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INTRODUCTION

An snalysis of the well known paradoxes found in intuitive saot
theory has led to the reconstruction of set theory by axiomatic means,
This exposition is devoted to Zermelo-Fraenkel set theory with somo
changes wade by Suppes.

The first order predicate calculus is presupposed, In addition
to the usual quantifiers admitted ('V ' universal end 'J ' exis-
tential), a unique existential quantifier is used (denoted £!). The
primitive notions of the set theory are the empty set (denoted 'O!')
and the two place membership predicate (denoted ' €!'),

Prime formulee shall be of the form 'x€a' or 'a=b' but not
all formulae ere primes A recursive definition of a ( composite)
formula ig;

1) Every prime forwula is a formula;

2) If P is a formula, then -P 4is & formula;

3) If P and Q are formulae, then PrQy Pv(Q, P—qQ,

and P<~r ( are formulaoe;

4) If P is e formula snd x is o varisble, then (\(}:)l’,

e (f{]x)i’ and (E!x)P are formulae;

5) No expression is a formula unless lts being follows from e

finite string of the above four types.

In 1893 Frege formulsted the sxiom schama of abstraction, It
claimg thet for every property there is o set having that property.
However, in 1901 Russell discovered that the sxiom contoined a
contradictory notion, Frege's axiom wasg:

@.‘/)(Vx)(y ¢ \'g f_-v-_“\;{( X))
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wvhere @(x) is a formula in vhich y 4is not free. Clearly the axiom
is not a definite aasertion but a schema for making many assertions
since eny formula in vhich y 18 not free way replace '@(x)'.
Russel let @(x) be x €& x and he then hads

(Fy)(¥x)(zcy > x ¢ x)

Now since this formula is for all =x it is partiocularly true when
xz=y 80 (Ay)yeyeée— y &y) which is a self-contradictory notion

since this says

Fv)((yey —y & y)a(y €y — ye€y))
or (v £y vy £y),(vey vyey))
or (FIyNy € yayey)

In 1908 Zermelo revised this axiom to form an axiom scheuwa of

separation. Zermelo's axiom has the property t 'soparate

off' the elements at a given set that satiofy a given property to form

a new sot. Thus if the set of all esutomobiles is known to exist, the
)

exlom schema of separation establishes the existance of all cars made

by Genoral liotors. Formally the exiom schema of separation is:

(V:a)(':‘jy)(\/:‘r)(xé y & x€ 2, @(x))

where @(x) is a formula in vhich y 4is not free. With this re-
striction, Ruscell's paradox cunnot be reconstructed according to

Stoll,

T = ————




second, the definition cennot yield a formule in primitive notation

unprovable by previous axioms, Thesc two criterion are stated as:

! .

tye A formula P introducing a new

o

Criterion of Eliminsbhil

e

A

symbol satisfies the criterion of eliminability if and only if: when-
ever Q3 ig a formula in which the new symbol occurs, then there is a
prinitive formula Qp such that P~—> (Q1(~—% Qp) is derivable from
the exioms.

Criterion of Hon-Creativity. A formula P introducing a new
symbol satisfies the criterion of non-creetivity if and only if: there
is no prinitive formula @ such that P-—3 Q is derivable from the
axioms but qQ is not,

Now the problem is to provide rules when satisfied inmplies satis~
faction of these two criterion. Rules for defining operation symbols
are given below but nominal changes result in rules for defininz re-
lation symbols. Proper definitions of operation symbols are either
equivalence or identitiese.

“An equivalence P introducing a new n-place operation symbol 0
is a proper definition if and only if P is of the ?orm: O(vl, v2,...,vn):veﬁ»q

-

¢ i) vl’ Vos oees Vn’ w are distinct

(wh

and the following are satisfie
variables, ii) Q has no free variables other than Vs Vps eses Yy W3
iii) qQ is a formula in vhich the only non-logical constants are the
primitive or previously defined symbols of set theory; iv) +the fornula
(Elw)Q is derivable from the axioms and preceding definitions,

In iii) reference is made to non-logical constants. Some exanples
of non-logical constants are: '€V, 'S ' (set inclusion to be definad
later)s 'C' (proper set inclusion to be defined later), 'N' (sot

intersection also to be defined later). The only logical constaonts ares
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negation, conjuction, disjunction, iuplication, and eguivale

1CQe In

iv) tho expression 'preceding definition! inplios that the definitions

will be given in an order and not slnultaneously. This allowa now

definitions to be in terms of already dofined symbols. Another way to

express iv) is that perforning an operation alwayas vields a unique
d 1

object,

L%

An identity P introducing a new lace operation g

a proper definition if and only if P ias of the form:
O(Vls V25 eees V)=t and the follo ing are satiefieds T Vie Vo
‘

S A R : : : )
are distinet variables: i1) the term t has no free variables other than

?

¥1s Yop.0eep V3 31ii) the only non-logleal constants in + are

primitive symbols and previously defined s

o N TS BN p - 5
Some of the definitions in this report do not satisfv the eriterion

of eliminebility., This 1s because thev are cond

tional in form but

; e P e o N = .
appropriate modifications of the two rules can be ade,

AN AT S W A T LS EEE e ST T Y e ——




GHAFPTER I

Axioms of ixtensionality and Separation

The first definition, that of a seot, conforus with the intuitive
feelings of vhat a set is. That is, & sebt is somcthing that has ele-
ments or is the empty set.

Definition 1,

(Wy) ¥ is e set &P @Gx)(xey v y=0)

The axiom of exbensionality is an axiom stating when two set

are identical.

Axiom 1. The Axion of Extensionelity

(Wx)(x€A &% x€B) =P A=B

Considering the earlier remsarks regarding the axioa scheua of
separation, no further introductory comuient should be nscessary.

Axior 2. The Axiom 3chema of Separation
)

-~

(VA)E3)(Vx)(x€B €% x€Aa #(x)) vhere B is not free in .yZ(x)

The first theorem of the report states that the eupty set con-
tains no oclesents.

Theoren 1. W) (= 0)

Proofs In the axiom schema of sepsration, lot @#(x) be x F# x
and Az O. Then (@B)(¥x)(x€B &> x¢O0 A x:2x). 35ince there exists
a set with the above property, call it D. Also since this is true for

all x, it is particulerly true for an arbitrary =z.



Hence

o
tde
o
o

but the conjt
inplies

which is falsc.

Now 2z was arbitrary.
There fore

30 by definition 1

Hence

Corresponding to theorem 1 is a theorem that says 1f a set

z2¢D & 2¢0 , 23

2€0 A 22 2

z€D 1is false

z¢D is true

not have any sleuents then it is the eupty set.

