Utah State University DigitalCommons@USU

All Graduate Plan B and other Reports

Graduate Studies

5-1969

Computer Programs for Incomplete Block Designs

Fred Miller Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/gradreports

Part of the Mathematics Commons, and the Statistics and Probability Commons

Recommended Citation

Miller, Fred, "Computer Programs for Incomplete Block Designs" (1969). *All Graduate Plan B and other Reports*. 1139.

https://digitalcommons.usu.edu/gradreports/1139

This Report is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Plan B and other Reports by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.

COMPUTER PROGRAMS FOR

INCOMPLETE BLOCK DESIGNS

by

Fred K. Miller

A report submitted in partial fulfillment of the requirements for the degree

of

MASTER OF SCIENCE

in

Applied Statistics

Plan B

Approved :

righter

UTAH STATE UNIVERSITY

Logan, Utah

TABLE OF CONTENTS

. is a set

								Page
INTRODUCTION	•	•	•	•	•	•	•	1
BALANCED LATTICE	•	•	•	•	•	•	•	3
DESIGNS ARRANGED IN REPLICATIONS	•	•	•	•	•	•	•	10
DESIGNS ARRANGED IN GROUPS OF REPLICATIONS	•	•	•	•	•		•	17
DESIGNS NOT ARRANGED IN REPLICATIONS OR TREATMENTS	•	•	•	•	•	•	•	24
LITERATURE CITED	•	•	•	•	•	•	•	30
APPENDIXES	•		•			•		31

INTRODUCTION

In most disciplines where research is involved, there exists an occasional problem of having minimal facilities and/or funds for conducting experiments. This often necessitates the use of designs known as incomplete block designs.

Since the calculations needed to provide an appropriate statistical analysis are somewhat tedious, particularly in the larger designs, it is advantageous to have computer programs to do the necessary calculations.

There are several computer programs at Utah State University written in Fortran II language with Forcom subroutines that perform the analyses for incomplete block designs. These programs, for the most part, were authored by Justus Seely and Dr. Rex L. Hurst, Head, Department of Applied Statistics and Computer Science at U.S.U.

Only four of these available programs are covered in this paper. These programs are converted to Fortran IV language using the binary coded decimal system (BCD). The programs involved are Balanced Lattices, Designs Arranged in Replications, Designs Arranged in Groups of Replications, and Designs Not Arranged in Replications or Groups of Replications. The three latter programs will hereinafter be referred to as Type I, Type II, and Type III, respectively.

The programs will be written in double precision instead of single precision in order to increase computational accuracy. In single precision the number of significant digits carried accurately in the IBM 360 mod 44 computer is limited to seven. Since the numbers that represent the data need to be squared and summed, the size of number that could be used would have to be rather small, preferably less than four digits. With double precision the number of digits carried accurately is fourteen. This now presents the opportunity to use larger numbers to represent the data, but it is advisable to use numbers with less than six digits if possible.

BALANCED LATTICE (BALLAT)

I. DESCRIPTION:

This program will compute the analysis of variance, the unadjusted and adjusted treatment means, and pertinent statistics. The program is presently set up to handle up to 81 treatments, but this can easily be changed by making the appropriate modifications in the dimension statement.

There is an option in the program to have the adjusted and unadjusted treatment means punched on cards as well as printed at the user's discretion. A basic knowledge of Fortran is advisable but not necessary.

II. METHODOLOGY:

The data cards are read in by use of a DØ loop reading the block number first and the data second. The individual replication, block, and treatment totals are computed during the course of the DØ loop that is reading the data. The appropriate sums of squares are then calculated using the procedures described by Cochran and Cox, "Experimental Designs," pp. 396-403.

III. INPUT:

The input consists of three types of cards preceding the data cards. The first card is the control card which defines the number of treatments and the number of replications in the experiment. The format card describing how the data cards are to be read comes next. The last card is the sequence designation card.

$\frac{\text{CONTROL CARD}}{(415, 20x, 10A4)}$						
Columns		Description				
(4- 5)	9-81	Number of treatments				
(9-10)	4-10	Number of replications				
(15)		<pre>Type of output wanted 0 = Print unadjusted and adjusted treatment means 1 = Print and punch unadjusted, adjusted treatment means, and standard error of the difference between two treatment means</pre>				
(20)		Data input device code 1-4 = Tape, disc, etc. (see <u>COMMENTS</u>) 5 = Card reader				
(41-80)		Descriptive information				

The number of treatments must be an exact square (k^2) . The number of replications is equal to (k + 1).

INPUT FORMAT SPECIFICATION

The first column must be a left parenthesis (punched on either an 026 or 029 key punch). This is followed by the Fortran format of the data cards. This consists of any combination of wX and Fw.d specifications. The Fw.d is used to read both the block number and the desired variable. Up to 80 columns may be used for the format expression.

SEQUENCE DESIGNATION CARD (2013)

Columns	Description
(1-3)	Position of block number in read list
(4- 6)	Position of data in read list

There are times when the block number will not be punched in columns preceding the data. To make allowances for this, a sequence designation card is required to rearrange the input sequence. As an example, if the data card format were:

Columns		Description		
(1-7)		Not used		
(8-11)		Y1 (XX.XX)		
(12-15)		Not used		
(16-17)		Block number		

the format statement would be:

(7X, F4.2, 4X, F2.0) Data Block No.

This means that the data field is being read in first and the block number is being read second. Therefore, the proper sequence designation would be 2,1. This means that the second element being read is the block number and the first element is the data.

DATA CARDS

The data cards must be punched so that they can be read with a Fortran read statement. No alpha-numeric codes may be used for Block identification (block numbers). The block numbers must be consecutive integers starting with one. The data fields can be punched either with or without decimals, but the procedure must remain constant once the decision is made. If negative data is required, then an extra column must be allowed for the negative sign. The negative sign is made by using an eleven punch to the left of the most significant digit in the field. The data cards <u>must be sorted</u>, treatments within reps. If this is not done, the adjusted treatment means and the calculated F-test will not be correct.

IV. OUTPUT:

All cards preceding the data are read in and printed out. The next thing printed out is the completed analysis of variance. The rest of the output is extensively labeled and no explanation will be given here.

V. COMMENTS:

Even though it is not mandatory to punch the treatment number and replication number in the cards, it is more convenient to have them there for sorting purposes.

The program is set up to read only one variable at a time. If the user wishes to analyze multiple variables, then he will first need to put the data on either disk or tape by using some of the available utility programs or writing his own program to accomplish this. After the data has been put on tape or disk, the variables can then be obtained individually by using the appropriate format statement.

Batch processing is assumed.

The dimension may be changed if a larger number of treatments is desired. The dimension for replications should also be modified if the dimension for treatments is changed.

If the option is used to both print and punch the unadjusted, adjusted treatment means, and the standard errors of the difference of two means, the format and sequence for the cards is the same as for what is printed. The first card punched contains the unadjusted and adjusted standard errors of the difference between two means in that order. On the following cards the treatment number is punched first, then the unadjusted treatment mean is punched second and the adjusted treatment mean is punched last. The decimal is punched in the output cards.

VI. SAMPLE PROBLEM:

The following example is taken from Cochran and Cox, "Experimental Designs," pp. 396-400. There were 9 treatments and 4 replications with the data cards punched in the following format:

Columns	Description
(1- 2)	Block number
(3- 5)	Not used (trt. no. and rep. no. were punched here)
(6- 8)	Data (X.XX)

The $D\emptyset$ loop reads in the data cards and some basic calculations are performed within the loop as follows:

Trt.	Total	Block	Total	Rep	Total
1 2 3 4 5 6 7 8 9	6.97 7.36 8.05 6.42 4.01 7.62 5.46 5.61 5.92	1 2 3 4 5 6 7 8 9 10 11	6.22 4.76 4.09 3.54 4.78 5.78 4.08 5.72 4.41 4.77 4.52	1 2 3 4	15.07 14.10 14.21 14.04
		12	4.75		

The following analysis of variance is derived from these and later calculations:

Source	d.f.	Sums of Squares	Mean Squares
Total	35	5.9609	
Replication	3	0.0774	
Treatments	8	3.2261	
Blocks (Adj.)	8	1.4206	0.1776
Error	16	1.2368	0.0773

The reader is reminded that it is invalid to make an F-test with the above information. The adjusted F ratio that is calculated and printed out last is computed in the following manner. The sum of squares of deviations of the adjusted treatment totals is calculated first. This is then divided by the number of replications and the quotient is divided by (k^2-1) where k^2 represents the number of treatments. This final result is divided by the effective error mean square. The error mean square from the analysis of variance table

above is multiplied by the quantity $(1 + k\mu)$, where $k = \sqrt{k^2}$ and $\mu = \frac{(E_b - E_e)}{k^2 E_b}$ to obtain the effective error mean square. The E_b and E_e used in the last equation refer to the blocks (adj.) mean square and error mean square, respectively.

