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ABSTRACT

Evaluation of Turbulence Variable Distributions

for Incompressible Fully Rough Pipe Flows

by

Emilie B. Fowler, Doctor of Philosophy
Utah State University, 2012

Major Professors: Dr. Warren F. Phillips and Dr. Robert E. Spall
Department: Mechanical and Aerospace Engineering

The specific turbulent kinetic energy, root-mean-square fluctuating vorticity, and mean-vortex-
wavelength distributions are presented for fully rough pipe flow. The distributions of these turbulence
variables are obtained from a proposed turbulence model. Many of the turbulence models commonly used
for computational fluid dynamics are based on an analogy between molecular and turbulent transport.
However, traditional k-¢ and k- models fail to exhibit proper dependence on the molecular viscosity.
Based on a rigorous application of the Boussinesq’s hypothesis, Phillips proposed a vorticity-based
transport equation for the turbulent kinetic energy. The foundation for this vorticity-based transport
equation is presented. In future development of this model, a transport equation for the fluctuating vorticity
is needed. In order to assess the model and evaluate closure coefficients, the resulting turbulent vorticity
distribution must be compared to reference distributions. This dissertation presents reference distributions
for the mean fluctuating vorticity and mean turbulent wavelength obtained for fully rough pipe flow. These
distributions are obtained from a turbulence model, which involves the proposed transport equation for the
turbulent kinetic energy and an empirical relation for the mean vortex wavelength. The empirical relation
for the mean vortex wavelength requires numerous closure coefficients. These closure coefficients are
determined through gradient-based optimization techniques. The current model gives excellent agreement
with well established relations obtained for both the friction factor and velocity distribution.

(278 pages)
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CHAPTER 1

PHILLIPS TURBULENT-KINETIC-ENERGY TRANSPORT EQUATION

I. Introduction

Turbulent fluid motion is one of the most difficult yet fundamental problems encountered in applied
mathematics. Turbulent flows are time-dependant, three-dimensional, diffusive and dissipative phenomena.
One of the most challenging aspects in describing and predicting turbulence is that the velocity fluctuates
over a large range of coupled spatial and temporal scales. The turbulent quantities change so rapidly in
space and time that experimental data are not easily obtained. Due to its practical importance, many
scientists have attempted to describe the motion of a turbulent fluid through numerical models. Although
the basic equations describing turbulence are well known general principles, their solutions are incredibly
complex and require tremendous computing power. No solution that unconditionally predicts the motion of
a turbulent fluid has yet been found.

The basic equations describing the motion of a turbulent fluid are well known and have been studied
for many generations. Euler (1757) [1] was one the earliest scientist to describe the motion of inviscid
fluids. A major step was the development of the Navier-Stokes equations named after the work of
Navier (1823) [2] and Stokes (1845) [3]. This set of nonlinear coupled partial differential equations
describes the rate of change of momentum in a viscous fluid. Reynolds (1895) [4] rewrote the Navier-
Stokes equations in a form where the main variables are expressed as a sum of the mean and fluctuating
components. This approach, known as the Reynolds-Averaged Navier-Stokes equations, set the traditional
mathematical framework used commonly today. Prandtl (1925) [5] introduced the additional concepts of
the mixing length and boundary layer derived after the work of Boussinesq (1877) [6] who postulated that
the momentum transfer caused by turbulent eddies can be modeled as a linear function of the mean strain
rate. Taylor (1938) [7] was one of the earliest scientists to introduce the Eulerian viewpoint into turbulence
modeling. The developments of these scientists continue to play significant roles in current turbulence
research.

Turbulent flows are characterized by irregular fluctuations that can be approached through the use of

statistical models. Turbulence consists of a continuous spectrum of scales ranging from the largest to the



smallest. Kolmogorov (1942) [8] developed a theory based on energy spectrum analysis, which describes
how energy is transferred from larger to smaller eddies. Following earlier work of Kolmogorov on
statistical turbulence, Kraichnan (1958) [9] developed a field-theory approach to fluid flow.

Many turbulence models are based on the Reynolds-averaged Navier-Stokes equations. The Reynolds
decomposition yields a set of equations governing the average flow field instead of the exact turbulent flow
field. Although this decomposition has the benefit of reducing the multi-scale problem to a scale of 1 or 2,
more unknowns have been added (such as the turbulent fluxes and turbulent stresses). Turbulence modeling
consists of representing the scales of the flow that are not resolved.

Most turbulence models are developed by analogy between molecular and turbulent transport. The
analogy is based on the Boussinesq (1877) [6] approximation, which states that the Reynolds stress can be
expressed as a linear function of the mean strain rate, in the same way that the molecular stress is expressed
as a linear function of the total strain rate. The proportionality coefficient between the Reynolds stress and
the mean strain rate is now commonly called the eddy viscosity. Since the turbulent eddy viscosity is a flow
property and not a fluid property, Bousinesq-based turbulence modeling consists of devising a model for
the turbulent eddy viscosity.

The Boussinesq approximation [6] published in 1877 was not explicitly expressed in terms of a tensor
equation and was redeveloped in 1895 by Reynolds [4] who undertook a more rigorous approach and made
use of a tensor notation from which the name of the “Reynolds stress tensor” was derived. In his 1877
publication, Boussinesq performed a temporal average of the Navier-Stokes equation. Many of the
approximations he used are not explicitly stated. He introduced the elements of a stress tensor without
explicitly identifying it. This stress tensor was identified by Reynolds in 1895. From an approach similar to
that used in the kinetic theory of gases, Boussinesq proposed an expression for the turbulent stresses. This
expression is in fact a tensorial closure equation that obeys the Navier-Stokes equations and includes a
parameter that today is commonly referred to as the turbulent eddy viscosity. Boussinesq did not give a
name to this parameter but remarked that this parameter is a function of the degree of turbulence in the
fluid. Boussinesq proposed an expression for this parameter based on a characteristic length and velocity.
This formed the basis of the mixing length formulation that was later developed in detail by Prandtl.

Boussinesq’s hypothesis was originally mentioned as a tensorial relation with a justification linked to



mixing length arguments. Boussinesq did not mention the name “mixing length” in his publication.
Boussinesq performed simultaneously an average of the Navier-Stokes equations and a tensor closure of
the eddy-viscosity type using an analogy to kinetic theory. In fact, Boussinesq did not notice that he was
assuming a strong hypothesis when he performed his analogy with kinetic theory. Although in his 1895
publication Reynolds did not cite the 1877 Boussinesq publication, he did use the same method of
averaging the Navier-Stokes equations and also proposed a tensor notation for the stresses.

Zero- and one-equation turbulent models are based on the mixing-length theory developed by
Prandtl [5, 10]. By analogy with the kinetic theory of gases, which describes the molecular viscosity as
proportional to the product of a molecular mean free path and the root mean square of the molecular
velocity, Prandtl postulated that the turbulent eddy viscosity should be equal to the product of a
characteristic length, called the mixing length, and a characteristic velocity which could be the root mean
square of the fluctuating velocity. The mixing length can be viewed as the average distance traveled by an
eddy before it gives up its momentum by mixing with the main flow. One-equation models derive a partial
differential equation for the turbulent kinetic energy and use the square root of the turbulent kinetic energy
as the characteristic velocity for the eddy viscosity model. In zero- and one-equation turbulent models, the
mixing length is determined experimentally.

Two-equation models derive a partial differential equation for both the turbulent kinetic energy and a
second turbulence variable. Jones and Launder (1972) [11] first derived the k-¢ model which uses the
dissipation of the turbulent kinetic energy as a second turbulence variable. The closure coefficients were
empirically derived based on fully developed flow. Menter (1997) [12] has shown that the model performs
poorly for complex flows involving severe pressure gradient or separation. Another widely used model,
which uses the specific dissipation rate as the second turbulence variable is the k- model originally
developed by Kolmogorov [8]. The model demonstrates superior performance for wall-bounded and low
Reynolds number flows. Wilcox [13, 14] later derived several versions of the k- model. Menter’s (1992)
[15] shear stress transport model combines the original Wilcox k-w model [16], for use near walls, and the
traditional k-¢ model away from walls using a blending function. External flows, such as aerodynamic flow,

include models developed by Spalart and Allmaras (1992) [17] and Baldwin and Barth (1990) [18].



More complex models are based on partial differential equations for all of the Reynolds stresses and
turbulent fluxes and as a result require more computational power. An example is the Reynolds stress
model (RSM) which involves the modeling of turbulent diffusion, pressure strain correlation and the
turbulent dissipation rate. This modeling approach originates from the work by Launder (1974) [19]. For a
discussion on the performance, applicability and limitations of the RSM, see the work of
Speziale (1990) [20] or Wilcox (2006) [21].

Recent advances in large-scale scientific computing have made Direct Numerical Simulations (DNS)
of the Navier-Stokes equations possible without incorporating a turbulence model. Direct numerical
simulation is mainly used for relatively small domains in which the small scales of turbulence are large in
comparison to the grid element size of the domain of interest because the whole range of spatial and
temporal scales of the turbulence must be resolved. Even at low Reynolds numbers, the computational cost
of DNS is always very high. Discussions on DNS involve the work of Bernard and Wallace (2002) [22] or
Moin and Mahesh (1998) [23].

Retracing the traditional development of the turbulent-kinetic-energy equation, Phillips [24] developed
an alternative turbulent-kinetic-energy transport equation based on fewer approximations than the
traditional model and implementing strict definitions of the turbulent-kinetic-energy dissipation and
molecular transport. This chapter focuses on addressing a few identifiable concerns with the traditional
turbulence modeling based on two transport equations and proposes an alternate turbulent-kinetic-energy
transport equation. To set this work in perspective relative to previous work, an overview of traditional

turbulence modeling is included.

II. Governing Equation of Fluid Motion

The laws that govern fluid motion have been understood since the mid 1800s and the vector
mathematics needed to fully analyze three-dimensional fluid mechanics was sufficiently understood only a
few decades later. See for example the work of Navier [2], Stokes [3], Hamilton [25, 26, 27] and Boyer and
Merzback [28]. The motion of a fluid with Newtonian properties is governed by the conservation of mass
(continuity equation) and Newton’s second law (or Navier-Stokes equations) combined with the

appropriate boundary and initial conditions. This section develops the Reynolds-Averaged Navier-Stokes



equations (or RANS equations) for a Newtonian fluid which is a mathematical model of the fluid motion
suitable for use in numerical calculations. A Newtonian fluid is defined as a fluid whose stress versus strain
rate, or equivalently velocity gradient, curve is linear. The constant of proportionality is the called the

dynamic viscosity.

A. Conservation of Mass: The Continuity Equation

The continuity equation describes the conservation of mass in a closed system. The mass of an isolated
system cannot be changed as a result of processes acting inside the system. The differential form of the
continuity equation is given by

op
P v (pv
—+V-(oV)

0

(1.1)

where p is the fluid density, and V the flow velocity vector field.

B. Conservation of Momentum: Newton’s Second Law

The law of conservation of linear momentum is a fundamental law of nature, and states that if no
external force acts on a closed system of objects, the momentum of the closed system is constant.
Momentum is defined as the mass of an object multiplied by its velocity. The second law states that the
acceleration of an object is dependent upon the net force acting on the object and the mass of the object.
After applying the continuity equation, Newton’s second law for a flow field can be stated as

p{a—v+(V~V)V:|=V-(:r—ngVZ

ot (1.2)

where 7z is the geopotential altitude, the acceleration of gravity at sea level is g, =9.806645 m/s> and & is

the fluid stress tensor.

For Newtonian fluids, the Navier-Stokes equations are a set of nonlinear partial differential equations
that describe the flow of a fluid whose stress depends linearly on velocity gradients and pressures. The
Navier-Stokes equations ignore the fact that the fluid is made up of discrete molecules. The unsimplified

Navier-Stokes equations do not have a general closed-form solution. However, the equations can be



simplified in a number of ways for problems with simple geometry, boundary conditions and an initial flow
field. An example of such flow would be incompressible, inviscid, laminar, steady flow in a pipe. The
Navier-Stokes equations assume that the fluid is Newtonian and continuum, that is, all length scales are
large compared to the molecular mean free path. The Navier-Stokes equations developed from Newton’s
second law given in Eq. (1.2) can be written as follows assuming that the Earth’s gravity is the only body

force

2 =
p{_+ (V-V)V} = —V(p+§ﬂV'V]+V ' [2ﬂS(V)]+fg (1.3)

where p is the thermodynamic pressure, x the dynamic viscosity, fg the gravity force vector per unit

volume, V is the gradient operator and S(V) the strain rate tensor which describes the rate at which a fluid

element is deforming. The strain rate tensor in Cartesian coordinates is

ov, oV, ov, ov, ov, ov,
+ — 4 — +

Ox Ox ox oy Ox 0z

ov, ov, oV, ov,

S(V) — l aV\” + y y + Dl aVz Y
2|11 oy Ox oy oy oy oz (1.4)

ov, oV, ov, N ov, ov, N ov,

0z Ox oz oy 0z 0z

The gravity force can be expressed in several different ways

f, =—pgVH =—pg\VZ =-V(g,pZ)+ g,ZV(p) 15)

where g is the acceleration of gravity, H is the geometric altitude, Z is the geopotential altitude and g is
the acceleration of gravity at sea level. The Navier-Stokes equations given in Eq. (1.2) with the gravity

force expressed in terms of geopotential altitude given in Eq. (1.5) is

p[a—v+ (v V)V} = —V(p +8opZ + %/N : Vj +V: [Zﬂg(v)]Jr g2V(p)

ot (1.6)



For convenience, we define a change of variables that combines several of the terms on the right-hand side

of Eq. (1.6) and can be referred to as the total hydrostatic pressure

. 2
p=p+gopZ+§#V-V

(1.7)
Using Eq. (1.7) in Eq. (1.6), the Navier-Stokes equations for a Newtonian fluid can be written as
oV . =
P o+ (VVV = =Vh+ VRSV [+ 207V (p) 18

C. Conservation of Energy
The law of conservation of energy states that the total amount of energy in an isolated system remains
constant over time. Energy can neither be created nor destroyed. It can only be transformed from one state

to another. The specific total energy e is defined as

1
eE“e+EV2+goZ

(1.9)

where u, is the specific internal energy and Vis the magnitude of the velocity vector. The first law of
thermodynamics is an expression of the principle of conservation of energy. It usually can be formulated by
stating that the change in the internal energy of a system is equal to the amount of heat supplied to the
system minus the amount of work performed by the system on its surroundings. The first law of

thermodynamics can be stated as

e Ly (pVe)= -V q+V-E-V)+U,”

ot (1.10)

where q is the heat flux vector and U, e includes any other volumetric heating. The second term on the

right-hand side is the net work per unit volume done on the fluid by the stress tensor. This includes the flow
work, which is commonly added to the specific internal energy to define the thermodynamic property
called enthalpy. Applying the vector identities (A.1), (A.3) and (A.5) given in Appendix A to Eq. (1.10)

yields
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Applying the continuity equation and substituting the specific total energy, the first law of thermodynamics

in the Eulerian reference frame results in

p{g(ue +%V2j+(V-V{ue +%V2 +gozﬂ=—v-q+é.(vv)+v-(v.é)+ u,"

or (1.12)

Another useful transport equation is obtained by taking the dot product of Newton’s second law with

the fluid vector. Starting with Newton’s second law given in Eq. (1.2) gives

oV =
V.|—+(V-V)V|=V.\V-6)- V.-V)Z
Applying the vector identity (A.4) from Appendix A to the left-hand side of this equation yields
—| =V |+\V-V) =V~ ||=V:\V-5)- V-V)Z
A3 v (302 |-V 3 et e

Because g, is a constant, this equation can be rearranged to obtain what is commonly called the

mechanical energy equation.

O(1p2) (v.v[Ly2 _v.(v.3
p{E(EV j+(v V{zV +gOZﬂ—V (v-8) 1)

Subtracting Eq. (1.15) from the first law of thermodynamics as expressed in Eq. (1.12), we can obtain

another transport equation often referred to as the thermal energy equation

ot

ou, _ . =
p|: +(V-V)ue}— V-q+5-(VV)+U, (1.16)

The equations of motion that describe the behavior of a system represent the conservation of mass,

conservation of momentum and conservation of energy and are given in Egs. (1.1), (1.2) and (1.16),



respectively. This set of three equations assumes a Newtonian fluid. Gravitational effect from planets other

than the Earth, body forces such as electromagnetic, centrifugal and Coriolis forces were neglected.

III. The Reynolds-Averaged Navier-Stokes Equations

Due to the numerous velocity and length scales that are involved in turbulent flows, the numerical
solution of the Navier-Stokes equations is extremely difficult and require such a fine mesh that the
computational time becomes significantly infeasible for calculation. As is the case with laminar flows,
turbulent flows must satisfy the continuity equations and the Navier-Stokes equations at every point in the
flow field and at every instant in time. Solutions to these equations for turbulent flows can be obtained
directly from computational fluid dynamics (CFD). However, obtaining such CFD solutions, which are
commonly referred to as direct numerical simulations (DNS), are computationally very expensive. This is
because such solutions require a computational grid fine enough to resolve the smallest turbulent eddies
over the entire computational domain associated with the problem. For a complete review of DNS, see
Moin and Malesh [23]. With today’s technology, such solutions are computationally prohibitive for all but
the simplest problems at very low Reynolds numbers. A less costly alternative to DNS is to solve only for
the mean pressure and mean velocity fields using the Reynolds-Averaged Navier-Stokes equations. In this
section, the Reynolds-Averaged Navier-Stokes equations of motion for turbulent flows are developed.

The Reynolds-Averaged Navier-Stokes equations are time averaged equations for a fluid flow. The
idea behind the equations is Reynolds decomposition [4] where an instantaneous quantity is decomposed
into its time-averaged and fluctuating quantities. The fluctuating part is defined such that its time-average is
zero. The Reynolds decomposition can be viewed in mathematical statistics as the ensemble average of a
random variable. The concept of an ensemble average is based upon the existence of independent statistical
events. A random variable is distributed about the mean. Therefore, the ensemble average about the mean is
zero, whereas, the ensemble average of the square of the fluctuation is not zero. Ensemble average
properties are given in Egs. (A.12)—(A.15) from Appendix A.

For a homogeneous fluid, the velocity vector and thermodynamic pressure can be written as a sum of a

mean value and a turbulent fluctuating component
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p=pTp (1.18)

where the overscore denotes an ensemble-mean value. It should be noted that
p=p (1.19)

Using Eq. (1.17) we have

V=IV+V)=V+V=V+V o V=0 (1.20)
p=p+p=p+p = p=0 (1.21)

Equations (1.20) and (1.21) show that the time-averaged of the fluctuating part is zero. For a detail

discussion on averaging, see Phillips [24] or Wilcox [29].

A. Ensemble Average of the Continuity Equation

The ensemble average of the continuity equation given in (1.1) yield

0 —
a—/:+V~<pV):0

(1.22)
An equation for the fluctuating components is obtained by substituting Eq. (1.17) in Eq. (1.1)
op = =
—+V-|lpV+pV)=0
o (/’ P ) (1.23)
Subtracting Eq. (1.22) from Eq. (1.23) yields the continuity equation for the fluctuations
v-lp¥)=0 (1.24)

The ensemble-averaged steady-state incompressible form of the continuity equation is obtained from

Eq. (1.132)
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(1.25)

B. Ensemble Average of the Navier-Stokes Equations

Similarly to the continuity equation, the Navier-Stokes equations can be simplified using the Reynolds
decomposition and substituting in the sum of the steady component and perturbations to the velocity profile
and taking the mean value. The resulting equation contains a nonlinear term, known as Reynolds stresses,

which gives rise to turbulence. The ensemble average of the linear strain rate tensor is simply

S(V)=S(V) (1.26)

The ensemble average of the Navier-Stokes equations given in Eq. (1.6) with the gravity force

expressed in terms of geopotential altitude is

2 =
p[a— +(V- V)V} =- V(p + UV Vj +V- [2uS(V)]— V(gorZ)+202V(p) (127)
which can be simplified into

SE R (s R A P

¢ (1.28)

Equation (1.17) yields the mathematical identity
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Using Eq. (1.29) in Eq. (1.28) gives

p{a—v+(V-V)V} = —V(ﬁ+ ngZ+§,uV~VJ

- V-[2ﬂ§<V>]+ 202¥(p)- p[V-VIV

(1.30)
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The last term in Eq. (1.30) is the only term that involves the turbulent fluctuations. Using the mathematical

identity (A.1) from Appendix A, this last term can be rewritten as

pV-YV =(oV-VV=v.(oVV)-V(V.(oV)) (1L31)

where VV is a second order tensor given in Cartesian coordinates by

Vi, V.V, V.
V=V, V.V, VJV.
OGN S0 S o (1.32)
z'x z'y z'z
From the continuity equation for the fluctuations given in Eq. (1.24), Eq. (1.31) becomes
VvV =v.[pVV
P (p j (1.33)

For a Newtonian fluid, the pseudo molecular stress tensor resulting from the mean fluid motion can be

expressed as

Qaln

= 2 —\z=

=2uS(V)—| p+—=uV-V |d

1S(V) (p 34 j (1.34)
where 3 is the kronecker delta.

First suggested by Reynolds (1895) [4], the symmetric turbulent stress tensor is defined in Cartesian

coordinates as

AR AR
F=—pW=—p| PV, V7, V. (135)
Vx zly z' z

The turbulent stresses 17,171 are called the Reynolds stresses. The Reynolds stress tensor is the stress tensor

due to random turbulent fluctuations in fluid momentum. The stress is obtained from an average over these

fluctuations. The Reynolds stress tensor is a symmetric tensor whose six components are unknown. Many
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scientists have tried to model the Reynolds stress in various different ways and a transport equation for the
Reynolds stress is often proposed. See the work of Jones and Launder [30] or Wilcox [16]. Substituting

Eq. (1.35) in Eq. (1.33), the turbulent momentum becomes

p\V-VNV=-V-7 (1.36)
Using Eq. (1.36) in Eq. (1.30), the Reynolds-averaged momentum equations, or RANS equations are
p[%—‘;jt(vv)ﬂ = —V([_?+pg0Z+§,uV-Vj
(1.37)

VRS W)+ s g2v(0)

+

Combining the RANS equations given in Eq. (1.37) with the mean continuity equation will not
produce a complete formulation for the mean velocity and pressure fields, unless one has some method by
which to express the six unknown components of the symmetric Reynolds stress tensor in terms of the
mean flow. The purpose of a turbulence model is to provide mathematical relations that express the

components of the Reynolds stress tensor in terms of the mean flow.

IV. Traditional Turbulence Closure

The nonlinear Reynolds stress term from the convective acceleration requires additional modeling to
close the RANS equation and has led to the creation of many different turbulent models. The most
sophisticated turbulence models commonly available today are based on the use of separate modeled
transport equations for each of the six unknown components of the Reynolds stress tensor. Turbulence
models of this type are classified as stress-transport models. Because of their complexity and the large
number of differential equations involved, stress-transport models impose a large computational burden.
Furthermore, the stress-transport models that have been developed to date have not shown the significant
improvements in accuracy over simpler models, which was originally anticipated. For these reasons, such
detailed turbulence models are not extensively used for CFD analysis at the present time. A simpler model
consists in relating the Reynolds stresses to the mean velocity gradients, a common practice based on the

Boussinesq’s hypothesis.
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A. Modeling the Reynolds Stress Tensor from the Boussinesq’s Hypothesis

Commonly employed turbulence models, such as the k-w or k-¢ models, are based on a simplifying
hypothesis for the Reynolds stress tensor, which was first introduced by Boussinesq (1877) [6]. The fact
that turbulence transport seems to be diffusive in nature suggest that we might express the Reynolds stress
tensor as a linear function of the mean strain rate tensor. Boussinesq was one of the earliest scientists to
propose an equation that relates what are now called the Reynolds stresses to the mean flow and close the
system of equation. Boussinesq postulated that the momentum transfer caused by turbulent eddies can be
modeled using a parameter that is now called the turbulent eddy viscosity. This is in direct analogy with
how the momentum transfer caused by the molecular motion in a gas can be described by a molecular

viscosity. Boussinesq’s hypothesis in its general form states that the Reynolds stress tensor is given by

= S 2 V)3
'r=2,utS(V)—§(pk+ﬂtv'V)6 (1.38)

where the coefficient x, is called the dynamic eddy viscosity and ks the turbulent kinetic energy per unit

mass and is traditionally defined as one half of the mean square magnitude of the turbulent velocity
fluctuations
72

V.N=l(r7x2+r72+r722):
2 y

N | —

(1.39)

The Boussinesq hypothesis is sometimes presented in the literature in a form that includes only the first

term on the right-hand side of Eq. (1.38). However, this is not consistent with the fundamental definition in

Eq. (1.35). The trace of the turbulent stress tensor T given in Eq. (1.35) is —2pk . The trace of the strain
rate tensor §(V) given in Eq. (1.4) is trace(g(V)): V -V . The trace of the right-hand side of Eq. (1.38) is

2u,V -V —2pk -2u,V -V = -2k = trace(T ) . The additional diagonal term in Eq. (1.38) must be included
to make the two definitions consistent. Boussinesq’s hypothesis can be viewed as an analogy between the

Reynolds stress tensor and a relation for the molecular stress tensor obtained from the kinetic theory of

gases. The molecular stress tensor in an ideal gas can be related statistically to the molecular velocity
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components in precisely the same way that the Reynolds stress tensor was related to the turbulent velocity
fluctuations.

According to Boussinesq’s hypothesis, the turbulent eddy viscosity is assumed to be a scalar like the
molecular viscosity. Originally, Boussinesq assumed only that the turbulent eddy viscosity was
directionally independent. However, in the application of his theory, he assumed that the eddy viscosity
was spatially constant as well. Such a constant value for the turbulent eddy viscosity could occur only if the
turbulence were homogeneous. A constant eddy viscosity is not expected in general. For example, in
turbulent shear flows near a smooth wall the eddy viscosity cannot be constant, because both the mean and
fluctuating components of fluid velocity must vanish at a no-slip surface. Hence, the Reynolds stress tensor
must vanish at a no-slip surface, in spite of the fact that the mean-strain-rate tensor remains finite.

The eddy viscosity is not a thermodynamic property of the fluid in the same way that molecular
viscosity is. The eddy viscosity is a function of the turbulent motion just as the molecular viscosity is a
function of the molecular motion. However, the random motion of molecules in an ideal gas depends only
on the absolute temperature. For many flows of practical interest, the temperature variations within the flow
are small compared with the level of temperature above the absolute zero. Hence, the molecular viscosity is
often approximated as being constant throughout the flow. In contrast, the eddy viscosity can seldom be
treated as a constant. The turbulent velocity fluctuations will always vanish in the laminar region of a shear
flow immediately adjacent to a smooth surface, whereas the random molecular motion in an ideal gas
would cease at a solid wall only if the temperature of the gas went to absolute zero at the surface. In this
dissertation, the eddy viscosity is assumed to be isotropic but not necessarily homogeneous. This is not to
say that the turbulence itself is isotropic because the mean-strain-rate tensor is not isotropic. We are simply
assuming that the eddy viscosity at any given point in space and time is independent of direction.

Using Eq. (1.38) in Eq. (1.37), the Boussinesq-RANS equations are

is)

(e))
93|<|
+
=T
<
=T
| |
1l

—V[zﬂpgoZ%pk +§(ﬂ+u,)V~V]

- (1.40)
V-[z(u+ut)S(V>]+ gZVp

+

For convenience, we define a change of variables that combines several of the terms on the right-hand side

of Eq. (1.40) to form the pseudo mean pressure
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A 2 2

=p+ Z+—pe+—(u+u, )V-V

p=p+pgoZ+3 phr (i) (L41)
The steady-state incompressible Boussinesq-RANS equations become

(— 1 ~ =
(V-V)V:—;Vﬁ+V~[2(v+vt)S(V)] (142)
The Boussinesq hypothesis allows us to express the six independent components of the Reynolds stress

tensor in terms of the mean velocity vector and two scalars; the eddy viscosity v, and the turbulent kinetic

energy per unit mass k. Both of these scalars are unknown functions of space and time. In order to close
the formulation with the Boussinesq’s hypothesis, the dynamic eddy viscosity and the turbulent kinetic
energy per unit mass must be related to other flow properties. Several methods have been suggested for
closing the formulation based on Boussinesq’s hypothesis and are commonly classified as zero, one, or
two-equation models, based on the number of differential equation used.

Most zero-equation models, also known as algebraic models, are based on a hypothesis first made by
Prandtl [5]. This hypothesis is referred to as the mixing-length theory. Prandtl hypothesized that the
turbulence characteristics were related to a characteristic length and velocity scale associated with the
turbulent fluctuations. Thus, the closing equations are simply algebraic relationships between the
turbulence parameters. Zero-equations models are classified as incomplete models because they require
properties of the turbulent flow field to be known a priori.

Most one-equation models are based on a subsequent hypothesis by Prandtl [10]. In his development,
Prandtl hypothesized that the eddy viscosity was proportional to the product of the square root of the
turbulent kinetic energy per unit mass and a characteristic length scale. Prandtl used a modeled version of
the turbulent-kinetic-energy transport equation and related the eddy viscosity to the turbulent kinetic energy
algebraically. The length scale was also calculated algebraically from the mean flow. The distinguishing
factors of most one-equation models is that they model the turbulent kinetic energy per unit mass by a
differential equation, they express the eddy viscosity as a function of the turbulent kinetic energy per unit
mass and they calculate some type of length scale from the mean fluid flow. Many one-equation models

have been proposed including those by Emmons [31], Glushko [32] and Wolfshtein [33]. Feriss and Atwell
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[34] also proposed a one-equation model based on the turbulent kinetic energy but do not use the
Boussinesq’s hypothesis. Other one-equation models that are based on some transport property other than
turbulent kinetic energy include models by Nee and Kovasznay [35], Sekundov [36], Baldwin and Barth
[18], Spalart and Allmaras [17] and Menter [37].

Widely used turbulence models are two-equation models based on an approach to turbulence modeling
that was originally proposed by Kolmogorov [8]. Kolmogorov employed a modeled differential equation
for the transport of turbulent kinetic energy and also developed a modeled differential transport equation
for the second scalar turbulence variable, for which he used a symbol w. This turbulence variable is a
frequency characteristic of the turbulent-kinetic-energy dissipation process and it is sometimes said to be
proportional to the root-mean-square magnitude of the fluctuating turbulent vorticity. Researchers have
since built upon Kolmogorov’s two-equation approach, refining the modeled transport equations and
solving for other turbulence parameters such as the turbulent-kinetic-energy dissipation rate. The feature
common to all two-equation turbulence models is that the eddy viscosity is modeled as a function of two
scalar turbulence variables, which are both computed from differential transport equations. Many two-
equation models can be classified as either k~w or k-¢ models, where £ is the turbulent kinetic energy per
unit mass, o is a characteristic turbulence frequency and ¢ is the turbulent-kinetic-energy dissipation rate
per unit mass. Two-equation models do not require an algebraic relation that describes any turbulence
variable in a prescribed manner from the mean flow. Two-equation models that are based on transport
properties other than ¢ or @ include models suggested by Rotta [38, 39], Zeierman and Wolfshtein [40] and

Speziale et al. [20].

B. Reynolds Stress Transport

Traditional turbulence models are based on a differential transport equation for the Reynolds stress
tensor. The equations of motion for turbulent flow, comprising the continuity equation and the three
components of the momentum equation, can be expressed in terms of the three components of the mean
velocity vector, the mean pressure and the Reynolds stress tensor. To complete this formulation, we need
some means of relating the six independent components of the symmetric Reynolds stress tensor to the
mean velocity and pressure fields. A differential transport equation for the Reynolds stress tensor can be

developed from the Navier-Stokes equation. Assuming constant viscosity, we have
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V. (2 u §(V))= 2uV- (§(V)) (1.43)

The mathematical identity (A.2) from Appendix A gives

ZyV’(é(V)): 2#(V2V+V(V~V)) (1.44)

With constant viscosity, the Navier Stokes equation given in Eq. (1.6) expressed using the geopotential

altitude for the gravitational and the two above equations give

pB—‘t’+ (V. V)V} V(p +g,pZ —%;N : Vj + 1NV + g, ZV p

(1.45)

Multiplying Eq. (1.45) by the fluctuating components of the velocity v, applying Eqgs. (1.17)—(1.18) and

taking the ensemble average yield

p[vaa_jw__w[(v S A (G g P 2 V)VJJ

(1.46)
= ([ _ 1 — ~ (. 1 ~ = ,— = o~ =
—VV(p+gOpZ—§yV-Vj—VV(p—§yV-VJ+,uVV2V+,uVV2V+VgOZVp
Equation (1.46) can be reduced using the equality V=0 given in Eq. (1.20)
~V =T=oR == ==—%| oo~ | _ =) =o=
P VE+V(VV)V+V(V«VW+V(V~V)V = VY| BV V [+ uVVV (147)

Each term in Eq. (1.47) is a second order tensor containing nine scalar components. Applying the following

mathematical identities

o (1.48)
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VWV (VW -VF ) =V v (1.49)

‘N’[(‘N"V)VJ+(‘N’[(‘~"V)VJJT =xV)~(V-VIVV (1.50)

r __
Py SO0 _VU2VV _ 3V
\'AY V+(VV Vj =V VV -g(V) (1.51)

The Reynolds stress transport equation given in Eq. (1.47) can be rewritten as

ovv
e

+(V.VW—§(V,\7)+§(V)+1V.\7)5\7

—— —=\7 == o~
=-VVp - (Vv;aj + 1V*VV — 1ig(V)

(1.52)

where

<O
Il
ST
|

W | —

(1.53)

and the following definition are used

?(V,\N’)=‘N’(‘N’-V)V—(‘N’(‘N"V)V)T (1.54)

v(77V) (155)

x y Ty y 7z (1.56)
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- 1== 1(==\ ==
(V,5)=—VVp+—[VVp| +(v.V
P P

al

(1.57)

Notice that the tensor '?( depends only on the components of VV and the spatial derivatives of the mean

velocity field. On the other hand, the tensors E, 7 and ):( involve other unknown correlations of the

velocity and pressure fluctuations. After rearranging Eq. (1.52) and using Eqs. (1.54)—(1.57), we obtain the

Reynolds-stress-transport equation

W (o TS o o s TV V) RV
> +(V.V)VV=y(V,V)—VS(V)+VV2VV—X(V)—7T(V»P) (1.58)

where v is the kinematic viscosity v = 1/ p . The tensor VV is the negative of the specific Reynolds stress

tensor, as given in Eq. (1.35)

<2|
<

I

|
X | A

(1.59)

The tensor equation given by Eq. (1.59) provides scalar transport equations for the components of the
specific Reynolds stress tensor. Because this tensor is symmetric, there are only six independent scalar
equations. However, many of the scalar terms that make up the components of the tensors on the right-hand
side of Eq. (1.58) are new unknowns. Counting these unknowns reveals that we have added more
unknowns than equations. This is the essence of the turbulence closure problem. We could develop
additional transport equations for the new unknowns in Eq. (1.58) by taking other moments of the Navier-
Stokes equations. However, each time we add new equations in this manner, we also add more unknowns.
At no point will this procedure produce a number of equations equal to the number of unknowns.

The most commonly used method for closing the Reynolds-averaged formulation is to use some type
of approximation to model the unknown terms on the right-hand side of Eq. (1.59). One possible approach
is to model the unknown terms on the right-hand side of Eq. (1.58) and then use the resulting Reynolds-
stress-transport model to evaluate the Reynolds stresses. On the other hand, we could return to the

Reynolds-averaged Navier-Stokes equations given by Eq. (1.37) and make some approximations that
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would allow us to model the Reynolds stress tensor directly. The Boussinesq hypothesis is commonly used
for this purpose.

However, Boussinesq’s hypothesis alone does not close the Reynolds-averaged formulation. To
complete any Boussinesq-based turbulence model, we must develop additional equations that allow us to
relate the eddy viscosity and the turbulence kinetic energy per unit mass to the mean flow. Although the
Reynolds-stress-transport equation is not required for Boussinesq-based models, Eq. (1.58) can provide

significant insight into how the turbulence kinetic energy per unit mass depends on the mean flow.

C. Traditional Kinetic Energy Transport Equation

A transport differential equation for the turbulent kinetic energy is developed to account for the
turbulent transport of momentum. The turbulent kinetic energy associated with turbulent velocity
fluctuations is generated directly from velocity gradients in the mean flow, i.e. fluid shear and friction.
However, turbulent kinetic energy is also dissipated with time as a result of molecular viscosity and is
transported from one location to another by the mean fluid motion, the turbulent velocity fluctuations and
the molecular diffusion. Thus, the specific turbulent kinetic energy is not expected to be a function of only
local gradients in the mean flow. Instead, the level of kinetic energy associated with the turbulent
fluctuations at any point in space and time must depend on the history of flow, i.e. the specific turbulent
kinetic energy at any point in the flow field depends on where the fluid has been as well as the local
gradients in the mean motion. To account for such effects, the specific turbulent kinetic energy must be
related to the mean flow through a differential transport equation.

