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ABSTRACT

Demand Side Management in Smart Grid using Big Data Analytics

by

Sidhant Chatterjee, Master of Science

Utah State University, 2017

Major Professor: Rose Qingyang Hu, PhD
Department: Electrical and Computer Engineering

The growing demands and rising costs of electricity require a more advanced, secure

and reliable grid. With the integration of information technology systems in the current

electrical grids, a data feedback system can be established to reduce the grid vulnerabilities.

Advanced form of grid management includes Demand Side Management (DSM) which deals

with the monitoring and manipulating of peak demands and flattening of the load profile

over the day. This project aims at developing a predictive model that can forecast the short-

term to medium-term loads of electric utilities. Load forecasting aids in DSM practices by

furnishing the time-varying load data and marking the peaks and troughs in load throughout

the day.

(70 pages)
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PUBLIC ABSTRACT

Demand Side Management in Smart Grid using Big Data Analytics

Sidhant Chatterjee

Smart Grids are the next generation electrical grid system that utilizes smart meter-

ing devices and sensors to manage the grid operations. Grid management includes the

prediction of load and and classification of the load patterns and consumer usage behav-

iors. These predictions can be performed using machine learning methods which are often

supervised. Supervised machine learning signifies that the algorithm trains the model to

efficiently predict decisions based on the previously available data.

Smart grids are employed with numerous smart meters that send user statistics to a

central server. The data can be accumulated and processed using data mining and machine

learning techniques to extract meaningful insights. Forecasting of future grid load (electric-

ity usage) is an important task for gaining intelligence in the gird. Accurate forecasting will

enable a utility provider to plan the resources and also to take controlled actions to balance

the supply and the demand of electricity. This forecasting can be achieved using machine

learning based predictive models.

In this project, a predictive system is designed that uses data mining and machine

learning techniques to process the smart meter data and to use it as training data for the

model. The main objective of this project is to forecast short term to mid-term load for

the grid entity. The outcomes are backed with visualizations to make the data and results

more user readable.
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CHAPTER 1

INTRODUCTION

1.1 Background

Electricity is one of the most essential components of the modern human life. It is one

of the driving forces of the modern life and world. However, electricity is something most of

us may take for granted. On one hand, there are almost 1.3 billion people still not having

access to electricity [2] and on the other hand, the demand for electricity is expected to

increase significantly over the coming years [3]. Fig.1.2 shows the steady rise in the number

of customers from the year 2005 to 2015 all over the world.

Fig. 1.1: Major electrical markets in the US

Since electricity plays a vital role in the human being society, conservation and appro-

priate management strategies for the grids is a must. In order to cope with the increasing

energy prices and shortages, the need for a smarter approach becomes more and more im-

portant. This need of smarter energy management systems has led to the development

of technologies like smart grids and demand side management. With the advent of smart

California (CAISO)

New England (ISO-NE)

New Yorfc (NYISO)

Southeast

Southwest

J
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Fig. 1.2: Number of electric grid users from 2005 to 2015

grids, DSM schemes can be implemented both on the utility side and on the customer side.

Load forecasting is one of the major tools used in demand side management. For an elec-

tric utility, load forecast help planners in making strategic decisions on unit commitment,

hydrothermal co-ordination and generation quantities, security assessments and dynamic

pricing. [4]

The conventional electrical grids appeared in US around 90 years ago, and have been

divided into 10 markets California(CAISO), MISO, New England(ISO-NE), New York

(NYISO), Northwest, PJM, Southeast, Southwest, SPP and Texas (ERCOT). Fig 1.1 shows

the major US electric markets. These markets are interconnected with a complex network

of utility companies that serve as mediators between the generating station and the end-use

customers. Since the electric grid has functioned essentially the same way since its inception,

it has become vital to integrate information technology to the existing electrical grids to

make them more reliable, flexible, and secure. This smart grid would assist consumers to

track and manage their energy usage and plan their load and consumption.

There are four major drivers for the development and implementation of smart grids

within the existing grid networks. These major drivers, according to a report by VINNOVA

Number of Users (2005-2015)
Year Measure Names

Total
Residential
Commercial

300M

250M

200M

OJ
c/i
3)

*5
ju 150M
E

100M

50M
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2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
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(2011), are growth, sustainability, market, and vulnerability. Growth refers to the expo-

nential growth in the demand of electric power. With the new technological advances and

increase in the coverage of electrical network, the net demand keeps increasing exponentially.

Market refers to the competition and the market rules in relation to energy management

and distribution to the end-use customers. Vulnerability is an important factor in the mar-

ket, as it deals with the grid vulnerability and the probability of outages, or events like grid

failure, overloading or irregularities in supplied voltage.

Fig. 1.3: Corporate Vs. Residential users

1.2 Smart Grids

Smart grids are the next generation electrical grids that employs information, commu-

nication and control techniques to improve the efficiency and reliability of electrical grids.

According to [5], with the exponential growth of smart metering systems in grids, high

volumes of data and information are being available form the grid structure [6, 7]. Since

the huge amount of data generated from the smart metering systems cannot be processed

locally and using normal available methods, big data technologies are employed, which are

User Demographics
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designed to extract logical outcomes from very large data volumes. There are several big

data sources in smart grids, with the major sources being power consumption data mea-

sured in kWh, energy pricing data collected by the automated revenue metering system

(ARM), and operational data for grid operation and control.

It is interesting to note that smart grids can hold all types of storage and generation

related data, thus increasing the scope for user participation, asset optimization and en-

abling services that are essential for markets. It is expected that by year 2020, the number

of smart meters in the grids would reach around 240 million in Europe, 150 million in North

America, and about 400 million in China [8]. Such a large number of smart metering sys-

tems will generate petabytes of data in one day. Thus, it is out of the scope of usual storing

techniques and tools to derive meaningful insights from the generated data. The variability,

variety, and velocity of the data makes it large enough to be called as Big Data.

1.3 Dynamic Energy Management

Dynamic Energy Management (DEM) is an innovative approach to managing load

at the demand-side of the grid. The main parts of DEM are Demand Side Management

(DSM) and Demand Response (DR). DEM attains long term energy savings through DSM

by reducing the peak load occurrences in a utility [9].

1.3.1 Demand Side Management

Authors K.E. Parameter et al. have defined DSM as planning, implementation, and

monitoring of the utility activities that influence the customer’s use of electricity in ways

that changes the utility load shape [9], i.e., changes in the time pattern and magnitude of

a utilitys load. One type of demand side management is demand response, which focuses

on price signals to handle peak demand. Peak demand can be handled by either using a

price based system, where the electricity price fluctuates according to the load, or by using

an incentive based system, where incentives are given to customers to reduce load at peak

times [10].