DESIGNS ARRANGED IN REPLICATIONS (TYPE I)

I. DESCRIPTION:

This program was written to serve as a utility program in a statistical laboratory. It will compute the analysis of variance, the unadjusted and adjusted treatment means, and other pertinent statistics. At the present time this program can handle up to 100 treatments. If more treatments are desired, then a simple modification of the dimension statement is all that is necessary.

At the user's discretion the program can punch the unadjusted and adjusted treatment means on cards in addition to having these means printed. It is advisable to have some knowledge of Fortran language.

II. METHODOLOGY:

A DØ loop reads the data cards. The treatment number is read first and the data field second. Some of the calculations performed during this loop are total sums of squares (uncorrected), block sums of squares, block and replication totals, and the grand total of all observations. The other necessary computations are then performed using the procedures described by Cochran and Cox, "Experimental Designs," pp. 443-446.

III. INPUT:

The input consists of three types of cards preceding the data cards. The first card, called the control card, defines the number of treatments, number of units per block, number of replications, and

number of blocks within each replication in the experiment. The second card is the format card which describes how the data cards are to be read. The last card is the sequence designation card.

CONTROL CARD (615, 10X, 10A4)

Columns		Description
(3- 5)	4-100	Number of treatments
(9-10)	2- 10	Number of units per block
(14-15)	3- 10	Number of replications
(18-20)		Number of blocks within each replication
(25)		<pre>Type of output wanted 0 = Print unadjusted and adjusted treatment means 1 = Print and punch unadjusted, adjusted treatment means, and standard error of the difference between two treatment means</pre>
(30)		Data input device code 1-4 = Tape, disk, etc. (see <u>COMMENTS</u>) 5 = Card reader
(41-80)		Descriptive information

INPUT FORMAT SPECIFICATION

The first column must be a left parenthesis (punched on either an 026 or 029 key punch). This is followed by the Fortran format of the data cards. This consists of any appropriate combination of wX and Fw.d specifications. The Fw.d is used to read in both the treatment number and the desired variable. Up to 80 columns may be used for the format expression.

SEQUENCE DESIGNATION CARD (2013)

Columns	Description
(2-3)	Position of treatment number in read list
(5- 6)	Position of data field in read list

There are times when the treatment number will not be punched in columns preceding the data. To make allowances for this, a sequence designation card is required to rearrange the input sequence. As an example, if the data card format were:

Columns	Description			
(1- 7)	Not used			
(8-11)	Y ₁ (XX.XX)			
(12-15)	Not used			
(16-17)	Treatment number			

the format statement would be:

(7X, F4.2, 4X, F2.0) J Data Treatment number

This means that the data is being read in first and the treatment number is being read second. Therefore, the proper sequence designation would be 2,1. This means that the second element being read is the treatment number and the first element is the data.

DATA CARDS

The data cards must be punched so that they can be read with a Fortran read statement. No alpha-numeric codes may be used for treatment numbers. The treatment numbers must be consecutive integers starting with one. The data fields may or may not be punched with a decimal, but the procedure must remain constant for all data cards once the decision is reached. If negative data is required, then an extra column must be allowed for the negative sign. The negative sign is made by using an eleven punch to the left of the most significant digit in the field. The data cards <u>must be sorted</u> blocks within replications. An invalid F-test and erroneous adjusted treatment means will result if this is not done.

IV. OUTPUT:

The cards preceding the data cards are first read and then printed out. The next thing printed out is the completed analysis of variance table. The rest of the output is extensively labeled and no explanation will be given here.

V. COMMENTS:

Even though it is not a requirement to the program to have the replication and block numbers punched on each card, it would be advisable to do so for ease in sorting the cards in the previously specified manner.

The program is presently set up to read only one data field at a time. If the user wishes to analyze multiple data fields, then he will

first need to put all of the data on either disk or tape by using some of the available utility programs or creating his own program to accomplish this. After the data has been put on disk or tape, the data fields can then be obtained individually by using the appropriate format statement. Batch processing is assumed.

The dimension may be changed if a larger number of treatments, units per block, and/or replications are desired.

If the option is used to both print and punch the unadjusted, adjusted treatment means, and the standard errors of the difference of two means, the format and sequence for the cards is the same as for what is printed. The first card punched contains the unadjusted and adjusted standard errors of the difference between two means in that order. On the following cards the treatment number is punched first, the unadjusted treatment mean is punched second, and the adjusted treatment mean is punched last. The decimal is also punched in the output cards.

VI. SAMPLE PROBLEM:

The following problem was taken from Cochran and Cox, "Experimental Designs," pp. 443-446. There were 6 treatments, 2 units per block, 5 replications, and 3 blocks within each replication for this problem. The data cards were punched in the following manner:

Description		
Not used		
Treatment number		

(3)	Not used		
(4_	5)	Data	(XX.)	

The $D\phi$ loop reads in the data cards and some basic calculations are performed within the loop as follows:

Block	Total	Block	Total	Block	Total	Rep	Total
1	24	6	59	11	59	1	137
2	51	7	35	12	66	2	153
3	62	8	63	13	38	3	148
4	44	9	50	14	45	4	190
5	50	10	65	15	58	5	141

Grand total = 769

The following analysis of variance is then derived:

Source	d.f.	Sums of Squares	Mean Squares
Total	29	1649.0	
Replication	4	298.5	
Unadjusted treatments	5	1059.8	
Blocks within replications	10	213.4	21.34
Error	10	77.3	7.73

It is invalid to make an F-test in the conventional manner using the above information. The adjusted F-ratio that is calculated and printed out last is computed in the following manner. The sum of squares of deviations of the adjusted treatment totals is calculated first. This is then divided by r(t-1) where r represents the number of replications and t refers to the number of treatments. The quotient is then divided by the effective error mean square to give an F-test. The effective error mean square is computed using the formula $E_e[1+(t-k)\mu] = E_e$, where E_e is error mean square, and k is the number of units per block from the analysis of variance table of above. The weighting factor, μ , is interpreted as $\mu = \frac{r(E_b-E_e)}{rt(k-1)E_b+k(b-r-t+1)E_e} \quad \text{where all symbols are the same as}$ previously defined, b is the total number of blocks, and E_b is the blocks within replications (adj.).

DESIGNS ARRANGED IN GROUPS OF REPLICATIONS (TYPE II)

I. DESCRIPTION:

This program will compute the analysis of variance, the unadjusted and adjusted treatment means, and other pertinent statistics. At the present time, this program is set up to handle 100 treatments. If more treatments are needed, then a simple modification of the dimension statement is all that is necessary.

At the user's discretion, the program can punch the unadjusted and adjusted treatment means on cards in addition to having these means printed. It is advisable to have some knowledge of Fortran language.

II. METHODOLOGY:

A DØ loop reads the data cards. The treatment number is read first and the data field second. Some of the calculations performed during this loop are total sums of squares (unadjusted), block sums of squares, block and replication totals, and the grand total of all observations. The other necessary computations are then performed using the procedures described by Cochran and Cox, "Experimental Designs," p. 446.

III. INPUT:

The input consists of three types of cards preceding the data cards. The first card, called the control card, defines the number of treatments, number of units per block, number of replications, number

of blocks within each replication, and number of groups. The second card is the format card which describes how the data cards are to be read. The last card is the sequence designation card.

CONTROL CARD (715, 5X, 10A4)

Columns		Description
(3- 5)	4-100	Number of treatments
(9-10)		Number of units per block
(14-15)		Number of replications
(19-20)		Number of blocks within each group
(24_25)		Number of groups
(30)		<pre>Type of output wanted 0 = Print unadjusted and adjusted treatment means 1 = Print and punch unadjusted, adjusted treatment means, and the standard error of the difference between two treatment means</pre>
(35)		Data input device code 1_4 = Tape, disk, etc. (see <u>COMMENTS</u>) 5 = Card reader
(41-80)		Descriptive information

INPUT FORMAT SPECIFICATION

The first column must be a left parenthesis (punched on either an 026 or 029 key punch). This is followed by the Fortran format of the data cards. This consists of any appropriate combination of wX and Fw.d specifications. The Fw.d is used to read both the treatment number and the desired variable. Up to 80 columns may be used for the format expression.

	SEQUENCE DESIGNATION CARD (2013)
Columns	Description
(2-3)	Position of treatment number in read list
(5- 6)	Position of data field in read list

There are times when the treatment number will not be punched in columns preceding the data. To make corrections for this, a sequence designation card is required to rearrange the input sequence. As an example, if the data card format were:

Columns	Description
(1- 3)	Not used
(4- 5)	Data field
(6- 9)	Not used
(10-11)	Treatment number

the format statement would be:

(3X, F2.0, 4X, F2.0) Data Treatment number

This means that the data is being read in first and the treatment number is being read second. Therefore, the proper sequence designation would be 2,1. This means that the second element being read is the treatment number and the first element is the data.