The transport of turbulent kinetic energy results from the transfer down the turbulence energy cascade.
The total specific turbulent kinetic energy associated with the turbulence was defined in Eq. (1.39) to be
one-half of the mean squared magnitude of the turbulent fluctuations. This specific turbulent kinetic energy
can also be expressed in terms of one half of the trace of the negative of the specific Reynolds stress tensor

defined in Eq. (1.35)

172:1[17)62+I7y2+1722):ltrace -t =ltrace(W)
2 2 £ 2

k =

N | —

(1.60)
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For a Newtonian fluid, a transport equation for turbulent kinetic energy per unit mass is typically developed

directly from the trace of the Reynolds-stress-transport equation given in Eq. (1.58)

%+<V~V)’(:yk—vgk +Wik— g, -7,

where
Vi = %trace(\:((va V)
6, = wacele(V)
71 = L)
7 = L rcelF V. )
with

where the Jacobian tensor J(V) can be expanded in Cartesian coordinates as

fov, oV, oV, ]
ox Oy Oz
= — ov, ov, oV
J(V) — Yy Yy Yy
ox Oy Oz
ov, ov, oV,

| Ox oy oz |

Equation (1.63) can be expressed as

(1.61)

(1.62)

(1.63)

(1.64)

(1.65)

(1.66)

(1.67)
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g =I(V):3(V) (1.68)

This last equation can be rewritten in several other forms

& =S(V):S(V)+ (V) : (V) (1.69)

£, =S(V):S(V) +%W (1.70)

£ =25(V):S(V)~I(V): vV (171)
g :2§(\7):§(\7)—V-_j(V)V}‘N"lV'j(‘N’)J (1.72)
& =z§(\7):§(\7)—v-:(VV)V}HN"[V(V"N’)J (1.73)

where Q (\7) is the rotation tensor. Using the continuity equation for incompressible flows, the last terms
of Eq. (1.72) is zero. The relations for &, , which are given in Eqgs. (1.68)—(1.73), involve three tensors that

are important in many aspect of turbulence modeling. These are the strain-rate tensor, the Jacobian tensor

and the rotation tensor. These three tensors are related through the important mathematical identity

J(V)=S(V)+Q(V) (1.74)

Equation (1.64) can be expanded in Cartesian coordinates

7 :%trace(i(f/)):%v.[(ﬁxz +V)72 +I722)§/J:%V.I7 2y (1.75)

Equation (1.65) can be rewritten as
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(1.76)

Using Egs. (1.66) for y, , Eq. (1.68) for &, , Eq. (1.75) for y,, Eq. (1.76) for ; and the assumption

of constant viscosity in Eq. (1.59), which represents the turbulent-kinetic-energy transport equation for a

Newtonian fluid yields

%JF(V-V)/(:%;E(V)—VE(V):E(VH vV —év(v-ff)z

— — - 1.77
+vV2k—iV.(%pV2V+5V— (1.77)
Yol

The left-hand side of Eq. (1.77) represents the mean substantial derivative of &, which is the time rate

of change of the specific turbulent kinetic energy for a fluid element as it moves with the mean flow. The

term (1/ p)% -3 (V) represents the production because it is the rate at which specific kinetic energy is

transferred from the fluid flow to the turbulent fluctuations. The term — vj (\7) : .:I (\Nf) is commonly referred

to as the dissipation per unit mass, because it is usually approximated as being the rate at which the specific

kinetic energy 1is converted to thermal energy through viscous dissipation. The term

(1/ p)ﬁiVWN/’— (1/3)V(V-\~7)2 is called dilatation because it accounts for interchange between turbulent

kinetic energy and thermal energy resulting from fluid expansion or compression. The term W2k arises

from molecular diffusion, which is the transport of specific turbulent kinetic energy resulting from the

molecular motions within the fluid. The term —(I/ p)V-((l/2)pI7 V4 pv-(1/3 MVVW) is usually

called the turbulent transport term because it includes the transport of specific turbulent kinetic energy that
results from the turbulent fluctuations.

Equation (1.77) provides an additional differential equation for the unknown specific turbulent kinetic
energy. However, as was the case with the Reynolds-stress-transport equation, Eq. (1.77) also introduces
additional unknowns associated with the turbulent fluctuations. Thus, turbulence models that use

Eq. (1.77) must also include closure approximation for those unknown terms. The production term
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(1/ p)% :J (V) in Eq. (1.77) can be expressed in terms of the eddy viscosity, the mean velocity and specific

turbulent kinetic energy by using the Boussinesq hypothesis given in Eq. (1.38), which yields

Lz 5 222 5% 5 - 2 i+ 2w .V 155V
pr.J(V)—ZpS(V)-J(V) 3(k+pVVj5-J(V) (1.78)

The kinematic eddy viscosity v, is defined as

T (1.79)

Using the mathematical identity (A.5) from Appendix A and the kinematic eddy viscosity v, given in Eq.

(1.77), we can rewrite the production term given in Eq. (1.78) as

7:3(V)=2v,S(V): §(V)—§(k+vtv V)s:3(V)

N

:2Vt§(v)3§(V)_§(k+V,V-V)V~V (1.80)

The term V-V is identically 0 for incompressible flow and is sometimes neglected even for compressible

flow. The approximate dissipation term v (\7) :J (\7) in Eq. (1.77) has been modeled in many different

ways depending on the turbulence model selected. In fact, the primary difference between the turbulent
energy equation models in common use today is the manner in which the second term on the right-hand
side of Eq. (1.77) is determined. This term is still an unknown function of the turbulent velocity
fluctuations and is typically denoted ass . Using Eq.(1.68), the approximate dissipation term ¢ can be

written as
g:vj(\N/):j(V)zvgk (1.81)

The dilatation term (1/ p)ﬁiV V- (1/3)1/(V . \7)2 of Eq. (1.77) is zero for incompressible flow, and even for

compressible flow they are commonly assumed to be negligible for the case of flows with high supersonic
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mean Mach numbers [41]. Accordingly, the third and fourth terms on the right-hand side of Eq. (1.77) are

usually neglected for turbulence models in common use today.

%ny-\N’ ~Lv9f -0 (1.82)

The turbulent transport term —(1/,0)V~((1/2)pl7 2\N7+1NJ_\N7—(1/3)1/N~\7WJ in Eq. (1.75) is typically

combined and modeled as a pure gradient-diffusion process, which is analogous to the molecular diffusion

term in Eq. (1.77). The traditional modeled version of the turbulent-kinetic-energy-transport equation is

(Vv :2vt§(V):§(V)—§(k+vtV-V)V~V—E

or
+vv2k+iv-[iwj (1.83)
P O

Equation (1.83) is the turbulence-energy-transport equation that is used with most turbulent-kinetic-
energy models in common use today [13, 17, 18, 19]. When this last equation is combined with the mean
continuity equation and the three components of the Boussinesq approximation for the Reynolds-averaged
Navier-Stokes equations, those five scalar differential equations involve several unknowns. For the case of
incompressible flow with density and molecular viscosity known, these five transport equations involve
seven unknown scalar variables; the three components of the mean velocity vector, the mean pressure and
the three turbulence variables (eddy viscosity, turbulence kinetic energy and dissipation). To close this
formulation, two additional independent equations relating these seven variables are required. The
additional required equations could be either algebraic relations or differential transport equations. For one-
equation turbulence models, both of the additional relations are algebraic. Most two-equation turbulence
models provide one additional transport equation together with an algebraic equation relating the eddy
viscosity to the other turbulence variables.

Assuming a constant molecular viscosity, as it was the case to generate the Reynolds-stress-transport
equation, the traditional modeled version of the turbulent-kinetic-energy transport equation expressed in

Eq. (1.83) can be rearranged as
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%+(§,V)l(zzvtﬁ(V);é(V)—é(k+v,V.V)v.V—g+V.Hv+iJVk}

oy (1.84)

Equation (1.84) is the traditional modeled version of the turbulent-kinetic-energy transport equation
used in most of the turbulence models, such as Jones and Launder [30], Wilcox [16] and Menter [15]. It
assumes the fluid is Newtonian with constant density and constant viscosity. The unknowns are the three
components of the mean velocity vector, the mean pressure, and the three turbulence variables (eddy
viscosity, turbulent kinetic energy and turbulent dissipation rate).

One of the main concerns in the development of the turbulent kinetic energy equation is the
assumption of constant viscosity. In the derivation of the k-¢ model, it was assumed that the flow is fully
turbulent, and the effects of molecular viscosity are negligible. The traditional k-¢ model is therefore valid
only for fully turbulent flows. Phillips [24] suggested an alternative equation for the turbulent-kinetic-
energy transport equation that does not assume constant viscosity. The turbulent-energy dissipation per unit
mass used in the development of the traditional turbulent energy transport equation is not equal to the true
dissipation of turbulent kinetic energy per unit mass as Wilcox [14] mentioned. Phillips [24] showed that a
part of the molecular transport was neglected in the development of the traditional turbulent-kinetic-energy
transport equation. This resulted in neglecting a portion of the turbulent transport term when applying
Boussinesq’s analogy between molecular and turbulent transport. Phillips [24] proposed an alternate model
for the turbulent transport energy equation that does not neglect part of the molecular transport term and
does not assume a constant viscosity at any place. Phillips’s turbulence kinetic energy transport equation is

based on a rigorous application of the Boussinesq approximation.

D. Traditional Energy-Dissipation Turbulence Models

Most turbulence models use an algebraic relation for the eddy viscosity, obtained from dimensional
analysis. By using the Boussinesq hypothesis, the Reynolds stress tensor was expressed in terms of the
mean velocity vector and two additional scalar variables, the turbulent eddy viscosity and the specific
turbulent kinetic energy. However, both v, and k are unknowns functions of space and time. The turbulent-
energy-transport equation provides one additional equation. However, this transport equation also

introduces at least one additional unknown. In the forms of the equation considered to this point, the
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additional unknown introduced by the turbulent-energy-transport equation is one of the following: the
approximate dissipation, the exact dissipation or the RMS fluctuating vorticity. To close the formulation
from this point, one of these unknown scalar functions has to be related to the other turbulence variables
and the mean flow. This is accomplished by observing the length and velocity scales of turbulence.

The algebraic relation for the eddy viscosity is based on dimensional analysis first suggested by
Prandtl [5, 10]. From the kinetic theory of gases, the molecular kinematic viscosity is found to be
proportional to the product of molecular mean free path and the square root of the total specific molecular
kinetic energy. In a similar manner, Prandtl [5] hypothesized that the kinematic eddy viscosity was
proportional to the product of a characteristic length /7, called the mixing length, and some suitable
characteristic velocity. In a later development, Prandtl [10] proposed a more direct analogy between
turbulence and kinetic theory, assuming that the kinematic eddy viscosity was proportional to the product
of a turbulence mixing length ¢ and the square root of the total specific kinetic energy associated with the
fluctuating velocity field.

vtOCZ\/Z

(1.85)

The turbulence energy give information about the strength of the turbulent eddies. However it says
nothing about their size. Predicting turbulent transport requires the knowledge of the characteristic length
associated with the turbulent fluctuations as well as their energy. Turbulence consists of the superposition
of various sized eddies, all having kinetic energy determined by the intensity of their velocity fluctuations.
The distribution of kinetic energy among turbulent eddies of various size is called the turbulence energy
spectrum. Taylor [42] was the first to present a mathematical relationship between the energy spectrum and
the velocity fluctuations. An extensive discussion of their energy spectrum was presented by Hinze [43].
The characteristic length associated with the turbulent transport should be some kind of weighted average
of the characteristic lengths for all eddies that make up the energy spectrum.

The kinetic energy results from superimposed periodic motions of various frequencies. Such a motion

can be characterized in two different ways, either in terms of a characteristic velocity V., and a
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characteristic frequency ,, or in terms of a characteristic velocity and a characteristic wavelength. A

wavelength for turbulent motion is commonly called a length scale and is usually denoted by /.

VC
,

! =

(1.86)

c

The exact physical interpretation of the characteristic angular velocity has been a matter of some
controversy. The characteristic angular velocity is often taken to be the proportional to the approximate

dissipation divided by the specific kinetic energy.

(1.87)

This definition links the characteristic length of the turbulent flow field to the characteristic length of
turbulent dissipation, not to the characteristic length of the eddies in which the most energy is found.
Substituting Egs. (1.166) and (1.86) in Eq. (1.85) yield an expression for the turbulent eddy viscosity

k2
vi=Cu—/ (1.88)

where C, 18 a closure coefficient. This relationship provides one algebraic relation for the k-¢ turbulence

model.
The modeled transport equation for the turbulent dissipation ¢ is usually developed by analogy with
Eq. (1.84) and can be written for incompressible flows as

oe (< EZ < A< &’ 1%
E‘F(V‘V)E:ZCSIIQ;S(V)ZS(V)—CSZ7+V'{(V+o_—tng:|

(1.89)

&

where C,;, C,, and o, are closure constants. Note that the turbulent dissipation equation is traditionally

constructed by dimensional analysis and is not developed rigorously from the Navier-Stokes equations.
Wilcox [21] makes mention of this concern and gives what he terms an “exact” equation for the turbulent

dissipation by taking a moment of the Navier-Stokes equations using the definition of the turbulent
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dissipation. However, the resulting equation is extremely complicated and Wilcox submits that closure
coefficients for the resulting differential equation are all but impossible to measure at this point. Thus the
modeled version of the dissipation transport equation is traditionally used for lack of a useful version of a
more rigorously derived equation.

The traditional k-¢ model is a semi-empirical model based on transport equations for the turbulence
kinetic energy and its dissipation rate. The model transport equation for & is derived from the Navier-Stokes
equations, while the model transport equation for & was obtained using physical reasoning and bears little
resemblance to its counterpart. In the derivation of the model, it was assumed that the flow is fully-
turbulent and the effects of molecular viscosity are negligible. The traditional k-¢ model is given in Egs.
(1.84), (1.88) and (1.89).

The k-¢ model can be reparametrized with a simple change of variable to eliminate the so-called
dissipation per unit mass, ¢, in favor of the dissipation frequency, w, which is defined by Eq. (1.87). From
this definition, € is proportional to the k- product and choosing the proportionality constant to be C, yields

the change of variables

S
I
&

a
=

u (1.90)

Applying Eq. (1.90) to Egs. (1.84), (1.88) and (1.89) produces the k- turbulence model for incompressible

flow. The algebraic equation for the kinematic eddy viscosity is given by

1% —i
" (1.91)
The turbulent-energy-transport equation is given by
ok (< Z = 3= 1%
—+|V-Vk=2v,S(V):S(V)-C koo +V || v+—L |Vk
o+ Vovk=2vswy:sw-c, H GJ } 1)

The dissipation-frequency-transport equation is obtained by analogy with the transport equation for the

turbulent kinetic energy
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aa—‘t" +(V-v=2c, %é(V) :S(V)=C, 0 +V- Kv +LJV4

o, (1.93)

where C,, Cy,1, Co2, 01 and o, are closure coefficients.
V. Phillips’ Turbulent-Kinetic-Energy Equation

A. Main Concerns with the Traditional Turbulence Models

At this point, several concerns with the traditional k- or k- turbulence models can be identified. The
dissipation length scale is that associated to the smaller turbulent eddies having the highest strain rates per
unit kinetic energy, However, the larger turbulent eddies carry more energy and are primarily responsible
for the transport of momentum energy in a fluid. The transport equations for the second turbulence
variables were obtained simply from dimensional analysis and analogy with the turbulent-energy-transport
equation. They were not developed in a rigorous manner from the Navier-Stokes equations. The so-called
turbulent-energy dissipation per unit mass is not equal to the true dissipation of turbulent kinetic energy per
unit mass. Because the approximate turbulent-energy dissipation per unit mass that is used in the traditional
k-¢ or k-w turbulence models includes a portion of the total molecular transport, the so-called molecular
transport terms do not include the total molecular transport of turbulent kinetic energy per unit mass.
Because a part of the molecular transport was neglected, subsequent application of Boussinesq’s analog
between molecular and turbulent transport also results in neglecting a portion of the turbulent transport of
turbulent kinetic energy per unit mass. Using the dissipation length scale to define the eddy viscosity
predicts a Reynolds stress tensor that is inversely proportional to the molecular viscosity, whereas the
Reynolds stress tensor should not depend directly on molecular viscosity.

The dissipation rate transport equation remains the most uncertain part of turbulence modeling. The
transport equation for the second turbulence variable is traditionally constructed by dimensional analysis
and analogy with the turbulent-energy transport equation. It is not developed in a rigorous manner from the
Navier-Stokes equations. This transport equation has no basis in physics. Wilcox [14] mentions this
concern and gives what he terms an exact equation for the turbulent dissipation by taking a moment of the

Navier-Stokes equation using the definition of the turbulent dissipation. However, the resulting equation is
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extremely complicated and Wilcox submits that closure coefficients for the resulting differential equation
are all but impossible to measure at this point. Thus a simplified dissipation equation modeled based on the
transport equation of the turbulent-kinetic energy is traditionally used for lack of a useful version of a more
rigorously derived equation.

In the original development of the k-¢ turbulence model and in many subsequent presentations of the

turbulent-energy-transport equation, the parameter ¢ is presented as being exactly the turbulent energy

dissipation per unit mass. With this misinterpretation, the molecular diffusion term W2k is commonly
presented as being the total molecular transport of turbulent energy per unit mass. Although it is now
generally recognized that ¢ is not precisely the turbulent-energy dissipation per unit mass, its continued use
is typically justified on the grounds that the additional terms are small compared with the turbulent
transport terms. In fact for most turbulent flows, all molecular transport can be neglected in comparison
with the turbulent transport. The most significant concern with the traditional k-¢ or k- turbulence models
is not the lack of precision in defining the dissipation or the molecular transport. A more significant
concern is that associated with the application of the Boussinesq analogy between molecular and turbulent
transport to a molecular transport term that has been less than rigorously developed.

The traditional k-¢ or k~w turbulence models are all based on approximating the turbulent transport of
turbulent kinetic energy as pure gradient diffusion. For the case of incompressible flow, these models all

assume a turbulent kinetic energy flux given by (vt /oy )Vk. A more rigorous development suggests that

the improved results for incompressible flow might be obtained by using a turbulent kinetic energy flux

that is specified by (v, / o-k){(S/ 3)Vk—2V-lvt§(V)J } This is based on a more direct analogy between

turbulent and molecular transport.

Perhaps the greatest concern with traditional turbulence models is that they all fail to exhibit proper
dependence on molecular viscosity. From the definition of the Reynolds stress tensor, we see that the
Reynolds stresses depend only on the fluid density and turbulent velocity fluctuations. They are
independent of the other natural fluid properties such as the molecular viscosity. Hence if the Boussinesq
analogy between turbulent and molecular transport is strictly followed, the dynamic eddy viscosity should
be related to only the fluid density and turbulent velocity fluctuations. The eddy viscosity should not

depend directly on molecular viscosity.
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B. Phillips Turbulent-kinetic-energy transport equation

Phillips’s turbulent-kinetic-energy transport equation [24] does not originate from the trace of the
Reynolds stress transport equation as the traditional model does. Phillips bases his transport equation on the
direct application of the Navier-Stokes and RANS equations. Phillips uses a rigorous application of the

Boussinesq’s hypothesis and defines an alternate algebraic relation for the turbulent eddy viscosity.

1. Dot Product of the Navier-Stokes Equations with the Velocity Vector

The turbulent-kinetic-energy transport equation can be developed directly from the mechanical energy
equation, which is obtained by taking the dot product of the fluid velocity vector with the Navier-Stokes
equations. The Navier Stokes equations expanded using the geopotential altitude for the gravity force as

given in Eq. (1.8) is

o 2ty o |-y s viv(o

ot (1.94)

where p represents the total hydrostatic pressure, and was define in Eq. (1.7). Taking the dot product of

Eq. (1.94) with the fluid velocity vector yields

2 v-pisow |5 izt
V.| —+(V- V)V |=V.V-2u8(V)|-Vp+g,ZV
p {at (V-v) } 1V |-V +g02V(p) 1.95)
Using the mathematical identity (A.4) from Appendix A in the left-hand side of Eq. (1.95) yields
Ly2 -
2 4v.viip? =V-[V-[2 SV]—VA zv ]
The first term of Eq. (1.96) can be expanded as given in the mathematical identity proven in (A.7)
\£ [v : (2;B(V))J= V- (,U[V(% v? )+ \% v)v])— 248(V):S(V) (197)

Hence, the dot product of the Navier-Stokes equations with the fluid velocity vector, which represents the

mechanical energy equation for a Newtonian fluid is
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oLy?

A= +V-V(%V2)=V-(,L1[V(%V2)+(V-V)V])

o (1.98)
~V-[Vh-go2V(p) |- 248(V):S(V)

The term V-(,u |_V(%V 2)+ (V-V)VJ) in Eq. (1.98) accounts for the molecular transport of mechanical

energy. The term —V - [Vf) —g¢ZV (p)] in Eq. (1.98) describes the rate at which the mechanical energy is
transported from one point to another within the fluid as a result of molecular motion. The term

—2u §(V):§(V) in Eq. (1.98) is the viscous dissipation of mechanical energy per unit volume. It

represents the volumetric rate at which mechanical energy is converted into thermal energy through the

process of viscous dissipation. Using the velocity Reynolds decomposition given in Eq. (1.17) yields

P2=v.v=(V+V)(V+V)
=V.V+2V.V4+V.V (1.99)
=V242V.V+V?
Using Eq. (1.99) and (1.17)—(1.18) in Eq. (1.98) gives
3(1V2+V~\7+1\~72)+V~V(IVZ+V-\7+1\~72)+\~7-V(1V2+V~\7+1\72)
Pl 2 2 2 2 2
=V-(y[v(%vz+V-\~7+%\72)+(V-V)V+(\~7~V)V+(V-V)\7+(\7-V)VD
I I (1.100)
—V-[Vpr—goZV(p)]—V-[Vpr—goZV(p)]
—248(V):S(V)—4,8(V):S(V)-28(V):S(V)
Taking the ensemble average of the right-hand side of Eq. (1.100) yields
01— — ~ 10 — [(1— — =~ 1<\ =~ {(1— —~ =~
p{a(;Vz+V'V+;V2)+V.V(;V2+V~V+;V2)+V~V(;V2+V'V+;V2)}
_ 19 v v v v vl Vv v, L2
—pE(EV w1y )+V-V(EV +1v )+V-V(EV +V-V+1V?) (L.101)

<l

:p{ﬁ(lV2+k)+V~V(1V2+k)+\7-V Y +\~7-V;\72}
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where k is the turbulent kinetic energy defined in Eq. (1.39). Taking the ensemble average of the first term

on the left-hand side of Eq. (1.100) gives

VIV vV Ve N e (o)
- ~(/J[V(%V2+k)+(V-V)V+WD (1.102)

Taking the ensemble average of the last two terms on the left-hand side of Eq. (1.89) gives

Vp +V§—gOZV J—\N"lVlT?JFV;—goZV(P)J

~248(V):S(V) - 448(V): S(V) 2:8(V):5(V)

=-V. [vfa - g,2V(p ] (S(V) S(V)+S(V): S(V)j

—n

-V.

(1.103)

where ]_3 represents the mean value of the hydrostatic pressure p defined in Eq. (1.7).
p=p+ VA +g V-V

Similarly jN} represents the fluctuating component of the hydrostatic pressure p .

(1.105)

Substituting Eqgs.(1.101)—(1.102) in Eq. (1.100) gives the mechanical energy equation

v.(ﬂ[v(%vz+k)+(V-V)V+WD (1.106)

V[V - gyz9(p)]-V -Vj - 2y(§(V) S(V)+S(V): §(\7)j

7 )9l 9 ) 9 T
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2. Dot Product of the RANS Equations with the Mean Velocity Vector

The Reynolds-Averaged Navier-Stokes equations can be written from Egs. (1.36)—(1.37) using the

definition of ;_5 given in Eq. (1.104) as

p{§+(V‘V)V+W}=V‘[2“§(V)]_V1§+gOZVP (1.107)

Taking the dot product of this equation with the mean velocity vector gives the mean mechanical energy

equation
p{a\;—tv V[(V-V)V]JrV-(‘N"V)N} ( [Z”S(V)D (b -2020) (1.108)

Using the mathematical identity given in Eq. (A.7) expanded in terms of V in place of V yields

V. [v : (2 ;E(V))Jz V. (y[V(% 72 (V- V)V])— 218(V):5(V) (1.109)

Using the mathematical identity given in Eq. (1.109) in Eq. (1.108) gives

o Y[R R v el 72 (o]

S - (- (1.110)
~2u8(V):S(V)-V (V- g,2vp)
Using the mathematical identity (A.4) yields
o577
P2+ (VIGTH+V- VW |=v(« [V( 72)s(v-vWV)
(1.111)

V- (Vh - 202Vp)- 248(V):5(V)

After applying the mathematical identity (A.8) to Eq. (1.111) yields
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oLv?

Yo,

+(V~V)(%I72)+V~(V-VV_N)—V-(WJ

R (1.112)
(ﬂ[v( V2) VV)V]) (Vp - g02vp)-2u5(V):8(V)

Taking the ensemble average of the mathematical identity (A.9) yields

v.[v.(ﬁj =v.v(v.vp(v.vxv.w_[%);i(v)

e N N 1.113
:V-VV-V+V-(VV-V)—(VV):J(V) (1.113)
After applying the Eq. (1.113) to Eq. (1.112) gives

oly?

P +(V-VET7H+V V[V -V —[WJ;TI(V)

RN (1.114)
:V-(,u[V(% ) (v V)V]) (vp gOZVp) 2u4S(V):S(V)

This last equation, Eq. (1.114), represents the mean mechanical energy equation.

3. Turbulent-kinetic-energy transport equation

The turbulent-kinetic-energy transport equation is based on the difference between the ensemble
average of the dot product of the Navier-Stokes equations with the velocity vector and the dot product of
the RANS equations with the mean velocity vector. Subtracting the mean mechanical energy equation

given in Eq. (1.114) from the mechanical energy equation given in Eq. (1.106) yields

,{%mm(m V)4V vifﬂ}

:v.(ﬂ[vm({z._vﬁD_{z Vi 2ﬂ(§ §(\~,)j (1.115)

Applying the continuity equation for the fluctuations given in Eq. (1.24) to the mathematical identity

(A.10) and taking the ensemble average yields
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PV I(V2)=v- (L)

(1.116)
Taking the ensemble average of the mathematical identity (A.11) yields
Vvp=vpv]-3v-¥)
P (p j P (1.117)

Applying the definition of the turbulent stress tensor given in Eq. (1.35) and the turbulent momentum

transport term expressed in Eq. (1.36) to Eq. (1.115) gives

_ === == 1.118
+V~(ka—VV-?)—V-(1pV2V+f9V) (1.118)

Applying the definition of the fluctuating hydrostatic pressure given in Eq. (1.105) to Eq. (1.118) yields

o SV V| <3024 S5 |+ 7+ 2wV o)

3 — 7 R (1.119)
+V-(,qu—VV-i)—V-(;pV2V+(p+§yV~V)VJ

After simplifying Eq. (1.119) yields the turbulent energy transport equation

p{%ﬁ.w}%:iw)—zu(éﬁ):§<V>—i(V-V)Z]ﬂWV

B} L SE = . =% (1.120)
+V~(,qu—vV-r)—V-(5pV Vip +§,uiV~VW)
o= = < = ~ ~\2
The term f:J(V) represents the production. The term —2/¢(S(V):S(V)—;(V.V) Jis the viscous

dissipation. The term ;‘V\N" is the pressure dilatation. The term V-(,qu—VV ~z:')is the molecular

transport of turbulent kinetic energy per unit volume. The term —V-(% ,0172\N7+]79\~7)+§,L1V~\N7 Vv
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accounts for the volumetric turbulent transport of kinetic energy. The only approximation that was made in
the development of Eq. (1.120) is that of a Newtonian fluid.

The molecular transport of turbulent kinetic energy is not a simple gradient diffusion process. The term
u Vk is gradient diffusion. However, the contribution from v V-7 is not necessarily gradient diffusion.

Accordingly, even if we accept the Boussinesq analogy between molecular and turbulent transport, we

should not expect turbulent transport of kinetic energy to be a simple gradient diffusion process in general.

4. Boussinesq’s Approximation

Applying the Boussinesq analogy between molecular and turbulent transport to the turbulent transport

term %p V2V +pV +§,uiv Y }\N/' in Eq. (1.120) suggests

oy (1.121)

For this Boussinesq model, the Reynolds stress tensor is given by Eq. (1.38)

V3= 2V-[,ut §(V)]—§(pk+,u,V-V)

(1.122)
Using Egs. (1.121)—(1.122) the new transport kinetic energy equation given in Eq. (1.120) becomes
p{%-FV'Vk:I - %:j(V)—Zu(é(V) : §(V)—;(V.V)2j+ﬁiv-\7)
(1.123)

+V-HV+V—’J (ka—ZV‘[utg(V)]+§(pk+ ﬂ,V-V))}
O

The production term in this new model is the same as the production term in the traditional model,
which was given in Eq. (1.79). Applying Eq. (1.79) to Eq. (1.123), the Boussinesq based turbulent energy

transport equation is
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p|:%+V-Vk} =241, S(V):S(V) =2 (0k + 41,V - V)V -V
—2;{§(V):§(V)—;(V-V)2J+'ﬁiv-\7i

W'KH;_;J (ka+§V(pk+ﬂ,V V)-2v. [ﬂﬁ(V)])}

(1.124)

This last equation can be simplified by denoting S 2 and S? the magnitude of the mean and fluctuating

components of the strain rate tensor, respectively

(1.125)
§2 =§(\N7)§(‘N7) (1.126)
Using Eqgs. (1.125)—(1.126) in Eq. (1.124) yields
| Zvvi]-2u5° _g(pkwtv.v)v.v_zﬂ(w _;(v.v)zj
= v — = _ 1.127
L5V )+V~Kv+’] (ka+iV(pk+,utV~V)—2V'[ytS(V)])} (1127
%k

For incompressible flow V(pk)z pVk and the Boussinesq based turbulent energy transport equation given
in Eq. (1.127) reduces to

p{%JrV.Vk:l =24,8% —2uS? +V-Kv+:fj(ngk—2V~[ut§(V)m
k

ot (1.128)

~ ~ =y
The term —ZyS2 in Eq. (1.128) for incompressible flow or the term —2;1(52—;(V-V) ] for

compressible flow in Eq. (1.127) represents the exact volumetric dissipation of turbulent kinetic energy. It
is an unknown function of the turbulent velocity fluctuations. To close the formulation, there needs to be an

additional equation to relate this dissipation to the other turbulence parameters and the mean flow. If
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Eq. (1.127) is to be used as part of the conventional k-¢ turbulence model, this volumetric dissipation can be

written in terms of the unknown dissipation per unit mass

~ 17 =2 == == 1/ ~»
g=20|S*——=(V-V| [=2v| S(V):S(V)-=(V-V
g V( 3( )j V(()()3( )j (1.129)
Using Eq. (1.129) to model the dissipation in Eq. (1.127) and neglecting the pressure dilatation term, as it
was done in the development of the traditional model, yields the turbulent-energy transport equation that

can be used to replace the traditional turbulent-energy transport equation given in Eq. (1.84)

p{%ﬁ-v-v}c} =2u,8* —%(pk+ytV-V)V~V—pE

+V HV +LJ (ka +§V(pk+utv V)-2v. LS(V)D} (1.130)
Ok

The symbol & in Eq. (1.130) is simply used to indicate that this is the exact dissipation per unit mass,
as defined in Eq. (1.129) and not the approximate dissipation per unit mass, defined in Eq. (1.80).

Nevertheless, conventional models are based on the assumption that ¢ is the dissipation per unit mass.

Thus, ¢ and £ can be interchanged in conventional k-¢ and k- turbulence models.

The difference between Eq. (1.84) and (1.130) resides only in the last term on the right-hand side,
which accounts for the molecular and turbulent transport of kinetic energy. Eq. (1.84) is based on the
approximation that the turbulence parameter &, defined in Eq. (1.80), includes only the viscous dissipation.
This approximation results in neglecting a portion of the molecular transport. Although the neglected
molecular transport term is small, subsequent application of the Boussinesq analogy between molecular and
turbulent transport results in also neglecting a portion of the turbulent transport, which may not be
insignificant. The more rigorous development used to obtain Eq. (1.130) produces a molecular transport
term that is based only on the assumption of a Newtonian fluid. Thus, one might expect the Boussinesq
analogy applied to this molecular transport term to be more realistic. For the traditional term used in
Eq. (1.84), both the molecular and turbulent transports are modeled as pure gradient diffusion. However,
the more rigorous development of Eq. (1.130) shows that, in general, this transport is not pure gradient

diffusion.
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The exact dissipation term defined in Eq. (1.129) can be written as

:V{ﬁz J%W—W'{iw-%ﬁ V-\NINH (1.131)

where @ is the root-mean-square fluctuating vorticity.

N2_ and . iand
14 —iVxVHVxV’ (1.132)

Equation (1.120) can be rewritten in terms of the turbulent vorticity

p[%+v'v"} =%:3(V)—ﬂ{52 +%(V-\7)z —2V-{%(V~%)+W}}
“ﬂv'WW'<“W‘“’V"?)‘V'GPWW_V%;JW) (1.133)

The only approximation that was made in the development of Eq. (1.133) is that of a Newtonian fluid.

Applying Boussinesq’s analogy between molecular and turbulent transport gives

IR
+ﬁv-_\7)+v.{(v+%j(pw{_v.;)} (1.134)

Using Eq. (1.122) for the Reynolds stress tensor and Eq. (1.38) for the Reynolds stress tensor in Eq. (1.134)

produces the Boussinesq transport equation

p{%-i-v-Vk}:lujz —%(pk+/1tV~V)V-V—/m~)2 —%,u(V-\N’)Z

ot
— 4y - [%{%V(pk +uV-V)-v. [ﬂﬁ(v)]} - %W}
T oo b o ]

(1.135)
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Huang et al. [41] have shown that the dilatational dissipation rate and other terms involving the
divergence of the fluctuating velocity are negligibly small, at least up to supersonic mean Mach 3. Hence
Eq. (1.135) is closely approximated as

p{%+VoVk} = 2,th§2 —%(pk+,u,V-V)VoV

B 11 v s(V
—/ua)z —4/,1Vo|:;{§V(pk+ﬂ[V'V)—v'[/st(v)]}:| (1.136)

o[ ot 2ol )2 s

The three lines on the right-hand side of Eq. (1.136) are production, dissipation and the combination of
molecular and turbulent transport, respectively. For steady-state incompressible flow, the continuity

equation defined in Eq. (1.25) substituted in Eq. (1.136) yields

V. Vk=2v,5? —V((T)z +4v-{%v1c—v-

Vs(v)]}]

+v.{(v+;€j@w{_2v . [Vté(v)m (1.137)

Based on the dimensional analysis given in Eq. (1.86), the mean vortex wavelength, A, is defined in terms
of the ratio of the mean square magnitude of the fluctuating velocity to the mean square magnitude of the

fluctuating vorticity.

V-V

2V xV)-[vxV) (1.138)

22 ZCA

In terms of the turbulent kinetic energy defined in Eq. (1.39) and the root-mean-square fluctuating vorticity

@* , the mean vortex wavelength is

P=C,—
A2 (1.139)

Substituting Eq. (1.166) in Eq. (1.137) yields
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— — k 1 =
V.-Vk=2v,5> —v(cﬂ A—2+4v-{§v1c—v : [V,S(V)]}]

+v{(v+ov_;j@wc—zv vﬁ(V)]H (1140

The algebraic relation for the turbulent eddy viscosity is

172
vi = (1.141)

The continuity equation defined in Eq. (1.25), the Boussinesq-RANS equations defined in Eq. (1.42),
the algebraic equation for the kinematic eddy viscosity given in Eq. (1.143) with the turbulent-energy-
transport equation from Eq. (1.142) and a closing equation for the mean vortex wavelength A define a
system of equations for an incompressible steady-state fluid. Eventually, the model will derive a transport
equation for the second turbulence variable. To assess the accuracy of the new turbulent model, the
resulting velocity, turbulent kinetic energy and vorticity will be compared to reference distributions.
Because of the high frequencies of the turbulent fluctuations, it is not possible to measure the vorticity at
high Reynoldds numbers. Therefore, the vorticity has to be compared to an algebraic relation. This
dissertation is aimed at developing a reference distribution for the second turbulence variable at fully rough

flows.

C. Fully Developed Flow in a Circular Pipe

Fully developed flow in a pipe has historically been the foundational case and has been studied in great
detail. This flow scenario is one of the easiest cases to evaluate the closure coefficients.