Demand response is a key factor of DSM. The Federal Energy Regulatory Commission
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defines demand response (DR) as “Changes in electric usage by end-use customers from

their normal consumption patterns in response to changes in the price of electricity over

time, or to incentive payments designed to induce lower electricity use at times of high

wholesale market prices or when system reliability is jeopardized”. In other words, demand

response (DR) is the technique to manipulate customer’s load during peak demand to the

other time, when the demand is less. This helps in reducing the peak demand of the grid,

and also in reduction of prices on the customer side. DR can be applied to both residential

and industrial loads and includes three different concepts: energy consumption reduction,

shifting consumption to periods of low (or high) demand, and efficient utilization of energy

storage systems [11] Thus, a crucial issue in Smart Grids (SGs) is to manage DR in order

to reduce peak electricity load, utilizing the existing infrastructure more efficiently and in

a better planned manner [12].

1.3.2 Load Forecasting and Dynamic Pricing Problem

The functionality of electrical grids depends on the load served for a particular service

area. Load is an important aspect of the DR systems and the efficiency of utility companies

depends on how effectively the electric load can be managed. Customer load depends on

several factors such as temperature, heating/cooling of the property, residency schedule,

hot water utilization, and lighting conditions. Thus, load forecasting is essential to perform

DSM on the grid. There are three types of load forecasting (LF) - Short term LF used to

predict load on an hourly basis, medium term LF used to predict load on a weekly basis and,

long term LF to predict load up 50 year ahead [13]. Advanced data mining techniques such

as multiple regression, exponential smoothing, time series analysis, and Kalman filtering

are used to forecast loads [13]. In this project, a short term to medium term LF is achieved

using the electrical data of years 2010 to 2015 and employing the technique of regression

based load forecasting proposed in [14–16].

Dynamic pricing is an important part of the problem and, is detrimental in avoiding

peak load and high demand situations. In order to curb the problem of peak loads in

the grid, Real Time Pricing (RTP) and Critical Peak Pricing (CPP) are employed, which
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increase the energy prices during peak demands. According to [13], user load can be clas-

sified into either interruptible/movable loads or interruptible/immovable loads. Due to the

effect of CPP, users will be forced to avoid the interruptible/movable loads and postpone

them, thus bypassing the peak load conditions. In absence of load forecasting , complex

Load Classification (LC) algorithms are required to classify the loads and apply RTP to

balance loads. LC can be a challenging task, and is often done using complex Artificial

Neural Networks (ANN) [16, 17], which create user patterns of consumption and facilitate

the classification of loads.

1.4 Proposed Solution

Accurate short-term load forecasting, defined in the hours-to-days time frame, can

lead to an efficient and economic system operation. In this project, a short-term to mid-

term load forecasting model is developed that can forecast load for hours to days time

intervals. A load profile is generated for different utility service areas and a predictive

model is formulated. Load profiles are data points that reflect the variations of electrical

loads with respect to time, and are generated by cumulative electrical energy consumption

of any building. Typically, the load profile varies according to the customer type, and are

different for domestic, industrial and agricultural sectors. Load consumption also depends

on the temperature, non-working days or holidays and the time of day, which are discussed

more in the section ??. For an accurate load forecasting, an hourly load data is used in this

project. As given by Nurettin etinkaya [18], an hourly load profile can be used to generate

load forecasts for a weekly, a daily, and an hourly basis.

The project can be divided into four stages, each of which leads to the next stage and

helps in the formulation of the final prediction model.

• Data Collection and Clustering: In this project, electric profile and load data are

used for all the medium and large-scale utilities in the state of Utah. This data is then

combined with the regional temperature and set-point data for the different utility

service areas to form clusters. Clustering is done for all the residential users with
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similar climatic conditions and share the same service area, but fall under different

utility areas.

• Generate load profile: Load profile is the time-dependent electric consumption data

for a specific utility, region or a building. An accurate load profile is needed to train the

predictive model in order to perform predictions. Since the features of the prediction

model varies with the service area of the utility, a similar but unique load profile is

generated for all the individual load clusters.

• Formulate a predictive model: For obtaining a short-term - mid-term prediction, a

predictive model is formulated, (as given in chapter 3) and is trained with the gen-

erated load profile. A multivariate linear regression (MLR) model and a gradient

boosting (regressors-GBR) predictive model is formulated in this project. Since sep-

arate models are formulated and trained for each cluster, the predictive coefficients

are different for each cluster. A model that can predict accurately for a particular

cluster, may not predict accurately for a different cluster, given to the fact that the

correlation of the features can be different for different clusters.

• Test the model, visualize results: Cross Validation is a technique to evaluate predic-

tive models by partitioning the original sample into a training set to train the model,

and a test set to evaluate it. So, the formulated models are evaluated using prediction

scores, error estimates and a cross validation technique that randomly samples the

load profile to evaluate if overfitting exists. The training load profile data has been

extracted for the year 2015, and the model accuracy is evaluated using the load data

for 2016 as the test set.



CHAPTER 2

LITERATURE REVIEW

With the growing demand for electric power, the need and demand of proper power

management techniques are on a rise. A promising solution to attain grid management and

reduce vulnerability in electric distribution systems is Smart Grids (SG). According to the

Federal Energy Regulatory Committee, a smart grid is an electrical grid that integrates a

variety of operational and energy management measures which includes smart meters, smart

appliances, renewable energy resources and, energy efficient resources [19]. To emphasize the

modern developments in Load Forecasting (LF), only papers published after 1980 are taken

into this review. In the past 40 years, the developments in LF have been multidimensional

and researched upon by many researchers. This review also counts works [20–23] that are not

based upon any experiments or data, but are surveys and reviews of existing experiments,

concepts and literature, in addition to those [24–27] which implement, analyze and evaluate

different techniques based on real data.

2.1 Overview of Demand Side Management

Proposed and defined by Gellings in [28], Demand Side Management (DSM) ) is the

planning and implementation of those electric utility activities designed to influence the

customer usage of electricity in ways that will produce desired changes in the utilitys load

shape. It is generally most convenient for utilities [28] to look at DSM in terms of broad

load shaping objectives. The load shape is the daily and seasonal electricity demand by

time of-day, day-of-week, and season. A study based on the significance of DSM application

to smart grid based big data sources is done by Keyan Liu et al. in [29]. Authors in [30–35]

propose a game theory based approach to achieve demand side management in smart grids.

According to [36], game theory is a mathematical tool that analyzes potentially arising

conflict of interest among independent and rational agents and seek to maximize their own
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benefit when they strategically interact with each other. In other words, the use of game

theory can optimize the load profile by manipulating the peak and valley loads uniformly

over the day. A significant amount of research is being done in formulating a decentralized

approach to achieve DSM in micro-grids. Authors in [37] propose an IoT based approach

to perform DSM in micro grids.

