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INTRODUCTION

The exponential distribution is a widely known distribution
in statistical theory. It can be regarded as the continuous analogue
of the Poisson distribution, discussed by S. D. Poisson in 1837. The
Poisson is a limiting form of the Binomial distribution which can be
traced back as early as 1700, discussed by James Bernoulli. A paper
by Marsden and Barratt (1911) on the radioactive disintegration of
thorium gives a typical frequency distribution which follows the
exponential law (8, p. 89). The exponential distribution has achieved
importance recently in connection with the theory of stochastic
process and has found a wide variety of applications in the fields of
Physics, Biology, and Engineering. For instance, in the study of
"Markov Processes" in continuous time, we notice that a very simple
type of the process is the distribution of the time interval between
any two successive events which follows the negative exponential
distribution (1, p. 66-69).

Bulmer and Parzen have defined the exponential distribution
in their books as a law of waiting times or as a law of time to
failure such that any numerical valued random phenomena whose
occurrences are random in time and independent of, what Bailey called,
the past, present, and future state of the system may distribute
exponentially (39, p. 262). Many physical, biological situations can
ve approximated by the exponential distribution, such as radioactive

disintegration, telephone calls, mutant genes, infectious persons, the

life of an electron tube, the time intervals between successive




breakdowns of an electronic system, the time intervals between
.ccidents, such as explosions in mines, etc. (34, 168-180). As an
axample, the numerical and graphical presentation of the time
intervats in days between explosions in mines, involving more than
10 men killed, from December, 1875, to May, 1951, taken from Pearson
(34, p. 168-180) are shown in Table 1 and Figure 1. It follows
approximately the exponential distribution with mean time interval

equal to 241 days.

Table 1. Time intervals in days between explosions in mines, involving
more than 10 men killed, from December 6, 1875, to May 28, 1951

378 286 871 66
36 114 448 291
15 108 123 4
31 188 457 369

215 234 498 338
11 28 49 336
37 22 131 19

4 61 182 329
15 78 255 330
72 99 195 312
96 326 224 177

124 275 566 145
50 54 390 75

120 217 72 364

203 113 228 37

176 32 271 19
55 23 208 156
93 151 517 47
59 361 1613 129

8la 312 54 1630
59 354 326 29
61 58 1312 217

1 275 348 7
13 78 745 18

189 17 217 1357

245 1205 120
20 644 275 (Complete interval
81 467 20 to May 29, 1951)

Mean time interval = 241 days
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Figure 1. Histogram of time intervals (in days) plotted
against frequencies.

This report is to provide a survey of the literatures which
deal with topics such as the distribution function, estimation of
distribution parameters,kthe validity test of the distribution, test
of hypothesis of popu]at{on parameters, and the application aspects
(in exampies) of the single, bivariate, and mixed expeonential in
complete, truncated, and censored cases whenever such literatures are
available.

By truncated samples we mean that the population from which
the samples are taken are truncated either to the right or the left,

or at both ends. By censored samples we mean that the samples them-

selves are truncated. No observations greater or less (or both) than

a certain preassigned value will be taken into consideration.




Since Titeratures taken into the survey are works of many
authors, it 1s conceivable that different sets of notations are used.
nis report tries to be consistent about notations throughout the

report. Given

(Ae'k(x_e)

- %-(x—e)
f(x) = | = —e !

— 4=

y>0 Xx>6>0

elsewhere (1.1)

s
(=)

e,k(%ﬂ are used solely to represent the two parameters of the

exponential p.d.f., while X and y are used interchangably according to:

/\=%— (1.2)
y=-;|T (1.3)

This is done merely for the purpose of convenience of representation.

Following is a list of the notations used quite consistently throughout

the report.

Notations Meanings

X i=1, 2,... observations from a complete sample.

Yis i=1,2,... ordered 6bservations from truncated or
censored sample.

U, V, W, Z transformation of Xi or y..

S relation coefficient of any two random

variable.

0P Type I and Type II error.




p,L(x) likelihood-ratio and 1likelihood
function.

f{x), F{x) density and cumulative function.

nyr number of observations in a complete

and a truncated (or censored) sample.




MATHEMATICAL DERIVATION

In this section, the mathematical derivations of the
robability density function, the cumulative distribution function, f
and the moment generating function will be developed for one-
parameter exponential distribution. The mean, variance, and higher
moments will be derived from direct evaluation and from the moment f
generating function. The bivariate and mixed exponential will be

considered in the latter part of this section.