For fully developed axisymmetric flow in a circular pipe of radius R, there can be no &-velocity
component, no change in the mean velocity or pseudo mean pressure with respect to 8, and no change in

the mean velocity with respect to z,

= oV p ov
V =0 —:0’ —:O, —:O
o 20 P) oz (1.142)

The mean strain-rate tensor is in cylindrical coordinates
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1. Continuity Equation
For steady incompressible flow, the ensemble averaged continuity equation expressed in Eq. (1.22)

becomes

V-V=0

(1.144)
Using Egs. (1.142), the continuity equation becomes
Lol
1ok7)
r or (1.145)
The no-slip boundary condition at the pipe wall requires
7, (R)=0 (1.146)
Integrating Eq. (1.145) subject to Eq. (1.146) results in
7, (r)=0 (1.147)

2. Boussinesq RANS Equations
Applying Egs. (1.142) and Eq. (1.147) to the steady-state, incompressible Boussinesq RANS equations

given in Eq. (1.42) results in

A

0= 6171,,— ! a’_’iz+1 g (v+v,)raVz i
p or p Oz r or

(1.148)

The r-component of Eq. (1.148) yields
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=0, p(r6,2)=p(z) (1.149)

The pseudo mean pressure depends only on the axial coordinate z and the mean velocity depends only on
the radial coordinate r. Thus, the z component of Eq. (1.148) can be written as an ordinary differential

equation.

L (v+v )rdVZ _1d
r dr Yodar | podz (1.150)

The symmetry boundary condition at the pipe centerline and the no-slip boundary condition at the pipe wall

require

av,
—=(r=0)=0 (1.151)
V.(r=R)=0 (1.152)

The right-hand side of Eq. (1.150) is a function of only z, whereas the left-hand side is a function of only r.
Thus both sides of Eq. (1.150) must be constant. Integrating this equation once with respect to » and

applying Eq. (1.151) gives

dr 2pd (1.153)

Uu or
P f2pdz ‘ 2 pdz (1.154)

Hence, Eq. (1.153) can be written as
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-
R (1.155)

3. Turbulent-Kinetic-Energy Equation
For fully developed axisymmetric flow, there can be no change in the turbulent energy with respect to

either @ orz

(1.156)

(1.157)

Vi _ld Y, \dk
V.KV—'_O_JVIC}_I’dr(r(v—'_o_kjdrj (1.158)

Using Eqs. (1.142)~(1.143) and (1.156)~(1.158) in Eq. (1.140) yields

A E A
3rdr O ) dr " ar Y2 3radr\ dr (1.159)

The left-hand side of Eq. (1.159) is the net outflow of turbulent kinetic energy per unit volume

resulting from the combined effects of molecular and turbulent diffusion. The two terms on the right-hand
side of Eq. (1.159) are the generation and the dissipation, respectively. If the molecular viscosity is

constant, a portion of the dissipation term can be combined with the molecular diffusion to yield

—\2
_ldifv svi ) dk)_ fdV ok
rdr|\3 3o, ) dr " dr AR (1.160)

4.  Nondimensional Form

The formulation can be nondimensionalized using the following dimensionless parameters
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The algebraic equation for the kinematic eddy viscosity becomes
~ o+
v, =Mk (1.163)

Substituting Egs. (1.161) in Eq. (1.160), the turbulent energy transport equation is non-dimensionalized as

2
(0 0 et (et )
dar|\3 30, ) dar | ' dF Yy (1.164)

Defining

dF (1.165)

and using this definition along with the Boussinesq-RANS relation for the velocity gradient, the second-
order k-transport equation can be written as two first order transport equations with associated boundary

conditions

@0 R
dr ‘; 59[ ] s P wall
—+ r
3 3oy,
(1.166)
2 2
A0 . (dut) . okt
dr _Vt( df] _C/?. 1;[ r, Q‘r—O_O

This gives a system of equations for the turbulent transport equation based on a fourth order

Runga-Kutta algorithm, along with the two boundary conditions. However, the equation for the second
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turbulence variable is still missing and the value of the turbulent kinetic energy at the wall is unknown. An

algebraic relation for the second turbulence variable will be proposed in the following chapter.

D. Closing the Phillips Energy-Vorticity Turbulence Model

A closure problem arises in the Phillips energy-vorticity turbulence model because the second
turbulence variable is unknown. The second turbulence variable could be represented by the root mean
square fluctuating vorticity or the mean vortex wavelength. A relation between these two variables exists
and is given in Eq. (1.139). Two-equation turbulence models give a differential equation for the second
turbulence variable. This differential equation is traditionally obtained by analogy to the turbulent kinetic
energy and dimensional analysis. This differential equation is dimensionally correct and has no physical
basis.

Hunsaker [44] proposed several closure methods for the energy vorticity turbulence model in the
traditional two-equation method. However, all these attempts were unsuccessful. Hunsaker mainly
investigated a transport equation for the root mean square fluctuating vorticity to close the model. Several
versions were given for the transport equation of the root mean square fluctuating vorticity featuring
different closure coefficients. However, the closure coefficients could not be found to match experimental

data.

VI. Summary and Conclusions

The turbulent-energy-transport equation is usually developed directly from the trace of the Reynolds-
stress-transport equation. Subsequently, the turbulent-energy dissipation per unit mass is modeled using
some approximations, although it is often referred to incorrectly as the exact dissipation. This modeling of
the dissipation has led to omitting some elements in the molecular transport term. The molecular transport
term is not a pure gradient diffusion process as is currently assumed with traditional models.

The dissipation of turbulent energy has been studied in great detail and it is now generally recognized
that the traditional definition for ¢ is not precisely the turbulent-energy dissipation per unit mass. However,
the continued use of this traditional definition for & has been justified on the grounds that the additional
terms are small [41]. It is not surprising that these terms have been shown to be small, because they actually

arise from the fluctuating compressibility effects and molecular transport, not from viscous dissipation.
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Because compressibility effects are negligible for Mach numbers less than 0.3 and turbulent fluctuations
are typically on the order of 10 percent of the mean flow, fluctuating compressibility effects are usually
negligible for Mach numbers less than three. Furthermore, for most turbulent flows, molecular transport is
negligible compared to turbulent transport. Thus, the most significant concern with the traditional k-¢ and
k- turbulence models is not in the lack of precision in defining the energy dissipation.

Molecular transport of turbulent energy has not been studied in such detail. There has been little or no

discussion in the literature of the fact that the molecular diffusion term, W2k , is not the total molecular
transport of turbulent energy per unit mass. Little interest has been shown in molecular transport of
turbulent kinetic energy because molecular transport is typically recognized as being negligible compared
to turbulent transport. What seems to have been overlooked in literature is the fact that we cannot
adequately apply the Boussinesq analogy between molecular and turbulent transport without a thorough
understanding of molecular transport. The alternate turbulent-kinetic-energy transport equation, which is
developed from moments of the Navier-Stokes equations, provides this requisite understanding. The most
important contribution in the development of the proposed turbulent-kinetic-energy transport equation is
the inclusion of the last term in Eq. (1.140), which has not been included in any other turbulence models.

Based on fewer assumptions, Phillips developed a turbulent-kinetic-energy transport equation that
could significantly improve the accuracy of turbulence modeling and its understanding. The continuity
equation defined in Eq. (1.25), the Boussinesq-RANS equations defined in Eq. (1.42), the algebraic
equation for the kinematic eddy viscosity given in Eq. (1.143) and the Phillips turbulent-energy-transport
equation given in Eq. (1.142) define a system of equations for an incompressible steady-state fluid.
However, the equation describing the transport of the second turbulent variable is missing.

With traditional two-equation energy-dissipation turbulence models like the k-¢ and k- models, the
transport equations for the second turbulence variable were obtained simply from dimensional analysis and
analogy with the turbulent-kinetic-energy transport equation. They were not developed in a rigorous
manner from the Navier-Stokes equations. These transport equations have no basis in physics. About all
that can be said concerning the validity of these dissipation transport equations is that they are
dimensionally correct. Nevertheless, some success has been achieved using this approach. The Phillips

energy-vorticity turbulence model could be closed in a similar manner. However, Hunsaker [44] has
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examined this approach in considerable detail with no success. It now seems apparent that a more rigorous
approach to the development of a turbulent-vorticity transport equation must be taken.

Eventually, the Phillips energy-vorticity model will encompass a transport equation for the root-mean-
square fluctuating vorticity. Once this transport equation is developed, the model must be compared to
experimental data or established relations for the mean velocity, turbulent kinetic energy, and fluctuating
vorticity distributions. However, the fluctuating vorticity cannot be measured directly, and at high
Reynolds numbers, the fluctuating components of velocity include frequencies too high to be measured
accurately. Because experimental data for the fluctuating variables are unobtainable for fully rough flow
and there are currently no established relations for the distributions of the turbulence variables, a relation
for the second turbulent variable needs to be developed. This algebraic relation has to be derived such that
the mean velocity distribution and the friction factor obtained from the resulting model match the well
established relations obtained for fully rough flow. The following chapter will present an algebraic relation
for the mean turbulent wavelength, which has been developed for fully rough pipe flow. The
mean-fluctuating-vorticity distribution can be obtained directly from this mean-turbulent-wavelength
distribution and the turbulent-kinetic-energy transport equation by applying the algebraic relation given in

Eq. (1.139).
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CHAPTER 2

EMPIRICAL RELATION FOR THE MEAN VORTEX WAVELENGTH

I. Introduction

Modeling turbulent behavior near perfectly smooth walls can present significant difficulties. All
available experimental data have been taken near walls with some degrees of roughness. Because at high
roughness Reynolds numbers, certain flow properties become independent of roughness Reynolds numbers,
the argument has been made that developing a model for fully rough flow may be more straightforward
than developing a model that exhibits the correct behavior near a perfectly smooth wall. Such a rough-wall
model could then be extended to lower roughness Reynolds numbers and eventually to the hydraulically
smooth surface, which is simply a low-roughness-Reynolds-number asymptote. The first step in this
process is to develop a turbulence model that is consistent for high roughness Reynolds numbers.

In most practical applications, the surface over which flow occurs is significantly rough, and in spite of
extensive studies, there is still much to be learned. The significant effects created by surface roughness on
skin friction and velocity distributions have led many investigators to study this problem. Data on velocity
distributions for wall-bounded flow over hydraulically smooth surfaces are available and laws controlling
the resistance or friction factor are well established and widely accepted, see the work of Prandtl [45] and
Nikuradse [46]. However, similar experimental data obtained from rough surfaces are sparser. The most
widely accepted correlations for pipe flow are all fundamentally based on the work of Nikuradse [47].
Nikuradse proposed an empirical formula based on thorough experimental investigations to predict the
friction factor over a wide range of Reynolds numbers covering both laminar and turbulent flows having
either hydraulically smooth or rough surfaces.

Traditionally turbulence models have been developed for the case of hydraulically smooth walls and a
select few have been subsequently modified to model rough walls. At present, the rough wall option is only
a secondary feature with w-based turbulence models, such as k- [13, 48], shear stress transport [15, 49]
and w-Reynolds stress models [50] or for the case of laminar flow. For rough walls, the logarithmic
velocity profile still exists but moves closer to the wall. Roughness effects are accounted for by modifying

the wall functions based on an equivalent sand-grain roughness. In fact, the roughness height specified in
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turbulence models is not exactly equal to the roughness height of the surface under consideration. Wall
friction depends not only on roughness height but also on the type of roughness such as shape and
distribution. Guidance can be obtained from White [51] and Schlichting [52, 53]. The k- model [14] has
been accepted as the most capable of modeling rough-wall effects without implementing wall functions.
The effects of surface roughness are commonly incorporated into the k-w model by simply altering the
surface boundary condition on .

Many two-equation turbulence models have been proposed on the basis of two transport equations, one
for the turbulent kinetic energy and one for the dissipation. Although the 4-¢ and k- models are often
thought to be fundamentally different, both models are based on a transport equation for a dissipation
parameter, either € or @, which can be related through a change of variables. Robinson et al. [54] developed
a k-C model based on a transport equation for the enstrophy. The model was further developed by Robinson
and Hasen [55]. The enstrophy is defined as the mean square magnitude of the fluctuating vorticity.
However, the approximate turbulent-energy dissipation term is defined in their model through a change of
variables, which contradicts their definition for the enstrophy.

The Phillips energy vorticity turbulence model is intended to be a two-equation model, which will
combine the turbulent-kinetic-energy transport equation given in Eq. (1.140) with a turbulent-vorticity
transport equation. To evaluate closure coefficients and assess the model, the distribution of the turbulence
variables resulting from the model must be compared to reference distributions. For fully rough pipe flow,
there are no accurate experimental data available which describe the fluctuating velocity components.
Therefore, the distributions of the turbulent kinetic energy and the fluctuating vorticity are not available.

This chapter presents an overview of some of the fundamental work on rough pipe flow and develops
an algebraic relation for the mean vortex wavelength, which is one possible choice for the second
turbulence variable. Another possible choice for the second turbulence variable is the RMS fluctuating
vorticity, which can be determined directly from the mean vortex wavelength and the turbulent kinetic
energy using the algebraic relation given in Eq. (1.139). The development presented in this chapter is based
primarily on the work of Nikuradse [47], who performed a series of experiments on rough pipes that will be

used to derive algebraic relations for the velocity profiles and the turbulent eddy viscosity in rough pipes.
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II. Fully Developed Rough Pipe Flow

A. Fundamental Relations and Definitions

Fully developed pipe flow has been investigated by many researchers over the past centuries and is a
common case study to evaluate a new turbulence model. When the fluid enters a pipe, its velocity will often
be uniform across the pipe cross-section. Near the entrance, the fluid near the center of the pipe is not
affected by the friction between fluid and pipe walls, but as the flow proceeds down the pipe, the effect of
the wall friction moves in toward the pipe center until the velocity profile becomes constant. At the end of
the entrance length, the flow enters the fully developed region and the governing equations of motion can
be greatly simplified. This section presents a few of the most relevant relations for fully developed flow in
a circular pipe.

For fully developed axisymmetric flow in a circular pipe, gradients in the flow properties with respect
to the flow direction disappear and the profiles of flow properties become only dependent on the coordinate

normal to the wall. The Boussinesq-RANS can be reduced to a one-dimensional problem.

dl7z__ 2
e B @.1)

The left-hand side of Eq. (2.1) evaluated at the wall is the negative of the shear velocity u, squared. Thus,
the wall shear stress is related to the pressure drop according to

.| _ Rdp

ar| . 2d 22)

There are many ways to nondimensionalize the Boussinesq-RANS equations: wall-scaled variables and

relative variables, or pipe-scaled variables.
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The parameter R, is commonly referred to as the shear Reynolds number and is the reciprocal of the
nondimensional molecular viscosity V. Using these definitions, the wall-scaled Boussinesq-RANS
formulation for fully developed axisymmetric flow in a circular pipe including the no-slip boundary

condition can be written in nondimensional form as

du + y+
1+v7* =1-=, u* =0
( ) d y =0 (24)
Equation (2.4) applies over the domain 0<y" <R, . Near the wall, the ratio y* /R, is small compared to
unity, so the left-hand side of Eq. (2.4) remains approximately constant in the near-wall region. Hence, this
near-wall region is commonly referred to as the constant stress layer or the Couette flow region. Neglecting

the term y* /R, , Eq. (2.4) can be closely approximated near the pipe wall as

(1+v+)£=l, ut . =0 25)

In the case of fully rough flow, the molecular viscosity is much less than the turbulent eddy viscosity
throughout the flow field, so the non-dimensional eddy viscosity v* is large compared to unity. Hence in

the near-wall fully rough limit, Eq. (2.5) can be closely approximated as

dy+ y =0 (26)

The mean wall shear stress for fully developed flow in a pipe is traditionally characterized in terms of
the Darcy friction factor, which is four times the Fanning friction factor C; often called the skin-friction
coefficient. The Darcy friction factor is a very important parameter in pipe study as it provides a means of

estimating the head loss. The pressure drop can be easily measured along the length of the pipe and then the
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wall shear stress can be directly computed. The wall shear stress is generally expressed in terms of the

Darcy friction factor

Darcy Friction Factor = 4C, =4+ Tw__ 8

oy v, ) 2.7

Equation (2.7) may be rewritten in terms of the pressure drop per unit length (— df)/dz), the pipe

diameter D and the dynamic pressure of the average flow (1/2)p¥,? all of which are readily available from

experimental data. Substituting Eq. (2.3) in Eq. (2.7) yields

D [ dp
4, =—— | -2
! lpy2{ dzJ 2.8)

The characteristic velocity V,, used to define the Darcy friction factor is the spatial-mean velocity, which

is also commonly called the bulk velocity,

1

R
Izrdr J’u+fdf . 2

7

14 - i 2
u+E_m=r—0 =r—0 =2Ju+fdf=— J.quR _,t +

", R RA ) . er . ( 7Y )dy (2.9)

u, jrdr err =0 y'=0

r=0 r=0
The Darcy friction factor and Reynolds number can be expressed in terms of the bulk velocity as
V. (2R) 2u

Re=YuR)_ 205 ac, =2

v v ut (2.10)

m

Because of the frequent occurrence of rough pipes in practice, the study of rough pipes is just as
important as the study of flow along smooth surfaces. Darcy [56] made comprehensive and careful tests on
21 pipes of cast iron, lead, wrought iron, asphalt covered cast iron and glass. He noticed that the friction

factor was dependent upon the type of surface and upon the diameter of the pipe. The type of surface is
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commonly described in terms of a wall roughness k., which is characterized in terms of the ratio of the

equivalent sand-grain roughness £ to the pipe diameter

k
k. =—%
" 2R (2.11)
The roughness Reynolds number is defined as
k 2k
ko=t 2 _op R
s v VA revr (212)
For convenience, we define the ratio
n R
R =—
C yk (2.13)

By combining Egs. (2.9) and (2.12), the roughness Reynolds number can be determined from the bulk
Reynolds number, the roughness height and the friction factor

. Rek, J4C,

ks & (2.14)

The surface roughness has an effect on friction resistance. For laminar flow, this effect is negligible.
However, a turbulent flow is strongly affected by roughness. In fact, three regions can be characterized by
their roughness Reynolds number: hydraulically smooth walls, transitional roughness and fully rough flow.
Darcy [56] noticed that for certain roughness at some high Reynolds numbers, his experimental data
indicate that the friction factor is independent of the Reynolds number. He noticed that at a constant
Reynolds number, the friction factor increases markedly for an increasing relative roughness. Nikuradse’s

[47] experiments on rough pipes confirmed those statements.

B. The Nikuradse Number
Nikuradse [47] studied the effect of coarse and fine roughness for a wide range of Reynolds numbers

to determine the friction factor laws for six different degrees of relative roughness. Through careful
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measurements, Nikuradse determined the dynamic pressure by means of Pitot tubes. The diameter of the
pipe was determined from the weight of the water enclosed in the pipe. The static pressure gradients and
resulting pressure drop were measured using a hooked tube placed at half the radius of the pipe. Nikuradse
used sand grains of uniform roughness. The sand grains were sifted and spread on a flat plate. The
diameters of the individual grains were measured by sliding the plate and the arithmetical average was
computed. The pipes were first coated with a lacquer and then artificially roughened.

Nikuradse computed the friction factor from Eq. (2.8) for a wide range of Reynolds numbers and for
six different degrees of roughness ratios. Nikuradse observed that three different ranges could be
considered, depending upon the Reynolds number, namely laminar, transition and turbulent flows.
Nikuradse’s experimental friction factors obtained from experiments on hydraulically smooth-wall pipes

[46] and on rough pipes [47] are shown in Fig. 2.1.
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Fig. 2.1 Nikuradse’s experimental friction factor.

Within the first range, that of low Reynolds number, the roughness has no effect on the resistance (or
friction factor), and for all values of inverse roughness ratio R/kg, the friction factor is the same as for a

hydraulically smooth-wall pipe. In this first range, the thickness of the laminar sublayer is still larger than
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the average roughness element. Therefore energy losses due to roughness are no greater than those for a

smooth-wall pipe. In this range, Blasius [57] represented the friction factor by the law

64
4, =2
/" Re (2.15)

For setting up this friction factor formula, Blasius used the experiments of Saph and Schoder [58] who
worked with water and Nusselt [59] who worked with air. This formula was later verified by Ombeck [60],
Stanton and Pannell [61], Lees [62] and Jakob and Erk [63]. They all found insignificant deviations from
Eq. (2.15)

The critical Reynolds number, separating laminar from turbulent flows, occurs at about the same
position for all degrees of roughness ratios as for the smooth-wall pipe for a Reynolds number between

2150 and 2500. Within the first portion of turbulent flow in smooth pipes for a Reynolds number of up to

Re=10° , the Blasius resistance law holds, as shown in Fig. 2.1.

0.316

4C , =———
7 Rel* (2.16)

Within the second range, called the transition range, the influence of roughness becomes more
noticeable. The friction factor increases with an increase in Reynolds number. The resistance factor
depends on the Reynolds number as well as the roughness ratio. In this transition range, the thickness of the
laminar sublayer is of the same magnitude as the average roughness element. Individual roughness
elements extend through the laminar sublayer and cause vortices, which produce an additional loss of
energy. As the Reynolds number increases, an increasing number of projections pass through the laminar
sublayer because of the reduction in thickness. The additional energy loss becomes greater as the Reynolds
number increases. This is expressed by the rise of the friction factor. For a given roughness type, the
behavior in the transitional roughness regime is known only from experiment, see for example the work of
Jimenez [64].

Within the third range, the friction factor is independent of the Reynolds number and depends only on
the roughness ratio, so that the friction factor curves become parallel to the horizontal axis. In this range,

the thickness of the laminar sublayer has become so small that all the roughness elements extend through it.
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The energy loss due to the vortices has now attained a constant value and an increase in the Reynolds

number no longer increases the resistance. In this range, Nikuradse [47] expressed the friction factor as

1

2
{1.74+210g10(:j:| (2.17)

s

Equation (2.17) provided a key result in the development of our current capability to predict the
pressure losses of turbulent flow through rough pipes, and it will be referred to herein as the Nikuradse
equation. Equation (2.17) was the starting point for the development of the Colebrook equation [65] and the
associated Moody chart [66]. Hence, both the Colebrook equation and the Moody chart assume the validity
of the Nikuradse equation.

The Nikuradse equation is often presented in a form that differs slightly from Eq. (2.17). In the original
work by Nikuradse [47], and its subsequent presentation by Schlichting [52], the pipe roughness was

characterized using the dimensionless inverse roughness ratio R/k,. Using Eq. (2.11), the Nikuradse

equation given in Eq. (2.17) might be rearranged as

~2log, (10172 )+ 2log10[%J

1

- (2.18)
Represented to two significant digits, Nikuradse’s fully rough limit empirical equation is given by
J4C k, (2.19)

In terms of the relative roughness k,/D, where D is the pipe diameter, the most widely accepted form of

the Nikuradse equation becomes

-2
3.7
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Equations (2.15)—(2.17) are shown on Fig. 2.1 along with Nikuradse’s experimental friction factors.
Nikuradse, in his 1932 paper [46], plotted the parameter —2.0log,((3.7/k,)+1/(4C,)""? versus the

roughness Reynolds number. Although Nikuradse did not give a name to this parameter, a possible name
that would give him the credit for his work could be the Nikuradse number. A possible definition for the

Nikuradse number can be

Ni= 2.010g10(£J L

k) Jac, (2.21)

Nikuradse [47] noticed that the entire field of Reynolds numbers from his experiments could be covered by
plotting Eq. (2.21) as a function of the roughness Reynolds number k., as shown in Fig. 2.2.
Schlichting [67] suggested that the data of Nikuradse deviate from the smooth-wall asymptote at about
k! =5 and from the fully rough asymptote at about k. ~ 70 . Thus, flows with roughness Reynolds

numbers greater than 70 are traditionally termed “fully rough” flows because the friction factor appears
independent of the roughness Reynolds number in this region. Flows with roughness Reynolds numbers
smaller than 5 have traditionally been termed “hydraulically smooth” because roughness effects appear to
be negligible in this region. The question of when the roughness effects first become important was
discussed by Perry and Abell [68], McKeon et al. [69, 70]. This discussion hinges on the influence of
roughness in the transitional regime. It also touches on how the characteristic roughness height can be
determined for an arbitrary roughness distribution, and whether a single length scale is an adequate
description. The limit of 5 for the roughness Reynolds number for a hydraulically smooth-wall pipe is
supported by Zaragola and Smits [71] and Schockling et al. [72].

The Nikuradse number for the fully rough limit is obtained from Egs. (2.19)—(2.21).

Ni= 2.010g10(3k;7j S S 0

. x/E - (2.22)
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Fig. 2.2 Nikuradse number as a function of roughness Reynolds number for rough pipe flow.

In the limit of a smooth-wall pipe that is for low roughness Reynolds number, the friction factor is
unaffected by the roughness such that all pipes have a behavior similar to that of a smooth-wall pipe. Based

on the experimental data for rough pipes, Nikuradse [47] suggested the following expression

JAC, ke (2.23)
Using Egs. (2.11) and (2.14) in Eq. (2.23), Eq. (2.23) may be written equivalently as
! =2.0log (Re,/4Cf )— 0.71
/4cf (2.24)
Closer agreement is obtained if the constants are slightly modified to
! =2.0log,, (Re,/4Cf- )— 0.80
J4C ' (2.25)
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It can be seen from Eq. (2.25) that the friction factor for the smooth-wall limit is independent of the relative
roughness because the roughness elements are within the laminar sublayer. Therefore, the friction factor

depends on the Reynolds number only. Equation (2.25) may be written in the form

1 2.51

J4c, Re,[4C, (2.26)

In terms of the Nikuradse number, the smooth-wall limit given in Eq. (2.26) becomes

) 9.3
N1—2.010g10[\/—8—k;} (2.27)

Only Nikuradse’s rough pipe flow experimental data [47] were used in Fig. 2.2. All six inverse roughness
ratios in the range 15-507 are included. The figure includes the asymptotes for fully rough and smooth-wall
limits as given in Egs. (2.22) and (2.27), respectively.

Three different regions can be seen from Fig. 2.2, smooth-wall, transition and fully rough regions.

Schlichting [52] suggested using & <5 as the region of pure laminar friction. In this range, the

contribution from turbulent friction may be neglected when compared to laminar friction. At low velocities
in the laminar flow region, the laminar layer is much thicker than the depth of the irregularities. Therefore
the actual texture has no effect on the nature of the flow. The flow is comparable to laminar flow and is
said to be hydraulically smooth. Schlichting [53] proposed the range of roughness Reynolds number

kI >70 as the limit of pure turbulent friction. In this region where the laminar contribution is negligible

compared to the turbulent friction, the friction factor is independent of the Reynolds number and the flow is
said to be hydraulically rough.

It should be emphasized that Nikuradse based all of his experiments on pipes artificially roughened
with sand grains of uniform roughness. Commercial pipes have an irregular texture but are still
characterized by using an equivalent sand-grain roughness, which represents the average value for the

irregularity heights.
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C. The Colebrook Equation and Moody Diagram

Colebrook [65] carried out experiments on commercial pipes of different size and made of various
materials including drawn brass, galvanized-coated, cast and wrought iron, bitumen-lined pipes and
concrete-lined pipes and determined the friction factor for a wide range of Reynolds numbers. The surface
of a commercial pipe differs from that of an artificially roughened pipe and cannot be described in terms of
a single roughness size. An average equivalent particle size together with a shape factor and a size
distribution should be used to characterize the surface accurately. Colebrook determined an equivalent
roughness size for each of the commercial pipes he used during his experiments by comparing the friction
factor at high Reynolds numbers and fully rough flow, to those obtained from his experiments with the
Nikuradse friction factor obtained using pipes coated with uniform roughness elements.

Colebrook proposed an empirical correlation to determine the friction factor of commercial pipes,
which covers the hydraulically smooth, transition and rough flow regions. Nikuradse [47] suggested
empirical correlations for the cases of perfectly smooth-wall pipes given by Eq. (2.23) and for rough pipes
where the flow is fully turbulent given by Eq. (2.19). No empirical correlations based on Nikuradse’s
experimental data were satisfactorily developed for the transition zone, between hydraulically smooth and
rough pipes, which would match the friction factor obtained on commercial pipes. Colebrook [65] proposed
an empirical correlation for the transition zone based on his commercial pipe experiments.

-2

K, 251

37 Re ’4Cf (2.28)

This equation is known as the Colebrook formula and gives results very close to experimental values
for transitional behavior when using the effective roughness for commercial pipes as calculated by
Colebrook. This equation is implicit, i.e., if the bulk Reynolds number and the roughness ratio are known,
one must iterate to evaluate the Darcy friction factor. By setting the roughness Reynolds number %. to 0,
Eq. (2.28) reduces to Eq. (2.26), which represents the smooth-wall limit. Similarly, in the fully rough limit,

as the Reynolds number increases, Eq. (2.28) reduces to Eq. (2.19).
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The Colebrook equation given in Eq. (2.28) might be rearranged in terms of the Nikuradse number to

yield

93

N1:2.010g10 1+W (229)

Colebrook plotted experimental friction factor data in the same form as Fig. 2.2 as shown in Fig. 2.3.
From Fig. 2.3, it is obvious that the data taken by Nikuradse do not match the data obtained from
Colebrook in the transition region. Commercial pipes have a roughness that is uneven both in size and

spacing and do not correspond to the pipes artificially roughened by Nikuradse.

o Nikuradse data

+  Colebrook data
— — — Rough limit
Smooth limit
Colebrook Equation

Nikuradse Number

o/~ ¥an PN RO M oo S-~¢ 2}
©

i s s L s s s il s s PR | L
10° 10' 10° 10° 10
Roughness Reynolds number

Fig. 2.3 Nikuradse number for commercial and artificially roughened pipes.

Initially Colebrook carried out experiments to determine the effect of non-uniform roughness as found
on commercial pipe. Colebrook showed that the transition from hydraulically smooth to rough was in fact
gradual. An artificially roughened surface is characterized by a very low standard deviation, which
indicates that the roughness height of each individual element tends to be very close to the mean roughness

height, whereas a commercial pipe is expected to have a much higher standard deviation, indicating that the
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roughness height is spread out over a wider range. In the transition region, the thickness of the laminar
sublayer is of the order of the roughness element height. Elements that extend through the laminar sublayer
will tend to trigger the transition from hydraulically smooth to rough at a lower roughness Reynolds

number for a surface with a high standard deviation than for a surface with a low standard deviation.

Nikuradse defined the transition region as 5.0 <k} <70.0 . For commercial pipes, this region should be

adjusted to 0.2 <k <100.0.

Moody [66] presented a diagram to evaluate the friction factor of commercial pipe based on the
Colebrook equation given in Eq. (2.28) which has been extensively used for practical applications. The
Moody diagram is the graphical solution of the Colebrook equation. Because of Moody’s work and the
demonstrated applicability of the Colebrook equation over a wide range of Reynolds numbers and relative
roughness, Eq. (2.28) has become the accepted standard for calculating the friction factors. It suffers
however from being an implicit equation and thus requires an iterative solution. A very accurate initial

estimate can be obtained from the explicit relation

k 1.11 6.9 -2
4C, ={-181 — | 4=
/ °g1°l(3.7j Re] (2.30)

Moody [66] used the relation developed by Colebrook [65] to generate the well known Moody chart;

he used the symbol ¢ to denote Nikuradse’s sand-grain roughness. In this dissertation, we will continue to
use k; to signify the equivalent sand-grain roughness. The Moody chart is presented in Fig. 2.4 along with

Nikurdase’s experimental data on hydraulically smooth and rough pipes [47] as well as Shockling’s
experimental data [72]. Shockling et al. [72] carried out experiments for fully developed turbulent pipe
flow over a wide range of Reynolds numbers where the flow exhibits hydraulically smooth, transitionally
rough and fully rough behaviors. The surface of the pipe was prepared with a honing tool. As can be seen
on Fig. 2.4 in the transitionally rough regime, the friction factor follows the same inflection point pattern as
Nikuradse [47] observed, rather than the monotonic pattern Colebrook obtained from his commercial pipe
experiments [65]. More recent experiments carried on prepared pipes support this inflection point pattern.

See for example the work of Ligrani and Moffat [73] and Perry et al. [74].
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Fig. 2.4 The Moody diagram compared with experimental data from Nikuradse and Shockling.

In the transition region, the Moody diagram should be used with caution and the uniformity of the
surface should be taken in consideration when evaluating the friction factor. Part of the difficulty in
comparing roughness functions in the transitionally rough regime is that the roughness height is not well
defined. It seems obvious that an arbitrary surface would need more than one characteristic scale to
describe its effects on the near-wall flow (such as at least an equivalent sand-grain roughness and a
standard deviation). Nevertheless, in order to compare different type of surfaces, it is usual to prescribe an
equivalent sand-grain roughness that relates the root mean square roughness height for a given surface to a
particular sand-grain roughness height. The equivalent sand-grain roughness is found by comparing the
friction factor of the surface in question to Nikuradse’s sand grain data in the fully rough regime,
independent from the particular form of the roughness function in the transitional rough regime. As an
example, Hama [75] suggests that for a machined surface with an approximately Gaussian distribution of
roughness elements the equivalent sand grain roughness is five times the root mean square roughness
height.

The most widely accepted correlation for the friction factor in pipes is based on Nikuradse and

Colebrook empirical correlations. Nikuradse’s work on fully rough limit has set a reference for estimating
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the equivalent sand-grain roughness that characterized the pipe geometry. The validity of Nikuradse’s fully
rough limit given in Eq. (2.19) is so widely accepted that it has become the definition of the surface
roughness. Any turbulence model capable of predicting rough flow behavior should yield a friction factor
coefficient that matches the experimental data obtained by either Colebrook [65], Nikuradse [47] or

Shockling et al. [72] in the fully rough region.

D. Mixing-Length Theory

Prandtl [5] recognized that the turbulent eddy viscosity has units of length times velocity and
suggested that the turbulent eddy viscosity was proportional to the product of a distance, referred to as the
mixing length £, and a turbulent vertical velocity scale. Analogous to the mean free path of a molecule,
Prandtl assumed that the fluid element conserves its properties over the characteristic length ¢ before being
mixed with the surrounding fluid. Prandtl suggested that turbulent vertical motions were caused by the

collision of fluid elements moving horizontally at different speeds. This results in a turbulent vertical

dv.

—Z

velocity being proportional to a turbulent horizontal velocity. Prandtl suggested to use ¢ y
'y

as a

turbulent velocity scale. From Prandtl’s mixing length theory, the turbulent eddy viscosity is equal to the

product of the mixing length squared and the absolute value of the velocity gradient.

LA

v, =¢? 0

2.31)

The turbulent eddy viscosity given in Eq. (2.31) can be non-dimensionalized in terms of the wall-

+

scaled dimensionless variables #* and y* given in Eq. (2.3) to yield

2
=7
14

Substituting the dimensionless form of the eddy viscosity given in Eq. (2.32) into the wall-scaled

du®
dy*

(2.32)

Boussinesq-RANS formulation formulated in Eq. (2.4) yields
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du”
dy*

du+ :1_£ + =0
dy* Rl T (2.33)

2
! (uffJ
1%

An exact analytical solution to Eq. (2.33) is not available, and accurate numerical solutions were not

practical when the foundation for modeling rough wall turbulent flow was laid. Van Driest [76] proposed a
near-wall empirical relation for the mixing length that matches experimental data very well. Using the non-
dimensional turbulent eddy viscosity given in Eq. (2.32) in the near-wall fully rough limit formulation
given in Eq. (2.6) yields an important nondimensional relation between Prandtl’s mixing length and the
mean velocity gradient, which applies to the near-wall fully rough limit

u l du* +

Ly, ~0
vyt “ ol (2.34)

Prandtl’s mixing length cannot be measured directly. Hence, empirical correlations for the mixing
length must be inferred from measurements of the mean velocity profile and the mean wall shear stress or
pressure gradient. From measured mean velocity profiles, Nikuradse [47] used this procedure to calculate
and plot the variation of mixing length along the wall coordinate y/R. In the fully rough limit near the pipe
wall, the mixing-length profiles obtained by Nikuradse were found to vary linearly with the distance from
the pipe wall. Furthermore, the proportionality constant between the mixing length ¢ and the wall
coordinate y was shown to be independent of both the Reynolds number and the surface roughness. In this
near-wall region, the results obtained by Nikuradse for the fully rough limit are in excellent agreement with
the empirical correlation

where x and y are two empirical constants. The coefficient k; is known as the roughness height first

introduced by Nikuradse [47] who sifted sand into groups of known diameters and artificially roughened
hydraulically smooth-wall pipes to determine the effect of surface roughness on the pressure drop of the

fluid flow through the pipe. The constant « is traditionally called the Von Karman constant after Ludwig
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Prandtl’s student Theodore Von Karman [77]. In a similar manner, the constant y will be referred to as the

Nikuradse constant.

E. Fully Rough Flow Velocity Profile
A sensitive indicator for the effect of roughness in a pipe is given by the behavior of the velocity
profile. Nikuradse proposed a very simple law for the velocity distribution in rough pipes based on his

experiments [47] that is similar to the well-known law of the wall first proposed by Von Kérman [77].

+

+
N

u* :5.751og10{y (2.36)

]+ 8.48

Using only two significant digits and the natural logarithm, Eq. (2.36) can be rewritten as

+
A

.
* = R
ut = 2.51n[ J+ 8.5 2.37)

Obviously, Eq. (2.38) cannot apply over the entire flow field from the wall to the centerline because it
does not satisfy the no-slip boundary condition at the pipe wall or the symmetry boundary condition at the
pipe centerline. However, the deviation from Eq. (2.38) was traditionally assumed to be sufficiently small
so that the bulk velocity could be approximated from the integral of Eq. (2.38).