DATA CARDS

The data cards must be punched so that they can be read with a

Fortran read statement. No alpha-numeric codes may be used for treatment numbers. The treatment numbers must be consecutive integers starting with one. The data fields may or may not be punched with a decimal but the procedure must remain constant for all data cards once the decision is reached. If negative data is required, then an extra column must be allowed for the negative sign. The negative sign is made by using an eleven punch to the left of the most significant digit in the field. The data cards must be sorted blocks within groups. An invalid F-test and erroneous adjusted treatment means will result if this is not done.

IV. OUTPUT:

The cards preceding the data cards are first read and then printed out. The next thing printed out is the completed analysis of variance table. The rest of the output is extensively labeled and no explanation will be given here.

V. COMMENTS:

Even though it is not a requirement for the program to have the block and group numbers punched on each card, it would be advisable to do so for ease in sorting the cards in the previously specified manner.

The program is presently set up to read only one data field at a time. If the user wishes to analyze multiple data fields, then he will first need to put all of the data on either disk or tape by using some of the available utility programs or creating his own program to accomplish this. After the data has been put on disk or tape, the data

fields can then be obtained individually by using the appropriate format statement. Batch processing is assumed.

If the option is used to both print and punch the unadjusted, adjusted treatment means, and the standard errors of the difference of two means, the format and sequence for the cards is the same as for what is printed. The first card punched contains the unadjusted and adjusted standard errors of the difference between two means in that order. On the following cards the treatment number is punched first, the unadjusted treatment mean is punched second, and the adjusted treatment mean is punched last. The decimal is also punched in the output cards.

VI. SAMPLE PROBLEM:

The design used is No. 11.15 as found in Cochran and Cox, "Experimental Designs." There were 3 groups, 10 treatments, 30 blocks, 3 units per block, and 3 replications per group for this sample problem. The data cards were punched in the following manner:

Columns	Description
(1-3)	Not used
(4- 5)	Treatment number
(6)	Not used
(7-8)	Data (XX.)

The $D\emptyset$ loop reads in the data cards and some basic calculations are performed within the loop as follows:

Total (uncorrected) sums of squares = 25,536

Block (unadjusted) sums of squares = 74,246

Block	Total	Block	Total	Block	Total	Block	Total
1 2 3 4 5 6	27 24 90 40 46 65	7 8 9 10 11 12	24 45 79 21 13 45	13 14 15 16 17 18	94 41 34 19 84 26	19 20 21 22 23 24	51 65 22 22 17 46
	<u>Block</u> 25 26 27 28 29 30	<u>Total</u> 80 18 38 67 20 49	Gran	d total =	1312	<u>Group</u> 1 2 3	<u>Total</u> 461 472 379

The following analysis of variance is then derived:

Source	d.f.	Sums of Squares	Mean Squares
Total	89	64099.560	
Group	2	172.156	
Unadjusted treatment	9	1478.622	
Blocks within groups	27	4344.210	160.900
Error	52	414.968	8.137

It is invalid to make an F-test in the conventional manner using the above information. The adjusted F-ratio that is calculated and printed out last is computed in the following manner. The sum of squares of deviations of the adjusted treatment totals is calculated first. This is then divided by (tr-c) where t is the number of treatments, r is the number of replications, and c is the number of groups. The quotient is then divided by the effective error mean square, which is the error variance/unit in the output. The effective error is estimated as $E_{e} \left[1 + (t-c)\mu\right]$ where E_{e} is the error mean square from the above analysis of variance, μ is the weighting factor, and the other terms are the same as previously mentioned.

DESIGNS NOT ARRANGED IN REPLICATIONS OR TREATMENTS (TYPE III)

I. DESCRIPTION:

This program was written to serve as a utility program in a statistical laboratory. The program will compute the analysis of variance, the unadjusted and adjusted treatment means, and other pertinent statistics. At the present time this program can handle up to 100 treatments. If more treatments are needed, then a simple modification of the dimension statement is all that is necessary.

At the user's discretion the program can also punch the unadjusted and adjusted treatment means on cards in addition to having these means printed. It is advisable to have some knowledge of Fortran language.

II. METHODOLOGY:

A DØ loop reads the data cards. The treatment number is read first and the data field second. Some of the calculations performed during this loop are total sums of squares (uncorrected), block sums of squares, block totals, and the grand total of all observations. The other necessary computations are then performed using the procedures described by Cochran and Cox, "Experimental Designs," pp. 446-447.

III. INPUT:

The input consists of three types of cards preceding the data cards. The first card is the control card which defines to the program the

number of treatments, the number of times each treatment is replicated, the number of units per block, and the total number of blocks in the experiment. The format card using an appropriate Fortran statement describing how the data cards are to be read comes next. The last card is the sequence designation card.

CONTROL CARD

(615, 10X, 10A4)

Columns	Description
(3- 5)	Number of treatments
(9-10)	Number of times each treatment is replicated
(14-15)	Number of units per block
(19-20)	Total number of blocks
(25)	<pre>Type of output wanted 0 = Print unadjusted and adjusted treatment means 1 = Print and punch unadjusted, adjusted treatment means, and</pre>
	standard errors of the difference between two treatment means
(30)	Data input device code 1-4 = Tape, disk, etc. (see <u>COMMENTS</u>) 5 = Card reader
(41-80)	Descriptive information

INPUT FORMAT SPECIFICATION

The first column must be a left parenthesis (punched on either an 026 or 029 key punch). This is followed by the Fortran format of the data cards. This consists of any combination of wX and Fw.d specifications. The Fw.d is used to read both the treatment number and

the desired data field. Up to 80 columns may be used for the format expression.

SEQUENCE	DESIGNATION	CARD
	(2013)	

Columns

(2-3) Position of treatment number in read list
(5-6) Position of data field in read list

Description

There are times when the treatment number will not be punched in columns preceding the data. To make allowances for this, a sequence designation card is required to rearrange the input sequence. As an example, if the data card format were:

Columns	Description
(1- 5)	Not used
(6- 9)	Data (XX.XX)
(10-13)	Not used
(14-15)	Treatment number

the format statement would be:

(5X, F4.2, 4X, F2.0) J J Data Treatment number

This means that the first element being read is the data while the treatment number is being read last. Therefore, the proper sequence designation would be 2,1. This means that the second element read corresponds to the treatment number and the first element is the data.

DATA CARDS

The data cards must be punched so that they are compatible with Fortran read statements. No alpha-numeric codes are used to identify treatment numbers. The treatment numbers must be consecutive integers starting with one. The data fields may or may not be punched with a decimal, but whatever the choice it must be consistent. If negative data is required, then an extra column must be allowed for the negative sign. The negative sign is made by using the eleven punch to the left of the most significant digit in the field. The data cards <u>must be sorted</u> into blocks. If this is not done, the adjusted treatment means and the calculated F-test will not be correct.

IV. OUTPUT:

All cards preceding the data are read and then printed. The next print out is the completed analysis of variance. The rest of the output is extensively labeled and no explanation will be given here.

V. COMMENTS:

Even though it is not a requirement for the program to have the block number punched in the data cards, it would ease the problem somewhat of sorting the cards in blocks.

The program is currently set up to read and analyze only one data field at a time. If the user wished to analyze multiple data fields per card, then he would need to put all of the data on some device, such as a disk or tape, in order to manipulate the program and the data to obtain the desired analysis. There are utility programs available that will store the data on tape or disk. After the data has been put on one of these devices, the individual data fields can then be obtained by using the appropriate format expression. Batch processing is assumed.

If the option to both print and punch the unadjusted, adjusted treatment means, and the standard errors of the difference of two means, the format and sequence for the punched cards is the same as for what is printed. The first card punched contains the unadjusted and adjusted standard errors of the difference between two means in that order. On the following cards the treatment number is punched first, then the unadjusted treatment mean is punched second, and the adjusted treatment mean is punched last. The decimal is punched in the output cards.

VI. SAMPLE PROBLEM:

The data for this example was taken from Fisher and Yates. There were 9 treatments, 4 units per block, 18 total blocks, and each treatment was replicated 8 times. The analysis of variance output by the program is the same as that by Fisher and Yates. The other statistics, however, do not appear in their example. The computation procedures and explanations of these statistics can be found in Cochran and Cox (pp. 443-447).

The data cards were punched in the following format:

Columns

Description

(1-2)

Treatment number

(3- 5)	Not used
(6- 8)	Data (X.XX)

The adjusted F-ratio is computed by first finding the sum of squares of the adjusted means. Divide this sum of squares by the number of treatments minus one, (t-1). This quotient divided by the effective error variance per unit gives the adjusted F-ratio.