2.1 One-parameter exponential

According to Bulmer (8, p. 89), the p.d.f., c.d.f., and m.g.f.

are defined as follows:
Definition 2.1.1: A continuous, positive random variable is
said to follow the exponential distribution if its p.d.f. is given by: |

f(X) =-AX

e

i

0 x <0 (2.1.1)

The distribution of the density function for several different values
of X is given in Figure 2.
Definition 2.1.2: The cumulative distribution function is

aiven b
given Dy:

F(x) = P[X < x] = 1-e A (2.1.2)

|
i
I
i
i
I
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Figure 2. (a) p.d.f. with x = 2; (b) p.d.f. with A = .5.
Definition 2.1.3: The moment generating function is given

by:
m(x) = —2 (2.1.3)
X o1

To prove (2.1.1), two approaches will be considered.

Bulmer and Bailey's approach. It is assumed that in a short

interval of time, Ax, the chance that an event will occur is AAx. If

Ax approaches zero, the chance that no event occurs is 1-AAx.

Furthermore, it is assumed that the chance an event which occurs in

Ax does not depend on how many events have already occurred. In

other words, the events occur at random, or independent of one another.
If pO(x) = the probability that no event occurs before time x,

then p (0) = 1 (the initial condition), and po(x + AX) = po(x)°(]—XAx).

Po
This is equivalent to

po(x + ax) - py(x)
T - Apo(x) (2.1.4)




By assumption, when Ax - 0, (2.1.4) becomes

R

- ) Ao e .\ An (x)
LI Polx * 8x) - pglx) dpg ) S (x)
A0 AX d(x) Yot
{\ d p,(x) 1
| 50 -2l dx or 1In po(x) = - AX |
‘o ° JG
po(X) - c—,\X

which is the probability that at time X no event has occurred. The
cumulative distribution function of the arrival time x of the first

event 1is

F(x) = 1 - e ™

Parzen's approach. For x > 0, let Fr(x) be the probability

that the time of occurrence of the rth event < X. Then 1-F (x)
will be the probability that the time of occurrence of the rth
event > X, or the probabiliyt that the number of events which occur
‘n the time from O to X is less than r. A density function which
describes the random phenomena can be-expressed as the waiting time
to the rth event in a series of events happening in accordance with
the Poisson probability law at the rate of ix per unit of time (or
space). Consequently,

k  =AX
%T-(XX)‘ e AX (2.1.5)

|




By differentiating (2.1.5) with respect to x, it becomes

1

fi{x) == L e M x>0 (2.1.6)

f(x) = ae™ M x>0

For both approaches, the mean and variance can be found by the

expected value

[>2]

E(x) = { xoxe ™M dx (2.1.7)
‘0

Let u = ax; (2.1.7) becomes

E(xz) = x2->\e'Ax dx (2.1.8)

Let U = x°, dv = xe ™ dx

AX

du = 2xdx, v = -e *"; (2.1.8) becomes

8

2xe” M dx (2.1.9)

e ————

Let w = xx; (2.1.9) becomes




‘
i
,. 10 |
> y; we™ dw = 2y |
f
3

)

(< |

o
[

ot = E(C) - E°(x) = v

The cumuiative distribution function is found by

"X ;‘
F(x) = P[X < x] = e Mdx=1-e*™ x>0 if
0 |
|
It is clear from the equation that as x increases from 0 to «, 1
F(x) increases from 0 to 1. The scale of F(x) increases as A de- |
creases. The moment generating function is found by
feo
M(t) = E(e™) = e~ (At g (2.1.10) _
/0 §:
F
Let u = (A-t)x; (2.1.10) becomes -

-u du - A
>\J € ()\ - t) }\ a t
0

The mean, variance, and higher moments are found by

differentiating M(t) with respect to t and set to to 0.




1
ug = E[(x-u)3] = 23 (2.1.11)

So skewness is +2. From Figure &, it can be seen that it

skews highly to the right.

2.2 Bivariate exponential ;
The properties of bivariate distribution about the normal E
case have been studied intensively since Bravais and Karl Pearson.
Yet, according to Gumbel (24, p. 698-707), none of the well known
properties of the bivariate normal distribution are applicable to
the bivariate exponential. He further noted that a bivariate dis-
tribution is not determined by the knowledge of the margins. Under
different conditions, different bivariate exponentials can be derived. ,
He, then, derived three bivariate exponentials all with exponential i
margins. j
If F](x), Fz(y), f](x), and fz(y) are the c.d.f. of x and y,
and p.d.f. of x and y, then a bivariate probability function
F(x]y) with these marginal distributions is monotonically increasing

from O to unity and is subject to the following conditions:

Fleo,y) = Flxq-) = 03 F(xq=) = Fi(x); Flo,y) = Foly)s

Fe,2) = 1 (2.2.1) ~

Pix; <X <%, ¥y £Y 2¥,1 = Fxp.¥p) = Flxy.y7) F
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axay ¥ = -
roo (»U
i fxyy) dy = f1(x)3 \ fxqy) dx = f,(y) (2.2.4)

Definition 2.2.1: Given x and y a two-dimentional random
variable each has an exponential marginal probability density function.