Using Eq. (2.35) in Eq. (2.34) and rearranging yields the near-wall fully rough limit based on
Prandtl’s mixing length theory

du® 1 .

= u

R e

=0 (2.38)

where the dimensionless parameter & , defined in Eq. (2.12) is commonly called the roughness Reynolds

number. Equation (2.38) can be integrated easily subject to the no-slip wall boundary to yield

N
L A
K \yk! (2.39)
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The empirical constants x and y can be evaluated by comparing Eq. (2.37) and (2.39) in the core
region. To make this comparison, we must recognize that the roughness elements are much smaller than the

pipe diameter and the empirical constant y is much less than unity. Hence, the wall coordinate y is large

compared with the product y &, except in an extremely thin layer near the pipe wall where y is on the

order of &, . With this knowledge, we can neglect the 1 in the natural log term of Eq. (2.39). The near-wall
layer where this 1 is significant is much too thin to permit experimental measurements, so this layer was
not captured in Nikuradse’s data nor in the associated empirical correlation given by Eq. (2.37). Using the

approximation y >> y k, , Eq. (2.39) can be written as

ut —lln i +lln 1
k (k) « \r (2.40)

Comparing Eq. (2.37) with Eq. (2.40), we see that the velocity profile measurements of Nikuradse

yield values for both the Von Karman constant and the Nikuradse constant

1 8.5k
=—=0.400, =e 7" =0.0334
705 ree (2.41)

A comparison among Eq. (2.39), Eq. (2.37) and experimental data collected by Nikuradse is shown in
Fig. 2.5. The dashed line is obtained from Eq. (2.39) whereas the solid line is obtained from Eq. (2.37)
using ¥ = 0.4 and y = 0.0334 as obtained from Eq. (2.41). Nikuradse’s experimental velocities used to
generate Fig. 2.5 are given in Appendix BI. Only the data with the highest roughness Reynolds number

were used for each of the relative roughness presented in Fig. 2.5.



72

25 ———————————
20 n
15 b
e
N
~
w
> o RA=IS
10 o RK=306 7
+ R/ky=60
& R/ky=126
X R/k =252
5+ ' .
o R/ks=507
_ Near wall fully
rough limit
. - - - Log law
O s L s L s PR | s s M| s L
-2 —1 0 1 2 3
10 10 10 10 10 10

Fig. 2.5 Velocity profiles in rough pipes at high Reynolds numbers.

Using the near-wall fully rough limit for the velocity given in Eq. (2.39) in the bulk velocity defined

in Eq. (2.9) results in
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2 2
u;=l 7k, R +1| |In R +1 _3 +2 R +2
x\ R vk vk 2 vk 2 (2.43)

Because the pipe radius R is always very large compared with the roughness element height £, the sum
1+R/(}/ ks) may be reduced to R/(}/ks). Schlichting [52] approximated the bulk velocity given in

Eq. (2.43) to
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Using the near-wall fully rough limit from Eq. (2.39) in the approximated bulk velocity given in Eq. (2.44),

the Darcy friction factor for fully rough pipe flow is reduced to

-2
8 1 R 1 1] 3
4C/ = —(Vm /ur )2 = 8{; IH(Z] + ;|:ln(;) —5i|} (245)

The relation given by Eq. (2.45) is commonly written in terms of the base-10 logarithm, i.e.,

-2
1 R 1 1 3
4C, =q——————1o — |+ ——|In| — |- =
! {8”2xlog10(e) glo{ksj 81/2’f{ {7J 2}} (2.46)

Using the values for « and y that are given in Eq. (2.41), the relations given in Eqgs. (2.44) and (2.46) may

be written as

uh = 2.5011{/{3} +4.75

s

(2.47)

and

-2
R
4C, = |:2.04 log o [k_J + 1.68} (2.43)

s

which exhibits the expected quadratic relation between wall shear stress and bulk velocity for fully rough

flow. Although based on the same experimental data, Egs. (2.17) and (2.48) are slightly different. Proposed
by Nikuradse, Eq. (2.17) was obtained graphically by plotting 1/,/4C, against 10g10(R/ ks) and by

fitting a line through the experimental data. Equation (2.48) was obtained based on the approximated bulk

velocity and the definition of the friction factor.
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Comparing the Nikuradse equation given in Eq. (2.19) with Eq. (2.46), the empirical constants x and y

can be reevaluated. After rounding these constants to two significant digits, the result yields

ke L _oa, }/:exp{—2.0(8)1/2K10g10[2(3.7)]—%}=0.030

2.0(8)""% log () (2.49)

Although the values for x and y given in Eq. (2.49) are commonly used, it should be reemphasized that
Eq. (2.46) was obtained from the approximate evaluation of the bulk velocity given by Eq. (2.44). This
result is based on assuming that the near-wall velocity profile obtained from Eq. (2.39) applies over the
entire flow field from the wall to the centerline. Nikuradse was forced to use this approximation because
accurate solutions to the complete mixing-length formulation were not available in 1933. Today, accurate
evaluation of the bulk velocity is possible using numerical integration of the complete mixing-length
formulation obtained from Eq. (2.33). When the bulk velocity is evaluated in this manner and the empirical
constants x and y are adjusted to minimize the difference between the numerical results for the fully rough

limit and results obtained from Eq. (2.20), the resulting constants rounded to three significant digits are

xk=0.403, y=0.0324 (2.50)

Notice that these results are closer to those obtained from Nikuradse’s velocity-profile measurements than
they are to the results presented in Eq. (2.49).

Expressed equivalently in Egs. (2.17) and (2.20), the Nikuradse equation provides an accurate means
for predicting the Darcy friction factor when the Reynolds number is large enough so that the friction factor
becomes independent of the molecular viscosity. However, the Nikuradse equation alone provides no
information regarding how large the Reynolds number must be to make this empirical correlation valid.
From Nikuradse data on artificially roughened pipes, it is commonly accepted that this correlation for fully
rough flow is valid whenever the roughness Reynolds number is greater than about 70. However, by
definition, the fully rough flow approximation is valid only when the molecular viscosity is negligible

compared to the eddy viscosity throughout the flow field.
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III. Fully Rough Flow Empirical Turbulent Eddy Viscosity

A. Turbulent Eddy Viscosity Profile Obtained from Prandtl’s Mixing-Length Theory

Fully rough pipe flow is defined to be the asymptotic solution to the wall-scaled Boussinesq RANS
formulation given in Eq. (2.4) in the limit as the nondimensional eddy viscosity v becomes large

compared to unity throughout the flow field. Because the eddy viscosity v is smallest near the wall, the
limit for application of the fully rough flow approximation can be evaluated by examining the near-wall
behavior of v" as predicted from the fully rough solution. From Prandtl’s mixing-length theory, v* is
related to the wall-scaled dimensionless variables and the mixing length through Eq. (2.32). In the near-
wall fully rough limit, the mixing length is given by the empirical correlation Eq. (2.35) and, based on this
empirical correlation, the wall-scaled velocity gradient can be obtained from Eq. (2.38). Hence, substituting
Eq. (2.35) for the mixing length and Eq. (2.38) for the velocity gradient into Eq. (2.32), we find that the

ratio of the turbulent eddy viscosity ¥ to the molecular viscosity v in the near-wall fully rough limit is

given by

<

+ + +

v =7 K(y +7/ks) @2.51)
The empirical constants x and y obtained from the Nikuradse equation as expressed in Eq. (2.20) are given
in Eq. (2.50). Therefore, the near-wall eddy viscosity relation that is consistent with the Nikuradse equation
is

14

v (ks )= Yo < 041" +0.0124;

(2.52)

_t
14

From Eq. (2.51), we see that when the roughness Reynolds number k[ is 70, the ratio of the turbulent

eddy viscosity at the wall to the molecular viscosity is predicted to be v* =0.84, which is obviously not
large compared to unity. Clearly, we should not necessarily expect the general solution to the wall-scaled
Boussinesq RANS formulation expressed in Eq. (2.4) to match the fully rough asymptote when the

roughness Reynolds number k. is 70. At a roughness Reynolds number of kf =1000 , Eq. (2.51)
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evaluated at the wall yields v* =12, which is a more reasonable criterion for applying the fully rough

flow approximation v* >>1. The molecular viscosity is not reduced to 1 percent of the turbulent eddy
viscosity at the wall, until a roughness Reynolds number £ of more than 8000 is reached.
However, it was previously shown that the molecular viscosity agrees closely with experimental data

when the roughness Reynolds number &} is 70 and above. In fact, the fully rough flow approximation not

only neglects the molecular viscosity v compared with the turbulent eddy viscosity ¥;, but it also neglects
the existence of a viscous sublayer. Because including the molecular viscosity v in the turbulent portion of

the flow tends to increase the friction factor C ., and the presence of the viscous sublayer tends to decrease
this friction factor C,, the tradeoff between these two opposing effects tends to make the Nikuradse

equation agree with experimental data when the roughness Reynolds number is lower than would be
expected based on only a comparison of the eddy viscosity at the wall with the molecular viscosity.

A near-wall fully rough limit may be obtained for the mixing length. From Nikuradse’s experimental
data for the friction factor in artificially roughened pipes, it has been shown that Prandtl’s mixing length in

the near-wall fully rough limit is given by Eq. (2.35). Furthermore, the empirical constants x and , can be

evaluated directly from Nikuradse’s friction-factor data. Dividing Eq. (2.35) through by the pipe radius R,

in the near-wall fully rough limit we have

Lodr K
R R 7R (2.53)

This empirical correlation applies only near the pipe wall where the ratio y/R is much less than unity.
Hence, it should not be used over the majority of the pipe diameter where curvature is important.

Prandtl [5] suggested an empirical correlation for the mixing length for smooth-wall pipes. Nikuradse
collected data on mean-velocity profiles in both hydraulically smooth [46] and artificially roughened
pipes [47]. The local mean velocity was measured in radial increments from the pipe centerline to a point

near the wall where y/R=0.02. From these measured velocity profiles, Nikuradse calculated and plotted
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the variation of Prandtl’s mixing length with the ratio /R and found that the mixing length distribution

could be represented by the same curve Prandtl suggested for smooth-wall pipes [5]

2 4
‘ y y
—=0.14-0.08{ 1-—| —0.06[1-=—
R ( RJ ( Rj (2.54)

Within experimental uncertainty, there exists the same mixing-length distribution in rough pipes as in
hydraulically smooth-wall pipes. This leads to the conclusion that the mechanics of turbulence are
independent of the type of wall surface except in a very thin near-wall layer.

A more general correlation for the mixing-length can be developed to encompass both the near-wall
limit given by Eq. (2.53) and the mixing-length distribution obtained in the core region and given by Eq.

(2.54). A general form for the empirical correlation proposed in Eq. (2.54) is given by

V4 r 2 r 4
Ez{AO_Az(Ej _A{EJ } (2.55)

The empirical correlation given by Eq. (2.55) is not consistent with that given by Eq. (2.53), because
Eq. (2.55) shows no dependence on surface roughness in the near-wall region. However, near the pipe
centerlines, Nikuradse’s velocity-profile data show a mean value for £/ R of about 0.138 and scatter in
these data indicate an uncertainty on the order of £0.004. At the points nearest the pipe walls, Nikuradse’s
data show a value for /R on the order of 0.008 with an indicated uncertainty on the order of £0.002. The
roughest pipe for which Nikuradse obtained velocity-profile data had an inverse roughness ratio of

R/k,=15.0. At this inverse roughness ratio, the value of the second term on the right-hand side of Eq.
(2.53) is approximately &y k,/R=0.0008. Because this value is less than one half the uncertainty
indicated by the scatter in Nikuradse’s mixing-length-profile data, the second term on the right-hand side of
Eq. (2.53) xyk,/R could not have been captured in the mixing-length-profile data obtained by

Nikuradse. Combining results obtained from Nikuradse’s velocity-profile data with results obtained from
his friction-factor data suggests a fairly general relation for fully rough pipe flow, which could be used over

the entire pipe diameter
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Note that Eq. (2.55) is a special case of Eq. (2.56) for which k,/R=0, A4 =0 and a = 0. A near-wall

expansion of Eq. (2.56) gives

¢ k, k,
e K{AO - A, — A5 + 7?4— {(2 + a)A2 + (4 + a)A3 —ad, - a}/?}%-& } 2.57)
Comparing Eq. (2.57) with the near-wall limit given by Eq. (2.53) requires
A, =24,-0.51-a ks
S B A (2.58)
and
A3 =0.51+a L -4
T "R (2.59)

Therefore, from Eq. (2.56), Prandtl’s mixing-length profile over the entire pipe diameter could be written

for fully rough pipe flow in terms of only the two empirical coefficients 4, and a

(2.60)

An empirical fit to Nikuradse’s mixing-length-profile data can be obtained using 4; =0 and a = 0. The

empirical constant A is found to be approximately 0.345 to within an indicated uncertainty on the order
of £0.01. A comparison among Eq. (2.53), Eq. (2.60) and data obtained from Nikuradse is shown in
Fig. 2.6. The dashed line is obtained from Eq. (2.53). The solid line is obtained from Eq. (2.60). The
mixing-length empirical data were obtained from Nikuradse’s tabulated velocity gradient given in

Appendix B. Experimental research by Anderson et al. [78] has shown that the turbulent mixing length
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varies linearly in the near-wall region of the flow. This agrees with Nikuradse’s experimental data shown in

Fig. 2.6.
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Fig. 2.6 Mixing-length profiles in rough pipes at high Reynolds numbers.

The velocity distribution may be deduced from the mixing lengths empirical correlation. Starting with

the Boussinesq-RANS formulation expressed in Eq. (2.4), employing the fully rough flow approximation to
eliminate the molecular viscosity v in comparison with the turbulent eddy viscosity V,, and writing the

result in terms of the wall coordinate y gives

v_,du":l_A .

u,R dy ’

+

g0 =0 .61

Using the turbulent eddy viscosity expressed in Eq. (2.31) in the Boussinesq-RANS equations expressed in

Eq. (2.62) yields

ﬁdqu_
R dy

-0 (2.62)
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Applying Eq. (2.56) to Eq. (2.62) results in a complete mixing-length formulation for fully rough pipe flow

du* (1- )5

dy

E)

k . . A
K[Ao Hy A —Az(l—y)z-_/‘h(l—Y)ﬂ (2.63)

Using Eq. (2.63) in Eq. (2.61), the turbulent eddy viscosity profile over the entire pipe diameter as

predicted from Prandtl’s mixing-length theory could be written for fully rough pipe flow as

(2.64)

A comparison between Nikuradse’s experimental data and Eq. (2.64) with 4, =0.345, 4, =0 anda =0

is shown in Fig. 2.7. Notice that in the limit as /R approaches zero, Eq. (2.64) approaches the linear

asymptote

Vi ky y ki )y y
P P72 S 5.7 ) [N
u,R ’{7 R [ 2R jR} R (2.65)

Prandtl’s mixing-length theory is in excellent agreement with experimental data in the near-wall region
but fails to predict the turbulent eddy viscosity accurately in the centerline region. From Eq. (2.31)

combined with the symmetry boundary condition at the centerline, we see that mixing-length theory always

predicts v, =0 at the pipe centerline, which seems implausible. In fact, the symmetry boundary condition at
the pipe centerline requires that the change in v, with respect to the radial coordinate » must be zero at the
pipe centerline, whereas Eq. (2.64) with 4, =0 and a = 0 predicts an infinite value for this derivative.

Hence, Eq. (2.64) with 4; =0 and a =0 cannot be used in the core region near the center of the pipe.
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Fig. 2.7 Eddy viscosity profiles in hydraulically smooth- and rough-wall pipes at high Reynolds

number.

Experimental data taken by Reichardt [79] on hydraulically smooth pipes suggest that the turbulent
eddy viscosity may remain nearly constant in the central core of the pipe. From these data Reichardt [80]

proposed the empirical correlation

Vi =fl[2—lj[1+2[1—lj2]
w.R 6R\" R R (2.66)

which remains fairly constant from about y/R = 0.3 to the pipe centerline. Notice that as and y/R — 0,

v
tR—>K%, which is the same result obtained from Eq. (2.65) when k;/R=0.

Eq. (2.66) yields

T
Reichardt’s empirical correlation for the turbulent eddy viscosity in circular pipes with hydraulically
smooth walls is easily modified to agree with the well established near-wall behavior for the fully rough

limit, which comes from the empirical correlation expressed in Eq. (2.64)
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e
u.R 6(R R R R 2.67)

Because y k; /R <<R, for all practical purposes Egs. (2.67) and (2.66) are identical, except in a thin layer

near the pipe wall where y is on the order of £;.

The velocity distribution may be obtained from the near-wall limit given in Eq. (2.39). As seen in
Fig. 2.5, Eq. (2.39) provides a good fit to the mean-velocity-profile data collected by Nikuradse in the fully
rough limit and it satisfies the no-slip boundary condition at the pipe wall. Reichardt’s velocity-profile data

are also in good agreement with this empirical correlation. Equation (2.39) is easily rearranged to give

+_ 1 R y
=—In/1+—=
R (2.68)

Differentiating Eq. (2.67) and substituting in the Boussinesq-RANS formulation results in

P VL Pl
u, R R R R (2.69)

Results obtained from Eq. (2.69) are also shown in Fig. 2.7. Clearly, Eq. (2.69) cannot be applied over the

entire flow field from the wall to the pipe centerline, because the symmetry boundary condition at the
centerline is not satisfied. The same can be said of Eq. (2.65).

As seen in Fig. 2.5, it is important to notice that there is a very significant difference between the
correlations given by Eq. (2.64) and Eq. (2.69), and it is important to recall that these two correlations came
from exactly the same experimental data. For each pipe and Reynolds number, Nikuradse measured the
local mean velocity in radial increments from the pipe centerline to a point near the wall where y/R=0.02.
From these measurements he tabulated both the local mean velocity and the local mean-velocity gradient as
obtained from the mean velocity at neighboring points. The correlation given by Eq. (2.64) was obtained
directly from Nikuradse’s tabulated velocity gradient profiles. On the other hand, the correlation given by

Eq. (2.69) was obtained from the analytical derivative of Eq. (2.39), which is an empirical correlation
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obtained from Nikuradse’s tabulated velocity profiles. Clearly, the mean velocity profiles and the mean-
velocity gradient profiles tabulated by Nikuradse are inconsistent.

It is not surprising to learn that there is considerable uncertainty associated Nikuradse’s tabulated
velocity gradients near the pipe centerline, because turbulent mean-velocity gradients are extremely small
near the center of a pipe at high Reynolds numbers. For example, in Nikuradse’s tabulated velocity profiles,
the velocity changes over the three points nearest the pipe centerlines are on the order of 3 to 4 parts
per 1000. If central difference were used to extract the velocity gradients from these measured velocities
and the experimental uncertainty in the velocity data was +0.2%, the uncertainty in the estimated velocity
gradients would be on the order of £100%. Because the eddy viscosity values obtained from Nikuradse’s
data and shown in Fig. 2.5 are determined directly from the estimated velocity gradients, the uncertainty in
these values must be at least £100% near the pipe centerlines. This same level of uncertainty can be
attributed to the eddy-viscosity values obtained from Reichardt’s data and shown in Fig. 2.5.

This experimental uncertainty could easily explain the difference between Nikuradse’s and Reichardt’s
results shown in Fig. 2.5. About all that can be said concerning the eddy viscosity at the pipe centerline

based on the experimental results shown in Fig. 2.5 is that v,/u R most likely falls somewhere

between 0.0 and about 0.1.

To estimate the eddy viscosity near the pipe centerline more accurately, we could correlate velocity-
profile data over the entire pipe diameter and estimate the eddy-viscosity profile from the derivative of the
correlation equation. This eliminates amplification of experimental uncertainty that results from numerical
differentiation. The empirical correlation traditionally used for this purpose is Eq. (2.37), which is
compared with Nikuradse’s velocity-profile data in Fig. 2.5. However, Eq. (2.37) does not satisfy the
symmetry condition at the pipe centerline or the no-slip condition at the wall. As seen in Fig. 2.5, Eq. (2.39)
does satisfy the no-slip condition at the pipe wall and it agrees with Nikuradse’s velocity-profile data as

well as Eq. (2.37). Even so, Eq. (2.39) still does not satisfy the symmetry condition at the pipe centerline.

B. Corrective Function to Nikuradse’s Experimental Velocity Data

A thorough analysis of Nikuradse’s experimental data shows a regular deviation from the log law.

When Nikuradse’s velocity-profile data are plotted with 7, /u, as a function of y/k, as shown in
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Fig. 2.1, the correlation with the near-wall fully rough limit given in Eq. (2.39) appears to be quite accurate,

and the deviation from Eq. (2.39) appears to be quite random. However, when exactly the same data are
plotted with ¥, /¥, as a function of »/R as shown in Fig. 2.8, it can be seen that the deviation from

Eq. (2.39) is not entirely random. The solid lines shown in Fig. 2.8 are obtained from Eq. (2.39) by dividing

through by its bulk velocity as obtained from Eq. (2.43), i.e.,

Vm (2.70)
u, —+1 ln—+1 23 +2i+i
7 kg 2] ykg 2

10 10" 10
y/R

Fig. 2.8 Radial velocity profiles in rough pipes at high Reynolds numbers.

To satisfy the symmetry condition at the centerline and provide better agreement with Nikuradse’s
velocity profile data [47], an empirical correction function could be added to Eq. (2.70) expressed in terms

of the relative coordinates defined in Egs. (2.3) and (2.13)
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]
(A,Iés ): R, ln(RSy+1) +5(A’I%S)
’ (R, +1f {m(fes +1)- ﬂ F2R + % @.71)

C. Constraints Imposed on the Corrective 6 Function
In addition to correlating Nikuradse’s velocity-profile data, mathematics and physics imposes several
constraints on the empirical function ¢ defined in Eq. (2.72). The symmetry boundary condition at the pipe

centerline requires

s
dy

_R3

# ol [l )32k 3 )

Similarly, the no-slip boundary condition at the pipe wall demands

5., =0
=0 (2.73)

Because Eq. (2.70) exhibits the correct near-wall behavior as expressed in Eq. (2.38), for the fully rough

limit we must also enforce the relation

sl _,
&, (2.74)

To maintain the definition of bulk velocity, the integral of the product @ # from the centerline to the pipe

wall must be unity. Hence, the empirical function s defined in Eq. (28) must satisfy the relation

1
oll-p)dy=0
I (1-5)dp (2.75)
y=0
A final constraint on the empirical function s comes from applying the symmetry boundary condition on
the eddy viscosity at the pipe centerline. From the fully rough Boussinesq-RANS equations, the eddy-

viscosity profile is related to the velocity profile according to



Mz. -
7 (1-7)
i T

dy

and
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(2.76)

(2.77)

Because the velocity profile is also symmetric about the pipe centerline, Eq. (2.77) is indeterminate at the

centerline. Applying I’Hospital’s rule to Eq. (2.77) yields

Y 1551 ) iﬁdzﬁ
dy dp*

which is also indeterminate. Applying I’Hospital’s rule a second time results in

ERAr &
v |5 d%i di di
o L8|
d dy dy

Because the velocity profile is symmetric about the pipe centerline, Eq. (2.79) reduces to

u, d*u
dv, | 2, &y’
dy

-l d* 2
dp?

2.78)

(2.79)

(2.80)

Hence, because the eddy-viscosity profile must be symmetric about the pipe centerline, Eq. (2.80) provides

another constraint on the velocity profile, i.e.,
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|, (2.81)

Using the corrected nondimensional velocity given in Eq. (2.71) in Eq. (2.81) provides an additional
mathematical constraint on the empirical function J,

dn 2R d*s

S

+
&’ (ﬁsﬁ+1)3{(ﬁs+l)z[ln(ﬁs+1)—ﬂ 21%5+;} 4’ (2.82)

In terms of the ¢ function

d*s -2R.

Pl (g, +1)3{(1%S 1f nle, +1)-2] 28, +§} (2.83)

In view of the definition of the bulk velocity from Eq. (2.9) and Eq. (2.75), the empirical function J will
have no effect on the bulk velocity. Thus, the bulk velocity associated with Eq. (2.71) will be exactly the
same as that associated with Eq. (2.39). The dimensionless wall-scaled bulk velocity for fully rough pipe

flow given by Eq. (2.43) can be written as

(f?s + 1)2 [ln(f?s + 1)—;} + 2f2s +%

v
Vo _ — (2.84)
u, KR

S

Multiplying Eq. (2.71) through by this velocity ratio, the wall-scaled velocity profile can be written as

) +1)2{1n(1&,+1)_3}+2,g+3
v :m(‘LyH)*g 5,{,@22 —2s6k) s

s

Using Eq. (2.84) in the definition of the Darcy friction factor given in Eq. (2.7), the corresponding fully

rough relation for the friction factor is
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4C/1‘ = !

{(és +1)2{ln(lés +1)- ;}zizs +;}2 (2:86)

Hence, we see that as a result of Eq. (2.75), the friction factor obtained from the velocity profile given

by Eq. (2.71) is completely independent of the empirical function J. The fully rough friction factor
predicted from Eq. (2.86) depends only on the dimensionless inverse roughness ratio R/k, and the two
dimensionless closure constants « and y. Experimental data for the fully rough friction factor are known to

correlate very well with the Nikuradse equation given in Eq. (2.20), which can also be written in terms of

the dimensionless roughness ratio

1

2
{2.010&0[7.4:}} (2.87)

s

ac, =

By minimizing the difference between Egs. (2.86) and (2.87), the dimensionless closure constants x and y
can be reevaluated independent of the empirical function s. The resulting constants rounded to three

significant digits are

x = 0.403 y = 0.0324 (2.89)

Appendix CI presents the detailed optimization procedure used to evaluate the Von Karman and Nikuradse
constants based on the friction factor obtained from the well-accepted Nikuradse equation and the friction

factor based on the fully rough limit of Prandtl’s mixing length.

D. Corrective 06 Function

A polynomial function could be used for the function ¢ to fit Nikuradse’s velocity-profile data while
satisfying Egs. (2.72)—(2.75) and Eq. (2.83). Because there are five constraints on the velocity profile that
must be satisfied independent of the experimental data, a seventh-order polynomial is necessary to provide
three degrees of freedom for correlating the experimental data. For example, we could use a seventh-order

polynomial in term of the relative coordinate # = r/R
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§=Cy+Cii+ Cyf? + CsF> + Cyf* + C57% + CoF® + €7 (2.89)

From the constraints imposed by Egs. (2.72) and (2.83), the constants C; and C; can be evaluated

independent of the experimental data,

f(,ss
N (RS + 1){(135 + 1)2[111(1%‘; + 1)— ﬂ +2R, + ;} (2.90)
and
C, = R’
L=

(R, +1)3{(1%S +1)2{1n(fis +1)- ;}Lzés +§} (2.91)

Because this correlation is being developed to estimate the eddy viscosity near the pipe centerline, it is
useful to express the coefficient C, in terms of the eddy viscosity at the centerline. Although Eq. (2.76) is

indeterminate at the centerline, applying I’Hospital’s rule yields

=gt (2.92)

§=1

’ (ﬁs +1)z _T

y=1

C, =
2{(& + 1)2[ln(f2s + 1)— ﬂ + 21A2s +%

} (2.93)

Choosing the centerline eddy viscosity combined with C; and C; as the unknown correlation

coefficients, the constraints imposed by Egs. (2.72)—(2.75) can be used to evaluate C,, Cs and Cy
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D, -C,-C,-C,-C,-C,
D, -Cy/2-C,/3-C,/4-C5/5-C5/9
Using Gauss elimination, Eq. (2.94) can be rearranged easily to yield
C, -39 3 168 || D
Csr=| 84 -7 -=-336xD, (2.95)
Cs| |-44 4 168 ||Ds '

The remaining unknown coefficients C, and C, and the centerline eddy viscosity could be obtained from
an empirical correlation with Nikuradse’s velocity profile data.
Notice that the dimensionless velocity profiles for fully rough flow, which are obtained from Eq. (2.71)

combined with Egs. (2.89)—(2.95), depend only on the inverse roughness ratio R/ k. They are independent

+
s 9

of the roughness Reynolds number k., as should be expected for fully rough limit. The maximum

deviation from Eq. (2.70) for each of Nikuradse’s velocity profiles is on the order of 1 to 6 percent of the
mean velocity, which is likely the same order of magnitude as the experimental uncertainty. Nevertheless
this small deviation from Eq. (2.70) is quite important because Eq. (2.70) does not satisfy the symmetry
boundary conditions at the pipe centerline and the centerline symmetry has a significant effect on the eddy

viscosity in the pipe core.

The coefficients C,, C;and V, 5o are selected based on Nikuradse’s velocity data . The coefficient

C, describes the J function at the centerline and is therefore a function of the roughness ratio. Although

there are considerable scatter in Nikuradse’s velocity data, an adequate correlation is provided by the

relation

k 1.4
Co= 12{?) (2.96)

Similarly, Eq. (2.89) provides good agreement with the mean of Nikuradse’s velocity profile data in the

region near the pipe centerline defined as ¥/ R<0.5 if we use the empirical coefficients
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V,|. =0.056 and C;=-0.65
= (2.97)

Appendix CII gives more details on the s function and shows the correlation between the experimental
data and the near-wall fully rough limit. Notice that the dimensionless centerline eddy viscosity,

Vv, =v, /(uTR), obtained from this empirical correlation is significantly less than the value 0.067 obtained

from the empirical correlation proposed by Reichardt [79]

2
Vi KV, Y _r
uTR_6R(2 R]{Hz(l R]] (2.98)

The turbulent eddy viscosity can be deduced from the dimensionless velocity given in Eq. (2.71). Using

Egs. (2.70) and (2.84) in Eq. (2.75), the dimensionless eddy-viscosity profile for fully rough pipe flow

could be written as

. (IA?S + 1)2 [m(ies + 1)— ﬂ + 21§S + % a5

Rp+1 R, dy (2.99)

N

Because the velocity profile is symmetric about the pipe centerline, Egs. (2.75) and (2.99) are indeterminate

at the centerline. Applying 1’Hospital’s rule to Eq. (2.99) yields

fe (ﬁs +1)Z{ln(ﬁs +1)—ﬂ+2fes +% d25|

v =K - = . 2.100
g (RS +1 R, dy | $=1 (2.100)
and applying Eq. (2.88) to Eq. (2.100) results in
3 3 )
A (RS+1)2 ln(Rs+1—f +2R, +—
1 =K Ry 2 2 2 C
tlo = N - 5 2 2 2.101
g (Rg +1)2 Rs ( )
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In summary, using the definitions y=y/R, 4=V, /V,, u* =V, lu,, V; =v,/(u,R) and lgs =k;/R,
the following algorithm provides empirical relations for the velocity and eddy viscosity profiles that satisfy
Egs. (2.71)—(2.74) and (2.82) while correlating Nikuradse’s velocity profile data to within experimental
uncertainty. The three parameters C, v,. and C, that are used in the J function were optimized to give
the closest match to Nikuradse experimental data for fully rough flow. A detailed overview of the
optimization process is given in Appendix CI.

The following constants are used

K=0403, 7=00324, ¥_=0056, F=1-9, R =———, C,=-065
vk, (2.102)
The coefficients Dy— D5 and C,—Cy are calculated from
1.4
R 2 . 3 A~ 3 k
Dy=\R,+1] |In|lR, +1)]—=|+2R. +=, C,=12| =
O(S )|:(v )2:| K 7 0 (Rj
R} R} | R? R}
Cl=pr—iv— =i o, G
R, +1)Dy 2D, (RS + 1) Vie 3(RS + 1)300
2.103
Dl:_CO_Cl_CZ_C3_C7’ D2:_C1_2C2_3C3_7C7 ( )
C, =-39D, +3D, +168D;, Cs=84D, —7D, —336D;
The 6 and its derivative with respect to  are obtained from
5=Co +CiF + Cyf? + Cy° + Cyf* + Cs7° + Cgi® + Cof
do . . . . . .
5':7:_c1 —2C,F =3C3#? —4C, 7> —5Cs* —6C4r° —7C,7° (2.104)
'y

Finally the dimensionless velocity can be computed from



93

4o IAEQZ ln(fesjz + 1)+ 5
Dy
u® =;1n(1% j/+1)+ f;)}i (2.105)

The dimensionless turbulent eddy viscosity is obtained from

if (§=1)then

~ K
V, =
R} 2D,C,
D2
(Rg + 1)Z R;
else (2.106)
N )
"R, Dy
et
Ry+1 R
end if

The velocity profiles obtained from this nondimensional turbulent eddy viscosity defined in
Egs. (2.105) and (2.106) are shown in Fig. 2.9 and are compared with the velocity profiles given by the log
law in Eq. (2.40) from which the Colebrook equation and the Moody chart are based on using the constants
given in Eq. (2.49). It can be seen in Fig. 2.9 that the velocity profiles obtained using the empirical
function ¢ from Eq. (2.105) deviate slightly from the law of the wall but satisfy the symmetry boundary
condition at the centerline.

The experimental dimensionless velocity profiles displayed in Fig. 2.9 are based on Nikuradse

experimental data [47] carried out at six inverse roughness ratio R/k, =[15,30.6,60,126,252,507] and at

the different roughness Reynolds numbers shown in Table 2.1. The experiments carried out at an inverse
roughness ratios of 252 and 507 do not qualify as fully rough flow because the roughness Reynolds number
is less than 70, which is already a low limit for fully rough flow. Nevertheless, the empirical correlation
given in Eq. (2.105) still gives satisfactory velocity profiles when compared to Nikuradse experimental
data. There is a wide uncertainty in Nikuradse velocity data close to the wall. Therefore, only the points

corresponding to /R >0.5 where taken into consideration when optimizing the coefficients of the

empirical s function to fit Nikuradse experimental velocity profiles.



94

14 T
121
5L
~
N
0.8F
06} Nikuradse, Nikuradse,
. R/kY= 5 R/kY= 0.6
Empirical fit Empirical fit ]
< Log law < Log law
14 - + ¢
121
SEAT
~
N
0.8F
06} Nikuradse, | Nikuradse,
. R/k =60 Rk =126
Empirical fit L — Empirical fit ]
Log law Log law
14 + t
131 1
1.2
1.1r
507
~
™>"09
0.8 F
0.7F
0.6 Nikuradse, I Nikuradse, |
. ° R/kY = °© = 07
05} — Empirical fit ] — Empirical fit
Log law Log law
04 2 : 1 2 : 1 0
107 10 10 10 10
y/R y/R

Fig. 2.9 Dimensionless velocity profiles as predicted by Eq. (2.105).
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Table 2.1 Nikuradse’s experiments roughness Reynolds numbers

R/k, 15.0 30.6 60.0 126.0 252.0 507.0
1248 790 378 277 67 49
kS 584 456 244 152
320 242 151 99
125 129

The nondimensional turbulent eddy viscosity obtained from the empirical 0 function given in

Egs. (2.104)—(2.106) and corresponding to the velocity profiles shown in Fig. 2.9 is displayed in Fig. 2.10

and corresponds to the same range of roughness ratio. It is compared to hydraulically-smooth-wall pipe

experimental data taken by Reichardt [79].
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Fig. 2.10 Dimensionless Turbulent Eddy Viscosity Obtained From Eqs. (2.102)—(2.106).

From the empirical turbulent eddy viscosity function given in Egs. (2.102)—(2.106), the turbulent-

kinetic-energy transport equation may be solved by substituting the second turbulence variable with the
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turbulent eddy viscosity equivalence. At this point, the turbulent-kinetic-energy wall boundary condition

and the two closure coefficients o, and C; are still unknown for fully rough pipe.

IV. Fully Rough Flow Algebraic-Mean-Vortex-Wavelength Function

The turbulent wavelength profile may be written in terms of the turbulent kinetic energy and the

turbulent eddy viscosity.

v
ﬁ — t
K2 (2.107)
Using the nondimensional parameters
. .~V k
A= i R vV, = ! , kTt 5—2
R u,R u; (2.108)

Jit (2.109)

Reichardt [79] proposed the following empirical correlation for the turbulent eddy viscosity in

hydraulically-smooth-wall pipes

(2.110)

Or in terms of the wall coordinate

(11 2,

The turbulent eddy viscosity derivative is then
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dv, oo 1 20 el oL\ 4 s
5 =x(1 y)[ +20 y)} Ky(l 2y][3(l y)} (2.112)

In this form, it can easily be seen that as J approaches zero, v, approaches & . It can also be seen that as

¥ approaches unity, v, approaches /6 and the derivative of v, with respect to ) approaches zero.

Reichardt’s empirical correlation for the turbulent eddy viscosity in circular pipes with hydraulically

smooth walls is easily modified to agree closely with the well established near-wall behavior for the fully

rough limit, which comes from Prandtl’s mixing length empirical correlation ¢ =l((y+ 7ks). Using the

notation kg =k /R and applying this near-wall correction to Eq. (2.111) yields

el il e 2 gy
vt—lc(}/ks+y)(1 zy)[3+3(1 y)} (2.113)

Because y k, <<R, for all practical purposes Egs. (2.111) and (2.113) are identical, except for flow within

a very thin layer near the pipe wall where y is on the order of £;.

