xi) for some step function
Y

This implies that the total number of discontinuities

.- finite number, mg(n), of times.

75 ml(n) # mg(n) F(n), where n corresponds to the
step functions ¢n and Y .

Now X(n) is countable, therefore m*[N(n)] = O.

If f is discontinuous only on a set of measure zero,
h = k except on a set of measure.

Let £ = [a,b] and let £ be the set of points of
discontinuity of f.

m _ - =3 —

Then §ch = o h+ fh=Jo n= (. x=f. x+/[x
i

T b b b
Therefore, Rg i = gh,= SK = Rg f , which implies
(£

that f is Riemann integrable.
lo. Definition: If f is a nonnegative measurable function

defined on a measurable set L, we define fEf = sup.th,
F_

h<
where h is a bounded function such that m{x: h(x) #Z 03 is

finite.




17, Theorem: If <i£} is a seqguence of ncnnegative measur-
able functions and fn(x) — f(x) a.e. on a set F, then

fof & B fey
18. Theorem: Let <fﬁ> be an increasing seguence of non-
negative measurable functions, and let f = lim fn. Then
e - e
19, Theorem: Let f be a nonnegative function which 1is
integrable over a set E. Then given €0, there is a §>0
such that for every set AC with mi < § , we have 5 A E Y
20. froposition: Let f be a nonnegative, measurable
function. Then gf = O implies that { = O a.e.

Froof: Assume it is wot true that f = 0 a.e..

Then mfx: £(x)> 03 > O.

Now {k: f(x)>()3=:Ljfu f(x) > l/n? ,

So for some n, m{x:aé(x)>-l/n§>(h

Let M = gx: f(x) > 1/n}‘ .

Let mM = v so that v > O,

Let Y (x) 1 €™ and W(x) = 0 if x¢ M.
Then f@’ S e
and since Ys&f,

Sty Jy>o.

2l. Definition: nonnegative measurable function f is
called integrable over the measurable set L if EFf<.as.

c2. rroposition. Let f be a nonnegative, measurable function.
Then there 1s an increasing seqguence (@ﬁ} of nonnegative

simple functions, each of which vanishes outside a set of




such that £ = 1lim ﬁ .
n

a positive integer.

FProof: be
~ {x: € fi{x)¢ (n+l)/53 , ono= 0,1,.....(N°=1).
=i $f(x}}~
Q,(xf n/! if x€ , n Oy sam o R
! n
be the domain ol f.
NR
Then \J A and
n=0 n
&
G > n/N Y.
n=o =2l
i € > C, there is a
er N such that - ¢.<X>' L &,

positive integer =
+f f is infinite, have ¢ - o .

refore, <4 > -3 f, and ¢ < O ..

is a nonnegative measurable

£ f

function,.

roposition: r

J fo
}rocf:fif =

such that £ f.

nd {zh = inff Y
Let <Yy.> be a seguence of nonncgative simple functions

of £, and let lim Wn = f. (This

Ly

over all simple functions ¢

supfvh over ail bounded functions h

and mfx: h(x) # 0% is finite.

over all simple functions W; h,

which vanish outside

wli

cossible by the precedirg proposition).
Then for every h O, there exists an n such that
¢ ¢ f, and }J-h £ S S S ¥
\\yn P S; Ewn i
ﬁUE}ﬁ = f il
sup [ ¥

f be a nonnegative integrable function.

Therefore qufﬁh

Cadeyals

E A .y = o X . .
the function defined by F(x) = f f is continuous,
Lo




Froof: Let E be the domain of £,
Let X4 be any point in E.

Let A = (~o0,x)AE.

if x¢ x,, then AX - ix (mo0, X~)N - (~o0, X)NE
() O v/
/7 ‘ 5
\,”};C,ﬂ Lie
f x-¢ x, then 4_ - (w00, X)NE - (=00, X )N E
1 O‘ LY £ 5 \ ] ~ / P ) LO W)
AN
\
A N

Then if x ¢ Xo s ,)r;l_{f - j!«.‘ fl = I&X,Xro)ﬂl‘lf Qe E
-0

whenever m(x,x,) ¢ &, for some §20, by theorem 4.19.

Wwhen x.¢ x, ‘ jA f S f l < € when m(&,xpf =
/s K
X

N
-

(W

for some £20 oy the sanme theorem,

25. troposition: The ineguality frf (S

im g.wf may be
|
strictly less than.
Troof: let f_(x) if n<zx<¢<n+l, and fn(x) =0

otherwise.

et be the positive real numbers.
£ fn O, since for any x€ i, there exists

an n > X such that };¢[nqn¢l], which implies that
f(x) = 0.
Gowever jwfn for &1l n, since for any n, [n,n+l]

&

is contained in X.