From (2.2.2), a bivariate c.d.f. is given by

- e | ‘X‘Y“éiy
F(x,y) =1 -e e’ +e x>0,y>0, 0<6<]
(2.2.5)
When § = 0, the fact that F(x1y) = (1-e"X)(1-e7Y) =
F](x)-Fz(y) leads to independence.
Proof: From (2.2.3), the density function is given by
Fxgy) = ¢ XYY (1450 (146y)-6] (2.2.6)

with fleo,y) = f(x,o) = 0; f(0,0) =1 -6

From £(0,0) = 1 - §, f(w,») =1 and the nonnegativity of a
density function it follows 0 <& < 1.

With restriction (2.2.6), the conditions (2.2.1), (2.2.3),
and (2.2.4) are fulfilled. Therefore, (2.2.5) is a bivariate dis-
tribution with exponential margins.

The functional relatiionships, such as the conditional density
function, etc., will be given below. For details, see Gumbel (24,

p. 698-707). The conditional density function (39, p. 334)
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Flxlv) = fly) . o X(*8Y)r (118%) (146y) -1 (2.2.7)
iz‘\.}’:‘ '

Tne conditional expectation

f 00
| 1 S &4 ’ ?
E(x|y) = xf(x|y) dx = 2" 3F (2.2.8)
. (1 + 8y)
The conditional second moment
EGCly) = | PExly) dx = —F— + —2m (2.2.9)
oo (1 +c8y) (1 + 8y)
The conditional variance ozixgy) of x as a function of y
o(xly) = EGEly) - EA(x]y) = ———5 +
(1 + sy)
2
PR -+ b (2.2.10)
(1+8y) (1 +8y)

When x and y are independent of each o‘her, i.e., when § = 0,

2 : F =1 .
o“(x|y) = 1. The conditional standard deviation of x as a function
of y

2

olxly) = [0 + )2 + 1+ 2yT% (1 + y)7°

(2.2.11)

The squared conditional coefficient of variation obtained from (2.2.8)

and (2.2.10)

0 2

Y4y £3 . \ £ e 2

(x| (1 + sv)¢ + 25 (1 + -

o¢\X.y) _ (@ Jj}z 28 (1 +6y) =38 (2.2.12)
ES(x]ly) (1 +y)"+25 (1+8y)+$
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When y increases, the preceding equation converges to unity.

In notation,

o(xly) = E(x]y)

Definition 2.2.2: In two previous papers of his, E. J.
Gumbel (24, p. 707) shows that, given two c.d.f. Fi(x) and F,(y),

a bivariate distribution function is given by

Flxay) = Fp(x) Fply) [0+ 8 (1= Fy () (1 = Fp0)]

-1 <68 <1 (2.2.13)

The bivariate p.d.f. is given by
fx,y) = £1(x) £,(y) [1+ & (2F(x)-1)(2F,(y)-1)] (2.2.14)
Definition 2.2.3: Given two exponential distribution

functions F](x) and F2(y), from Definition 2.2.2, their bivariate

distribution function becomes

Flxgy) = (1- e - e +se™]  x205y20

Their bivariate p.d.f. is given by

fxpy) = e XY + 5 (2¢7% -1)(2e7Y -1)] (2.2.16)

_
|
|

o F NS, By
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The proof of (2.2.15) and (2.2.16) are identical with those in
Definition 2.2.1. As in Definition 2.2.1, the various functional
relationships are given beiow. For reference, see Gumbel (24, p.

704). The conditional density function

v - - 2aY
Flxly) = e (1 +6-25eY)- 25 eXl2e") (2.2.17)

The conditional expectation
- - 0oy
E(x|y) = Es (x]y) =1+ 5¢e (2.2.18)

The conditional variance oz(xly) of x as a function of y

i 2
=1+5(1-27) - §1‘(] - 2e7Y) (2.2.19)

y) - (7 + 2e : - (2.2.20)
y

which converges, with increasing y, towards unity.
Definition 2.2.4: Given x and y a two-dimensional variable

each followed an exponential distribution, a bivariate distribution

function of x and y is given by
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|
—
]
o
]
x
1
(1)
1
<
-+
nel
—
x
—
<
~

F(x]y) = (2.2.21)

wihere

-(x™ + y") (2.2.22)

1]
(7]

P(X-!y)

x and y are distributed independently if and only if m = 1.

" The p.d.f. is given by

1, 1

+yMmm Il i My 1y (2.2.23)

—

flxy) = P(xy) (X"

is nonhegative only if m > 1.

