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CHAPTER I 

INTRODUCTION 

Objectives of study 

In recent years, Bayesian inference has become very popular in 

applied statistics. This study will present the fundamental concept of 

Bayesian inference and the basic techniques of application to statis­

tical quality control, marketing research, and other related fields. 

Historical development 

The n-ame of Bayesian statistics comes from a mathematical theorem 

by an eighteenth-century English philosopher and Presbyterian minister, 

Thomas Bayes (1702-1761). The theorem states that if a certain 

probability is found, some events will occur; and if later additional 

information is secured, the revised probability can be estimated by 

combining these two preliminary probabilities. Sometimes this is 

referred to as the II inverse probability method. 11 

For instance, we can combine the statistical probability derived 

from a sample with a probability estimated personally by people exper­

ienced in the discipline being considered. An actual example is the 

marketing research group in Du Pont fibers division. They used 

management's judgment about the probable sales of production combined 

into a probability curve of potential sales along with the cost data. 

The results told Du Pont the demand in the market and what size plant 

should be built. 
1 

1Theodore J. Sielaff, Statistics in Action (San Jose, California:
San Jose State College, 1963), p. 155-158. 



To businessmen, the translation of their subjective forecast into 

mathematical probability is a new experience; but to the statistician, 

it departs from the classical statistical theory that probabilities 

are not available unless they are based on repeated observations. The 

relevance of subjective probability in Bayesian statistics is still a 

controversial topic among statisticians, who explain their favorite 

concepts of "significance level," "confidence coefficient," "unbiased 

estimates," etc., in terms of objective probability; i.e., the frequency 

of occurrence in repeated trials such as a game of chance. According 

to the classical approach, elements of personal judgment or subjective 

belief should be excluded from statistical calculation as much as 

possible. The classical school believes that the statistician can 

exercise his judgment, but he should be careful about it, and it had 

better be separated from statistical theory. 

2 

In the past 30 or 40 years mathematical statistics has been 

treated increasingly rigidly. Bayesian statistics was neglected. One 

of the reasons is that one would seldom have enough information about 

the states of nature (prior probability). Without this information the 

Bayes theorem is not applicable. Even then, classical statisticians 

show a great diversity. R. A. Fisher, who contributed so much to the 

development of classical statistics, held an unclassical viewpoint, not 

far removed from the Bayesian. Especially has A. Wald made much use 

of the formal Bayesian approach to which no probabilistic significance 

is attached. 

In the past two decades, L. J. Savage's interpretation
2 

of the works

2
Leonard J. Savage, The Foundations of Statistics (New York: John 

Wiley and Sons, Inc., 1954), p. 2 7-30. 



of Bruns de Finetti on subjective probability has established the 

foundation of Bayesian statistics. Subjective probability may differ 

from individual to individual. The members of the Bayesian school 

also are divided on how the prior subjective probability is to be 

determined. For example, R. V. Juises thought it should be on the 

basis of prior experience, while H. Jeffreys uses certain canonical 

distribution. Some others claim that the prior probability distribu­

tion may be based upon either subjective beliefs or upon previous 

objective frequency. 

The relevance of this prior probability would depend upon the 

similarity between their additional information and that which has 

been previously experienced. In other words, if the additional in­

formation being undertaken is from an entirely different population, 

then the prior information may be of little relevance. As an illus­

tration, we consider an experienced statistical quality controller's 

estimate of the defective proportion of a particular production process. 

According to his previous experience in production process, he would 

have some notion about the defective proportion to be produced. The 

similarity between this particular process and the previous process 

3 

needs to be considered. If it is an entirely new production being under­

taken using a new process, the prior information may be of little 

relevance. It departs from the assumption that posterior probability 

is consistent with his prior probability and likelihood in accordance 

with Bayes' theorem. 

Contributions in Bayesian s ta tis ti cs have been made by V. Neumann, 
3 

3
von Neumann and 0. Morgenstern, Theory of Game and Economic 

Behavior (Princeton, New Jersey: Princeton University Press, 1947), 
p. 15-29.



A. Wald,4 D. Blackwell and M. A. Girshick,5 until the work of H. Raiffa

and R. Schlaifer,6 which presents a rigid mathematical theory of statis­

tical decisions suitable for application.

Generally speaking, Bayesian inference assesses some underlying 

11 states of nature" that are uncertain. These states of nature are a set 

of mutually exclusive and collectively exhaustive events that are con­

sidered to be a random variable, and it is known in advance that one, 

and only one, of these events will actually occur, but there is uncer­

tainty about which one will occur. Bayesian inference starts by assign­

ing a probability to each of these events on the basis of whatever prior 

probability is available under current investigation. If additional 

information is subsequently obtained, the initial probabilities are 

revised on the additional information through the Bayes theorem. 

The importance of relative consequence 

In testing hypotheses, a type I error is committed if H 1 is 

accepted when H
0 

is true. It means rejecting a true hypothesis; i.e.,

P(a 2 jH
0

) = a. Conversely, a type II error is committed if H
0 

is

accepted when H1 is true. It means accepting a false hypothesis; i.e., 

P(a 1 IH1) = s. To determine the optimum selection, it is necessary to 

measure the risk of committing these two kinds of errors. It is 

already known that to eliminate errors of these two types is impossible, 

since for a given size sample, the type I error and type II error have 

4Abraham Wald, Statistical Decision Function (New York: John Wiley
and Sons, Inc., 1950), p. 103-122. 

5oavid Blackwell and M. A. Girshick, Theory of Games and Statisti­
cal Decisions (New York: John Wiley and Sons, Inc., 1954), p. 147-169. 

6
Howard Raiffa and Robert Schlaifer, Applied Statistical Decision 

Theory (Boston, Massachusetts: Harvard University Press, 1961), p. 132-
174. 

4 



an inverse relationship. That is, if one tries to eliminate a type I 

error by shifting a critical value outward (eliminating a), this will 

relatively increase the committing of a type II error (increasings). 

Therefore, the only way to reduce both a and Sis to increase the 

sample size. Hence the classical testing hypotheses use the comprised 

procedure in selecting the optimum decision. They set up a favorable 

prespecified value called the "significance level a, 11 and select a 

left-hand, a right-hand, or two-hand tail test according to the dif­

ferent alternative hypotheses to minimize the value of a type II error. 

But this still leaves the problem unsolved. Since the more null 

hypothesis is close to the alternative hypothesis, the type II error 

will be committed more often. When the value of the alternative hypoth­

esis approaches the null hypothesis, the alternative hypothesis becomes 

ignored, although the probability of committing the type II error 

approaches probability 1. (See Table 1.) For example, let H
0

:µ = 45, 

ax= 3, the probabilities of committing the type II error for various 

H1s are shown in Table 1.

Table 1. Probabilities of cornnitting the type II error for various H's1 

25 30 35 40 42 

P(a1IH1) 0.0000 0.0012 0.0853 0.6130 0.8300 

H 1 47 48 50 55 

0.8971 0.8300 0.6131 0.853 

43 45 

0.8971 0.9500 

60 65 

0.0012 0.0000 



Let H0:µ = 45, H1:µ = 47, ax= 3, the probabilities of committing

type I error and type II error are shown in Figure 1. 

P(a1 Iµ = 47) = 0.8971 = B 

= 45) = 0.025 
2 

Figure 1. Probabilities of committing type I and type II errors. 

This means that errors of these two kinds should be considered from 

not only the standpoint of the probability of occurrence but also from 

the standpoint of the relative consequence of loss or utility. If the 

statistician feels that the loss incurred from committing a type II 

error is larger than that from a type I error, he would like to decrease 

the probability of taking action a1, In other words, the statistician 

should look at the probability of occurrence as well as the consequence 

of making a wrong decision. 

Comparison of classical and Bayesian 
statistics 

From the Bayesian point of view, classical statistics is commented 

upon as follows: The preassignment of null hypothesis is arbitrary. 

Moreover, the limiting of the analysis to only two numerical values for 

the states of nature (parameters) in order to get a unique a and a unique 

Bis either arbitrary or even dangerous. Here they use only two 

possible actions: To accept or reject the hypothesis. There are only 

two possible states of nature: The null hypothesis or the alternative 

6 



hypothesis. Indeed, there exist many possible states of nature. It 

avoids any probability distribution for the unknown parameter and 

attempts to arrive at the decision purely on the basis of the objective 

evidence. At this point, classical statistics treats the statistic 

of samples as the random variable, while Bayesian statistics treats 

the parameter itself as a random variable. It attaches to the values of 

parameter its probability, and revises this random variable when 

additional information is obtained. There are various treatments of 

7 

this random variable such as uniform, binomial, normal, B distributions, 

etc. It depends on the different types of phenomena. If the random 

variable fits with a uniform (prior) probability function, then the 

Bayesian inference is close to the classical inference. This means that 

posterior probabilities can be calculated from sample evidence alone. 

This is why some of the Bayesian statisticians accuse the classical 

school of implicitly assuming the uniform prior function in its analysis, 

even when prior information might be available. Hence, when Bayesian 

analysis assumes that the prior probability is uniform, the numerical 

result will be the same as that of the classical approach, although 

the interpretation of the results is somewhat different. A Bayesian 

decision is to establish the "optimum" or the "best'' action on the 

basis of all available information while some other possible decision 

often ignores some information (see Table 5). 

The following are some important relations between the prior evi­

dence and additional information: 

l. The greater the amount of additional information obtained, the

less is the uncertainty. 

2. If the prior evidence is taken into account, the size of



sample necessary to achieve a given relative degree of certainty will 

be smaller. 

3. The greater the cost of acquiring sample size, the greater the

importance of this prior evidence.
7 

7
Bruce W. Morgan, An Introduction to 

Processes (Englewood Cliffs, New Jersey: 
p. 3.

Bayesian Statistical Decision 
Prentice-Hall, Inc., 1968), 

8 



CHAPTER I I 

BAYESIAN DECISION THEORY 

The objective of the Bayesian inference, like that of classical 

inference, is to establish an optimal decision under uncertainty. In 

the introduction, we talked about the basic difference between the 

classical and Bayesian inferences. Bayesian inference is a revolu­

tionary movement forward. Also, it is a movement backward, since it 

comes back to an approach ignored by the statisticians for centuries 

and makes use of Bayes' theorem. 

Bayesian decision theory is a mathematical structure formulated 

for the statistician in choosing a course of action under uncertainty. 

Before we mention the decision rules, some probability theorems might 

be reviewed: 

Conditional probability and the Bayes' 
theorem 

Theorem l. If P(B) > 0, then 

(a) P(AIB) > 0.

(b) P(�IB) = l where � is an arbitary fundamental probability set.

(c) P(tAkJB) = fP(AklB) for A;')Aj ='8.._where i'\j.

Theorem 2. If P(A A 1 ... A 1) > 0, theno n-

P(A Al••• A )= P(A )P(A1IA )P(A2IA A1) ... P(A IA A1 ... A l).
o n o o o n o n-

N 
Theorem 3. If P(rH ) = l and P(Hn) > 0, then

n n 

P(A) = LP(AIH )P(H ).n n n 



10 

N 
Theorem 4. If P(HHn) = l, P(A) > 0 and P(Hn) > 0 for every n, then

P(A IHj)P(Hj)
= P(A IH. ) P(H

J
. ) P(Hj lA) =

�P(A IH ) P(H ) P1A) -n n n 

This theorem is called Bayes' Theorem.8

Some assumptions, definitions, and theorems 
in Bayesian decision theory 

If there exist some decision rules: 

( 2. l ) 

Assumption l. The statistician will be able to decide whether he 

prefers action a 1 to action a2, or if he prefers action a 2 to action 

a 1, or both of the actions are equivalent. 

Assumption 2. If action a1 is preferred to action a 2, and action 

a2 is preferred to action a 3, then action a 1 is preferred to action a 3. 

Assumption 3. If action a 1 is preferred to action a 2 , which in 

turn is preferred to action a 3 , then there is a mixture of action a1

and action a 3 which is preferred to action a2 , and there is a mixture 

of action a 1 and action a 3 , over which action a 2 is preferred. 

Assumption 4. If the statistician prefers action a 1 to action a 2, 

and action a 3 is another action, then we assume that he will prefer a 

mixture of action a 1 and action a 3 to the same mixture of action a 2

and action a3. 

The statistician can also express his preference for consequence 

by a real-value function U(a; ), called utility function, such that 

U(a 1) > U(a2 ) if, and only if, action a 1 is preferred to action a2. 

Further, if the statistician faces action a1 with probability p 

and action a2 with probability (l - p), then 

8Howard G. Tucker, An Introduction to Probability and Mathematical
Statistics (New York: Academic Press, Inc., 1962), p. 15-17. 



11 

(2.2) 

Most parts of the payoff matrices in Bayesian statistics are expressed 

in terms of monetary value; but the monetary value is not a good 

measure of a gain or a loss, because the value of money to the indi­

vidual varies from one person to another. 

