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IlHRODU CT ION 

The exponential distribution is a widely known distribution 

in statistical theory. It can be regarded as the continuous analogue 

of the Poisson distribution, discussed by S. D. Poisson in 1837. The 

Poisson is a limiting form of the Binomial distribut ion which can be 

t raced back as early as 1700, discussed by James Bernoulli. A paper 

by Marsden and Barratt (1911) on the radioactive disintegrat ion of 

thorium gives a typical frequency distribution which follows the 

exponential law (8, p. 89). The exponential distribution has achieved 

importan ce recently in connection with the theory of stochast i c 

process and has found a wi de variety of applications in the f i eld s of 

Physics, Biology, and Engineering. For instance, in the study of 

11Markov Processes 11 in continuous time, we notice that a very simple 

type of the process is the distribution of the time interval between 

any two successive events which follows the negative exponential 

distribu tion (1, p. 66-69). 

Bulmer and Parzen have defined the exponenti al distribution 

1n thei r books as a law of waiting times or as a law of time to 

failure such that any numerical valued random phenomena whose 

occurrences are random in time and independent of , what Bailey called, 

t he past, present, and future state of the system may distribute 

exponentially (39, p. 262). Many physical, biblogical situations can 

be approximated by the exponential di stribution, such as radioactive 

di sintegration, teleph one calls, mutant genes, infe cti ous per sons, the 

life of an electron tube, the time intervals between successive 
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breakdowns of an elect ronic system, the ti me i ntervals between 

.1- 1., lents , uh ctS explosions in mines , etc. (34, 168- 180). As an 

ex.a,11~1le > t he numerical and graphical present atio n of t he t ime 

rnt er1,a·1s ir. days between exµl osions in mines, i nvolving more t han 

10 men kill ed, fro m December, 1875, to May, 1951, ta ken from Pearson 

(34, p. 168-180) are shown in Table l and Fi gure 1. It follows 

approximate ly the exponentia l di stri buti on wit h mean time interv al 

equal to 241 days. 

Table 1. Time int ervals in days between explosions in mines, involving 
more than 10 men ki l led, from December 6, 1875, to May 28, 1951 

378 286 871 66 
36 114 448 291 
l S 108 123 4 
31 188 457 369 

21S 233 498 338 
11 28 49 336 

137 22 131 19 
4 61 182 329 

15 78 255 330 
72 99 195 312 
96 326 224 171 

124 275 566 145 
50 54 390 75 

120 217 72 364 
203 113 228 37 
176 32 271 19 
55 23 208 156 
93 151 517 47 
59 361 1613 129 

315 312 54 1630 
59 354 326 29 
61 58 1312 217 

1 275 348 7 
13 78 745 18 

189 17 217 1357 
345 1205 120 
20 644 275 (Complete interval 
e·1 467 20 to May 29, 1951) 

Mean ti me int erval = 241 days 
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Figure 1. Hi stogram of time i ntervals (in days) plotted 
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This report i s to provide a survey of the literatures which 

deal with topics such as the distribution function , estimation of 

distribution parameters, the validity test of the dis t ribution, test 
r 

of hypothesi s of population parameters, and the application aspects 

(i n examp es ) of t he si ngle , bivariate, and mixed exponenti al in 

complete , tr uncate d, and censored cases whenever such literatures are 

availab le. 

By trun cate d samples we mean that the population from which 

the samples are t aken are t runcat ed ei ther to t he r ight or the left, 

or at both ends . By censored samples we mean that the samples them­

~e l ves are trun cate d. No observations greater or less (or both) t han 

a certai n preassigne d value will be taken into consideration. 

- - - - -~~ 
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Since literatures taken into the survey are works of many 

authors , it i s concei vabl e that di f feren t set s of not atio ns are used. 

This report tries t o be consistent about notations throughout the 

repor t . Given 

( - >-(x-e) 

f(x ) = c . l , ) 
1 - """"'x-e 

= - e y y> O X.?:_ 0.?:_O 
y 

els ewhere ( 1. 1) 

e,>-(l) are used solely to represent the two parameters of the 
y 

exponentiql p.d .f., whi le>- and y are used interchangably according to: 

1 A= -
y 

1 y =­
A 

( 1 . 2) 

( 1 . 3) 

This i s done merel y for the purpose of convenience of representation . 

Following is a list of the notations used quite consistently throughout 

t he report. 

Notat i ons 

Xi , i = 1 , 2 , .. . 

Y;, i=l,2, .. . 

u,v,w, z 

0 

a,S 

Meanings 

observations from a complete sample. 

ordered observations from truncated or 

censored sample. 

tran sformation of xi or yi. 

relation coefficient of any two random 

var iable. 

Type I and Type II error. 

- -----~-- - ~~ 



p,L(x ) 

n, r 

likelihood-ratio and likelihood 

function . 

densi ty and cumul ative function. 

number of observations i n a complete 

5 

and a truncated (or censored) sample. 

--- - -
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MATHEMATICAL DERIVATION 

In this ection, the mathematical derivations of the 

probabi lity density function, the cumulative distr i bution function, 

and the morrent generati ng functio n wi1l be developed for one­

parameter exponenti al distribut i on. The mean, variance, and higher 

moments will be derived f rom direct evaluation and from the moment 

generatin g function. The bivariate and mixed exponential will be 

considered in t he latter part of th i s section. 

2.1 One-parameter exponential 

According to Bulmer (8, p. 89), the p.d.f., c.d.f., and m.g.f. 

are defined as follows: 

Definition 2.1.1: A continuous , positive random variable is 

said to follow the exponential distribution if its p.d.f. is given by: 

->..x f(x) = >..e 

= 0 

X > 0 

X < 0 (2. 1.1) 

The distribu t i on of t he density function for several different values 

of>.. is given in Figure 2. 

Def i nition 2.1 .2: The cumulati ve distribution function is 

given by: 

F(x) = P[X .5. x] = 1-e-AX (2.1.2) 

- -~ ---
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Figure 2. (a) p.d.f. with A= 2; (b) p.d. f . with A= .5. 

Definition 2.1.3: The moment generating function is given 

by: 

m(x) = A 
A - X 

(2. l .3) 

To prove (2.1.1), two approaches will be considered. 

Bulmer and Bailey ' s approach. It is assumed that in a short 

i nte rval of time, 6x, the chance that an event will occur is Mx. If 

tx approaches zero, the chance that no event occurs is 1-Af:>.X. 

Furthe rmore, it i s assumed that the chance an event which occurs in 

GX does not depend on how many event s have alre ady occurred. In 

other words , t he events occur at random, or independent of one another. 

If p0 (x) = t he probabi l ity that no event occurs b~fore time x, 

then p0 (0) = 1 (the initia l condit ion), and p0 (x + ~x) = p0 (x)·(l-A6X). 

This is equivale nt to 

p (x + 6x) - p (x) 
0 0 

b.X 
(2. 1.4) 



By assumption, when 6x ~ 0, (2.1 .4) becomes 

LI M 
iix~o 

p0 (x + l x) - p0 (x) 
----- - - -= 6x 

= -,J: dx or 

8 

whi ch is the probability that at tirre X no event has occurred. The 

cumulat ive distribution function of the arrival time x of the first 

event is 

F{ X) = l - e - >.x 

Parzen 's approach. For x .:::._ 0 , let Fr(x) be the probability 

that the time of occurrence of the rth event < X. Then 1-Fr(x) 

will be the probability that the time of occurrence of the rth 

event > X, or the probabiliy t that the number of events which occur 

in the ti me f rom 0 t o X is less than r. A densi ty function which 

descri bes t he random phenomena can be-expressed as the waiting time 

t o the rth event in a series of events happening in accordance with 

the Poisson probabil it y l aw at the rate of AX per unit of time (or 

space). Consequently, 

r-l 1 k - AX 
= I; kl (Ax) e 

k=0 ' 
(2.1.5) 



By differentiating (2.1.5) wit h respect to x, it becomes 

f(x ) = A 
( r - ) ! X > 0 

When r = 1, the waiting t ime to the f ir st event , (2.1.6) becomes 

= 0 X < 0 

For both approaches, the mean and variance can be found by the 

expected valµe 

E(x) = I: x,, .-xx dx 

Let u = AX; (2 . 1. 7) becomes 

[ -u 
y 

O 
ue du= y 

E(x2) = I: x2, , . -xx dx 

Let u = x2 , dv = Ae-AX dx 

du= 2xdx, v = -e-AX; (2.1.8) becomes 

Let w = AX; (2.1.9) becomes 

9 

(2.1 .6) 

(2 . 1.7) 

(2.1.8) 

(2.1.9) 



2 yr~ we-w dw • 2y2 

• u 

,., 
L. 

(J = 

The cumulative distribution function i s found by 

F(x) • P[X :,_ x] • I: ,.-Ax dx • 1 - . -Ax x > O 

It is clear from the equation that as x increases from Oto oo, 

F(x) incre~ses from Oto l. The scale of F(x) increases as A de­

creases. The moment generating function is found by 

10 

(2.1.10) 

Let u = (A-t)x; (2.l.10) becomes 

I00 -u du A Ae~-~=--
(A - t) A - t 

0 

The mean, variance, and higher moments are found by 

differentiating M(t) with respect tot and set to to 0. 

u = E(x) = M'(t) = y 
t=O 

2 
(J = 
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u 3 = E [ ( x- u) 3] = 2y 3 ( 2 . 1. 11 ) 

So skewness is +2. From Figure 2, it can be seen that it 

skews highly to t hP riaht . 

2.2 Bivariate exponential 

The properties of bivariate distribution about the normal 

case have been studied intensively since Bravais and Karl Pearson. 

Yet, according to Gumbel (24, p. 698-707), none of the well known 

properties of the bivariate normal distribution are applicable to 

the bivariate exponential. He further noted that a bivariate dis­

tribution is not determined by the knowledge of the margins. Under 

different conditions, different bivariate exponentials can be derive d. 

He, then, derived three bivariate exponentials all with exponential 

margins. 

If F1(x), F2(y), f1(x), and f2(y) are the c.d.f. of x andy, 

and p.d. f. of x and y, then a bivariate probability function 

F(x1y) with these marginal distributions is monotonically increasing 

fr om Oto unity and is subject to t he foll owing condit i ons: 

F(co,y ) = F(x1-oo) = O; F(x100 ) = Fl (x); F(00 ,y) = F2(y); 

F(oo,oo) = l (2.2.1) 

(2.2 .2) 



a2F ·- f(xy)::_0 axay 

roof(xly) dy = fl(x); roo f (x , y ) dx = f2(Y ) 
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(2.2.3) 

(2.2.4) 

Definition 2.2. l : Given x and ya two-dimentional random 

vari able each has an exponential m· "'gin 1 probability densi ty functi on. 

From (2. 2.2), a bi variate c.d . f. is given by 

F(x,y) = l - e-x ~ e-y + e-x-y -cxy 
x~0,y~0, 0 < 6 < l 

When 6 = 0, the fact tha t F(x1y) = (1-e-x)(l -e -Y) = 

F1(x)·F 2(y) leads to independence. 

Proof: From (2.2.3), the density function is given by 

f(x 1y) = e-x(l+oy-y )[(l+c x)(l+ cy)-o] 

with f (00 ,y) = f(x, 00 ) = 0; f(0,0) = l - 6 

(2.2.5) 

(2. 2.6) 

From f(0,0) = l - 6, f( 00 , 00 ) = l and the nonnegativity of a 

densi ty function it follows 0 < o < 1. 