(77 SRR
4Neorell <.

he proof of theorem

or subset, is of

(Va)(a€a)

% follows very guickly from definition 2.

o

The next theorea's proof utilizes the axionm of extensionality however,

and is of notevworthy i

Theoren 4,

portonce,

(VA)(V3) [(,ag.a A BEA) —r (A= B)

Proof: Belect arbitrary ¢ and D such that C¢D A, DEC

(CED 5 DEC)—y (Vx)(x€C =y x€D) o (Vx)(2€D =P x€0) .

-~y (Vx) [( X6 C~p X€ED) ,(x€D™ x€ ,)j

AT ———

Lt S e e s




~> (Vx) [ x€ c ¢ xeD
and since C and D were arbitrary, (VA) end (V¥B) the theorem

follovws.

Theoren 9. AEO ~» A= O

The following theorem states ths well known trensitivity property
for subsets.

Theoren 6.  (VA)(V3)(Ya) [(4€8) A (BEO) —» Ag ]
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therefore

[(\)')( X€A~Y x€3), (Vx)(x€B ~»x € V:A e 4 f(\,p)( X€A~¥ x€ ()

The following definition is that of proper set inclusion or proper

wis B

A G el

Definition 3. ACB ~» AGB

Anti-reflexivity is asserted in the following
Thesren 7T (WA)(-Ac€ A)
Proof: Suppose not, that is suppose

(Va)(aga)

 theorem,

>




which is an obvliousg contradiction.

The next theorem illustrates that proper inclusion is anti-

ACB~»

Proof: 3suppose BCA

el

BCA ~» (¥x)(xeB

but, ACBwy (Wx)(xe A-

.
:
v
—~
p—
=
<

1y X o 3 o SRR RS T e
but (1) and (2) are contradictory, t

ACB=p -(BCA).

The next theoremn asserts the uni

operation to be defined,

The proof is in Suppes and vory

(but uveing the axiom sc

to be introducad).

ne Union and |

~(BC A)

> XE€A)JA AF

VXEA)A AsEDB

7

v xé /) ~- - - i (;,_)

queness of the intersecltion

Flo)(WVx)(x €oe=v x € A, x& B)

e e

AN A ST AT ISR OY STt T




Definition M.
AnB= yg-o (Vx)(X€Y ¢» XEAAXEB)py is o sot.
Thoorem 12. (Vx)(x& AnB € x¢Aq4x €3)
Proof:s 1In definition 4, let ye AaB
then (Ag B) 2 (ApB) & (Wx)(x€AnB&> x&€A,x€B)a(AAB) 1s o sot,
Qommutetivity and assoclativity are established in the following
two theorems for intersection.
Theorom 15, (VA)yB)(an B2 BAA)
Proof: Select arbitrary A &and B and

1Y) e ; g Sl e 8 ; s E . :
(AAB)ry ¢ (VX)(xEy & XE€ApX€B)ay is o sot

& (VX)(x 6y &9 XEBy XEA)ay 1o a set

.

6 v (;‘n {‘a ;'\) -] :,"

thereflore WA W3)(AnB=3A4A) ]
ol R . J“A (424 s o B Aok ‘— i
Theoren 14.  (VA)(v3)(y ){( AAB)AC =AM (BACY y

: i

Proof: FPFor arbitrary A, B and ¢y let x be arbitrary such that 3

ﬂ

xa[(;». AB) A }
X (l LA BIA ;l X G(AAB)A x€C by theorem 12

i

LS = N = S

~p (xEAy X6B)y Xx€C by theorem 12
P X €A (x¢ By xEC)
> X¢Ayx€(BAC)
wp X GE‘a n(BARC)

Now since x was an erbitrary elezent of (4AB)fC then
(AAB)A 0 40 (BAC)

Similiarly An(BAC)G(AMAB)AC for arbitrary 4, B end C

Therefore CFSICED J)L( AAB)AC=z AA(BAC) by theoren 4,

m

Theoren 1. (YA)(2poz0)




Theoren 16. (Va)V3)(ANBE 4)
Proof: Let x be an arbitrary elcuent of AAB for arbitrary
A and B.
But XEAAB ~%» x€ A, Xx&B by theorem 12
~> X €A since this is a conjunction
Now sinco x, A and B vere arbitrary, then the theoren follows,
Theoren 17. (AeB) &+ (AnB =4)

Proof; —=p

therefore (Vx)(x€A~> xeAj x€EB)
or A€ AQ\B

but theoren 16 asserts AABEA
hence \ (ASB)~» (AAB=A) =~ = =« o =

Proof: geme

>
=
Q

)

for an arbitrary =xE€A

80 x €B conjunction

therefore (Vx)(x€ A -» x€B) since x was arbitrary

hence ASB by definition 2.

Consequently (ApB=A) = (AEB) = - - =

and from (1) -and (2),

Thoeoren 18, (Va)(ana=2)

The following exiom is introduced in order to make the proof of

the existance theoren for the union of two sects (as

intersection) siupler, In the last seclion of this chapter this

axiom, the uvnion axiom, is proven redundant in teras of the rest of

11 dlg foy

v L rEEeEE Y

.

O e

LS = R




the axioms in this chepter.

It is needed that ¢ be unique; so suppose there ia a D such that

(Fx)(x€D & x

S0 (\;‘x)f.;f( XGC) ¢=» (XEA v XEF

hence by transitivity of i

o~
=
»
Peait
—
o
13
c
<
<
5
~
\
N

Consequently C =D by the axion of e

O
—
°

D e

ras

(AuB=

L R anh 5
he usable

nition 5, let y=AUB

Proof's - In

Y ANE T OEEY eI

then AUYB= AUB ¢ (Wx)(xe AB&> x6A v XEB), y is a set.

LS =

) 1

As before, coummutabivity and of the operatlion are

Theoreu 21 (VA)WB)(AUB2BUA)

Proofs: For an arbitrary xe AUB

x& A/ B &% x &A

éH X&B v
o= x&(BUA)

therefore since x was arbitrary, the theorem follows,

The proof is similiar to theorem 1k,
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(V\)( AUA 3 A)

Proof: Sslect an arbitrary x in the union of an arbi

= Py . )
Proofs For an arbitrery x¢A
k
i i
XE A =p v XxX€B {
§
b
.
-8 X ; “
W " e {.!’.«"!f“.\,’- v»~‘“.,f~‘< b AdafPins+san 2
nerx G (WA (VD ) A& AUD) DY Cerlinlilon .

CTaT Y ETS Y

LY ATE

L5 = - ST

hence AUBBEB

ut : BEAWB by theorem

therefore 1 ACB ~» AU3&B

x€ A~? x¢ Al/B by theorem 25




m) 4+

he next two theorems are the usual distributive theorems for
union and intersection,
Theorem 28,

(Va)(v ‘.)(z_;’a)(( AVB)AC=(ApC)U(BNC)

Theorer:
(VA) (¥ '5)(\;’}:!‘(/'\ ABYuc =(AUC)q(BUO)
Proofs xe(AAB)VUCE&» x€(ANB) v xeC

&» (x&A, x€B) v xe0C

b (x€A vV XEQ) p(x€B v x60
&y xg(AUC)A x€(BUO)

’ A 2 [ : £\ k
& x€Ej(AUC)A(BUL) !
From this point on in the report the universal quantifies whose 3
scope is the entire forwmula shall be omitted. 1
)
The next theor establishes \
7
operation. In its proof, the axiom schema of scparation is nseded b

=

using ' x & B ' for @(x

-\
s
s
=Ty

L3
&
E
-
L
S~

L5 = S

Definition 6.