By knowing that the marginal distributions are exponential,
under different criteria, a unique bivariate exponential can be
derived. As an exampie, J. E. Freund has derived, under his assumption,
a bivariate exponential designed, in particular, for the 1ife testing
of two-component systems (22, p. 971-977). The p.d.f. is given by

“ah Y= Aq+a,=20 ) x
A]Aé e ‘2 e 0<x<y

f(x¥) =[ A %=(A+An-Aq )y (2.2.24)
,Azli e 0<y<x
R

which is quite different from Gumbel's. But, nevertheless, when
A = Ai, and Ay = xé, i.e., x and y are independent, (2.2.24) reduced
to two marginal exponential p.d.f. of x and y.

'>\1X . _>\2y
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2.3 Mixed exponential

By mixed exponential we mean a population composed of
i = 1,2,....,r subpopulations, each distributed exponentially, mixed

LT
r

in proportion Pys PosereesPpo where 0 < Pj <1, and 1E]pi = 1. The
simple case when i = 2 is given by P. R. Rider (42, p. 143-147) and
W. Mendenhall (36, p. 504-505). For simplicity of notation, let
a=1-p. |
Given x a random variable which can be described by the |

exponential p.d.f. of the form
f(x) = 2™y >0,0<x<w (2.3.1)
Suppose two populations of (2.3.1), with parameter y; and vy,

respectively are mixed in the unknown proportion p and q. The

resuiting p.d.f. is given by

ik “AgX i
f(x) = p-f(x) + a-fr(x) = p e +q e (2.3.2) :
|
The c.d.f. is given by }"1
|
|
F(x) = peFy(x) + g-Fy(x) (2.3.3) |

If the survival function is given as yt

6;(x) = 1 - F.(x) i=1,2 (2.3.4) [

G(x) = 1 - F(x) (2.3.5) 1
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This is needed because in practice the relative proportion of each

subpopuiation is generally subject to change with time. At time t,

the subpopulation would be mixed in the proportion p(x):1-p(x).

LY | R

These are called the conditional mixture proportions. Consequently,

P G'g(x) m
p(x) = &) (2.3.6)
p(0) = p (2.3.7)

ALISEZARINGI T

T L& iy
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TEST OF VALIDITY THAT THE UNDERLYING
DISTRIBUTION IS REALLY EXPONENTIAL

To assure that the underlying distribution is exponential,
B. Epstein (14, p. 83-101) has a number of graphical and analytical
procedures for testing the assumption that the underlying distribution

is really exponential.

3.1 A graphical procedure

This procedure is particularly useful if large samples are
available. Suppose that the underlying cumulative distribution
function is really exponential, given by

F(X) SV

"
=
]

(0]

x>0,y>0

=0 x <0 (3.1.1)

1 A : . .
T ey = Na g = n
hen z = log (n—FTifo Ax when plot against x is a straight line
with slope ).
Given a sample of size n and arranged in ascending order

<. . .<y. . Ifthe assumption holds, the values

such that Yy 2 ya

2

Fly.) = = (3.1.2)

plotted against y should fit well by a straight line passing through

the origin. In censored case, one expects a good linear fit up toy, .

e —::__-__« A §4 2 =
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If the underlying distribution is the two-parameter

exponential, i.e.,

=0 y <0 (3.1.3)

: ] o of 9 . :
then log (= F(y;e,k)) A(y-6), when plotted against y following
the one-parameter exponential case would be a straight line that cuts
the y axis at the point y = 6.
Example 3.1.1: Forty-nine items, such as electronic tubes,

were placed on Tlife test until all items failed. The observed

failure times are listed on Table 2.

D R e

Table 2. The observed failure times of 49 items placed on 1ife test

e

1.2 13.7 38.9 72.4 102.8  151.6  203.0 ﬁ;
2.2 15.1 47.9 73.6 108.5 152.6 204.3 i
4.9 15.2 48.4 76.8 128.7 164.2 229.5 ﬂﬂ
5.0 23.9 49.3 83.8 133.6 166.8 253.1 iy
6.8 24.3 G302 95.1 144.1 178.6 304.1 b
7.0 ol 55.6 97.9 147.6 185.2 341.7 o
12.1 35.8 62.7 99.6 150.6 187.1 354.4 4
Y

5’

4

i

Using procedure 3.1, the graph of y plotted against z; = i‘

log (ﬁ%%%T) on semi-log paper appears approximately as a straight line q,

passing through the origin.

3.2 The xd test for goodness of fit

This is also for the case when large samples are available.

