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ABSTRACT 

Bayesian Estimate of System Reliability

by 

Naresh Shah, Master of Science

Utah State University, 1970
Major Professor: Mr. R. V. CanfieldDepartment: Applied Statistics

A Bayesian estimate of reliability for each component in
. the system of n-components, each exponentially distributed, is
developed which utilizes the basic notion of loss in estimation
theory. Here we assume that each component is independently dis­
tributed. In reliability estimation, the loss associated with over­
estimation is usually greater than the loss associated with under­
estimation; and hence loss function can be a very useful tool. The
prior distribution and loss function of reliability considered in
this paper are flexible to be compatible with other situations in
which reliability estimates are required. When the loss function is
symrretric and no prior information is at hand, the resulting estimate
is approximately the minimum variance unbiased estimate of reliability.

(39 pages) 



INTRODUCTION 

Reliability is the probability that a device will perform its 

purpose adequately for the period of time intended under the operating 

conditions encountered. 

Generally, underestimation of reliability results in the 

unnecessary expense of redundancy or other measures to bring the 

reliability up to a desired level. Overestimation of reliability 

results in unwarranted confidence which may lead to total mission 

failure. In practice, the loss incurred by underestimation of 

reliability is usually less than the loss incurred when reliability is 

overestimated. For this reason, lower confidence bounds have been 

used as estimates of reliability. This approach neglects the basic 

notion of a loss function in decision theory (Lindgren, 1968). 

Consider a system of n-components, subjected to an environ­

mental life test. Due to time or budget limitations, it may be 

necessary to terminate testing after a limited number of failures or 

after a certain amount of time for a particular component. The 

engineer is required to establish the estimate of reliability for 

each component with this limited amount of data._ A great deal of 

knowledge may be available through past experience of similar items. 

Bayesian theory permits the incorporation of this prior information 

into the reliability estimate and thus provides an attractive approach 

to overcoming the limited data problem. 

This paper presents a solution of the estimation problem by 

using prior knowledge in Bayesian theory with a loss function. A loss 
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function is described which permits weighting of loss to reflect any 

attitude toward overestimation. 

The exponential model of reliability is used. Thus, the 

reliability R(e,t) is given by 

R(e,t) = e 
-et

( 1) 

where e is the failure rate and t is the fixed mission time. It was 

observed that when loss function is symmetric and the prior distribution 

of failure rate is uniform (i.e., no prior knowledge), then the re­

sulting reliability estimate is approximately the minimum variance 

unbiased estimate (Pugh, 1963). 

To briefly restate the postulate of Bayes, assume that we know 

a certain conditional density function, f(Zle) and we desire to know 

h ( e I Z) . We may write : 

h(e!Z) = f{Z,e) = f{Z e) (e)
f(Z) 

f{Zle)g(e) de 

e 

{2) 

where the integration is performed over a 11 e, to give the margi na 1 

density of Z. The only unknown quantity in Equation (2) is a 

prior distribution of e, g(e). So, if we know prior distribution 

of e, g(e), then we obtained h(elZ), which is known as the posterior 

distribution. 

We define our loss function as i(e ,e), where e is estimate 
a a 

for e. In this case, Bayes posterior loss will be defined as 



B{e ) = E[t(e ,e)J 
a a 

= i{e ,e)h{elz) de 
a 

3 

(2a) 

The Bayes principle calls for taking that value of e which minimizesa 

Bayes loss. In the case of a discrete distribution, the integration 

sign will be replaced by summation {Lindgren, 1968). 

In the following pages, first we consider the case with 

single component and obtain the reliability estimation with Bayesian 

approach. Then we consider the system which consists of n-independent 

components; each component has been tested separately for its 

reliability estimate and then obtained the reliability estimates 

for the system. 



ESTIMATE OF RELIABILITY WITH SINGLE COMPONENT 

Introduction 

Two cases are presented depending upon the manner in which

the data are collected. Let T be accumulated test time and r the
number of failures recorded. Case A: the test is terminated at

4 

the rth failure; and Case B: the test is terminated after a pre­
assigned number of hours (T) of test time. The number of failures,
r, is recorded. For Case A, the quantity 20T has the Chi-square
distribution with 2r degrees of freedom; and for Case B, 2r is re­
placed by 2r + 2 in the following solution (Epstein and Sobel, 1953).