(A~ Boy)é~7 (Vx)(x6y¢y xEAoAXEB)yy 1is o set.
Theoren 31. XEA =B &vr XEAAXGEB

Theorem 32. A~ A=0

A=-(AqB)=A - B

Ap(A - B)=A~B
Proof's XGA =B&d XCAqX ¢ B

> (xgApx€A)y X ¢ B

Thooren 5. (A-B)UB= AU
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Thenron "n"b, (/\_ - “.)‘h 3 %)

The Jl'n)f':\ * thooroup :'/' gnd A8 pre aimlliar to Pro o
t}'u Yon ,;(’;.
Theoren 29, A= (BRO) (A« B)A(A =~ 0) y
bs |
}’J'l')'ﬂ": X ‘l’ . (’ \;)[_:‘--3" A A X -‘,} 4-2} ) I

2
-
Y
~.

>
—
-
o
i

A A i by
Gonp (% ¢ A D) A X Q) i
5 A ; \ {
&% ¢ ( - l.),,_ X ( ” u) "l
AR PR . {
[ [ t( [,)llr( - ,(;i( 1
n L M
The proof of the noxt theorem is siniliar to that of the prosf of !
theorem %9,
s m he 1 ) (1) e i .
Thaoren 40, A = ( ‘é )) &(/ )(f(/ - ()
Padrin tdon end Orderad Pnin
Thue far in the report the oxistanco of o set other than the e ‘lt."/
pet 1p not lenown, he palring axion esteblishos o 6et cont: ining tvwo

' 1 ) E 1 1
This ezion s {ollovad |-‘,' the usual thaor appartd { y daal




uniqueness property.

-

and w is a set.,

o ~
TR
(oS 94 ) bd

Proof: 1In theorem 4% let y=x, usv.

¥ ((xsu), (ve

LeISEc s T

Yoy

UFSTvEraesaT

finition

=

With the ebove notion of unordered pair, a new concept

that -of ordered p

Intuitivel

X o V%
&L XoJ 2

equal if and only if they conteain

of equality of

picte T

=
—_—
>
(0]
et
=
o
b
o
H
e
s
9]
pacs
o
o
g
o
L
o)
o
=
o
prre
b
Ié
@]
o
j5v)

41 i 1 2
other and the second member of one is the sa

©

by

the other. Foraally:

Y A

ST AN

Vs an ordered

two objects

X A1

ordered pairs

s the first

Theoren 45, ({x,yp = {upv? ) =3 (xcuay
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Earlier it was established that the axi

o1 of abstraction yields a

idea of 'the set of all objects having the pro-

perty @ ' is comionly used in nuwaerous branches of moathematics, Tho
objective of this section is to glve a 1al definition of the

abstraction operation

This operation is werely a wmethod of binding verisbles. It is not a

definition introducing a

vidual constant.

Gy [( ‘1;,;';;)( XEY b }’K :»:) ) AY 1s a U":LJ v lr’ =204 ~ (-31 ’)\l :">>’3 € B & ‘II< x) )

The notion of a definition schema should be fumiliar to the reader

considering the cerlier rema sald about axiom schemas, Clearly

? . ) ) . ; .
{::: o4 }t)"s ia a set but there are occeslons vhere there 1s no non-

empty sel wi elenents have a property @ , hence the delinition must

allow this poss!

) Saah o et
fneorem aci

YE Fxi #Nf- )

Proaf: ¥y E& 2}:: i :()é e

So by definition 10 the thoeorem follows immediately.

Thooren 47. Axfxsxe 1\,_‘3

Theorem

Proofs BSuppose the

o
Q
-
s
3
Lo
s
<<
[
~~
»
5
X
»
s

(e
pat
O
=
°

it £ L f A
Then by theorem 46, y #y a contradi

H

=

LS e sa

TATE

T AT




The noxt

theorem

i1s the usual

theoren

a0

\ Lhic Ak \ L
contradlieiling we axiathneo

of a universal set.

Py
{

Proof's Buppose the contrary, that is, suppose there does exlaet o

universal set. (Call this universal set D , end in the axlom scohena

o

of separation, let @(x) be 'x & x' ylelding

Since there exlats a sot 3 with this property, oall it Q. I'hon

but D was the universal sel so

(Vx)(x6 0 - x ¢ X

~

and this 1s for all x , therefore in particular for 0 we have
L/‘A»: 9] wip U ¥\

which is e

a contradiction., Hence there does nolt exlal & unlversal sol.

¢ v
e -

50 0 ® fx: x#x
s’ {.,, ~
Suppose not, that is suppoae

A% Ll UKl e a2 xy )
therefore (\/ X\ X4 »')
hence y 1is a universgsal se

With this notation it 1s not difficult to prove es theorems sluple

)

formules whic

of sets; nouely

h ecould be used to define intersection, unlon and difference

AT A




(proof follows from theorem 11 and definition 10)
1) AvB -~ gi: XEA: V% ¢ Qf
(proof follows from theoren 19 and definition 11)
11) A-Br fx1 x¢A x g Bf
(proof follows from theorem 31 and definition 10.
It will be convenlent to have a sli;htly dlfferent form of the
defiinltion by abstraction later in this poper. Later more complicoted
expresslons will be placed before the colon rather thon simply single

variables, Hence the following altoered form of the definition by

abatractions
Definition Schoema 11l.

{V'Jv'( X190 Xop eeey X ) s & :'.l, >'.H, ol T :-:“)j :

Zy: ( 'i]::])( :'h:;{) e £ 3 Ny T( %y 9 X0 eees >:l),\;‘(.:4], X0 eees .\:U)‘);g

!

The following theorem schemna expressed the important econcopt that
& i | I

equivalent properties are extensionally identicol.
Lhooren Schemo 21,
(V x)(# x) <> B %) )—> 21 W )j é)z; P( )5
It should be noted that the following is not true,
, L Jib ¢ 3 y
(VW x)(#(x) = B(x))—> fxs #(x){ S x5 P(x)3
To see this let ;’f( }i) be: X+ A= 4 and ]’(}’.) -} (WO

Then [x: X +3=4 { : fjg and  {xs x=xf 4ip eupty by theorem 50+
The Sum Axloms and Famillos of Sots

Before considerlng the sum Axlom, whioch is the basls of the prese:
sectlon, the notion of the intersection of o fumdly of setls is introe
luced, To 4 - } tatd t A= $§7,8 £4,83¢
duced, To illustrate the notation let A )/,’{f sy 4y nfj

then NA= {GZ o Inforunlly the intersection of A is the sot of ul)




al definition uses

eme. 10,

It seems like it could be proven that (x&JA)e» (V3)(B€ A-p xEB),
but this is impossible and the reason is fairly obvious.