With restriction (2.2.6), the conditions (2.2.1), (2.2.3), 

and (2.2. 4) are fulfilled. Therefore , (2.2.5) is a bivariate dis­

tr i but ion with exponential margins. 

The functional relatiionships, such as the conditional density 

functio n, etc., will be given below. For details, see Gumbel (24, 

p. 698-707). The condition~l density funct ion (39, p. 334) 

-~-- ~- - -~ 



f(x ly ' = f }; {~~ = e-x(l+ cSy) [(l+cSx)(l+cSy) -o] 

T' co'1ait i onal expecta tion 

E(x!y) = f00

_

00 

xf(x!y) dx = l + 6 + cSy 
(l + 6y}2 

The conditional second moment 

E(/ iy) C x2f(x ly) dx = 2 
= 

+l<.'ly)2 (l 
+ 

(l 

48 
+ 6y)3 

The con di ti ona l variance o2(xly) of x as a functi on of y 

+ 

+ 26 + 62 

(l + 6y)2 (l + 6y)4 
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(2 .2 . 7) 

(2 .2. 8} 

(2.2. 9) 

(2 .2 . 10) 

When x and y ar e independent of each o~her, i.e., when 6 = 0, 

? o-( xjy) = 1. The conditiona l standard deviation of x as a function 

of y 

( 2 ¼ -2 
a ( x IY) = [ 1 + y ) + 1 + 2y] 2 ( l + y) (2. 2 .11) 

The squared condi t ional coeff ic i ent of variation obtained from (2.2.8 ) 

and ( . 2. 10) 

c/ (x ly) = 

E2(x ly ) 

(1 + 6y}2 + 20 (1 + cy) ~ a2 

( l + cSy)2 + 25 (1 + 6y} + o2 
(2.2 .12) 



14 

When y increases, the preceding equation converges to unity. 

In notation, 

o(xly) :,; E(xjy) 

Definition 2.2.2: In two previous papers of his, E. J. 

Gumbel (24, p. 707) shows that, given two c.d.f. F1(x) and F2(y), 

a bivariate dist ri bution function is given by 

-1 < cS < 1 (2.2.13) - -

The bivariate p,d,f. is given by 

(2.2 .14) 

Definition 2.2.3: Given two exponential distribution 

functions F1(x) and F2(y), from Definition 2.2.2, their bivariate 

distr ib ut ion function becomes 

x~O;y~O 

(2.2.15) 

Their bi var iate p.d.f. is given by 

(2.2.16) 
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The proof of (2.2.15) and (2.2.16) are identical with those in 

Definition 2.2.1. As in Definition 2.2.1, the vari ous functional 

relatio nships are given below. For reference, see Gumbel (24, p. 

704). The conditional density function 

The conditional expectation 

The conditional variance cr2(xjy) of x as a function of y 

The squared conditional coefficient of variation 

cr2(xly) = 

E2(xl y ) 

(} + 2e-y - e-2Y) 

} (1 - 2e-y + e-2Y) 

which converges, with increas i ng y, towards unity. 

(2.2 . 17) 

(2.2.18) 

(2.2. 19) 

(2.2. 20) 

Defini ti on 2.2.4: Given x and ya two-dimensional variable 

each fol lowed an exponential di st ributi on, a bi variate distr i bution 

funct ion of x and y is given by 

-~--~ ---



F ( x1 y) = 1 - e- x -e-Y + P(x1y) 

wher e 

1/m 
P(x 1y) = 

-(x m + ym) e 

x and y are distr i buted i ndependent ly i f and only if m = 1. 

· · The p,, d. f . is given by 

is nonnegative only if m .:::_ 1. 

16 

(2. 2.21) 

(2. 2.22) 

(2.2.23) 

By knowing that t he margina1 distributions are exponential, 

under different criteria, a unique bivariate exponential can be 

derived. As an example, J. E. Freund has derived, under his assumpti on, 

a bivariate exponential designed, i n particu l ar, for the life testin g 

of two-component systems (22, p. 971-977). The p.d.f. is given by 

"1 \~ e 
-~2 -y- ( "l+ "2-"2) X 

0 < X < y 

f (x1y) = - A1x-( >-1+>-2- >-1)y (2.2.24) 
"2"1 e 0 < y < X 

which i s quite differe nt f rom Gumbel ' s. But, nevert heless, when 

"l = "l, and >-2 = " 2, i .e., x and y are independent, (2.2 .24) reduced 

to two mar gi nal exponentia l p.d.f. of x and y. 

- >.: X 
f ( x ) = >~1 e 1 f( y) 
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2.3 Mixed exponential 

By mixed exponential we mean a populat i on composed of 

1 = 1,2, .... ,r subpopulations, each distributed exponentially, mi xed 
r 

in proportion p1, p2, .... ,p , where O < p. < l, and L p. = 1. The 
r - 1 - i=l 1 

si mple case when i = 2 is given by P. R. Rider (42, p. 143-147) and 

W. Mendenhall (36, p. 504-50 5). · For simplicity of notati on, l et 

q = l - p. 

Given x a random variable which can be described by the 

exponential p.d.f. of the form 

f(x) ->..x = ;\e y >·0, 0 < X. < oo (2.3 . l) 

Suppose two populations of (2.3.1), with parameter y1 and y2 

respectively are mixed in the unknown proportion p and q. The 

resulting p.d.f. is given by 

->., X ->., X 

f(x) = p•f 1(x) + q•f 2(x) = p >..1e 1 + q >..2e 2 (2. 3. 2) 

The c. d.f. is given by 

(2.3.3) 

If the survival funct i on is given as 

i = 1 ,2 (2.3.4) 

G(x) -· l - F(x) (2.3.5) 
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This is needed because in practice the relative proportion of each 

subpopul ation is generall y subj ect to change with time. At time t, 

t he subpopulation would be mixed in the proportion p(x):1-p(x). 

These are called the conditional mixture proportions. Consequently, 

p(x) = 
p G1(x) 

G(x) 

p(O) = p 

(2 . 3. 6) 

(2.3 .7) 



TEST OF VALIDITY THAT THE UNDERLYING 

DISTRIBUTIO IS REALLY EXPONENTIAL 
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To assure that the underlyi ng di st ri bution i s exponent ia l, 

B. Epstein (14, p. 83-101) has a number of graphical and analytical 

procedures for testing the ps.sumpt ion that the under lyin g distribution 

i s really exponenti a 1 . 

3.1 A graphica l procedure 

This procedure i s parti cularly useful i f large samples are 

available. Suppose that the underlying cumulative distribution 

function is really exponential, given by 

F ( X) = l - e - AX x ~O ,y>O 

= 0 X < 0 

Then z = log (i- Fl x)) = AX when plot against x i s a st raigh t lin e 

with slope A. 

(3 .1.1 ) 

Given a sample of s iz ~ n and arr anged in ascending order 

such that y1 2..Y2 2- . .. 2-Yn· I f the assumption holds, the values 

F (y i ) = n! 1 ( 3 • l. 2 ) 

plotte d against y should f i t well by a st ra ight line pass ing through 

t he origi n. In censored case, one expects a good linear fit up to Yr· 



If the underlying distribution is the two-parameter 

exponential, i.e., 

= 0 y < 0 

20 

(3.1.3) 

then log (1 _ Fly;e,A)) = A(y-8), when plotted against y following 

the one-parameter exponentia l case would be a straight line that cuts 

they axis at the pointy= e. 

Example 3.1. l : Forty-nine items, such as electronic tubes, 

were placed on life t est unt i l all items failed. The observed 

failure times are listed on Table 2. 

Table 2. The observed failure times of 49 i terns placed on 1 ife test 

1.2 13. 7 38.9 72.4 102 .8 151 .6 203.0 
2.2 15. l 47.9 73.6 108.5 152.6 204.3 
4.9 15.2 48.4 76.8 128.7 164.2 229.5 
5.0 23.9 49.3 83.8 133. 6 166.8 253. l 
6.8 24.3 53.2 95. l 144. l 178.6 304. l 
7.0 25. l 55.6 97.9 147.6 185 .2 341.7 

12. 1 35.8 62.7 99.6 150.6 187. l 354.4 

Usi ng procedure 3.1, the graph of y plotted against zi = 

log (n~t~i) on semi-log paper appears approxi mately as a straight line 

passin g t hrough the origin. 

3.2 The x2 test for goodness of fit 

Thi s is also for the case when large samples are available. 

Given a large sample , i t i s first div ided i nto k intervals of the form 
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Observed 
failure ti me 

Yt ~Yt ~ ... , ~Yt , then the expected number of observations 
1 2 k-1 

A 

i n each interval is found by y , the best estimate of y based on the 

ent ir e sample. If O; is the observed number of observations in the 

i t h i nt erva l and e; t he expected number of observ ati ons in t he it h 

interva , where ei = npi and pi is given by 

i = 1,2, ... ,k-1 (3.2.1) 

-· -·-- ·-



Then the usual chi-square goodness of fit test with (k-1) d.f. is 

given by 

2 k 
X = E 

i=l e . , 
2 X ( k-1) 
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(3.2.2) 

The assumption is accepted if the x2 va 1 ue is sma 1 ler than the tabu-

1 ated value . It is rejected otherwise. 

This test has several deficiencies, such as its large sample 

character, dependency upon the choice of the number,and position of 

the intervals into which the y's are divided . Therefore, a careful 

pre-examination should be made before using the test (23, p. 253-263). 

3.3 A criterion based on the conditio nal 
distri bution of total observations 

This test utilizes the basic properties of Poisson processes 

(20, p . 1). B. Epstein has shown (14, p. 96-97) that if there are r 

observations from a Poisson process such that Yi 5..y2 5_ ••• 5-.Yr 

and Yr i s a preassigned termination point, then t hese (r-1) 

obser vati ons are independent of each other and are distributed 
r 

uniform y over (0, yr) . For l arge r , E y. is approximately normally 
. 1 1 
1= 2 

distribut ed with mean ((r-l)yr)/2 and variance ((r-l )yr )/12. This 

is used to test whether the r observations ar e drawn from a Poisson 

process . Similarly , he has shown that the cumulative sum n(y1), 

n(y2), ... of y1 5-. y2 5-. .. . 5-Yr, where n(y1) = ny1 and n(yr) = 
r-1 
E y . + (n-r+l) y , r=2 ... ,r < n, from an exponenti al distribution 

i ~l 1 r -
i s di str· buted uniformly over (O,yr) . 

The uniformity of t he ( r - 1) observations under the ass ump ti on 
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s then used to detect any deviation of the sample parameter y from 

v constant . Two cases are considered . 

A. The one-parameter exponential: The uniformity i s 

11iolat ed if too many observations distributed near each other in 

(0 ,£), where£ is comparatively small to Yr· In general, too many 

observations cluster together i n any suitable chosen interv al , as 

comparing to the number of observations in the other intervals would 

violate the uniformity and it can be proven that the observations 

do not come from a common exponential. 

B. The two-parameter exponential: In this case, e >- 0. One 

expects to get too few observations in the interval (0,£), where£ is 

defi ned in A. The uniformity is vi olated if there are many obser~ , 

vations in that interval. Then the assumption that the r observatio ns 

are from a one-parameter exponential would not be true. 