Consider the class of functions which are given by the usual
confidence bound R of R(e,t),

a 

where 

and 

-e t
R = R(e , t) = e a
a a 

The parameter v has the value 2r in Case A. 

(3)

e 
a 

x2 
= v,a 

2T 



e 

Loss Function 

Let R be the true reliability and 

R· 

L (e e) = l (� - 1 )2
1 a' 0 R 

. R 

L (e e) = � (� - 1) 
2 a' e R 

5 

(4) 

( 5) 

If underestimation has occurred, then R' < R which implies a--0 t -et a < e ore· > e; and in this case, loss function is given bya. -

L(e ,e) = L1 (e ,e)
a a 

= i ta_ 1)2
0 R 

(6) 

-e t -et 
If overestimation has occurred, then R > R which implies e a. 

> e

or e < e; and in this case the loss function is given by a 

L(e ,e) = L1 (e ,e) + L2(e ,e)a a a. 

l R 2 2 R
= - (_g_ - 1) + !:::l (_g - l) 

e R e R 
(7) 

The parameter y is seen to control the bias for overestimation 

in the loss. If y = 0, the loss function is symmetric. Figure l shows 

the graph of the loss function for various values of y, when the true 

reliability is 0.9. For example, if the reliability is underestimated 

by an amount 0.625, the loss is seen to be 0.048. If, however y = 1, 
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Figure 1. Loss function. 
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overestimation by the same amount results in a loss of 0.187. When 

y = 1.5, the same amount of overestimation shows a loss of 0.275. Thus 

a larger y indicates greater loss for overestimation as compared with 

underestimation. 

Prior Distribution 

The selection of a prior distribution for reliability, or for 

failure rate r, allows the practitioner to use information which he has 

. gathered through experience or history of similar items. Since this 

information is usually subjective, a significant criticism of Bayesian 

methods is that it allows the practitioner to inject his desires rather 

than his experience into the solution. 

The uniform prior distribution means no prior information. So, 

it is desirable to choose a prior distribution which indicates a 

general trend toward the previous experience, and which in general does 

not have a small variance as compared with the uniform distribution 

since this could significantly bias the estimated value of reliability. 

A prior distribution of reliability for fixed mission time t 

is intuitively appealing on these grounds in the Beta distribution. 

The density function for Beta distribution is: 

f(R) = {8) 

for O .:::_ R .:::_ 1, and P,q is the parameters of the Beta distribution. If 

we select P is greater than q, then a trend toward higher values of 

reliability is indicated. The variance of the Beta distribution is: 

l p l S(P,q) R - (l-R)q-1 
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2 pq·. a· = --�----

(P+q)2 (P+q+l) 
(For derivation see Appendix A.) 

This variance decreases with increasing P and q. More 

accurate prior information gives a smaller variance of the prior 

distribution. The uniform distribution on (0,1) is seen to be the 

special case of the Beta with P = q = 1. A change in the mission 

time generally requires a chang.e_ in the values of P and q for the 

prior on R. For the exponential case an increase in t causes a 

decrease in reliability and thus the prior should reflect this effect 

by showing a trend toward lower reliabilities as t increases. 

It is difficult to determine this type of functional 

relationship. For this reason it is convenient to use a prior dis­

tribution on the failure rate instead of R to avoid dependence on t. 

The following allows one to incorporate the desirable features of (8) 

into the prior distribution of e without determining the functional 

realtion of t in {8). The prior distribution of e should be the same 

no matter what mission time is contemplated; thus in determining the 

prior fore it suffices to first determine the prior for R for some 

convenient fixed t using (8) and then use standard transformation 

techniques to determine the prior fore. Let g{e) be the prior one 

and t = t
0 

in {8), then 

g(e) = f{R)1�:1 

and R = e-0t 

-et
Therefore by transformation R = e 0 

(9)



g(e) = 
1 

S(P,q) 

-et l-1 -et

(e O 01-e 0)q-l

1 
= 

S(P,q) e 
-Pet -et o (l-e o)q-1

• to

-et

[.Q_ e OJ
de 

The uniform prior on e is obtained when P = O and q = l. 