Therafore, = lim _f = and
Therafore lim _f 1, d
n e PR
f < S S
= n
20, Fropogition: is necessarily true that if <(fn>>

is a decreasing sequence of nonnegative, measurable functions

iim fn, then{fL = 11mjﬂfn.
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Troof: let fn(x) l if x> n, and fn<X> = 0 if xe¢n.
Then <fn> —_ =0 as n =p oo ,
an = oo for all n, which implies, limen = o0 .
Therefore, O = {f < 1im5fn = 0o
21 » EPODOERRIORE if‘(fn> is a sequence of nonnegative,
measurable functions, then :L}ig fn_ £ lim g fna
Froof: lim f is measurable by theorem 35.24,.
h be bounded, measurable function, not greater
than lim £, which vanishes outside a set E' of
finite measure.
Let hn(x) = min{h(x),fn(x}},
tiren the sequence (hﬁ) - h, and hn is bounded by the
bound of h. Now,
foh = fob = linf b ¢ 1_1mj L ;_i_mf.g,fné _@fEfn.
ind sup h = lim f_, which implies jﬁgg £, Lim{pf .
8. froposition: Let <fn> be a seguence of nonnegative,
measurable [unctions which converge to f, and suppose
f.& f for each n. Then Lf = 1im[}3fn.
Froof: fEfn € (pf for all n.
Then 1im SEfn < Sﬁf for all n. And by theorem 4.17
JEf € Lim §of, , which implies Tim fof ¢ lim {.f .
Then IIm fpf = Lim {of = lim o = _f.
29. Proposition: Let fn be a seguence of nonnegative,
measurable functions on (~o0, @ ) such that fn — f a.e.,
and supgose that ffﬁ —9‘ff. Then for each measurable set E
we have fﬁfn - fﬁf'

Proof: For every ¢»0, there exists a positive integer
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such that \fn - f\ ¢ ¢ , whenever n> N, except on a

set of measure zero, Low,

lim (|5, - £] = flim|f, - £| - {0 = 0, that is,

S\fn - fl¢e whenever nj N for some K. Now,

(\r, - £] = fglf, - £1 « (=) - £| , which implies

S, -l 2 Sple, - £ . Then ex>ff - £l folf - fl2

[ fofn - £13 fpf, - £ =Lt -ng , which implies

I;fn -QSEf’
%C. Definition: f'(x) = max {f(x),ds‘ f7(x) = max{rf(x),O},
£ = £7 + £7.
%51. Definition: measurable functicn f is said to be
integrable over u if £% and £~ are both integrable over E.
In this case we define ij = jEf+ - SEf_
52. Theorcm: Jet f and g be integrable over L. Then:

(1) c¢f is integrable over and S.cf = CSEf.

dB

(2) The function f + g 1is integrable over E and
S.f w8 = St +fye
(2) if f<¢g a.e., then [.f <( g

(%) T%F and E are disjointJ measurable sets contained

in I, then,jquBf = ng +jBf .

%%, Theorem: lLet g be integrable over E and let <fﬁ> be

a sequence of measurable functions such that lfn|$ g on I,
and for almost all x in E we have f(x) = lim fn(x). Then
Jpf = piml e

%4, Theorem: Let <gn> be a sequence of integrable functions

which converge almost everywhere to an integrable function
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g. Let <fn) be a sequence of measurable functions such that
II}J €g, and <f > converges a.e.. If fg = 1imggn , then
fr = Limfs .
Frogosition: If f is integrable over &, then so is Ifl,
and | Sz ¢ Szlel .
Proof:If f is integrable so are f and f~. Then,
fmf+ . fEf_ = Jﬁf+ + f7 = fﬂif\, so |f| is integrable.
Now | S £] =1 £ - 7] €lSg o7 o7 = | Slel) = Splel
Also, if lfl is integrablie the £¥ and £~ must be,
and 5if| 5 £ 2 jf+ - 7 = yf , which implies

that £ is integrable.

%20. Froposition: The ‘ncroper Riemann integral may exist
without the function bei integranhle in the sense of l.ebesgue
Lebesgue. e.g. if f(x) = (sin x)/x on C,m)., If f is

Lebesgue integrable, then the improper Riemann integral is
equal to the Lebesgue integral whenever the former exists.
Froof: TFFrom advanced calculus we have

oo
5 (sin x)/x dx = n/2,

o w b [N ” —
Now j(sin X )/ Qr = S[(Sin xY/x] 3% - L[(sin x)/x] dx
P m ° o
so if S h81n p & /xldx = e« , then 5(51n x)/x dx =eo ,
° o

and¢ hence would not be integrable.

et A = U{X: (2n+1)M/2 - W3 ¢x< (2n+1)NM/2 +T|’/5} .
nzo
Then, if x€ A, we have |sin xlz VYA

Let hi{x) = 1/2 for all x&4, and h(x) = O otherwise,

o0 = (2n+l)n/2+ W3
Then $|(sin x)/x\dx j h(x)/x dx = 1/2Z dx/x

) > no (2n+l) n/2-T/3
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(2n+1)T/2 + W3

L/2 ax/[(2n+1) + /3]
7 goj(:2n+l>w/9 -T2

1/2 2 (2W/3)(1/T(2n+1)m/2 +w3]) = e .
Wy 0

N\ S
/7

Tnervefore (sin x)/3 i< not Lobesgue integrable.

ow if f is lebesgue integrable, f° &nd f are.