2.2 Load Forecasting Techniques

I. Moghram et. al. in his paper [38] evaluated five load forecasting techniques - multiple

linear regression, stochastic time series, general exponential smoothing, state space method,

and AI or artificial intelligence based approach. The authors implemented the techniques

to generate an hourly, load forecast for the next day using the data from a southeastern

utility in US. The authors briefly described the implementation of each technique and

compared and analyzed the results. Authors K. Liu et.al. in [39] proposed and evaluated

three techniques for load forecasting, which were ANN, FL and a time-series auto-regressive

(AR) model. Although the conclusion that AR based model is less efficient than the other

two models wasn’t clearly explained, the load series data was also considered as a stationary

data, which contradicts the fact that load profiles are dynamic sources.

Statistical modeling technique were discussed in more recent papers for load forecast-

ing. For example, authors in [40] propose a regression based load forecasting approach using

the PG&E dataset. Other regression based approaches proposed by authors in [41–43] deals

with the use of weighted least square technique, temperature modeling (implementing var-

ious heating and cooling functions), weekday and weekend modeling etc. As a modification

to the basic regression technique, Haida et. al [41] proposed a transformation technique to

model the nonlinear relationship between load and weather variables. The transformation

technique was used with the Tokyo Power Utility Corporation dataset to forecast short

term load. A regression based peak forecasting model was proposed by authors in [44].

A unique approach of forecasting a daily cumulative energy consumption forecast before

an hourly load forecast was given by Ruzic et. al. in [45], wherein a two-step multiple

linear regression (MLR) model was used for prediction. The first step of the MLR was



10

used to predict the cumulative energy consumption of the day, and the next step predicted

the hourly load profile. Works in [46,47] propose a probability density based estimation of

load forecasting. The load forecast was the conditional expectation of the load given the

explanatory variables including time, weather conditions, etc. [48].

Time series analysis of load data is another way to forecast load profile. Autoregres-

sive (AR) and Autoregressive Moving Average (ARMA) techniques has been used for load

forecasting in recent years [49, 50] A combination of auto-regressive moving average model

and regression techniques has been presented in [51, 52]. The regression part is used to

predict the peak and valley loads and ARIMA models are applied to the data to make the

hourly load forecast [48]. In [52], a 3rd order polynomial for the temperature attribute was

proposed to reflect the nonlinear relationship between the load and temperature [48]. A

supervised time-series model, that takes a pre-defined manual input as the primary fore-

cast and then formulates a regression model using the available data has been proposed by

authors in [53].

Artificial Neural Networks (ANN) are also highly used in performing load forecasting

[54–58]. Although models based on statistical methods generally perform well, but, in case

of an abrupt change in the model attributes or the presence of statistical glitch in data,

deficiencies arise and the prediction accuracy dips. This greatly affects the load patterns

and load profile [59]. AI based techniques like ANN and fuzzy logic can cope with this

kind of problem, and perform predictions without any loss in accuracy. Authors in [60, 61]

propose an ANN based load prediction model using the back propagation model and the

radial basis function model respectively, with a performance review of both the models.

Authors in [57] propose the use of ANN to perform real-time load forecasting. Real time

data from a local utility is used to forecast the load on an hourly basis. To further improve

the prediction efficiency, hybrid schemes employing Support Vector Machines (SVM) and

ANN has been proposed in [58]. The proposed model consists of two module, the first one

is used to predict the peak load and the second module is used to predict the hourly load.

In addition to ANN, Fuzzy Networks or Fuzzy Neural Networks (FNN) also forms one
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of the most used load forecasting techniques. Fuzzy logic is an approach to make partial

decisions, not a complete 0 or a complete 1, but more of a fraction between 0 and 1.

The idea resonates with the idea of likelihood of an event to be true or false, rather than

completely true or false. Authors in [50] propose a long-term load forecasting technique

using fuzzy logic approach. According to the authors, fuzzy logic outperforms ANN in long

term forecasting, due to increased gap between the weather conditions and load profile.

Authors in [62] proposed a unique fuzzy network for load prediction for each individual day

of a week, which leads to a load forecast model that forecasts the peak and the valley load

and calculates the hourly load profile using the available load data.

Despite the advancement in load forecasting techniques, none of the techniques guaran-

tees a 100% prediction accuracy. Also, there is no single benchmark technique that can be

used in any case of load forecasting. The desirable model varies with the data availability

and the forecast objectives. Although advanced models like ANN and fuzzy logic offer a

high degree of accuracy, they also increase the prediction complexity of the whole system.



CHAPTER 3

Project Methodology

This entire project is divided into four steps. The figure 3.1 shows the methodology of

the project consisting of four condensed steps.

The first step loads data for the project. Selecting data sources is an essential step

towards building an efficient prediction model. All the data sets that are used for the project

are discussed in the subsection 3.1.1. The second step processes the data and transform

it into usable format. Real-world data is often incomplete, inconsistent, and/or lacking in

certain behaviors or trends, and is likely to contain many errors. The Data Preprocessing

section in 3.2 contains the data mining techniques that prepares the raw data for further

processes.

The third step, Load profile generation, is one of the most important steps in this

project. Load profile is the hourly data of electrical load consumption for an average

user in a defined utility area. This profile takes into account the heating/cooling energy

consumption, hot water usage and the set point temperature of the property. Generating

a proper and accurate load profile helps in proper training of the predictive model. The

formulation of the predictive model is the fourth step and is discussed in the fourth section

in 3.4

3.1 Data Loading

3.1.1 Datasets

This project uses a variety of energy & power, weather and residential data sets for

generating the required load profile and forecasting model. The datasets used and their

descriptions are given below

• EIA (Form 861): The United States Energy Information Administration is a data
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Fig. 3.1: Proposed Algorithm Model

collection and analyzing organization, which collects and hosts energy related data

all over the US. The Form EIA-861 and Form EIA-861S (Short Form) data files in-

clude information such as peak load, generation, electric purchases, sales, revenues,

customer counts and demand-side management programs, green pricing and net me-

tering programs, and distributed generation capacity.

EIA-861S was created in 2012 in an effort to reduce respondent burden and to increase

EIA’s processing efficiency. Approximately 1,100 utilities completed this form in lieu

of the EIA-861. The short form has fewer questions and collects retail sales data

as an aggregate and not by customer sector. EIA has estimated the customer sector

breakdown for this data and has included it in the file called “Retail Sales”. Advanced

metering data and time-of-use data are collected on both Form EIA-861 and Form

EIA-861S.

• CBECS: Commercial Building Energy Consumption survey. The CBECS is used to

determine the end use statistics of the residential water consumption and space heating

and cooling.

Load Data

Preprocessing

Generate
Load Profile

Formulate
Prediction

model
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• US National Observatory: The USNO furnishes data on the daytime hours for each

day. It also provides informations about the existing weather stations in the US and

the link to fetch the data from those stations.