If r is small, only fairly large changes can be detected. 

With r large enough, a chi-square test can be used to detect whether 

t he conditional distribution of cumulative sum, given some pre­

assigned termination point, deviates badly from being uniform. 

Example 3.3.l: A test is discontinued without replacement 

after l out of 20 it ems fail. The observed failure times are listed 

in Table 3. 

Table 3. The observed failure times of the first 11 items 

7 12 15 24 25 48 53 56 72 95 100 
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The theoretical mean= (r- l n (yr} = 7035 and the t heoretica l 
2 

(r-1 n (yr}2 
sta ndard devia tion= 12 = 1285. Under the assumpt i on, 

10 
En (yi ) i s approxi mat ely normal ly dist ribut ed with mean 7035 and 

i=l 

standard deviation 1285. A 95 percent acceptance interval is gi ven 

10 
by 7-35 ± 1.96 (1285) = (4517,9553). The observed sum is E n(yi) = 

i =1 

6613. So the assumpti on that the underl ying di str i buti on i s 

exponent ial i s accepted at .05 significance l evel. 

3.4 A test for abnormally small observation 

When a si tuat i on exists in whi ch t he underlying distribution 

i s real ly exponentia l but with fi rs t or first two observation s ab­

normal ly small, the deviation can be detected by the following test. 

Suppose it is given r observat i ons of the form 

Y1 2.Y2 ~ ... ~Yr and one wants to test whether y1 is abnormall y 

small. B. Epstein and M. Sobel (17, p. 486-502; 18, p. 373-381} have 

shown tha t given n(y1) and n(y1 - y1), the cumulative sum in (o,y 1) 

and {y1 , yr ) , it should distribute in dependently of each other if 

all . are drawn from a common exponential . Then , 
l 

2n (y ) 
-- 1- is dist ribut ed as chi-s quare with 2 d.f., 

y ' 

2n (yr - y 1) 
and----­

Y 

i s di stributed as chi-squa re wit h (2r -2) d. f. , 
( r-1} n (y 1) 

and n (yr _ Y 1 ) is 

dis t ri but ed as F-dis tri but ion with (2 ,2r-2 } d. f. To tes t whet her Yi 

i s abnormal ly smal l , one then uses the inequal ity (3.4. 1), as a 

cri ter i on. Given a the sign i fic ance level of the t est , one accepts 
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the hypothesis that y1 is abnormally small if 

(3.4. l) 

where Fa is a lower a point of the F(2,2r-2) distribution such that 

(3.4.2) 

For testing both y1 and y2 abnormally small, B. Epstein and 

M. Sobel have shown, as in y1 case that n(y2) and n(yr - y2), the 

cumulative sum in (O,y2) and (y2,yr), are distributed independently 

of each other. Furthermore, (2n(y2))/y is distributed as chi-square 

2n(yr - y2) . 
with 4 d.f. and---- 1s distributed as chi-square with y 

(2r-4) d. f. 
(r-2)n(y 2) 

Therefore, 2n(y _ Y ) is distributed as F-distribution 
r 2 

with (4,2r-4) d.f. Given a is the significance level of the test, 

one accepts the hypothesis that y1 and y2 are abnormally small if 

where F is a lower a point of the F-distribution with (4,2r-4) 
a 

d. f. such that 

(3.4.3) 

Pr (F(4,2r-4) ~Fa)= a (3.4.4) 

Example 3.4.1: Given 10 observations with n(y2) = 24 and 



n y10) = 600. Usi~g Equati on (3.4.1) , it can be calculated that 

n(y~) = 24 < 2 '600 - 24 
L 5.84 •8 = 24. 7 

T s proved t hat t he f"rs t two observat ions are abnormal . 

3.5 A test for an abnormally 
l arge f irst observat i on 
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This test i s based on t he fact that if the f irst obser vat ion 

i s comparatively l arge, then the under lyin g di st r ibut ion i s really 

two-parameter exponential with (0,A) i nstead of one-parameter 

exponent i al wit h A. 

(r-1) n (y1) 
Given -------'--, which compares the cumulative sum in 

n (yr - Y1) 
(09y1) with the cumulative sum in (y1,yr), distr i but ed as 

F(2,2r -2) if e = 0. One accepts the hypothesis that y1 is abnormally 

la rge if 

(3.5.1) 

here F s an upper a poin t of the F(2,2r-2 ) di strib uti on such that a 

Pr {F(2, 2r-2) ~Fa}= a 

One reje cts the hypot hes·s that y1 is abnormally large i f 

where F is given by (3.5. 2). a 

(3.5.2) 

(3 .5.3) 



3.6 A test for whether the parameter y1 

in the first half sample differs 
sH~ifi c.antb from t~e parameter y2 i n 

·the $e": nd half sample 
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Sometimes situations arise t hat one wants t o i nvestigat e a 

gross change over an entire sample. This may occur in a situation 

t hat a certain portion of the sample does not follow fr om a common 

exponential. The actual choice of which two intervals of the sample 

for the test depends on some a priori knowledge. 

As before, given y1 5. y2 5. . . . 5. yr 5. . . . 5. y2r the first 

2r ordered observations, n(yr) and n(y2r - yr) are distributed 

i ndependently of each other. Furthermore, (2n(yr))/y is distributed 

2n (y - y ) 
as chi -s quare wi t h 2r d. f. and 2r r is di stributed as 

y 

n(yr) 
chi-square with 2r d.f. Therefore, n(y · _ Y ) is distributed as 

2r r 

F-dis t ri bution with (2r,2r) d. f . One accepts the hypothes i s t hat 

there i s no significant difference between t he two i nterva l s if 

(3. 6.1) 

where F is a lower a point of the F(2r,2r) distributio n such that 
a 

(3. 6. 2) 

In general, one can consider any two interva l s of the form 

(O,yk) and (yk' y 5 ) where k < s < r. Followed the same argument 

given above, one obtain ed 

-- ·--- ..._ -
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(s-k) n(yk) 
k n (y s - Yk) '.:; F (2k, 2s - 2k) (3.6.3) 

whi ch can be used to test the hypothesi s th at t here i s no sig nifica nt 

difference between intervals (O,yk} and (yk,ys) (17, p. 458-466). 

Example 3.6.l: Twenty observations were obtained from a l i fe 

t est with n(y10) :: 10000 associate d wi th the t ime i nterva 1 (0 ,y 10) 

and n(y20 - y10) :: 25000 associated with the time int erval (Y1o•Y20). 

Using Equation (3.6.1) 

l 
F (20,20) == 2·46 
a 

This proved that y 1, the mean time of occurrence of an event in 

i nter val (O,y10), and y2 , the mean t ime of occurre nce of an event in 

interval (y10 ,y20) are not the same. 

3.7 " A test for whether or not the 
parameter x flu ctuates when the 
sample is divided into k intervals 

This test is a natural extension of 3.6. Instead of two, one 

war.ts t o test whether the parameter y is consta nt i nk groups, where 

t he k ,4 observatio ns are arranged as Yi, ~ Yi 2 ~ ... ~ Y1 r ~ Y21 ~ · · · 

~ Y2r ..'.:. · · · ~ Ykl ~ .. . ~ Ykr· M. S. Bartlet t has deri ved a tes t 

for homogeneity of variance and is used here by B. Epst ein . 

First, n(y,r ), n(y2r - Y1r ), ... , n(ykr - Y(k- l) r) , 

respecti vely, are mutually independent and 

2" (yir - Y(i - l) r) 
y 

is for each i == 1,2 , . . . ,k distribu t ed as chi-

2n (ykr) 
square wi th 2r d. f n Fu t hermore, --­ y 

is distributed as 
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chi-square with (2rk) d.f., where n{ykr) = n(y1r) + n(y2r - Y1r) t 

+ n(ykr - Y(k- l)r), B. Epstein verified that 

. 2 
!::! X (k-1) 

One rejects the hypothesis that the parameter yin the k 

intervals is a constant if 

2 (3.7.1) > X {k-1) a 

where x2
0 (k-1) is the upper a point of x2(k-1) such that 

2 2 P {x (k-1) > x (k-1)} = a r a 

(3.7 . 1) 

(3 .7.2 ) 

(3 .7.3) 

Example 3. 7.1: Five homogeneous samples of 10 observations 

each were obtai ned wi t h n(y1r ) ~ 12.74 , n(y2r) = 10.02, n(y3r ) = 

7.25, n(y4r) = 9.18 , n(y5r) = 12.99. Using Equation (3.7.1) 

-2rk 1 og L1 
k+l = 2.26 < 9.49 

1 +-6rk 

(t he upper 5 percent point of the x2(4) dist ri but ion). This proved 

:hat y ·s constant for t he f ive samples. 



3.8 A special case of Rrocedure 3.7 
when r = l 

30 

Two si tuati ons are di sc~sse d by B. Epstei n which are based 

on the alternative s of the hypothesis . 

A. H0 : the di st rib ution of cumulati ve sum between success ive 

observations is exponential with constant y. 

HA: t he p. d. f . is Type III or a member of t he Weibul l family. 

Given y1 .::.. y2 .::.. . . . .::.. Yr ' (3 . 7 .1) reduced to 

n (yk) 1 
2k{1 og k · :. k [logn (y1 )+ 1 ogn (y2-y1 )+ ... + 1 ogn (yk-y (k-1)]} 

l + k+l 
6k 

2 ::, X (k- 1) (3.8 .1) 

when r =l. This can be used t o test whether y is constant from one 

observation t o the next. 

The lik elihood-ratio test, derived by P. A. P. Moran, i s used 

here by B. Epstein for tes ti ng 

H0 : the underlyi ng p.d.f. is given by f (x) = Ae- A(x-e) 

HA: t he p.d. f . is given by f(x;y,S) = 1 S-1 -x/y 
X e . 

-r(a)ys 

(noted that i f S = 1, f( x;e,1) = Ae-Ax). 

D. J. Bartholomew (4, p. 64-78) has shown that if one tests 

B. H0 : a stocha sti c process is Poiss on with constant A 

HA: a ti me dependent Poi sson with rate A(X) = A(Ax)a 

Equation (3.8.1) can be considered as an alt ernati ve to 3.2 

or 3.3. From 3.3, i f an observ .ti on x i s ta ken at random on a 

S>O 
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variable distributed uniformly in the interval (0,1), then 

-21og xis dis tributed as chi-square with 2 d.f. It follows that 

r n (y 1) 
-2 E log [ n(y) ] (3.8 .2) 

1 r 

where n(yr) is a preassigned cumulative sum and r is a random vari able. 

This can be used to test the hypothesis defined in B. 

3.9 A test based on the 
maximum F distribution 

H. 0. Hartley (28, p. 308-312) has derived a quick test for 

homogeneity for the situation described in 3.7. This is given by 

MAX[n(ylr ), n(y2r - Y1r), 'n(yk r - Y(l- l)r] 
Z==M1-N-[n~(.-Y-1r-)-,-n-(-Y2_r ___ Y_1r ....... )-,--,-n~(.-y-k r-_-Y~(-l--l~)-r] (3.9.l) 

One rejec t s the hypothesis of homogeneity if Z is too larg e. 