Posterior Distribution 

9 

( 10) 

The posterior distribution for e is derived using the prior 

density (1) of failure rate. First we consider Case A for which the 

test is terminated at the time of rth failure. Here 2eT has the

Chi-square distribution with 2r degrees of freedom. The condition 

density for T given value of e is 

By definition, the posterior distribution h(ejT) of 

(Lindgren, 1968) is 

h(ejT) = 

f T e) (e)

f(Tje)g(e) de 

e 

= 

r Tr-1 -Te
e e 

r(r) 

I 
r r-1 -Te 

e T e 
r(r) 

e 

t
0 

-Pet -et q-1
e O (1-e 0) ·

S(P ,q) 

to 
S(P,q) e 

-Pet -et q-1
0 (1-e 0) de

(11)
. r 

f ( T I e) = e Tr-1 e -Te 
~ 

1 
g 

-----· ---



where 

-e(Pt +T) -et q-1
= K er e O 

( 1-e O) 

I 
-e(Pt +T) -et q-1

K = er e O ( 1-e O) de.

e 

10 

( 12) 

Here K is the normalizing constant, t mission time, and t
0

is the time used to determine the prior distribution g(e). The 

posterior distribution for Case B is similar with putting r + 1 for 

r in Eq ua ti on ( 11 ) • 

Reliability Estimation 

The reliability is estimated by deriving the expression for 

Bayes loss as a function of the estimate e of the parameter e. Let a 

B(e ) is the Bayes loss. Then a 

8(8
0

) = I
O

00

L(0
0

,0) h(BIT) dB 

= J:
aL1(0

0
,0) h(SIT) ds + f

0

00 

L1(s
0 ,8) h(s!T) ds

+ f 8
00

L2 (00 , 0 ) h(s!T) dB

= f :L1(0
0
:0) h(s!T) ds + f

8

00

L2(0
0

,0) h(s!T) dB (13)

(l 
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The Bayes estimate for reliability is obtained by the value ofa which minimizes (13). To find the value of ea which minimizes (13),
differentiate (13) with respect toe and make equal to zero and solve
it. 

Now 

B(e ) = B' (e ) 
a a 

� L2(e ,e) h(e /T)a a a 

Lf e a, e a) = 0, so 

e•(e") 
�· 

f

00 

:a L1 (e",e) h(e/T) de
C O 

a 

(14) 

Equating this equal to zero and after simplification
(details are in Appendix B), we get

q·-1 
E (-1); (q7l) A. t r i=O 1 1 R = ( 1 - -) a T qr

l 
( ... l)i (q71) [1

i=O 1 

q-1 . 1 
* - y r (-1)1 {q7) A. a
1
. 

• O 1 1 1= 

t-{P+i)t 
0 rr - --=-T-....,t-

{15) 



where 

and 

A. = [l
1 

t··;.,:·(P+i)f 
0

T 

a = l .. F 2 · 2T e · ) 
X 

a 

2-

Ct-j = 1 - F x2
{2T e cJ 1

t - (P+i)t 
---=--0 ].} 

12 

{ 16} 

By selecting level a in such a way that above equality holds, 

'the Ra is the estimate of reliability. Biometrika Tables for

Statisticians will be helpful for evaluation of a�. 

When unbiased estimate is desired (i.e., Y = O and uniform 

prior on R for all mission times) then (15) reduces to 

(17} 

and this estimate is exactly the minimum variance unbiased estimate 

of reliability (Pugh, 1963}. (For details, see Appendix C.} 

In most of the cases T >> t, and then approximately 

* 

a. = a -
1 . 

�Te 
[(P+i)t

0 
- t] (Tea)

r e a

Tr(r) 
(18) 

(For details see Appendix D.} This approximation may be useful in 

solving R. 
a 

r, 

* 
r 

1 

R = (1 _ l)r 
a T 



Also from (16) or (18), if Tis sufficiently large, then 

at� a for all i and then Equation (15) simplifies to 
l 

= {l - ya){l - i)r for large T. 

t-{P+i)t _ __, __ o rr

t-(P+i)t o ]-r
---=-r _....,t_ 

13 

{ 19) 

The solution for Case B where the life test is terminated after 

preassigned accumulated time Tis similar to the above. The only 

difference is r in Equation (15) is replaced by r + 1. 