• USU Utah Climate Center: The USU Utah Climate center has weather stations all

over the state of Utah, and furnishes hourly weather data from almost all of its weather

stations. Utah’s Climate Reference Network (UCRN) is a collection of 16 automated

weather stations providing measurements of air temperature, relative humidity, solar

radiation, wind and precipitation in near real time. The website also provides hourly

and daily summary data tables and graphical displays.

• DOE: The Department of Energy hosts a variety of data related with the energy con-

sumption, sources, end-uses etc. DOE dataset is used in this project for information

on hourly hot water usage profiles, probability of each end use and variation in the

water usage for different regions.

• NOAA: National Oceanic and Atmospheric Administration provides historical hourly

weather data for weather stations globally (NOAA, 2016). Temperature data for

weather stations that are not among the 13 weather stations of the USU Utah Climate

Center, are fetched from NOAA. The hourly weather data is combined with customer

load data to estimate temperature-sensitive loads for residential customers.

3.2 Data Preprocessing

Data preprocessing deals with the formation of usable data sources using the dataset

available. Our first task ts to make a consolidated data set of residential users and climatic

conditions. The second task is to cluster data points into set of utilities within the same

region and having similar climatic conditions. Similar climatic conditions will result in

similar Heating Degree Days (HDD) and Cooling Degree Days (CDD) for the selected

utilities. The data aggregation for the tasks given above is briefly discussed below –
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3.2.1 Residential Data:

The first task is to use EIA form 861 and to load the energy consumption data of all

the major utilities over the country. EIA data contains the load characteristics from all over

the United States and sectored by the utility names. Since this project performs demand

response for the state of Utah, the first level of clustering is to shortlist the utilities of the

state of Utah and to cluster the residential properties on basis of utilities.

Fig. 3.2 shows the utility distribution for raw data available before clustering.

Fig. 3.2: Raw EIA form 861 data - top five rows

The original data set is then filtered out to give the utility areas in the state of Utah,

as shown in Fig. 3.3. For clustering purposes, utilities with very small number of users

are filtered out. The filtering constant is kept at the first quantile of the data. Fig. 3.4

shows the distribution of customers for different utility areas and the red line shows the

first quantile of the distribution. Utilities with the number of customers less than the first

quantile limit are marked, to reduce skewness in the training data.

3.2.2 Weather Data:

The weather data is an essential part of this project, as it helps in determining cooling

and heating degree days. There are two sources of climatic data for the state of Utah.

The first source is the USU Climate center, which hosts data from around 16 weather

I n [ 2 ] : ut_data .head( )

Out[2]:
Average

PriceEntity State Ownership Customers Sales Revenues

0 Investor
OwnedAlaska Electric Light&Power Co AK 14,292 139,475 16,530.00 11.85

1 Investor
OwnedAlaska Power and Telephone Co AK 5,413 25,353 7,478.00 29.5

2 Alaska Village Elec Coop, Inc AK Cooperative 7,801 39,493 22,337.10 56.56

3 Anchorage Municipal Light and
Power 24,555 130,806 21,972.00AK Municipal 16.8

4 Barrow Utils & Elec Coop, Inc AK Cooperative 1,500 11,466 1,494.40 13.03
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Fig. 3.3: Raw EIA form 861 data - top five rows

stations, and the other is the NOAA, that hosts the weather data for numerous places

around the world. Fig 3.5 shows the locations of the utility clusters for this project. Since

the USU Climate center provides climatic data for selected cities, in many cases, the exact

climatic data of the utility service area was not available. Fig 3.6 shows the locations on

the map, for which data was readily available. This issue of absence of data was solved

using the technique of interpolation. Weather data from the nearest weather stations were

interpolated to fill out the missing data.

For a utility service area, which covers more than one weather stations, the effective

hourly temperature Teff is calculated as the weighted average of the hourly temperature

and the population served by the weather station [1] –

Teff =

∑W
i=1Ni × ti∑W

i=1N
, (3.1)

where Ni is the number of users in the ith weather station and ti is the temperature of the

ith weather station. N is the total combined population of the selected weather stations.

3.2.3 Utility Clustering:

Many big regions of the state, like the Salk Lake City area, Logan City area etc., have

more than one utility service organizations. Since the climatic conditions can be assumed

In [4] : data . headQ
Out [4] :

Entity State Ownership Customers Sales Revenues Average Price

1896 Bridger Valley Elec Assn, Inc UT Cooperative 1,764 7,372 1,233.90 16.74

1897 Brigham City Corporation UT Municipal 6,761 52,586 5,256.00 10

City of Bountiful UT Municipal 15,459 148,397 14,486.00 9.761898

City of Logan - (UT) UT Municipal

City of Murray - (UT) UT Municipal

17,230 93,585 9,658.70 10.321899

1900 14,615 116,074 10,732.20 9.25
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Fig. 3.4: Raw EIA form 861 data - top five rows

to be the same over all the utility areas, and if the utilities serve the same type of end

customers, then it is inefficient to formulate different predictive models for these utilities.

Following this argument, clusters of similar users are formulated so that the problem of

similar models in the project can be reduced. The resulting utilities and their service areas

are given in table 3.1 below. It is important to note that each cluster is assigned a letter

ID, which represents the cluster wherever it is referenced in the project.

3.2.4 Domestic Hot Water (DHW)

According to Wong Koon Kong [63], the domestic hot water load represents a significant

share of the total domestic energy load, ranging from 25% to 40% of the total energy

consumption. Thus, proper evaluation of the domestic hot water usage is essential for

developing an accurate load profile. According to [64], DHW modeling is quite complex as

it involves a wide spectrum of end-uses and applications with varying inlet temperatures,

volumes, flow rates, and timing. DHW use can be broken down mainly to five major end uses

- showers, baths, sinks, dishwasher, and clothes/washer. The average daily consumption

of hot water varies between households by an order of magnitude around 50 liters/day to

Customer distribution of Utilities
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Fig. 3.5: Utility service areas in the original dataset

approximately 500 liters/day, and depends upon the number of people and their way of

living [65].

Fig. 3.7 shows the percentage of water consumption with respect to different end-uses.

Here Faucet denotes the water consumption from domestic sinks and washer for cloths. It

is interesting to note that around 5% of hot water is wasted through leaks and other losses,

which also accounts for the total energy consumption.

It is important to note that DHW use varies stochastically with random unoccu-

pied/unused periods, varying number of showers per person per day with varying flow
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Fig. 3.6: Nearest weather stations to the utility service areas

rates, washer loads and wash temperatures and frequency of dishwasher use [63].

Hot water use profile can be generated using the NREL’s hot water calculation equation

[66] given in table 3.2. The daily average hot water use equations were established as a linear

function of the number bedrooms, acting as a related variable for the number of occupants.