A table derived by H. 0. Hartley (19, p. 308-312) gives the 5 percent 

points for Z for various values of k and r. When r - 1 

MAX[n(yl), n(y2 - Y1), ... , n(yk - Yk-1)] 
__ l = .,...,.MI,,_,.N,_,[_n (.-y-1 .-L-n (.-y-2---y-1 ....... )-, -.-. -. -,-n.._,(,.....y-k -_-y_k ___ l )~] 

whi ch is an alternative test to the one given in 3.8. A ta ble 

deri ved by Hartl ey gives 5 percent and l percent points values. 

3.10 Tests for abnormally long intervals 
in which there are no observation 

(3.9 .2) 

Thi s is a general case of 3.5 . The purpose is to t est whether 

any of the interva l s between successive observation s are too long. 

Gi ven y 1 5:..y2 ::.. ••• .S.Yn are the n independent observations 



from f(y) = Ae->.y, y i y i 0. The statistic 

MAX 
1 < i < n (yl) 

z = 
n 
E Y· 
l 1 

has the distribution of the form 

where r is the largest integer less than 1/Z. One rejects t he 

hypot hesi s of homogeneity if Z is too large . A table derived by 
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(3.10.1) 

R. A. Fisher (21, p. 54~59) gives values of Z0 such that Pr(Z > z1) .s_ a 

for a= .05 for val ues of n up to 50. 

In addi t ion, Cochran (9, p. 47-52) deal t with a more general 

case of simi lar natu re . Given a sample from a normal distr i but ion 

with vari ance a2 , k independent vari ance es ti mates ofa 2 , s12 , ... , 
2 sk , each based on v d.f. gives the stat i stic 

s .2 
1 g . = ---, n 2 

E s . 
. 1 
1= 

i = 1,2, . . . ,k 

V s. 2 
Since ~ i s distributed as i (v), (3.10. l) becomes a 

a 
special case of (3.10.2) when k = n and v = 2. 

(3.10 .2) 

Example 3. 10.l: Given n{y1) = 68, n(y2) = 1516, n(y3) = 49, 

;-(y4) = 22, n(y5) = 358. Using Equation (3.10.1) , z1 = 1~~~ = .753. 

According to a table given by R. A. Fisher, Pr(Z ~ .684) = .05. Since 

z1 > Z, this proved that n(y2 - y1) is abnormally long. 



3.11 A graphical procedure based on 
the Kolmogorov-Smirnov test 
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I a t est is terminated after a preassigned cumulative sum 

(yr ), then t he observat ions can be ar ranged i n ascendi ng order of 

magni tude y1 2_Y2 2- . . • -:5...Yr · The associated cumulati ve sums n(y1), 

. .. , n(yr) are uniformly distributed over (0,n(yr)), provi ding the 

under lying p.d .f . i s exponentia l wi th constant parameter y . From 

G. A. Barnard (2, p. 212~213), one can plot a random walk di agram in 

which the proportion of observations (relative tor) that occur at or 

before n(yr) is plotted against n(yi). The random walk diagram should 

fluctuate around the straight line joining the points (0,0) and 

(n(yr ),1) , providing the hypothesis is accepted. The results of 

Kolmogotov and Smirnov (47, p. 279-281) are used here by B. Epstei n 

which gives 

= MAX (number of observations up to n (yr) - ~(;Yr~ I 
0 < n(yi) < n(yr) 

where 

rFr (n(y) ) = number of observations -:5... n(yr) 

Epstein (14, p. 95) , Birnbaum (7, p. 425-441) , and Massey (35, 

p. 68-78) give values for accept i ng or rejecting the hypothesis . 



3.12 A test based on conditional 
probab · 1 i ty 
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The charact er istic proper ty of the exponent i al distrib ut i on 

i s that t he condit ional probabi l i ty of occurrence of an event in the 

interv al (x, x + t.x), given th at i t has occurr ed up to time x, is 

independent of X· The conditional probability is given by 

f(x)t.x 
1 - F(x) (3 .12. 1) 

; 

When n is large and is divided into intervals (O,xi)' 

(xi ,x2i) and if n1, n2, .... are the numbers of observations in each 

i nt erva 1 , th en 

should f l uctuate wi thin reasonable limits about a constant value, 

i .e ., the parameter y. 
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ESTIMATION OF THE DISTRIBUTION PARAMETERS 

In th is sectio n , theorems relevant to the optimum propert ies of the 

est imat ors of the parameters of exponential distribution, the dis­

tributi on of these estimators, and the sufficiency and complet eness 

of a sample used for estimation are introduced together with methods 

of estimation. 

4.1 Theorems relevant to the estimators 
and their distributions 

B. Epstein and M. Sobel (18, p. 373-381) developed several 

lemmas concerning the first rout of n observations when the common 

underlying p.d.f. for each observation is given by 

f( 0 ') = ' e-A(X-0) x; 'I\ I\ 0 ~ 0, 0 < X < oo, y > 0 
(4. 1.1 ) 

= 0 

N observations are divided into k sets si (each contain i ng 
k 

n > 0 ~ . ~ n :;:: } and for each set si , only the fi rst r i observat i ans 
1=1 

are t aken (0 < r. < nk). Three cases are considered. ,-
, . The ni items i n each set si have a common known 

0i ( i = l ,2, . .• k) 

2. All n observations have a common unknown 0 

3. ,The ni observations in each set s1 have a common unknown 01 

(" = 1 ,2, ... k) 

The reason for classifying n observations into the three cases 
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is that they include as many as possible of types of situations when 

the underlying distribution is exponential. This can be seen from 

one-par ameter exponenti al distribution of Equati on (2.1. 1) which is 

t he case when k = l and e = 0. 

Let Yi ~y 2 ~ ... ~Yr denote the r smallest ordered 

observations from (4.1.1) . The joint p.d. f. of the fi rst r out of n 

observations is given by 

r 
n.1 =1:{ r (y. -e ) + (n-r )(y -e)J 

eY i=l , r 
(n-r)yr 

< ••• < y < 00 

- r 

(4. 1.2) 

Lemma 1. For l .::,_ s ~ r ~ n, the conditional joint density of 

z. = y ·+1 - y 
l 1 S 

i = s, s+ l , .. . , r - 1 

gi ven Vs= Ys (as well as the unconditional joint density), is 

(4.1. 2) with (n,r,e) replaced by (n-s,r-s,0) respectively. 

Lemma 2. For l < r < n and any preassigned constant c > e, - - ' -
the condi t i onal joint density of the set Yi= Yi - c (i = 1, 2, ... ,r), 

given that v1 ~ c , is (4. 1.3) withe replaced by 0. 

Lemma 3. For l ~ r .::,_ n, the set of random variables 

i = l ,2 , . .. r 

are mutually independent with common p.d.f. (4.1.1) except that e = 0. 
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These lemmas together with several corollaries (18, p. 373-

375) le ad to the following theorems. 
A 

Theorem 1. The distr i bution of the maximum likelihood y 

est imat or of (4.1.1) depends only on R, y (and also on kin Case 3), 
k 2R" where R = r r .. The random variable~ is distribu t ed as a chi-

i =l l y 
square with (2R-2) d.f., and chi- square wi t h (2R-2k) d. f. , and chi-

square with (2R-2k) d.f. in Case 1, 2 , and 3 respect i vely . 

The unbiased estimate E (yi) for Cases 1, 2, and 3, 

respectively, are 

A 

Ry2 
= ..,.,( R=-----=-1 -) , 

A 

Ry3 
(R - K) 

which depends on the observatio ns zi (i = 1,2,3) only where zi 

are given by 

z, = 
k 
E 

i =l 

r. 
l 

[ r Y . . + (n.+r.) Y.r.] = 
j=l l J l l l l 

A k 
Ryl + E n1 i=l .el 

= M~N Y.l 
l l 

A 

(4.1 .3) 

The author proved that E(yi ) are uniformly minimum variance 

unbiased est imat es by showing t hat zi is compl ete and sufficient for 

estimat i ng Y; in th ree cases. 

Theorem 2. z1 i s suffi ci ent and complet e for estimating y. 

Proof: Suff i ci ency i s proved by showing tha t the joi nt densit y in 
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A A 

Case l can be written as g(y, , yn;e,y) = h(e,y;e ,y} k (y1, 

y2, ... , yn) where k(y1·, y2, , yn) do not involve the parameter e, 

and y ( 38, p. 170-171). Comp-1 eteness is proved by us ,ng one sided 

apace transforms (18, p. 377-378). 

Theorem 3: z2 = (z20,z21), is sufficient and complete for 

estimating the pair (0,y}. 

Proof: Sufficiency is proved in the usual way as in the previous 

case. Completeness is also proved similarly except a two-dimensional 

uniqueness theorem for Lapace transforms is used (18, p. 378-379). 

So far, discussion has been on the varied properties of the 
A A 

m.1.e. e and y. But quite a few empirical phenomena which follow 

the exponential law are, to some extent, involved in what can be 

called as a sequential process of time (or space) such that the 

observations can be· arr~nged by· order. · ·The knowledge of order 

stat ·istics, then, becomes important. A.G. Laurent, A. E. Sarhan, 

etc., have contributed their studies in the form Lemmas and Theorems. 

These Lemmas and Theorems are used somewhat through the report 

(32, p. 652-657; 45, p. 844-906; 44). 

4.2 Method of maximum likelihood 

W. L. Deemer and D. F. Votaw (12, p. 498-504) have derived 
A A A 

the m.l.e. e and y (1/A) of e and y of a single exponential. 

A. Based on a complete samp~e. Given the p.d.f. of a one­

parameter exponenti al by 

A> 0, 0 < X < oo 

A 

The estimator A of A based on a complete sample of n 
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observations arranged in ascending order according to their magnitude 

y 1 2-y 2 :5... • • • 2-y n i s gi ven by 

~ l 
"= :­y 

Proof: The likelihood function L(>.) of A is given by 

where y is the sample mean. 

that {4.2 . 1) holds. 

It is easily shown by alog L(>-) = o 
oA 

" The asymptotic variance of In(>-->-) is 

-E[ a21 og f(y) ] 
a>-a>. 

(4.2.1) 

(4.2.2) 

(38, p. 174-499; 48, p. 136-139; 37, p. 208-212). From (4.2.l), this 

equals to >-2. Therefore, for large n 

VARIANCE [In(~->-)]= >-2 (4.2.3) 

' " 2n>-From section 4 .. 1, -"- has a chi-square distribution with 2n d.f. 

This can be used to construct the confidence interval, and derive 

a test for testing hypothesis. 

B. In a censored sample. If a sample from (4.2.1) is 

censored to the right, only the first r observations Y1 :5..Y2 :5.. •• • :5..Yr 

are used in the estimation. 



The m.1.e. of A 1s given by 

" 
>.. = r 

C ------- r 
[(n-r) y + E y.] r 1 1 

Proof : The p.d. f. under t he condition · is given by 

The likel i hood funct ion L(>..c) of "c is consequent ly 
r 

r ! 
(n- r ) ! r ! 

-rAYr e 

-AE yi-(n-r)AYr 
Ar e 1 

r > O 

r = O 

t he part ia l deri vative of l ogL(>..c ) with respect t o A and set the 

result t o zero gives (4.2.5) . 