LITERATURE CITED

- Cochran, William G. and Gertrude M. Cox. 1950. Experimental Designs. John Wiley & Sons, Inc., New York.
- Fisher, R. A. and F. Yates. 1963. Statistical tables for agricultural, biological, and medical research. Hafner, New York.
- Hurst, Rex L. n.d., a. Balanced lattice program. Unpublished. Utah State University, Logan, Utah.
- Hurst, Rex L. n.d., b. Designs arranged in replications program. Unpublished. Utah State University, Logan, Utah.
- Hurst, Rex L. n.d., c. Designs arranged in groups of replications. Unpublished. Utah State University, Logan, Utah.
- Hurst, Rex L. n.d., d. Designs not arranged in replications or treatments. Unpublished. Utah State University, Logan, Utah.

APPENDIXES

Appendix A

Listing of Balanced Lattice Program

ORTRAN IV	MODEL 44 PS VERSION 2, LEVEL 1 DATE 69144
0001	IMPLICIT REAL $* 8(A-H, 0-Z)$
0002	DIMENSION IDK(10,81), TT(81), TR(10), BT(81), TB(90),
002	1FMT(50), ABC(10) IRD=5
0003	IWRT=6
0004	IVRI-0 IPCH=7
0005	WRITE(IWRT, 102)
0006	102 FORMAT(1H1, BALANCED LATTICES'//)
0008	READ (IRD, 100) NT, NR, NPCH, NZ, (ABC(I), $I=1,10$)
10009	100 FORMAT (415,20X,10A4)
0010	WRITE(IWRT, 101)NT, NR, NPCH, NZ, (ABC(I), I=1, 10)
0011	101 FORMAT(1H ,415,20X,10A4)
0012	READ(IRD, 128)(FMT(I), I=1,20)
0013	WRITE(IWRT, 129)(FMT(I), I=1,20)
0014	128 FORMAT(20A4)
0015	129 FORMAT(1H ,20A4)
0016	READ(IRD,127)N1,N2
0017	127 FORMAT(213)
0018	WRITE(IWRT, 124)N1,N2
0019	124 FORMAT(1H ,213)
0020	SS=0.0
0021	G=0.0
10022	NK=NR-1
0023	NB=NR*NT/NK
0024	IF(NZ.NE.IRD) REWIND NZ
0025	DO 4 J=1, NT
002.6	TT(J) = 0.0
0027	4 BT(J)=0.0
0028	DO 5 K=1,NB
0029	5 TB (K)=0.0
0030	DO 7 I=1,NR
0031	TR (I) = 0.0
0032	DO 7 J=1,NT
0033	READ (NZ, FMT) AB, AD
0034	IF(1-N1)3,6,97
0035	3 Y=AB
0036	K=AD
0037 0038	GO TO 2
0039	6 Y=AD
0040	K=AB
0041	2 IDK(I,J)=K
0042	SS=SS+Y*Y K=IDK(I,J)
0043	G = G + Y
0044	TT(J) = TT(J) + Y
0045	TR(I) = TR(I) + Y
0046	7 TB(K) = TB(K) + Y
0047	DO 8 I=1, NR
0048	DO 8 J=1,NT
1.	

RTRAN IV	MODEL 44 PS VERSION 2, LEVEL 1 DATE 69144
049	K=IDK(I,J)
050	8 BT(J)=BT(J)+TB(K)
051	BLK=0.0
052	DO 9 J=1,NT
053	BT(J)=DFLOAT(NK)*TT(J)-DFLOAT(NR)*BT(J)+G
054	9 BLK=BLK+BT(J)*BT(J)
055	BLK=BLK/DFLOAT((NK**3)*(NK+1))
056	TOT=SS-G*G/DFLOAT(NR*NT)
057	REP=0.0
058	DO 10 I=1,NR
059	10 REP=REP+TR(I)*TR(I)/DFLOAT(NT)
060	REP=REP-G*G/DFLOAT(NR*NT)
061	TRT=0.0
062	DO 11 J=1,NT
063	11 TRT=TRT+TT(J)*TT(J)/DFLOAT(NR)
064	TRT=TRT-G*G/DFLOAT(NR*NT)
065	ERR=TOT-REP-TRT-BLK
066	NTOT=NR*NT-1
067	NREP=NR-1
068	NTRT=NT-1
069	NBLK=NT-1
070	NERR=NTOT-NREP-NTRT-NBLK
071	AMTRT=TRT/DFLOAT(NTRT)
072	AMBLK=BLK/DFLOAT(NBLK)
1073	AMERR=ERR/DFLOAT(NERR)
074	AMU=(AMBLK-AMERR)/(DFLOAT(NK*NK)*AMBLK)
075	WRITE(IWRT,103)
076	103 FORMAT (1HO, 'ANALYSIS OF VARIANCE'/)
077	WRITE(IWRT,104)
078	104 FORMAT(1H , 'SOURCE', 6X, 'DF', 2X, 'SUMS OF SQUARES', 2X, 1'MEAN SQUARES')
079	WRITE (IWRT, 105) NTOT, TOT
080	105 FORMAT(1H , TOT ', 16, E17.8)
081	WRITE (IWRT, 117) NREP, REP
082	117 FORMAT (1H, 'REP ', I6, E17.8)
083	WRITE (IWRT, 106) NTRT, TRT, AMTRT
1084	106 FORMAT (1H, 'TRT ', I6, 2E17.8)
1085	WRITE (IWRT, 107) NBLK, BLK, AMBLK
086	107 FORMAT(1H , BLK(A) ', 16, 2E17.8)
087	WRITE(IWRT, 108)NERR, ERR, AMERR
088	108 FORMAT(1H , 'ERROR ', 16, 2E17.8//)
089	WRITE(IWRT,110) 110 FORMAT(1H , 'TRT',5X,'UNADJ MEANS',6X,'ADJ MEANS'/)
090 091	
092	DO 12 $J=1,NT$
093	BT(J) = (TT(J) + AMU * BT(J)) / DFLOAT(NR)
094	TT(J) = TT(J) / DFLOAT(NR)
095	12 WRITE(IWRT,111)J,TT(J), $BT(J)$
096	111 FORMAT($I5, 2E17.8$)
	AVE=G/DFLOAT(NR*NT)

ORTRAN IV	MODEL 44 PS VERSION 2, LEVEL 1 DATE 69144	
0097	WRITE(IWRT, 112)AVE	
098	112 FORMAT(1H , 'EXPERIMENT AVE', E15.8)	
0099	GO TO 98	
0100	97 WRITE(IWRT, 126)	
0101	126 FORMAT(1HO, ' THERE IS AN ERROR IN THE CONTROL CARD	•)
0102	GO TO 91	
0103	98 EF=AMERR*(1.+DFLOAT(NK)*AMU)	
0104	WRITE(IWRT, 115)EF	
0105	115 FORMAT(1H , 'EFFECTIVE ERROR=', E15.8)	
0106	CV=DSQRT(EF)/AVE	
0107	WRITE(IWRT,113)CV	
0108	113 FORMAT(1H , 'COEFFICIENT OF VARIATION=', E15.8)	
0109	IF(1-NPCH)97,99,999	
0110	99 SEUM=DSQRT(2.*AMERR/DFLOAT(NR))	
0111	SEF=DSQRT(2*EF/DFLDAT(NR))	
0112	WRITE(IPCH, 131)SEUM, SEF	
0113	131 FORMAT(6X,2F17.8)	
0114	DO 61 $I=1,NT$	
0115	61 WRITE(IPCH, 125) I, BT(I), TT(I)	
0116	125 FORMAT(14,2X,2F17.8)	
0117	999 ATS=0.0	
0118	DO 15 J=1,NT	
0119	15 $ATS=ATS+((BT(J)-AVE)*(BT(J)-AVE))$	
0120	F=ATS*DFLOAT(NR)/(DFLOAT(NTRT)*EF)	
0121	WRITE(IWRT, 116)F	
0122	116 FORMAT(1H , 'ADJ F RATIO=', E15.8//)	
0123	91 CALL EXIT	
0124	END	

Appendix B

Input and Output for Balanced Lattice Sample Problem

SAMPLE INPUT

•

1

BALANCED LATTICE TEST

	9 4	
(F2.	0,3X,F	3.2)
1	2	
111	220	
112	184	
113	218	
214	205	
215	85	
216	186	
317	73	
318	160	
319	176	
421	119	
522	226	
623	212	
424	120	
626	107 203	
427	115	
528	145	
629	163	
731	181	
832	176	
933	171	
934	157	
735	116	
836	216	
837	180	
938	113	
739	111	
1041	177	
1142	150	1
1243	204	
1144	160	
1245	93	
1046	157	
1247	178	
1048	143	
1149	142	