. I •. 

t)r R = (1 - ya){l - f 
a 

qi 1 {-1) i {qi 1 )[1 -
i-1 

\\_1);(\1)[1 -
i=l 
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SYSTEM RELIABILITY 

· Iri troducti on

In this chapter we extend our results to the case of a system. 

Let the system consist of n-independent components in series. 

Components in series means that the system will fail if any one 

component fails. Independent components means failure of one component 

has no relation to the failure of any other components. For each 

component, the exponential model of reliability is used. Thus the 

reliabili ty is 

-e.t
R.(e., t) = e 1

l l 
i = l ,2, .... ,n {20) 

where e. is the failure rate for ith component and t is the mission 
1 

time. For simplicity we assume t is the sarre for all components. Two 

cases are presented. Case A, the test is terminated at the r;h failure 
th for i component and Case B, the test is terminated after a pre-

assigned number of hours (Tj) of test time for ith component. Now,

th� quantity 2e;T has the Chi-square distribution with 2r1 degrees of

freedom for Case A. The result for Case B is obtained by substituting 

r+l in r for Case A. 

Let R 
CX· 

1 . � 

be the lower confidence bound of reliability for ith

component such that P (Ra. < R;) � 1 "' a; and R . be
l 

R·. =

{21) 
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Now as in the previous section 1

(22) 

where 2Te has Chi-square distribution with v. degrees of freedom, and a
i

l 

Case B. 

(2Te · ) = l ... a. 
a. 1 

1 

{23) 

The parameter Vi has the value 2ri for Case A and 2r1+2 for

Let e = e + e +
. . .

+ e· ' then a al a2 a n

. " 
n 

= R(e , t) = II R 
a i =l a.

l

n 
-t 1: e 

i=l a.
= e 1 

-te 
= e a 

(24) 

Let Ri be the true reliability for ith component and R be the

true reliability for system. Then 

R = R
1 

• R
2 

• .. • • • • R
n 

n

-t E e. 

i=l l 
= e 

-te
= e where e (25)

R 

= R(e ,t) 
a. 

1 

--e·. t 
= e cti 

n 
= ·1.: e. 

i = l l 

' - ~ 



Let 

l a. 2 L .1 ( e , e. ) = - (-1 - 1 ) 
1 a. 1 e. R. 

1 1 1 

2 R y. a.
L.2(e ,e.) = -1(-1 - 1)

1 a. , e. R. 
1 1 1 

16 

(The parameter y
i will control the bias for overestimation of

1 th component in the system loss.)

and 

L.(e ,e.) = 
1 ai 1 

L.1(e ,e.) if e > e.
1 ai 1 ai - 1

L.1 ( e , e. ) + L2. ( e , e. ) if e < e. 
1 a. 1 1 a. 1 a. 1

1 1 . 1

Then loss function for system is given by 

r L.(e ,e.) a. where a. is the weight 
; = 1 1 a; 1 1 1 

attached to ; th component.

Prior Distribution 

(26) 

A prior distribution of system reliability is the product of 

all prior distributions for each component. As previously shown, the 

Beta distribution is used for the prior distribution for each com­

ponent. 

The prior distribution for ; th component is

1 P.-1 q.-1 
= -,-,,.-----......R. 1 (1- R.) 1 forO<R. <l 13(P.,q.) 1 , 1 

1 1 

R 

n 

f {R;) 
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for i = 1,2, ... ,n and Pi ,qi is the parameter of Beta distribution.

The prior distribution of ei for fixed t = t
0 

will be

dR. 
g{ei) = f(Ri) [de� J

l 

t
0 

-P.e.t -e.t q-1
= �--- e 1 1 o (l-e 1 o)S(P.,q.) 

l l 

and hence prior distribution for system will be 

n 1 -P.e.t -e.t q.-1
= t n rr ___ e 1 1 o (l-e , o) 1 

o i=lS(Pi,qi) 

t n
= _o.:......_ ___ _

n 
II 

i =1 
S(P.,q.) 

l l 

-t E P.e.
e Oi =l l l n -e.t q.-1

II { 1-e � o) 1 

i=l 

Posterior Distribution 

For ; th component and Case A, as shown previously by 

Equation {11),

r. 

a. 1 r.-1 -T.e.
f {Ti I ei ) = r ( r. ) Ti 

, e , , 
l 

and hence 

rl . r2 r 
e, 02 e n n n II T. n i=l l 

II r ( r i)
i=l 

r. 1 ,-
-T.e. 