A similar but somewhat more flexible relation might be used for the mean vortex wavelength. For

example, the limiting expressions for smooth-wall pipes might be

A (1. . . .
izE:AMy(I—EyJ[BZO+B,“r2+Bur4+(1—B,10—B11—B,12)r6]

(2.114)
with a derivative
di ] . ) .
d_j/ =4y (1 _y)[Bzo +BMV2 + 31274 + (1 =By =By —Bj )”6]
2.115)

A1 . . .
—Aﬂy[l—gy)[ZBMr+4er3 +6(1- B, — B, —Blz)rs]
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Note that at the pipe wall where $ =0 and # = 1, 1 approaches 4,9 . At the pipe centerline where =1

and =0, i=4 M % and the derivative of A with respect to ) is zero. Following the development of

Eq. (2.113), for fully rough walls, the following expression might be used for A

~ A A . 1. . o .
ﬂfﬁz(/lzoks +Am)’)(1_5)’j [Bzo +Bﬂ,1’”2 +Bﬂ,z”4 +(1—Bzo —B; —B), )’”6] 2.116)

The five coefficients A4;,, A;;, B, B;;, B, are closure coefficients and need to be evaluated.
V. Closure Coefficients

The present turbulence model is composed of a transport equation for the turbulent kinetic energy and
an algebraic equation for the second turbulence variable, the mean vortex wavelength. The k-A model
presents two closure coefficients associated with the turbulent-kinetic-energy transport equation and one
algebraic relation for the mean vortex wavelength. The turbulent-kinetic-energy transport equation reduced

to axisymmetric pipe flow is given by

d| (0,50 | k™ |_ Vit vk
di| |3 30,) dF | (p+v,) iy (2.117)

There are two closure coefficients associated to this turbulent kinetic energy equation: C; and o . The

turbulent eddy viscosity is related to the turbulent kinetic energy and the mean vortex wavelength through

an algebraic relation

v =Mk 2.118)

The empirical mean turbulent wavelength function for fully rough flow is

~ A A . 1. . o .
ﬂfﬁz(/lzoks +Am)’)(1_5)’j [Bzo +Bﬂ,1’”2 +Bﬂ,z”4 +(1—Bzo —B; —B), )’”6] (2.119)
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This empirical mean turbulent wavelength features five closure coefficients: 4,9, Ay, B, Bii, Byz. The

symmetry boundary condition at the centerline is

dk*

d |, (2.120)

One additional boundary condition is required. Experimental data show that the turbulent eddy viscosity
remains finite at a fully rough surface. From Eq. (2.118), both the specific turbulent kinetic energy and the
mean vortex wavelength remain finite at a fully rough surface. From Eq. (2.119), the mean vortex

wavelength at the wall is proportional to the equivalent sand-grain roughness

A =A,0k.
r=R — TA0Ts (2.121)
From Eq. (2.65), the fully rough eddy viscosity at the pipe wall is
v =K k
g =K 7 Uk (2.122)
From Egs. (2.118), (2.121) and (2.122), the turbulent kinetic energy at the wall is
2
_(xr Y,
Mo = [ AM] e (2.123)
A more general form is
_ 1+ 2
M _p =Kttty (2.124)

where k., is a dimensionless proportionality coefficient. We find that the specific turbulent kinetic energy

is proportional to the shear velocity squared.

VI. Summary and Conclusions

An algebraic relation for the mean-vortex-wavelength distribution in fully rough pipe flow was

proposed and is given in Eq. (2.119). This equation has five unknown coefficients, 4,9, 4,1, By, By and Bja,
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which can be tuned in order to match experimental data and empirical relations for the friction factor and
mean velocity profile.

An algebraic relation for the mean velocity profile in fully rough pipe flow was obtained and is given
in Eq. (2.105). This algebraic relation is based on a deviation from the log law, which is given in Eq. (2.40).
The log law does not satisfy the centerline symmetry boundary condition or the no-slip boundary condition
at the pipe wall. In order to better agree with the Nikuradse velocity profile data for fully rough flows and
in order to satisfy physical constraints, a deviation from the log law was proposed as a seventh order
polynomial function.

From this algebraic relation for the mean velocity distribution, the turbulent eddy viscosity profile can
be deduced analytically for fully rough flow. The resulting turbulent eddy viscosity profile, which is given
in Eq. (2.106), was compared to turbulent eddy viscosity profiles estimated by other authors directly from
experimental data. The turbulent eddy viscosity cannot be measured directly. Instead, it has been
traditionally estimated from numerical derivatives of experimental velocity data. The velocity gradients are
extremely small near the center of the pipe. It was shown that, if central difference were used to extract the
velocity gradients from the measured velocity profiles, and the experimental uncertainty in the velocity data
was £ 0.2%, the uncertainty in the estimated velocity gradients would be on the order of £ 100% near the
pipe centerline. From previously published results estimated from experimental data, about all that can be
said concerning the turbulent eddy viscosity near the pipe centerline is that the pipe-scaled dimensionless

kinematic eddy viscosity, v, , most likely falls somewhere between 0.0 and about 0.1.

Substituting the algebraic expressions developed in this chapter for the velocity distribution and the
turbulent eddy viscosity profiles, the turbulent-kinetic-energy profile can be deduced from the turbulent
kinetic-energy transport equation given in Eq. (2.117). Once the turbulent-kinetic-energy profile has been
found, the second turbulent variable, the mean vortex wavelength, can be deduced from Eq. (2.109). This is
the foundation of the proposed algebraic relation for the mean vortex wavelength.

Eventually, the Phillips £-4 model will be a two-equation turbulence model based on two transportable
turbulence variables, the mean turbulent kinetic energy and the mean fluctuating vorticity. At the present
time, the transport equation describing the mean fluctuating vorticity has not yet developed. Once it is

developed, the resulting fluctuating vorticity distribution must be compared to a reference distribution for
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closure coefficient evaluation and model assessment. The work presented in this dissertation is aimed at
developing reference distributions for the mean fluctuating vorticity and mean turbulent wave length.
The proposed k-4 models feature several unknown coefficients. The turbulent-kinetic-energy transport

equation given in Eq. (2.117) has two closure coefficients o, and C; . The rough wall boundary condition

given in Eq. (2.124) contains the proportionality coefficient, k., between the turbulent kinetic energy and

at the wall and the shear velocity squared. The algebraic relation for the mean turbulent wavelength given
in Eq. (2.119) has five unknown coefficients A4,,, 4,1, By, B;1 and B;,. These eight coefficients need to be
evaluated in order to find the distribution of the second turbulence variable. The closure coefficients might
be evaluated by minimizing the deviations in the predicted friction factor from the Nikuradse equation
given in Eq. (2.17), which is the the fully rough limit of the Colebrook equation, and the deviations in the
predicted velocity profile from the well established law of the wall. There are no experimental data
available for the velocity fluctuations at very high Reynolds number as it is not possible to obtain the
instantaneous components of velocity accurately. Therefore, the closure coefficients will need to be
evaluated by minimizing the differences in the friction factor and the velocity distribution when compared

to the well established relation for fully rough pipe flow.
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CHAPTER 3

PHILLIPS K-A TURBULENCE MODEL CLOSURE COEFFICIENTS EVALUATION
I. Introduction

The proposed k-4 model is based on a transport equation for the turbulent kinetic energy and an
algebraic relation for the mean vortex wavelength. The turbulent-kinetic-energy transport equation for

axisymmetric fully developed pipe flow is given by

2
1d| v, sv|ak|_ [ wr } %k
rdrl (3 30, ) di | ((v+v,)R e 3.1

where v, = Ak'/2. This equation contains two unknown closure coefficients o and C,. These two closure
coefficients should be dimensionless universal constants. Equation (3.1) requires a wall boundary condition
for the turbulent kinetic energy. In Chapter 2, it was shown that, for fully rough flow, the specific turbulent

kinetic energy at the wall is proportional to the shear velocity squared,

_ .+ 2
k|,.:R - kwallur

(3.2)

where k., is a dimensionless proportionality coefficient. The algebraic function for the mean vortex

wavelength that was developed in the previous chapter is given by

2 4 6
y 1y r r r
A=Ak, + Ay = || 1-—== || Bjo+By| = | +Bp| = | +1-Byy—B; —B;,) —
( A0%s Al Rj( 2le: 20 M(Rj AZ(R] ( 20 Al AZ{RJ :I (33)

where y = R — r. This equation contains five unknown coefficients 4,9, 4,1, By, B;1 and Bj,. At the wall,

the mean-vortex-wavelength equation reduces to

A=A,k
r=R A0 (3.4)

For fully rough pipe flow, the value of the mean vortex wavelength at the wall should depend only on the

surface roughness k. Therefore, the coefficient 4,y should be a constant. The remaining four coefficients
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of the mean vortex wavelength 4;;, B, B;; and B;, need not be constants, but could be functions of the
flow parameters such as the Reynolds number and roughness ratio.

This chapter is aimed at evaluating eight coefficients: two closure coefficients g; and C, from the
turbulent-kinetic-energy transport equation, the proportionality coefficient ky,, from the wall boundary
condition and five coefficients A4;y, 4;1, By, By, By from the algebraic relation for the mean-vortex-
wavelength empirical relation. The values for these eight coefficients have a significant impact on the

accuracy of the model and therefore need to be evaluated carefully.

II. Optimization Process

The eight coefficients o}, C,, k;’vau, Ay, Az, By, Bi, By, were evaluated based on a computer
optimization program. The model is first evaluated for a given set of closure coefficients. By solving the
differential equations and comparing the resulting solution with a desired solution, the computer program
returns a fitness parameter that quantifies how well the solution matches the desired solution. This fitness
parameter is a single real number and is used in the value to be minimized in the optimization code. The
optimization program calculates a gradient vector for each of the variables to be optimized. This gradient
vector represents the rate of change of the fitness value with respect to each variable being optimized. In
order to minimize the difference to the desired solution, the optimization program uses the negative of the

gradient vector as the search direction at the each iteration.

A. Fitness Parameter

The first step in any optimization program is to define a fitness parameter, which, if minimized, results
in the optimal solution. A fitness parameter is returned based on a comparison of velocity distributions
obtained for fully rough pipe flows and their corresponding friction factor. The friction factor can be
obtained experimentally by measuring the pressure drop. Instantaneous velocity distribution may be
acquired via hot wire anemometry. However, no experimental data can be obtained at very high Reynolds
numbers because the frequency of the fluctuating components of the velocity is of the same order of
magnitude or greater than the internal frequency of the hot wire anemometers used to capture the velocity

profile during the experiments. Therefore, the fully rough flow model can only be compared with an



104

empirical correlation rather than experimental data. A well established empirical correlation for the friction
factor is the Colebrook equation, from which the Moody diagram is based. The Colebrook equation can be
used at high Reynolds numbers and covers the fully rough flow region. Some of Nikuradse

experiments [47] were carried out at roughness Reynolds numbers k[ greater than 100 and could be used

to compare the velocity distribution against.
The friction factor for fully rough flow is compared to the limit of the Colebrook equation at high
Reynolds numbers which is given by the Nikuradse equation. The Nikuradse equation can be expressed as

1
ac, =
7 174+ 210g,4 (R, )P (3.5)

For fully rough flows, the friction factor is independent of the Reynolds number and depends only on the
roughness ratio. Equation (2.17) is used as a reference for the friction factor for fully rough flow.

The velocity distribution is compared with an empirical relation based on Nikuradse’s [47] rough flow
experiments. A corrective function is superimposed on the log law in order to provide better agreement to
Nikuradse’s experimental data. The corrective function is selected such that the velocity satisfies the
symmetry boundary condition at the centerline and the no-slip boundary condition at the wall. The

reference for the velocity profile for fully rough flow is given by

U= > +6
DO
A D 3.6
u+:—ln(le/+1)+ sz (3-6)
K K R

This function was derived in detail in the previous chapter. The J function is obtained from

§=Cy +CiF+ Cyf? + 5 + Cyft + C5° + CP + Cyf 3.7)

The eight coefficients Cy, Cy, Cy, C;, Cy, Cs, Cs and C; are given by the following system of equation
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o=l 41 [l 1)-2] 2 42, 1)

R} RI | R? K R;
Ci =1z » Gl s St v o
R, +1|D, 0 (Rs + 1) Vie 3(RS +1)3 Dy
Dl :_CO - Cl - C2 _C3 - C7 N D2 :_Cl _2C2 _3C3 _7C7 (3.8)

Dy=—Cy/2-C,/3-C,/4-C5/5-C;/9

C, =-39D, +3D, +168D;, Cs=84D, —7D, —336D;
C, =—44D, + 4D, +168D;

C, =-0.65

The velocity profile obtained from the k-4 turbulence model is discretized into twelve points and
compared at a roughness Reynolds number of 80,000 to the reference distribution given by
Eqgs. (2.105)—(3.8). The choice of the roughness Reynolds number of 80,000 arises from the fact that at this
high of roughness Reynolds number, the ratio of turbulent eddy viscosity over the molecular viscosity is
close to one thousand. The flow is said to be fully rough when the molecular viscosity is insignificant
compared to the turbulent eddy viscosity throughout the flow field, which is the case at a roughness
Reynolds number of 80,000. The velocity profile is compared at 12 sample points ranging from the

centerline to the wall

#=1[0.0, 0.05, 0.1, 0.2, 0.3, 04, 05, 06, 0.7, 08, 09 0.95] (3.9)

It is not possible to accurately measure the velocity really close to the wall, so the first sample point is only
located at 5% of the pipe diameter from the wall. At the wall, the no-slip boundary condition imposes a
zero velocity. The difference between the velocities obtained from the k-4 turbulence model and the
reference velocities given by Eqgs. (3.5)—(3.8) is calculated at each sample points. The sum of the absolute
value of the difference divided by the reference velocities describes the fitness to the velocity distribution
for fully rough flow.

The friction factor from the current k-1 turbulence model is compared to that obtained from the
Nikuradse equation while varying the roughness Reynolds number from 100 to a roughness Reynolds
number that gives a Reynolds number of 10°. The moody diagram is usually represented for Reynolds
numbers up to 10%. For this reason, a limit of 10° for the Reynolds number was chosen to be the high limit

when varying the roughness Reynolds number k,". The flow is fully rough when the molecular viscosity
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can be neglected when compared to the turbulent eddy viscosity. At a roughness Reynolds number of 1000,
the ratio of the turbulent eddy viscosity to the molecular viscosity is 12. At a roughness Reynolds number
of 100, this ratio is 1.2, which is obviously not large compared to unity. The model was first evaluated by
comparing the friction factor for roughness Reynolds numbers higher than 1000. It was found that the
model could estimate the friction factor and velocity distribution really accurately at given o, and C,
values.

The fully rough flow solution is independent of C;. In the k-1 formulation given in Eq. (3.1), the

coefficient C; only occurs as the product of C, with the molecular viscosity. By definition, fully rough flow
is attained when the Reynolds number is independent of the kinematic molecular viscosity. From Eq. (3.1),
when the solution becomes independent of the molecular viscosity it will also become independent of C;.
Therefore, an estimate for the coefficient C; can only be obtained for flow that are not fully rough, that is at

a lower roughness Reynolds number. In order to estimate the closure coefficients o, and C, the friction

factor was compared to that obtained from the Nikuradse equation at a roughness Reynolds number as low
as 100. The logarithm of the roughness Reynolds number is then increased by 0.25 until the Reynolds
number becomes large enough (10%).

The fitness parameter is defined as a weighted value between the fit to the Nikuradse equation for fully
rough flow given in Eq. (2.17) and the fit to the velocity distribution profile given in Egs. (2.105)—(3.8).
The weighting factor is 50%.

The turbulent kinetic energy, mean turbulent wavelength and turbulent eddy viscosity were not
weighted when estimating the coefficients. At high Reynolds numbers, the sampling rate of a hot wire
anemometry has a frequency smaller or of the same order of magnitude as the fluctuating components of
the velocity. Because the current technology does not allow sampling the fluid velocity at high Reynolds
numbers, it is not possible to obtain accurate estimates for the turbulent kinetic energy, mean vortex

turbulent wavelength or turbulent eddy viscosity.

B. BFGS Algorithm
A gradient-based optimization method is used in order to minimize the difference between the desired

solution and the current model. A gradient based method was chosen for this optimization routine because
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the fitness function is expected to be continuous throughout the design space. The quasi-Newton’s method
is based on Newton’s method to find a stationary point of a function where the gradient is 0. Newton’s
method assumes that the function can locally be approximated as a quadratic region around the optimum
and use the first and second derivatives to find the stationary point. Quasi-Newton’s methods are a
generalization of the secant method to find the root of the first derivative for multidimensional problems.
One of the most common quasi-Newton methods is the BFGS method, suggested independently by
Broyden [81], Fletcher [82], Goldfarb [83] and Shanno [84]. For details on the implementation of the
BFGS method, see the work of Hunsaker [85] and Appendix E.

The BGFS method does not search for the global minimum. An initial value is provided for the
variables to be optimized. Because of the complexity of the model, the optimization technique can easily be
entrapped in a local minimum. To ensure that the solution found is a global minimum, the problem may be
started from different initial values. If all converge to the same solution, then the optimized variables
represent a global minimum. In some instances, one of the optimized variables returned from the
optimization solver present very little variations from its initial estimate, even when started from different
values. A possible reason is that the solution is independent from this variable. Another possibility is that
the step gradient is too small and the solution found represents a local minimum. In which case, the step
gradient was increased. To find the minimum of a function using a step gradient method like the BFGS
algorithm, one selects a step proportional to the negative of the gradient of the function at the current point.

This step is called the step gradient. The optimization code is given in Appendix D.

III. Closure Coefficient Evaluation

The eight turbulence model coefficients o, C,, 4,0, A1, Bio, By, By, and kvf,all were evaluated over

the discrete range of the inverse roughness ratios 15.0, 30.6, 60.0, 126.0, 252.0, 507.0, 0.5/0.000058. The
first six inverse roughness ratios correspond to those used by Nikuradse during his rough flow experiments
[47]. The last inverse roughness Reynolds number (0.5/0.000058 ~ 8621) was used by Shockling et al. [72]
during their fully rough flow measurements. In order to study the dependancy of the closure coefficients on
the roughness ratios, those eight closure coefficients were first optimized as a set for each of the 7

roughness ratios.
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A. Variations of the Model Coefficients with the Roughness Ratio

The two closure coefficients o, and C; from the turbulent-kinetic-energy transport equation should be
universal constants. The optimization code requires a set of initial values for all of the variables being
optimized. When the variable o, was being optimized over a range of roughness ratios, the optimized
returned value was always really close to the initial value. Therefore, this variable was initially not
optimized and was kept constant. The same phenomenon happened for the value of the proportionality
coefficient in the wall boundary condition. Therefore those two variables were at first held constants. The
proportionality coefficient in the wall boundary condition, k.., was at first expected to be in the range
0.05 to 2.0. The closure coefficient o; was at first expected to be in the range 0.5 to 8.0. The coefficient C;
and the other five coefficients 4;y, 4;1, B, B;1, By, were all optimized simultaneously for each of the 7
roughness ratios at a constant g and constant k. This gave an estimate for the closure coefficient C;
(which should be a universal constant).

This process of running the optimization code at a given o, and k., to optimize the remaining six
coefficients (4,9, 4,1, By, Bi1, By and C;) was repeated several times over a range of o; and kvf,a“. The
following section gives an example of the optimization results for o; = 6.0 and k},,;; = 0.1.

An example of the optimized C; coefficient is given in Fig. 3.1. The coefficients o; and k., were held
constant. The optimization code returned the optimal values for C;, 4,9, 4,1, By, B;1 and B;, for each of the
seven roughness ratios. The coefficient C; should be a universal constant. For the case o; = 6.0 and
ka1 = 0.1, the coefficient C; was selected to be 0.00036. This value is only a rough estimate. It will be
reoptimized at a later stage.

Once an estimate for C; is obtained at each g; and k\,_;, values, the remaining five coefficients 4,9, 4,1,
B, B;1, B> can be reevaluated. The optimization code was repeatedly used for different values of gy, in the
range 1.0 to 7.0 and different values of ky,,, in the range 0.05 to 1.0 holding C; constant. An example is
shown in Fig. 3.2 for g; = 6.0, C; = 0.00036 and kg,_;, = 0.1. For other values of k., and o, the five

wall

coefficients 4,9, A;1, B;o, B;1, B;» showed a similar trend.
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Fig. 3.1 Optimized coefficient C; at selected roughness ratios using o; = 6.0 and k., = 0.1.

The coefficient 4,, representing the value of the mean turbulent wavelength at the wall and should be a
constant for fully rough flow. The mean vortex wavelength is given by

A=A,k
r=k — TA0%s (3.10)

The mean vortex wavelength should only depend on the roughness ratio at the wall. Therefore 4,,should be
a constant. Figure 3.2 shows that the optimized value is not a constant but varies slightly with the
roughness Reynolds number. Just like it was the case for the C; coefficient, a constant is at first selected, to
be used as a rough estimate. The remaining four coefficients are re-optimized, as shown in Fig. 3.3.
Comparing Fig. 3.3 to Fig. 3.2, a few differences can be seen in the actual values, but the variations of the
coefficients with respect to the roughness Reynolds number remain the same. From the dependency of the
four remaining coefficients 4;,, By, B;; and B;, with the roughness ratio that is shown in Fig. 3.3, functions
were proposed for these four coefficients. A linear function for the coefficients A4;;, By, B;; and B, is

originally proposed.
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The coefficient A, is fitted with a more complex function that asymptotically approaches a linear function
for high roughness ratios and approaches an exponential function for low roughness ratios. The following

functions are initially suggested

Ay = Ay + Agok, (A/uo = Ay, — Aypok, )exp(— eyt )

(.11)
Byg =By + B/wlles (3.12)
By =B + Bk, (3.13)
By, =By + B/m];s (3.14)

The BFGS optimization method does not search for the global minimum. Therefore the initial values
given to the optimization solver are of extreme importance. Initial estimates for the ten coefficients 4;,
A, Anzs Az Bioo, Biot, Biio Biii, Bio and By, are obtained using the build in optimization solver of

Excel. At g, = 6.0, C; = 0.000036 and k., = 0.1, the following initial estimates are used

wall

Ay =0.002500, A,y =0.01197, A,;, =0.05278, A, =0.009954
A3 =03900, B,y =02694, B, =0.1572, B, =1353

(3.15)
By, =-1327, B,y =—-0.6674, B, =39.30

Figure 3.4 shows the proposed functions given in Egs. (3.11)—(3.14) for the four coefficients of the
mean turbulent wavelength, A4;;, By, B;; and Bj,. The coefficients 4,9 and C; are kept constant. The ten
coefficients 4,19, 4311, 4312, 4213 Bioo, Biot, Biro, Bii1, Bioo and By, used in Egs. (3.11)—(3.14) are given in
Eq. (3.15). These ten coefficients were obtained by minimizing the fitness parameter at each roughness
ratio using the BFGS optimization algorithm.

The value for the closure coefficient C, and the constant 4,y used in Figs. 3.2-3.4 were only rough
estimates. The ten coefficients A0, 411, 4212, 4213, Baoo, Biot, Biio, Bain, Bio and By, given in Eq. (3.15)
along with the closure coefficient C; and the constant 4, need to be reevaluated when the seven roughness

ratios are optimized simultaneously.
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Fig. 3.4 Proposed functions for A4;;, B;, B;; and B;; using o, = 6 and k,,; = 0.1 and with a non-

optimized C; and A4;, held constant.
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After iterating several times on different o, and k., the range of o; and k.., was slightly decreased.
Figures 3.5 and 3.6 show the fitness values and the coefficient C; for the range of o; 0.5 to 8.0 and based
on the optimization of the coefficients C;, Ay, 410, 4;11, As12, 43135 Bioos Biot» Brio, Biti, Bro and By
simultaneously. It can be seen in Fig. 3.6 that the coefficient C, clearly converges to 0 for values of g;
greater than 6. From Fig. 3.5, the fitness decreases as o increases. Therefore the closure coefficient oy is
expected to be in the range 2.0 to 6.0. Figures 3.5 and 3.6 were generated for k., in the range 0.1 to 2.0.
For values of o, greater than 2.0, the value of the proportionality coefficient in the wall boundary condition
does not affect the fitness parameter much.

In order to validate the equations suggested in Eqs. (3.11)—(3.14), the four coefficients 4;,, B;y, B;; and
B;, are reevaluated for each individual roughness ratios. If after the optimization, the four coefficients do
not change from their initial values, then the proposed equations given in Egs. (3.11)~3.14) can be
validated. The coefficients 4;;, B,o, B;; and B;, are computed from the optimized 4,10, 4,11, 412, 4213, Boo,
Bjo1, Biio B, B and By coefficients. This serves as an initial estimate in the optimization code. In
Fig. 3.7, the circles represent the initial estimates and the solid dots the final optimized values. There are
very little changes in the A4;,, B;; and B;, coefficients. However, the optimized B;, coefficient shows a

nonlinear trend.

A similar function as for the 4;; coefficient is fitted to Bjy. The coefficient B;, is now written as a
function that asymptotically approaches a linear function for low roughness ratios and an exponential

function for high roughness ratios.

. . .-
Bjo = B0 + Bk, (Bzoo = Bo1 — Bk )exp(— kyor ) (3.16)

With this new function for B)L(), the fourteen coefficients A/lOa A/llOa Ailln AMZ) A/ll3r Bwo, B)VOl: B/lOZ: Bw3,
B0, By, By, By and C, are reoptimizeded all together for all the seven roughness ratios. From the
optimized coefficients, the 4;;, By, B;; and B;, are evaluated for each roughness ratios using Egs. (3.11),

(3.13), (3.14) and (3.16). Those four coefficients are then optimized at each roughness ratios.
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Fig. 3.5 Fitness Values for different k,, in the range [0.1 — 2.0] resulting from the optimization of
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Fig. 3.6 Closure coefficient C; for different k.., in the range [0.1 — 2.0] resulting from the

optimization of C;, 4,9, Aj10, As115 A2125 A213» Bioos Bio1, Biios Biii, Biao and B, simultaneously.



AXO

B?»O

B?»2

0.007

0.006 |

0.005

0.004

0.003 |

0.002 |

0.001

0.3}

0.25

027

0151

011

0.051

1.5}

051

COONOEEOIIEE ‘® ®
© - - Initial values |
. Final values
2 @
e ® O ©
L® 4
© - - Initial values |
. Final values
- - —9
@ B
& i
®
- @ i
O O - Initial values
U Final values
0 0.02 0.04 0.06
ks/H

116

0.025

©
@
0.02 + @
&
0.015|®
=
< )
0.01¢t
0.005
O Initial values
. Final values
%@
1.2+
@
.| .
®
0.8}
m&
0.6
0.4} @]
021 ]
O Initial values
. Final values
O Initial values
[ Final values
4e-5|
3e-5¢f
<
O
2e-5¢1
1e-58*® ® - @ ‘® ® |
0 0.02 0.04 0.06
kS/F{

Fig. 3.7 Initial estimates and optimized A4,;, B,), B;; and B;, coefficients obtained at ¢, = 6 and

k+

wall

= 0.1 based on the linear function for B;, given in Eq. (3.12).



117

Figure 3.8 shows the 4;, 4;1, B, B;1 and B, coefficients before and after optimization. There are no
noticeable changes before or after the optimization in any of the coefficients. Therefore, the functions

proposed in Egs. (3.11), (3.13), (3.14) and (3.16) can be used for the 4;,, By, B;; and B;, coefficients

+

respectively. Figure 3.8 was generated based on o, = 6 and k=

0.1. Different values of o, in the range
2.0 to 6.0 and k., in the range 0.05 to 2.0 yield similar trends to that shown in Fig. 3.8.
The improvement of the function given in Eq. (3.16) compared to that given in (3.12) to model the

coefficient B;, is shown by the fitness values of Fig. 3.9. This figure was generated at k.., = 0.1. For any

value of gy, the fitness parameter is decreased by at least 14%.

Using Eq. (3.16) for By, the friction factor obtained from the k-4 turbulence model agrees well with the
Nikuradse equation for fully rough flow. Figure 3.10 shows the friction factor compared to the Colebrook
equation. This was generated for o, = 2.0, which has one of the worst fitness values, as seen in Fig. 3.9. The
coefficients used to generate Fig. 3.8 are the same as those used to generate Fig. 3.10. Figure 3.10 was
generated starting the roughness Reynolds number k7 at 100. Equation (3.16) compared to Eq. (3.12) does
not yield any noticeable differences on a friction factor figure. The open circles shown on Fig. 3.10
correspond to a friction factor obtained using the linear equation given in Eq. (3.12) for B),. The solid dots
are based on the nonlinear equation given in Eq. (3.16) for B;.

There is a slight improvement in the velocity distribution when using the nonlinear relation for B;.
Figure 3.12 shows the velocity distribution for a range of roughness ratios using the linear relation for By,.
Figure 3.13 shows the velocity distribution for a range of roughness ratios using the nonlinear relation for
B),. Both figures were generated for fully rough flow at a roughness Reynolds number of 80,000. Figures
3.12 and 3.13 used o; = 2.0 and all the same coefficients as those that were used to generate Fig. 3.10. From
a comparison between Figs. 3.12 and 3.13, it can be seen that for low roughness ratios, the fit to the log law
is slightly improved when using the nonlinear relation. Figure 3.11 shows a comparison between the log
law and the velocity distribution obtained using o; = 2.0. From Figs. 3.10 and 3.11, it can be seen that the

current k-4 turbulence model for fully rough flow predict the velocity and friction factors very accurately.
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Fig. 3.13 Velocity distribution using the nonlinear equation for B,, given in Eq, (3.16), using o, = 2

and k{,.;= 0.1 and compared with a reference velocity distribution.

B. Variations of the Model Coefficients with o

A sixth order function is originally used to model the variation of the closure coefficient C; with
respect to ;. As seen on Fig. 3.6, the closure coefficient C, showed very little dependency on the
proportionality coefficient in the wall boundary condition. After iterating several times on all the
coefficients to study the dependence of the coefficients with respect to oy, the polynomial function to model
C; was reduced to a fourth order, and the range of g, was reduced to 2.0 to 6.0.

Figures 3.14-3.26 were generated using a turbulent kinetic energy k., = 0.05, 0.1, 0.5 and 1.0. Three
coefficients 4,15, By, and By are all functions of the proportionality coefficient in the wall boundary
condition. All the other coefficients are assumed to be independent of the proportionality coefficient in the
wall boundary condition, k.. A fourth order polynomial function was used to represent the variations of
the coefficients to the closure coefficient o;. Because the coefficient g is sampled five times at regular

intervals in the range 2.0 to 6.0, the fourth order polynomial function passes through the average in k., at

each of the five ;.
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The following fourteen relations among the sixteen unknown constants were used to generate

Figs. 3.14-3.26.

11430803817E-040; - 21568032682E-030; +1.5454411906E-0207
- 53147683089E-025, + 8.3648609370E-02

A,y =- 54806699600 E-065; + 10829889892 E-045; - 58824903497 E-04c 2
+ 64266598213 E-055, + 7.0559295507 E-03

= 6.0548405176E-06a,f - 1.7464041639E—0402 + 1.7083135016E—03a,f
78015697237 E-035, + 2.3620283331E-02

N
o
e
=)

|

Ay, = 16430210539 E-040 - 32876048062 E-0303 + 23668508652 E-020
- 7.4817705811E-020, + 13742572373 E-01

(3.17)

(3.18)

(3.19)

(3.20)
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L2

C, =6.7456577268E - 03k}~ +3.5031152723E - 03k}, - 7.6039769524E - 03
C, =-4.3056163634E -02k %, -2.0050955122E - 02k %, +5.7370834148E - 02
2
N

C, = 1.1098738361E -01ky,;, +5.7323021287E - 02k, -1.5770938564E -01

wall

Cy =-9.7888362645E - O2k;a”2 -7.6772775598E - 02k, +1.6397877418E -01

4 3 2
AMZ :C4 O-k +C3 O-k +C2 O-k +Cl O'k +C0

Az = 2.1775071643E-0402- 4.6125648020E—0302 + 3.2004745006E—020,%
- 7.6059412219E-020, + 2.6786227707 E-01

B,oo = 15394390008 E-030} - 3.7675845262 E-025; + 3.0539951413E-0lo}
- 99814632971 E-0lg, + 11231750962 E + 00

By = - 17611480539E-030; + 33472445299 E-0207 - 21562199190 -0l
+ 4.9483981773E-015, + 4.4081967221E-01

C,= 4.5958241000E -03k.,,~ +2.0834333483E - 03k, - 1.3277370846E - 02

Cy =-9.3116503886E - 0247, - 2.8569790820E - 0247, +2.7587164438E - 01

wall

C, = 6.0395589241E - 01k, 12 +1.8761243453E - 01k, -2.0079111202E + 00

wal wall

C, =-1.4946016082E + 00k, -7.3780887177E - 01k, +6.0340918034E + 00

Co= 1.2142113765E + 00k.,, +1.2696368571E + 00k, -7.2873561012E + 00

wall

4 3 2
By, =Cy0, +C30,+C,0; +Ci0, +C,
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B, = - 10134626360 E-036; + 19147367622 E-020;- 1.2222170912 E-0lo};
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(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)
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C, = - 20201876364E-03k".," +43279392861E-03k,, - 13949382336E—-03  C29)
Cy = 2.6570830671E-02k%,," - 64136620678 E-02k%,, + 23621757343E-02
C, = -11989031734E-01k’,~ + 33373664338E-01k,, - 13864710895 E-01
C, = 21942375688E-01k’,," - 7.0814005373E-01k%, + 3.0315634574E-01
Co = - 14066477454E-01k%,," + 45837394149 E-01k,, - 8.0853545298 E-01
B,y=Cyof +Cy0,+Cy0p +Cia, +C,

B, =-2.6815510578E - 03¢, +4.0037296283E + 01 (3.30)

The ten constants A;10, 4511, 412, As13 Boo, Biow, Biio, Bii, Bioo and Bj,; are related to the four coefficients

Az, Byo, By, B according to

» n ~ oA

Ay = Ay + Ayiok (A/HO — Az — Ak )exp(— kg m) (3.31)
N R -

By =By + Bk, (B/wo —Bo1 — Bk )exp(— kg ) (3.32)
B =By + B/m/gs (3.33)

By, =By + B/mlgs (3.34)

The mean vortex wavelength is given by
) Ei = (Azo/gs + AM)A/) 1—15’ [Bzo +B/11’32 +Bzz’¢4 +(1—B/10 - B —Bﬂz)f6]
R 2 (3.35)

The coefficient 4;, was chosen to be a constant. In fact, for fully rough flow, the wall value of the
turbulent kinetic energy should be a constant. The mean vortex wavelength at the wall depends only on the
roughness ratio. This requires the coefficient 4, to be a constant.

The coefficients were optimized one at a time. Hundreds of iterations were performed on the
coefficients Ay, As10, Air1s Az12> As13 Bioo, Biot, Bioz Bios Biio, Bit, Bio, B2, C; in order to obtain the

relations given in Egs. (3.17)—(3.30). See Appendix E for details.
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C. Fitness Value for the Complete Model

The fitness parameter for the complete model is shown in Fig. 3.27. This fitness parameter quantifies
how well the model matches empirical relation established for fully rough pipe flows. The fitness
parameter was obtained based on the relations given in Eqs. (3.17)—(3.34). This figure can be compared to
Fig. 3.9. As an example at g, = 2.0, the fitness shown in Fig. 3.9 was 0.00520. For this same oy, the fitness
shown in Fig. 3.27 is 0.00527. The increase comes from the fact that the exact optimal values for all the
coefficients involved in the turbulence model were used to generate Fig. 3.9 whereas a function was used to
generate Fig. 3.27. The difference in the fitness parameter between Figs. 3.9 and 3.27 is so small that it
is not noticeable on the friction factor and velocity distribution figures.

The total fitness is the sum of the fitness for the friction factor reference equation and the fitness for
the velocity distribution reference function. These fitnesses are obtained from a RMS of a reference
function. The fitness for the velocity distribution and the fitness for the friction factor are shown in
Fig. 3.28. The fitness of the velocity distribution is better than that for the friction factor. At g, = 4.0, the
fitness to the friction factor equation is 0.536% whereas the fitness to the velocity distribution is 0.223%,

which is still excellent.
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Fig. 3.27 Total fitness parameter versus oy.




132

x 10
8 T T T T T T T
e Fitness velocity distribution
O  Fitness friction factor
7% ]
6 8 1
©
")) 5 B -
[2]
(0]
b=
T o _
3l i i
&
2F L -
s
1 | | | | | | |
2 25 3 3.5 4 45 5 55 6
Oy

Fig. 3.28 Velocity distribution and friction factor fitnesses over a range of o;.

IV. Summary and Conclusion

The turbulent-kinetic-energy transport equation proposed by Phillips contains two closure coefficients,
o and C;, which should be dimensionless universal constants. It has been shown here that excellent
agreement with experimental data for fully rough pipe flow can be attained over the range of about
2 <0;<6 and 0.00001< C; < 0.00057, provided that the relation between o and C;, which is given in
Eq. (3.17) and shown in Fig. 3.14 is maintained.