For example: 

(1) Player A receives $2 if a fair coin falls heads and player B

pays $1 if it fa 11 s tai 1. 

(2) Player A has an entire fortune of $100,000 cash, player A

receives $200,000 extra if the coin falls heads and player A loses his 

fortune otherwise. 

In situations (1) and (2) the odds favored player A two to one. 

But our reactions to these situations would be different. In situa­

tion (1), the chance to win is one-half, the amount to be gained is 

twice as much as the amount to be lost. In situation (2), this is 

also true; but the winning of $200,000 would increase our happiness 

very little while the loss of our $100,000 would lead to considerable 

misery. Hence in situation (1) we would like to bet, but we would not 

in situation (2). This example indicates the value of money to the 

individual is not proportional to the amount of money.9

The following are some essential elements in decision-making: 

1. A space of possible actions available to the statistician

A= {a1,a2,,, .. an
}. One of these alternative actions is chosen upon

the state of nature which is not known. These actions are sometimes 

ref erred to as 11 terminal II acti ans. 

9H. Chermoff and L. E. Moses, Elementary Decision Theory (New York:
John Wiley & Sons, Inc., 1959), p. 70-89. 

U(a) = pU(a1) = (1 - p)U(az). 



2. A space of possible state of nature

e = {81, 8 2, em}.

The state of nature summarizes those aspects of the world that are 

relevant to the decision problem and about which the statistician is 

not certain. Nature exists in exactly one, and only one, of these 

states, e. E e. 
1 

3. The loss matrix or utility table measures the consequence of

taking actions in monetary or other terms, while their corresponding 

states of nature are {81, 8 2, ... em}, respectively.

4. A set of possible experiments, E = {e 1 , e2 , ... e�}. The

statistician can use one of these experiments to obtain information 

about the state of nature. E includes making decisions with experi­

mentation or with no experiments in E. 

5. A space of possible outcome X = {x1, x 2, ... xi, ... } for the

experiments in E. Each combination ( a, e, e, x)E Axe x E x  X 

determines a consequence for the statistician. 

The statistician can express his judgments about the relative 

likelihood of the states of nature and the experimental outcome by 

measures of a probability function P(e, x) one x X. From P(e, x), 

we can obtain the marginal probability function P(e) one, called the 

prior probability function of the state of nature. If experiment e 

results in an outcome x, the statistician's prior evidence is revised 

12 

by Bayes' theorem to get the posterior probability function of the states 

of nature P ( e Ix), i.e. , 

P(ej)P( xlej)
p ( 0 -I X ) = �--.....,,,...,..--,.--.....-

.] f P ( e i ) P ( x I e i ) 

in a discrete case, and 

(2.3) 



13 

_ f e l(x e)
f(elx) - J f e 1 x e de (2-4) 

e 

in a continuous case. l(xle) is called the likelihood function: the 

conditional distribution of the outcome x, given that e. 

The sample outcome is a point in a multidimentional sample space, 

and we often could express the essential information of the sample 

in a space of fewer dimensions. Any function y(x) which maps the space 

of outcome x onto another space Y is called a statistic. A statistic 

is said to be sufficient if use of y in place of x does not affect 

the decision made by the statistician; that is, y(x) is a sufficient 

statistic if, for all yie: Y and xiE X, P[ely(x)J = P(elx). It is

equivalent to the definition of a sufficient statistic in classical 

statistics, that y is a sufficient statistic if, and only if, 

1 ( x I e) :: k [y ( x) I e Jr ( x) (2.5) 

where k[y(x)le] is a function of y and e only, while r(x) is a function 

of x only. 

A statistical decision problem is a special game (e, A, L) com­

bined with an experiment involving random observations X = {x 1 , x 2 , 

... X1}, whose distribution P(Xle) depends on the state of nature 

ei € e.

On the basis of the possible outcome of a certain experiment 

X = {x1, X2, ... xi}, the statistician chooses an action d(x 1 , x2 , 

x 1) E A. The function d which maps the s amp 1 e space into the action 

space is called a decision function. The consequence in making a wrong 

decision is the random loss denoted by L(e, d(X)). The expectation of 

L(e, d(X)) when e is the state of nature is called the risk function: 

R(e, d) = E[L(e, d(X))J = JL(e, d(X))dF(Xle). (2.6) 

f ~ ( I )-



When the true state of nature is not known, the statistician 

employs this expected risk function to make the decision. 

Definition l. If the risk function R(e, d) is finite for all 

e.E e, any function d(X) which maps the sample space into the action
1 

space A is called a nonrandomized decision function. 

Suppose in action space A, the statistician leaves the choice of 

action to a random mechanism, such as to toss a fair coin to decide 

it. This decision is called a randomized decision and is denoted by o.

In game theory, o would be called a mixed strategy, since this kind of 

strategy combining the original nonrandomized strategy with random 

mechanism, while the nonrandomized strategy d is called a pure strategy. 

Definition 2. If the risk function R(e, d) is finite for all 

e. e, any probability distribution d on the space of nonrandomized
1 

decision functions D is called a randomized decision function (rules). 

The space of all randomized decision functions is denoted by D'. 

The space D of non-randomized decision functions (rules) may be 

considered as a subset of the space D' of randomized decision functions. 

That is: DC D'. Hence in speaking of randomized decision functions 

(rules), we just say decision functions (rules), since it also contains 

the non-randomized functions (rules). Also, we use A as a nonrandomized 

action, while A' is referred to as randomized action. 

The advantage in extending the definition from L(e,a) to L(e,a) 

and the definition from R(e, D) to R(e, D') is that these functions 

(rules) become linear on a and D', respectively. That is, if 

a1 E A' , al so a 2 E A 1, and O -;; p $ 1 , 

then pa1 + (1 - p)a 2 E A' and 

L(e,pa1 + (1 - p)a2) = pl(8,a1) + (1 - p) L(8,a 2), 

14 



Also, if 01E 0 1

, 02E 0 1 and O < p < 1 then 

po i + (1 - p)o2 E. 0 1 and 

R[e, poi + (1 - p)o2J = pR(e, 01) + (1 - p)R(e, 02). 

Optimal decision rules 

The decision theory is designed to provide a 11 good 11 decision if 

the statistician is given the states of nature, actions, and the pay­

off (loss function); i.e., (e, A, L), and a random variable X which 

distributes on eiE e, then what decision rule o should be the best

one. The best decision rule undoubtedly should have the smallest risk 

for every state of nature in e. Usually in only a few cases does such 

a best decision rule exist. In all other cases, the best decision rule 

to the state of nature ei is not the best decision rule to the state

of nature ej, where i is not equal to j, since a uniformly best

decision rule usually does not exist. 

Bayesian decision rule 

The statistician may set up some principles (criteria) in select­

ing a decision rule. The most important and useful decision principle 

is the Bayesian decision rule. 

The Bayesian decision rule involves the concept of the prior dis­

tribution. The following conditions are needed: 

1. Bayesian risk of a decision rule o corresponding to a prior

distribution t, 

r(t, o) = E[R(T, o)J. (2. 7) 

T denotes a random variable over the parameter space e having the dis­

tribution t. 

15 



2. The posterior distribution of the parameter, given the sample

observations. 

It is clear that with the definition of expectation, any finite 

distribution t on the parameter space e satisfies these two conditions. 

For specific purposes, we use e1 as distribution t one that 

satisfies the above-mentioned two conditions . In addition, e1 is a 

16 

set of finite distribution one; i.e., the states of nature are finite 

and e1 is linear. As we have mentioned before, in Bayesian inference the 

statistician looks at the parameter as a random variable whose distribu­

tion be previously known . Given a certain distribution, the statis­

tician prefers a decision rule o. to another decision rule o. if the 
1 J 

former has a smaller risk. Hence we might say that the Bayesian 

decision rule is that which minimizes the expected losses. 

Definition 1. A decision rule o
0 

is said to be Bayesian with 

respect to the prior distribution tE e1 if 

r ( t, o ) = inf r ( t, o): O 
0 0ED

1 

The value on the right hand side of (2.8) is known as the minimum 

Bayesian risk . 

(2 .8) 

Bayesian decision rules may not exist even if the minimum Bayesian 

risk is defined and finite for the same reason that a smallest positive 

number does not exist. In such a case the statistician uses the 

approximate which is close to minimum Bayesian risk . 

Definition 2. Let E > 0, a decision rule o
0 

is said to be E-Bayes 

10Let S be a set of numbers. A lower bound for a Set Sis a number
W such that W s X whenever XE S. The greatest lower bound of Sis a 
lower bound that is greater than all other lower bounds of S. Common 
abbreviation for 11greatest lower bound of S1

1 is inf(S). The abbreviation 
11 i nf11 is derived from II i nfi mum. 11
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with respect to the prior distribution tE: 8 1 if 

r(t, o ) :s inf r(t, o) + E. (2.9) o o D 1 

A set of risk functions constitutes a risk set. In other words, 

the risk set is 

s = {R(01, o), R(02, o), ......... , R(0k, o)L

where 8 ranges through D'. 

Theorem 1. The risk set is a convex set. 

Suppose that 8 is a finite state of nature that consists of k 

points, 8 = {8 1 , 82, 8k}, let the set S be a risk set in k-dimensional

Euclidean space Ek

s = {R(0 1 , o), R(02, o), ... R(0k, o)}

where oE 0 1

then a risk set must be convex. 

(2.10) 

Proof. A subset A of Euclidean k-dimensional space is said to be 

convex if whenever Y = (y1, Y 2, ... , yk) and Y 1 

= (yi, yL ... , yk) are 

elements of A, the points 

pY + (1 - p)Y 1 

= [pY 1 + (1 - p)Y1, ... , pYk + (1 - p)vp,o < p < l

are also elements of A. 

Let Y and Y 1 be arbitrary points of the risk set S. Since yj = 

R(8j, 01) and yj = R(8j, o 2) where j = 1, 2, ... k.pR(8j, 01) +

(1 - p)R(0j, 02) = R[0j, poi + (1 - p)o 2 J = R(0j, oc),ocE o• if R(0j, 0c)

is denoted by z, then z = [pYj + (1 - p)Yj] ES. Further S is the

convex hull, the smallest convex set containing S
0 

which is the non­

randomized risk set, where 

\ = {R(8 1 , d), R(82, ct), 

where ct E D. 

R(8k, ct)} (2.11) 



Since the risk function contains all the information about a 

decision rule, the risk set S contains all the information about the 

decision problem. For a given decision problem (e, D 1

, R), the risk 

set Sis convex. Conversely, for any convex set Sin E
k' there is a

decision problem. 

A prior distribution for k finite states of nature is merely a 

k-tuple of non-negative numbers (p1,P2, ... pk)' such that Epi = 1.

Pi is the prior probability with respect to the specific state of

nature ei.

The expectation of the risk is p.R(e., o) = b, where b is any 
l l 

real number. One advantage that Bayesian approach has over the minimax 

approach to decision theory is that in the Bayesian case, 11 good 11 

decision rules are restricted to the class of nonrandomized decision 

rules. 

Suppose o0t D 1 is Bayesian with respect to a distribution t over 

e, let X denote the random variable with value in D whose distribution 

is given by o , then r(t, o ) = E[r(t, X)], but o is Bayesian with 
0 0 0 

respect to t, r(t, o
0

) ::: r(t, ct) for all ct ED. This entails r(t, X) = 

r(t, o
0

) with probability 1. So that any ct ED that X chooses with 

p = 1, satisfies the equality r(t, d) = r(t, o
0

), implying that ct is 

Bayesian with respect to t. 

Given the prior distribution t, we want to choose a nonrandomized 

decision rule ct€ D that minimizes the Bayesian risk 

r(t, ct)= JR(e, ct)P(e)cte 

where R(e, d) is the risk function 

R(e, ct) = JL(e, d(x))f(xje)ctx. 

The joint distribution of e and x is 
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h(e, x) = P(e)f(xle) 

k(x) = J8h(e, x)de.

Choosing e according to the conditional distribution of e, given X = x 

r(t, ct)= JR(e, d)P(e)cte 

= JJL(e, ct(x))f(xle)ctxp(e)cte 

= JJL(e, ct(x))p(e)f(xle)ctxcte 

= JJL(e, d(x))k(x)g(ejx)dedx 
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= f[JL(e, d(x))g(ejx)cte]k(x)dx. (2.12) 

The decision rule is to find a function d(x) that minimizes the 

double integral (2.12). First, we may find the value d(x) inside the 

parenthesis for each x that minimizes the value of the bracket; i.e., 

JL(e, ct(x))g(ejx)de (2. 13) 

That is to say that Bayesian decision rule minimizes the posterior 

conditional expected loss, given the observation. When the infimum of 

(2. 13) does not exist, we may find a decision rule d(x) within E. Then 

we ca 11 it E-Bayes. 