Given a large sample, it is first divided into k intervals of the form
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z;.’ ! e SR
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b
10 | e
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T 5
i
.;;:: 3 -
+
<t
1
i ' . ) : ' - " i Observed
36 90 150 210 270 330 failure time
3 - (n+] :
Figure 3. Graph of z; = log 417 against Yje
i
N B A e BB i S5 , then the expected number of observations X
L e B =t
in each interval is found by y, the best estimate of y based on the 3
|

entire sample. If 0; is the observed number of observations in the
ith interval and e, the expected number of observations in the ith

interval, where e; = np; and Py is given by

WiKE ] ALISTZAEENETT

't] A
]
Py = xe VY dy ;
Jo f
[t. e
iy
[.7_i = e dy i=1,2,...,k-1 (3.2.1)
"t
[0
Pk © e N dy
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Then the usual chi-square goodness of fit test with (k-1) d.f. is

given by
k e.)
Zep AN L2 ) (3.2.2)

The assumption is accepted if the XZ value is smaller than the tabu-
lated value. It is rejected otherwise.

This test has several deficiencies, such as its large sample
character, dependency upon the choice of the number,and position of
the intervals into which the y's are divided. Therefore, a careful
pre-examination should be made before using the test (23, p. 253-263).

3.3 A criterion based on the conditional
distribution of total observations

This test utilizes the basic properties of Poisson processes %

(20, p. 1). B. Epstein has shown (14, p. 96-97) that if there are r

observations from a Poisson process such that y, <y, < ... <y, g;
and Yy is a preassigned termination point, then these (r-1) ﬂé
observations are independent of each other and are distributed ﬁ
uniformiy over (0, yr)n For large r, igi y; is approximately normally %
distributed with mean ((r~1)yr)/2 and variance ((r—])yrz)/12. This il

T AL

is used to test whether the r observations are drawn from a Poisson

process. Similarly, he has shown that the cumulative sum n(y]),

IS

n(yp), s 0f Y 2 Yy 2 e S Y where n(yl) = ny, and n(yr) =
-

I oy, + (n-r+1) Yps P=2...,r <'n, from an exponential distribution
1= .

is distributed uniformly over (O,yr).

The uniformity of the (r-1) observations under the assumption
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is then used to detect any deviation of the sample parameter y from
constant. Two cases are considered.
A. The one-parameter exponential: The uniformity is
violated if too many observations distributed near each other in
(0,e), where e is comparatively small to Vs In general, too many
observations cluster together in any suitable chosen interval, as
comparing to the number of observations in the other intervals would
violate the uniformity and it can be proven that the observations
do not come from a common exponential.
B. The two-parameter exponential: In this case, 6 > 0. One
expects to get too few observations in the interval (0,e), where € is
defined in A. The uniformity is violated if there are many obser=-.
vations in that interval. Then the assumption that the r observations
are from a one-parameter exponential would not be true.
If r is small, only fairly large changes can be detected.
With r large enough, a chi-square test can be used to detect whether i
the conditional distribution of cumulative sum, given some pre- {
assigned termination point, deviates badly from being uniform. i
Example 3.3.1: A test is discontinued without replacement
after 11 out of 20 items fail. The observed failure times are listed +

in Table 3. "

fable 3. The observed failure times of the first 11 items {

- |
——
N

2 15 24 48 <) 56 72 95 100

nN
(6]
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The theoretical mean = il (¥12_ = 7035 and the theoretical
e
. (r-1n (y.)"
standard deviation = ST 1285. Under the assumption,

10
~Ln (y;) is approximately normally distributed with mean 7035 and

i

standard deviation 1285. A 95 percent acceptance interval is given

10
by 7-35 + 1.96 (1285) = (4517,9553). The observed sum is L n(yi) =

1=1
6613. So the assumption that the underlying distribution is

exponential is accepted at .05 significance level.

3.4 A test for abnormally small observation

When a situation exists in which the underlying distribution
is really exponential but with first or first two observations ab-
normally small, the deviation can be detected by the following test.

Suppose it is given r observations of the form
Yy LY 2o - oY and one wants to test whether ¥ is abhormally
small. B. Epstein and M. Sobel (17, p. 486-502; 18, p. 373-381) have
shown that given n(y]) and n(y1 - y]), the cumulative sum in (O,y])
and \Jl Yy ), it should distribute independently of " each other if

all y; are drawn from a common exponential. Then,

20 (yq) 2n (y, - ¥q)

— is distributed as chi-square with 2 d.f., and »

(r=1) n (yq)
is distributed as chi-square with (2r-2) d.f., and - N y])

is

distributed as F-distribution with (2,2r-2) d.f. To test whether Y1

is abnormally small, one then uses the inequality (3.4.1), as a

criterion. Given o the significance level of the test, one accepts




the hypothesis that 2 is abnormally small if

EEZf_:_{ll (3.4.1)

n(y1)< Fa r-1

where Fu is a lower o point of the F(2,2r-2) distribution such that
PUF(2,2r-2) <F} =a (3.4.2)