In addition, the turbulent-kinetic-energy transport equation requires a wall boundary condition for the
specific turbulent kinetic energy. In general, the specific turbulent kinetic energy at a rough surface should

be proportional to the square of the friction velocity,

_ 7+ 2
k,.=R _kwallur

(3.36)
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where k., is a dimensionless proportionality coefficient, which is expected to be a unique function of the
roughness Reynolds number, k u,/v. However, by definition, fully rough flow occurs when the
roughness Reynolds number is high enough so that the solution becomes independent of molecular
viscosity. Hence, for fully rough pipe flow, the proportionality coefficient, k., must be another

dimensionless universal constant associated with the turbulence model. It has been shown here that

excellent agreement with experimental data for fully rough pipe flow can be attained over the range of

about 0.05< k., <1.0, provided that certain algebraic relations are maintained between the mean vortex

+
wall *

wavelength, 1, and the proportionality coefficient, &
From the discussion above, it is important to recognize a significant result that was developed in this

chapter. Excellent agreement with experimental data for fully rough pipe flow can be attained over a range
of model constants, which are ;, C; and the fully rough limit for k. In terms of future development, this

is fortunate, because it provides a great deal of flexibility that can be used when tuning the model to agree
with experimental data for other turbulent flows.

The empirical relation obtained in Chapter 2 for the mean vortex wavelength contains five unknown
closure coefficients, 4,9, A;1, By, B;1 and B;,. Unlike the closure coefficients in the turbulent-kinetic-energy
transport equation, the closure coefficients in the algebraic relation for the mean vortex wavelength, which
is given in Eq. (3.3), need not be universal constants. Because Eq. (3.3) was used simply to develop an
empirical correlation to fit experimental data, the only restriction that must be placed on A4;;, B;o, B;; and
B, is that these closure coefficients may not depend on the radial position within the pipe. In general, the
turbulent eddy viscosity and mean vortex wavelength at a rough surface should be proportional to the
equivalent sand-grain roughness height. Therefore, the coefficient A4;, should be a constant. It has been
shown that excellent agreement with experimental data for fully rough pipe flow can be attained, if 4, is a
constant and A;;, Bj, B, and B, are functions of the roughness ratio, k,/R, as given by
Egs. (3.31)+(3.34). Combining the constant 4,y with the 12 constants in Egs. (3.31)~(3.34), there are 13
dimensionless constants, 4,9, 410, 4711, 4212, 4213, Bioo, Brot> Bioz, Baos» Biro, Bai1, Bino and By, that must be

known to determine the variation in the mean vortex wavelength over the pipe radius.
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Combining the proposed turbulent-kinetic-energy transport equation and boundary conditions with the
proposed algebraic relation for the mean vortex wavelength, there are a total of 16 unknown model
constants for the case of fully rough pipe flow, o1, C;, ka1, Aios Azros A, Ai1zs Az, Bioos Biors Biozs Bioss
Bj10, Bj11, Biao and Bj,,. Using an optimization code, 14 algebraic relations were established among these 16
constants. The determination of these 14 algebraic relations was based on minimizing a fitness parameter,
which assesses how close the model solutions are to a target solution set. The target solution set was based
on a friction factor and a velocity distribution comparison to algebraic relations obtained for fully rough
flows. The friction factor was compared to the Nikuradse equation, which is the fully rough flow limit of
the Colebrook equation. The velocity distribution was compared to an algebraic relation derived using a
deviation from the log law in order to satisfy the symmetry centerline boundary condition and the no-slip
wall boundary condition.

The minimization of the fitness parameter is based on a quasi-Newton, gradient-based algorithm. This
algorithm uses the BFGS update method. Hundreds of optimization cases were run over a wide range of
values for the closure coefficients. From those optimization cases, functions were derived for the five
coefficients of the mean vortex wavelength; 4,9, 4,1, By, B;1, By2. These coefficients were found to depend
on the roughness ratio kg, the proportionality coefficient k., and the closure coefficient oy.

Excellent agreement with well established relations for fully rough pipe flow can be obtained provided
that the relations between the model coefficients are maintained. The fully rough flow model shows that a
good fitness can be obtained for any value of g, in the range 2.0 to 6.0 and any value of the k., in the
range 0.05 to 1.0. The RMS error is 0.511% at g5, = 2.0 and 0.203% at g, = 6.0, when the relations between
the model coefficients are maintained. The choice of the closure coefficients o and k,,;, could be decided
based on lower roughness Reynolds numbers because fully rough pipe flow gives good results over a range
of values for o; and k{,,;, provided that the relations between the other coefficients are maintained.

The model needs to be compared to other turbulence models, which support rough flow. This will be
presented in the next chapter. The current model gives excellent agreement with the velocity distribution
and friction factor. Because there are no data available for fully rough pipe flow for the turbulent kinetic
energy and the second turbulent variable, no comparison is possible. The distribution of the fluctuating

vorticity and the mean turbulent wavelength will be presented in the next chapter.
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CHAPTER 4

PHILLIPS K-A TURBULENCE MODEL RESULTS AND CONCLUSIONS

I. Introduction

The closure coefficients associated with the present k-1 one-equation turbulence model for fully rough
pipe flow were evaluated by minimizing a fitness parameter in order to match algebraic relations obtained
for the velocity distributions and the friction factor. It was shown that excellent agreement with

experimental data could be obtained over ranges of model constants, which are 2 < g, < 6,
0.00001< C; < 0.00057 and 0.05<ky,,; <1.0, provided that certain algebraic relations are maintained

among the mean vortex wavelength, 4, the two closure coefficients C; and o; and the proportionality

coefficient, k.

During the optimization process, the mean vortex wavelength, turbulent kinetic energy and root-mean-
square fluctuating vorticity were not compared to reference distributions. In fact, no reliable experimental
data can be obtained at very high Reynolds numbers for the turbulent kinetic energy, fluctuating vorticity
and mean vortex wavelength because modern experimental systems cannot currently measure the very high
velocity frequencies.

This chapter presents the root-mean-square fluctuating vorticity and the mean-vortex-wavelength
distributions obtained from the k-4 model for fully rough flow over a range of relative roughness. The
model is first compared to well established relations for the velocity distribution and resulting friction
factor. Then the second turbulence variable distribution is presented. The -4 model is compared to the

Wilcox 1998 and 2006 models at high Reynolds numbers.

II. Model Validation

In order to assess the model’s ability to predict fully rough flows, the current turbulence model is
compared to well established relations for the velocity distribution and friction factor. The velocity

distribution is compared to the log law and experimental data taken from Nikuradse’s rough flow
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study [46]. The friction factor is compared to the Colebrook equation from which the Moody diagram is
based on.

The friction factor obtained from the current turbulence model is shown in Fig. 4.1 along with
published experimental results. The first solid dot of each roughness ratio line corresponds to a roughness
Reynolds number of 100. The flow is considered fully rough for a roughness Reynolds number greater than
1000, which is the fourth solid dots on each of the roughness ratio lines. The model shows excellent

agreement with the fully rough limit of the Colebrook equation.

The model extrapolates well for rough flows having a roughness Reynolds number smaller than 1000.
The friction factor is well within the scatter of the experimental data for roughness Reynolds number

greater than 1000.
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The velocity distribution obtained from the present &-4 turbulence model is compared to the log law for
fully rough flow in Fig. 4.2. The log law is supported by Nikuradse’s rough flow experiments of 1933.
Figure 4.2 was generated at a roughness Reynolds number of 80,000. The agreement with the log law is
excellent. Note that close to the centerline the centerline symmetry boundary condition imposes a deviation
from the log law. Figure 4.3 shows a different representation of the velocity distribution. It can be seen that
for any relative roughness number, all curves collapse to the log law curve. From Figs 4.2 and 4.3, the
turbulence model predicts the velocity distribution for fully rough pipe flow to a high degree of accuracy.
Both figures were generated using o; = 4.0 and k., = 0.1. The model gives similar results to those

presented in Figs. 4.1-4.3 for values of oy in the range of 2.0 to 6.0 and values of k., in the range of 0.05

to 1.0.
III. The Second Turbulence Variable

The present turbulence model predicts the velocity distribution and friction factor accurately for fully
rough pipe flows. The model is currently based on a transport equation for the turbulent kinetic energy and
an algebraic relation for the mean vortex wavelength. Eventually, the model will be based on a transport
equation for the root-mean-square fluctuating vorticity as a replacement of the empirical relation for the
mean vortex wavelength. The square of the mean vortex wavelength is proportional to the turbulent kinetic
energy over the square of the root-mean-square fluctuating vorticity.

k
2=C,— (4.1)
w

This fully rough pipe flow model will serve as a reference for the turbulent kinetic energy, turbulent eddy
viscosity and root-mean-square fluctuating vorticity distributions because no experimental data or empirical

relations are available for these three variables. Using the following nondimensional parameters:

k ~ A
k+E—, A=—, ot =" 42

v 3 4.3)
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Figures. 4.4-4.7 show the turbulent kinetic energy, the mean vortex wavelength, the turbulent eddy
viscosity and the root-mean-square fluctuating vorticity for fully rough flow. These four figures were
generated using a roughness Reynolds number of 80,000, o, = 4.0 and k,,;, = 0.1. Three inverse roughness
ratios are given: 15, 126 and 507. The variations of the turbulent kinetic energy and the second turbulence
variable corresponding to the roughness ratio, results from a variation of the velocity distribution with
respect to the roughness ratio, as shown in Fig. 4.8. As the inverse roughness ratio is decreased, the friction
factor decreases as well. The friction factor is inversely proportional to the mean velocity. At low inverse
roughness ratio (e.g. 15), the mean velocity is smaller than for higher inverse roughness ratio (e.g. 252).
Therefore the friction factor is greater at high inverse roughness ratio (e.g. 15). Figure 4.8 shows that at

high inverse roughness ratio, the mean velocity is greater than for low inverse roughness ratio.
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From Fig. 4.6, the apparent value at the wall of the root-mean-square fluctuating vorticity appears to
decrease as the inverse roughness ratio increases. As the pipe gets smoother, the apparent wall value of the
root-mean-square fluctuating vorticity seems to originate at infinity. In fact, looking at the same data on a
log-log scale proves that for any roughness number, the value of the vorticity at the wall is finite and
increases slightly and decreases very sharply, as seen in Fig. 4.9. The value of the vorticity at the wall can
be computed from the ratio of the turbulent kinetic energy at the wall and the square of the mean turbulent
wavelength.

Figure 4.10 shows the turbulent eddy viscosity profile compared to values obtained by Nikuradse and
Reichardt. The turbulent eddy viscosity obtained by Nikuradse and Reichardt is not expected to match that
obtained from the current k-4 model. However, the order of magnitude should be close, which is the case.
The data referring to Nikuradse and Reichardt is not obtained from experiments directly, but it is derived
from the derivative of the experimental velocity values. Because taking the derivative of experimental
points accumulates errors, the turbulent eddy viscosity obtained from Nikuradse and Reichardt is not
expected to match that obtained from the current turbulence model. Note that the turbulent eddy viscosity
stays fairly constant over the core of the pipe, as observed by Kays and Crawford [86] who suggested using
a constant value over the central region of the pipe combined with an approximation from mixing-length
theory near the wall.

The variations in the closure coefficient o, of the turbulent kinetic energy, the mean vortex wavelength,
the turbulent eddy viscosity and the root-mean-square fluctuating vorticity for fully rough flow are shown
in Figures 4.11-4.14. Because the turbulent-kinetic-energy transport equation depends on the closure

coefficient oy, the distribution of the turbulent kinetic energy and the second turbulence variable also

L

depend on this closure coefficient. The figures were generated using k., =

0.1, an inverse roughness ratio
number of 252 and a roughness Reynolds number of 80000, which corresponds to fully rough flow.
Changing the closure coefficient o; greatly impacts the amplitude of the turbulent kinetic energy, mean
vortex wavelength and fluctuating vorticity. Increasing oy results in a decrease of the transport of the
turbulent kinetic energy.

The variations in the turbulent kinetic energy, the mean vortex wavelength, the turbulent eddy

viscosity and the root-mean-square fluctuating vorticity with the proportionality coefficient in the wall
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boundary condition are shown in Figs. 4.15-4.19. Only slight variations with k., can be depicted on
Figs. 4.15-4.19. Figure 4.15 shows that only the region very close to the wall is affected by a change
in k.. Those figures were generated using 4 for the closure coefficient o, an inverse roughness ratio
of 252 and a roughness Reynolds number of 80,000. The proportionality coefficient in the wall boundary
condition was only varied from 0.05 to 1.0.

The turbulent kinetic energy, mean vortex wavelength, turbulent eddy viscosity and root-mean-square

fluctuating vorticity variations with the roughness Reynolds number are shown in Figs. 4.20—4.23. These

+

figures were generated using k.

= (.1, an inverse roughness ratio of 252 and the closure coefficient oy
set to 4.

There are only slight changes in the amplitude of the turbulent variable distributions between a
roughness Reynolds number of 1000 and 80,000. Both of the roughness Reynolds numbers can be
considered to represent fully rough flow. Changes are more noticeable for rough flow having a roughness

Reynolds number of 100. At this roughness Reynolds number, the ratio of the turbulent eddy viscosity to

the molecular viscosity is slightly greater than 1.
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The flow is said to be fully rough when the molecular viscosity is negligible with regard to the turbulent
eddy viscosity. Therefore changes in the distribution of the turbulent variables are expected to be between a
roughness Reynolds number of 100 and one representing fully rough flow deeming a roughness Reynolds

number of 1000 or more.

IV. Comparison to Other Models

A. Wilcox k- Model

Traditionally the k- model has been accepted as the model most capable of modeling rough-wall
effects without implementing wall functions. The k- model was first attempted by Kolmogorov [8], and
later revised by Saffman [87], Wilcox [88], Peng et al. [89], Kok [90] and Hellsten [91]. Wilcox 98
model [13] is the turbulent model implemented in Fluent [92]. Wilcox made a few modifications to his 98
model and proposed an improved model in 2006. This section compares the current turbulence model to

both the Wilcox 98 and 2006 models for fully rough flow.

1. Wilcox 1998 k-w Model

The Wilcox 1998 k- model [13] is likely the most widely used model for rough walls. The effects of
surface roughness are commonly incorporated into the k- model by altering the surface boundary
condition on w. The Wilcox 1998 k-w model is comprised of the following equations for incompressible

flow. The algebraic equation for the eddy viscosity is

k
Ve=turg (4.4)
The turbulent energy transport equation is
K N k=2 SV): SV =C, fko+V-| | v+2e vk
or AN wlk o (4.5)

The dissipation frequency transport equation is
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66)_6;J+V'szzcwlflyt %g(V):g(V)—szfz w? +V.KV+L]VCU}

[0

(4.6)

The functions f;, f,, fi, /> are wall damping functions, also called low Reynolds number corrections,
employed to force the model to agree more closely with near-wall experimental data. The near-wall

damping functions used in Wilcox 1998 k- model are

ko o _Vk-Vo 0.024+R, /6
R =2, =—0 Shahtn ik S
" e k @ “ 1+R /6
1, 2 <0
4/15+(R, /8)* 1/9+R, /295
Je =1+ 680; , fi=—— L =] (4.7)
1+(R. /8 —= 2 >0 f,\l+R, /295
+(&,/8) 1+40042 “* WU+, )
c,=0.09, C,=052, C,=0072, 0,=20, 0,=20

Wilcox suggests using the following relation for " at a rough wall

2
{220 ke
kg ‘

N

i 2
Y= 1100 |(200) 100
P e ey

N

(4.8)

expls— k), KPS

Along with his book on turbulence modeling [13], Wilcox incorporates a CD with a number of
computer programs capable of running his model for various flows. One of the programs is a fully
developed pipe flow code, which allows the user to model roughness effects by specifying the value of "
at the wall. Multiple cases were run to cover the range of roughness ratios commonly displayed in the
Moody diagram. The code requires the shear Reynolds number R, as input, which is a function of the

roughness ratio

4.9)
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The fully developed pipe flow code was used to compare the Wilcox 1998 model to the Colebrook

equation and Nikuradse’s experimental cases. For each R/k, value, the code was run from & =10% to

k! =10° or until the code no longer converged.

Figure 4.24 shows the friction factor obtained from Wilcox 1998 k-w model. For fully rough flow, at
high Reynolds numbers, the friction factor is within the scatter of experimental data. However, as can be
seen there is a positive slope for all roughness ratios at high Reynolds numbers. This figure is to be
compared with Fig. 4.1, which displays the same diagram using data from the current one-equation k-4
model. Clearly, the Wilcox 1998 model does not match the Colebrook equation as well as the k-4

turbulence model does.

Figure 4.25 shows the velocity distribution obtained from the Wilcox 1998 k-w model. It can be seen
that the velocity distributions are systematical and slightly below the log law curve. Figure 4.25 shows that
the bulk velocity will be under predicted, which corresponds to an over predicted friction factor at high
roughness Reynolds numbers, as shown in Fig. 4.24. Figure 4.25 is to be correlated with Fig. 4.2 which
displays the velocity profiles obtained from the current k-4 model. The current k-4 model predicts the

velocity to a much higher accuracy and extrapolates better for lower roughness ratios.

2. Wilcox 2006 k- Model
In 2006, Wilcox published a revised version [13] of his 1998 model, which has not yet been as widely
implemented as his 1998 model. The two-equation model is given by the following three equations. The

algebraic kinematic eddy viscosity function is computed from

(4.10)

The turbulent energy transport equation is
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The dissipation frequency transport equation is

‘Z_C;’JFV.W,ZQCM %§(V):§(V)+f1

Vk-Vo

The functions f; and f; are wall damping functions defined as
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Figure 4.26 shows the friction factor obtained from his 2006 code compared to the Colebrook equation
and the Nikuradse data. The code does not converge for k] values higher than about 1000 depending on

the roughness ratio. Clearly, the model cannot handle fully rough flow. Figure 4.27 shows the velocity
profile obtained from the Wilcox 2006 model. The velocity profiles do not follow the law of the wall. The
bulk velocity is always over-predicted and corresponds to an under-predicted friction factor as was shown
in Fig. 4.26.

A mean dissipation characteristic length can be defined from the turbulent eddy viscosity equation.
The turbulent eddy viscosity is proportional to the product of a characteristic length times a characteristic
velocity. The characteristic velocity associated with the vorticity-based turbulence model could be the
square root of the turbulent kinetic energy. In the traditional k-¢ model, the turbulent eddy viscosity is given

by
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K Jkl/z (4.14)

The characteristic length associated with the dissipation is the term in parathensis given in Eq. (4.14).

Using Eq. (1.90), this characteristic length can be rewritten in terms of the dissipation frequency w,

k1/2 12
sl (4.15)

This suggests that we could define a “mean dissipation wavelength” as

k1/2
Ao =— (4.16)

The mean dissipation wavelength, A, can be compared to the mean vortex wavelength, 1. In

nondimensional coordinates, Eq. (4.15) becomes

- (4.17)

Both terms in brackets of Eq. (4.17) represent the nondimensional mean dissipation length scale which can

be directly compared to the nondimensional mean vortex wavelength A/R .

1/2
Vi _| ANk
u,R {R}(ufJ (4.18)

Hence, the “pipe-scaled dimensionless mean dissipation wavelength” is given by
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jo=te
R

&

(4.19)

A comparison between the pipe-scaled dimensionless mean dissipation and mean vortex wavelengths is
given in Fig. 4.28. The figure is based on a closure coefficient g; = 4.0, a proportionality constant for the
wall turbulent kinetic energy k.., = 0.1, a roughness ratio of R/k, = 252 and a roughness Reynolds number
k¥ of 80,000. From Fig. 4.28, it can be seen that the two dimensionless wavelengths have the same order

of magnitude.
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Fig. 4.28 Pipe-scaled dimensionless mean vortex and mean dissipation wavelengths.

B. Hunsaker 2011 Model

The one equation k-4 model requires a closure equation for the mean vortex wavelength. In 2011,
Hunsaker [85] proposed a closure function. The resulting model could predict the friction factor very
accurately, but the velocity distribution did not follow the log law. The current model based on a different
closure function for the mean vortex wavelength is greatly improved as both the friction factor and velocity

distribution are accurately predicted. Figure 4.30 compares the k-4 model resulting from the Hunsaker
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closure function and the closure function given in Egs. (3.17)—(3.35). The velocity distribution is greatly
improved. The current model follows the log law.

The Hunsaker model gave “a %RMS error of 0.670” for the friction factor [85]. The current model
gives a %RMS error in the range of 0.731 to 0.256 depending on the closure coefficient o;. As the closure
coefficient is increased, the RMS error is decreased. The %RMS error of the new model is comparable to

the 2011 version.
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Fig. 4.29 Friction factor results, from the Hunsaker [85] model (reproduced with permission).
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V. Summary and Conclusions

The focus of this work was to determine the distributions of the turbulence variables with the radial
coordinate for fully rough pipe flows. These distributions were determined based on a one-equation k-4
turbulence model derived from a transport equation for the turbulent kinetic energy and an algebraic
relation for the mean vortex wavelength. Many turbulence models in use today model the dissipation of
turbulent kinetic energy as a transportable property, which is physically incorrect because dissipation is not
a transportable property. Phillips’ transport equation for the turbulent kinetic energy is presented in
Chapter 1. An algebraic relation for a second turbulence variable, the mean vortex wavelength, was added
to this transport equation to close the turbulence model for fully rough pipe flow. Chapter 2 presents the
reasoning behind the choice of the mean-vortex-wavelength-profile function. This function features five
unknown coefficients. The turbulent-kinetic-energy transport equation includes two closure coefficients
and one unknown proportionality coefficient in the wall boundary condition. Chapter 3 derives functions

for the unknown coefficients. Provided that certain algebraic relations between the model coefficients are
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maintained, the model gives excellent agreement with well established relations obtained at fully rough
flow. The evaluation of the coefficients was based on a rigorous optimization method. The algebraic
relation for the mean vortex wavelength depends on the distance from the wall, the roughness Reynolds
number, the proportionality coefficient in the wall boundary condition and one of the closure coefficients.
Finally, Chapter 4 presents the results obtained from the current &-1 model along with a comparison to
experimental data, well established empirical relations and other rough-wall models. The distribution of the
turbulent kinetic energy, the mean vortex wavelength and the turbulent eddy viscosity are presented in
Chapter 4.

The relations between the closure coefficients were developed such that the model gives excellent
agreement for the friction factor and velocity distribution when compared to well established relations
obtained for fully rough pipe flows. The friction factor was compared to the limit of the Colebrook
equation from which the Moody diagram is based. The RMS error is less than 1% over the range of
roughness ratios. The velocity distribution was compared to experimental data and the log law. The
correlation to fully rough flow is excellent at any roughness ratio both in the core region and in the near-
wall region. The model is significantly more accurate at predicting the friction factor and velocity
distribution than the Wilcox 1998 and 2006 k- models. The closure that was developed here for Phillips’
energy-vorticity turbulence model showed a significant improvement in evaluating the velocity
distributions compared to that developed by Hunsaker [85]. From the mean-vortex-wavelength distribution
and kinetic-energy-transport equation, the root-mean-square fluctuating vorticity and the turbulent eddy
viscosity are calculated and presented.

The model needs to be extended to hydraulically smooth-wall pipe flow. The current model does not
set a fixed value for one of the closure coefficients or for the proportionality coefficient in the wall
boundary condition. Instead, a range of applicability is given for both of these parameters provided that the
relations between the other coefficients are maintained. Extending the model to hydraulically smooth-wall
flow might lead to a unique value for these parameters in order to match experimental velocity distributions
and friction factors at any roughness Reynolds number. Even though the current empirical relation for the
mean vortex wavelength might be modified for hydraulically smooth-wall flows, the complete model

should converge to the current empirical function for fully rough pipe flow. The Wilcox 1998 and 2006
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models predict the velocity distribution and friction factors fairly accurately for smooth-wall pipe flow. The
resulting mean-vortex-wavelength function from Wilcox’s model might be calculated. A function could be
fit to this mean vortex wavelength and could be a starting point for developing an expression similar to the
one currently used for fully rough pipe flow.

Once a robust model for flow in a pipe has been developed, a transport equation for the second
turbulent variable might be developed. The present model, if extended to hydraulically smooth walls, could
serve as a reference when developing a transport equation for the second turbulent variable. The vorticity is
a transportable property and might be used as the second turbulent variable. This approach of deriving a
transport equation for the second turbulent variable and comparing the results to the actual 1-D pipe flow
model might lead to a more robust and accurate model. Deriving a transport equation would be one way to

extend the model to 2- and 3-D flows.
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APPENDIX A

MATHEMATICAL IDENTITIES

I.  Vector Identities

V-(UV)=(U-V)V +V(V-U)

(A.1)
2V-S(V)= VAV 4+ V(V-V) = (V-V)V + V(V-V) (A2)
V-(SV)=(V-V)S+S(V-V) (A3)
ou 0 1,2 172
U|—+(V-WVU |=—CUH+(V-V)(U
{at V-V) } SGUDHVVIGU?) a4
V-6-V)=6-(VV)+V-(v-5) As)
II. Mathematical Operations
The double inner product is defined as the following
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T: =Ty Ty Ty |t > o o
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1. Flowfield Properties

S(V)-3(V) =S(V)-S(v) (A7)

VA7 LB vy (v 9] 280 :5v) (A8
(V. =v.(#%)-¥v.¥) (A.9)

Vv V)=V 9T )+ (7 V) 9)-(39):37) (A.10)

V-(p72V)= pV VI £ 72V - (V) (A.11)

IV. Ensemble Averaging Identities

¢ =0 (A.12)
V=PV OV W+
T PT (A.13)
PYS = QYS +QYS +Y S +PYS + Py (A.14)
S
ox  oOx (A.15)

V. Flowfield Tensors

The strain-rate tensor is given by



(ov, av.\ (v, oV, (ov, ov,)]
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The Jacobian tensor of a vector field is
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The rotation tensor is
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APPENDIX B

EXPERIMENTAL DATA
I. Nikuradse Experimental Rough Flow Data

Nikuradse [47] studied the effect of coarse and fine pipe roughness over a wide range of Reynolds
numbers in view of determining the laws governing the friction factor and the velocity profiles.
Experimental data were obtained at six different degrees of relative roughness with Reynolds numbers
ranging from Re = 10* to 10°. Nikuradse measured the pressure drop and the velocity distribution by
means of pitot tubes. The experiments were conducted on three brass pipes of circular cross-section having
different diameters. Uniform grain sizes were used to produce a uniform roughness throughout the pipe.

The derivative du/dy was obtained graphically from the velocity distribution and was tabulated by

Nikuradse [47].

1. Friction Factor Data

Table B.1 Nikuradse’s friction factor data [47] for a range of roughness Reynolds number

R/k, =507

log(Re) 4114 4230 4322 4362 4362 4462 4491 4532 4568 4591 4.623
log{100<4C, ) | 0456 0438 0417 0407 0403 0381 038 0366 0365 0356 0.347
log(Re) 4672 469 4716 4.763 4.806 4.851 4.898 494 4973 5.009 5.025
log{100x4C, ) | 0333 0324 0320 0307 0303 0292 0286 0278 0274 0274 0272
log(Re) 5049 5100 5.143 5199 5236 527 5281 5303 5326 5377 5.40
logll00x4C, ) | 0270 0262 026 0255 0253 0255 0253 0250 0252 0255 0253
log(Re) 5493 5534 5574 5608 5.63 5668 5709 5756 5792 5.833 5.940
log(100x4C, ) | 258 026 0262 0290 0272 0272 0272 0278 0279 0283 0286
log(Re) 5965 5929 5954 5987

og(100x4C; ) | 288 0289 0288 0286

Rk, =252

log(Re) 4210 4279 4465 4507 4549 4597 4644 4778  4.820
log(00x4C /) | 04506 04349 03808 03636 03579 03562 03434 03257 03282

log(Re) 4916  4.987 5.057 5.100 5.173 5.210 5.283 5.366 5.494
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log(100x4C, ) | 03200 03197 0321 03228 03197 03276 03322 03416 03504
log(Re) 5580  5.623 5702 4708 5305 5544 5787 4748  4.869
log[100<4C, ) | 03560 03602 03636 03371 03328 03562 03661 03335 03228
log(Re) 4954 5134 5255 5415 5580 5748 5845 5881  5.924
log(100<4C, ) | 9321 0321 03294 03434 03551 03608 03666 03688 03727
log(Re) 5967  5.991
log(100<4C, ) | 93705 03716

Rlk, =126
log(Re) 3.630 3.675 3715 3.760 3.810 3.833 3.895 3.925 3950 3.965
log(100x4C,) | 0504 0588 0576 0566 0552 0564 0532 0515 0503 0498
log(Re) 4015 4111 4196 4265 4330 4386 4425 4470 4496 4511
log(100x4C, ) | 0491 0471 0451 0435 0424 0415 0412 0400 0396 0400
log(Re) 4550 4.620 4.697 476 4820 4910 4985 5057 S5.121 5.164
log{l00x4C, ) | 0303 0392 0391 0400 0403 0408 0414 0422 0424 0430
log(Re) 5591 5616 5655 5675 5.708 5736 5756 5.775 5.798 5.831
og(100x4C, ) | 0450 0453 0447 0450 0445 0452 0445 0445 0450 045
log(Re) 5835 5874 5804 5935 5961 597 5987 4950 5.049 5.021
og(l00x4C, ) | 0446 0450 0447 0450 0444 0449 0447 0430 0432 0415
log(Re) 510 5130 5179 5196 5225 5225 5250 5274 5290 5310
logll00x4Cy ) | 0422 0422 0430 0430 0435 0430 0436 0438 0438 0436
log(Re) 5330 5350 5366 5393 5423 5432 5455 5476 5501 5.525
log(100<4C, ) | 0430 0439 0444 0444 0446 0447 0450 0452 0447 0447
log(Re) 5.560
log(100x4C) | 9450

R/k, =60
log(Re) 3.653 3700 3.740 3.785 3.851 3.869 3.909 3.849 3.996 4.057
log[100<4C, ) | 9503 0571 0571 056 0544 0531 0512 0512 0507 0494
log(Re) 4090 4.161 4236 4290 4391 4412 4512 454 4553 4580
logl00x4C, ) | 0490 0494 0487 0487 0401 0489 049 0487 0498 0493
log(Re) 4609 4694 4665 4.699 4740 4769 4.813 4849 493 4954
logll00x4C, ) | 0507 0504 0507 0509 0519 052 0528 0526 0543 0534
log(Re) 5034 5155 5083 5.185 5231 4875 4924 4954 5052 5.033
log(l00x4C, ) | 0543 0543 0545 055 0537 0535 0534 0542 0535 0540
log(Re) 5130 5170 5196 523 5258 5283 5312 535 5408 547
log(100x4C, ) | 0545 0550 0547 0568 0551 0555 0551 0555 0550 0555
log(Re) 5497 5515 5549 5554 5750 5.600 5.621 5.625 5.641  5.655
log{100x4C, ) | o543 0551 055 0558 0551 0550 0560 0543 0543 0550
log(Re) 5659 5668 5.691 5714 5748 5757 5789 5.836 5.865 5914
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log(100x4C, ) | 0551 056 0553 0551 0558 0550 0551 0547 0555 0553
log(Re) 5916 5945 5.962

log100x4C, ) | o550 0551 0.555

R/k, =306

log(Re) 3.672 3708 3.748 3763 3.785 3.826 3.869 3.881 3.929 3.935
logl100x4C, ) | 592 059 0592 0597 0583 0585 0596 0578 0578  0.583
log(Re) 3978  4.009 4.049 4.079 4.124 4.130 4390 4270 4290 4.309
log(100x4C,) | 0578 0585 0583 0592 059 0599 0599 0609 0618 0612
log(Re) 4584 4.653 4799 4900 4965 5.029 5068 5.134 5176 4.425
log(l00x4C, ) | 0639 0644 0647 0656 0656 0652 0650 0650 0650 0637
log(Re) 444 456 4636 4740 4830 4855 4990 5100 5240 5275
logl100<4C, ) | 063 0637 0647 0654 0654 0661 0657 0652 0657 0657
log(Re) 5323 5473 5.655

log(100<4C, ) | g 6a7 0657 0.652

R/k, =15
log(Re) 3770 3.820 3.855 3.905 3.955 4.000 4.041 4.076 4.079 4.114
log(100<4C, ) | 0606 0699 0707 0712 0717 0730 0734 0736 0744 0751
log(Re) 4133 4179 4.196 4270 4290 4314 434 4366 4386 4.410
log(100x4C,) | 0740 0744 0754 076 0756 0769 0763 0778 0772 0772
log(Re) 4425 4466 4520 4590 4.630 4725 4811 4.865 4.885 4.965
log(100x4C,) | 0780 0785 078 0781 0777 078 0781 0777 0776 0779
log(Re) 5000 5.042 5098 5155 5.179 5285 4440 4500 4.540 4.596
logll00x4C,) | 781 0780 0781 0776 0781 0779 0775 0777 0778  0.780
log(Re) 4685 4722 4845 4.869 4929 4949 5002 5005 5.097 5.139
logl100x4C, ) | 781 0777 0775 0778 0780 0779 0777 0775 0778  0.783
log(Re) 5156 5220 5236 5310 5360 5410 5446 5455 5515 5567
logll00x4C, ) | 0784 0777 0780 0778 0775 0780 0780 0777 0781 0778
log(Re) 5613 5690 5.834 5882 5959 6008 5793 5857 593 5987
log(100x4C,) | 0780 0784 0781 0777 0778 0780 0780 0777 0778 0780
B. Velocity Profile Data
Table B.2 Nikuradse’s velocity profile data
Rk, 15 15 15 15 30.6 30.6 30.6 30.6
D (em) | 482 2412 2412 2412 9.64 4.87 4.87 2.434



thlk

175

873 956 524 215 734 796 420 459
v 0.0098 00117 00117 00121 00111  0.01046 0.0105  0.0107
Re 430,000 197,000 108,000 43,000 638,000 372,000 195,000 104,000
Uy 76.1 85 46.6 18.87 55.7 60 31.9 34.8
k¢ 1230 579 319 124 805 458 245 130
y/R V.

0.00 0 0 0 0 0 0 0 0

0.02 450 532 270 107 430 461 215 258
0.04 549 628 320 136 500 535 270 328
0.07 643 710 367 158 570 610 325 367
0.10 702 767 406 174 616 660 351 395
0.15 773 846 456 191 670 718 380 424
0.20 830 910 492 206 715 766 404 447
0.30 917 1006 545 228 777 833 440 484
0.40 978 1080 585 243 819 880 467 509
0.50 1027 1143 617 253 853 918 489 531
0.60 1070 1195 647 263 881 950 507 551
0.70 1107 1237 660 271 904 976 519 568
0.80 1137 1267 689 277 925 994 530 580
0.90 1162 1290 701 283 940 1008 539 587
0.96 1172 1296 704 285 948 1016 541 590
0.98 1174 1298 706 286 951 1017 542 591
1.00 1176 1300 707 286.5 952 1018 543 592

RIk, 60 60 60 126 126 126

D (cm) 9.8 9.8 9.8 9.92 9.92 9.92

Vouti 774 514 309 820 575 374

v 0.0112 0.0115 0.0112 0.0085 0.0089 0.0089

Re 677,000 438,000 271,000 960,000 640,000 417,000

U 51.9 34.4 20.72 49 34.3 22.28

k§ 370 239 146 230 154 100

y/R V.