e , 1 

{27) 

{28) 

n 

=-------
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From Equation (12), the posterior distribution of h(ei jT) is

r. -(P.t +T.)e. -e.t q.-1
h ( e. IT. ) = Kl e. , e , o , , ( 1-e , o) ,

1 1 1 

and hence 

g(e1 ,e2, ... ,en) f(:!Je1 ,e2, ... ,en) de1de2, ... ,den
n 

n r. -{P.t +T)e. -e.t q.-1 
h { el' 02 ' ... , en IT) = K II [ e., e , o , ( 1-e , o) , ]

- �=1 1

- E (P.t +T.)e. t l · r 1 r2 rn 1. = 1 1 o 1 1 n -e . q . -
Ke 0 8 II ( 1-e 1 o) 1 

= 1 · 2 ····• n e i =l 

Estimation of Reliability 

Now the Bayes loss for the system will be B(e ). Then ex 
B(e ) = E[Ls{e ,e)]ex ex 

= f · · · · · I ;!
i 

ai L; (ea; ,e; )h(e1 .•.• _en jT)de1de2_ 
... den

= � a. f . . . . .  I L. (e ,e. )h(e1 
, •.. ,en1T)de1 de2 ... de

· 1 1 1 a1. 1 - n
1= 

{29) 

(30)

h ( e1 , e2 , ... , en I I) = H ( e1 IT 1 ) • h ( e2 IT 2) • ..... • h ( en IT n) 

g(e1 ,e2 , ... ,en)·f(I_le 1 ,e2
, ... ,en) 

= 

n 
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I 

.We minimize this Bayes loss by taking the partial derivative with 

respect to e for i = 1,2, ... ,n and we obtain the estimation for R a; a1
for each i. 

aB(e
a
) 

�-- = B! (e) 
ae 1 a ai

= fe- [ � a1 I . . . . . J· L1. (e ,e. )h(e1 .... e jT)de1 ... de J
a: i = l a; l n - n 

l 

= I a.L. (e �e.)h(e. jT.) 
1 l ai 1 1 1 

n 
de. II 

l j=l
j;li 

= a. IL. (e �e. )h(e. IT.) de.
1 1 a1 1 1 1 1 

I h(e .jT.) de. J l J

B! (e ) = a. JooL., (e ,e. )h(e. IT.) 
1 a 1 l a1 1 1 1 

de. + J
oo

a.L. 2(8 e.)h(e. IT,)de.
1 1 1 a. 1 1 1 l. 

s l . . ' ; 

e ai

B! (e ) = a. 
1 a 1 

By solving B!(e) = 0, we obtained: 
1 a 

+ a.
l

a. 
l 

�ea L.2h(e. IT. )de. -
0 l l l l 

a. 
l

0 

- L. 2 ( e , e ) h ( e,. Ir,. ) 
1 a. a. 

1 1 



R .. 
ct• l

where 

q.-1 
j qi-1 q. -1 . q. -1 1 

1 
4 (-1) ( . )A .. 4 

(1- +.r
i j=O 

q.-1 l 

. . . J . 1J 

(-l)j(
qi�

l

) 

- y.
1

j=O 
(-l)J ( 1

. )A .. . ..... J . lJ .

t:..:(p .+j )t -r . 1 r [l l O J 1
j=O J T ,-_ t 

t-(P.+j)t -r .. 
A .• = [l 

lj.-
OJ l lJ 

* 
ct·.=1J 

1 

t.:.(p·.+j)t
.

l - F x2 · { [l -
1 
Tr. 

0] 2T: e }2 r. tJ 1 ct
; l 

A So our estimation for R. will be 

" 
R = 

n 

rr R where R has above estimated value.i=l ct; ct; 

20 

ct�.lJ 

Here we note that whatever weight we attached to a particu l ar 

component loss in the combined l osses for a system does not enter into 

the estimation of component reliability. This is because of the 

independence of the components of the system and the particular loss 

function used. Since the loss for the system is the sum of component 

losses, by independence the minimum loss occurs when each term is 

minimum. 

1 

--
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1 · · Remarks 

In system reliability estimation, we may consider some other 

loss functions. The following loss function is a particularly 

appealing one. 