The relationship between bedrooms and occupants is based on the DOEs 2001 Residential

Energy Consumption Survey (RECS) given in [67].
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Table 3.1: Utilities and their corresponding closest locations as per climate data and utility
size

Utility Name Location/Region Utility Code/ID

Bridger Valley Elec Assn, Inc Smithfield a

Brigham City Corporation Brigham City b

City of Bountiful Utility Bountiful c

City of Logan Utility Logan City d

City of Murray Utility Murray e

City of Springville Utility Springville f

City of St George Utility St. George g

City of Washington Utility Washington City h

Dixie Escalante R E A, Inc St. George i

Empire Electric Assn, Inc Monticello j

Garkane Energy Coop, Inc Loa k

Heber Light & Power Company Lehi l

Hurricane City Power Hurricane City m

Hyrum City Power Corporation Hyrum City n

Kaysville City (Power) Corporation Kaysville o

Lehi City (Power) Corporation Lehi p

Moon Lake Electric Assn Inc. Roosevelt City q

Mt. Wheeler Power Inc Nephi r

PacifiCorp Draper s

Payson City (Power) Corporation Payson City t

Provo City (Power) Corporation Provo u

Raft Rural Elec. Corp. Inc. Lynn v

Spanish Fork City (Power) Corporation Spanish Fork w

Strawberry Electric Service Dist. Payson City x

Vivint Solar, Inc. Lehi y

Wells Rural Electric Co. Wendover z

Jordan U et. al. in [68] furnishes the mathematical equations to convert the amount

of water consumed into electrical load.

Q = Vd.t.hq,
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Fig. 3.8: Probability of DHW usage in residential properties by LBNL Labs [1]

respect to the time of the day. This probability distribution, along with the volume of water

use of end-water use, is used to determine to the volume flow of DHW. Fig. 3.9 shows the

DHW consumption profile for hourly loads.

3.3 Load Profile Generation

After the pre-processing stage, a combined hourly load profile is generated, which is

used for training the prediction model. The first stage for generating the load profile is

to formulate hourly load data for cooling and heating purposes. Once the load profile for

heating/cooling consumption is generated, the final load profile for the building can be

generated by taking a time-series summation of heating/cooling data and DHW data.

3.3.1 Heating and Cooling Load

Weather and temperature are important drivers for electricity consumption. More

than 40% of end-use energy consumption is related to the heating and cooling needs in the

residential and commercial sectors. Electricity consumption forecasting models typically

use thresholds for defining when the cooling and heating needs are required. A fairly
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Fig. 3.9: Hourly electric load in KwH for DHW consumption

standard set of thresholds, also called setpoint temperature, are temperatures above 72

degrees Fahrenheit and below 65 degrees Fahrenheit respectively. As the difference between

the outside temperature and the setpoint temperatures increase, the cooling/heating load

also increases. The setpoint temperature is assumed to be fixed for this project and has

been set to be 65 F. Once the setpoint temperature is fixed, we proceed towards calculation

of Cooling Degree Days (CDD) and Heating Degree Days (HDD).

3.3.2 Cooling Degree Days (CDD) and Heating Degree Days (HDD)

The cooling degree days are a measure of energy required to cool down a building, when

the external temperature is higher than the desired building temperature. On the other

hand, Heating degree days are a measure of the heat energy required to heat up a property

or a building, when the external temperature is below the desired building temperature.

Both measures are complimentary to each other and are visualized later in this subsection.

The daily CDD is calculated using the hourly temperature difference between the set-

point temperature and air temperature, summed over 24 hours. Similarly daily HDD cal-

culated using the hourly temperature difference between the air temperature and setpoint

Domestic Hotwater
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temperature, summed over 24 hours. This means that the CDD and HDD are directly

dependent on the air temperature outside and can drastically vary with the variation in the

season.

Mathematically,

HDD =

∑t
i=1(T

out
i − T seti )

24
, (3.2)

CDD =

∑t
i=1(T

set
i − T outi )

24
, (3.3)

where T out and T set are the outside temperature and the setpoint temperature respectively.

For a load profile, the degree days need to be transformed into energy consumed for

either heating or cooling of the building. The annual energy consumption for heating

purpose (kWh) for a given building, is expressed as [69]

Q =
U
′ ×AHDD × 24

η
, (3.4)

where AHDD is the annual HDD of the building, η is the performance efficiency of the

heating source and U
′
is the heat loss coefficient of the building. The building loss coefficient

of the building can further be modeled as

U
′

=
A× U + 0.33×N × V

1000
, (3.5)

where A is the area of the building heated, N is the air filtration rate per hour and V is

the volume of space heated. To calculate the approximate value of U
′
, default values for U

′

equation are given in [69]. Taking the default values, U
′

can be calculated as 0.350kW/K

and the efficiency η can be averaged at 0.9, which means a 90% efficiency is assumed for

the heating device.

Thus, the final equation for calculation of the energy consumed for HDD becomes

Q =
0.350×AHDD × 24

0.9
, (3.6)
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The annual energy consumption for cooling purpose (kWh) for a given building, is

expressed as [69]

Q =
mCp ×ACDD × 24

Ψ
, (3.7)

where ACDD is the annual CDD, Ψ is the coefficient of performance of the cooling source,

Cp is the specific heat capacity of air and m denotes the mass flow rate of kilogram of air

cooled per second. For a 12000 BTU air conditioning unit, m and Ψ can be assumed to be

0.109Kg/sec3 and 3.5 respectively. Also, the specific heat of air is 1.005KJ/Kg/K. Using

these constants, the CDD and HDD values can be readily calculated.

Fig. 3.10: Cooling Degree Days (CDD) for Cluster a (Bridger Valley Elec. Ass. Inc.)

The Figures 3.10 to 3.17 shows the cooling degree days for eight random utility clusters.

The CDD box plots shows a common trend for almost all the clusters. The CDD increases

in the hotter months and diminishes in the cooler months. A negative value of CDD means

that the setpoint temperature is already lower than the outside temperature, and cooling

is not required.
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Fig. 3.11: Cooling Degree Days (CDD) for Cluster b (Brigham City Corporation)

Fig. 3.12: Cooling Degree Days (CDD) for Cluster c (City of Bountiful)

A similar visual expression can be given for HDD or Heating Degree Days. Figures

3.18 to 3.24 gives the box-plots of HDD variation for every month of the year.

The HDD figures also show a similar trend for all the utility clusters. Although the variance

of HDD (and CDD too) varies widely over different clusters, the trend is similar. This is due
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Fig. 3.13: Cooling Degree Days (CDD) for Cluster e (City of Murray Utility)

Fig. 3.14: Cooling Degree Days (CDD) for Cluster j (Empire Electric Assn.)

to the fact that HDD is proportional to the difference between the setpoint temperatures and

the outside temperature. As the difference is reduced, the HDD is also reduces accordingly.