The right side of the above eyuivalence is always true and every

whenever A has no sets as menbers; but by
-universal sets It is poss to prove the
following more restricted statement however, !
{
Theorem 52. 2
1

»
;
Proofs Suppose notl, ol x & {\0, then by theoren 52 there 1
Lo tiide T SRk ek X P P .
a contradiction., Siwiliarly ¢}¢0§e O and
-y

SYTATE

-~
s ]
]
sy
Vrad
—
SR AT

y

+  x&0)a Fo)(c& 44,88 )

P e
d 1B RA
s 3\ Ta b { ? 1
xg C)a (HO)(CEB)
but since : AL B
uuv 6 ce A L
\J'\'; - CEB

therefore (Yo)(cea  x@n)




but given that (\v’\,:)(\:(. A)

therefore (VO)(O&A - x&A) 4 @0)(0€ A)

Theoarem 20, AE B (1B &A

Proof followa from theoren :.;’,

Iheoren 27 AGBAAGO~ ABG O

Proof follows from theorom %6,

Beflore introduolng the sum axlon which postulates the exlat ) 0l
the union of a foully of sets, the notation lp 1llugtrated by ma of

0““ . '

an exe A"“l(f‘, lot AR :‘_;.‘-‘} . ™en A% é'; Y IL\E’

Qlearly A 1s a funlly of setes together wl
union or sun off A 18 the set of nll things 1 loh belong to some

member of A,

Sum A

Again the formel definition uvses the abatroc

£ . A )

we v - ol YA 4

: ..:'..l" Lj - ’L'v' " (\ ')( L) LR ¢ o
be noted thet in defining anything by ebetrection, i

the appropriate set of elements doep not oxlet,; then {f’ io enpty.
In this instence it has beoen postuleted that there exlsts a met definad
in definition 1% by means of' the sl oxlom, Nence the moeacond part o
the disjunction can be omitted in definltlion 10,

Thoeorom 58, XL A Gl

Proof's 2;;::

((Wx)(x& Y réro

Again, the more elementary propertles of the sum operation eyo elumilinr

to those of the Interssoction operontion, Jome of these nre:; Voeo ’

P 4 n
lj(pa # 0 and Ug i 2 A,
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Theoren 59, NAC UA
Proofs Let x be arbitrary such that x€ Na
then (VB)(Bea— x¢ B), (3 8)(Be A) by theorem 52
but from this it follows that
( ¥B)(BEAAXEB)

but thie is true <> xe UA by theorem 58

Power 3et Axiom

- -] 4 1 4
oduct Set

The subsets of a given set have boen considered earlier end it is

logical to ask whether or not thesec subsets

v

constitute a set. The

following axiom guarantecs the existance of such o gete r
Power Set Axiom. (3 B)(V0)(0€Be— oea : i

In other words, if A is a sot, then there exists a sot B (called

the power set of A and denoted PA) such that CeB  if end only if ’J
' 4

0C A. Por example, if = {/1,‘)} then ;
PA = ioa i)'r} s 2)} 9 g)*:f)}} . 1

_.__;_‘_‘—“'.’M.‘f};’_‘lm:’:ﬁ_o PA = Eii: §5E Aj

AT A3

Iheoren 60. BePA &7 BCA

The more obvious facts about power sets are the foll owings
4 -~

.

i) A € PA

V) ACB&> PASP3
The cartesian product of two sets A and B (in symbols: A x B)

is the set of all ordered pairs <X,y 2 such that x€ A

.’;'1!1(] “/ € ;‘Jo
For exauple, if A = 51,2} g . DT 2):’&

Then A x B=< f< Lalig iy nl X s 442 8 51205 ,‘<,‘j,)+>f‘




Formally the defi

#0)(Wx)(xg

Proof's

Then we have

@AC)(Wx)(x € 0¥

If the clause

proveri.

I'rom the sbhove

the usual

In the axion

x€ PP(AWB) can

")

X &0

which in turn impl

and since y€A
thus
thus

hence

The following two theorcuws

‘theoremn.

Theoren 62,

and 2
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Nel:] X @ {‘

theoren amuat
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x € PP( AU B)
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irect

X€ AxB &% (Jy)@z2)(yerauel, x o

Theoron 63.
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saye thaet plven any non-eupty smet A thore le a member x of A such

.
€

that the intersnection of A and
Axiom of Repularity.

A#0—% (Fx) [kea, (Vy)yex —vy ¢ A

Due to the conditional form of the definitlon, the mocond part of

the disjunction connot be repluced vith the slmpler expresslon
' AN%x=0 ', If x io an individual then AAx has no mennin X
however when 1t 1 cloar that x 1o a vo
will be ¢ u']'l‘)'l'!,]‘,

Theoren_6M,

Prool's Buppose AE A. 8ince A ¢ f,,, then ASA N /‘,\f

But since A€ ?‘4,? the axlom of regularity sayn

But the only olenent of ),’Xs\ i3 A, henoce contradleling AN §A) / 0

Theoren 65, ACAXA ~—» A=0

- ' .
The Redundance of the Unlon Axlon

Meta Theoren ls Tho unlon exlom 1o derlveble fron the axlon of
extenclonolity, tho pelring exlom ond the sun Lo,

Proof's The union axiom sayn
(3. D)(Vx)(%€D > xe A v XED)
«Prom the palring axlom there exlate e ool contalning tvo el ntne,

eay A and B but by thoorem 50

<& P XEA YV XEB

J()l‘.fmrim,nl,],.‘,’ ('/1‘))(\/. ,(’ ED AP XEL V XE i) vhich Lo the unlon axi
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Using the already defline d ordered palr conecaplt, the theor of
relations can bo Porimlated

wve meun hore no jething like marrviage ("mtl' ean men end voi m) or he

longing (betveon elenonts al d getn). ore exnlleitly,

relotion is somobimen called a binory rolotion. An exomple ol a ternoy
velation 1lg parentho d for people ( vdopm and Bve sre the parents of 1“1lr)‘,
Ill this 1 ] yrh wo shnll have no ool nlon o trent tl t) )1 ol 1

],Ill.j’).)'& tLhe t are 'I,',JAI‘:!“ g U 'l.(n‘ud./ Oy VOYfo.
(

A i o relntlio ) oo (VI )( G A & (v".l'_,, )ﬁ;’.,)(. Y gl ))

I'L ‘~..'." 1 1 be conve xju‘iil to ]l“\lr the l"‘f‘i""l not Wlon RAY »

Dofinition Kl X Eodr ' .,t/.,;“(_
Tt 1e 4 agdiant f'romw wne definition L ko 4 f'ollovl not

aro Lrues 5) 0 is o ]‘Af]:;?,j’tll; "ll\) N e 8 Yel: {4 )1 A 3} 6 T %

is a relotion; 4ii) T, 3 Are I« 1ations » TA 3, T3 ond 7« 8
nyae rolotionse.