Decision rule and loss function 

For simplification, we use a linear loss junction to estimate the 

real parameter. But using a quadratic loss junction L(e,a) = C(e) 

(e - a)2 where C(e) > 0, to estimate the real parameter is more frequent. 

This function implies that as the loss increases, the further e is from 

the true state of nature e. It may be quite difficult to find a C(e). 

But experience has indicated that c(e) plays a minor role in determin­

ing the decision rules. If we let c(e) = 1, then the loss function is 

called a squared-error loss function. The posterior expected loss, 

given X = x, for a squared-error loss function is as follows: 

E[L(e, a) IX = x] = Jc(e)(e - a) 2 g(ejx)cte. (2. 14) 



This quantity is minimized by taking a= E(e). Hence the Bayesian 

decision rule is simply 
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d(x) = E[elx = x]. (2.15) 

This generates the following general rules: 

l. Given a certain prior distribution for e, with quadratic loss

function (squared error loss), the Bayesian estimation of the true 

state of nature (parameter) e is the expectation of the posterior 

distribution of e, given the observation X. A greater generalization 

is the weighted squared loss 

L(e, a)= w(e.)(e. - a) 2

1 1 

where w(ei) > 0, for all ei e e.

Then the Bayesian decision rule (function) is 

d ( ) = Et ew ( e) I x = x] = Jew e e x E w ( e ) I x = x J Jw e g e 
X d8 

X d8 

Another loss function is the absolute error loss 

(2. 16) 

L(e, a) = c(e) I e - a 1- For a given observed value X = x, the Bay­

esian decision rule d(x) is the action a that minimizes 

E[L(e, a) I X = x] = Jc(e) I e - a I g(elx)de. (2. 17) 

This quantity is minimized by taking a= Me(e), given X = x. This 

generates the second rule: 

2. Given a certain prior distribution for e with absolute error,

the Bayesian estimation of a true state of nature (parameter) is the 

median of the posterior distribution of e, given the observation X. 

It is difficult to specify a loss function. But in most statis­

tical problems with a reasonable amount of sample size, small variations 

in loss function on the decisions selected are negligible. However, 

gross variations in loss function should be avoided. 

( )g( I ~ 
( ) ( 



11Extensions to the Bayesian decision rule 
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There exist some extensions to the concept of the Bayesian decision 

rule. 

Definition 1. A decision rule o is said to be a limit of the 

Bayesian decision rule on, if for almost all x, on(x) + o(x), for non­

randomized decision rules d + d if d (x) + d(x) for almost all x.n n 
For example: Let the distribution of x, given 0, be normal with 

mean 0 and unity variance; i.e., X � N(0, 1), and the prior distribution 

t is normal with mean zero and variance o2 • The joint distribution of 

x and 0 has density 

02 h(0, x) = _l_ e - ½[(x - 0)2 
+ cr7J.

2no 
The marginal density of x is therefore 

f (x) -
1 e - /Zn(l +o2) 

x
2 

2 ( 1 + 02) 

and the posterior density of 0 given X =x is 

g(0lx) 

o
2
x 0

2 

normal with mean (l + 02) 
and variance (l + 02)·

According to (2. 15), d(x) = E[0IX = x], we know that the Bayesian 

decision rule with respect to t is 
x0

2 

do (x) 
= 1 + 02

lim d (x) 
o+oo 0 

so that d 

. x0
2 

= l1m 2 = x = d(x) 
0+00 l + 0 

is a limit of Bayesian decision rules. 

Definition 2. The decision rule o
0 

is said to be a generalized 

Bayesian rule if there exists a measure t on 0 such that 

11Thomas S. Ferguson, Mathematical Statistics: A Decision Theoretic
Approach (New York: Academic Press, Inc., 1967), p. 47-49. 

= ( 1 + 0 2 ) ½ - ( 1 + 0 2 ) ( x0 2 ) 2 
2n02 e 202 8 - 1 + 02 



L(e, o)f(x I e)dt(e) 

takes on a finite minimum value when o = o 
0 

For example: The posterior distribution of e 

1 -½(0 - x) 2

f(e I x)de =

ffn 
e 

with mean x and varience unity; i.e., e � N(x, 1). The generalized 

Bayesian decision rule is therefore d(x) = x. 

Definition 3. A decision rule o
0 

is said to be an extended Bay­

esian rule if o
0 

is E-Bayes for every E > 0.

For example: 

r(t , d) = E(e- X) 2 
= E[E (e - X) 2 I e] = 1 

a 
0

2 

= -=-1 _+_0..,...2 

r(t
0

, d) = igf r(t
0

, o) + E for E = -=-,-+-
0 
.... 2• 

Minimax decision rule 
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One different approach in decision problems is the minimax decision 

principle. The rule is to select the action for which the maximum 

amount which can be lost is minimized. It involves a decision rule 6 1

preferred to a rule 02 if 

Definition 1. A decision rule 

SUQ R(e., o )  = inf, SUI) R(e., o). 
e

1
-E"e , o ee D eiEB , 

is said to be minimax if 
0 

(2. 18) 

The value on the right side of (2. 18) is known as the minimax value. 

12Let S be a set of numbers. An upper bound for S is a number
W such that W? X whenever XE S. The least upper bound of S is an 
upper bound that is less than all other upper bounds of S. Common 
abbreviation for "least upper bound of S 11 is Sup(S) which is derived 
from II Supremum. 11

but inf r(t ,cS) = r(t , d ) 
a a a a 



Minimax rules and the Bayesian decision rule 

When are minimax rules also Bayesian rules with respect to some 

prior distribution? The answer is if 

(a) sug
1 
inf

1 
r(t, o) = inf, sup, r(t, o) and if 

tE8oE0 oEDtee 

(b) inf, r(t , o) = suo jnf r(t, o). 
oeD o tE8' oe D' 

A least favo rable distribution t
0 

exists then any minimax rule o
0

is Bayes with respect to t
0

• 

P roof: Since sug r(t, o) = suo R(e., o) 
tee e�e , 

and 8
0 

is said to be minimax if 

suo. R(e., o ) = inf �uo R(e., o)
ei-E"tJ , o oeD c:;EB , 

hence E�� 1
r(t, o

0
) = J�b·ti�, r(t, o)

sug, r(t, o
0

) = suo
1 
inf r(t, o) 

tee te-e oED' 

r ( t, o 
O

) = jJlt;, r ( t, o). 

Admissible decision rule 

Decision rules which are not dominated are called admissible. 

Definition 1. A decision rule 81 is said to be as good as 82 if 

R(ei, 81) :s R(ei, 02) for all ei e: e. A decision rule 01 is said to be

better than a rule 82 if 

R ( 8 i , e 1) $ R ( 8 i , 82) for all e.,ee, and
1 

R ( 8 i , o 1 ) < R ( e. , 
1 

82) for at least one ei Ee. A ru 1 e o 1 is said to be

equivalent to a rule 82 if R(ei, 01) = R(ei, 82) fo r all e.e e.
1 

Definition 2. A decision rule o is said to be admissible if there 

exists no rule better than o. A rule is said to be inadmissible if it 

is not admissible. 
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The word II admi ss i b 1 e11 is a synonym for the word II optima 1. 11 In a

given decision problem every rule may be inadmissible. 

For example: when the risk set S does not contain its boundary 

points, there exists no admissible rule. 

Complete class of decision rule 
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Decision rules which are in set C and not dominated by the decision 

rules which are not in set C, are called complete. 

Definition 1. A set C of decision rules, C C0 1 is said to be 

complete, if given any decision rule oE D 1 not in C, there exists a 

decision rule o
0

E C that is better than o.

Definition 2. A set of decision rules C is said to be essentially 

complete, if given any decision rule o not in C, there exists a decision 

rule o0 E C that is as good as o.

Definition 3. A set of decision rules C is said to be minimal 

complete, if no proper subset of C is complete. 

Definition 4. A set of decision rules is said to be minimal 

essentially complete, if no proper subset of C is essentially complete. 

It is not necessary that a minimal complete or a minimal essen­

tially complete set exists. The concept of complete set is to simplify 

the decision rule by finding a small complete set in decision-making. 

A smallest set may not exist, but if it exists that would largely 

simplify the decision problem. 

Likelihood ratio test and Bayesian13

decision rule 

A particular case in Bayesian decision rule can be included in 

13Alexander M. Mood and Franklin A. Graybill, Introduction to the
Theory of Statistics (New York: McGraw-Hill Book Co., Inc., 1963), 
p. 276-290.



classical likelihood ratio test. This particular case means the space 

of possible states of nature e is decomposed into two parts: e = 

{81, 82 }. Also the space of possible actions is decomposed into two 

parts: A= {a1, a2}. The appropriate action to take depends on the 

value of the unknown state of nature (parameter). The loss associated 

with the states of nature e and action a1 is denoted by L(e, a 1 ), 

where L(e, a1) � 0. 

Let X = {x1, X 2, ... x} be a random space from f(xle), and let S 
n 

be the n-dimensional sample space which can be partitioned into two 

disjoint sets S1 and S 2. A decision rule is a function d which assigns 

an action of A to each possible sample; i.e., 

a = d(x1, X 2 , ... xn).

The risk corresponding to decision rule d is given by: 

R(e, d) = JJ ... J
s
L[e, d(x1,X 2, ... xn)]f(x1le) ... f(xnle)dx 1 dx 2 ... dxn

= JJ ... J L( 8,a1)f(x1le) ... f(x le)dx 1 dx 2 .... dx s1 n n

(2.19) 

If we assume e = 81, then the above equation (2. 19) is as follows: 

R(8 1 ,d) = L(81,a1)P(S1l81) + L(81,a2 )P(S2l81) 

= L(81 ,a2 )P(S2 lei) 

= L(81 ,a2)P(I), where L(81,a1) = 0.

Similarly: If 8 = 82; 

R(02,d) = L(8 2,a1)P(S1102) + L(82,a 2)P(S2l82) 

= L(e2,a1)P(S1102). 
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= L ( e , a 1 ) ff . .. f f ( x 1 I e) . . . f ( x I e ) dx 1 dx 2 • • • • dx 
s1 n n 



The expected risk is: 

r(e,d) = P(81 )R(81 ,d) + P(82)R(82,d) 

= P(81)L(81 ,a2)P(I) + P(82)L(82,a1 )P(II) 

= P(81 )L(81 ,a2 )[l - ff ... ! f(x1 l81 ) ... f(x le1 )Jdx1 dx2 .. dx 
s 1 n n 

+ P(82)L(82, a1 )[JJ ... f f(xil82) ... f(x l82)]dx1 dx2 .. dx s1 n n
= P ( 8 1 ) L ( 8 1 , a 2 ) + ff . .. f s 1 [ - P ( 8 1 ) L ( 8 1 , a 2 ) nf ( xi I 8 1 )
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+ P(82)L(82,a1 )nf(xi l82)]dx1 dx2 ... dx
11

• (2.20) 

Since Bayesian decision rule is a decision rule which minimizes: 

r(e,d) = E[R(e,d)] = P(81)R(81 ,d) + P(82)R(e2 ,d), as defined previously. 

This can be done by letting the value of bracket in (2.20) be negative: 

-P(81 )L(81 ,a2 4Ef(xil81 ) + P(82)L(82, a1�Er(xil82) < 0.

That is: 

P(82)L(82,a1 4Ef(xi l82 ) < P(81)L(81 ,a2 4Ef(xi 10 1 ),

Taking action 1, if 

nf ( x i I e i ) P ( e 2 ) L ( e 2 ' a i )
nf ( x . I e 2 > P ( e 1 ) L ( e 1 , a 2 ) = k ·

l 

Taking action 2, if 

nf (xi I e 1)
nf(xi 102 ) < k.

Taking either action, if 

nf (xi I e 1 ) 
= k .

nf (xi I 82 )

Bayesian inference for decision-making is a generalization of 

classical inference. But this doesn't mean that there is no role for 

classical statistical inference and that all statistical inference can 

be solved by Bayesian decision theory. 

The main difficulties in applying the method of decision theory 

are: 



1. The statistician has difficulty in obtaining sufficient infor­

mation for knowing the prior probability, or difficulty in calculating 

appropriate payoff. 
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2. Most two-tail tests are not action oriented and it is difficult

to give them a Bayesian interpretation. 

The convexity and decision-making 

We know that the risk set is a convex set. Now we will further 

discuss how we apply the convexity to decision-making. 

For example: A coin is tossed once to test the state of nature 

of falling heads as either 01 = 0.5 or 0 2 
= 0.3. Two actions are 

action a1 accepting 01 = 0.5 and action a 2 accepting 0 2 
= 0.3. The 

loss matrix is as follows (see Table 2): 

only 

Table 2. Loss table for coin tossing 

A coin is 

0 

2 

allowed to be tossed only once. 

two poi nts--heads and tails. There are four 

These are: 

d 1: d i (H) = a1 d 1 (T) = a1 

d2 : d2 (H) = a1 d2 (T) = a2 

d3: d 3 ( H) = a2 d 3 (T) = a1 

d 4 : d '+ (H) = a2 d4 (T) = a 2

1 

0 

The sample space contains 

possible decision rules. 