The trend in the variation of box-plots over the year is dependent on the seasonal structure

of the cluster region. In the warmer months, heating of buildings is not required, and thus
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Fig. 3.15: Cooling Degree Days (CDD) for Cluster n (Hyrum City Power Corp.)

Fig. 3.16: Cooling Degree Days (CDD) for Cluster o (Kaysville City Corp.)
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Fig. 3.17: Cooling Degree Days (CDD) for Cluster w (Spanish Fork Power Corp.)

Fig. 3.18: Heating Degree Days (HDD) for Cluster a (Bridger Valley Elec. Ass. Inc.)

the HDD falls below 0; whereas in cooler months or winter months, excessive heating is

required, which results in high HDD values in the beginning and ending months of the year.

CDD and HDD are important factors in calculating the load profile of the cluster. Once
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Fig. 3.19: Heating Degree Days (HDD) for Cluster b (Brigham City Corporation)

Fig. 3.20: Heating Degree Days (HDD) for Cluster c (City of Bountiful)

data for DHW consumption and the final load profile is calculated for a particular cluster.
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Fig. 3.21: Heating Degree Days (HDD) for Cluster e (City of Murray Utility)

Fig. 3.22: Heating Degree Days (CDD) for Cluster j (Empire Electric Assn.)

combined load profile for the building is formulated. The combined load profile is then used

as a training data set for the prediction model. Fig 3.27 gives the hourly load profile of

cluster a, which is Bridger Valley Electric Association Inc. The hourly load profile can be
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Fig. 3.23: Heating Degree Days (HDD) for Cluster n (Hyrum City Power Corp.)

Fig. 3.24: Heating Degree Days (CDD) for Cluster o (Kaysville City Corp.)
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Fig. 3.25: Heating Degree Days (HDD) for Cluster w (Spanish Fork Power Corp.)

day.

Fig. 3.26: Hourly Load Profile of Salt Lake City Cluster - January 1
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3.4.1 Multiple Linear Regression (MLR)

Regression analysis aims to find a relation between the dependent variable with the

independent variables by calculating the balancing coefficients in the regression equation.

A general regression function [70] can be expressed as

E(Y |X) = α0 + α1x1 + α2x2 + ...αnxn, (3.8)

where αi, i ∈ [1, n] are the prediction coefficients or slopes and denote the weight of each

independent variable on the dependent variable; xi’s are the independent variables; α0 is

called the intercept value of the fitted line.

For each response variable, the equation 3.8 can be modified and expressed as

Yi = α0 + α1xi,1 + α2xi,2 + ...αnxi,n + εi for i = 1, 2, ...p, (3.9)

which can be reorganized as

Yi = E(Y |X) + εi for i = 1, 2, ...p, (3.10)

where εi’s are the prediction error, also known as residuals, and can be modeled as a random

variable with 0 mean Eεi = 0 and a constant variance varεi = σ2. The observed values for Y

have the same standard deviation of σ and a mean of µy. Using the least square technique

for fitting the model, the best fitting line for the given data is calculated by minimizing the

sum of the squares of the vertical deviations from each data point to the fit line. In other

words, the fit line that minimizes error or reduces the distance between the line and data

points becomes the best fitted line.

Following the predictor equation 3.9, the values fit by the equation α0+α1xi,1+α2xi,2+

...αnxi,n can be expressed as ŷi. So, the residuals can be expressed as εi = yi − ŷi. For the

best fitted line, our aim is to minimize this value of εi.
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The estimated variance, also called the MSE or mean squared error, can be expressed

as

σ2 =

∑
ε2i

p− n− 1
, (3.11)

whereas the standard error of the model is the square root of the MSE

se =

√ ∑
ε2i

p− n− 1
. (3.12)

3.4.2 Gradient Boosting Regression

Gradient boosting is a classic machine learning technique that relies on the fact that

iterating a simple decision tree over and over again leads to convergence and high accuracy.

Like other boosting methods, gradient boosting combines weak learners into a single strong

learner in an iterative fashion. A weak learner is defined as the one whose performance is

at least slightly better than random chance.

A naive depiction of the gradient boosting technique is given in the following equations.

• Fit an initial model to the data

F1(x) = y. (3.13)

• Fit a model to the residual values

r1(X) = Y − F1(X). (3.14)

• Create a new model

F2(x) = F1(x) + r1(x). (3.15)

• Repeat the process

The above steps can be readily generalized as given by Ben Gorman in [71].

F (x) = F1(x)⇒ F2(x) = F1(x)+r1(x)⇒ F3(x) = F2(x)+r1(x) · · · ⇒ Fn(x) = Fn−1(x)+rn−2(x).

(3.16)
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So we keep searching for the next step of residual value ri(x) at every boosting iteration.

Now, to minimize the squared error (MSE), we initialize F as the mean value of the

training set data

F0(x) = argmin
γ

n∑
i=1

(γ − yi)2, (3.17)

F0(x) =
1

n

n∑
i=1

yi. (3.18)

Now, all we need is to determine the factor rm coming from a class of base learners, which

in our case are the decision trees. To find the appropriate value of m, the concept of

cross-validation is used.

A regression tree, which by default minimizes the square error, focuses heavily on re-

ducing the residual of the first training sample. But if we want to minimize the absolute

error, moving each prediction one unit closer to the desired target produces an equal reduc-

tion in the cost function. So, accordingly, instead of training r0 on the residuals of F0, we

can train r0 on the gradient of the loss function, L(y, F0(x)) with respect to the prediction

values produced by F0(x). By far, the algorithm [71] can be written in a modified form as

• Initialize the model

F0(x) = argmin
γ

n∑
i=1

L(yi, γ). (3.19)

• For m ∈ [1,M ],

– Calculate residual function

Ri,m = −
(
∂L(yi, F (xi))

∂F (xi)

)
F (x)=F(m−1)(x)

, for i = 1 · · ·n. (3.20)

– Compute rm(x) by fitting it to the pseudo residuals

– Update Fm(x)

Fm(x) = F(m−1)(x) + γmrm(x). (3.21)
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3.5 Model Formulation

3.5.1 Feature Selection

Feature selection is the process of selecting a subset of relevant features for use in

the model construction and is also called variable selection or attribute selection. Feature

selection methods help to create an accurate predictive model as fewer attributes can reduce

the complexity of the model and prevent the occurrence of errors. Among many used

techniques to select feature for a model, Chi squared test, information gain and correlation

coefficient scores are most widely used.