For testing both ¥q and Yo abnormally small, B. Epstein and
M. Sobel have shown, as in y, case that n(yz) and n(yr - yz), the
cumulative sum in (O,yz) and (yz,yr), are distributed independently

of each other. Furthermore, (2n(y2))/y is distributed as chi-square

2n(y, - ¥p)

with 4 d.f. and is distributed as chi-square with

(r-2)n(y,) ,
(2r-4) d.f. . Therefore, 53(7"_:_§—T'is distributed as F-distribution
ey 2’

with (4,2r-4) d.f. Given o is the significance level of the test,

one accepts the hypothesis that Y1 and y, are abnormally small if

2n(y. - ¥,)
nly,) < F, —F 2 (3.4.3)

o r-2

where Fa is a lower o point of the F-distribution with (4,2r-4)
d.f. such that
P. (F(4,2r-4) <F ) = o (3.4.4)

1 0l

Example 3.4.1: Given 10 observations with n(yz) = 24 and

e ——

B GEd | ALISTS AN

o~
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n(ylu} = 600. Using Equation (3.4.1), it can be calculated that

nlv = 7 z -2:‘(6«»{29._- 4 =24 7
nlyp) = 24 < 5Tanyeg S

The

proved that the first two observations are abnormal.

wn

3.5 A test for an_abnormally
large first observation

This test is based on the fact that if the first observation
is comparatively large, then the underlying distribution is really
two-parameter exponential with (6,\) instead of one-parameter

exponential with A.

(r-1) n (Y'i)
n (yr - yiy', which compares the cumulative sum in

éogy]) with the cumulative sum in (y],yr), distributed as

Given

F(2,2r-2) if 6 = 0. One accepts the hypothesis that 2 is abnormally
large if

n(‘yY‘ 5 .y])

n(y,) > S (3.5.1)

where F_is an upper o point of the F(2,2r-2) distribution such that

P, {F(2,2r-2) > F_}=a (3.5.2)

LY =,
J

One rejects the hypothesis that 2 is abnormally large if

3 re

n(y,. - ¥q)
n\V.l) <IN ——"——}:—-———1-—

o el

(3.5.3)

J

N

where F_ is given by (3.5.2).
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3.6 A test for whether the parameter g

in_the first half sample differs

“icantily from the parameter Yy in

the second half sample

Sometimes situations arise that one wants to investigate a
gross change over an entire sample. This may occur in a situation
that a certain portion of the sample does not follow from a common
exponential. The actual choice of which two intervals of the sample
for the test depends on some a priori knowledge.

As before, given y; <y, <. . - 2¥. 2+« - 2 Y, the first
2y ordered observations, n(yr) and n(y2r - yr) are distributed
independently of each other. Furthermore, (2n(yr))/y is distributed

. 4 Zn(er 3 yr) .
as chi-square with 2r d.f. and - is distributed as

| , ¥ X2 n(y,)
chi-square with 2r d.f. Therefore, ﬁT-a~{}———y is distributed as
Yor = Yy

F-distribution with (2r,2r) d.f. One accepts the hypothesis that i&

there is no significant difference between the two intervals if

n(y.) <F, nly,. -y (3.6.1)

where F_is a lower o point of the F(2r,2r) distribution such that 4

= gl
P, {F(2r,2r) <F } =a (3.6.2) ;

In general, one can consider any two intervals of the form

A

icﬁyk) and (yk, ys) where k < s < r. Followed the same argument

given above, one obtained
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(s-k) n(y,)
kn {yg - ¥)

= F (2k, 25 - 2Kk) (3.6.3)

which can be used to test the hypothesis that there is no significant
difference between intervals (O,y,) and (y,.y.) (17, p. 458-466).

Example 3.6.1: Twenty observations were obtained from a life

H

test with n(ylo) 10000 associated with the time interval iﬁgy]O}

and n(y20 - y10) 25000 associated with the time interval (yIO’yZO)‘

Using Equation (3.6.1)

n(yyq) 1
o - vig) 2.5 & F20,207 ~ 2.46

This proved that 1> the mean time of occurrence of an event in

interval (O,y10), and Yo the mean time of occurrence of an event in

interval (y¥0§y20) are not the same.