Where H indicates the toss is heads, T indicates tails. Decision 

rule d1 means that action a1 (accepting 8 1 = 0.5) is taken regardless 
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of whether the toss of the coin is heads or tails. Decision rule d2

means that action a 1 (accepting 81 = 0.5) is taken if the toss of the 

coin is heads, action a2 is taken (accepting 02 = 0.3) if the toss of 

the coin is tails. The error probabilities for d2 and d 3 are calculated 

as follows: 

P(I) = P(a2 J0 1 = 0.5) = (6)·(0.5)�(0.5) 1 = 0.5 
1 1 P(II) = P(a1J8 2 = 0.3) = (1)•(0.3)•(0.7) 0 = 0.3

1 1 
P(I) = P(a1J81 = 0.5) = (1)•(0.5)•(0.5) 0 = 0.5

P(II) = P(a2J82 = 0.3) = (6)·(0.3)�(0.7) 1 = 0.7 

The corresponding risk function for d2 and d 3 are calculated as 

fo 11 ows: 

R(81,d2 ) = L(8 1 ,a1)P(a1J8 1 = 0.5) + L(81,a2)P(a2 J81 = 0.5) 

= 0 + (1)•(0.5) = 0.5 

R(82,d2) = L(8 2,a1)P(a 1 J02 = 0.3) + L(8 2,a2)P(a2 J82 = 0.3) 

= (2)•(0.3) + 0 = 0.6 

R(8 1 ,d 3 ) = L(81,a1)P(a1 J01 = 0.5) + L(8 1 ,a2)P(a2 J8 1 = 0.5) 

= 0 + (1)•(0.5) = 0.5 

R(8 2,d 3 ) = L(82,a 1 )P(a1 J02 = 0.3) + L(82 ,a2 )P(a2 J8 2 = 0.3) 

= (2)•(0.7) + 0 = 1.4 

The risk functions are given in Table 3 and Figure 2. 

Obviously, the risk set is a convex set. From this convex set, we 

find that d2 is preferred over d 3 . Since R(8i ,d ) s R(8i ,d 3 ) for all

8. E 8 and R(8. ,d2) < R(8. ,d 3) for 8. = 8 2 ,
1 · 1 1 1



Table 3. Risk function for coin tossing 

R(8 1 ,d) 

0. 

0.5 

0.5 

1.0 

Figure 2. Risk set for coin tossing. 

Risk functions 

2. 

0.6 

1. 4

0. 

29 

Hence we would discard d 3 as a possible decision rule. We also see 

that d 1 is better than d 2 if 0 1 is the true state of nature; d 4 is better 

than d 2 if 0 2 is the true state of nature. It is clear from Figure 3 

that, of all the decision rules, the only ones entitled to serious con­

sideration are d 1 , d 2 , and d 4. Thus the lower boundary of convex set 

constitutes the admissible decision rules. The Bayesian decision rule 

is to use the prior probabilities to find the optimal solution from 

these admissible decision rules. If we assume that P(8 1 ) = i and P(82) 

= !, the Bayesian decision rule corresponding to P(8 1 ) and P(8 2) can 



be represented geometrically by drawing the line P(8 1 )R(8 1 ,d) + P(e 2) 

R(82,d) = C and moving it parallel to itself by changing C until it 

touches the convex set. The point or points where it just touches the 

convex set is then the Bayesian solution. Let C =½, we get the line 

iR(81 ,d) + !R(82,d) = i- If we let C =½, we get another line ½R 

(8 1 ,d) + !R(82,d) = i which parallels the first line and touches the 

convex set at d4. Thus d4 is called the Bayesian solution. These are 

h . F' 3 14 s own 1n 1gure . 

iR(81,d) + !R(82,d) = t 

½R(81,d)+tR(82,d)= ½ 

Figure 3. Risk set and support lines for the Bayesian solution. 

We make some important points as follows: 

1. The Bayes' solution corresponding to prior probabilities (P8 1 )

and P(82) i to minimize the expected risk function. 

2. Admissible solutions are easy to get. If we can identify the

Bayes' solutions with admissible solutions, we can then restrict our 

search to the latter; now, it is a fact that any admissible solution is 

a Bayes' solution, which fact depends on convexity. 

14
Ibid. 
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R(82 ,d) 1 



3. Almost all Bayes solutions are admissible. Hence within the 

class of admissible solutions, we can hunt with confidence for the 

appropriate Bayes solution. This is a much easier task. 

31 
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CHAPTER III 

BAYESIAN DECISION PROCESSES 

Classification of decision-making 

Following the introduction and the Bayesian decision theory, we now 

refer to decision processes in applied statistics. These fall into 

two categories: 

1. Bayesian decision processes without sampling.

2. Bayesian decision processes with sampling.

The essential components in decision problems are (8,A,L): 8 is 

the possible states of nature, 8 = {8 1 ,82,.,.8 }. A is the possible 
m 

actions, A= {a1,a 2,,,.an}, Lis a loss function (or loss table) which 

measures the consequence of taking actions a 1 ,a 2, ... an, respectively, 

when the states of nature are 8 1 ,82,, .. em, respectively.

In decision processes the statistician has some prior evidences, but 

he does not know which one of the possible states of nature is the true 

one. If the states of nature were known, it would be easy to select 

the optimal action. 

Bayesian decision without sampling 

A decision is made by the statistician without any additional in­

formation. In other words, no additional information on the states of 

nature is collected by sampling or performing an experiment. 

There are three kinds of decision-making: 

1. If a particular state of nature is sure to occur, this decision



process is called decision-making under certainty. Linear programming 

. d 
. . 

k' d t · t 
15 

1s ec1s1on-ma 1ng un er cer a,n y. 

2. When a particular state of nature to occur is not sure, but

there exists a distribution for the states of nature, this decision 

process is called decision-making under risk. 

3. When no information about the states of nature is available,

this decision process is called decision-making under uncertainty. 

Now we explain these three kinds as follows: 

1. Decision-making under certainty: Since the particular state

of nature that will occur is certain, if the class of action is finite, 

there is no difficulty in finding an optimal action (decision). 

For example: 

0 = {81 ,82} and A = {a1 ,a 2 ,a3}. 

Suppose the loss function (negative of utility) is given by Table 4. 

Table 4. Loss table for decision-making under certainty 

5 

2 5 

4 

4 

When the state of nature is known for certain to be 01; i.e., 

P(0 1 ) = 1, we will take action a2 because this action will result in 

the minimum loss. Similarly, if the state of nature is known to be 

P(02) = 1, we will take action a1, 
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15
Kyohei Sasaki, Statistics for Modern Business Decision Making 

(Belmont, California: Wadsworth Publishing Company, Inc., 1968), p. 220-
223.



If there exists an infinite number of strategies (actions) which 

constitute a convex set, we use the linear programming method to 

. . 
f. t ( 

. . . 
th 1 ) 

16 
max1m1ze pro 1 or m1n1m1ze e oss . 
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2. Decision-making under risk: A particular state of nature is

not sure to occur, but the objective probability distribution of the 

states of nature is known. In this case we might calculate the expected 

loss for each strategy (action) and determine the optimal action. 

For example: The probability distribution of the possible states 

of nature 8 1 and 8 2 are 0.3 and 0.7, respectively. The expectation for 

a 1 , a2, and a 3 are calculated as follows: 

Suppose the payoff table was given in Table 4: 

R(8,a1) = P(8 1 )L(8 1,a 1 ) + P(8 2)L(8 2,a 1) 

= (0.3)•5 + (0.7)·2 = 2.9 

R(8,a2) = P(8 1 )L(81,a2) + P(8 2)L(8 2,a8
) 

= (0.3)•1 + (0.7)•5 = 3.8 

R(8,a 3) = P(8 1 )L(81,a 3) + P(8 2)L(8 2,a 3) 

= (0.3)•4 + (0.7)•4 = 4.0 

The risk for action ai is smaller than for any others. Hence action 

a 1 will be selected as the optimal action. One thing we should note is 

that in game theory the statistician would take action a2 rather than 

action a 1 or action a 3 . 

3. Decision-making under uncertainty: Neither the true state of

nature nor an objective probability about the states of nature are 

known. 

16
Ibid. 



Three criteria are used to decide the optimal action: 

a. Maximin criterion: This is one of the most conserva­

tive approaches. The payoff matrix is expressed in terms of 

profit (utility). The statistician selects the strategy (action) 

for which the minimum profit is as great as possible. In other 

words, maximizing the minimum profit. 

b. Minimax criterion: This approach is the same as maximin

except the payoff matrix is expressed in terms of loss. The 

statistician selects the strategy for which the maximum loss is 

as small as possible. In other words, minimizing the maximum 

loss. 

c. Bayesian criterion: This method is identical to the

decision-making under risk, except that it uses subjective 

probability with respect to the states of nature. Given the 

subjective prior probability for the states of nature, the 

statistician might calculate the expected loss and choose the 

strategy which minimizes the expected loss. 

Bayesian decision with sampling 

Given the states of nature 8, we assume a prior probability. This 

state of nature 8 acts as though it were a random variable. If an 

experiment E was conducted, the outcome of this experiment Xis then a 

sample. Using this sample, we are led to revise the probabilities of 

the states of nature. This revised probability is the conditional 

probability of the state of nature, given the result of the experiment, 

and is called a posterior probability. In the case of a Bayesian 

decision with sample, we might use this posterior probability together 

with the payoff matrix to derive the Bayesian strategies (actions). 
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There are a great many different types of theoretical distributions, 

each used to represent a specified state of nature, such as the uniform 

distribution, binominal distribution, Beta distribution, Poisson dis­

tribution, and normal distribution, etc. 

The uniform distribution is much the easiest of these distribu­

tions but is also less useful from the Bayesian point of view. Roughly 

speaking, the uniform distribution is a probability function which 

specifies that every possible value of the random variable is equally 

possible within its interval. The uniform distribution is also a 

special case of the Beta distribution. 

To use the uniform distribution as a prior distribution has been 

considered by the statistician to represent ignorance about the true 

value of a random variable. But in the case of the absence of any 

prior probability about the true value of a random variable, the 

assumption of the uniform prior distribution for all possible values 

will minimize the maximum error. 

The greater the discrepancy between the prior distribution and 

the sample distribution, the greater the posterior variance of the 

random variable. The assumption of a uniform distribution minimizes 

the possibility of such discrepancy. One way of viewing this is in 

terms of the variance of a probability distribution; i.e., 

0
2 

= E[ei - E(ei IX)] 2P(ei IX).

The assignment of equally probable probabilities as prior beliefs 

minimizes the possibility of such a discrepancy. 

The uniform prior probability brings the Bayesian inference close 

to the classical inference, although the interpretation of the results 

is different. 



For example: The states of nature are assumed to be 0 1 = 0.05, 

82 = 0. 10, 83 = 0.20, and 84 = 0.35. Suppose the prior probabilities 

for these states of nature are P(81 = 0.05) = i, P(0 2 = 0. 10) = i, 

P(83 = 0.20) = i and P(8 4 = 0.35) = t. In other words, we are assuming 

the prior probability function is uniform. Also we assume that the 

states of nature are binominally distributed. Since we draw a sample 

of size 10 with replacement, from a state of nature of 81 = 0.05, 

8 2 = 0. 10, 83 = 0.20, and 84 = 0.35, respectively, the outcome x = 4 in 

this sample is shown in Table 5. 

Table 5. Effect of uniform prior probabilities on the posterior 
probabilities 

State of Prior Likelihood Joint Posterior Relative 
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nature prob- P(x = 4le.) probabi 1 ity probability likelihood abi 1 i ty 1 P(e = 81!x = 4) 

e 1 = 0.05 1 0.00101 0.00025 0.0026 0.0026 ii 

82.= 0. 10 1 0.01116 0.00279 0.0288 0.0288 4 

83 = 0.20 1 0. 13763 0.03441 0.3552 0.3552 
4 

84 = 0.35 1 0.23767 0.05942 0.6134 0.6134 
4 

The last two columns of this table show the posterior probability 

and the relative likelihood. Even though the prior probabilities are not 

taken into account in calculating the relative likelihood, the numerical 

results between the last two columns of Table 5 are the same. 

The prior probability is equally probable for all ei; this would

be looked upon as calculating the posterior probability simply on the 

basis of sample information. This is why some of the Bayesian 



statisticians may accuse the classical statisticians of implicitly 

assuming the prior uniform distribution in all cases, even when some 

other prior distribution is availrble. 