If 8 4is o velation then th dowein of 8 (H ywinbholas M.) ip
the set of pll things x such thel for eome ¥ %y 6 3 »

< 2 < \‘
]’{i;"."!'.; }A-’I t,il ) ) i’£ DA % ;fii (:ﬂl y .’( wAY /:

IA_'”.) _(_’ '» ‘/-C"” ¢ - (3 )/ /)
Proofs Prom the axion schena of eeporation

@) (Yx)(xEBeP x 6 UWALEY)(x) = = =~ (1)
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Hence it is neceasary
From definition 17 Gy)(xAy)=» Lxy? € A

A by definitlon 9

“h
or (2 §
therefore 2_}:}(* Ui and x€ VUL by theorem 58
Finally @3)(Wx)(xed e @y)xay) = - - = =-(2)

8]

Now in definition schema 10

z:’” jolé )}, 2 Y&y [(‘)(g v)é=¥» F(x)ay 18 a l] v [.y::r“,‘

-.ﬂ'})(\"::)():(f 3} & gl=))

letting y = DA

but by definiti

(Vx)(x € DAL

but the second part of the disjunction of (4) contradicts (2)s There=
fore (\j)(v(w DAG? (Ry)(xAy)) the desired theorem,

The following
$) D(AUB)=2DAUD3; 4i) D(AAB)EDAADS; 111) DA - DBED(A ~ B).

. ’ R 5 5 T y A AN X » \ \ & "
Qleorly it is neither the caso that DAADIE] (AN B) nor I(A ~ B)& DA - DB.
¢

=
snd B = [£l,54 e In the first case
t BYVES ) J

Py

clearly El)’, & 0, 1In the second case lot A 2."" 1,20 <2128
&

m vortoinly 4’] ')1? . 0
. Laen cervolnly CLoay e 4

If 5 4is a relation then the renge of 3 (in syubolo: R3) ie

the sot of all things y ouch that for some x, €x,y? & 3. Thue if

: iy AR : : #
3w z<(),3./ s 4’_‘),-,_’,\?) then R3& ¢1,53 « The notion of range is

formally defined os:
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Theoran Of. y & Rie~y  (§x)(xAy)

The proof in almiliar Lo theorem 066 and theoreu (U
adwmtl1day +h . 0y T A
Simliliar theo g Lo thosa ¢ ])‘um]; ptatad for dom in aould bhe

Dtv"L(}d here for the range but thei proof's aleo parallel ad Lhavy are

not statod horos

AMtentlion is now nlwed at the no

gonverse oLl ( ralation (’IIH By ibo Ll ) o the role Lion sueh that o
- W y .
0ll x ony ¥y, x5y 4f and only 1f ySx. Oiven a i latdon
. ' r ]
8 % f-il, Y, 65,29 , £6,D >y
¥
W ‘ X
N | rah ) v, . (v’
then G = &l A, €5,6%)
o ' ¢ ? )
Dofinition 20. A B a1 yAR)
Theoran 63 Ky &b
Proofs In the nxLo e off peparation

let A be (RAxD ) and 7( x) be ¢ )
then the prool in volabtively straight forvord oe in thooren 66 wsing

A
o]

definition 20

.

Thoeoran e A 18 @ ralalilon

.
The more obvioua footn ahoult the eonvor: roluotion eroe Lthat il

digtributes ovor o Lethoorobtle Antero: gtlon, unlon and differencd.

The noxt tovde for conasld satdon Lo the relative produet of {4/06

rolations & and T (;'ln pymbolas ’./'J‘).. b o g y and T are rolt LA ong

then the rolotive ]u'vu‘,m‘.i, of 4 and 7T 46k holds

botween x end y 4f end only Lif there exinus & 2 gueh thet

< XKy2? i Iin 8 ond Lz,y> LR L TR T b exnuple - 4

- S N PP | : ¢

8a}€0,1?, €2,52% end § then

@a/m ,(v 1 ™ < }'.’?‘ s 4

l)/'j‘ w2 g d VLT and 'hin 63 16 alenrly
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{11ustrates that this oporation e not ecommubotive. I'ox 11y the
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xR( 8)

then

Theorem 73. %3y

Proof: x SfA y &% x3ya x(AxR(3))
rule of biconditional subst.

It can be proven that

tributes over set-theoretic intersecctiong u

(0]

1

The following definition introduces the

get under a relation. That in the above

of the set A

yeS"A ¢ yER(SJA) by d
Eny G?»i)':\ if{I A "jrr)

<2 (Fx)(x3y 4 x€A)

The d be stated as theor
x 2 5 =\ £ - > ] il ol n
i1) | R(ANn3) €R"AAR"B; 1ii) R"A - R"'BS

For convenience the following definiti
is introduced due to its usefulness in the

FA= DAURA

Definitio: L.?.jl"

82, 4,52, &34 2
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Formelly we have:

by theorem 67

by theorem 73

ems: 1) R"(AUB
A‘(‘: ( 1’3 - })
on of the field of

The conventional

' x,y&€A ' for xE&Ap, Y€ 4;

~
C

gy s
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relation, minimal element and well ordering follow,

*Definition 26,

S 1is irreflexive in FS¢

Definition 27,

€5

e

®
)
)
<
o)
<
&
S
le]
1 =5
,.-.A
-

el ik AN A SN v s o~ T “
se=r (VX)) (5,5 € TS, x3yms ¥5%)
Definition 28,

metric in I

a

. s e i 2 . A ol S
S is connected in F3 € (¥x)(Hy)(x,y €F3 A ¥ ¥y —» XSy v ySx)

wition %2.

o . ey e (3 Nt v ~
connected in 75 &¥ (¥x)(Fy)(x,y € Fs ¢ x5y v ysx)

S
*The concepts of irreflexive, antisymmetrlc end strongly connected

have been in-

are not used later in this paper but the

cluded for completene
A nead for the identity relation (in symbols: IA) on a glven set

are must be practiced recalling thet

o

F

by theorem 950,

2
IA= 26‘-’.3(93(:’ $ xeﬂ.f

x IA x &% XgA
Proofs Frow the axiom schema of abstraction

(FB)(V 4x,x7 ) €xsx2 & B 4> x,X> € PPAAX GA)

If x€A —» Lx,x> €& PPA  then the theorem is proven.
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Now XE€ A —%p X & PA

but <«xsx»

Now to turn to the main topic of this section, namely the topic
of a relation well-ordering a set. The concepts of minimal element
and that of first eleuwent should be distinguished at this point to
avoid later confusion. The first element precedes every other element
wvhereas & minimal element has no predecessore It is not the case

that every minimal element is a first element but every first elemen

prs

e Xt 1s an S-Pfirst element of A

> XA, (Vy)y€nr,x Yy —» x3y)

Pinition %35, x is an S-minimal elewent of A

> ~(y3x))

v A 23y o

e xehy (W)(ve

The distinction is slight by powerful.
Next well-ordering is formally defined.