BALANCED LATTICES

9 4 0 5 (F2.0, 3X, F3.2) 1 2

ANALYSIS OF VARIANCE

SOURCE	DF	SUMS OF SQUARES	MEAN SQUARES
TOT	35	0.596090000 01	
REP	3	0.773888890-01	
TRT	8	0.32261000D 01	0.403262500 00
BLK(A)	8	0.142060370 01	0.177575460 00
ERROR	16	0.123680740 01	0.77300463D-01

BALANCED LATTICE TEST

TRT UNADJ MEANS ADJ MEANS

1 0.17425000D 01 0.12035178D 01 2 0.18400000D 01 0.17543554D 01 3 0.20125000D 01 0.19643445D 01 4 0.16050000D 01 0.17267220D 01 5 0.10025000D 01 0.93928615D 00 6 0.19050000D 01 0.18447665D 01 7 0.13650000D 01 0.13869601D 01 8 0.14025000D 01 0.14346559D 01 9 0.1480000D 01 0.15003916D 01 EXPERIMENT AVE 0.15950000D 01 EFFECTIVE FRROR= 0.91850716D-01	
3 0.20125000D 01 0.19643445D 01 4 0.16050000D 01 0.17267220D 01 5 0.10025000D 01 0.93928615D 00 6 0.19050000D 01 0.18447665D 01 7 0.13650000D 01 0.13869601D 01 8 0.14025000D 01 0.14346559D 01 9 0.1480000D 01 0.15003916D 01 EXPERIMENT AVE 0.15950000D 01	
4 0.16050000D 01 0.17267220D 01 5 0.19025000D 01 0.93928615D 00 6 0.19050000D 01 0.18447665D 01 7 0.13650000D 01 0.18467665D 01 8 0.14025000D 01 0.14346559D 01 9 0.1480000D 01 0.15003916D 01 EXPERIMENT AVE 0.15950000D 01	
5 0.10025000D 01 0.93928615D 00 6 0.1905000D 01 0.18447665D 01 7 0.13650000D 01 0.13869601D 01 8 0.14025000D 01 0.14346559D 01 9 0.1480000D 01 0.15003916D 01 EXPERIMENT AVE 0.15950000D 01	
6 0.19050000D 01 0.18447665D 01 7 0.13650000D 01 0.13869601D 01 8 0.14025000D 01 0.14346559D 01 9 0.1480000D 01 0.15003916D 01 EXPERIMENT AVE 0.15950000D 01	
7 0.136500000 01 0.13869601D 01 8 0.14025000D 01 0.14346559D 01 9 0.1480000D 01 0.15003916D 01 EXPERIMENT AVE 0.15950000D 01	
8 0.14025000D 01 0.14346559D 01 9 0.1480000D 01 0.15003916D 01 EXPERIMENT AVE 0.15950000D 01	
9 0.14800000 01 0.15003916D 01 EXPERIMENT AVE 0.15950000D 01	
EXPERIMENT AVE 0.159500000 01	
EFFECTIVE FRROR= 0.91850716D-01	
COEFFICIENT OF VARIATION= 0.19001181D 00	0
ADJ F RATID= 0.43163811D 01	

Appendix C

et et et et et et

Listing of Designs Arranged in Replications Program

ORTRAN IV	MODEL 44 PS VERSION 2, LEVEL 1 DATE 69144
	IMPLICIT REAL $* 8(A-H, 0-Z)$
0001	DIMENSION TT(100), BT(100), NID(100), FMT(40), X(100),
0002	1Y(100), ABC(10)
	IRD=5
0003	IWRT=6
0004	IPCH=7
0005	WRITE(IWRT, 102)
0006	102 FORMAT(1H1, INC. BLK ARRANGED IN REPLICATIONS'//)
0007	1 READ(IRD, 100)NT, NK, NR, NB, NPCH, NZ, (ABC(I), I=1,10)
0008	100 EDRMAT(615, 10X, 10A4)
0009	WRITE(IWRT, 101)NT, NK, NR, NB, NPCH, NZ, (ABC(I), I=1, 10)
0010	101 FORMAT(1H ,615,10X,1044)
0011	READ(IRD, 128)(FMT(I), I=1,20)
0012	WRITE(IWRT, 129)(FMT(I), I=1,20)
0013	128 FORMAT(20A4)
0014	129 FORMAT(1H ,20A4)
0015	129 FURMATION 127101 N2
0016	READ(IRD,127)N1,N2
0017	IZI IURIAILISI
0018	WRITE(IWRT, 124)N1, N2
0019	124 FORMAT(1H,2I3)
0020	IF(NZ.NE.IRD) REWIND NZ
0021	DO 4 I=1,100
0022	NID(I)=0
0023	BT(I)=0.0
0024	4 TT(I) = 0.0
0025	SS=0.0
0026	CT=0.0
0027	REP=0.0
0028	BTOT=0.0
0029	QSQ=0.0
0030	DO 10 TIT-1 MP
0031	REPI=0.0
0032	00 00 T 1 ND
0033	B=0.0
0034	DO 30 JJ=1,NK
0035	READ(NZ, FMT)AB, AD
0036	IF(1-N1)3,5,97
0037	3 Z=AB
0038	K=AD
0039	CO TO 2
0040	5 Z=AD
0040	K=AB
0041	GO TO 2
	2 NID(JJ) = K
0043	B=B+Z
0044	$\frac{B=B+Z}{TT(K) + Z}$
0045	REPI=REPI+Z
0046	CT=CT+Z
0047	
0048	30 SS=SS+Z*Z

ORTRAN	IV	MODEL	44	PS	VERSION	1 2,	LEVEL	1	DATE	69144	
1049			BTOT	=BTOT +	B*B						
1050				II=1, NK							
1051			I1=	VID(II)							
1052		20		1)=BT(I1)+B						
1053		10	REP=	REP+REPI	*REPI						
1054				LOAT (NK-							
1055					OAT (NR*NT)					
1056			SS=S		19						
1057			SST=								
1058				E(IWRT,1	30)						
1059		130			ANALYSIS	OF V	ARIANC	E 1)			
1060		100		E(IWRT,1							
1061		103			SOURCE .	X. D	F'.2X.	SUN	IS OF S	QUARES	,2X,
1001				N SQUARE			,,				
1062			NDF=	NT*NR-1							
1063			WRIT	FITWRT.1	.04)NDF, 55	AR	NULL				
1064			SS=0	.0		1.75.7					
1065		104		AT(1H ,	TOT	.16.	E17.8)				
1066		104		0 I=1,NT			MEANS				
1067		40	= 22	I)TT+ 22)*TT(T)						
		40	2=22	SIDELOAT	(NR)-CT						
1068			DED=	REP/NT-C	T						
1069			NDF=		617.81						
1070					05)NDF, RE	D					
0071		105			REP		E17.81				
072		105	NDF=		RLF	101					
1073					06)NDF, 55						
0074		104			UNAJ TRT		2517	81			
)075		100		0I=1,NT	UNAJ INI	915	921110	01			
0076					*TT(I)-B1	(1)					
0077 0078				QSQ+Q*Q	+11(11-0)	(1)					
1079					NK)*TT(I	-DEI	DATINT	-1)*	RTIT	-6	
1080		50	BT(I				UAITI	11.		0	
080		50			T(NT-1)*(11020	DELOA	TINK	XNT XNE	*(NK-1)	1+
1001					NK)-CT-SS			1 (14)			
082				NR*(NB-]		5-NLF					
083					DELOAT(NE		-111				
1084					07)NDF,SS						
1085		107			BLK/REP			1			
1085		107			-REP-SSBW		21.11.0				
1087					LOAT (NT *		-NRXND	+1)			
1088					-NB*NR+1		NO TINK	,			
1089					LO8)NDF,SS	SER.S	MER				
1090		100			ERROR			11			
090		108		•	(SMBWR-			/ 1			
1092				R*NT*(NK		3.11 1	,				
1093					R = 17 R = NR = NT + 1	,					
1093					ABWR+XJ*S						
095				E(IWRT,]		LICI					
			MUTI	CITAL IN	1.1.1						