If the sample information is sufficiently large, we shall use 
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the prior uniform distribution to approximate the posterior distribu­

tion. When the sample size is sufficiently large compared to the prior 

probability, the quantity of information obtained from sample (Is) would

overwhelm the quantity of information obtained from prior evidence (1
0

).

Hence we can obtain a good approximation of the exact posterior proba­

bility by assuming the uniform prior distribution. (See Figure 4.) 

f(x f(x) Posterior 
Posterior 4 with sample 

= with sample 15, n = 30r =

3 r = 15, n = 30

Posterior 
= with sample 2 Posterior 

with sample r = 3, n = 6 
r = 3, n = 6 

0 X 0 X 

Figure 4. Comparison of uniform and 8 prior distributions with differ­
ent sample sizes. 17 

Bayesian decision with binomial sampling 

Suppose we have finite numbers of the states of nature, e = {0 1 ,0 2 , 

... em}, which are represented by the proportion of successes, subject to

a certain prior probability density function. Assuming we draw a 

sample of size n from a binomial population, we can then combine this 

l?Ibid., p. 336.

4 

0.2 0.4 0.6 0.8 



prior probability with a binomial sample to obtain the posterior proba­

bility function. This kind of Bayesian decision with binomial sample 

is widely applied in statistical quality control, marketing research, 

and production. The application will be illustrated in detail later 

(see Chapter IV). 

Bayesian decision with normal sampling 

In any probability function, the posterior probabilities are de­

rived directly from the prior probabilities and the likelihoods. It 

could be shown by means of calculus that, if the prior probabilities 

and the likelihoods are both normally distributed, then the posterior 

distribution is normal. In normal distribution, we always use the 

mean and the variance to specify its probability function. 

Let e � N(e
0
,a�) represent the prior normal distribution of the 

2 

states of nature, and X � N(0,a 2) be the likelihoods, X � N(e,� ), 

X = {x1,X 2,···Xn}, then the posterior function of the states of nature 

is also normally distributed with 

mean =

a
2 x + ale
0 XO d . = a2 + al , 

an var, ance 
0 X 

l (x - e) 2

a 2 

f(xle) = l -n

l

( ) l - 2a 2 
( e

P e = 

-==e
o

12na� 
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(eo - x) 2
_ l 

02 X +a2/n·0 
{e 

o 0}2

h(x,e) = p(e)f(xle) = --e a 2na
0 Tn 

- 2(a2 + a 2/n)

G

ao·a2 ;
� o e 2 a6 + a 2 /n

- a2 + a2/n
0 

a~ + a 2 
X 0 

/ 2rrS!~ 
n 

1 
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By the marginal distribution: 
0 2 x+0 2 /n•e 

1 {e o o}2
2 --==--""---- - a 2 + a 2 / n 

- - CX) 1 _.l (e - x) - �2/n·o� 0 

k(x) = [�(x,e)de = [00(2n)la20 27ne 2(0�+0 2/n)e 2 02+02;n
0 0 0 de 

1 (eo - x) 2

= 1 - 2(0 2 + 0 2/n)
/2n ( a 2 + a 2 / n ) c 0 

0 

- 1 0 0 

a 2x + 0
2 /n•e 

1 {e - o 
2 + 2/n 

o} 2

(e - x) 2 - � •0 2/n °o G 

2 1 2 
1 2; e 2 (0 2 + 0 2 / n) 2 0=2 -+-0-2/-n

- nva •a n o e o 
g (e Ix)= h X ,e = __ o _________________ _

k x (e _ x)2 
1 0 

1 -2(0 2 + 0 2/n) -i=-==""'""'�e o 12n(a 2 + 0
2/n) 

0 
0

2:X + 0
2/n·e 

1 { 0 0} 2 
----,....-�-- e - a2 + a2;n = 1 e 

-
2f-o 2•a2!n=J o 

/ 0�0 2/n �� 
+ 0 2/�2n 2 + a2/n0

0 

0
2 :X + ale 
O X O 

02
02._ 

o n 
)02 + 02 

0 -
n 

1 1 
x·aI + e-cr2 

E(g) = --,,-----,-- =

0 2 
+ al 

X O O 

_l + _l 
0

2 al 0 X

02 
02._ 

O X 

o N V ( g) = -
---- = --

0 2 + 0 2 n 1 

E(g) = 

o n o2 + o2 

x·I + e r S O 0
I + I0 S 

+ I s

( 3. 1) 

(3.2) 

(3.3) 

(3.4) 

( 3. 5) 

This comes out to be a rather interesting concept called the quan-

tity of information. 2 0 2 

0
0

,11 and or represents the variance of prior

0 2x + a3e 
g 'v N( o X o 

0 2 + al 

Let I1 

0 X 

= -0\1' Io = l 02' 
0 

Is= n 02 

~-

J 
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probability, sample, and posterior probability, respectively. Its 

reciprocal¼,-¾-, and¼ might be looked at as the quantity of informa-
0 0 01

tion. There exists this relation: the less the variance, the greater 

the quantity of information. The prior information available is then 

the sum of prior information and additional information (sample). Hence 

the posterior expected value might be interpreted as the weighted mean 

of prior population mean and sample mean where the weights are the 

information. 

Further interpretation of the relation among the quantity of 

information for various estimates would be helpful for the concept of 

the quantity of information. 

1. The greater the variance of the prior probability, the less

the prior information; hence the total information comes mostly from 

the sample information. 

2. Given the quantity of sample information, the total information

would be increased if the prior information is increased. 

3. As the prior information becomes increasingly small and tends

to be zero, the more the prior probability tends to be the prior uniform 

probability function. Hence the prior uniform probability function is 

regarded as having the limit of obtaining no information from the prior 

probabilities. 

Expected opportunity loss for the 
optimum action 

Opportunity loss of a decision is the difference between the loss 

(or profit) realized by the decision and the loss (or profit) which 

would have been realized if the decision had been the best one possible 

for the true state of nature. The expected loss (expected opportunity 



loss) is calculated by multiplying the conditional expected loss for 

each possible outcome of e by its corresponding probability. If the 

expected loss of the optimum action is great, we must try to decrease 

the loss by securing additional information before we make a final 

decision on the terminal action. If a sample can be obtained without 

cost, the expected loss of the optimum action can always be decreased 

by sampling additional information. Hence it is desirable to obtain an 

additional sample with no cost involved. But, in fact, cost is always 

involved in sampling procedure. The cost factor should therefore be 

taken into consideration. 

Since the sample outcome is a random variable, there are many 

possible outcomes for any given sample size. Hence the expected loss 

(payoff) of the optimal action also becomes a random variable. This 

leads us to the analysis of the preposterior distribution to find out 

the optimal terminal action or the net gain from sampling. The pre­

posterior analysis is illustrated in Chapter IV. 

Comparison of normal prior distribution 
without sampling and with normal sampling 
for optimum actionl8 

l. Normal prior distribution without sampling is discussed as

fo 11 ows: 
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If the profit (or loss) function is linear, a simple rule can be 

derived for selecting the optimum action. Suppose we have the following 

profit functions for taking action a 1 and action a2: 

(3.6) 

(3. 7) 

where B 1 and B2 are assumed to be positive values and e is the population 

lBibid.� p. 366-370.

For action a1: K1 = A1 + 818 

For action a2: K2 = A2 + 828 



ean. The breakeven point for action a1 and action a2 can be obtained. 

therefore, 

where e
b 

is the breakeven point. 

The expected profit for taking action a 1 is 

E(K 1 ) = E(A 1 ) + E(B18) 

= A 1 + B1E(e). 

Similarly, the expected profit for taking action a2 is 

E(K 2 ) = E(A2) + E(B2 8) 

= A2 + B2E(8). 

(3. 8) 

(3.9) 

(3.10) 

a. Action a 1 is preferred over action a2, if E(K 1 ) > E(K 2).

That is, 

A 1 + B1E(e) > A2 + B 2E(e)

E(e)(B1 - B2) > A2 - A 1 , 

Hence 

E ( e) > 
A2

B 1 

B 1 - B2 > 

- Ai = e where 
- B 2 b 

0 (see Figure 5a) 

E(e) A, -
< B 1 

Ai - eb where
- B2

B 1 - B2 < 0 (see Figure 5b). 

or 

b. Action a2 is preferred over action a 1 if E(K 2) > E(K 1 )

A2 + B2E(e) > A 1 + B 1 E(e) 

E(e)(-B 1 + B2 ) > -A2 + A 1

E(e)(B1 - B2) < A2 - A1 
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where B 1 - B 2 > 0 (see Figure 6a) 

or E(e) > A2 - Ai = e B 1 - B 2 

b

where B 1 - B 2 < 0, (see Figure 6b).

eb E(e) 

(a) 

E(e) eb 

(b)
Figure 5. Action a 1 preferred over action a 2 . 

E ( 8) eb 

(a) 

eb E(e) 

(b) 

Figure 6. Action a2 preferred over action a1. 

c. Either action a 1 or action a 2 makes no difference if



A1 + B1E(e) = A2 + B2E(e) 

E(e)(B1 - B2) = A2 - A1 

Expected loss for the optimum action is sometime$ referred 

to as 11 expected value with perfect information" (EVPI). 

, lz2 
B1 lcr

0
[

/2TI"
e - 2 b - ZbP(Z > Zb)]
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B1lcr L (D ) 
o n o 

(3.11) 

where Zb = 

The value in brackets denoted by L (D) represents the normal 
n o 

loss function and is presented in tables in some decision textbooks 

such as those by Raiffa and Schlaifer19 and Schlaifer.20

1 9Howard Raiffa and Robert Schlaifer, Applied Statistical Decision
Theo�y (Boston, Massachusetts: Harvard University Press, 1961), p. 356. 

20Robert Schlaifer, Introduction to Statistics for Business Decis­
ions (New York: McGraw-Hill Book Company, Inc., 1961), p. 370-371. 

1 2 
1 - -z 

L ( o ) = - e 2 b - z b P ( z > zb) , 
n o /2TI 

eb - E ( e .) 
0 1 

and D0 = 0 (e.) 
0 1 



The loss function for the optimum action a 1 is shown in 

Figure 7. 
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Figure 7. Loss function for the optimum action a 1 in normal distribu­
tion. 

2. Normal prior distribution with normal sampling is discussed as

fo 11 ows: 

When the sampling is available, we should make use of this addi­

tional information. Hence the expected loss (payoff) for the optimum 

action is as follows: 

(3. 12) 

This formula is obtained directly from (3. 11) by substituting the 

expected value and variance of the prior normal distribution for the 

expected value and variance of the posterior normal distribution, 

respectively, where 

eb-Ei(ei) 
D 1 = -----,.-...---

0 i( e i) 

The above-mentioned decision process was limited to a two-action 

process, but we can extend it to many-action problems following exactly 

the same process. 



Some problems in application 

CHAPTER IV 

APP LI CATION 
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One of the difficulties in using decision theory in applied prob­

lems is that of specifying a realistic loss (payoff) function. It is 

impossible to specify accurately the consequence in making a wrong 

decision in asserting the true state of nature. In a two-person, 

zero-sum game, the loss function is the real numerical loss, but it is 

still questionable whether the mathematical expectation of loss is an 

appropriate measure of the random losses when the statistical experiment 

is performed only once. 

These difficulties may be partially solved as follows: 

1. Experience with statistical problems shows that 1

1good11 proces­

ses are not sensitive to small changes in loss function, especially 

when sample sizes are quite large. Hence the precise values of the 

loss matrix are not so serious in application. 

2. The statistician might measure the random loss by taking an

expected value if the loss matrix is measured in terms of utility 

function rather than in terms of monetary value, since monetary value 

is not a good evaluation of loss or profit. 

3. Usually the states of nature are uncertain. There exist two

types of uncertainty: 

a. The randomness of probability, and

b. The absence of knowledge of the probability distribution.

If the probability distribution of the states of nature is known, the 
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randomness is the only type of uncertainty left. The problem is then 

what principles (criteria) does the statistician use to make decisions? 

If the states of nature are not known, then what should the statistician 

do? 

This difficulty in many applications is not serious, since in 

many industrial applications, the frequency with which the states of 

nature distribute is known approximately by previous experimentation. 

Bayesian statistical estimate 

In classical statistics we use 11unbiasedness,11 11efficiency,t 1 11con­

sistent,11 and 11sufficiency11 as criteria of 11 good11 estimators. For 

example, maximum likelihood method, the method of moment, and the least 

squares method are different methods to find a point estimator. Their 

properties are measured by these criteria. 

The Bayesian method is another way of finding an estimator. Indeed, 

the estimate problem is the same as the decision problem. We may call 

the decision rule the estimator and the action the estimate. 

Generally speaking, the decision rule with minimum expected risk 

is the Bayesian estimator. Tables 6 and 7 show the loss matrix and 

outcomes of experiment in a Bayesian estimate. 