Definition 3%6. 3 well-orders A

<% 5 is connected in Ay (¥B)(B Si/\(_,l B#0 ~»3 has en 3

ent) e

ith this definition it is not difficult to seec that "€ " (less-

than) well-orders the set of positive integers end "?»" (greater-
than) well-orders the set of negative integers.

T }

ren 76.

3 well-orders A~» 3 1is asymuetry end transitive in A.

Proofs (1) of asymietry; suppose nob, thet is

2

. e = 5. €
elements x,y& A such that x3y and y3x. Then Exq.“ & A has no

S-minimal element, contradicting the given that 3 well-orders
9 <3

(2) of trensitivity; suppose not, that is, suppose there are x,y,;z2& A

d

P 4

REA S
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nce S well-orders A

guch ‘that xSy and ySz but not xSz. Si

1¥ not

Theorem 7. S well-orders A&® S 1s asymmetric and connescted

o
X

Proo

e
e

S 'is agymmetr

But S is connected in A and thus x€A, Wy)(ye Ay ¥ x —¥ x3y).

s 1
ue o=11lrsi

A 4

Fed
1ia Q - p
¥

o “a 114 NS At v
X0y ana yoXx but this contre

Proof: B hag an B
has an S-minimal eleuent. is

given that S well-orders A so S 1s connected in A or

Vx)dy)(%,y€ A —» x3y v ¥3x)

s (#2)(Fo) [asv€B 0 A Db - ~(ash v b3a)/
B (Fo)( o) [F,0€B, o # b ~(s5b) s ~(b3a)]
or EG!
e Ga)@ph) jas

1

but this contradicts th:

theorem 77.




Theorern, g 48 transitive , symmetric ~% 3 is reflexive.

Proofs Given XxX&F3, prove <XyXP &3S

two casecsos
(1) x€R3 =% (W) (yETFS) ~» Ly,x» &85

Symmetry

therefore (Wy)(y €5 —» <Xy e S ALY xR &3)

therefore EXyX>» &8 eince 5 1s Lve

(2) xeD3 v (Yy)(y&Ts = &ty » &5)
> (V9)(YEFS —» Lysx> €3) Synmotry
—3 (WyEFs ~» <x,¥% & 54 <¥yx2 & 5)

in that set that is

Given a set and o
is saild to be an equivalence
definod asy

is an equivalence relation on FR &3

the S-coset of x (written:

The following de E‘

g-cosel of x 1is the set of all things that are equivalent to x when

S is an equivalence rolations This is sometimes referred to es the

g-equivalence class of

i

Theorem 80,

41

The proof of this th

using the axiom schema of separstion,

Y IS

WA SATTT
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is an equivalenco relation-#® ((3{x = ,{\f ) &> x37).

%
©
~
M
U
U
e

ieorem shows 3 1is an equivalence relation

1 1

then any two elemnenta which stand in relation to each other under 3§

3

generate ldentical equivalent classes,

equivalence claegsed do not overlap,

A partition of a gilven sot ig a enpty pairwise
2 (] 2 1 L N * « ad wihh Mt Ay - o 5 |
disjoint subsets of the given set whose union is the g sete

O

[T is a partition of A

Ullzp 4 (VB)(VO)(BelTA CE&L B #C—2

5 < i
.‘ s a8 = .
By way of example, if A = 3\1;“,;) anc /,rf-

finition establishes a connection between partitions E

The £

A SATR

and equivalence relations,

clearly a partition of A be generated by S

Theore c& T (s) &> (Fx)(c=s ,’\ris A C#0)

Proofs From the axiom schema of separation

@8)(Nc)(cepes» ceprs, (Ix)(c=s[y 4 ¢ #0)

tap in t} f 18 to show that

=
L]
[}
TN
o}
o+
5
o
G
s
<
Q
e
o]
©
.
=
o
@
o)
L 3
o
S

@x)(C=38[ 407 0)—¥ CEPF5




SN D e a el iy ran) o
(_}X)( B .)LJ)‘ A | /-‘» k% = 4 U=

therefore (B)

AL e e st Sol
Af'ter routine ns

& partition of A.

{{is a partition of A—¥ 3(#)

Definition 42, e

The next definition introduces the standard

Definition 43,

-

£(x) = y&—> E Blz)(xfz) (x.f’y)] v /-—({'

x3(71 )y e~ (IB)(BEC,xEB, yEB

+ Y

the

is

is an equivalence

functional notations

=aa o




then

Hovever, if f is

of definition 43 is

The composition of two functions £ eond g (denoted:
is defined in terms of the relative product of £ and g (:
definition 21).

£og=g/t

- o4 T L] O R SO e 1. ey oA
Qlearly if & and g are functions, the f o g and

functions.

i

2875 i and
Just as the doma
so can the domain of a

m e WY <
11180I1rel OO,

The concept of a l-1

’
% are function

(f(x) = (y)ecsp

f is defined

Clearly theorem 91 is slso true if Df is replaced by

f is interchanged with £~

X=4),

in the

1€ converse
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Theorem 92,
fn.g are 1-1, DEADE=0, RE(}Rg=0 —» fUg is 1-1
For the sake of completeness some of the standard mathematical
language is introduced after which this chapter is concluded by con-
sldering a notion which is useful in many branches of mathematics.

i) £ .48 a function from A into B&

is a function from A onto B

-

a function, Df =A, R{SB;

e
~s
H

” PONE. S - s ) T el ™ 202 £ Azt 2.4 7 - r
&= f is a function, Df=A,  RE=B; 4ii1) £ maps A into B &>

£f is a l=1 function, Df.

a 1-1 function j Df=A 4 RE =3,

The f

AB )e

gset of all functions from B

Definition 48.

£ £ ds.a function from B -into _»‘,'.‘:;

Theorer 93.

a i’l:l’l(}‘..»j")":‘.-" DE=B a

L]
@

A
1

Proofs From tho axiom schema of separation

is a function from B into 4)

(Fo)(N£)(£e cer

Now using the fact thet Ii

But ' £ €DfxRfy hence £ &3xA.