0.00 0 0 0 0 0 0

0.02 475 316 193 557 383 250

0.04 557 370 224 619 436 284

0.07 624 411 245 676 476 312

0.10 666 442 266 718 506 331

0.15 714 474 286 760 536 350

0.20 753 500 300 798 564 366

0.30 800.5 536 323 852 597 390
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0.40 848 562 338 887 619 407

0.50 879 582 353 916 640 419

0.60 904 600 362 939 657 431

0.70 925 616 370 959 667 439

0.80 941 628 378 979 678 448

0.90 955 636 384 988 690 453

0.96 962 640 387 994 696 456

0.98 964 641.4 387.5 996 698 457

1.00 966 642 388 998 701 458
Table B.3 Nikuradse’s velocity gradient profile data

Rk, 15 30.6 60

D (cm) 4.82 9.64 9.8

Viutk 873 734 774

v 0.0098 0.0111 0.0112

Re 430,000 638,000 677,000

u, 76.1 55.7 51.9

k; 1230 805 370

y/R " dv._ | dy " av._ | dy " av_/dy

0 0 0 0

0.02 450 3850 430 1444 475 1240

0.04 549 1985 500 728 557 640

0.07 643 1140 570 419 624 373

0.1 702 830 616 302 666 268

0.15 773 578 670 209 714 189

0.2 830 457 715 162 753 146

0.3 917 321 777 115 800.5 105

0.4 978 246 819 88 848 80

0.5 1027 201 853 72 879 65

0.6 1070 166 881 59 904 54

0.7 1107 136 904 49 925 43

0.8 1137 108 925 39 941 35

0.9 1162 74 940 26 955 24

0.96 1172 47 948 16.5 962 15

0.98 1174 33 951 11.7 964 10.7

1 1176 952 966

Rk, 126 252 507

D (cm) 9.92 4.924 9.94
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Ytk 820 1127 838

v 0.0085 0.89 0.86

Re 960,000 624 970

U, 49 61 41.7

k; 230 70 49

y/R " dv. | dy " av. | dy " av,/dy
0 0 0 0

0.02 557 1670 532 2954 608 1022
0.04 619 616 794 1526 670 526
0.07 676 380 875 895 725 309
0.1 718 262 951 643 761 222
0.15 760 181 1000 443 803 153
0.2 798 138 1062 346 832 119
0.3 852 96 1107 247 874 84
0.4 887 74 1178 188 912 64
0.5 916 60 1225 154 940 52.5
0.6 939 50 1266 127 960 43.6
0.7 959 41 1303 104 978 35.5
0.8 979 31 1350 83 992 28.4
0.9 988 225 1366 56 1003 19.2
0.96 994 142 1369 35 1008 12
0.98 996 10 1372 25 1010 8.7
1 998 1373 1011

The dimensionless velocity gradient is obtained from Nikuradse’s tabulated pipe diameter, velocity

gradient and shear velocity

du* dV. D/2
dy dy u,
Prandtl’s mixing-length theory states that
T _p|dVe|dV.
p dy | dy

The mixing length is determined from the velocity profiles by

(B.1)

(B.2)
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The shear stress ¢ at any point is linearly related to the wall shear stress according to
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(B.3)

(B.4)

Using Egs. (B.1), (B.3) and (B.4), the mixing length expressed only in terms of Nikuradse’s tabulated data

becomes

_r
-V R
dv, D/2 (B.5)
dy u,
Similarly, the eddy viscosity expressed only in terms of Nikuradse’s tabulated data is
Ly
Mo R
uR dV. D/2 (B.6)
dy u,
II. Shockling Experimental Rough Flow Data
Table B.4 Shockling [72] friction factor data
k, /D =0.000058
Re 56800 68210 80680 92550 116400 150800 181100 224200
4C, 0.02064 0.01961 0.01894 0.01836 0.0174 0.01653 0.01614 0.0155
Re 349000 518900 586200 1079000 1556000 2016000 2535000 3138000
acy 0.01412  0.01318 0.01283 0.01174 0.01109 0.01084 0.01068 0.01058
Re 4005000 5270000 6726000 7955000 9265000 11130000 13160000 16290000
aCs 0.01058 0.01064 0.01071 0.01074 0.01077 0.01084 0.01084  0.01084
Re 21110000
4Cr | 0.01084

APPENDIX C
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EMPIRICAL TURBULENT EDDY VISCOSITY FUNCTION
I. The Von Karman Constant and the Nikuradse Number Determined from the Friction Factor

The Von Karman constant and the Nikuradse number are optimized by comparing the Colebrook
equation to the friction factor obtained from the near-wall fully rough limit of the law of the wall.
Nikuradse [47] noticed that the friction factor is independent of the Reynolds number and depends only on

the roughness height for fully rough flow. The most widely accepted form of the Nikuradse equation is

1

2
{2.Olog10(k3'/7DH (C.1

4Cp =

Equation (C.1) can be rewritten in terms of the pipe radius r in place of the pipe diameter p

I .
4C, = or 4C; = ! with R, =—

2 ) —0 .
{2.0 log10(7.4 ]fﬂ [2-0 logyg (7-47 R, )] s 2

Based on Prandtl’s mixing length theory [5], the near-wall fully rough limit formulation is

+
u;f (;;,l}Jr :1’ u+(y+ :0):0

(C.3)

In the near-wall region, the results obtained by Nikuradse for the fully rough limit are in excellent

agreement with the empirical correlation

Substituting Eq. (C.3) into Eq. (C.4) and integrating the result yields the fully rough near-wall expression

for the dimensionless velocity
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u+—lln ' +1
K \yk! (C5)

The wall-scaled dimensionless velocity u* may be rewritten in terms of the relative dimensionless velocity

4=u"/u, .Adding a function J to satisfy the symmetry boundary condition at the pipe centerline and to

provide better agreement with Nikuradse’s velocity profile data yields

ifui e Rl )
(Iés + 1)2 {ln(ﬁs + 1)—2} +2R, + 5 (C.6)
In terms of the wall-scaled variable u ™, this last equation may be rewritten as
A 1%5 1 [1 I§S+1—3}+21§5+3
u*(ﬁ,x,és): 1n(Rsy+1)+( " )z n( ) 2 2 5(%&) 7

K R

)

The Darcy friction factor corresponding to this fully rough velocity profile is

8/(21%34

{(f?s +1)2 [ln(f?s +1)— ﬂ+2f?s +§}2 (C.8)

An optimization program is run to estimate the Von Karman constant x and the Nikuradse number y
by minimizing the difference between Eq. (C.1) and (C.8) over a range of roughness ratio R/k,. This

optimization code was developed by Hunsaker [85] and is derived from a BFGS method, named after the
work of Broyden [81], Fletcher [81], Goldfarb [81] and Shanno [81] who each derived the same method
independently in the same year. Nikuradse provides experimental data for the following six roughness ratio

values R/k, :[15 ;30.6 ; 60 ;126 ; 252 ; 507]. This same range was used during the optimization. The

scalar to minimize is defined as the root mean square of the difference between the Darcy friction factors

obtained from Egs. (C.1) and (C.8).
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|~

6
2
RMS = J > [Eq.(B.1); —~Eq(B.8),] (C.9)

This gave the following values for the Von Karman constant « and the Nikuradse number y

x =0.403120174922297
7 =0.0323477786281198 (C.10)

The residual defined in Eq. (B.9) that minimizes the differences between Eq. (C.1) and Eq. (C.8) over the

discrete range R/k, =[15 ; 30.6 ; 60 ;126 ; 252 ; 507] is found to be 0.0000410661935. However when
only 3 significant digits are used for x and y, the minimum yields the following constants

x =0.403

y =0.0324 (C.11)
For x=0.403 and y=0.0324, the residual defined in Eq. (C.9) is 0.0000412132063896745. For
x=0.403 and y=0.0323, the residual defined in Eq. (C.9) is 0.000059565297143975. Therefore,

truncated to 3 significant digits, the values for x and y that minimize the difference between the friction

factors obtained from the Nikuradse equation given in Eq. (C.1) and from that given in Eq. (C.8) based on

the fully rough mixing-length theory are x =0.403 and y =0.0324 .

II. Deviation Between the Near-wall Fully Rough Limit and Nikuradse’s Experimental Data

The function & represents a velocity deviation added to the near-wall fully rough limit in order to
match Nikuradse’s experimental data [47] better. It satisfies the symmetry boundary condition at the
centerline and obtains a friction factor that correlates to the Colebrook equation in the fully rough limit.
The near-wall fully rough limit velocity is based on an empirical correlation derived from Prandtl’s mixing

length
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. y+
u =—In +1
e [W (€.12)

The nondimensional bulk velocity is obtained by integrating Eq. (C.12)

1

juwﬁ 1 i )
o . A k
uh == =3 u*mﬁ*zl Ul L—i—l In L+l _3 +2L+E
] A xR ) |7k, k. 2|75k T2 cas)
[rar 70
r=0

The Von Karméan constant « and the Nikuradse number y used in Eq. (C.12) that minimize the difference

in the friction factor obtained from the Colebrook equation and that based on Eq. (C.13) are given in
Eq. (C.11).

Although based on careful measurements, it was found that Nikuradse’s tabulated results present some
slight inconsistencies in the bulk velocity that had to be corrected in order to determine the deviation

between the experimental results and the near-wall fully rough limit .Although Nikuradse does provide the

value of the bulk velocity for each of his experiments u,} , this value is not used in the calculation of the

function & but is instead calculated (¢ based on a trapezoidal integration of the experimental data. Table

C.1 presents the deviations between Nikuradse’s experimental velocities and the velocities obtained from

the near-wall fully rough limit at a roughness ratio R/k,=15. Table C.1 is based on the constants & =0.403
and y =0.0324 . The dimensional velocity u“*P refers to the dimensional experimental velocity tabulated

+

by Nikuradse. The column {MTJ refers to the near-wall fully rough limit and is the ratio of Eq. (C.12)
F.R

Up

with Eq. (C.13). The function ¢ is defined as the difference between the nondimensional experimental
velocities and the nondimensional near-wall fully rough limit velocities obtained from the ratio of Eq.

(C.12) with Eq. (C.13). The trapezoidal numerical integrals are second-order accurate. When y/R =1, the

u

trapezoidal integral of — y

bulk

exp +
and (u—JrJ does not give 1.0 but 0.901106438707911. Because both
FR.

m

integrands are concave down functions without inflection points, both integral are underestimated because
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there is a systematic area unaccounted for under the curve. A correction to the trapezoidal integration of
these concave down functions needs to be applied. The three trapezoidal integrals are all corrected by
dividing each column by the factor: 0.901106438707911.

Table C.1 Deviation between Nikuradse’s experimental velocities and the near-wall fully rough limit

R/k, 15

D (cm) 4.82

Ui 873

upig 871.2296

v 0.0098

Re 430000

U, 76.1

N 10>° =1230.269

+
Upuik from Eq (C13) 11.57369

u™P + exp +
Yoiop e Tk x s=2_ | L
R T [ J ( J
0.10 702 0.805758 0.826816 -0.02106
0.15 773 0.887252 0.912231 -0.02498
0.20 830  0.952677 0.973147 -0.02047
0.30 917 1.052535 1.059314 -0.00678
0.40 978  1.122551 1.120609 0.001942
0.50 1027 1.178794 1.16822  0.010573
0.60 1070 1.228149 1207156  0.020993
0.70 1107 1.270618 1.240096  0.030522
0.80 1137 1305052 1.268643  0.036409
0.90 1162 1333747 1.293831  0.039916
0.96 1172 1345225 1.307636  0.037589
0.98 1174 1347521 1312047 0.035474
1.00 1176 1.349816 1.316369  0.033447

Trapezoidal Numerical Integrals

7

g i exp 7 +
Y_ s 2 j WP 2 j “_ a2 j [”—J Fdr
Z =1-r cale +
R =0 7= Youlk Fo\Um JpR
0.10 18.95400 0.021755 0.022324
0.15 83.39650 0.095723 0.098301
0.20 149.4490 0.171538 0.175996
0.30 280.0390 0.321430 0.328000
0.40 402.9090 0.462460 0.469389
0.50 512.9390 0.588753 0.595036
0.60 607.0890 0.696819 0.701733

0.70 683.0990 0.784063 0.787222



0.80 739.0490 0.848283 0.849798
0.90 773.4090 0.887721 0.888109
0.96 783.1938 0.898952 0.899011
0.98 784.6010 0.900567 0.900582
1.00 785.0706 0.901106 0.901106
Corrected Numerical Integrals
i T ex Ui +
2 [uoidi 2 2 | [“—J 7

Y- =0 7o Ubulk ico\H"m JpR.
R corrected corrected corrected
0.10 21.03414 0.024143 0.024774
0.15 92.54900 0.106228 0.109089
0.20 165.8506 0.190364 0.195311
0.30 310.7724 0.356705 0.363997
0.40 447.127 0.513214 0.520902
0.50 569.2324 0.653367 0.660339
0.60 673.7151 0.773292 0.778746
0.70 758.0669 0.870112 0.873618
0.80 820.1573 0.941379 0.943061
0.90 858.2882 0.985146 0.985577
0.96 869.1468 0.997609 0.997674
0.98 870.7085 0.999402 0.999418
1.00 871.2296 1.000000 1.000000

184

Nikuradse’s experimental velocities [47] for fully rough flow defined as k] >100 are given in Table

C.2 along with the deviation from the near-wall fully rough limit velocities. The limit k] >100

corresponds to the ratio of the turbulent eddy viscosity and molecular viscosity greater than 1.

Table C.2 Deviation between Nikuradse’s experimental velocities and the near-wall fully rough limit

R/ kg 15 15 15 15

D (cm) | 482 2412 2412 2.412

Upi 873 956 524 215

T 871.2295976 962.5939431 519.5674783 215.1930024

v 0.0098 0.0117 0.0117 0.0121

Re 430000 197000 108000 43000

U, 76.1 85 46.6 18.87

k; 1230.268771 579.4286964 319.1537855 124.4514612
y/R u®?  Deviation & | u®™" Deviation & | u™ Deviation § | u®?  Deviation &
0.10 702 -0.021058 767  -0.03001 406 -0.0454 174 -0.01824
0.15 773 -0.024979 846  -0.03336 456 -0.03458 191 -0.02466
0.20 830 -0.020471 910  -0.02779 492 -0.02621 206  -0.01587
0.30 917  -0.006778 1006  -0.01422 545  -0.01036 228 0.0002
0.40 978  0.001942 1080  0.001359 585  0.005327 243 0.00861
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0.50 1027  0.010573 1143 0.019196 617  0.019306 253 0.007468
0.60 1070 0.020993 1195  0.034281 647  0.03811 263 0.015002
0.70 1107 0.030522 1237 0.044973 660  0.030191 271 0.019238
0.80 1137 0.036409 1267  0.047592 689  0.05746 277 0.018574
0.90 1162 0.039916 1290  0.046298 701 0.055368 283 0.021267
0.96 1172 0.037589 1296  0.038726 704 0.047337 285  0.016756
0.98 1174  0.035474 1298  0.036393 706 0.046776 286 0.016993
1.00 1176  0.033447 1300 0.034149 707 0.044378 286.5 0.014994
Rk, 30.6 30.6 30.6 30.6

D (em) | 964 4.87 4.87 2.434

Uik 734 796 420 459

ujus 738.29902 793.09555 420.9104 462.178

v 0.0111 0.01046 0.0105 0.0107

Re 638000 372000 195000 104000

U, 55.7 60 31.9 34.8

ky 805.37844 458.14189 244.9063 130.017

y/R u P Deviation & | u®® Deviation & | u®? Deviation & | u®? Deviation &
0.10 616  -0.015314 | 660  -0.01748 351 -0.01576 395 0.004985
0.15 670  -0.017095 | 718  -0.01927 380  -0.02178 424 -0.00719
0.20 715 -0.009438 | 766  -0.01204 404 -0.01806 447  -0.01072
0.30 777 -0.000708 | 833  -0.00281 440  -0.00777 484  -0.00591
0.40 819  0.002722 880  0.002992 467  0.002916 509  -0.00528
0.50 853 0.007281 918 0.009412 489  0.01369 531 0.000831
0.60 881  0.011289 950  0.015844 507  0.022538 551 0.010187
0.70 904  0.013757 976  0.019941 519 0.022362 568  0.018284
0.80 925  0.017347 994  0.017784 530  0.023642 580  0.019394
0.90 940  0.015737 1008  0.01351 539 0.023098 587  0.012614
0.96 948  0.014558 1016  0.011581 541  0.015834 590  0.007089
0.98 951  0.014782 1017 0.009003 542 0.014371 591  0.005414
1.00 952  0.012375 1018 0.006502 543 0.012985 592 0.003816
Rk, 60 60 60

D (cm) 9.8 9.8 9.8

Uik 774 514 309

uju 771.5091217 512.9097565 309.0379227

v 0.0112 0.0115 0.0112

Re 677000 438000 271000

U 51.9 34.4 20.72

k; 369.8281798 238.7811283 145.881426

y/R u?P Deviation & uP Deviation & u? Deviation &
0.10 666 -0.00325 442 -0.00474 266 -0.00576
0.15 714 -0.00795 474 -0.00927 286 -0.00796
0.20 753 -0.00495 500 -0.00613 300 -0.0102

0.30 800.5 -0.01045 536 -0.00301 323 -0.00285
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0.40 848 0.003501 562 6.56E-05 338 -0.00193
0.50 879 0.006734 582 0.002111 353 0.009663
0.60 904 0.008942 600 0.007009 362 0.00859
0.70 925 0.010628 616 0.01267 370 0.008943
0.80 941 0.009245 628 0.013945 378 0.012709
0.90 955 0.007878 636 0.010028 384 0.01261
0.96 962 0.006258 640 0.007134 387 0.011624
0.98 964 0.005434 641.4 0.006447 387.5 0.009826
1.00 966 0.004679 642 0.004269 388 0.008097
Rk, 126 126 126

D (cm) 9.92 9.92 9.92

Uik 820 575 374

U 816.4728933 571.950574 374.448781

v 0.0085 0.0089 0.0089

Re 960000 640000 417000

Uy 49 343 22.28

ky 229.6148648 154.1700453 100

y/R u®?  Deviation & u®?  Deviation & u®?  Deviation &
0.10 718 -0.00181 506 0.003488 331 0.002763
0.15 760  -0.01013 536 -0.00382 350 -0.00626
0.20 798  -0.00602 564 0.002702 366 -0.00596
0.30 852 0.000289 597 0.000572 390 -0.00169
0.40 887  0.000695 619  -0.00342 407 0.001246
0.50 916  0.003273 640  0.000352 419  0.000352
0.60 939  0.004525 657  0.003157 431 0.005481
0.70 959  0.00626 667  -0.00212 439 0.004086
0.80 979  0.011039 678  -0.0026 448 0.008404
0.90 988  0.00467 690  0.000985 453 0.004365
0.96 994  0.002488 696  0.001945 456 0.002847
0.98 996  0.001893 698  0.002397 457 0.002473
1.00 998  0.001359 701 0.004659 458  0.00216

The ¢ function is represented using a seventh-order polynomial function whose coefficients were

selected based on mathematical and physical constraints and in order to match Nikuradse experimental data

for fully rough flow. The three coefficients C,, 17t| , and C; are not based on mathematical or physical

y=

constraints and were tuned to provide the best visual fit for the ¢ function through the discretized deviation

given in Table C.2. Only the points close to the centerline ( y/ R >0.5) were taken into consideration. The

closure coefficients were found to be
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1.4
C, =1.2[k—Sj , V. ,=0056 and C,=-0.65
y=1

R (C.14)

Figure C.1 shows the deviation between Nikuradse’s experimental velocities and the near-wall fully rough
velocity at different roughness ratios and also displays the ¢ function. It can be seen that the J function is
within the experimental scatter. The J function is defined as

8 =Co+C 7+ Cof? + C37 + Cyf* + C57° + Cgi® + CyF7 (C.15)
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Fig. C.1 Experimental deviation between Nikuradse’s velocities
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II. Turbulent Eddy Viscosity Empirical Function

A ¢ function is added to the near-wall fully rough velocity correlation in order to match Nikuradse’s
experimental data, satisfy the symmetry boundary condition and provide a friction factor, which
corresponds to the Colebrook fully rough limit. The near-wall fully rough velocity equation yields a friction
factor that matches the experimental pressure drop observed relatively well. However, this velocity
equation does not satisfy the centerline symmetry boundary condition. A function ¢ is added to the near-
wall fully rough limit equation such that the bulk velocity is conserved and the velocity distribution is
slightly modified to satisfy the centerline boundary condition and match experimental data for a range of
roughness ratio and Reynolds number corresponding to fully rough flow. A seventh-order polynomial is
used for the 0 function, as shown in Eq. (C.15).

The ¢ function features eight coefficients that need to be evaluated. Five of them (C,,C5,C,,Cs5,Cy)
are obtained from constraints imposed to satisfy the wall and symmetry boundary conditions, the near-wall
fully rough limit behavior, the bulk velocity and the eddy viscosity symmetry boundary condition. The

remaining three coefficients, not determined by mathematical or physical constraints, are C,, C, and C,.
It is possible to express C, in terms of the centerline dimensionless eddy viscosity v,.. Therefore, the
three coefficients that needs to be determined based on Nikuradse’s experimental data [47] are C,,, C; and
Ve

The first coefficient evaluated based on Nikuradse experimental data is C,. From Eq. (C.15), the
coefficient C, is determined from the value of the § function at the centerline for which 7 = 0. Because

Nikuradse’s centerline data depends on the roughness ratio &, /R, the coefficient C, is proposed to be

k,\°
CO_A(E) +B (C.16)

where the three coefficients 4, B and e need to be evaluated. Table C.3 gives the centerline deviation J
between Nikuradse’s experimental data and the near-wall fully rough limit. Nikuradse’s experimental

centerline velocities are given in Table B.2.



Table C.3

experimental velocities.
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Centerline Deviation between the near-wall fully rough limit and Nikuradse’s

R/k, g /R S

15.0  2.16000E-03 3.34474E-02
15.0  2.16000E-03 3.41485E-02
15.0  2.16000E-03 4.43782E-02
15.0  2.16000E-03 1.49940E-02
30.6  1.05882E-03 1.23749E-02
30.6  1.05882E-03 6.50244E-03
30.6  1.05882E-03 1.29853E-02
30.6  1.05882E-03 3.81617E-03
60.0  5.40000E-04 4.67867E-03
60.0  5.40000E-04 4.26937E-03
60.0  5.40000E-04 8.09654E-03
126.0 2.57143E-04 1.35941E-03
126.0 2.57143E-04 4.65895E-03
126.0 2.57143E-04 2.15980E-03

0.045
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0.025
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0.015
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Nikuradse centerline &
Empirical C 0
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Y kS/R

x 10~

2.5

Fig. C.2 Nikuradse’s experimental data deviation at the pipe centerline along with the empirical

function Cyfor A=1.2, B=0.0 and e=1.4.
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Figure C.2 shows the coefficient C, obtained from Eq. (C.16) having 4=1.2, B=0.0 and e=1.4. This

set of coefficients fits the data points with high roughness ratio (15 and 30.6) relatively well and is in the
range of uncertainty for the lowest Reynolds roughness ratio (60 and 126).

The two other coefficients from the empirical & function given in Eq. (C.15) that need to be
determined from Nikuradse’s experimental data [47] are the centerline eddy viscosity v,. and the
coefficient C,. An exhaustive search is used in place of an optimization code for the remaining two
coefficients v,. and C; due to the numerous local minimum present in the function minimizing the

difference between Nikuradse’s experimental velocities and the near-wall fully rough limit velocity profile.

The dimensionless eddy viscosity v,. is discretized every 0.005 ranging from 0.03 to 0.06. For each of
those points, the coefficient C, is varied from -12.0 to 2.0 with a step of 0.01. The empirical eddy viscosity
and velocity may now be computed at each of these points. The nondimensional velocity # is then

compared with Nikuradse’s corrected nondimensional velocity profiles at each of the 14 cases available for

fully rough flow (4 cases for R/k, =15, 4 for R/k; =30.6, 3 for R/k, =60 and 3 for R/k, =126).

These corrected velocities are given in Table C.2. A fitness function is defined to be the square of the
difference between the corrected experimental velocities with the velocities obtained from the empirical
eddy viscosity and discretized at the eight available experimental points located at the relative coordinate

y/R>0.5. The points closer to the wall tabulated by Nikuradse present a lot more experimental

uncertainty and were ignored during this optimization process. For each of the discretized turbulent eddy

viscosities V,., the value of C, that gives the minimum fitness is selected by fitting a parabola through
three of the discretized C, points, which surround the minimum. The fitness function is then plotted
against v, over the range 0.03 to 0.06. A fourth order function is fit through the points and features a
systematic minimum in the neighborhood of v,. =0.04. The coefficient C; is plotted as a function of the
centerline eddy viscosity v,. and a cubic spline is fit through the data. It should be noted that the point of

minimum fitness features several inflection points in the corresponding nondimensional turbulent eddy

viscosity and is therefore ignored. The C, coefficient is increased from its minimum value so that the

turbulent eddy viscosity features only one inflection point in the core region over the range of roughness
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ratio R/k, = [15—126] and even extended to smooth pipes featuring a roughness ratio R/k, =10,000 .
Table C.4 gives the optimum C, coefficients obtained at each discretized centerline turbulent eddy

viscosity along with its respective fitness value.

Table C.4 Deviation function coefficients.

A B e Vie o Fitness

1.2 0 1.4 0.03 -11.19015 0.00920869
1.2 0 1.4 0.035 -7.938638 0.00840393
1.2 0 1.4 0.04 -5.500003 0.00815821
1.2 0 1.4 0.045 -3.603288 0.00820237
1.2 0 1.4 0.05 -2.085915 0.00838489
1.2 0 1.4 0.055 -0.844429 0.00862570
1.2 0 1.4 0.06 0.190144 0.00888425

Figures C.3 and C.4 show the variations of the coefficients C; and v, given in Table C.4. Even though the
fitness shows a minimum value at v,. =0.041, the turbulent eddy viscosity shows several inflection points,
as shown in Fig. C.5. The value of v,. that gives satisfactory results over the range of roughness ratios

R/k, =15 to R/k, =126 is v, =0.056.

2 T T T T T
o  Optimal C .

ok Cubic fit

12 | | | | |
0.03 0.035 0.04 0.045 0.05 0.055 0.06

Vtc/(uTR)

Fig. C.3 Coefficient C; variations as a function of the centerline turbulent eddy viscosity.
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Fig. C.5 Turbulent eddy viscosity profiles when varying the centerline turbulent eddy viscosity.
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This process of finding the optimum v,. and C, coefficients, which give satisfactory results for the
turbulent eddy viscosity was repeated over a range of 4, B and e values . Because the coefficient 5

which gave the best fitness was quite small, the coefficient B was set to 0.
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APPENDIX D

COMPUTER CODE

I.  Code to Solve the k-4 Model for Fully Rough Pipe Flow

program main
use solver
implicit none
CHARACTER*(50):: filename
integer :: case_num,ierror,i
real :: case fitness,case fitness Moody,fitness,weighting,fitness uprofile,fitness Moody
real :: Roverks (8)

Roverks = (/15.,30.6,60.,126.,252.,507.,0.5/0.0003,0.5/0.000058 /)
call set_solver vals()

call solver_allocate()
call create _grid()

write(*,*)Fully Rough Flow k-Lambda Model'

write(*,*) 'Roverks (',Roverks,' ):'
read(5,'(a)") rec

if(rec .ne.'") read(rec,*) Roverks

if( Roverks==1667) Roverks=0.5/0.0003
if( Roverks==8621) Roverks=0.5/0.000058
RoverksUser = Roverks

weighting = 0.5
kwall = 0.05
A0=10.0025
A10=0.012
Al1=0.05
A12=10.09
A13=0.39
B00 =0.0713244976729399
B01=0.25
B10=1.37
B11=-14.0
B20=-0.7

B21 =40.

' write(*,*) 'Cnu (,Cnu ,"):'
! read(5,'(a)') rec
! if(rec .ne.'") read(rec,*) Cnu

write(*,*) 'sigmak (',sigmak ,'):'
read(5,'(a)") rec
if(rec .ne. ") read(rec,*) sigmak

write(*,*) 'kwall (,kwall ,"):'
read(5,'(a)') rec



if(rec .ne. '") read(rec,*) kwall

write(*,*) 'A0 (A0 ,"):'
read(5,'(a)") rec
if(rec .ne. '") read(rec,*) AO

write(*,*) 'A10 (,A10,"):'
read(5,'(a)") rec
if(rec .ne. ') read(rec,*) A10

write(*,*¥) 'A11 (,A11 ")
read(5,'(a)") rec
if(rec .ne. ') read(rec,*) Al1

write(*,*) 'B00 (',B00 ,"):'
read(5,'(a)") rec
if(rec .ne. ') read(rec,*) BOO

write(*,*) 'A13 (,A13 ")
read(5,'(a)") rec
if(rec .ne. ') read(rec,*) A13

write(*,*) 'B00 (,B00 ,"):'
read(5,'(a)") rec
if(rec .ne. ") read(rec,*) BOO

write(*,*) 'BO1 (',BO1 ,"):'
read(5,'(a)") rec
if(rec .ne. '") read(rec,*) BO1

write(*,*) 'B02 (,B02 ,"):'
read(5,'(a)") rec
if(rec .ne. '") read(rec,*) B02

write(*,¥) 'B03 (,B03 ,"):'
read(5,'(a)") rec
if(rec .ne. ") read(rec,*) B03

write(*,*) 'B10 (',B10 ,"):'
read(5,'(a)") rec
if(rec .ne. ') read(rec,*) B10

write(*,*) 'B11 (,B11,"):'
read(5,'(a)") rec
if(rec .ne. ') read(rec,*) B11

write(*,¥) 'B20 (,B20 ,"):'
read(5,'(a)") rec
if(rec .ne. ") read(rec,*) B20

write(*,*) 'B21 (,B21,"):'
read(5,'(a)") rec
if(rec .ne. '") read(rec,*) B21

196
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write(*,*) 'weighting (',weighting ,"):'
read(5,'(a)") rec
if(rec .ne. ') read(rec,*) weighting

call update _variable vRoverks()

case num =0

write(*,*) 'Enter integer for case (',case_num,'):'
read(5,'(a)") rec

if(rec .ne. ") read(rec,*) case_num

fitness_uprofile = case_fitness(case_num) ! done at ksp = 80000

if (weighting/=0.0) then
fitness Moody = case_fitness Moody(case_num) ! ksp varies
endif

fitness = weighting*fitness Moody+(1.-weighting)*fitness_uprofile

write(filename,*) case_num

filename = 'fitness_'//trim(adjustl(filename))//".txt'

open(unit = 20, File = filename, status="replace", action = "write", iostat = ierror)
write(20,*) fitness,' = case fitness'

close(20)

write(*,*)

write(*,*)

write(*,*) ' '
write(*,*) ' Fitness u+ =, fitness_uprofile
write(*,*) ' Fitness Moody =', fitness Moody
write(*,*) ' Fitness TOTAL =', fitness
write(*,*) ' '
write(*,*)

open(unit=15,file = 'fitness.txt")
write(15,'(20ES24.14)")Roverks, kwall,A0,A1,B0,B1,B2,weighting, fitness
close(15)

if (RoverksUser<0) then

open(unit=10,file = "indiv_fitness.txt")

doi=1,8

write(10,*) Roverks (i),fitness Moody (i),fitness uprofile (i),weighting*fitness Moody (i)+(1.-

weighting)*fitness_uprofile (i)
enddo
write(10,*)
write(10,*)
RoverksUser,sum(fitness Moody )/8.,sum(fitness_uprofile )/8.,weighting*sum(fitness Moody )/8.+(1.-
weighting)*sum(fitness_uprofile )/8.

close(10)
else
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open(unit=10,file = 'indiv_fitness.txt")
write(10,*) Roverks,fitness Moody,fitness_uprofile,fitness
close(10)
endif

end program main

PERRRRTEEE I e ety

real function case fitness Moody(case num)
use solver
integer :: ngood,total,ierror,i,jj,case_num
real :: results(7),local_Roverks,Roverks (7)
character®(50) :: filename
results(:) = 0.0
total = 0
local Roverks = Roverks

IRoverks =(/15.,30.6,60.,126.,252.,507.,0.5/0.0003,0.5/0.000058 /)
Roverks = (/15.,30.6,60.,126.,252.,507.,0.5/0.000058 /)

100 FORMAT (1X, 1000ES22.14)

write(filename,*) case_num

filename = 'caseMoody_'//trim(adjustl(filename))//".txt'
! open(unit = 10, File = filename, status="replace", action = "write", iostat = ierror)
! write(10,*) ' Roverks Re bulk 4CF Colebrook !

if(RoverksUser.gt.0.0) then
Roverks = RoverksUser
call run_case( Roverks, ngood,results(1)); total = total + ngood
do i=1,ngood
write(10,100) Roverks,vRebulk(i),vCF(i),func_Colebrook(vRebulk(i))
end do
write(10,*)
fitness Moody (1) = sqrt(results(1)/ngood)
case_fitness Moody = fitness Moody (1)

else
do jj=1,7
Roverks = Roverks_(jj)
call update_variable vRoverks()
call run_case( Roverks, ngood,results(jj)); total = total + ngood
! do i=1,ngood
! write(10,100)
Roverks,vRebulk(i),vCF(i),func_Colebrook(vRebulk(i)),(func_Colebrook(vRebulk(i)) - vCF(i))**2
! end do
! write(10,*)
fitness Moody _(jj) = (results(jj)/ngood)
enddo

case_fitness Moody = sum(fitness Moody )/7.
end if

Icase_fitness Moody = sqrt(sum(results)/real(total))



write(10,*) ' kappa = ',kappa
write(10,*) ' gamma ="',gamma
write(10,*)
do jj=1,8
write(10,*) Roverks_(jj),results(jj)
enddo
write(10,*)
write(10,*) case_fitness Moody, ' = case fitness'
close(10)

end function case fitness Moody

RN R R AR AR AR AR RN

subroutine run_case(Roverks val,ngood,error)

use solver
integer :: ngood
real :: Roverks_val,error

Roverks = Roverks_val
call update variable vRoverks()

call p_vksp(1,ngood,error)
write(*,*) 'ngood = ',ngood
write(*,*) 'fitness Moody chart = ',error

end subroutine run_case

PEERLRLREE I ey

real function case fitness(case _num)

use solver

integer :: ngood,ierror,i,jj,case_num
real,dimension(14) :: results,local Roverks
real :: Roverks (8)

character®(50) :: filename

results(:) = 0.0

Roverks =(/15.,30.6,60.,126.,252.,507.,0.5/0.0003,0.5/0.000058 /)

100 FORMAT (1X, 1000ES22.14)
write(filename,*) case_num

filename = 'caseUprofile '//trim(adjustl(filename))//".txt'
open(unit = 10, File = filename, status="replace", action = "write", iostat = ierror)

write(10,*) ' R/ks Fitness'

if(RoverksUser.gt.0.0) then
Roverks = RoverksUser
call update _variable vRoverks()
call run_case Velocity( Roverks,1,results(1))
write(10,100) Roverks,results(1)
write(10,*)
total = 1
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fitness_uprofile = results(1)

else
do jj=1,8
Roverks = Roverks_(jj)
call update_variable vRoverks()
call run_case Velocity( Roverks,1,results(jj))
write(10,100) Roverks,results(jj)
write(10,*)
fitness_uprofile (jj) = results(jj)
enddo
total = 8
end if

case_fitness = sum(results)/real(total)
lwrite(*,*) 'fitness Velocity TOTAL =',case_fitness

write(10,%) ' A0=",A0
write(10,%) ' Al="Al
write(10,*) ' B0 =",B0
write(10,*) ' B1="BI1
write(10,*) ' B2 ="B2
write(10,*) ' kwall =" kwall
write(10,*) 'lambdaWall ="', lambdaWall
lwrite(10,*) 'lambdaWallSlope = ',lJambdaWallSlope
write(10,*) 'R/ks used =',local Roverks(1:nb_of sets)
write(10,*)
write(10,*) case_fitness, ' = case fitness (Nikuradse u+ exp data)'
close(10)

end function case_fitness

RN R R AR AR N RRR RN

subroutine run_case Velocity(Roverks val,case number,error)

use solver
integer, intent(in) :: case number ! can only be 1 through 6
real :: Roverks_val,error

call update variable vRoverks()

call p_getu(case number,kshat,error)

end subroutine run_case_Velocity

R R R RN AR AR R RN

subroutine set_solver vals()

use solver
real :: RC_Itxt(50)
real :: a,b,c.d,e,f

Roverks = 15.0
kr = 0.5/Roverks
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Cnu = 0.006

Clam = Cnu**2
sigmak = 2.0

ksp = 80000.0

kappa = 0.403
gamma = 0.0324
beta = 1.000002

n=3201

nplot =51

nuhat = 2.*%kr/ksp
Rtau = 1./nuhat

kshat = 2 *kr
a=0.00233
b=0.659

¢ =0.0307
d=0.00551
e=0.209
f=0.0421

end subroutine set_solver vals

RN R R R RN R A AR AR NN

module solver
IMPLICIT NONE
integer :: n,nb_of sets,nb_pts_per_ set,nplot,nstat
integer :: FullyRough,FullySmooth

real ::
real ::
real ::
real ::
real ::
real ::

real

A0,A1,B0,B1,B2,A10,A11,A12,A13,B00,B01,B02,B03,B10,B11,B12,B20,B21,B22,A1 exp,Al cst

Rtau,kr,ksp,beta,nuhat,kshat,Rshat,Roverks,qkguess
kappa,RoverksUser,fitness Moody (7),fitness_uprofile (8)
Cnu, sigmak,Clam
kwall,lambdaWallSlope,lJambdaWall,lambdaCenter
Re,Df,um,km

gamma

CHARACTER*(80):: rec,init,file r
CHARACTER(LEN=100)::fn

real, allocatable, dimension(:)::r_hat,yplus
real, allocatable, dimension(:)::k,kprime
real, allocatable, dimension(:)::qk,qkprime
real, allocatable, dimension(:)::u,uprime
real, allocatable, dimension(:)::nu

real, allocatable, dimension(:)::h,Jambda

real, allocatable, dimension(:)::vCF,vRebulk
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contains

subroutine solver_allocate()

!Allocate Memory

ALLOCATE(r_hat(n)); ALLOCATE(yplus(n))
ALLOCATE(k(n)); ALLOCATE(kprime(n));
ALLOCATE(gk(n)); ALLOCATE(gkprime(n));
ALLOCATE(u(n)); ALLOCATE(uprime(n));
ALLOCATE(nu(n));

ALLOCATE(h(n)); ALLOCATE(lambda(n));
ALLOCATE(vRebulk(nplot)); ALLOCATE(vCf(nplot))
end subroutine solver_allocate

subroutine solver_deallocate()

!Deallocate Memory

DEALLOCATE(r_hat); DEALLOCATE(yplus);
DEALLOCATE(k); DEALLOCATE(kprime);
DEALLOCATE(gk); DEALLOCATE(qkprime);
DEALLOCATE(u); DEALLOCATE(uprime);
DEALLOCATE((nu);

DEALLOCATE(h); DEALLOCATE(lambda);
DEALLOCATE(vRebulk);DEALLOCATE(vCY);
end subroutine solver deallocate

subroutine create _grid()
integer :: j
real :: eta,cbeta,dzeta

if (beta>0) then
dzeta = 1.0/real(n-1)
ICreate Grid
do j=1,n,1
eta = real(n-j)/real(n-1)
cbeta = ((beta+1.0)/(beta-1.0))**(1.0-cta)
if(beta .eq. 0.0) then
r_hat(j) = 1.0 - real(j-1)*dzeta
else
r_hat(j) = 1.0 - (beta+1.0 - (beta-1.0)*cbeta)/(1.0 + cbeta)
end if
end do
r_hat(1)=0.0
else ! uniform grid, same spacing
do j=1,n
r_hat(j) = real(j-1) / real(n-1)
enddo
endif

end subroutine create grid
subroutine update_variable vRoverks()

real :: C 0,C 1,C 2,C 3,C 4C 5
real :: sigma_k, k wall
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real 5

A lam0,A lam10,A laml11,A laml12,A lam13,B 1am00,B lam01,B lam02,B lam03,B lam10,B lamll1,
B lam20,B lam21

kshat = 1./Roverks

kr = kshat/2.

nuhat = 2.*kr/ksp

Rtau = 1./nuhat

Rshat = 1./(gamma*kshat)
sigma_k = sigmak

k wall = kwall

Cnu = 1.1430803817E-04*sigma_k**4 - 2.1568032682E-03*sigma_k**3 &
+ 1.5454411906E-02*sigma_k**2 - 5.3147683089E-02*sigma_k + 8.3648609370E-02
FINAL NO CHANGE FROM V3.1
!
A _lam0 = - 5.4806699600E-06*sigma_k**4 + 1.0829889892E-04*sigma_k**3 &
- 5.8824903497E-04*sigma_k**2 + 6.4266598213E-05*sigma_k + 7.0559295507E-03
FINAL NO CHANGE FROM V8.1
!
A _laml0= 6.0548405176E-06*sigma_k**4 - 1.7464041639E-04*sigma_k**3 &
+ 1.7083135016E-03*sigma_k**2 - 7.8015697237E-03*sigma_k + 2.3620283331E-02
FINAL NO CHANGE FROM V3.1
!
A lamll= 1.6430210539E-04*sigma_k**4 - 3.2876048062E-03*sigma_k**3 &
+ 2.3668508652E-02*sigma_k**2 - 7.4817705811E-02*sigma_k + 1.3742572373E-01
FINAL NO CHANGE FROM V3.1
!
C_4 = - 3.6249854255E-04*k_wall**2 - 2.3771783095E-04*k wall + 3.1811391789E-04
L L L L L L L L
C 3= 6.7456577268E-03*k _wall**2 + 3.5031152723E-03*k_wall - 7.6039769524E-03
L L L L L L L

C 2 =-43056163634E-02*k_wall**2 - 2.0050955122E-02*k wall + 5.7370834148E-02
<L

C_ 1= 1.1098738361E-01*k_wall**2 + 5.7323021287E-02*k wall - 1.5770938564E-01
<LK

C_0="-9.7888362645E-02*k_wall**2 - 7.6772775598E-02*k_wall + 1.6397877418E-01
<L

!