For example: Let the states of nature; i . e. , the parameters, be 

{ e 1 , 02, e 3}. 

R ( 0 1 , d.) = f 11L11 + f12L12 + f 13L 1 3 + f14L11+ 
, 

R ( e 2, d.) -- f2 1L21 + f22L22 + f23L23 + f2i+L24 
, 

R(03, d.) = f31L31 + f32L32 + f 3 3L 3 3 + f 3i+Lai+• 
, 

If the prior probabilities P(01), P(02), and P(03) are known, we 

use these prior probabilities to calculate the expected risk for each 

can 



decision rule and to select the smallest expected risk. That is the 

optimum decision rule; i.e., Bayesian solution. 

Table 6. Loss table for Bayesian estimate 

State of Action 
nature d { X 1 ) d{X2) d { X 3) d {X4 ) 

81 L11 L1 2 L1 3 L1 t+ 

82 L21 L22 L23 L21+ 

83 L31 L32 L33 L3 t+ 

Table 7. Probabilities of sample outcomes for various states of nature 

State of Outcomes 
nature X1 X2 X3 xl+ 

81 f11 f1 2 f1 3 f1 t+ 

82 f21 f 22 f23 f 2l+ 

83 f3 1 f3 2 f33 f3 t+ 

E[R(8,d.)] = P(81)R(81,d.) + P(02)R(02 ,d.) + P(83)R(83,d.). 
1 1 1 1 

This is the expected risk when the estimator d. is used. If there 
1 

exist expected risks for all possible di, the smallest expected risk

is then called the Bayesian estimator. One numerical example in 

statistical quality control is illustrated as follows: 

The Statistical Quality Control Division of a company is consider­

ing whether or not to accept a lot of a certain production from the 

production division. Before it can make a decision, the Statistical 

49 
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Quality Control Division gets some defective fraction (states of nature) 

0.05, 0. 10, and 0.20 with the prior probabilities 0.50, 0.35, and 0. 15, 

respectively. Assume that the quality controller draws a sample of 

size four and finds that the sample contains three defectives. Should 

he accept the lot? The quality controller chooses the action to accept 

the lot (action a1) or reject the lot (action a2 ) on the outcomes of 

the experiment. In this illustration, there are five possible out­

comes and the two possible actions are associated with each. Hence, 

there exist 25 
= 32 ways of associating outcomes and actions as shown 

in Table 8. 

In this illustration, the quality controller assumes the percent 

defectives are binomially distributed, since the quality controller 

draws a sample of size four with replacement from a lot of 0.05, 0. 10, 

and 0.20 percent defectives, respectively. 

The likelihood probability function (the conditional probability 

of obtaining a particular sample outcome given the state of nature) is 

shown in Table 9. 

Given the likelihood probability function shown in Table 9, and 

the decision rules shown in Table 8, we can calculate the action 

probabilities for taking action a1 and action a2 for the given states 

of nature, 81 = 0.05, 82 = 0. 10, and 8 3 = 0.20. These can be expressed 

as P(a1l81), P(a2l81), P(a1l82), P(a2le 2 ), P(a1l8 3 ), and P(a 2 l8 3), 

P(a2 l81), P(a1l82), and P(a1l8 3 ) are called error probabilities. The 

action probabilities are given in Table 10. Sample size is four, and 

binomial distribution is assumed. 

To illustrate how these action probabilities have been calculated, 

let us consider d11- If the quality controller chooses d11 as decision 
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Table 8. A 11 possible decision rules associating sample outcomes and 
actions 

Decision rules Outcomes {number of defectives) 
d· 

1 
0 1 2 3 4 

d1 a1 a1 a1 a1 a1 
d2 a1 a1 a1 a1 a2 
d3 a1 a1 a1 a2 a1 
dti a1 a1 a2 a1 a1 
ds a1 a2 a1 a1 a1 
d6 a2 a1 a1 a1 a1 
d1 a1 a1 a1 a2 a2 
de a1 a1 a2 a2 a1 
d g a1 a2 a2 a1 a1 
d l O a2 a2 a1 a1 a1 
d11 a2 a1 a1 a1 a2 
d12 a2 a1 a1 a2 a1 
d l 3 a2 a1 a2 a1 a1 
d1 lt a1 a2 a1 a1 a2 
dis a1 a2 a1 a2 a1 
d15 a1 a1 a2 a1 a2 
d l 7 a1 a1 a2 a2 a2 
d 1 8 a1 a2 a2 a2 a1 
d 19 a2 a2 a2 a1 a1 
d20 a2 a2 a1 a1 a2 
d21 a2 a1 a1 a2 a2 
d22 a2 a1 a2 a2 a1 
d23 a2 a1 a2 a1 a2 
d2lt a2 a2 a1 a2 a1 
d2s a1 a2 a1 a2 a2 
d26 a1 a2 a2 a1 a2 
d2 7 a1 a2 a2 a2 a2 
d2a a2 a2 a2 a2 a1 
d2 9 a2 a2 a2 a1 a2 
d 3 O a2 a2 a1 a2 a2 
d 3 l a2 a1 a2 a2 a2 
d3 2 a2 a2 a2 a2 a2 

Table 9. Probabilities of sample outcomes for various defective frac-
tions 

State of nature Outcome {number of QOSSible defectives) 
(defective fractions) 0 l 2 3 4 

0.05 0.8145 0. 1715 0.0135 0.0005 0.0000 
0.10 0.6561 0.2916 0.0486 0.0036 0.0001 
0.20 0. 4096 0.4096 0. 1536 0.0256 0.0016 
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Table 10. Action probabilities of all possible decision rules 

Decision Action robabi l iti es 
rules di P a 1 01 P a2 01 P a1 02 P a2 02 P a 1 0 3 P a2 03 

d1 l. 0000 0.0000 l. 0000 0.0000 l. 0000 0.0000 
d2 l. 0000 0.0000 0.9999 0.0001 0.9984 0.0016 
d3 0.9995 0.0005 0. 9964 0.0036 0.9744 0.0256 
d4 0.9865 0.0135 0.9314 0.0486 0.8464 0. 1536
ds 0.8285 0.1715 0.7084 0.2916 0.5904 0.4096
d6 0. 1855 0.8145 0.3439 0. 6561 0.5004 0. 4096
d7 0.9995 0.0005 0.9963 0.0037 o. 9728 0. 0272
de 0.9860 0.0140 0.9478 0.0522 0.8208 0. 1792
d9 0.8150 0. 1850 0.6598 0.3402 0.4368 0.5632
d l O 0.0140 0.9860 0.0523 0. 9477 0. 1808 0.8172
d11 0. 1855 0.8145 0.3438 0.6562 0.5888 0.4112
d l 2 o. 1850 0.8150 0.3403 0.6597 0.5675 0.4325
d l 3 0.1720 0.8380 0.2953 0.7047 0.4368 0.5632
d l I+ 0.8285 0. 1715 0.5368 0.4632 0.5888 0.4112
dis 0.8280 0. 1720 0.7048 0.2952 0.5648 0.4352
d l 6 0.9865 0.0135 0.9513 0.0487 0.8448 0.1552
d17 0.9860 0.0140 0.9477 0.0523 0.8192 0. 1808
d l 8 0.9145 0. 1855 0.6562 0.3438 0.4112 0.5888
d l 9 0.0005 0.9995 0.0037 0. 9963 0. 0272 0. 9728
d20 0.0140 0.9860 0.0522 0.9478 0. 1792 0.8208
d21 0. 1850 0.8150 0.3402 0.6598 0.5632 0.4368
d22 o. 1715 0.8285 0.2917 0.7083 0.4112 O.!:i888
d23 0.1720 0.8280 0.2952 0.7048 0.4325 0.5675
d21+ 0.0135 0.9865 0.0487 0.9513 0. 1687 0.8313
d2s 0.8280 0. 1720 0.7047 0.2953 0.5632 0.4368
d26 0.8150 o. 1850 0.6597 0.3403 0.4352 0.5648
d27 0.8145 0. 1855 0.6561 0.3439 0.4096 0.5904
d2 8 0.0000 l. 0000 0.0001 0.9999 0.0016 0.9984
d2 9 0.0005 0.9995 0.0036 0.9964 0.0256 0.9744
d 3 O 0.0135 0.9865 0. 0486 0.9514 0. 1536 0.8464
d 3 l 0. 1715 0.8285 0.2916 0.7084 0.4096 0.5904
d32 0.0000 l. 0000 0.0000 l. 0000 0.0000 l. 0000
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rule, he will use this decision rule as the criterion to decide whether 

or not to accept the lot. This decision rule (d 17) states that if the 

number of defectives in the sample of size four is 0, or 1, the quality 

controller must accept the lot (a 1), and that if the number of defec­

tives in this sample is 2, 3, or 4, he must reject the lot (a2). Action 

a 1 is selected when the number of defectives is O or l; the probability 

of taking a1 will be P(a1) = P(x = 0 U x = 1), where x is a random 

variable denoting the number of defectives. 

There exist three different states of nature; i.e., the percent 

defective of the lot is 8 1 = 0.05, 82 = 0. 10, and 83 = 0.20, respectively. 

Thus the probabilities of taking action a1, and action a2 become: 

P(a1l8 1) = P(x = 0 u X = 110 1) = P(x = 0/81) + P(x = l/8 1) 

= 0.8145 + 0. 1715 

= 0.9860 

P(a 2/81) = P(x = 2 U X = 3 U X = 4181) 

= P(x = 218 1) + P(x = 318 1) + P(x = 41 e 1) 

= 0.0135 + 0.0005 + 0.0000 = 0.0140 

P(a1/82) = P(x = 0 U X = l l82) = P(x = Ol82) + P(x = 

= 0.6561 + 0.2916 

= 0. 9477 

P(a 2l82) = 1 - P(a1/82) = 0.0523 

1 I e 2) 

P(a1 /83) = P(x = 0 U x = 1183) = P(x = 0/83) + P(x = 1 /83) 

= 0.4096 + 0.4096 

= 0.8192 

P(a2l83) = 1 - P(a 1183) = 1 - 0.8192 = 0.1808 

The loss matrix for action a 1 and action a2 when the states of 

nature are 8 1 = 0.05, 82 = 0. 10, and 83 = 0.20 is shown in Table 11. 



Table 11. Loss table for statistical quality control 

State of nature 
(percent defective 

the lot) 

0 1 = 0.05 

02 = 0. 10 

03 = 0.20 

of a 1 

(accept the lot) 

0 

20 

80 

a2 
(reject the lot) 

90 

0 

0 

Given the action probabilities (Table 10) and the corresponding 

loss matrix (Table 11), the expected losses (weighted average of the 

losses) will be calculated for each of the decision rules. These 

expected losses are called the risk. The risk for any di, when the

state of nature is 0 1 is designated by: 

Hence 

R(0 1 ,d 1 7) = LL(0 1 ,d(X))P(d(X)l8 1 ) 

= L(0 1 ,d 1 )P(a 1 !8 1) + L(0 1 ,a2)P(a2!8 1 ) 

= 0 + (90)(0.0140) 

= l. 260

R(0 2,d 1 7) = EL(0 2,d(X))P(d(X)l82) 

= L(0 2,a 1 )P(a 1 !82) + L(02,a2)P(a2!82) 

= (20)(0.9477) + 0 

= 18.954 

R(03,d 1 7) = EL(03,d(X))P(d(X)!83) 

= L(03,a 1 )P(a 1 !83) + L(03,a2)P(a2!83) 

= ( 80 ) ( 0 . 81 9 2 ) 

= 65.536 
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Suppose the prior probabilities of the states of nature; i.e., 

01 = 0.05, 0 2 = 0. 10, and 0 3 = 0.20 are 0.50, 0.35, and 0. 15, respec­

tively. That is, 

P(01 = 0.05) = 0.50 

P(0 2 = 0. 10) = 0.35 

P (0 3 = 0.20) = 0. 15. 

Then the expected risk for decision rule d11 can be calculated by 

taking the weighted average of the risks with the corresponding prior 

probability as weight. That is, 

= P(0.)R(0.,d 17) 
1 1 

= P(01)R(81,d 11) + P(0 2 )R(8 2,d11) 

+ P(0 3 )R(0 3,d11)

= (0.50)(1.260) + (0.35)(18.954) + (0. 15)(65.536)

= 0.630 + 6.634 + 9.830

= 17.094.

The risk and the expected risk for each of the remaining decision 

rules can be similarly calculated as shown in Table 12. 

The expected risks are given in the last column of Table 12. The 

decision rule d11 has the smallest expected risk. Hence it is called 

the optimum decision rule. This optimum decision rule is the Bayesian 

solution. 