Two sets A and B are said to be ipolent or have the same

P vy st 3 A 1 i S WO
8 a l=1 function between theu,

i) a2=B

that equipollence ia an eguivo=-

lence relation,

m) ~ O L A
Theorem 94, AzzA

function,

Proof's

Proofs Let f be a 1l-1 function establishing that A=~B. Then

f~1 ig the desired function establi ing

Proofs Let £ be a hin AzB and g
a 1l-1 function estc B~C. Then the desired function establishe
ing - AeQirds o, g,

The following theorems will be employed in the development of the

cardinal numbers,

Proof's

and g such

S0

so fiyg is 1=1 and AUCITBUD un




Theoren 98, (AxB . 02D)—» AXCTBxD

Proofs 3ince AB, OX¥Dy let £ wend g be the correny

.long. Then the function h euch that x&A

onding

and

YEC is h(<x,y» ) x<¢f(x), gly) » establishes the equipollence of

The noxt two theorems establish the fumiliar commtative

associntive properties for equipollence.

establishes the desired equipollence.

orem 100, Ax(BxC) (AxB)x0

Theoren 1

Proof: Define f as follows: if 2z€A then £(<& z,y »

1@ proof the s nd ha

00 and the first half of this theorem.

Theores 102,  (FC)(I0)(Ax0

: . 4 - L P
Proofs Define 0 =Ax 0S5

4

Then CxA and BMD by theorem 101 and it is easily seen 0O

8
A ") B B -— AVew T
( Nl , Uasl ‘) » A D

(,‘;xl)(:}': % x B

3 s} 1« b
BV LAY
(A7) 2eA

o 4

The following definition is that of the relation® (reads

—
e D0

(" D "{.)'

being




Theoren

Proo

Theorem X

s

The next

power of

due to the

Theor

Proof's

It will be proven that

1 L
1

& suvse

theorem is probably the

theoreng!

116,

then

and

Conaeque

Define
then I nes
Clea rly

£0

Also since

Vi 81lCe

d

ev

tly

&

a

[¥19

3
A ol D
AN B
- "‘ 2
B 2
'
A au xlh
h
subset K

C &D and

e

ry

CED

e

(=)

o o8

G
L 4

s found in weny texts includin

W
O

most fundamental theoren on the

suppes, but

(&)

s L . . < 4
30y 1ug proof is included here,

- (AL)(f waps A onto
- 2] B onto
A end B have the same po
thet g maps B-f"X onto
= . ol N s Y 7
ass h=(£K)U(g)(s - 1))
Dh A -
Rh=(f'R)U('E"(A - X))
- (i') li(] --f” )
=B
of A is needed such that
gM(B =f'%k)=4A - X
§',.. o 8
¢ Os O=A - C

subset ofUD

CCA ~g"(B ~£"UD)

-

jer if there e it a
v 61 ot BECR]
he=No AMls 18

we have




UD&A -g"(B -£"'¢ D)

Consequently S
Defining F=A -g"(B -£"UD) o
Then by (1), (4)s end (5)
4 ~g"(B -£"UD)cA ~g"(B -£F)
80 FECA -g"(B =£'F)
Congeq
80 _—
therefore from (4) and (6)
Up=4 -g"(B -£" ' D)
and letting K=0UD wve ¢ the re d results
gYB <P'K)=A - K
A4B, CLD—»
ST Y xodB Dy 3

i a + th e ral

TPy 8 =X - L & - \< Ly
s that of the relation \ ( re

W

- - £ (!;)
e e
Bty st e -~ (6)

Theoren 1

1) ALB = =(B2A); ii) adB, B2C—y AQ0; 4ii) 4

iv) AQB<€—» (4B v AQB)
Proof: The proof of each part follows quickly from

definitions and theorems but part (iv) is proven here:

Sl T WS
R given :\‘5:3, suppose ~(A< B)

AZB

Wl 3

sfinition 51, it follows that

asymnmetric and

» J\{G

AT G
Dg D U~ DL Vs

the preceding




but from given, it is known that An{ B

'

o
(o]
(e

§ Ao
.
“

Bernstsin Theorem A3

& given AZ-B v A{I

by theorem 107 AMB -5 ALB

by definition 51 AdB —3 A4 3B

Theorem 114, AR PA

It should be noted

power of two sets is not stateds According to Suppes such a theore
not only requires the axiom of choice, but is equivalent to it.

this is beyond the scope of s it is omitted.

Aveeb o X ds finite 1g to Ta if any non-em fa
4 hac P ~ g i A £ P PR P
of subsets of X has a membsr of whi iember of the fe

ia conveniently in terus of

=3
o

concept

element will be

(Va)(B e

X 13 @&

‘éx"} ia fintte

Proof's 3ince there is only one non-ompty family o

"




Lo

namnely ?)'3‘ y and f

1 117,

Define I to be a non-enpty fomily of subsets of B,

8ince B& A then F 1is a non-eupty famlly of subsets of A. But A
i finite so ' has a nminimal el nts" Thereforse B is finite,
Theoren 118, A is finite -3 AQBs A =38 18 finitc

Proof's By thoorem 16 AAB #\ ond since A is finite A(}B 1is

finite ‘(."‘/ theoren 1:!‘/‘" Simi 'l_j'l:nl':l'\’ f'or the socond half of the theor

A= BEA and agnin since A le finite A - B is finite by thoorem 117,
The next theoren's proof is quite lengthy and ean be found in
a
ulliv".‘{iﬂo
Thaorem 119, AaB finite-» AUB is Pinite
Theorem 120, A 1s finite~y A WE{xs 1o finlte
0 ’ oA, Y . \ W 3 .
Proofs Since ¢xt 1o finlte by theorem 116 and it is gliven that
A 1l finite, thon 1t follows that A Q> 3 le finlte by theor: 119,

Theoren 122, If every non-en

has a nmaximal elenent than A 1is f

The next theoren is the first of its noture thus presented, that

Then

Proofs Define KX

then K 1is not empty since O0&A and by 4i) @(0) wso O €Y, INow
since A 18 finite, X mnust have a maximel element, say B by thooren

121, It ie needed that B= A for then 7”( ) wil) follow. Suppo




A %”3 » howevaer by (]) BlsA 80 A w B / O lLEet X&) » Be Then

B U'?,‘\.)‘ S A but in 1i1) it ip knoun that /@ ¢ &xd ) B0 By \ § & K
which oannot hold since B 1a tho moximal elenent ef I,

Theorem 124, If 4) A 18 finite; 11) 0 &K
144) (Vx)(MB)(xBAABSA, D&K=y B [Ilx] &K)

Then A&

Proofy In theoren 125 let @(B) be ' pe&t !,

Jhoeoran 125, A 1o finlteg-yp belongn to every wet K
patiofydng (44) end (441) in theoren 124,

Prooaf P folle i llotely firon tliesi 1R o a1 vern
belongn to evoary woet J atd nfvi ,(i}) afd (.,1) in than 124,
Delinoe 1 to b th ffamid ] ol Ll finite subpet el - j] Yl
Q&K b thear 1% lgo 1f ¢ fand y k6 l,l‘_r ¥ (

:‘j-h o 126, [ A 1 finlite and {! | a funetion sueh Lhat
DI A ond RPfesB +then B is finite,

Proofs Dofine K¢ (j:’v_:; J &AL "0 1p finid 3

U.’l"?]ly'. induetion thaoren 1 o VO R ML neaded to prove A& 8o that
B will be finitbe inae A = 11 Pl O Bilnaa 0L A f11d 1020
Now asmuning x& A wand J& X all that ls noeeded to gonplete the prosf
o to shav l'll‘/;(: » JLeayly 1,,2. § £ oy Blnoe 3 X $ 1s

finite and £ 41s & funotion then f£'"(x) is Ffinits, Alsoe sinse O£ 1

then f'0 18 Pinite, Jonseqgiiently (i,"_.“)ll -l %% g findte bub

4 - 4 1 b s . s FIll o A i/ i
60 F'(:!) eX 2) ip Lindte und by the dafinitien of K 44 18 lenoun

Theoren 127. 3. A i finite and every sst




A is finltoa AZXB -3 B 1a finlte

diate from theorem 126 and definition }.‘,"..