With the above loss function, I tried to evaluate R
a

, but final 

result is too complicated and requires advanced contour integration. 
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APPENDIXES 



where 

and 

I 

Appendix A 

Variance of Beta Distribution 

24 

The calculation of variance for Beta distribution is as under: 

( ) 1 P-1f R = s(P,q) R 

E(R) = f :R f(R) dR

(1-R)q-l, 0 < R < 1 

fl Rp(l-R)q-l
= ---- dR 

S(P,q) 

= 8(P+l ,
1
) = _P 

S (P ,q P+q 

s(P,q) = 
fol 

xP-l(l-x)q-l dx = r(P)r(g) and r(P) = (P-1)!
. r(P+q) 

= f3�P+2,g) 
s p ,q) = 

P(P+l)
(P+l)(P+q+l) 

Variance = E(R2) - [E(R)]2

= P(P+l) ( P )2 Pg 
(P+q)(P+q+l) - P+q = (P+q)2(P+q+l)

0 



Appendix B 

Solution of Bayes Loss Equation 

Details of calculations for arriving at Equation (15) are 

as follows: 

From (13) 

Therefore 

00 

00 

= 
f !. (�1)2

e R 

0 

r -e(Pt
0

+T) -et
0 q-l·Ke e (l-e ) de 

2v (..J! - l)•K er e O (l-e 0)q-l de

f OO R , -e(Pt +T) -et
+

e R

e
a 

00 
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B(e) =-3- [ - (Ra -1) -Ke e O (1-e 0)q- de]
-

f 1 
R 

2 r -e(Pt +T) -et 1 
. a ae e 

-· a 

00 

+ _a_ [ I £l {a -1)
ae e R 

e 
a 

-e(Pt +T) -et 
Ker e O 

(1-e 0)q-l de]

0 
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00 

I -e(Pt +T) -et R 8 1 (e) = K er e O (1-e 0)q-l l_a_ [� -1)2] dea
e ae R 

+ 2yK

= K 

0 
a 

00 

I -e(Pt +T) -et R er e o (1-e .o)q-1 l_a_ (_£ -1) de
e ae R 

a ea

-e(Pt +T) -et R e O (1-e 0)q-l·2(R
a -1)} Ra (-t) de

-e(Pt +T) -et 
l e 

O (1-e 0)q- T (-t) de 

Taking this der iv at ive expression eq ual to zero, we get 

0 = 2K R (- t) 
a 

-e(Pt +T) -et 
1 1 R e O (1-e 0)q- - (.J! -1) de

+ 2Ky R
0

(- t) f er-l 

ea

R R 

-e(Pt +T) -et 1 1 e O (1-e 0)q- R de

By cancel ling com mon fac tor 2K R (- t) and substit uting a 

+ 2yK [ 0r-l 

a 

co 



R = e-et, we get

f -e(Pt +T) -et l l R 
-et -et O =

0 

er-le O (1-e 0)q- a 
de

e e 

Therefore, 
00 

-e(Pto + T) -eto q 1 _l_ de +e (1-e ) - -et 
e 

-e(Pt +T) -et
1 1 e O (1-e · 0)q-

-et de
e 

f 

-e(Pt +T-2t) -et l 0 (1-e 0)q- d0 =
Ra er-1 e

= 

f 
er-1

0 

f 00 

r-1
- Y e 

A - B or Ra = 

C

-0(Pt +T-t) -0t l 
e O (1-e 0)q- de

-e(Pt +T-t) -et 1 e O (1-e 0)q- de
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00 

00 

I 
00 

r-1 
+ Y e 

ea 

0 

00 



where 

A = 

and 

-e(Pt +T-t) -et
e O (1-e 0)q-l de

-e(Pt +T-t) -et 1 e O (1-e .0)q- de

-e(Pt +T-2t) -et
e O (1-e 0)q-l de

Now we evaluate the above integrals. First, 

'-

-(Pt +T-t)e -et 1 e O (1-e 0)q- de

[ r-1= e 

0 

( ) -i et-e Pt +t-t q-1 ( 1 ); (q-1) e o] dee o · [ I - i 
i=O 

-e(Pt + T -t+it )
e O O de 

dZ 
2(Pt +T-t+it) = de

0 0 

Therefore, 
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00 

B = Y t er-1 

a 

00 

A = t 6r-1 

----
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q-l 8 l I [ Z ]r-1 -Z/2 l A= E (-l) (q�) 2(Pt +T-t+it) e 2(Pt +T-t+it) dZ
i =O 1 