3.7. A test for whether or not the &

parameter y fluctuates when the .
sample is divided into k intervals

This test is a natural extension of 3.6. Instead of two, one 1
wants to test whether the parameter y is constant in k groups, where
the k,4 observations are arranged as Y{p 2 ¥ e RV S Y5 S e s
S Ypp S een SYpq £ ove LY M. S. Bartlett has derived a test
for homogeneity of variance and is used here by B. Epstein. L

First, n(y, ) n(yy. = ¥q)s -oos nly - y(km})r), x

respectively, are mutually independent and

M

Y

2“ f“/ o B y(.i_.-l\,‘r)
: / is for each 1 = 1,2,...,k distributed as chi-

‘. 2n <ykr) . . .
square with 2r d.f. Furthermore, T is distributed as
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chi-square with (2rk) d.f., where n(y,.) = n(y;,) + nly,. - y,.) + ...
+n(y,. = ¥p_1)p)» B- Epstein verified that

e n(yk ) i ‘
2rkilog— = - pllognlyy J*Togn(yp oy )+ +10gn(yy vy ) )T}
L7
-l " k;‘i

s 2 (k-1) (3.7.1)

One rejects the hypothesis that the parameter y in the k

intervals is a constant if

(3.7.1) > Xza(k~]) (3.7.2)

where Xza(k-l) is the upper o point of xz(k-1) such that

P 0 (-1) > 58, (k-1)} = o (3.7.3)

Example 3.7.1: Five homogeneous samples of 10 observations
each were obtai ith ) = = 10.02 y
ach were obtained with n(y1r; 12.74, n(er) 10.02, n(y3r)
7.25, n(y4r) = 9.18, ”(ySr) = 12.99. Using Equation (3.7.1)

-2rk log L}
—_— = 2.26 < 9.49
]+E.ﬂ_
6rk
(the upper 5 percent point of the X2(4) distribution). This proved

that y is constant for the five samples.

e N — e
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3.8 A special case of Procedure 3.7
when r = |

Two situations are discussed by B. Epstein which are based

on the alternatives of the hypothesis.

A. HO: the distribution of cumulative sum between successive

cbservations is exponential with constant v.

HA: the p.d.f. is Type IIl or a member of the Weibull family.
Given y; <y, < ... <y, (3.7.1) reduced to
n(y) 4
2k{Tog—g=— - ¢ LTogn(y;)*+Togn(y, -y )+...+Togn(y, -y ( )1}
k+1
517
= 2 (k-1) (3.8.1)

when r =1. This can be used to test whether y is constant from one

observation to the next.

The Tikelihood-ratio test, derived by P. A. P. Moran, is used

here by B. Epstein for testing ;

HO: the underlying p.d.f. is given by f(x) = Ae-x(x-e) !
Hy: the p.d.f. is given by f(x;y,8) = —! ; B=1 =X/ gy
t(a)y '

(noted that if B = 1, f(x;6,1) = Ae'kx)a
D. J. Bartholomew (4, p. 64-78) has shown that if one tests
B. HO: a stochastic process is Poisson with constant A

H a time dependent Poisson with rate A(x) = A(Ax)2

A:
Equation (3.8.1) can be considered as an alternative to 3.2

or 3.3. From 3.3, if an observation yx is taken at random on a
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variable distributed uniformly in the interval (0,1), then

-210q x is distributed as chi-square with 2 d.f. It follows that

n(y,)

-2 Z Tog [ (3.8.2)
i°9 Ay ]

where n(yr) is a preassigned cumulative sum and r is a random variable.
This can be used to test the hypothesis defined in B.

3.9 A test based on the
maximum F distribution

H. 0. Hartley (28, p. 308-312) has derived a quick test for

homogeneity for the situation described in 3.7. This is given by

MAX[n(y, ) Ny, = Yyp)s o0 s n(yy, - y(]_])r]

- (3.9.1)
= MINI(y; )5 M0y = Y1p)s - = "0y - Y(1-1)r)

One rejects the hypothesis of homogeneity if Z is too large.
A table derived by H. 0. Hartley (19, p. 308-312) gives the 5 percent N

points for Z for various values of k and r. When r - 1 w

o MAX[n(_y-I), n(y2 = .y'l), coe 9 n(.yk - yk_‘[)]
- T & niv - \ -
- MAM[E’:\J’:T)Q ‘1-(;62 }']}3 see ﬂ(yk ykw})l

(3.9.2)

which is an alternative test to the one given in 3.8. A table
derived by Hartley gives 5 percent and 1 percent points values. i

3.10 Tests for abnormally long intervals
in which there are no observation

This is a general case of 3.5. The purpose is to test whether

any of the intervals between successive observations are too long.