For this project, the number of features are already reduced by the formation of the

combined load profile. Since the load profile is used to train the prediction model, a large

number of attributes are not needed, as the training set contains most of the required

information. It is evident from the section of Data Preprocessing (3.2) that the hourly load

profile is heavily dependent on the outside air temperature. Thus, one of the attributes for

the model is taken as the hourly temperature, because of its high correlation with the load.

The second and third attributes in this project are the absolute values of CDD and

HDD. Only absolute values are taken into consideration because negative values of CDD

and HDD are not important in the terms of energy consumed. An important point to note

is that, the hourly load profile given in fig 3.27 shows variations each day, with the load

dipping during weekends and soaring on Fridays and other days. This concept, proposed by

Johanna L. Mathieu in [72], indicates that the load of a residential property is dependent

on the day of the week and varies accordingly. Due to this fact, the fourth feature for the

prediction model becomes the day of week. This feature adds to the time-dependent nature

of the model and shows that the load varies both on the time of the day as well as the day

of the week. The regression model now can be expressed as

Lpred = α0 + α1Xtemperature + α2XCDD + α3XHDD + α4XDay. (3.22)

The day of week feature of the prediction model can be one of the seven days of the
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Fig. 3.28: First five rows of the preliminary training dataset

week. To change the categorical nature of the attribute to ordinal, a technique of encoding,

called the one-hot encoding, has been used in this project. The One-Hot encoding encodes

categorical integer features using a one-hot aka one-of-K scheme. In other words, the

categorical attribute is broken into k attributes, where k is the number of responses the

original categorical attribute has. Out of these new categorical attributes, only one of of k

attribute can be true for a sample case. The true case is given a value of 1, and all other

cases are given a value of 0.

For the seven days of the week, seven new columns were added into the final dataset,

each for one day. For a given slot in the data frame, only one particular column out of the

seven day columns has a value 1 while the values of all other columns are kept 0. Following

this development, the regression equation changes to

Lpred = α0 + α1Xtemperature + α2XCDD + α3XHDD + α4XMon + α5XTue

+ α6XWed + α7XThu + α8XFri + α9XSat + α10XSun.
(3.23)

The gradient boosting regression in the Scikit learn package requires fined tuned pa-

rameters. The parameters are determined using the cross-validation toolbox in python’s

scikit-learn package, and are given in table 3.3.

print df.head

Load Temprature(F) CDD HDD Day of Week
4.5 0.0 60.5 Thursday
2.5 0.0 62.5 Thursday
2.1 0.0 62.9 Thursday
2.4 0.0 62.6 Thursday
1.3 0.0 63.7 Thursday

0 23.905050
1 24.685159
2 24.840359
3 24.719850
4 25.147472
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Table 3.3: Gradient Boosting parameters

Parameter Value

n estimators 500

max depth 4

min samples split 2

learning rate 0.01

loss ’ls’

Table 3.4: Gradient Boosting parameters definitions and possible values

Parameter Possible Values Descriptions

n estimators Integer, default = 100 Gives the number of boosting stages
to perform. Gradient boosting is
fairly robust to over-fitting so a
large number usually results in bet-
ter performance.

max depth Integer, default = 3 The maximum depth limits the
number of nodes in the tree. Tuning
this parameter gives the best perfor-
mance in predictions

min samples split Can be Integer or Float,
default = 2

Gives the minimum number of sam-
ples required to split an internal
node

learning rate Float, default = 0.1 The learning rate shrinks the
contribution of each tree by
learning rate

loss Can be any of ‘ls, ‘lad,
‘huber, ‘quantile ,de-
fault=‘ls’

Denotes the loss function to be op-
timized. ‘ls refers to least squares
regression, ‘lad to least absolute de-
viation, ‘huber as a combination of
the two. ‘quantile allows quantile
regression

The parameters given in Table 3.3 are explained in Table 3.4. The values given in the

columns can be understood by looking at the explanations in Table 3.4.



CHAPTER 4

PREDICTIVE OUTCOMES AND PERFORMANCE EVALUATION

This chapter presents the outcomes of predictive models that were modulated in the

previous section. The equation given in 3.23 determines the predictive coefficients and the

intercept constant for a particular cluster.

As given in table 3.1, there are 26 clusters, each of which is given an alphabetic code

like a, b, · · · z. Since each model is based on a separate set of data, and the weather

conditions are different for different models, a separate forecasting model and equation are

formulated for each cluster. Fig. 4.1 shows the hourly load profile of cluster a, for the year

of 2016. Using the training data of year 2015, Fig. 4.1 shows the load plot of the predicted

load for the year of 2016.

Fig. 4.1: Predicted load profile for cluster ‘d’ (City of Logan Utility)
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Figures 4.2 and 4.4 show the line plot and bar plot representation of the actual vs

predicted load profiles for cluster ‘d’, i.e. for the City of Logan Utility Cluster. As evident

from the figure, the predicted load profile closely resembles the true load profile, especially

during the winter months. Low energy consumptions for DHW and space heating/cooling

systems in the summer months may lead to this kind of anomaly. Figure 4.3 is the magnified

version of fig. 4.2, in which the data is sliced to 1/10
th of the actual data in fig. 4.2. The

variations can be clearly seen in the sliced version, caused by load fluctuation due to hour

of day.

Figures 4.5, 4.6 also shows the magnified versions of fig. 4.4, sliced to 1/10
th and

1/369
th portion of the data shown in fig. 4.4. Fig. 4.6 shows the predicted vs true load

data for a span of 24 hours (from the 601th hour to 625th hour), which is for the 26th day

of January. Thus, figures 4.4 4.5 and 4.6 shows the barplot of predicted load profile vs the

actual load profile, sliced throughout the year, roughly a month and a day.

Fig. 4.2: Predicted load profile vs. True load profile for cluster ‘d’ (City of Logan Utility)
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Fig. 4.4: Barplot of predicted load profile Vs. true load profile for cluster ‘d’ (City of Logan
Utility)

known as a ”Type II error.”) occurs when a False is predicted but the real value is True.

Following these definitions of the confusion matrix, an accuracy score can be defined

as

S =
(TP + TN)

Total
. (4.1)

In other words, accuracy score is the ratio of successful predictions made with respect to

the total number of events. For a perfectly designed ideal model, the accuracy score is 100%

or 1.