" 
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(4,2.4) 

(4.2.5) 

(4.2.6) 

(4. 2.7) 

Halper i n (25, p. 226-238) proved that the "c i n (4. 2.5) has 

t he propertie s of consis t ency, asymptotic normality, and minimum 

asymptoti c variance. 

The asymptoti c vari ance of ln (~c-A) , from the results of 

Halper in , is recipro cal of 

2 2 
al og f(y) ] f (y) dy + n [ alogn J 

dA aA (4.2 .8 ) 



where n is defined in (4.2.6). The expression in (4 .2.8) then 

becomes 

2 - ).,y 
y (1 - e r) 

For large n, 

" VARIANCE [In (Ac - A)]= - ).,y 
l - e r 

which is naturally always greater than the asymptotic variance in 

4.1 which is based on a complete sample. 
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(4.2 .9) 

Example 4.2.1: The first 10 failure times were observed from 

20 items placed on a life test (16, p. 405-406). 

Assuming that the underlying distribution is exponential, 

i t is found that 

" 

r 
[(n-r)y + E y1J 

r l 12000 
y = ------- = -g--- = 

r-1 

and e is found by 

0 = Yi - f = 452. 3 

1333 (4.2.10) 

(4.2.11) 

C. In a truncated sample. If the population is truncated to 

the r i ght, the number of observations greater than Yr' the truncated 

point , is usually unknown. Therefore, the p.d.f. of f{y), given 

y :::..Yr is a conditiona l density and is given by 



0 < Y ~ Yr 

The m.l.e. \t of (4.2 .12) i s given by 

1 0 - l 
7 < y < - y 

A 2 r 
\ = t 

0 
- l 
y :::.zYr 
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(4. 2.12) 

(4.2.13) 

Proof : Let the r observations in the sample be arranged in ascending 

order such that y1 ~y 2 ~ . .. ~Yr' t he li keli hood f uncti on L(\t) i s 

given by 

-,.y n 
(1 - e r) 

n 
- \L y . 

l 1 
e 

-,.y - 1 · n 
e r ) ] 

the partial deri vat i ve of l ogl(At ) with respect to A gives 

-v -v -1 
n[y - Yr e r (1 - e r) - y] 

(4.2.14) 

(4.2 .15) 

The funct i on in t he bracket is monotoni c decreas i ng i n \ . It t ends 

l to 7f Yr as A tends t o zero , and tends to zer o as A t ends t o i nfini ty. 

When O < y < 21 y , there exists a solution J. by setting (4.2.15) to 
- r Y 

zero. When y:::. }Yr' (4.2.15) assumes i t s maximum value for A= 0. 
" The asymptotic vari ance of .In (At - A) equals to 

l (4.2.16) 
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where f(y) is given by (4.2.12). 

For large n, 

A 

VARIANCE [/n (At - A)= 1 (4. 2.17) 

D. Interval estimation of A. When sample si ze is large, the 
C . -----,---------- -

fol 1 owing approximation gives an approximate 100 (1-q) percent con-

fidence limits for A in the censored case (4.2.7). 

where zq is the 100 (1-q) percent point of the standard normal 

distribution and 

z = 

"' In (Ac - A) 

-AY - -
[A(l-e r) 2 ] 

A similar 100 (1-q) percent confidence l imits for At in 

t runcat ed case can be obtained by 

Pr (-z < z < z) = P 
q q 

where 

Y • Iii' (~t - A) [y2 - Y~ . -):fr (l-e-):f r )-2]] 

A A 

(4.2 .18) 

(4. 2. 19) 

(4. 2.20) 

(4.2. 21) 

Examples of findin g confidence in t erval fore and y has been given by 

B. Epste i n (16, p. 406; 15, p. 448-451). He used equat ions derived 
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under ,s l ightly different assumptions from those ones given above. 

Gut, nevert heless, they are very much the same in the sen e that they 

;1t\. m 1.c. of op .i rnum hara te ri sti s . 

4.3 Method of leas t -squares 

Loyd (33, p. 88-95) has dis cussed the possibility of applying 

gene al least-s quares theor-y to obtain th e est imates fo tile para­

mete rs of the distr i but ions which depend on locat ion and sc le 

parameter only. Using an ordered sample, the result i ng estimates by 

method of least-squares are unbiased, linear in the ordered observa­

tions , and of minimum varian ce . Formulae are obtained for t he 

est i mates and for their vari ances and covari ance. 

Let (x1, x2 , . . . , xn) be a sample of n i ndependent observa­

ti ons from a distribution which depends only on location and scale 

pararreters e and~- The observations in the sample can be arranged 

in ascendi ng order of magnitude (y1, y2, 

Y2 ~ • • • ~Yn the standardized variate 

(4 .3 . 1) 

transforms the ordered set (y1, y2 , ... , yn) into (z 1, z2 , . . . , zn) 

such that 

z1 < z2 < • • • <Z - - - n l < i < n 

VARIANCE (z,) - v .. , , COVARIANCE (z;, z;) = V .• 
1 , 

(4 . 3.2) 



which , given the form of the parent distribution, will have known 

val ues i rre l ev~nt of the parameters e and A. 
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A l inear tra nsf ormation of (4 .3 .2) by the relation of (4.3.1) 

gives 

2 2 E(y1.) = 0 + y U., var (y. ) = y v . . , voc(y ., y.) = y v . . 
l 1 11 l J lJ 

have expectation which are linear functions of the parameters e and 

A wi th known coefficients. The variance and covariances of these 

expectations are known up to a scale factor y2. From Aitken ' s paper 
' 

"On l east-squares and l inear combination of observation," it is 

known that the least-squµres theorem of Gauss and Markoff can be 

appli ed t o t he situ at i on. · The parameters t hus estimat ed by the linear 

funct ions of yi are unbiased, l i near, and have minimum variance . 

Equation (4.3.3) in matrix form can be written as 

E(Y) = er + yU (4. 3. 4) 

Y is the vector of the y i , I a vector of i den ti ty, and U the 

vect or of the U.; . The equation can be written more compactly as 

E(Y) = Pe' (4 .3.5) 

where P i s t he (nx2) matrix (l ,U) , and e' = (e ,y) . 

The vari ance mat r i x of t he yi is 

2 V (Y) = y V 
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where Vis the (nxn) symmetric positive-definite matrix of the Vij" 

The estimator of the vector 01 of the parameters is easil y 

shown to be 

~ = (P'WP)-l P'WY (4.3.6) 

where 

w = v-1 

The variance matrix of the estimates is (P'WP)-1y2 , where 

[
1 'Wl 1 1 WU] 

P'WP = 
1•wu u•ww 

The inverse of P'WP is given by 

(P'WP)-l = 6 [
u•wu 

-1 'wu 
-1 •wu:l 
11 Wl 

Where Dis the determinant of the matrix P'WP. 

By (4.3.6), the estimates are given by 

" "' 
e = U1 GY, y = l'GY 

where G is the skew-symmetric matrix given by 

G = [W(lU' - Ul') W] D-l 

"' "' The variance and the covariance of e,y are given by 

(4.3.7) 

(4.3.8) 

(4.3.9) 

(4.3.10) 
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,., 
U'Wu::/ 

,., 
l I Wly2 

VARIANCE (e) = , var (y) = D D 

A A -l'WUy2 
co (e,y) = (4.3.11) 

D 

F. Downt on (13, p. 457-458), using the results obtained by 

Lloyd, generated the least-s quares est imator for one-parameter 

exponential dis trib ution. The equat i ons in the two-parameter case 

are reduced to one-parameter case which measures the di spersion of 
" the distribution. The ordered lea ·t-squares estimate y of y is 

given by 

" U'WX 
y = U'WU' s(x} '= d Y) = U, VAR (Y) = V, W = v-l y . . 

He later extended the conditions described by Lloyd to unsymmetrical 
" case. He derived the, .least-squares estimate y of y by using 

Cauchy-Schwarz inequality (39, p. 363-364). Again, he obtained 
A l I y 
y = -n-. The estimator is minimum variance unbiased estimate of y 

in the Newman-Pearson sense (38, p. 292). 

4.4 Method of moments 

The estimato rs derived by the method of moments are usually 

the same as the maximum-likelihood estimators. Under quite general 

conditio ns, they are 

1. (sinple) consistent estimators and squared-error 

consistent es t i ma tors 

2. asymptotically normal but not, in general (asymptotic ally), 

efficient nor BAN (38, p. 186). 
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Rider (42, p. 143-147) derived estimators by the method of 

moments for a mixed exponert i al di s tri bution . It can be reduced to 

a ~1ngle exponenti al when p = l and q = l - p = 0 with ju st a sli ght 

adJ us t ment. 

Suppose that two populations of the form 

-)..X 
)..e y > 0, 0 < X < oo 

f(x;)..) = 

0 elsewhere 

wi t h parameters "l and "2 respective ly have been mixed in the unknown 

proport i ons p and q. The resulting p.d.f. is given by 

(4 .4.2) 

A si mple method of estimating the thre e parameters p, "l, A2, 

is deri ved from the f i rst three moments of a sample. Let m1, m2, m3 
denote the first , second, and t he third moment about zero of a random 

sample of s i ze n(x , x2, .. . , xn) fr om (4.4. 2). The estimat ors 
A A ,-. 

P, y 1, y2 of P, yl , y2 are obtained by equating m~ = Ui for i = 

1,2,3, and Ui i s t he population moment about zer o from (4.4.2) 

( 38 , p . 186 ) . 

Pyl + q Yz = ml (4.4.3) 

"'"'2 "'"2 1 
Pyl + qy2 = 2 m2 (4.4.4) 
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(4.4.5) 

After rearrangement , (4 .4.3) becomes 

A 

ml - y2 
p = -A--A- (4.4.6) 

A 

Substituting (4.4.6) for Pin (4.4.4) and (4.4.5) gives 

(4.4.7) 

(4.4.8) 

From the preceding two equations we can obtain an equation 
A A 

for Yi (i = 1,2) in terms of m1, m2, and Yj (j = 2, or 1 according 
A 

to i = 1, or 2). Substituting the yi in (4.4.8) will, after some 
A 

simplifications, give an equation for Yj 

A A 

The quadratic equation (4.4.9) yields two roots, y 1 and y2. P 

i s then found by (4.4.6). 

The vari ances of these estimators, al though not impossible, 

are not easy to obtain due to difficulty in calculation. However, 
A 

i n order to have some idea of the reliability of the estimators y 1 
A A A 

and -12, l et us assume that P is known and the vari ances of y 1 and y2 

will be deri ved under t hi s assumption. 

------ --
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A 

According to Cramer (10), the asymptotic va iance of y1 is 

found by 

A 

VARIANCE(y1) 

A 2 
+ V(m1 )(~Y1) 

2 omz (4. 4.10) 

where V(m1) and V(m2) are the variances of m1 and m2 respective ly . 

C0V(m1 ,m2) is the covariance of these two moments. The partial 

derivatives are evaluated at the point 

m• ::: 
1 

(4.4.11) 

The formulas given by Kendell (30) are used to find the value 

of the coefficient of the partial derivative in (4.4.11). 