A dg finlte, BA A -» B ip finlte
B 1\ A then there exlaste o (0] k A puch that :;’:’u‘
but. .4 is finite so 1‘_'/' theorem 117 0 1is finito and by theoremn 128

it follows thet B is finite.

At the end of the last section it wos noted that riven sny two

f‘.()\'ﬂ}, it 19 now known that L‘.w_" are compt rable without the axlom of
cholce, However, the follouwing theorem states that if ono of the two
sots ig finite, the; re compoarable,

Theoren 15

Proc

and the proof 1s reletively straight forwvord.

Theore A is finite and B 4s not— Al B
Pl i L) b Y
Proof: B is not finite.v A s L5 PR sk o " o i 17
oofs B 1s not finite~y A Iis not finite or «~(B< A) by the
contrapositive of theorom 129, 3ince it i iven thet A 18 finite

The follo j:|"“ definition is thot of' a finite sot in genne of

Dedikinds A set is Dedikind finite if end only if it

to any of its proper subsota, It is proven In 3uppes that if a seot is

finite (Tarski is finite) then it is Dec

Theorew 132, If a sot is Tarski finite then it is Dedikind finite,

4

In the future unlcss 'vJ:r‘z‘,l‘i(::‘J:"f gbated !

J(_‘lu'] 1,5;' .,"l J:[ rafer to

'"Parski finite' as before.

A is Piniten BCA~>» B 4 A




132

consequently B «

Iheo

Al g S :
S oaba G 1 '.'r.Lu‘,‘ < B3 3 {1 C ~0 > ‘[\/'-: B0
. Sidd A A= I B 4 o . i}
fion 3O A PR o h g R T A DDy C-4{ D A B 4 3 WD
7 PR o S S R e e o ) ST R S T T e ' s r
Terski has proven that theorem 155 without the hypotheses that

Theo

The last of the is an outline of the de
the arithmetic of the cardinal numbers and the necessary Uthe are

included making it po

A typical

uivalence classes of equipol-

lent sets (sets that have the sa

valence clas:zes exist

can't be proven that the ep

sequently he introduces

that of the cardinal numl

axiom is given that associates to each set A, an objec




46

that to two eguipollent

number.

] 3 4 ~11t o~ avion of 1 4 04 2 :
Obvliously without en axion of infi: s the exislanco of

b e R N okl A : .
cardinals is not known to exi g0 2ll the thoeorews in thls section

deal with finite cardinals, but it is lmown that some of those thoorems

to infinite cardinals,

ny - 2 ] 4
The fnglish 1 r cage let 16 tw': L UL ith and without
subgeript and su 101l i1l be { 1
] @ us GO Q¢ ¢ L NVMDO)YBe
T N 2 T 3 4
a 3 418 yar <~ there s ¢ et )

N
~
e

=
—~
o+
~
b}
p.
o

Proof: By definition there exist sets A' end B' such that
K(A') =a and X(B') =b but by theorem 102 there exist sets A and
B such that Az%xA' end B2B' o by the axiom for cardi-
nals K(A)=a =b.

The next theorcn is i ugual justifying theorem for an oporator,
in this case for the addition of cardin nunbers.

SR, TR 1 o o o, s i
Proof's Parte 1)y J..t) ind 1,L.‘.) follow from theoren l/)' and the

existance of ¢ 1g trivial but its uniqueness is more interesting,

that ¢ be independent of the part:

A and B. Suppose therec sre sets A' and B' and a cardinal nusher

o' puch that AV ) B'=20 2 RIS S i WA (1)
(




and
and
v fr‘:)” (‘)> and ()) and
conge 11,1011{-,]_‘7

So }’f( AtV ;l)
1i)

nuni

from the commutativity and assoosi:

Iheo

(a¢b) tos

Theonrec

o

The following def

11
Lne

0, 1

inition of

done in the obvious manner, There is no new

4 4 2 o) S On s A s )
inguish botween sot and

should be obvious when in context.
0 =K 0)
Theorein 141,
Proofs. .. Let;: B&PA.

that (\ 0

Then to ea B there corresponds a unique g,, and for
gl &
there exlsts a unique B&PA such that h=g. which prove:
o] ¢
is est ] in the cor

~ o oy
103

& ik Ah xR O o
lnuroducoea

i
By &2

each

and 2 a

0 .8

e T

B=0;

follows

P ¥
st v y
eotively,

I'e

Lo

such

o A
h&24




Lu)

\

that for addition only, of course; using the corrcsponding Certesinn

product theorem (theorem 98) in placo of tho theorem for uni

0 S | S
Theorem 145,

g s BB by R1L)

catlon flollowus Lrom the commubtativity m agoocliobivity of 1) Qartoenian
product,
ab «ban
(ab)o = a(bo)
Theore a*l =a
Theoren o(b+c) =ab4 oo
Proof's Ay, B and 0 be pairwise dlsjoint sets such that




Proof follows

Proof follows

~

b a contra

Theoren 155.

from theoren 105,

from theorem 106,

— (FRE3)((N)= ay (B)=b, AdB), a b

K £y 1 ’
) A& B, (;u: b v b< r\)

{

N
=

e
e
%

.y i@
A1 § EO‘Q :.(7";, A by theorem 141




0o AR {0

thus o

Gantor theorem that therse exists no groatast eardinal nunber.

Theoran 156, (Ve)@b)(adh)

Proofs Juppose thare lg o grantast eardins) number, eall 1t &,
Then by the dafinltion of n anrdinal nanbers it is knawn that theve is
LY 4
[ fs‘:;. A ;nl!n‘-}! “\ l; 8, He Ve § | £ ‘It i 5 l &1l f [§ 1
and }w. the axlon for eardii 1la the: ia 6 @ dinnl nunbe: h aual tlisgt
y ) ) ) i
K(PA) ) Wt thea 114 ¢ '8 | 8 b by 1 ) 154 thua
conti Yi:-f,';u“ the aa ptlion Llial fl 1o the 1ai eat oardinel numb a
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