Given yq S ¥y < ... 2 Y, are the n independent observations

2 =" =Jn
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from f(y) = Xe'Ay, y 8§y §0. The statistic

Yi

has the distribution of the form

[ K §

P (Z > ZO) =

1, L -1 o
- (E)(-T)k (1 ZO)n (3.10.1)

k=1
where r is the largest integer less than 1/Z. One rejects the
hypothesis of homogeneity if Z is too large. A table derived by
R. A. Fisher (21, p. 54-59) gives values of Z0 such that Pr(Z > Zl) < a
for o = .05 for values of n up to 50.

In addition, Cochran (9, p. 47-52) dealt with a more general
case of similar nature. Given a sample from a normal distribution
with variance 02, k independent variance estimates of cz, 512, s e 3

skz, each based on v d.f. gives the statistic “

9; = —— = 1,2,..:,K (3.10.2)

is distributed as Xz(v), (3.10.1) becomes a

Since - 2
special case of (3.10.2) when k = n and v = 2,
Example 3.10.1: Given ﬂ(yi) = 68, n(yz) = 1516, n(ys) = 49,
. Q5 1516
= [ | Fai i - =
¥ a 22, n(ys) 358. Using Equation (3.10.1), Z1 5073 753
ccording to a table given by R. A. Fisher, P _(Z > .684) = .05. Since

Zy > Z, this proved that n(y, - y1) is abnormally long.
(&




a3

3.11 A graphical procedure based on
tne Kolmogorov-Smirnov test

If a test is terminated after a preassigned cumulative sum

éy{;w then the observations can be arranged in ascending order of
magnitude y, <y, < ... <y.. The associated cumulative sums n(y,),
e n(yr) are uniformly distributed over (O,n(yr)), providing the
underliying p.d.f. is exponential with constant parameter y. From
G. A. Barnard (2, p. 212-213), one can plot a random walk diagram in
which the proportion of observations (relative to r) that occur at or
before n(yr) is plotted against n(yi). The random walk diagram should
fluctuate around the straight line joining the points (0,0) and
(n(yr),]), providing the hypothesis is accepted. The results of

Kolmogotov and Smirnov (47, p. 279-281) are used here by B. Epstein

which gives

Or = v MAX Fr(n(y)) - F(n(y)) 3
0 <n(y;) <nly, «

!

= MAX (number of observations up to n(yr) - E%§x% 4
0 < nly;) <nly,) r :

where 4

rfp (n(y)} = number of observations g_n(yr) j

F (n(y)) =

Epstein (14, p. 95), Birnbaum (7, p. 425-441), and Massey (35,

p. 68-78) give values for accepting or rejecting the hypothesis.
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test based on conditional
abilit

The characteristic property of the exponential distribution
is that the conditional probability of occurrence of an event in the
interval (x, x + Ax), given that it has occurred up to time yx, is
independent of yx. The conditional probability is given by

£(x)Ax re M ax

1= F(X) = e_>\x = AAX (3.12.])

When n is large and is divided into intervals (O’Xi)’

(Xi’X21) and if Nys Moy ... are the numbers of observations in each

interval, then

n] n2 n3 nk

N N-n]’ N-nrn2 2 N—n]-nz- Sk

-1

should fluctuate within reasonable 1imits about a constant value,

i.e., the parameter vy.
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ESTIMATION OF THE DISTRIBUTION PARAMETERS

In this section, theorems relevant to the optimum properties of the
estimators of the parameters of exponential distribution, the dis-
tribution of these estimators, and the sufficiency and completeness
of a sample used for estimation are introduced together with methods
of estimation.

4.1 Theorems relevant to the estimators
and their distributions

B. Epstein and M. Sobel (18, p. 373-381) developed several
lemmas concerning the first r out of n observations when the common

underlying p.d.f. for each observation is given by

f(x;0,1) = re~2(x-0) 8>0,0<x<w, y>0 \

(4.1.7) .
=0

N observations are divided into k sets S5 (each containing

and for each set Sy only the first r; observations

are taken (0 < v f_nk). Three cases are considered.

1. The n, items in each set S5 have a common known
8.(i = 1,2,...k)

2. All n observations have a common unknown ©

3. .The n; observations in each set S5 have a common unknown 61
(1 = 1,2,...k)

The reason for classifying n observations into the three cases
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is that they include as many as possible of types of situations when
the underlying distribution is exponential. This can be seen from
one-parameter exponential distribution of Equation (2.1.7) which is
the case when k = 1 and 6 = 0.

Let y; < ¥y < ... 2, denote the r smallest ordered
observations from (4.1.1). The joint p.d.f. of the first r out of n
observations is given by

(y;-8) + (n-r)(y.-6)]
P (yys¥p)e oy ps8sy) = —— e i=1 i

B <Yy <o 2Yp <
(4.1.2)

Lemma 1. For 1 <s < r <n, the conditional joint density of
= - il = - ‘;
Z; = Yig1 ~ Ys i s, st1, ... , r-1
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