Cov(m,1 ,m2•) -- 2n-l [(3P P2) 3 Pq 2 Aq 2 + - Y1 - Y1Y2 - r Y1Y2 

2 3 
+ (3q - q ) Y2] 

The par t i al de:ivatives at th~ puint (4.4 .11) have the values 

(4.4.12) 

(4.4.13) 

(4.4.14) 
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(4.4.15) 

Substituting (4.4.12), (4.4.13), (4.4.14), and (4.4.15) in (4.4.10), 

after some simplification, gives the variance of the asymptotic 
A 

distribution of y1 

1 4 3 2 2 
2 [P(6-P)y 1 - 4P(3-P}y1y2 + 2P(5-3P)y1y2 -

4nP (y1-y2) 

- 4P(l-P)y 1y~ + (l-P 2)y~] (4.4.16) 

A 

The variance of the asymptotic distribution of y2 is obtained 

by substituting q for~ and interchanging y1 and.y2 in (4.4.16). 

4.5 Simplified estimates 

When the parameters can·be estimated from a linear function of 

specific subsets of the order statistics, these estimators are optimal 

in that they provide the most efficient linear combinations of a given 

number of order statistics. 

A. Based on one ordered statistic. H. L. Harter (27, p. 
A 

1078-1084) derived an estimator y of y for the one-parameter 

exponential population based .on one ordered statistic from a sample of 

any size up through n = 100. The minimum variance unbiased estimate 
2 

of y is, of course, the sample mean y with variance=¾-. 

The expected value and the variance of the kth order statistic 

of a sample of size n is given by 



k 
E (yk) ;::; y E a. 

1 1 

2 k 2 l 
VARIANCE (yk);::; y t ai, ai ;::; (n-i+l) 

An unbiased estimator of y, based on the ordered statistic yk' is 

A 1 
Yk = bk yk' bk= -k--

E a. 
, 1 

2 k 2 
y Ea. 

A 1 1 
VARIANCE{yk) = k 2 

(E a;) 
1 

And its efficiency (relative to the minimum variance unbiased 

estimator y) is 

= VARIANCE {y) 
A 

VARIANCE(yk) 
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(4.5. 1) 

(4.5.2) 

(4.5.3) 

(4.5.4) 

(4.5.5) 

It then follows that the best estimator of y, based on one ordered 

statistic yk, is the one for that value of k which minimizes variance 
A A 

yk (maximi zes EFF(yk)). A table given by H. L. Harter (27, p. 1085) 
A 2 A 

gives the value of k, bk, (VAR(yk))/y , and EFF(yk). To determine the 

vaiue of k which yields the best estimator of y (i.e., after setting 

up t he equation for the relative efficiency of a linear combination of 

one or two ordered statistics), an analytical method for determining 

the best combinations is given by M. M. Siddiqui (46, p. 117-121). 

The method is based on the Euler-Maclaurin formula (29, p. 281). 
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k-1 Ik r:o f( r) = 
0 

f(x)dx -1 [f(k) - f(O)] + (11) [f(l)(k) - f(l)(O)] - (710) 

(4.5.6) 

Substituting z = n-k;l in (4.5.6), and after a lengthy derivation, n-
it is found that the optimum k is the nearest integer to 

where 

(n+l)(l-z 0 ) ~ 0.79681 (n+l) - 0.39841 + 1 .16312 (n+l)- 1 

z = 0.20319 + 0.39841 (n+l)-l - 1.16312 (n+l)- 2 
0 

(4.5.7) 

A quick check verifies the correctness of this method to the table 

given by H. L. Hartley (27, p. 1078-1090). 

B. Based on two ordered statistics. A. E. Sarhan, B. G. 

Greenburg, and J. Ogawa (44, p. 102-116) have discussed the use of only 

two observations from a sample up to size 20 to construct a best 

linear combination for estimating the parameters of an exponential 

distribution. 

Given f(x) = Ae-A(x-e) 

= 0 

0 < 0 < X 

elsewhere 

The minimum variance unbiased linear esti mates fore and y based on 

two ordered stat i stics y 0 , Ym, where y1 2-Yo, 2-Yrn 2-Yn' from a sample 
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of s i ze n is given by 

m i 
e = -~-'----- [y £ E a - y m E a] 

E a 1 1 
(4.5.8) 

i+l 

1 
Y = -m-- (y m - Yi) (4 .5.9) 

E a 
t+l 

Proof: If the matrix of coefficients of (e,y) for the expected value 

(B) of then order statistics and the variance-covariance matrix V 

are given by 

where 

and 

B = 

1 

i £ 
E a = E 
1 l 

i 
E a 
1 

m 
E 
1 

b 

1 
(n-i+l) 

i t 1 
E b 
1 = ~ (n-i+1) 2 

£ £ 
E b E b 
1 1 

V = i m 
E b E b 
l l 

then (4. 5.8) and 4.5.9) can be obtained from 

The varia nce for e,~' taken f rom (B-lV-1B)- l are 

(4.5.10) 

(4.5. 11) 
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" 
,Q, i m m 

a)2]} Y 2 VAR(e) = {E b + [((E a)2 E b) / ( E (4.5.12) 
l l £+1 Hl 

m 
E b 

" ,Q,+l 2 VAR(y) = { } y m al ( E 
(4.5 . 13) 

£+1 

,., ,., ,., 

The estimate of the linear combination U = e + y is given by 

" 1 m £ 
U = (-m--) {(E a-1) Yn + (1 - Ea) y } 

l ~ 1 m 
E a 

(4.5. 14) 

i+l 

" and the variance of U is gi ven by 

£ 2 m 
,Q, (E a- 1) E b 

= {[Eb]+ 1 t+l 
m 

1 ( E a)2 

" VAR(U) (4.5.15) 

i+l 

The last expression in (4.5. 13) attains a minimum for ,Q, = 1 

and m according to the values of n shown in a table given by Sarhan, 

etc. (44, p. 104). The same results hold for estim,ting e and U. 

For one-par ameter exponent i al di str i but i on (e=O), the com­

parabl e equati ons are given by 

m JI, JI, m JI, m 
( E b E a - E b E a) Yi+ (E b E a) Ym 

" i+l 1 l .R,+l l .R,+ 1 
y = 

,Q, m .R, m (4.5.1 6) 
(E a )2 E b + E b ( E al 
1 ,Q,+1 1 H l 
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1 m 
A ~ b E b 

VAR(y) ={ 1+1 
} 2 (4.5.17) i m 1 m y 

(E a) 2 E b + E b ( E a) 2 
1 1+1 1 1+1 

The varian ce for estimating y with two order statistics atta ins 

a minimum at different points than previously. The results are 

summarized in a table given by Sarhan et al. (44, p. 106). 

To simplify the selection, estimation using two symmetric 

observations in a sample up to size 20 is available. Tables and 

figures given by Sarhan et al. (44, p. 107-115) give the relative 

efficiency of 0,y (in one- and two-parameter case) .. 

Later, H. L. Harter obtained an unbiased linear estimate of 

the parameter y based on two order statistics, y1 and Ym' up to 

sample size of 100 instead of 20 given by Sarhan et al. The equations 

are given by 

(4 .5.18) 

and 

It can be shown that for given values of 1 and m, the values 
A 

of c1 nnd Cm which yield the nbiased estimator Yim with minimum 

variance are 
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C = l , Cm= nCi (4.5.19) 
i i m 

Ea. 
1 1 

+ n Ea. 
1 1 

where 

m i 2 i m 2 m i 2 - l 
n == ( E a. E ai)•(E a. E a. - E a. E a.) (4.5.20) 

i+ 1 1 l l l l 1 l 1 1 1 

It then followed by subst it uting (4.5.19) and {14.5.20) in (4.5.18), 
" 

the minimum variance of Yim for given i and m, is 

" 

2 i 2 2 m 2 
y [(1+2n) Ea. + n Ea.] 

l 1 l 1 

i m 2 
(E a. + nE a.) 
l 1 l 1 

The eff ici ency of Yim relative to the minimum variance unbiased 

estimator y is 

= VAR(y) 
~~= " 

" 

(4.5.21) 

(4.5.22) 

The best y based on Yi and Ym is the one for those values of 
" " 

i and m which mi nimize the variance Yim (i.e., maximize EFF(yim)). 

gain , M. M. Siddiqui provided a method for finding the optimum k 

(46 . p. 117-121). 

For estimating e,y for two-parameter exponential population 

using two ordered statistics, it i s a direct consequence of the one­

parameter case. The unbia sed li near estimates are of the form 

" (4.5.23) 
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(4.5.24) 

(4.5.25) 

" " " 
Those values oft and m which minimize variance e y U tm' tm' tm 

A A A 

(i.e . , maximize EFF(etm), EFF(ytm), and EFF(Uim)) are the best 

estimators. Again, M. M. Siddiqui provided a similar method for 

obtaining the optimum k which is the closest integer to 

where 

n - nz + l ~ 0.79681n + 0.60159 + l .16312n-l 
0 

z0 ~ 0.20319 + 0.3984ln-l - l.16312n-2 

(4.5.26) 

C. In the small sample case. So far, discussion has been 

around the small sample situation fork= 1 and k = 2. Fork greater 

than two in the small sample situation, G. Kulldorff (31, p. 1419-

1431) gave estimators for one- and two-parameter exponential on 

the basis of suitably chosen ordered statistics . 

First, in deriving the BLUE (beat linear unbiased estimator), 

he used the results from Gumbel and Sarhan (11, p. 317-328) which says 

k 
E(y.) = e + y E (n - j + 1)- 1 

J 1 

j < j I 

and 

r = 1 ,2 i - 1 ,2 , . . . , k 
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Esti mators are then derived under three situations: 

1. the BLUE of y when e is known, 

2. t he BLUE of e when y i s unknown, 

3. t he BLUE of e and y when both are unknown. 

Gi ven y1, y2 , ... , yk' where 1 .::_ 2 .::_ . .. .::_ k, the k ordered 

statistics from 

x>e~O,y>O 

f (x) = 

0 e 1 sewhere 

For (1), t he BLUE of y is 

A k 
y = a e + r a. y. 

0 1 l l 

where 

a. = (61i - 6l ; i+l ) c-1 
1 62i 62, i+l 

i=O,l , . .. ,k 

k 2 
r 01. 
l l 

C = --­
o2i 

A 2 
VAR(y) = f-

For (2), t he BLUE of e is 

A 2 
VAR(e) = y 021 

(4.5.27) 

(4.5 .28) 



For (3), the BLUE of e and y are 

where 

,, k 
y=I:b. y. 

1 1 I 

A y A 

e = 1 - y 011 

b . - -
1 

i = l 

01. 01 . 1 l = (-, - ,, + ) c·-
62i 02,i+l 

2 k 0,. 
' 1 C' = I --

. 2 62· 1 = 1 

i = 2,3, ... ,k 

and the BLUE of U = e + y is given by 

A A 

A "" A 
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(4.5.29) 

(4.5.30) 

(4.5 .31) 

(4.5.32) 

The efficiency of e, y, U when compared with the BLUE of e, y, and U 

based on all n observations is given by 

A l EFF( e) = 2 
n(n-1) (021 

611 (4.5.33) +-rr 
A C' EFF(y ) = (n- 1) (4.5.34) 



" EFF( U) = 
1 

61 

(4.5.35) 

D. In the large sample case. The general large sample theory 

for estimating one-parameter exponential distribution based upon 

sample quantiles is discussed below (44, p. 103-116). 