S . \ ~t+
Sf+ = sup {h over all bounded functions h ¢ f such
that m{x: hi{x}; # O 3 is finite. Now since all sterp

functions are vounded and defined on a finite interval

~O 00, A
A 1 S g . " .
< [n Sf LS S i , but since the function
o0
- he §F = N
is Riemann eguality must hold and
~o LY 4
S £ j e
-0 ~ oo - ~3
S g and by subtracting we obtain,
-0 -
0o oo , a0 _
f - R S r = gi - [ f , Or
oo ~00 —oo =S
(o) Leand
f g
- oo ~00

-z

57. Proposition: Por a simplc function $, the two definitions
N N n
) 54/ l‘—Zé}_?’i i
@ {4 = for -4
are eqguivalent.
- b N K =
Proof: 5¢‘ Y(QV’O/ = Z:birr.‘i , where b,> C for all i,
and T. = gx: b7 (x) = b13 ]
o [
tnd f{ -5(-¢\/O} = 2 c,mG,, where ¢;> 0, and
. GRS -
= e s = (G =
o ) - ey
Leitiyray. S=piol., famdy ., =NEE e e =SS Sl
1 1 [ ?

et g, . -¢c. and EkL. = Gi SRR ML L S 5 G o
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Soaim £ < 1im{ £ ¢ TImf.f ¢ (.I5m £,

lrcof: g + f and g -~ fn are nonnegative measurable

functicns, and Jiiiﬁfg + fn) £ ;}mjﬁ(g Ty

Selin(e-£,
Lt = Linlfpe - (gf,] =fge - Tim
Therefore, jtg -‘fﬂTfﬁ'f <Jﬁg - Iim |.f_ ,
which implies Ifﬁj;fn < 5PTEE £
Therefore it follows that

§aim £ ¢ limfr ¢ Timfr ¢ (T £ .

<¢p>¢f and similarly there is an increasing

15+“¢}J < &/2wF, ind there exists an m such that
|f"4‘ml < €/2mi.

Thenjﬁ‘fk-mn’{ﬁgﬁ@mi = €/2, and fEff"~WnlL €/2.



Sm\<f n 'V \‘ S |£ ¢nl \fr~WJ| < €
f'-f~ = f, and letting AL o -¥_ , which has
been shown to be a simple function, S \f— %n\ < &,
Froposition: Let f be integrable over®. Then given € » 0,
then there is a step function g such that 5 lfmg\d (S5
Proof: From the proof of the previous propositicn
we have ]f~¢| < €/2mL for some simple function ¢.
By proposition 3.%3 there is a step function g(x)= ¢(X)
except on a set 4 of measure less than €/2B. Then,
|£-gl= [(£-8) + (¢-g)| € |£-0| + |&-8] = |£-O|
2 €/
Since g 1is & step function and Q is a simple function,
they are both bounded. Let be a bound for \@mg\.
Then 5Q|f—g[§ 5E‘f~@| + l@—g\
Sem \f'M fo 1 £-0] + |0-g]
So1e-41 + f, |d-e)
5 €/2mk + yA
= €/2 + DBmA
< E€/0 e/2 €/2 + €/2 €.
That is {4 |f-g|< €.
41, Troposition: Let f be integrable over E. Then there
is a contiouous function h vanishing outside a finite
interval such that fﬁlfmh\< € n
Froof: Trom the proof of the previous proposition
we have a step function g such that ]fmg|< €/%mkE
except for a set A of measure less than €/6B .

By proposition 3%.%4, there is a continuos function




on a set C of measure e n

Now |f-h| = |(f-g) + (g-n)le |r-g| + |g-h|, and
f5 Ve-n] £ fke-el + lemnl = Sg 0y V-8l

+ J, 1f-gl + \g-n| + [, |f-gl + \g-n|

So-(pucylf-sl + §yit-el « f |g=nl + Sar-gl + (g-nl.
<§, &/ 2mE 2B v Sine® ¢ Sanc® + SoD

wkere B and I are bounds of |[f-g| on A and |g-h| on

Z €/% + 2PR€/6E + 2DE/6D
€/3 + €/ + €/3 =

Then Slf—hl < €,
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