RTRAN	IV	MODEL	44 PS	VERSION 2	, LEVE	L 1 DATE	69144
1096		110	FORMAT(1H ,	TREATMENT M	EANS!)		
1097			WRITE(IWRT,				
1098		111	FORMAT(1H ,	TRT',3X,	UNADJ MI	EANS',6X,	ADJ MEANS!)
1099			DO 60 I=1,N	T on Detterned			
100			X(I) = TT(I)/I	DFLOAT(NR)			
101			$Y(I) = (TT(I) \cdot$	+WF*BT(1))/0	FLOAT(N	R)	
102		60	WRITE (IWRT	,112) I,X(I),	Y(I)		
103		112	FORMAT(1H ,	15,2E17.8)			
104			GO TO 98				
105			WRITE(IWRT,				
106		126	FORMAT(1HO,	THERE IS A	N ERROR	IN THE CO	NTROL CARD')
107			GO TO 9				
108		98	XX = 1 + (NT - NK))*WF			
109			ERVAR=SMER*	XX			
0110			WRITE(IWRT,				
0111		113	FORMAT(1H ,	ERROR VAR.	/UNIT	='E15.8)	
0112			XA=DSQRT(2.	*ERVAR/DFLOA	AT(NR))		
0113			WRITE(IWRT,				
0114		114	FORMAT(1H ,	ST. ER. AD.	J. MEANS	='E15.8)	
0115			IF(1-NPCH)9				
0116		99	SEUM=DSQRT(2.*SMER/DFLC	DAT(NR))		·
0117			WRITE(IPCH,				
0118		131	FORMAT(6X,2	F17.8)			
0119			DO 61 I=1,N				
0120			WRITE(IPCH,		Y(I)		
0121		125	FORMAT(14,2	X,2F17.8)			
0122		999	F=0.0				
0123			DO 70 I=1,N				
0124		70	F = F + (TT(I) +				
0125			F=((F/DFLOA	T(NR)-CT)/DE	FLOAT (NT	-1))/ERVAR	
0126			WRITE(IWRT,				
0127			FORMAT(1H ,	ADJUSTED F	RATIO	='E15.8)	
0128		9	CALL EXIT				
0129			END				

Appendix D

and the

Input and Output for Designs Arranged in Replications Program

SAMPLE INPUT	INPUT
--------------	-------

6 2 5 3 5 MILLER TE (1X,F1.0,1X,F2.0)	ST DATA
	4
1 2	
1 7	
2 17	
3 26	
4 25	
5 33	
6 29	
1 17	
3 27	
2 23	
5 27	
4 29	
6 30	
1 10	
4 25	
2 26	
6 37	
3 24	
5 26	
1 25	
5 40	
2 25	
4 34	
3 34	
6 32	
1 11	
6 27	
2 24	
3 21	
4 26	
5 32	

INC. BLK.-ARRANGED IN REPLICATIONS

6 2 5 3 0 5 (1X,F1.0,1X,F2.0) 1 2

ANALYSIS OF VARIANCE

SOURCE	DF	SUMS OF SQUARES	MEAN SQUARES
TOT	29	0.164896670 04	
REP	4	0.298466670 03	
UNAJ TRT	5	0.105976670 04	
BLK/REP	10	0.213400000 03	0.213400000 02
ERROR	10	0.773333330 02	0.773333330 01

MILLER TEST DATA

TREATMENT MEANS

TRT	UNADJ MEANS A	DJ MEANS	
1	0.140000000 02 0	·14360299D 02	
2	0.23000000 02 0	.23455115D 02	
3	0.264000000 02 0	.267223730 02	
4	0.278000000 02 0	.28084447D 02	
5	0.316000000 02 0	·31144885D 02	
6	0.31000000 02 0	·30032881D 02	
ERROR V	AR./UNIT = 0.106	662950 02	
ST. ER.	ADJ. MEANS = 0.206	55551D 01	
ADJUSTE	D = RATIO = 0.176	962220 02	

Appendix E

in the second second

Listing of Designs Arranged in Groups of Replications

.

```
RTRAN IV
                          VERSION 2, LEVEL 1 DATE 69144
         MODEL 44 PS
              IMPLICIT REAL * 8(A-H, D-Z)
1001
              DIMENSION TT(100), BT(100), NID(100), FMT(50), X(100),
1002
             3Y(100), ABC(10)
              IRD=5
003
              IWRT=6
1004
              IPCH=7
005
              WRITE(IWRT, 102)
1006
          102 FORMAT(1H1, 'A.O.V. INC. BLK.-ARRANGED IN GROUPS'//)
007
              READ(IRD ,100)NT,NK,NR,NB,NC,NPCH,NZ,(ABC(I),I=1,10)
008
              WRITE(IWRT, 101) NT, NK, NR, NB, NC, NPCH, NZ, (ABC(I), I=1, 10)
009
           100 FORMAT(715,5X,10A4)
010
           101 FORMAT(1H ,715,5X,10A4)
1011
              READ(IRD, 128)(FMT(I), I=1,20)
012
              WRITE(IWRT, 129)(FMT(I), I=1,20)
1013
                       20A4)
           128 FORMAT(
014
           129 FORMAT(1H , 20A4 )
015
              READ(IRD, 127)NA, N2
016
           127 FORMAT(213)
017
              WRITE(IWRT, 124)NA, N2
018
           124 FORMAT(1H ,2I3)
019
              IF(NZ.NE.IRD) REWIND NZ
020
              DO 4 I=1,100
021
              NID(I)=0
1022
              BT(I)=0.0
023
            4 TT(I)=0.0
024
              SS=0.0
1025
              CT=0.0
1026
              GRP=0.0
027
              QSQ=0.0
              BTOT=0.0
028
029
                    Tel. Mt.
              F=0.0
1030
              DO 30 III=1,NC
1031
              GRPI=0.0
032
              DO 20 II=1,NB
033
            B=0.0
034
              DJ 10 1=1,NK
035
              READ (NZ, FMT) AB, AD
036
              IF(1-NA)3,5,97
037
             3 Z = AB
038
              K=AD
039
              GO TO 2
040
                   TINC, BLK/58P. 4.16.2017.81
041
             5 Z = AD
              K=AB
042
              GO TO 2
043
             2 \text{ NID(I)}=K
044
              N1=NID(I)
 045
                    Electrone Contents of
            B=B+Z
046
              TT(K) = TT(K) + Z
              GRPI=GRPI+Z
 047
 048
```

ORTRAN	IV MODE	L 44 PS	S VERSIC	IN 2,	LEVEL	1	DATE	69144
0049		CT=CT+Z	2					
0050	10	SS=SS+2						
0051		BTOT=B1	TOT+B*B					
0052		DO 20 M	N2=1,NK					
0053		N3=NID	(N2)					
0054	20	BT(N3)=	=BT(N3)+B P+GRPI*GRPI					
0055	30	GRP=GRF	+GRPI*GRPI					
1056			AT(NK-1)*CT					
0057		CT=CT*C	CT/DFLOAT(NR*N	T)				
058		SS=SS-0	T					
059		SST=SS						
0060			[WRT,130)					
0061	130	FORMAT	1HO, 'ANALYSIS	OF V	ARIANCE	1/)		
0062		WRITE()	[WRT, 103)				in the state	
0063	103	FORMAT	1HO, 'SOURCE',	6X, 'D	F',2X,'	SUM	S OF S	QUARES', 2X,
			SQUARES!)					
0064		NDF=NT*	×NR−1					
0065		WRITE(WRT, 104) NDF, S	S				
0066	104	FORMAT	1H ,'TOT	·, I6,	E17.8)			
0067		SS=0.0		1111				
0068		UU 40 1	=1, NI					
0069	40	SS=SS+T	TT(I) *TT(I)					
0070	1.1.2	SS=SS/D	FLOAT(NR)-CT					
0071			DFLOAT(NB*NK)-CT				
0072		NDF=NC-		. L (3 A 1				
0073			WRT, 105)NDF, G	RP				
0074			1H , GRP		E17.8)			
0075		NDF=NT-		,,				
0076			WRT, 106)NDF, S	S				
0077	106		1H . UNAJ TRT		.E17.8)			
0078		DD 50 I	[=1,NT					
0079		Q=DFLOA	T(NK)*TT(I)-B	T(I)				
080		QSQ=QSG						
0081			T(NT-NK)*TT(I)-DEL	DAT (NT-	1)*	BT(I)+	G
0082	50	BT(I)=W	and the second se					~
0083		XX= (NT-						
0084			X /DFLOAT(NK*	NT*NR	* (NK-1))+B		I DAT (NK) -CT-
		SS-GRP						
0085		NDF=NC*	*(NB-1)					
0086			SBWG/DFLOAT(N	DF)				
0087			WRT, 107)NDF, S		SMRWG			
0088	107		1H , BLK/GRP					
0089	101		ST-SS-SSBWG-GR					
0090			NR-NT-NB*NC+1					
0091			SER/DFLOAT(NT*		-NR*NC+	11		
0092			WRT, 108)NDF, S			11		
0093	109		1H , 'ERROR			1		
0094	100		AT(NB*NC-NC)*					
0095			NK-1)*(NB*NC-				K)*/NP	*NC-NC-NT+11
,		A1-111+(THE TANKING MC-	101-5		1	N THE	THE NE WITLI