Given a sample of size n from 

[ 
>.e-AX 

f (x) = 
0 

x~O,y>O 

elsewhere 

there are k fixed real numbers q1, q2 , ... , qk such that O < q1 < q2 < 

.•• < qk-l < 1. One can select the k sample qi quantiles, where i = 

1,2, ... ,k, to estimate y (10, p. 179-180). The k ordered statistics 

are y1, y2 , ... , yk' where i = [kqi] + 1 and [kqi] stands for the 

greatest integer not exceeding kqi. Then the standardized exponential 

distribution is given by 

g(x) = 

-x e 

0 

X > 0 

elsewhere (4.5.36) 

If the qi-quantile of the st andardized distribution is Ui, so that 

qi = l - e-Ui and the original distribution is xi, then xi = Uiy' 

i = 1,2, .. . , k. From Ogawa (44, p. 103-116), the asymptotically best 

" 
linear unbiased estimat e y of y i s given by 



where 

and 

A - D 
y - -B 

k+l -u . -u . l -u. 
E [U.e 1 l - ] [ 1 - u. 1e y .e 1 1 - 1 1 D = -U. 1 -

i J [e 1- -e 

k+l -U. -U. 1 2 
E [U.e 1 1 - J - Ui-le 
l 1 

B = 
-U. 1 -U. 

[e 1- -e 1] 

-U. -u. 1 
[U.e 1 1 - J 

-u. -U;_1e 
{ 1 

c. = e , -U -U. 1 [e i-1 - e , J 

Simpli fication of (4.5 .37) brought 

A k 
y = E d. y., 

1 1 1 

-u . 
-y . e 1-l ] 

k 1 -1 
= E 

1 

-Ui+l 
u.e [Ui+le - 1 

-U. -Ui+l [e , -e J 

A ta ble is obtai ned for values of di(i = 1, . .. , 15), 
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(4.5.37) 

c. y . 1 1 

-U. 
1] 

} 

(4.5.38 ) 

yi , and ei such tha t B i s a maximum; i.e., values for determining the 

asymptotica l ly optimum spacings for est imates , asymptot ic relative 

efficien cies , and the coeffi ci ents of best estimate s for the one­

paramete r exponential (44, p. 112-113) . 

H. L. Harte r al so obtained an est imate us ing sample quasi­

ranges fr om a one- paramet er exponenti al. 

The r t h quasi - range , qu, of a sample of si ze n i s defin ed as 

the range of (n-2r) sample val ue , omitt ing the r l argest and the r 

smallest . 
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This is basically a double censored situation. Symbolically, 

qu = Yn-r - Yr+l, where y1 5._y2 5-_ ••• 5-Yn are the ordered sample values. 

For f(x) = e-x 0 < X < 00 

i.e., mean= standard deviation= 1 

" qr 
:Y.y-= E(q ) 

r 

n-r-1 1 
E 7 A j=r+l VAR(yr) = J 

n-r-1 
1)2 ( E 7 j r+l J 

(4.5.39) 

where 

n-r-1 1 E{qr) = E 
j=r+l j 

For 
X 

f(x) 1 y 0 < X < oo = - e y 

A A e2 - VAR{y) y = y - -n (4.5.40) 

A 

The ef ficiency of the estimate y based on the rth quasi-range is given r 
n-r- 1 

by ( E ]._)2 
( ) = j=r+ 1 J 

EFF Yr . n-r:..1 1 (4.5.41) 
(n E ) 

j=r+l f 

which varies fro m 50 percent t 0 61.73 percent and is not very satis­

fact ory. But, when the lower limit is known, y can be estimated more 

efficiently from a single order statistic (41, p. 252-254; 26, p. 980-999). 



4.6 M.L.E. of the parameters of 
bivariate and mixed exponential 
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Up to now, estimation for the parameter of one- or ,two­

parameter exponential has been discussed. Some methods for estimating 

the parameters of bivariate and mixed exponential will be given below. 

A. Bivariate exponential. The m.l.e. of Al, A1, A2, A2 
of A1, A1, A2, A2 the pararreters of a bivariate exponential distribution 

given by J. E. Freund in Section 2.2 will be given below. 

In a random sample of size n from a population having the 

bivariate p.d.f. (2.2.24), the four parameters are defined as before. 

Let the first r observations come from f(x;A1) and the rest (n-r) 

observations from f(y; A2) of a sample of n ordered statistics and 

denoted the respect i ve sum by Ex and Ey. Let the first r observations 

come from f(y;A2) and the rest (n-r) observations from f(x;A1) and 

denoted the respective sum by E1y and E1x. The likelihood function of 

the sample is 

l < r < n (4.6.l) 

Then the partial derivative of (4. 6.l) with respect to Al, Al, A2 , and 

A2 respectively gives m. l .e . of 

A 

Al 
r = E'y Ex + (4.6.2) 

A 

A1 n-r = E1x E1y l - (4.6.3) 



" n-r 
"2 = Ex + E I y 

A 

A 1 _ r 
2 - {Ey - Ex) 

A A 

The mean ~nd variance of "l, A2 can be shown to be 

n 
(n-1) "2 

l l The mean of,;;:-,-and~ are given by 
Al A I 

l 2 

l = ;,_-
Al 

l 
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(4.6.4) 

(4.6.5) 

(4.6.6) 

(4.6.7) 

The asymptot ic expressions for variance ,_.land ,_.l can be obtained 
A1 A1 

l 2 

by usin g the methods developed by Mendenhall and Lehmann (36, p. 227-

242) . 



" VAR ( )-) = _1_2 ( 1 + .1..) 
:\ 1 n:\ 1 "1 2 2 
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(4.6 ,.8) 

(4.6 .9) 

B. Mixed exponential. Them. l.e. of the parameters P, y 1, 

y2 is discussed for two cases, i.e., when the relative magnitude of 

v1 ,v2 are known and are not known (36, p. 504-520). 

Given the p.d.f. is described in Equation (2.3.2). 

1. Let Yr denote the termination point; no observations 

greater than yr will be taken. This is obviously a censored case. 

Further, define two random variables, Z = L, y. "t-, for i = 1 ,2. 
Yr , iy r 

Then the cumulative di str i bution function becomes 

-Z 
Fi(Z) = l - eYi 0 < Z < 00 (4.6.10) 

Given a random sample of size n, the probability of r1 events occur 

in f 1(Z), r2 events occur in f2(Z), and (n-r) events (where r = r1 + r2) 

not occur is the multinomial 

r r 
Pr(r 1,r 2,n-rln) =n! [PF1(1)] 1-[qF2(1)] 2-[G(l)t-r r1!r2!(n-r)! 

(4.6.11) 

The conditional densi ty of obt ain i ng the ordered observations 



P ( z .1 z. 2 , ... ,z. I r. ; z.. < 1 ) , , , ,r. , lJ -
l 

ri 
r.! IT f.(Z .. ) 

= l j=l l lJ 
r. 

[Fi(l)], 

It then follows that the likelihood function for the sample is 

r 1 r 2 
L = ( n!)i G(l)n-r pri qr2 IT f,(z .. ) IT f2(x2J.) 

n-r . j=l lJ j=l 

The partial derivative of lnL with respect to Yi, y2, P 

gives the m.l.e. of yl, y2 , Pas 

where 

" rl " ( ) p = _ + kn-r 
n n 

A " {n-r) 
yl = z + k l rl 

" " (1-k)(n-r) 
Y2 = z2 + 

r. 
l 

II 
= j=l z. 

z .. lJ 
, r i 

r2 

A 

k = 

1 + 

l 
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(4.6.12) 

(4.6 . 13) 

(4.6.14) 

(4.6.15) 

2. In some situations when the relative magnitude of r1 and 

r2 is known, then the m.l .e. of r1 = v2 =Vis given by 



A r, 
p = -r 

The m. l .e. of the parameter y of a single exponential 

dist ri bution is 

A l r 
Y = r n(yr ) , n(yr ) = . E1yi + (n-r) Yr 

1= 
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(4.6.17) 

(4. 6.18) 

It can be seen that this reduced consequence from the mixed 

case is the familiar single exponential distribution estimator. 

Excellent examples are given by P. R. Rider (42, p. 143-147) 

and W. Mendenhall and R. J. Hader (36, p. 504-520) about estimation 

of the parameters of a mixed exponential case. 
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TEST OF HYPOTHESIS 

It is often useful to test whether the parameter(s) of an 

exponential distribution is equal to, greater than, or less than some 

fixed value. Several methods for deriving a test of hypothesis in 

complete, truncated, and censored case will be introduced in this 

section. 

5.1 For a complete sample 

A. Case I. Given the p.d.f. of an exponential distribution 

as 

f (x) = 

-A(x-e) Ae 

0 

X > 0 > 0 

elsewhere 

H0 :e = some fixed value, assuming y = 1. The likelihood-ratio 

test der ived by E. Paulson (40, p. 317-328) is given below. 

Given n the parameter space from which the sample might have 

been drawn to be {-00 < e < + 00 , y = l}, while the sample space under 

the hypothesis H0 is {e = 0, y = l}. The likelihood ratio is given by 

h 
-r x. 

A 

e 1 
1 -hx1 

p = L(~} = (5.1.1) = e 
L(n) h 

-r (xi - x,) 
1 e 

The regi on of accept ance consists of all points in the sample space for 
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which p < p < 1 ' where PE is chosen such that 
E - -

fl g(p) dp • 1 - a. 

PE 

a is the level of significance used and g(p) is the distribution of 

p when e really equals to zero. Also for any value of e, 

-n(x 1-e) 
cp(x1) dx1 = he dx (5.1.2) 

It can be proved that the power function p(e) of e is greater 

than a if e 1 0. The test is therefore completely unbiased in the 

sense of Daly (11, p. 2). In addition, it is proved that the test 

is a uniformly most powerful test with respect to all alternatives. 

B. Case II. To test the hypothesis H0 : = some fixed value, 

when y unknown, the likelihood-ratio function is given by 

n 
E ( x1 - x1) n 
1 1 n 

p = [ J = [ J (5.1.3) 
n h x, 
E x. 1 + 
1 1 n 

E (x. - x,) 
1 1 

The region of acceptance consi sts of all points in the sample space 

for which p < p < 1 such that 
E - -

where 

f 1 g(p)dp • 1 - a, and is equivalent to 

p 
E k S 

2 
0 ~ x, < -- n 

n 1 
s = E (x. - x )·(n-1)-

l 1 1 

(5.1.4) 
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~fter defi ni ng the jo ·nt distributio n of x1 ands (40 , 

p. 303 ) ~ the power function P{e) of e fore ~ 0 , e ~ 0 i s found by 

pert rmin g double integrals of ~(x1,s ) over region def i ned in (5.1 .4). 

For - 00 < e ~ 0 , P(e) is greater than a, for O ~ e < 00 , P1 (e) i s 

posi t i ve and monotonically increasing in the interval, so P(e) is> a 

whe e > 0. Therefore, the test is also completely unbi ased. 

C. Case III. Given a sample of siz e n1 fro m a di st ri bution 

wi t h p.d . f. 