O 
o o o o 

00 

q-1 . t-(P+i)t 
= r(r) T-r

r (-1)1(q� l ) [ l - 0 J-r 
i=O 1 

Simil arly, integra l (C) will be 

Now 

q-1 . l C = r(r) (T-t)-r r (-1)1 (q: ) [l
. 0 l 

t-(P+i)t o J-r-.....,,T
=--.,.._t -

1= 

I
00 

-e(Pt +T-t) -et
B • 

e 

er-1 e o (1-e o)q-1 de

' 1 

-e(Pt +T-t+t i)
e O O de 

Put 2/2 = e(Pt +T-t+t i) 
0 0 

00 

q-1 . 
= r(r) r (-1)1 (q~l) [(P+i)t +T-t]-r 

i=O , o 

ex 



where 

q-1
. l = rT-r r(r) r (-1)
1
(q� ) [1i=O 1 

I ;Z/2) r-l e-Z/Z d(Z/2} = 1 
t-(P+i)t 

20aT(l - T 
0) 

t-(P+i)t
0
]-r *-""""T::--- ·a

;
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y t(P+i)t - Fx2 [20 T(l - T
0)] 

2r a 

Putting the value of A, B, and C in R, we get 

-, 

,.,, .. 



R = 
ex 

where 

q-1 . t-(P+i)t q-1 . 
r(r) T-r { r (-1)1 (q� l ) [1 - T 

o rr - y r (-1)1(q�l )
. 0 

l 
. 0 

l 
1 = 

1= 

= (1 - �) r

q-1 . .. t-(P+i)t 
r(r)(T-t)-r r (-1) 1 (q�l) [1 - o rr

i=O 
1 T-t 

J 

q-1 . 1 q-1 . 1 * 

r (-1)
1

(q : ) A. - y r (-1)
1
(q,) A. a. 

i=O 1 1 
i=O 1 1 

q-l . t-{P+i )t 
r (-l) l (q�l) [1 _ o rr

i=O 
1 T-t 

t-(P+i)t 
A. = [1 - o ]-r

l T 
½ 

This R
ex 

is the form of Equation (15) 

t-(P+i)t
0 -r *

} [ 1 - --,.--] a; 

w __, 



32 

Appendix C 

Unbiased Estimation 

From Equation (15) 

Now, when unbiased estimate is desired, i.e., y = 0, and uniform prior 

on R for all t, P = q = l and t
0 

= t� So q - 1 = 0 �ives i = 0 and 

t - (P+i)t
0 

= 0. Hence 

t-(P+i)t 
[ T o J-r = 1 A; = l - -----,=----

and hence 

Similarly 

and 

q-1 t-(P+i)t 
r ( .. l)i(q-,.1) [l - , o rr = 1.

i=l 

which is the form of Equation (17). 

q-1 . 

R 
__ .r (-l)1(q:l) A. q-1 . 

(1- _1:_)r i=l 1 , - r _E (-1) 1(q:1) A. * 
T q-1 . 1=1 1 1 a; 

r (-1)1(q:l) [l t-(P+i)t 
i=l 1 - 0 ]-r T-t 

., 



. Appendi X D 

Solution for Large T 

From Equation (16), 

* 

ex. = 
1 

t-(P+i)t 
1 - F 2 {2Te [1 - -��0 J} 

x2r a T 

Now 2Te = x2
2

r , then for large T, by Taylor's series expansion,a ,a 
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t-(P+i)t t-(P+i)t 
F 2 {[l - ---=--0] 2Te} = F(2e T) + 2T [ T 

0J F'(2Te) + O(-T
1) x2r T a r a a 

t-(P+i)t 
- 1 - a+ 2Tea [ T 

0] f(2Tea)

t-(P+i)to 1 (2Te )r-1 -Tea- 1 - a + [--�..:c.J 2Te --- e · T a 2r r(r) a 

t-(P+i)t (Te )r

. 1 [ T 
OJ

a - a+ r(r) e
-Tea

which gives 

[t-(P+i)t J -fe 

Tr(r)
o (Tea)

r e a 

which is the same as Equation (18). 

= 

= 
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