RTRAN I	V MODE	L 44 PS	VERSI	ON 2,	LEVEL 1	DATE	69144
		6 SMER					
1096		WF=WF/XY					
1097		WRITE (IWR	T.110)				
098	110	FORMAT(1H			(IZM		
1099		WRITEIWR					
100	111			.3X. !!!	NADI MEAN	1. KY. I	ADJ MEANS !)
101		DO 60 I=1	•NT	1541 0	HAUD HEAN.	,0,,	AUJ MEANS .!
102		X(I)=TT(I		IR)			
103			I)+WF*BT(I		DAT(NR)		
104	60	WRITE (IW	RT.112) I.X	(1). Y(I)		
105	112	FORMAT(1H	,15,2E17.	8)	. ,		
106		GO TO 98					
107	97	WRITE(IWR	T,126)				
108				IS AN I	FRROR IN 1	HE CONT	TROL CARD')
1109		GO TO 9				IL CON	INOL CAND
0110	98	XZ=1+(NT-!	VK)*WF				
0111		ERVAR=SME	X*XZ				
1112		WRITE(IWR)	(,113) ERV	AR			
0113	113	FORMAT(1H			IT =	.E15.81)
1114		XA=DSQRT(2	.*ERVAR/D	FLOAT	(R))		
)115		WRITE(IWR)	,115)XA				
)116	115	FORMAT(1H	,'ST. ER.	ADJ. N	IEANS = .	E15.8)	
1117		IF(1-NPCH)					
1118	99	SEUM=DSQR1	(2.*SMER/	DFLOAT	NR))		
1119		WRITE(IPCH		,XA			
0120	131	FORMAT(6X	2F17.8)				
0121		DO 61 I=1,					
0122	61	WRITE(IPCH	1,125) I,X(I),Y(I)			
0123		FORMAT(14,)			
0124		DO 70 I=1,					
0125	70	F=F+(TT(I))	+WF*BT(I))*(TT(I)+WF*BT(I))	
0126		YY=(F/NR-C					
0127		F=YY/ERVAR					
0128		WRITE(IWRT					
129	116	FORMAT(1H	, ADJUSTE	DFRAT	IO = ',	E15.8)	
130	9	CALL EXIT					
0131		END					

Appendix F

Tripler

Input and Output for Designs Arranged in Groups of Replications

10 3 9	10	3	5	MILLER	TEST DATA
(3X,F2.0,1X,F2.) 1 2		Section Section			
101 3 11					
101 2 9 101 1 7					
102 8 12 102 5 8					
102 2 4 103 3 27				•	
103 4 29					
104 6 15					
$ \begin{array}{r} 104 \ 1 \ 11 \\ 104 \ 4 \ 14 \end{array} $					
105 5 13 105 7 16					
105 8 17 106 9 25					
106 4 18					
106 6 22 107 1 3					
107 9 12 107 7 9					
10810 19 108 8 16					
108 2 10 109 3 20					
109 9 28 10910 31					
11010 10					
110 5 4 110 6 7					
211 1 2 211 2 5					
211 4 6 212 2 13					
212 6 17 212 3 15					
213 3 29					
213 4 30 213 8 35					
214 5 9 214 9 19					
214 4 13 215 7 15					
215 5 12 215 1 7					

i și și î î

SAMPLE INPUT

216 9 216 6 216 8 217 7	$\begin{array}{c} 8\\ 4\\ 7\\ 7\\ 29\\ 23\\ 32\\ 13\\ 30\\ 12\\ 21\\ 18\\ 22\\ 19\\ 24\\ 7\\ 10\\ 5\\ 5\\ 7\\ 10\\ 6\\ 7\\ 4\\ 18\\ 16\\ 12\\ 27\\ 24\\ 29\\ 30\\ 5\\ 10\\ 15\\ 320 \end{array}$
	23
217 3 21710 21810 218 1 218 8	13
219 2 219 9 219 5 220 6	3 10 12 21 18 22 19 24
216 9 216 6 216 8 217 7 217 3 21710 21810 2181 218 1 218 8 219 2 219 9 219 5 220 6 220 7 22010 321 3 321 5 321 1 322 2 322 6 322 7 323 8 323 9 323 3 32410 324 4 324 2 325 5 325 3 325 6 326 1 326 6 327 2 327 7 328 8 327 7 328 8	19 24 7 10
322 2 322 6 322 7 323 8	5 7 10 6
323 9 323 3 32410 324 4	7 4 18 16
324 2 325 5 325 3 325 6 326 8	12 27 24 29
326 1 326 6 327 2 327 9	10 5 10 15
328 4 328 7	29
329 1 329 9 32910 330 4 33010	9 3 8 20 11
330 5	18

.

in the second

10 3 9 10 3 0 5 MILLER TEST DATA (3X,F2.0,1X,F2.0) 1 2 ANALYSIS OF VARIANCE SOURCE DF SUMS OF SQUARES MEAN SQUARES TOT 89 0.66099556D 04 GRP 2 0.17215556D 03 UNAJ TRT 9 0.14786222D 04 BLK/GRP 27 0.43442111D 04 0.16089671D 03 ERROR 51 0.41496667D 03 0.81366013D 01 TREATMENT MEANS TRT UNADJ MEANS ADJ MEANS 1 0.63333333D 01 0.11582921D 02 2 0.888888080 01 0.10895931D 02 3 0.17777778D 02 0.12053798D 02 4 0.18222222D 02 0.141924990 02 5 0.1322222D 02 0.141924990 02 5 0.1322222D 02 0.141924990 02 6 0.14222222D 02 0.14978121D 02 7 0.19333333D 02 0.17310652D 02 8 0.14000000D 02 0.1574355D 02 9 0.15333333D 02 0.1771955D 02 ERROR VAR./UNIT = 0.10808865D 02 ST. ER. ADJ. MEANS = 0.15498290D 01 ADJUSTED F RATIO = 0.52195577D 01	A.O.V. INC. BLKARRANGED IN GROUPS
SOURCE DF SUMS OF SQUARES MEAN SQUARES TOT 89 0.64099556D 04 GRP 2 0.17215556D 03 UNAJ TRT 9 0.14786222D 04 BLK/GRP 27 0.43442111D 04 0.16089671D 03 ERROR 51 0.41496667D 03 0.81366013D 01 TREATMENT MEANS ADJ MEANS 1 0.63333333D 01 0.11582921D 02 2 0.88888889D 01 0.10895931D 02 3 0.1777778D 02 0.12053798D 02 4 0.1822222D 02 0.14192499D 02 5 0.1322222D 02 0.141978121D 02 6 0.1422222D 02 0.17310652D 02 8 0.1400000D 02 0.15574355D 02 9 0.1533333D 02 0.17771955D 02 9 0.1533333D 02 0.17771955D 02 02 0.10808865D 02 10 0.184444440D 02 <t< td=""><td>(3X,F2.0,1X,F2.0)</td></t<>	(3X,F2.0,1X,F2.0)
TOT 89 0.64099556D 04 GRP 2 0.17215556D 03 UNAJ TRT 9 0.14786222D 04 BLK/GRP 27 0.43442111D 04 0.16089671D 03 ERROR 51 0.41496667D 03 0.81366013D 01 TREATMENT MEANS TRT UNADJ MEANS ADJ MEANS 1 0.6333333D 01 0.11582921D 02 2 0.88888889D 01 0.10895931D 02 3 0.17777778D 02 0.12053798D 02 4 0.18222222D 02 0.14192499D 02 5 0.1322222D 02 0.14978121D 02 6 0.14222222D 02 0.13978121D 02 7 0.1933333D 02 0.17310652D 02 8 0.1400000D 02 0.15574355D 02 9 0.1533333D 02 0.17439424D 02 10 0.18444444D 02 0.17771955D 02 ERROR VAR./UNIT = 0.10808865D 02 ST. ER. ADJ. MEANS = 0.15498290D 01	ANALYSIS OF VARIANCE
TRT UNADJ MEANS ADJ MEANS 1 0.63333330 01 0.11582921D 02 2 0.88888889D 01 0.10895931D 02 3 0.17777778D 02 0.12053798D 02 4 0.18222222D 02 0.14192499D 02 5 0.1322222D 02 0.13978121D 02 6 0.14222222D 02 0.14978121D 02 7 0.19333333D 02 0.17310652D 02 8 0.14000000D 02 0.15574355D 02 9 0.15333333D 02 0.17771955D 02 10 0.18444444D 02 0.17771955D 02 ERROR VAR./UNIT = 0.10808865D 02 ST. ER. ADJ. MEANS = 0.15498290D 01	TOT890.64099556D04GRP20.17215556D03UNAJ TRT90.14786222D04BLK/GRP270.43442111D040.16089671D03
	TRT UNADJ MEANS ADJ MEANS 1 0.63333330 01 0.11582921D 02 2 0.88888889D 01 0.10895931D 02 3 0.17777778D 02 0.12053798D 02 4 0.18222222D 02 0.14192499D 02 5 0.1322222D 02 0.13978121D 02 6 0.14222222D 02 0.14978121D 02 7 0.19333333D 02 0.17310652D 02 8 0.14000000D 02 0.15574355D 02 9 0.15333333D 02 0.17771955D 02 10 0.18444444D 02 0.17771955D 02 ERROR VAR./UNIT = 0.10808865D 02 ST. ER. ADJ. MEANS = 0.15498290D 01