-,-(x-e) ,-e 1 X ~ e1 ~ 0, A> 0 

f(x ) = 

0 elsewhere 

and a sample of size n2 with p.d.f. 

f (y) = 

0 el sewhere 

To test the hypothesis that e1 = e2, we let x1 denote the smallest 

observat i on i n f{x; e1 ,,-) , y1 the smallest observation in f( y;e 2 ,,-), 

and L the smallest of n1 + n2 = N. The lik elihood-ratio function is 

given by 

n, n2 
E (x. - x,) + E (y i - y l ) 2 l 1 1 1 t p = [n ] = [ 
1 nz l +I 

E (x . - L) + E (y i - L) n 
l 1 1 
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= nl (xl - Y1) for x1 > y1 

nl n2 
n = I: (x. - xl) + I: (y i - y 1) (5 . 1.5) 

1 1 1 

The region of acceptance, p < p < 1, is equivalent to the region 
E:- -

(5.1.6 ) 

where a= 1 N z after defining f(Z) and ¢(n) (40, p. 304-305) . 
( 1 + k3 ) -

The power funct i on P(D) of D = e2 - e1 is found by double integrals 

over ¢(Z) and ¢(n) over the regi on defined in (5. 1.6 ) . To prove that 

P(D) > a when D ; 0, i t is done by showing P'(D) i s always positive 

when D / 0, and always negat i ve when D < 0 (40, p. 305) . Therefore, 

the test i s complet ely unbiased . 

5.2 For a censored sample 

B. Epstein and M. Sobel have derived a best t est based on the 

fir st r out of n ordere d observat ions fro m an exponential distribution 

for 

Ho:y - Y1 

HA:y = y2 , where yl < y2 

Their derivation i s based on Neyman-Pearson Lemma (38, 

p . 292) . 

A best t est for which t he region of rejection is found fr om 



f(y,,y2,··· ,yr;y2) 

f (y l ,y 2 ' · · · ,yr ; Y 1 ) 
k 

T e region of rejection for H0 :y = y1 is given by 

A A 

Yr,n < C such that Pr(Yr,n < CJ1 = y 1) = a 

A l 
Given y n = r;-- from Equation (4.2.4) and its p.d.f. as 

r, A 
. C 

_'!:1_ 
= l (r)r r-1 y 

fr (y ) ( r-1) ! Y y e 

I"\ 
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(5.2.1) 

(5.2 .2) 

(5.2.3) 

It is easy to verify that W = (2ry )/y is distributed as a chi­r,n 
square with 2r d.f . Then (5.2.2) can be written as 

p (W < 2rc} 
r Y1 

= a or 

which, again, can be rewritten as 

C = [y1x~-a (2r)J·(2r)-l 

2 
,._ .Y1x1_a (2r) 
Yr,n< 2r 

P (W > 2rc} = 
r Y1 

1-a (5.2.4) 

(5.2.5) 

This region is best in the Neyman-Pearson sense for that it 

has a greater chance of rejecting y = y 1 when y = y2 is true. It is 

a unif ormly most powerful test for the hypothesis 

H ·y=y vs o· l 
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If the acceptance region rather than reject region is used, 

the test of hypothesis with Type I error equals to a is given by 

" yl 2 (2r 1-a. 
Yr,n > 2r (5.2 .6) 

The operating characteristic curve L(y) = probabilit y of accepting 

y = y 1 when ·y is the true value = 

2 
" y 1x1 (2r) 

( -a ) 
Pr Yr,n > 2r = 

y x2 (2r) 
P (x2(2r) > l 1-a. ) 
r Y 

is given in Figure 4. 

l.O 

.9 

.7 

.5 

.3 
II r-

en 

----..D II ....... 
..1 ~ 

. l 

.5 1.0 2.0 3.0 4.0 

Figure 4. Operating characteristics of test of the form 
A 

y > C•L(y) = 1- a= .95. 
r ,n 1 

If rand Care initially unknown, the test is derived according 

to the following: 
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Chooser and C such that the o.c . curve will have the property 

~(y1) = 1- a and L(y2) 2. 8, where y2 < y1, and a,8 are prescribed 

TypE 1 and Type 2 error. The condition is 

yin (5.2.7) and requiring that r satisfies 

met by substituting y2 for 

the i nequa 1 ity 2'.l x21 (2r) 
Y2 -a 

r, the integer is then found in such fashion that it leads 

the o.c. curve passing most nearly through the points [y1, L{y1) = 

1 - a] and [y2 , L(y2) = 8]. Using this r, the acceptance region 

y = y 1 is given by ~r,n > C where C = y 1x~_a(2r)•[2r]-l. 

In a completely similar way, for a uniformly most powerful 

test in the Neyman-Pearson sense for 

Ho:y=yl 

HA:y>yl 

The region of acceptance for y = y1 is Yr,n < k, where 

5.3 For a truncated sample 

The p.d.f. of a truncated exponential when truncated to the 

right at xr is given by 

>-.ke->-.x X > X > 0 r-

g{x) = 

0 elsewhere n 
(5.3.1) 

t: x. 
1 1 

The distribution of the sample mean x = -- is given by 
n 
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--nx 

f(~ IY )dx = nh-e Y(nx)n-1 a (nx) 
y y (5.3.2) 

The uniformly most powerful test for the one-sided hypothesis 

H ·y=y o · l 

HA:y<yl 

or a given sample of size n from (5.3.1) and (5.3.2) is given by 

Reject H0 if x < ci (i = 1,2); accept otherwise. a is the type· 1 

error; c2 is a function of xr, the point of truncation. 

To obtain the 11error 11 incurred if the usual procedure is 

followed while sampling is actually from a truncated distribution, 

one can utilize the three power functions given below. 

Pu(y1xr) =Ic1fn(Xly)dX = power of usual test when xis 
0 

untruncated (5.3.4) 

truncated 

= r 2 g, , I y) dX = 
0 

= r 2 
g ( X 1Y) dX = 

0 

power of usual test when xis 

(5.3.5) 

power of test when xis truncated 

(5.3.6) 

The error can then be found by 



A table has been tabulated for a few values of a' for 

different sample size and for xr = 1.0, 5.0 when a= .05 (6, p. 

209-213). 

5.4 For a sample when some extreme 
observations are present 

From B. Epstein and M. Sobel, the m.l.e. of y for one­

parameter exponential distribution is given by 

"' r 
e)}• r- 1 y = {E (y.-e) + (n-r)(y -

1 , r 

r r 
E (y. - Y l ) + ( n-r) (yr - Y l ) E zi 

" l l 2 y' = = r- 1 r-1 

where z. = y. - Y· 1. 
l l l -
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(5.3 .7) 

(5.4 .1) 

(5.4.2) 

To test the hypothesis H0 :e=e1, given a complete sample of 

size n from (4.1.l) and assuming the extreme observations undetected, 

Carlson (5, p. 550-559) proposed the statistics 

h = !! (y - e ) n y l 1 when r is known (5.4.3) 

which is not the minimum variance est imate . An alternative, proposed 



by A. P. Basu, is given as 

"[ = 
n 
;:: (n-i +l )(y .- y. 1 2 l 1-

which is free from all the criticisms raised against Carl son. 

Examples are also given in the paper. 

5. 5 For a doubly censored sample 
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(5.4 .5) 

A doubly censored sample, t observations and m observations 

missi ng at each end, i.e., Yi ~Y i +l ~ ... ~ Yi+r of sizer from a 

complete sample of size n having the p.d.f. 

Ae -A(X-0) 0 < 0 < X < 00' y > 0 
f(x) = 

0 elsewhere 

The joint density of Yi+l' Yi +2 .. . , Yi+r is given by 

h {y t + 1 ~ · · · Yi+ r ) 

1 
n! - ?Y i+l- e) i 

= i! (n-i-r) ! {l-e } 

e 

1 r 
{- - [E(y . . -e) + (n-i-r)(y -e)] } y 1 i +, i+r (5.5. l) 

The m.l. e . e ,y of e and y are given by 



and 

where 

e = Yt+l 

A l r 
y = r { L (n-t-i+l) Z.R.+i} 

2 

A 

2 (r-1 )y ~ 
r x2 (2r-2) 

;z. = y. - y. 1 
1 1 1 -

The minimum variance unbiased estimates of e and y are given by 

" 1 r 
y = - 1 E (n-t-i+l)z 0 +,· r- 2 )I.., 

where 
.R.+l 1 

k = r . l 
1 n-1+ 

79 

(5.5.2) 

(5 .5.3) 

(5.5.4) 

(5.5.5) 

If a sample is considered to be a censored one, one may want 

to test the hypothesis 

H : Y"'Y 
0 0 

A 

by using the fact that (2(r-l)y)/y is distributed as a chi-square 

with (2r-2) d.f. Also, one may want to test the hypothesis 

H : e=e 
0 0 

by using the statistic 



T = r 
E (n-.fl.-i+l) Z.Q,+i 
2 

When e and y are known, the following tests 

Y - e n 
y 

Yn - Yn-1 
T = 

3 y 
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(5.5.6) 

(5 .5.7) 

(5.5.8) 

(5.5.9) 

can be used to test whether the largest observation in a sample of 

size n is an extreme observation. Similar test for the smallest 

observation y1. 

When e and y are not known, the standardized deviate 

Yn - Y1 
1n = E(Y; - y 1) 

can be used to test the hypothesis whether -rn is an extreme 

observation . 

Example 5. 5.1: Given an ordered sample as follows: 

1 , 3, 3, 15 , 25 , 33, 39 , 70, 680 

(5.5. 10) 

Test whether the value Yg = 680 is really an extreme observation. 

Using Equation (5.5.10) 

680 - 1 
Tg = 860 = .79 
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By consulting the table given by Laurent, we find that Yg is 

an extreme observation to the sample. To test y8 = 70 

69 
1 8 = 181 = • 38 

and this is found not an extreme observation. 
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CONCLUSION 

It has been observed that, in numerous practical situations 

(not mentioning those fields cited in the Introduction), for example, 

quality control, life testing, fatigue testing, and other kinds of 

destructive testing situations, such as test of life of electric bulbs, 

radio tubes, ball bearings, etc., most of the data obtained are 

approximately exponentially distributed. Knowledge developed con­

cerning every aspect of exponential distributions certainly is very 

useful. Jacobson (17, p. 502) has compared the operating characteristic 

curves of a test procedure based on the lowest three out of five 

observations with· that based on the average of five out of five, and 

four out of four. He showed that the operating characteristic curves 

are almost identical for three cases. This means the true distribution 

parameter values, although unknown, can be obtained with the same 

Type I and Type II error using three instead of four or five items. 

If a process involves testing large amount of expensive items, con­

siderable savings can thus be obtained. 

Finally, this report is by no means meant to be a comprehensive 

summary of the topics discussed in Section I through Section V. There 

are possibly several hundred published papers of related interests. 

It is not possible to include all of them here. However, this report 

does provide the basic concepts, procedures, and equations. For 

example, the Introduction section illustrates the general area where 

problems could arise or could be applied. Section II illustrates, 

besides a score of distribution functions, how a special exponential 
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function can be der i ved under different assumptions along with methods 

of f i nding basi c charact eri st ic s of a particular exponential distribu ­

tion. Section III provides a dozen of procedures for testing the 

validity of an assumption that the underlying distribution is really 

of a certain type of exponential. Once the assumption is established 

with certain associated characteristics, methods, equations, and 

procedures are provided in Sections IV and V for estimation and test 

of hypothesis. Optimum decision, rather than a decision based on 

experience, can be made based on the result of the estimation or test 

of hypothesis. 
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