We have assumed that the quality controller drew a sample of size 

four and found that the sample contained three defectives. According 

to this solution, the lot of this certain production should be rejected. 
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The above-mentioned example is for a discrete case. In the contin­

uous case, it follows exactly the same theory. 
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Table 12. Computation of expected risk 

Decision rule State of nature Expected 
d. 
, 

81 = 0.05 82 = 0.10 83 = 0.20 risk 

d1 0.000 20.000 80.000 19.000 
d2 0.000 19.998 79.872 18. 980 
d3 0.045 19.928 77. 952 18. 690 
d4 l. 215 18.628 67.712 17.284 
ds 15.435 14. 168 47.232 19.761 
d6 73.305 6.878 40.032 45.065 
d7 0.045 19.926 77.824 18.670 
de 1. 260 18.956 65.664 17.177 
d9 16.380 13. 196 34.944 18.050 
d10 88.740 1. 046 14. 464 46.906 
d11 73.305 6.876 47. 104 46. 125 
d12 73.350 6.806 45.400 45.867 
d l 3 74.520 5.906 34.944 44.569 
d1 4 15.435 10.736 47. 104 18.541 
dis 15. 480 14.096 45. 184 19.451 
d16 l. 215 19.026 67.584 19.404 
d1 7 1. 260 18.954 65.536 17.094 
d l 8 16.695 13. 124 32.896 17.875 
d19 89.955 0.074 2. 176 45.330 
d20 88.740 1. 044 14.336 46.886 
d21 73.350 6.804 45.056 45.815 
d22 74.565 5.834 32.896 44.259 
d23 74.520 5.904 34.600 44.516 
d24 88.785 0.974 l. 496 44.958 
d2 5 15.480 14. 094 45.056 19. 431 
d26 16.650 13. 194 34.816 18. 165
d27 16.695 13. 122 32.768 26.203
d2a 90.000 0.002 0. 128 45.020
d29 89.955 0.072 2.048 45.310
d 3 O 88.785 0.972 12.288 46.576
d31 74.565 5.832 32.768 44.239
d32 90.000 0.000 0.000 45.000



= J
00

R(e,d.)P(e)de -oo 1 

... dxn}P{e)de

= J
00

, , , J
00 

{f 
00

L [ e , d ( X 1 , X 2 , . , , X ) ] g ( X 1 , X 2 , • • • X I e ) p ( e ) de}-oo -oo -oo n n 

( 4.1) 

A 1
1good 11 estimator will be an estimator which minimizes the 

expected risk. To satisfy this condition we can minimize the quantity 

in brackets (4.1); i.e., minimizing 

J
00

L[e ,d(x1 ,x2, ... x ) Jg{x1 ,x2, ... x I e )P(e )de.-oo n n 

Since 

J
00

L[e,d(x 1 ,x2,,,.x )]g{x 1 ,x2,,,.x Je)P(e)de-00 n n 

where 

= k(x 1 ,X 2, .. ,x )J
00

L[e,d(x 1 ,x2, .. ,x )]h(eJx 1,X 2,, .. x )de. (4.2) n -oo n n 

Hence a Bayesian estimator is the state of nature (parameter) e which 
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minimizes the above equation for all possible samples, X = {x1,X 2,,,.xn}.

In other words, if 8 = d(x1,X 2,•••x ), then J
00

L(e,e)h(eJx1,X 2,•• .xn)de
n -oo 

will be the smallest value. e is then called the Bayesian estimator. 

For example: 21

1. If f(xje)

and P(e) = 1 

2x 
= �e 

0 < X < e

o < e < 1

21 Alexander M. Mood and Franklin A. Graybill, Introduction to the
Theory of Statistics (New York: McGraw-Hill Book Company, Inc., 1963), 
p. 196.

= /'°L[e,d(x1,x2, ... x )Jg(x1,x 2, ... x ,e)de 
-oo n n 



using the loss function L(8,8) = 82 (8 - 0)2, the Bayesian estimate is 

_l_f 1 82(8 - 8)h(8lx)d8 = 0
a§ o 

b y  conditional and marginal distribution theorems:

g(8,x) = P(0)f(xl0) = ��' k(x) = J�g(0,x)d0 = Jj�0 = 2

h(8lx) = 9�(�)) = �2

aiJ�02 (0 - e) 
2�2d0 = o.

Solving this equation, we get e = f, the Bayesian solution. 

2. Let X = {x1,x2 , ... xn} be a random sample of size n from the

Poisson density functions: 

X -,\ 

f(xl>-) = 
" e. x. X = 0, 1, 2, ... 

>- has the probability density 

P(>.) = e-" 0 < .\ < oo, 

Using the loss function L(>-,�) = (>- - �)2

the Bayesian estimate is the solution of: 

S imilarly, by conditional and marginal distribution theorems, 

g(>-,x 1 ,X 2,, .. xn) = P(>-)f(x1,X2, .. ,xnl")

= "t:xi e - >-(n + 1)

X 1 ! X2! ... Xn!

oo "t:xie - >-(n + 1)
= f 

X I X I X I o i. 2. • • •  n.
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g(11.,x 1 ,x2 , ... xn)
= 

k(x 1 ,x2 , ... xn)

a 00 
Ex - 11.(n + l){n + l)Ex + 1

af1
o 

(11. _ 5:)211. e
r(Ex. + 1) d11. = 0 

1 

Ex - 11.(n + l){n + l)Ex + 1
!

00

2(11. 5:)11. e d11. = 0 r(Ex. + 1) 
1 

2(n+l)Ex+l " '( 1) �.....--__,__��[ Joo ( ' <' ) ' L, X i e - /\ n + d ' ] = 0r ( Ex i + 1 ) o /\ - A /\ /\ 

r( Ex . + 2) 
1 

(n + l)EX + 2
r(Ex . + 1) 

5: 1 

= 0 
( n + 1) Ex i + 1

5: = {n + l)Ex; + 1r(Exi + 2)
(n + l)Exi + 2r(Exi + 1)

Ex. + 1 
= n\ 1 , the Bayesian solution.

The state of nature (parameter) is determined by the decision rule 
. <' Ex+ 1 (estimator) A = 

n + 1•

In conclusion, in classical statistical estimates, the 11 confidence 

interval11 is attached in 11 interval estimate11 ; also 1

1 the significance 

level 11 is attached in 11point estimate.11 In Bayesian inference we 
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neither use 11 confidence interval1

1 nor 11 the significance level, 1
1 since 

from the Bayesian viewpoint the implications of 11 the confidence interval11 

------= 

---- -- - ----

----- -- -- - --
0 
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and "the significance level 11 is still left entirely to the judgment of 

the statistician. R. Schlaifer has shown that only with a prior uniform 

distribution can the value of the confidence interval estimate be 

interpreted as the central area in the posterior distribution. Confi­

dence intervals are a 1

1 good 11 indication only if the prior probabilities 

are roughly the same for all possible values. Now, I1 = I
0 

+ Is; i.e.,

1 1 n 2 1 n
-2 = -2 + -2, If er approaches infinity, I1 = Is; i.e., -2 = ::-2, This
CY1 cr

0 
CY O CY1 CY 

means that if cri + 00 or the prior probability is uniform distribution,

we can calculate the posterior probability that e < eb by finding the

one tail level of significance with the population mean eb. Figure 8

will be helpful in illustrating the relation between the prior and the 

posterior distributions. 

The posterior 
probability that 
action a1 can be 
the wrong 
action 

- ( cr2 

X '\J n 8b 'n ) 

-

X 
0 

P(x > x
0

le = e
b
) represents 

one-tail level of significance 

-

2 

e '\, n(x ,Q.)o n 

Figure 8. Relationship between a prior uniform distribution and a 
posterior distribution. 
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The upper portion of the figure is the conditional distribution of 

statistic x, givenµ = e
b
. The lower portion is the posterior distribu-

-
tion of the basic random variable e, given the observed statistic x , and 

0 

a prior distribution with I =

o. 22 
0 

Decisions on acquiring the sample size 

It is supposed to be worthwhile to acquire additional samples if any 

are available. But even if some additional information might be available, 

there is a further question concerning the quantity to be obtained. If 

the information about the states of nature can be obtained without in­

creasing the sampling cost, any sample survey would imply surveying the 

entire population. And the statistician would sample as widely as pos­

sible, since this could reduce the risk in the decision problem without 

extra cost. But such is not the case, because the cost of total informa­

tion increases with the sample size. There exist two types of models 

for the cost function, which is expressed by c(n) = c•n, where c is 

cost and n is sample size. Another model is c(n) = a +  c•n, where the 

cost is divided into two parts, fixed cost and variable cost. 

Since the expected payoff increases as the sample size increases, 

the optimal sample size can be calculated by the expected payoff. But 

there is a difficulty that the value of additional information is 

uncertain before it is obtained, because the outcome of this information 

(sample) is unknown. If the outcome of the sample were known, the 

statistician would not take the sample. Hence the decision on acquir­

ing additional information must be made on the basis of all the possible 

outcomes of a given size of sample and on calculating the expected value 

of these possible outcomes. Since this process is undertaken before 

22
Robert Schlaifer, Introduction to Statistics for Business Decision 

(New York: McGraw-Hill Book Company, Inc., 1961), p. 296-315. 



the sample is taken and also before the corresponding posterior proba­

bilities can be computed, it is cal ed the 11preposterior analysis." 

The optimal sample size to be obtained may then be determined by this 

preposterior analysis for varying quantities. 

The computation of the expected terminal payoffs (or expected 

terminal losses) for varying sample size is a rather burdensome job 

in even a relatively simple problemfi It can only be obtained by 11 trial 

and error" method. An electronic computer can make this job much 

easier. 

Now we refer to the problem of the optimal sample itself. What 

constitutes the optimum sample? 

For example: How many times should a coin be tossed before decid­

ing whether it is a fair coin? It i's very hard to say, since the 

answer would depend on both the cost of tossing the coin and the con­

sequence of making the wrong decision. This problem can be treated 

like the microeconomic theory of production. The principle is that 

additional information should be ac�uired as long as the marginal value 

of this information exceeds the marginal cost of acquiring it. In 

other words, if the expected value based on a sample size, less the 

cost of sampling, is greater than the expected value without sampling, 

it would be worthwhile to secure an additional sample. And the optimal 

sample size will be the sample maximizing these expected values. 

The computer program was written to derive the expected payoff of 

optimal terminal action and optimal sample size for preposterior 

analysis. (See Appendix.) 

One numerical example to illustrate a market research application 

fol lows: 
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The planning division of a bus service is studying whether or not 

a new commuter bus service is to be made. Before it can make a decision, 

the division gets some frequency of proportions of commuters using bus 

service daily from prior experience, as shown in Table 13. 

Table 13. Frequency of proportions of commuters using bus service 
from prior experience 

Proportion of commuters 
using bus service Relative frequency 

0.20 

0.25 

0.30 

0.60 

0.25 

0. 15

The payoff matrix in terms of the daily profit is shown in Table 14. 

Table 14. Profit table for setting up new bus service 

Proportion of commuters 
using bus service 

0.20 

0.25 

0.30 

a1 
service 

-8

5

16 

a2 
no service 

0 

0 

0 

The payoff matrix is also a utility function U(e.,a.). For example, 
1 J 

the profit associating 8 2 and a1 in payoff matrix is 5. It also can be 

expressed in terms of utility function U(8 2, a1) = 5. 
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The sample is selected at random from the suburban community for 

which the new bus service is planned. The sampling unit is individual 

persons in the community. For the sampling cost, it is assumed that 

there is a fixed cost of $50 and a variable cost of $5 per sampling 

unit. Terminal action is any action that puts a final end to the 

decision process. Optimal terminal action is the action which optimizes 

the expected payoff. 

For example: Suppose the payoff matrix was given in Table 14. 

The optimal terminal action of x = 2, where x is the observation 

representing the number of persons who prefer a new bus service, in a 

given sample of size 10 is calculated as follows: 

) 10!( )2( )8P(x = 2101 = 2!8! 0.20 • 0.80 = 

) 10!( )2( )8P(x = 218 3 = 2!8! 0.25 • 0.75 = 

0.301995 

0.281565 

P(x = 210 3 ) = 2]�j(0.30)�(0.70) 8
= 0.233474 

By Bayes' theorem: 

P(01lx = 2) =

0.181197 
0.286609 

0.070391 
0.286609 

= 0.6322 

= 0.2456 

0.035021 P(0 3 lx = 2) = 0_286609 = 0. 1222. (See Table 15.)

The optimal terminal action is then no bus service. This posterior 

expected payoff given the sample outcome x = 2 is also the conditional 

payoff in the sense of being conditional upon this particular sample 

outcome. The expected conditional payoff of optimal action is simply 

P(82 lx = 2) = ---



the conditional payoff of optimal terminal action multiplied by proba­

bility of the particular sample outcome. The expected terminal payoff 

of particular sample size is the sum of the expected conditional 

pay1offs: 

The expected terminal payoff n m 
of the particular sample size =x�PJx;)�f1(0; lx)•U(8; ,a

0
)

whe�e a
0 

is optimal terminal action. Since the payoff matrix is shown 

in daily basis, if the planning division decides that the sampling cost 

must be covered in at least one year's operation of the new service, 

it must take the working days in the year into consideration. Here, we 

ass�me there being 255 working days in the year on which the bus will 

be served. 