Repair 1

Appendix G

Heripteria

Listing of Designs Not Arranged in Replications or Treatments

TRAN IV	MODEL 44 PS VERSION 2, LEVEL 1 DATE 69144
01	IMPLICIT REAL * 8(A-H,O-Z)
02	DIMENSION TT(100), BT(100), N1D(100), FMT(50), X(100),
	7Y(100), ABC(10)
03	IRD=5
04	IWRT=6
05	IPCH=7
06	WRITE(IWRT, 102)
07	102 FORMAT(1H1, 'AOV INC BLK-NOT ARRANGED IN BLKS OR REPS'//)
08	READ(IRD, 100)NT, NR, NK, NB, NPCH, NZ, (ABC(I), I=1, 10)
09	100 FORMAT(615,10X,10A4)
10	WRITE(IWRT, 101)NT, NR, NK, NB, NPCH, NZ, (ABC(I), I=1, 10)
11	101 FORMAT(1H ,615,10X,10A4)
12	READ(IRD, 128)(FMT(I), I=1,20)
13	WRITE(IWRT, 129) (FMT(I), I=1,20)
14	128 FORMAT(20A4)
15	129 FORMAT(1H ,20A4)
16	READ(IRD, 127)N1, N2
17	127 FORMAT(213)
18	WRITE(IWRT, 124)N1,N2
19	124 FORMAT(1H ,213)
20	IF(NZ.NE.IRD) REWIND NZ
21	$D0 \ 4I = 1,100$
22	N1D(I)=0
23	BT(I)=0.0
24	4 TT(I)=0.0
25	SS=0.0
26	CT=0.0
27	QSQ=0.0
28	BTOT=0.0
29	F=0.0
30	SST=0.0
31	DO 20 I1=1,NB
32	B=0.0
33	DO 10 I2=1,NK
34	READ (NZ, FMT) AB, AD
15	IF(1-N1)3,5,97
36	3 Z=AB
17	K=AD
8	GO TO 2
9	5 Z=AD
0	K=AB
1	GO TO 2
2	2 B=B+Z
3	N1D(I2) = K
4	TT(K) = TT(K) + Z
5	CT=CT+Z
6	10 SS=SS+Z*Z
7	BTOT=BTOT+B*B
8	DO 20 I4=1,NK

RTRAN I	V MODEL	44 PS	VERSION 2,	LEVEL 1	DATE 69144	4
149		15=N1D(14)				
050	20	BT(15)=BT(1	5)+B			
051		G=DFLOAT(NK	(-1)*CT			
052		CT=CT*CT/DF	LOAT(NK*NB)			
053		SS=SS-CT				
154		WRITE(IWRT,	130)			
055	130	FORMAT(1HO,	ANALYSIS OF N	ARIANCE 1)	
156		WRITE(IWRT,	103)			
057	103		'SOURCE', 6X, 'I	DF , 2X, 'SU	MS OF SQUARE	S',3X,
0-		MEAN SQUAR				
058		NDF=NK*NB-1				
059		WRITE(IWRT,	104)NDF,SS			
060	104		'TOT ',16	E17.8)		
061	125	DO 30 I=1,M				
062	30	SST=SST+TT				
063	50	SST=SST/DEL	OAT(NR)-CT			
064		NDF=NT-1	E/AR-CIP/OUT-1			
065			106)NDF,SST			
066	106		UNAJ TRT ', I	5.E17.8)		
067	100	DO 40 I=1.				
068			()*TT(I)-BT(I)			
069		QSQ=QSQ+Q*(
070			T(I)-(NT-1)*B	T(1)+G		
071	40	BT(I)=W				
072	40		*QSQ)/(NK*NT*!	NR *(NK-1))	+BTOT/NK-CT-	SST
073		NDF=NB-1				
074			FLOAT(NB-1)			
075			107)NDF, SSB, S:	SBER		
076	107		ADJ BLK ', 16			
077	101	SSER=SS-SST				
078		NDF=NT*NR-N				
079			DFLOAT (NT *NR-N	T-NB+1)		
080			108)NDF, SSER,			
081	108		'ERROR ',I6			
082	100		NB-1)*(SSBER-SI			
083			L)*(NB-1)*SSBE		(NB-NT)*SMER	
084		WF=WF/XX				
085		WRITE(IWRT	.110)			
086	110		TREATMENT ME	ANS!)		
087	110	WRITE(IWRT				
088	111		' TRT', 3X, 'U	NAD. MEANS	.6X. ADJ ME	ANS!)
089	1.1.1	DO 60 I=1,			,,	
090		X(I) = TT(I)				
091)+WF*BT(I))/DFI	DAT(NR)		
092	60		r,112)I,X(I),Y			
093		FORMAT(1H				
094	112	GO TO 98				
095	07	WRITE(IWRT	126)			
096			THERE IS AN	FRROR IN	THE CONTROL	CARD!)
	120	I UNITALITIU	THERE IS AN	LISTON AT		

RTRAN	ΙV	MODEL 44 PS VERSION 2, LEVEL 1 DATE 69	144
097		GO TO 9	
098		98 ERVAR=SMER*(1.+DFLOAT(NT-NK)*WF)	
099		WRITE(IWRT, 113)ERVAR	
100		113 FORMAT(1H , 'ERROR VAR./UNIT = ',E15.8)	
101		XA=DSQRT(2.*ERVAR/DFLOAT(NR))	
102		WRITE(IWRT, 115)XA	
103		115 FORMAT(1H ,'ST. ER. ADJ. MEANS = ', E15.8)	
104		IF(1-NPCH)97,99,999	
105		99 SEUM=DSQRT(2.*SMER/DFLOAT(NR))	
106		WRITE(IPCH, 131)SEUM, XA	
107		131 FORMAT(6X,2F17.8)	
108		DO 61 I=1,NT	
109		61 WRITE(IPCH, 125) I, X(I), Y(I)	
110		125 FORMAT(14,2X,2F17.8)	
111		999 DO 70 I=1,NT	
112		70 F=F+(TT(I)+WF*BT(I))*(TT(I)+WF*BT(I))	
113		F= (F/NR-CT)/(NT-1) / ERVAR	
114		WRITE(IWRT, 116)F	
115		116 FORMAT(1H , ADJUSTED F RATIO = ', E15.8)	
116		9 CALL EXIT	
117		END	

Appendix H

right () ()

Input and Output for Designs

Not Arranged in Replications or Treatments

SAMPLE INPUT

9 8 4 (F1.0,1X,F3.1)	18 5	MILLER TEST	DAT
1 2 6 26 4 97 3 54 5 69 6 59			
7 26 9 59 2 63 1 70 6 46 9 49			
3 33 9 24 4 40 7 30 6 24 9 50			
8 74 5 103 3 94 4 101 1 97 6 57			
8 75 2 39 4 41 5 64 9 63 8 40 6 61			
7 44 3 33 2 28 6 26 5 28 8 33			
2 57 8 93 3 54 9 61 2 47 7 66			
1 55 8 53 1 30 8 14			

TΛ

c	9 4	2
	3 7	
	2	2
	5 2	
-	4	
1		
	3 3	2
	5 + 2	2
	2	+
	3	
7	2	6
	2	5 7
1	4	;
	2	
4 2 7 3 7 5	4	
2	60	
1	40	
3	3	
1	20	
2	40	
4 8	60	
8	40	
2	73	
5	54	+
6		
1	44	t

AOV INC BLK-NOT ARRANGED IN	BLKS	UR	REPS
-----------------------------	------	----	------

	9	8	4	18	0	5	
(F1.	0,1	X,F3.	1)				
1	2						

ANALYSIS OF VARIANCE

tering a characteristic

SOURCE	DF	SUMS OF SQUARES	MEAN SOUARES
TOT	71	0.31872444D 03	
UNAJ TRT	8	0.240094440 02	
ADJ BLK	17	0.175264440 03	0.103096730 02
ERROR	46	0.119450560 03	0.25967512D 01

MILLER TEST DATA

TREATMENT MEANS

TRT	UNADJ MEANS		ADJ MEANS	
1	0.54875000D	01	0.570754280	01
2	0.48875000D	01	0.49128506D	01
3	0.51625000D	01	0.48680955D	01
4	0.54500000	01	0.567849300	01
5	0.52125000D	01	0.520607790	01
6	0.4450000D	01	0.426477190	01
7	0.35750000D	01	0.391233140	01
8	0.5350000D	01	0.500252840	01
9	0.472500000	01	0.474730850	01
ERROR	VAR./UNIT =	0.2	94783970 01	
ST. ER	. ADJ. MEANS =	0.8	5846370D 00	
ADJUST	ED F RATIO =	0.9	36763890 00	