4.0.2 Minimum Mean Squared Error (MMSE)

The mean squared error is the average of the squares of errors between the predicted

value and the true value. The MSE is a measure of the quality of an estimator and is always

non-negative. To understand MMSE, MSE should be formulated.
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Fig. 4.5: Barplot of predicted load profile Vs. true load profile for cluster ‘d’ (City of Logan
Utility)- Sliced from 1st hour to 721st hour

Consider Y and Ŷ are the real and the predicted vectors of a predictive model. By the

definition [73], we can express MSE as

MSE =
1

n

n∑
i=1

(Ŷi − Yi)2. (4.2)

In terms of expected values, MSE can also be written as

MSE(θ̂) = E
[
(θ − θ̂)2

]
. (4.3)

Coming back to MMSE, we still have Y and Yˆ as the real vector and the predicted

vector respectively. The estimation error between these vectors is ε = Y − Ŷ . Then MSE
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Fig. 4.6: Barplot of predicted load profile Vs. true load profile for cluster ‘d’ (City of Logan
Utility)- Sliced from 601st hour to 625th hour

can also be expressed as the trace of the error covariance matrix, expressed as -

MSE = tr{E[(Ŷ − Y )(Ŷ − Y )T ]} (4.4)

= E[(Ŷ − Y )T (Ŷ − Y )]. (4.5)

Following the above equation 4.5, MMSE can be defined as the value of predicted vector

that minimizes the MSE, and can be expressed as

ŶMMSE = argmin
ŷ

MSE. (4.6)

The prediction accuracy and the MMSE of the predictive model used in this project are

given in Table 4.1. Since the forecasted load is essentially used to plan the grid operations

and to manipulate and balance peak loads, the prediction accuracy should be more than
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Table 4.1: Model Score and MMSE

Parameter Value

MLR Accuracy Score 0.962

GBR Accuracy Score 0.9714

MLR MMSE 4

GBR MMSE 2

at least 90%. If the prediction accuracy drops below 90%, the model cannot be used

for load forecasting. As evident from table 4.1, the average prediction accuracy of the

model developed in this project is around 96.2%, which is more than the minimum required

accuracy.

Since the MMSE of MLR algorithm is traditionally poorer than other complex models,

the MMSE of Gradient Boost regression model is also given in table 4.1.

4.0.3 Train - Test Split and Random Sampling

Overfitting occurs when a model learns the details and noise in the training data to

the extent which negatively impacts the performance of the model on new data. When

overfitting occurs, the best-fit curve follows the training data points too closely and thus

takes error into its coefficients.

To check for overfitting, a random sampling approach is considered, which takes ran-

dom samples from the data and compares it with the predicted values. Thus, to check if

overfitting exists in the model, the time-dependent continuous data is broken into discrete

samples and compared with the predicted samples. Fig 4.7 shows the comparison between

the true and predicted data. For a closer inspection, fig. 4.8 shows the sliced version of fig.

4.7, sliced to 24 samples. As evident, the predicted samples are fairly comparable to the

true samples, which shows that there is no overfitting of data in the prediction model.

The random splitting is achieved using the scikit-learn machine learning package in

Python. The train test split function takes a data set and splits it into the training

data and the test data according to the input parameters.
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Fig. 4.7: Predicted Vs True values of random samples for cluster ‘a’

Fig. 4.8: Predicted Vs True values of random samples for cluster ‘a’ - sliced to 24 samples
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CHAPTER 5

CONCLUSION

5.0.1 Project Summary

This project aims at developing a short to medium term load forecasting model, for

the electrical grid system in the state of Utah. The forecasting of load can help the utility

companies to better manage the grid operations, reduce grid failure occurrences, and operate

the grid in a more economical and organized manner. On the other hand, Load forecasting

can help the end use customers to estimate their net loads, normalize the load distribution

and manage their utility bills by avoiding the effects of Dynamic Pricing. Thus, formulating

an accurate load forecasting model would improve and assist the existing DSM techniques

on both, provider’s and consumer’s end. As a part of this project, an hourly load profile

is generated, which is the backbone of the predictive model. An accurate and error-free

hourly load profile helps to effectively train the model and reduce the probability of error.

For a completely digital smart grid network, the need for generating hourly load profile is

minimized, thanks to the use of smart metering systems.

The project has been primarily divided into three sections - introduction, literature

review, and methodology. First, an introduction on DSM is provided in Chapter 1. The

main types of DSM initiatives are described along with the description of each initiative and

its importance. At the same time, a literature review of DSM methods and their results are

presented. In the subsequent subsections, the types of load forecasting has been discussed,

along with all the techniques and algorithm employed by the load forecasting techniques.

In Chapter 3, the project methodology is discussed in detail. In the first subsection,

all the required data sets are discussed briefly, and the data extraction sources are listed.

In the next subsection, the data preprocessing steps are discussed in detail. Starting from

clustering of data into distinct utility clusters, within the same geographical area and similar
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climatic conditions to interpolation of the missing weather data using weather data of

neighboring stations. The consecutive section deals with the modeling of DHW systems,

and establishes mathematical equations for calculating the volume of hot water usage for

different end uses. Combined with the probability of end use, the hourly consumption of

hot water is translated to the hourly load of DHW systems.

After preprocessing of data, the next subsection discusses the load profile generation

techniques in detail. Load profile generation combines the heating/cooling load as well

as the DHW system load. Since last subsection discusses the DHW modeling techniques,

the modeling of cooling/heating loads is discussed in this subsection. HDD and CDD are

the two most important aspects of cooling/heating load profile generation and are given

in detail in this subsection. The variation in the CDD/HDD is shown through a series of

figures (3.10 to 3.25).

In the fourth subsection, the predictive modeling algorithms are discussed in detail. A

mathematical perspective is presented for MLR and GBR machine learning techniques that

are used as the forecasting model in this project. Additionally, the peaks and troughs in the

load profile shape are explained, as evident from fig 3.27 and fig 3.26. The next subsection

deals with the model equations and parameters that are used to define the model. The

process of feature selection is discussed and the reasons for selecting particular attributes

are explained.

In Chapter 4, the results obtained from the predictive models are briefly discussed. A

comparison plot is given (fig 4.2) to compare the true load profile for cluster d (City of

Logan) with the predicted load profile. The concept of train-test split is also discussed in

this section and the time series data is broken into random samples using the test-train split

function. These samples are then compared with their predicted counterparts, as a test for

model overfitting. Finally, the techniques to determine the accuracy of the model and its

error margin is discussed, followed by the actual average accuracy score and the MMSE

error of the predictor models.
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5.0.2 Future Prospects

This project aims to provide the short-term load forecasting data to the utilities, to

assist in their DSM process. Also, the smallest entity for which a load profile is generated

is a utility cluster and not an end use customer. An advanced version of the project can

process real-time data from millions of smart metering systems employed in a smart grid

and formulate individual load forecasting models for each residential unit. Further more,

automatic load adjustment can be achieved for every individual residential unit if the load

can be predicted. This would reduce the amount of computation and data storage required

by the utility companies and achieve load balancing and demand side management from

root level.

Further improvements can be achieved by integrating more advanced machine learning

techniques link neural networks and deep learning schemes like recurrent neural network,

deep neural nets etc. More efficient modeling of the space cooling and heating and DHW

systems can lead to a higher prediction accuracy. The better demand handling becomes in

a smart grid, the more stable and secure the grid will be.
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