T ab·l e 15. Expected payoffs of actions--posterior probabilities 

State of P(8i Ix
= 2) Payoff (a1) P(0. Ix) Payoff (a2) P(0. Ix) 

nature bus service U(0�,a1) no bus service U(0�,a2) 

81 ::: 0.20 0.6322 -8 -5.0576 0 0 

82 == 0.25 0.2456 5 1. 2280 0 0 

83 == 0.30 0. 1222 16 1.9552 0 0 

- 1. 8744 0 
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The expected payoff of optimal terminal action multiplied by the work­

ing days reduced by sampling costs for the particular sample size is 

then the expected net gain for the year. 

The data in Table 16 were put into the electronic computer and the 

output from these data are shown in Tables 17 and 18 and in Figure 9. 



Table 16. State of nature, prior probability, and loss matrix for 
setting up new bus service 

State of 
nature 

81 = 0.20 

8 2 
= 0.25 

83 = 0.30 

Prior probability 

0.60 

0.25 

0. 15

Payoff matrix 

-8

5

16 

0 

0 

0 

In conclusion; we had calculated the expected payoff of optimal 

tenminal action for various sample sizes. We also assumed a fixed 

cost of $50 and a variable cost per sampling unit of $5. We reduced 

the sampling cost from expected payoff for a given sample size. The 

exp�cted payoff increased as the sampling cost decreased. Hence the 

exp�cted net gain increased; but until the sample size was 37, it 

decweased. This point is then called the optimum point since it 

repwesents the maximum expected net gain. The best action is then to 

tak� a sample of size 37 and to take action a1 (new bus service) if 

sample outcomes are greater than or equal to 10 (x > 10); otherwise, 
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to ttake action a2. It should also be pointed out that the preposterior 

analysis assumes that any information is obtained by sampling. Further­

more, any information sampling is at random. In practice, this random­

ness may not easily be achieved. Hence we must be careful in inter­

pretting the results. 
23 

23Bruce W. Morgan, An Introduction to Bayesian Statistical Decision
Prowesses (Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1968), 
p. 80-86.
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Table 17. Expected net gain for various sample sizes 

Sample size Expected net gain 

1 - 36. 51

2 - 33.96

3 - 10. 30

4 5.28

5 9.20 

6 9.46 

7 27.45 

8 38. 21

9 40.58 

10 37.93 

11 52.58 

12 61.08 

13 62.83 

14 57.93 

15 70.43 

16 77. 59 

17 79.01 

18 74.65 

19 83. 31 

20 89.56 

21 90.78 

22 86.96 

23 92.49 

24 98.07 

25 99. 18

26 95.78 

27 98.76 

28 103.83 

29 104.86 

30 101. 82

31 102.67 
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Tab le 17. Continued 

Sample size Expected net gain 

32 107.33 

33 108. 31

34 105. 57

35 104.61 

36 108.93 

37 109.87 

38 107.40 

39 104.86 

40 108.89 

41 109. 81 

42 107.56 

43 103.64 

44 107.44 

45 108.32 

46 106. 29

47 101.33 

48 104.73 

49 105.60 

50 103.74 

51 99. 16

52 100.90 

53 101. 76

54 100.06 

55 95. 81

56 96.08 
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Table• 18. Preposterior expected payoff of optimal terminal action for 
sample of size 37a 

Sampl e Optimal O�timal terminal action outco1me P(x) termii na 1 
X act" onb Conditional Expected 

0 0.000162 A02 0.0 0.0 
1 0.001519 A02 0.0 0.0 
2 0.006959 A02 0.0 0.0 
3 0.020797 A02 0.0 0.0 
4 0.045666 A02 0.0 0.0 
5 0.078752 A02 0.0 0.0 
6 0.111426 A02 0.0 0.0 
7 0.133550 A02 0.0 0.0 
8 0. 139067 A02 0.0 0.0 
9 0. 128483 A02 0.0 0.0 

10 0. 107174 AOl 0.8043 0.086196 
11 0.081843 AOl 2.8228 0.231027 
12 0.057776 AOl 4.9005 0.283132 
13 0.037907 AOl 6.9005 0.261578 
14 0.023145 AOl 8.7078 0.201559 
15 0.013128 AOl 10. 2577 o. 134660
16 0.006893 AOl 11. 5296 0.079475
17 0.003337 AOl 12.5429 0.041851
18 0.001483 AOl 13.3345 0.019769
19 0.000602 AOl 13.9461 0.008400
20 0.000223 AOl 14.4162 0.003214
21 0.000075 AOl 14.7771 0. 001107
22 0.000023 AOl 15.0543 0.000343 

23 0.000006 AOl 15.2676 0.000095 
24 0.000002 AOl 15. 4321 0.000024 
25 0.000000 AOl 15.5593 0.000005 
26 0.000000 AOl 15.6577 0.000001 

Tota·1 1. 000000 1.352432 

aExpected net gain = 109.870117. 
bThe expected conditional payoff for sample outcomes of x > 26 are so 

small as to be insignificant. AOl means action a 1 (bus service). A02 
means action a2 (no bus service). 

69 



110 

100 

90 

80 

70 

60 

50 ,. 

40 

30 ,. 

20 

10 

0
10

-10

-20

-30

Opt,mum sample 

/ 
5 10 15 20 25 30 35(37)40 45

Figure 9. Expected net gain for various sample sizes. 

50 55 

-..J 
0 



71 

BIBLIOGRAPHY 

Blackwell, David, and M. A. Girshick. Theory of Game and Statistical 
Decisions. New York: John Wiley & Sons, Inc., 1954. 

Chernoff, H., and L. E. Moses. Elementary Decision Theory. New York: 
John Wiley & Sons, Inc., 1959. 

Ferguson, Thomas S. Mathematical Statistics: A Decision Theoretic 
Approach. New York: Academic Press, Inc., 1967. 

Machol, R. E., and P. Gray. Recent Developments in Information and 
Decision Processes. New York: Macmillan and Company, 1962. 

Mood, Alexander M., and Franklin A. Graybill. Introduction to the 
Theory of Statistics. New York: McGraw-Hill Book Company, Inc., 
1963. 

Morgan, Bruce W. 
Processes. 
1968. 

An Introduction to Bayesian Statistical Decision 
Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 

Neumann, Von, and 0. Morgenstern. Theory of Game and Economic Behavior. 
Princeton, New Jersey: Princeton University Press, 1947. 

Raiffa, Howard, and Robert Schlaifer. Applied Statistical Decision 
Harvard University Press, 1961. Theory. Boston, Massachusetts: 

Sasaki, Kyohei. Statistics for Modern Business Decision Making. Bel­
mont, California: Wadsworth Publishing Company, Inc., 1968. 

Savage, Leonard J. The Foundation of Statistics. New York: John 
Wiley & Sons, Inc., 1954. 

Schlaifer, Robert. Probability and Statistics for Business Decision. 
New York: McGraw-Hill Book Company, Inc., 1959. 

Schlaifer, Robert. Introduction to Statistics for Business Decision. 
New York: McGraw-Hill Book Company, Inc., 1961. 

Sielaff, Theodore J. Statistics in Action. San Jose, California: San 
Jose State College, 1963. 

Tucker, Howard G. 
Statistics. 

An Introduction to Probability and Mathematical 
New York: Academic Press, Inc., 1962. 

Wald, Abraham. Statistical Decision Functions. New York: John Wiley 
& Sons., Inc., 1950. 



72 

APPENDIX 



Computer Program to Derive Optimum Sample 

Size and Optimum Action for 

Preposterior Analysis 

C BAYESIAN STATISTICAL DECISION PROCESS 
C PREPOSTERIOR ANALYSIS 
C OPTIMUM SAMPLE SIZE AND OPTIMUM ACTION 
C PRIOR(K) IS THE PRIOR PROBABILITY OF THE STATES OF NATURE 
C CDP(K) IS CONDITIONAL PROBABILITY 
C AJNT(K) IS JOINT PROBABILITY 
C NAME(J) IS ALPHAMETIC VARIABLE FROM ACTION AOl TO AlO 
C P(K) IS THE VARIABLE OF STATES OF NATURE 
C P(K,J) IS PAYOFF MATRIX 
C POST(K) IS POSTERIOR PROBABILITY 
C ACTION(J) IS CONDITIONAL ACTION 
C ACT(II) IS OPTIMUM CONDITIONAL ACTION 
C NA(II) IS ALPHAMETIC VARIABLE FOR OPTIMUM CONDITIONAL ACTION 
C EPTA(II) IS EXPECTED OPTIMUM TERMINAL ACTION 
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DIMENSION PRIOR(lO),CDP(lO),ALKH(lO),NAME(lO), P(lO),PAY(l0,10), 
lPOST(lO),ACTION(lO),SUML(lOO),EPTA(lOO),OPTM(lOO),NA(lOO),ACT(lOO) 
READ(5,90)Ml,M2,DAY,FC,VC 

90 FORMAT(l2,12,F5.0,F4.0,F3.0) 
DO 5 J= 1 ,M2, 1 
READ(5,200)NAME(J) 
DO 5 K = 1 , M 1 , 1 

5 READ(5,300)PAY(K,J) 
200 FORMAT(A3) 
300 FORMAT(Fll.6) 

DO 1 5 K = 1 , M 1 , 1 
15 READ(5,100) P(K),PRIOR(K) 

100 FORMAT(2Fll.6) 
WRITE (6,500) 

500 FORMAT(lH ,28X,55HPREPOSTERIOR EXPECTED PAYOFF OF OPTIMAL TERMINAL 
1 ACTION/) 
WRITE(6,600) 

600 FORMAT(26X,7H SAMPLE,15X,7HOPTIMAL,5X,23HOPTIMAL TERMINAL ACTION) 
WRITE(6,700) 

700 FORMAT(26X,8H OUTCOME, 14X,8HTERMINAL) 
WRITE (6,800) 

800 FORMAT(29X,1HX,5X,8H P(X) ,5X,6HACTION,6X,11HCONDITIONAL,5X, 
18HEXPECTED) 
DO 99 N= 1 , 60, 1 
WRITE(6,130) N 

130 FORMAT(44X,13H SAMPLE SIZE=,13) 
M=N+l 
SUMl=O 
SUM2=0 
DO 10 I = 1 , M , 1 
II=I-1 
SUMO=O 
DO 20 K= 1 , M 1 , 1 



CDP(K)=TOR(N)/(TOR(II)*TOR(N-II))*(P(K)**II)*(l.-P(K))**(N-II) 
ALKH(K)=PRIOR(K)*CDP(K) 

20 SUMO=SUMO+ALKH(K) 
SUML (I I ) =SUM) 
DO 30 J = 1 , M2 , 1 
ACTION(J)=O 
DO 30 K= 1 ,M 1 , 1 
POST(K)=ALKH(K)/SUMO 

30 ACTION( J)= ACTION(J)+PAY(K,J)*POST(K) 
CALL BEST (OPTMV,IK,ACTION,M2) 
ACT ( I I)=OPTIMV 
EPTA(II)=SUML(II)*ACT(II) 
SUMl=SUMl+SUML(II) 
NA(II)=NAME(IK) 
SUM2=SUM2+EPTA(II) 
WRITE(6,900) II,SUML(II),NA(II),ACT(II),EPTA(II) 

10 CONTINUE 
900 FORMAT(26X,I4,4X,Fll.6,6X,A3,6X,Fll.4,5X,Fll.6) 

CN=N 
OPTM(N)=DAY*SUM2-(FC+VC*CN) 
WRITE(6,120) SUMl ,SUM2 
WRITE(6,110) OPTM(M) 

99 CONTINUE 
120 FORMAT(26X,6H TOTAL,2X,Fll.6,31X,Fll.6) 
110 FORMAT(38X,19H EXPECTED NET GAIN=,Fll.6///) 

STOP 
END 

FUNCTION TOR(IL) 
IF(IL) 65,65,75 

65 TOR=l. 
GO TO 85 

75 S=l. 
DO 9 5 I = 1 , I L , 1 
X=I 

95 S=S*X 
TOR=S 

85 RETURN 
END 

SUBROUTINE BEST(OPTMV,IK,DECIDE,MN) 
DIMENSION DECIDE(lO) 
I K=l 
OPTMV=DECIDE(IK) 
M =MN-1 
DO 30 K=l ,M3, 1 
L=K+ 1 
IF(OPTMV-DECIDE(L)) 20,20,30 

20 OPTMV=DECIDE(L) 
I K=L 

30 CONTINUE 
RETURN 
END 
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