!

!

!

A laml2 = C 4%*sigma k**4 + C 3*sigma k**3 + C 2*sigma k**2 + C_I*sigma k + C 0

! FINAL CHANGED FROM V8.1 <<<<<<<<<<
!
A laml13 = 2.1775071643E-04*sigma_k**4 - 4.6125648020E-03*sigma_k**3 &
+ 3.2004745006E-02*sigma k**2 - 7.6059412219E-02*sigma k + 2.6786227707E-01
FINAL NO CHANGE FROM V8.1
!
IB_lam00 = 1.5571555961E-03*sigma_k**4 - 3.7455015562E-02*sigma_k**3 &
! + 3.0085113473E-01*sigma_k**2 - 9.7875053089E-01*sigma k + 1.1002011812E+00
V 2.5 NO CHANGE FROM V8.1
B 1am00 = B00
!
B lam01 =- 1.7611480539E-03*sigma_k**4 + 3.3472445299E-02*sigma_k**3 &
- 2.1562199190E-01*sigma_k**2 + 4.9483981773E-01*sigma k + 4.4081967221E-01
FINAL NO CHANGE FROM V8.1
!
C 4= 4.5958241000E-03*k wall**2 +2.0834333483E-03*k wall - 1.3277370846E-02
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C 3=-9.3116503886E-02*k wall**2 - 2.8569790820E-02*k wall +2.7587164438E-01
C 2= 6.0395589241E-01*k wall**2 + 1.8761243453E-01*k wall -2.0079111202E+00
C_1=-1.4946016082E+00*k_wall**2 -7.3780887177E-01*k_wall + 6.0340918034E+00
C 0= 1.2142113765E+00*k wall**2 + 1.2696368571E+00*k wall - 7.2873561012E+00
B lam02 = C 4*sigma k**4 + C 3*sigma k**3 + C 2*sigma k**2 + C l*sigma k + C 0
! FINAL NO CHANGE FROM V8.1
!

B lam03 = 6.3453858956E-04*sigma_k**4 - 1.7156286122E-02*sigma_k**3 &
+ 1.4904850864E-01*sigma k**2 - 5.3187100685E-01*sigma k + 7.9782349433E-01 !
FINAL NO CHANGE FROM V8.1
!
B lam10=-1.0134626360E-03*sigma_k**4 + 1.9147367622E-02*sigma_k**3 &
- 1.2222170912E-01*sigma_k**2 + 2.5530412815E-01*sigma_k + 1.4355452292E+00 !
FINAL NO CHANGE FROM V8.1
!
B lamll = - 6.6206887937E-03*sigma_k - 1.3830728894E+01 'V2 NO
CHANGE FROM V8.1
C 4=-2.0201876364E-03*k wall**2 +4.3279392861E-03*k wall - 1.3949382336E-03
C 3= 2.6570830671E-02*k wall**2 - 6.4136620678E-02*k wall +2.3621757343E-02
C 2=-1.1989031734E-01*k wall**2 + 3.3373664338E-01*k wall - 1.3864710895E-01
C 1= 2.1942375688E-01*k wall**2 -7.0814005373E-01*k wall + 3.0315634574E-01
C 0=-1.4066477454E-01*k wall**2 +4.5837394149E-01*k wall - 8.0853545298E-01
B lam20 = C 4*sigma k**4 + C 3*sigma k**3 + C 2*sigma k**2 + C l*sigma k + C 0
! FINAL NO CHANGE FROM V8.1
!
B lam21 = - 2.6815510578E-03*sigma_k + 4.0037296283E+01 V2 NO
CHANGE FROM V8.1

AO0=A lam0

Al = A lamll + A laml2*kshat + (A laml0 - A lamll - A laml2*kshat)*exp(-
(kshat**A_lam13))

B0 = B lam01 + B_lam02*kshat + (B_1lam00 - B_lam01 - B_lam02*kshat)*exp(-(kshat**B_lam03))

Bl = B laml0 + B _laml1*kshat

B2 B 1am20 + B_lam21*kshat

end subroutine

A T R A A R ER SRR A R R A Compare velocity ~ with ~ Nikuradse exp data
subroutine p_getu(case_number,ksoverR in,error)

integer :: iprint, niter,icompare,i,]

integer, intent(in) :: case_number

real :: error,junk,pRMS,RMS

real, intent(in) :: ksoverR _in

real :: uplus_reference(12),uhat reference(12),r hat discretized(12),u fromEmpLambda(12)

real :: a,b,ul,u2,rl,r2

doi=1,n
lambda(i) = lambdahat(r_hat(i))
enddo
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call integrate k fromWall()

write(*,*)

write(*,*) ' Re (um) =", Re

write(*,*) '4Cf =',Df

write(*,*) 'Colebrook ="', func_Colebrook(Re)
write(*,*)

write(*,*) ' B0 ="B0

write(*,*) ' B1="Bl1

write(*,*) ' B2="B2

write(*,*) ' A0="A0

write(*,*) ' Al="Al

write(*,*) 'lambdaWall ="', lambdaWall
write(*,*) ' kwall ="kwall

write(*,*)

! open(unit=10,file='data.txt')

! do i=n,1,-1

! write(10,*) r_hat(i),1.-r_hat(i),u(i),k(i),lambda(i),nu(i), r_hat(i)/( nuhat+nu(i) )
! enddo

' close(10)

! Compare u+ (u+ from empirical nut vs. u+ from RK4 with empirical lambda_hat)
r_hat discretized = (/ 0.0,0.05,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.95 /)

j=1
u_fromEmpLambda(l) =u(1)
call get uplus uhat(0.0,uplus_reference(1),junk)

do icompare=2,12
do while ((j<=n).and. (r_hat(j)-r_hat discretized(icompare)<=0.) )
=i+
enddo
J=-1

if (r_hat discretized(icompare)-r_hat(j)> r_hat(j+1)-r_hat_discretized(icompare)) then
Ir_hat discretized(icompare) closer to r_hat(j+1)
call get uplus_uhat(r_hat(j+1),uplus_reference(icompare),junk)
u_fromEmpLambda(icompare) = u(j+1)
pRMS = abs((uplus_reference(icompare)-
u_fromEmpLambda(icompare))/uplus_reference(icompare))
else
call get uplus_uhat(r_hat(j),uplus_reference(icompare),junk)
u_fromEmpLambda(icompare) = u(j)
pRMS = abs((uplus_reference(icompare)-
u_fromEmpLambda(icompare))/uplus_reference(icompare))
endif

enddo

error = sum( abs(uplus_reference-u_fromEmpLambda)/uplus_reference)/12.
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end subroutine p_getu

! uplus/uhat when nut = Eq. 106
!

subroutine get uplus_uhat(r_hat,u plus,u_hat)
real :: yhat,r_hat
real :: delta,deltap
real :: u_plus,u_hat
real :: D0,D1,D2,D3,D4,D5,C0,C1,C2,C3,C4,C5,C6,C7,Acoeff,Becoeff,ecoeff,nutc

Acoeff=1.2
Bcoeff=0.0
ecoeff=14
nutc = 0.053
C7=-13

DO = (Rshat+1.)**2*(log(Rshat+1.)-3./2.)+2.*Rshat+3./2.
C0 = Acoeff*kshat**ecoeff+Bcoeff

C1 = Rshat**3./((Rshat+1.)*D0)

C2 = Rshat**2 *(Rshat**2/((Rshat+1.)**2)-kappa/nutc)/(2.*D0)
C3 = Rshat**5./(3.*(Rshat+1.)**3*D0)

D1 =-C0-C1-C2-C3-C7

D2 =-C1-2.*C2-3.*C3-7.*C7

D3 =-C0/2.-C1/3.-C2/4.-C3/5.-C7/9.

C4 =-39.*D1+3.*D2+168.*D3
C5=284.%D1-7.*D2-336.*D3

C6 = -44 *D1+4.*D2+168.*D3

yhat = 1.-r_hat

delta = CO + C1*r_hat + C2*r_hat**2 + C3*r_hat**3 + C4*r_hat**4 + C5*r_hat**5 + C6*r_hat**6
+ C7*r_hat**7

deltap = -(Cl + 2.*C2*r hat + 3.*C3*r hat**2 + 4.*C4*r hat**3 + 5*C5%r hat**4 +
6.*C6*r_hat**5 + 7.*C7*r_hat**06)

u_hat = Rshat**2*log(Rshat*yhat+1.)/D0+delta
u_plus = log(Rshat*yhat+1.)/kappa+D0*delta/(kappa*Rshat**2)

end subroutine

! Lambda_hat Empirical Function
!

function lambdahat(r_hat)
real :: r_hat,lambdahat,yhat

yhat = 1.-r_hat
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lambdahat = (AO*kshat+A1*yhat)*(1.-.5*yhat)*(B0+B1*r_hat**2+B2*r hat**4+(1.-B0-B1-
B2)*r_hat**6)
end function

! INTEGRATE from WALL
!

subroutine integrate k fromWall()
integer :: i,niter,nitermax
real :: t0,y0(5),dt,y(5),qwall(3),qcenter(3)

! integrates from the wall, shoots to the centerline to have Q+ = 0 at the centerline
Tkwall = 6120.1*kshat**3-1503.6*kshat**2+144.43*kshat-0.0309

Iwrite(*,*) 'kwall ="', kwall

niter = 1
nitermax = 200
nstat =0
gkguess =2.0

lwrite(*,*) 'Tterate on Q..."

do while ((gkguess>=-1.).and.(nstat==0) )
niter = 1

| GUESS 1 ON Q

k(n) = kwall

qk(n) = gkguess ! initial guess for q(wall)
qwall(1) = qk(n)

yo(1) =k(n)

y0(2) = gk(n)

write(*,*) 1,k(n),qk(n)

doi=n-1,1,-1
dt =r_hat(i+1)-r_hat(i) ! dtis equivalent of dy, not dr_hat
call RK4 fromWall(2,t0,y0,dt,y)
t0 = tO+dt
yo=y
k(i) = y(1)
qk(i) = y(2)
enddo
qeenter(1) = gk(1)

Iwrite(*,*) niter, qk(1)

' GUESS 2 ON Q

niter = niter + 1



t0=0.
k(n) = kwall
if (gkguess<0) then
gk(n) = gkguess*.95 ! initial guess for q(wall)
else
qk(n) = qgkguess*1.05
endif
gwall(2) = qgk(n)
y0(1) = k(n)
y0(2) = gk(n)

doi=n-1,1,-1
dt =r_hat(i+1)-r_hat(i)
call RK4 fromWall(2,t0,y0,dt,y)
t0 = t0+dt
yo=y
k(i) = y(1)
qk(i) =y(2)
enddo
qcenter(2) = gk(1)
Iwrite(*,*) niter, qk(1)

I ITERATE ON Q (secant method)
!
do while ((abs(qk(1))>1.0e-12).and.(niter<nitermax))

niter = niter + 1

t0 = 0.

k(n) = kwall

gk(n) = qwall(2)-qcenter(2)*( qwall(2)-qwall(1) ) / ( qcenter(2)-qcenter(1) )

qwall(3) = gk(n)

yO(1) = k(n)

y0(2) = qk(n)

doi=n-1,1,-1
dt =r_hat(i+1)-r_hat(i)
call RK4 fromWall(2,t0,y0,dt,y)
t0 = t0+dt
y0=y
k(i) = y(1)
qk(i) = y(2)
enddo
gcenter(3) = qk(1)
Iwrite(*,*) niter, qk(1),qk(n)

qwall(1) = qwall(2)
qwall(2) = qwall(3)
gcenter(1) = qcenter(2)
qcenter(2) = qcenter(3)

enddo
niter = niter + 1

t0=0.
k(n) = kwall
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qk(n) = qwall(2)-qcenter(2)*( qwall(2)-qwall(1) ) / ( qcenter(2)-qcenter(1) )
qwall(3) = qk(n)

y0=0.

yo(1) =k(n)

y0(2) = gk(n)

u(n) = 0.

doi=n-1,1,-1
dt=r_hat(i+1)-r_hat(i)
call RK4 fromWall(5,t0,y0,dt,y)
t0 = t0+dt
yo=y
k(i) =y(1)
qk(i) = y(2)
u(i) =y@3)
enddo
qcenter(3) = qk(1)
km =y(5)
um = y(4)
Iwrite(*,*) niter, Roverks,qk(1),qwall(3)
nu = lambda*sqrt(k)
h = Cnu*k /nuhat
Df= 8./um**2,
Re = 2.*um/nuhat

if (isnan(Re)) then
gkguess = gkguess-0.1
nstat =0

else
nstat =1

endif

enddo

if ((niter>=nitermax).or.(isnan(Re))) then
nstat =0
else
nstat =1
write(*,*) niter, Roverks,qk(1),qwall(3)
endif

end subroutine

subroutine RK4 fromWall(nn,t0,y0,dt,y)
I solve a system of n first order differential equations
I dy(i)/dt = f(i,t,y)
! calls the function f

integer, intent(in) :: nn ! number of equation to be solved
real, dimension(nn,4) :: k_! table of coefficient (k1, k2, k3 k4); 4 coeffs per equation
real, intent(inout) :: t0, yO(nn),dt



real :: coeff(4),Rtau
real, intent(out) :: y(nn)
integer :: i,

if (t0+dt>1.) dt=1.-t0
coeff=(/1./6.,1./3.,1./3.,1./6./)
do j=I,nn
k (j,1)=f fromWall(j,t0,y0)*dt
y()=y0G)+k_(,1)/2.
end do
do j=1,nn

k_(j,2)=f fromWall(j,t0+dt/2..y)*dt

end do

do j=1,nn
y()=y0()+k_(j,2)/2.

end do

do j=I,nn

k_(j,3)=f fromWall(j,t0+dt/2..y)*dt

end do
do j=1,nn
y(i)=y0()+k_(.3)
end do
do j=1,nn
k (j,4)=f fromWall(j,t0+dt,y)*dt
end do
do j=1,nn
y()=y0()
doi=1,4
y()=y@)tcoeff(i)*k_(j,1)
end do
end do

end subroutine

function f fromWall(i,zeta,y)
integer, intent(in) :: i

real, intent(in) :: zeta,y(*) !y(1) =k, y(2)=q

real :: f fromWall,r hat
! input zeta = 0 at wall, 1 at centerline
lif (zeta<0.) zeta=0.

r hat=1. - zeta ! r hat =0 at centerline, 1 at wall

if (i==1) then ! dk/dr_hat

21

if (r_hat <= 10**(-16./6.)) then !(r_hat <= 10**(-16./6.)) then ! at the centerline, exception /0

f fromWall = 0.
else

0

f fromWall = -y(2)/r_hat*3./( nuhat+5.*(lambdahat(r_hat)*sqrt( abs(y(1)) ) )/sigmak) ! corresponds

to dk/dr_hat
Iwrite(*,*) nut(r_hat),y(2)
endif
elseif (i==2) then ! dq/dr hat
f fromWall =
(lambdahat(r_hat)*sqrt(abs(y(1))))

(lambdahat(r_hat)*sqrt(abs(y(1))))*r_hat**3./(nuhat
VD,

Cnu**2 *nuhat/(lambdahat(r_hat)*sqrt(abs(y(1))))**2.*y(1)**2.*r_hat
Hf ((nut(r_hat)==0.).and.(r_hat==0) ) f fromWall=0.

+



elseif (i==3) then ! du/dr hat
f fromWall = -r_hat/( nuhat+(lambdahat(r hat)*sqrt(y(1))) )
elseif (i==4) then ! dum/dr_hat
f fromWall =-y(3)*r hat*2.
elseif (i==5) then ! dkm/dr hat
f fromWall = -y(1)*r_hat*2.
end if
f fromWall = -f fromWall ! gives the variables in terms of d_/dy
1if (f_fromWall=='NaN') pause
end function

subroutine p_vksp(iprint,ngood,error)
integer :: iprint,ngood,niter
real :: error,power

power = 2.0

ksp = 10**power
Re=0.0

ngood = 1

error = 0.0

Rshat = Roverks/(gamma)
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if(iprint.eq.1) write(*,*) ' ngood R/ks ksp Re 4CF &

& 4Cf Reference error " lnum_iter'
do while (((Re<1.0e8).and.(ngood<=nplot)).or.(ngood<5))
nuhat = 2.*kr/ksp
Rtau = 1./nuhat

call integrate k fromWall()
vRebulk(ngood) = Re
vCF(ngood) = Df

if((Re<1.0e8).or.(ngood<4)) error = error + abs(reference 4Cf(Re,Roverks)
VCF(ngood))/reference 4Cf(Re,Roverks)
if((Re<1.0e8).or.(ngood<4)) error = error + ((reference 4Cf(Re,Roverks)

CF(ngood))/func Colebrook(Re))**2 ! % RMS

if(iprint.eq.1) write(*,*) ngood,Roverks,ksp,Re,Df reference 4Cf(Re,Roverks),error !,niter
ngood = ngood + 1
power = power + 0.25
ksp = 10.0**power

end do

ngood = ngood - 2

end subroutine p_vksp

real function func_Colebrook(Re)
implicit none
real :: Re,old,new

if(Re<100.0) then
func_Colebrook = 64.0/Re

else
new = (-1.8*log10((kr/3.7)**(1.11) + 6.9/Re))**(-2.0)
old=10.0

do while(abs((new-old)/new) .gt. 1.0e-5)
old = new
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new = (-2.0*log10(kr/3.7 + 2.51/(Re*sqrt(old))))**(-2.0)
end do
func_Colebrook = new
end if
return; end function func_Colebrook

real function reference_4Cf(Re,Roverks)
real :: Re,Roverks
integer :: 1,indix

reference 4Cf = (2.0*logl0(Roverks)+1.74)**(-2.0)
end function

end module solver

II. Optimization Code

program main
use bfgs
implicit none
character*(50) :: rec,fn
integer :: i,ierror

Defaults

iter=0

default_alpha = 1.0e-8
diff delta=1.0e-8
diff scheme =1
stop_delta = 1.0e-12
nsearch = 8

fn = 'none'
! write(*,*) 'Enter filename (none=use interactive console instead of file) (,fn,') :'
' read(5,'(a)') rec
' if(rec .ne.'") read(rec,*) fn

fn = 'bfgs_start.txt'

if(fn.ne.none') then
open(unit = 10, File = fn, action = "read", iostat = ierror)
read(10,*) nvars
read(10,*) !names of variables

call opt_allocate()

read(10,*) vars(1:nvars)
read(10,*) opton(1:nvars)
read(10,*) default_alpha
read(10,*) diff delta
read(10,*) diff scheme
read(10,*) stop_delta



213

read(10,*) nsearch
close(10)
else
write(*,*) 'Enter number of variables :'
read(5,'(a)") rec
if(rec .ne. ') read(rec,*) nvars

call opt_allocate()

do i=1,nvars
write(*,*) 'Enter variable ',i," '
read(5,'(a)") rec
if(rec .ne. ') read(rec,*) vars(i)
write(*,*) 'Optimize this variable? (1=yes,0=no) (',opton(i),) :'
read(5,'(a)") rec
if(rec .ne. ') read(rec,*) opton(i)
end do

write(*,*) 'Enter default line search alpha (',default_alpha,') '
read(5,'(a)") rec
if(rec .ne. ') read(rec,*) default_alpha

write(*,*) 'Enter delta step size used for gradient calculations (',diff delta,) :'
read(5,'(a)") rec
if(rec .ne. ') read(rec,*) diff delta

write(*,*) 'Enter differencing scheme (1=central diff, O=forward diff) (',diff scheme,") :'
read(5,'(a)") rec
if(rec .ne. ') read(rec,*) diff _scheme

write(*,*) 'Enter stop delta (',stop_delta,") :'
read(5,'(a)") rec
if(rec .ne. ') read(rec,*) stop_delta

write(*,*) 'Enter number of simultaneous cases in the line search (',nsearch,') :'
read(5,'(a)") rec
if(rec .ne. ') read(rec,*) nsearch

end if

fn = 'bfgs_start.txt'; call write bfgs_file(fn)
call opt_run()
fn = 'bfgs_end.txt'; call write bfgs file(fn)

call opt_deallocate()
end program main

module bfgs
implicit none
integer :: nvars
integer :: diff scheme !1 = central difference. 0 = forward difference
integer :: iter
integer :: nsearch

real :: default_alpha
real :: diff delta
real :: fitness_curr



real :: stop_delta
real :: alpha

integer,allocatable :: opton(:)
real,allocatable :: grad(:)
real,allocatable :: vars(:)
real,allocatable :: s(:)

contains
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subroutine opt allocate()
allocate(opton(nvars))
allocate(grad(nvars))
allocate(vars(nvars))
allocate(s(nvars))
opton = 0; vars = 0.0; grad = 0.0; s =0.0
end subroutine opt_allocate

subroutine opt_deallocate()
deallocate(opton)
deallocate(grad)
deallocate(vars)
deallocate(s)

end subroutine opt_deallocate

subroutine opt_run()
integer :: 1_iter,0_iter,i,ierror
real :: vars_orig(nvars),vars_old(nvars),grad old(nvars)
real :: dx(nvars,1),NG(nvars,1),N(nvars,nvars),gamma(nvars, 1 )
real :: mag dx,denom
character(LEN=50)::fn,command
110 format (1X, 110, 100ES22.13)

fn = 'optimization.txt'
open(unit = 1001, File = fn, action = "write", iostat = ierror)

write(1001,*) 'iter o_iti_it R/ks sigmak kwall
&coef &
&weighting &
&Fitness alpha mag(dx)'
close(1001)
open(unit = 1001, File = 'gradient.txt', action = "write", iostat = ierror)
write(1001,*) 'iter o_iti it R/ks sigmak kwall
&coef &
&weighting &
&Fitness alpha mag(dx)'

close(1001)
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command = 'rm input_* output_* case * fitness *'
call system(command)

write(*,*) 'Beginning Optimization Routine'
write(*,*) 'Optimization Variables: '
do i=1,nvars

write(*,110) opton(i),vars(i)
end do
write(*,*)'  default alpha : ',default alpha
write(*,*) 'differenceing delta : ',diff delta
write(*,*) 'differencing scheme : ',diff scheme
write(*,*)'  stopping delta : ',stop_delta
write(*,*) 'simultaneous search : ',nsearch

o iter=0

mag dx=1.0

do while(mag_dx > stop_delta)
vars_orig = vars
iiter=0

do while(mag_dx > stop_delta)
call gradient()
call append _file(fn,o iter,i iter,mag dx)

if(i_iter .eq. 0) then !set N=identity
N=0.0
do i=1,nvars
N(,i) = 1.0 IN = identity matrix
end do
else
dx(:,1) = vars(:) - vars_old(:)
gamma(:,1) = grad(:) - grad_old(:)
NG(:,1) = matmul(N,gammay(:,1))
denom = dot_product(dx(:,1),gamma(:,1))
! N = N + matmul(dx-NG,transpose(dx-NG))/dot_product(dx(:,1)-NG(:,1),gamma(:,1)) !Rank
One Hessian Inverse Update
N = N + (1.0+dot_product(gammay(:,1),NG(:,1))/denom)*(matmul(dx,transpose(dx))/denom) &
'BFGS Update
& - ( matmul(dx,matmul(transpose(gamma),N)) + matmul(NG,transpose(dx)))/denom
end if
s(:) = -matmul(N,grad)
vars_old = vars
grad_old = grad

call line_search()

dx(:,1) = vars(:) - vars_old(:)
mag_dx = sqrt(dot_product(dx(:,1),dx(:,1)))
i iter=1_ iter+ 1
iter = iter + 1
end do

call append _file(fn,o_iter,i_iter,mag_dx)

dx(:,1) = vars(:) - vars_orig(:)
mag_dx = sqrt(dot_product(dx(:,1),dx(:,1)))



o_iter=o iter + 1
end do

call sleep(1)

fitness_curr = case_fitness_single(0)

call append _file(fn,o_iter,i_iter,mag_dx)
end subroutine opt_run
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subroutine write_bfgs file(fn)
character(50) :: fn
integer :: ierror
110 format (100ES22.13)
120 format (100122)
fn = trim(adjustl(fn))
write(*,*) 'writing ',fn
open(unit = 200, File = fn, status = "replace", action = "write", iostat = ierror)
write(200,*) nvars,,  num vars'

write(200,*) ' R/ks sigmak kwall &
&coef &
&weighting '

write(200,110) vars(:)
write(200,120) opton(:)
write(200,*) default_alpha,' default line search alpha'
write(200,*) diff delta,' delta step size used for gradient calculations'
write(200,*) diff scheme,' differencing scheme (1=central diff, O=forward diff)'
write(200,*) stop_delta,' stop delta’
write(200,*) nsearch,’ number of simultaneous cases in the line search'
close(200)

end subroutine write_bfgs file

subroutine append_file(fn,o_iter,i_iter,mag dx)
character(50) :: fn
real :: mag_dx
integer :: o_iter,i_iter,ierror
110 format (315, 100ES22.13)
write(* ,110) iter,o_iter,i_iter,vars(:),fitness_curr,alpha,mag_dx
open(unit = 1001, File = fn, status = "OLD", access = "append", iostat = ierror)
write(1001,110) iter,o_iter,i_iter,vars(:),fitness_curr,alpha,mag_dx
close(1001)
open(unit = 1001, File = 'gradient.txt', status = "OLD", access = "append", iostat = ierror)
write(1001,110) iter,o_iter,i_iter,grad(:),fitness_curr,alpha,mag_dx
close(1001)
end subroutine append_file

real function case_fitness(case num)
integer :: case_num,ierror
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character(50)::filename

write(filename,*) case num
filename = 'fitness_'//trim(adjustl(filename))//".txt'
open(unit = 10, File = filename, action = "read", iostat = ierror)
read(10,*) case_fitness
close(10)
end function case_fitness

subroutine forward diff()
integer :: 1
character(50) :: command
real :: vars_orig(nvars)
vars_orig(:) = vars(:)

grad = 0.0
call start_case(0)
do i=1,nvars
if(opton(i).eq.1) then
vars(i) = vars(i) + diff delta
call start_case(i)
vars(:) = vars_orig(:)
end if
end do

do while(.not.all_done())
call sleep(1)
end do
call sleep(1) !one more time to ensure all files are totally written

fitness_curr = case_fitness(0)
do i=1,nvars

if(opton(i).eq.1) grad(i) = (case_fitness(i) - fitness_curr)/diff delta
end do

call sleep(1)

command = 'mv case_0.txt curr_case.txt'

call system(command)

command = 'rm input_* output_* case * fitness *'
call system(command)

end subroutine forward _diff

subroutine gradient()
real :: temp(nvars)
call forward_diff()
if(diff scheme.eq.1) then
temp(:) = grad(:)
diff delta = -diff delta
call forward_diff()



grad(:) = 0.5%(grad(:) + temp(:))
diff delta = -diff delta
end if

end subroutine gradient
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subroutine line_search()

real :: local_fitness,f1,2,f3,al,a2,a3,da
real :: xval(0:nsearch),yval(0:nsearch),vars_orig(nvars)
integer :: i,j,mincoord

write(*,*) 'line search

alpha = max(default_alpha,1.1*stop_delta/sqrt(dot_product(s(:),s(:))))
vars_orig(:) = vars(:)

xval(0) = 0.0; yval(0) = fitness_curr
do
call run_mult cases(nsearch,alpha,vars_orig,xval(1:nsearch),yval(1:nsearch))
do j=0,nsearch
write(*,*) j,xval(j),yval(j)
end do
if(yval(1)>yval(0)) then
if(alpha*sqrt(dot_product(s(:),s(:))) < stop_delta) then
write(*,*) 'Line search within stopping tolerance : alpha = ',alpha
return
end if
write(*,*) 'Too big of a step. Reducing Alpha'
alpha = 0.5*alpha
else
mincoord = minimum_coordinate(nsearch+1,yval)-1
write(*,*) 'mincoord = ',mincoord
if(mincoord.ne.nsearch) exit
alpha = 2.0*alpha
end if
end do
al = xval(mincoord-1)
a2 = xval(mincoord)
a3 = xval(mincoord+1)
fl = yval(mincoord-1)
f2 = yval(mincoord)
f3 = yval(mincoord+1)

da =a2-al
alpha = al+da*(4.0*£2-f3-3.0%f1)/(2.0*(2.0*f2-f3-f1))
if((alpha > a3).or.(alpha < al)) then !For parabolas whose min is not in bounds

alpha = a2
if(f2 > f1) alpha = al
end if

vars(:) = vars_orig(:) + alpha*s(:)
write(*,*) 'final alpha = "',alpha

end subroutine line_search
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integer function minimum_coordinate(num,vals)
integer :: num,i
real :: vals(num),minval
minval = vals(1)
minimum_coordinate = 1
do i=2,num
if(vals(i)<minval) then
minval = vals(i)
minimum_coordinate = i
else
exit
end if
end do
end function minimum_coordinate

subroutine run_mult_cases(ncases,start_alpha,vars_orig,x,y)
integer :: ncases,i
real :: start alpha,vars_orig(nvars)
real ::x(ncases),y(ncases)
character(50) :: command

do i=1,ncases
x(i) = real(i)*start_alpha
vars(:) = vars_orig(:) + x(i)*s(:)
call start_case(i)
end do
vars(:) = vars_orig(:)
do while(.not.mult_done(ncases))
call sleep(1)
end do
call sleep(1) !one more time to ensure all files are totally written

do i=1,ncases

y(i) = case_fitness(i)
end do
call sleep(1)

command = 'rm input_* output_* case * fitness *'
call system(command)
end subroutine run_mult_cases

logical function mult_done(ncases)
implicit none
integer :: ncases,ios(ncases),i
character(50)::filename

do i=1,ncases
write(filename,*) 1
filename = 'fitness_'//trim(adjustl(filename))//".txt'
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open(i*100,file=filename,status='old',iostat=ios(i))
end do
if(count(ios==0)==size(ios)) then
mult done = .true.
else
mult_done = .false.
end if

do i=1,ncases
if(ios(i)/=0) cycle
close(i*100)
end do
end function mult_done

real function case fitness_single(case_num)
integer :: case_num,ierror
character(50)::filename,command

call start_case(case_num)
do while(.not.one_done(case num))
call sleep(1)
end do
call sleep(1) !one more time to ensure file is totally written

case_fitness single = case fitness(case num)
command = 'rm input_* output_* case * fitness *'
call system(command)

end function case fitness_single

subroutine start_case(case num)
implicit none
integer :: case_num,ierror,i
character(50)::file i,file o,command

write(file _o0,*) case_ num
file_i="input '//trim(adjustl(file_o))//".txt'
file_o ='output_'//trim(adjustl(file_o))//".txt'
open(unit = 10, File = file_i, status="
do i=1,nvars
write(10,*) vars(i)
end do
write(10,*) case_num
close(10)
command ="./a.out < '//trim(adjustl(file i))//' > "//trim(adjustl(file_o))//' &'
' write(*,*) command
call system(command)
end subroutine start_case

replace", action = "write", iostat = ierror)
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logical function one done(case num)
implicit none
integer::case_num,ios
character(50)::filename

write(filename,*) case_num
filename = 'fitness_'//trim(adjustl(filename))//'.txt'
open(100,file=filename,status="old',iostat=ios)
if(ios==0) then
one_done = .true.
close(100)
else
one_done = .false.
end if
end function one_done

logical function all_done()
implicit none
integer ::ios(nvars+1),i
character(50)::filename

ICheck for 0 file
open(100,file="fitness 0.txt",status="old',iostat=ios(nvars+1))
if(ios(nvars+1)==0) close(100)

do i=1,nvars
if(opton(i).eq.1) then
write(filename,*) 1
filename = 'fitness_'"/trim(adjustl(filename))//".txt'
open(i*100,file=filename,status="old',iostat=i0s(i))
else
ios(i)=0
end if
end do
if(count(ios==0)==size(ios)) then
all _done = .true.
else
all _done = .false.
end if

do i=1,nvars
if(ios(i)/=0) cycle
close(i*100)
end do
end function all_done

end module bfgs



III. Code Iterate Over Different Variables

program main

use solver

implicit none
CHARACTER*(50):: filename
integer :: case_num,ierror,i,]j

real :: case fitness,case_fitness Moody,fitness,weighting, fitness uprofile,fitness Moody

real :: Roverks (8)
real :: sigmak (5),kwall (4)

Roverks = (/15.,30.6,60.,126.,252.,507.,0.5/0.0003,0.5/0.000058 /)

kwall =(/1.0,0.5,0.1,0.05 /)
sigmak =(/2.,3.,4.,5.,6./)
call set_solver vals()

call solver_allocate()
call create_grid()

write(*,*) 'Phillips Rough Flow k-lambda Model'

write(*,*) 'Roverks (',Roverks,' ):'
read(5,'(a)") rec
if(rec .ne. ') read(rec,*) Roverks

if( Roverks==1667) Roverks=0.5/0.0003
if( Roverks==8621) Roverks=0.5/0.000058

RoverksUser = Roverks

weighting = 0.5
kwall = 0.05
A0=10.0025
A10=0.012
All1=0.05
A12=0.09
A13=0.39
B00 =0.0713244976729399
B01=0.25
B10=1.37
B11=-14.0
B20=-0.7
B21 = 40.

write(*,*) 'sigmak (',sigmak ,'):'
read(5,'(a)") rec
if(rec .ne. '") read(rec,*) sigmak

write(*,*) 'kwall (',kwall ," ):'
read(5,'(a)") rec
if(rec .ne. ') read(rec,*) kwall

write(*,*) 'weighting (',weighting ,' ):'
read(5,'(a)") rec
if(rec .ne. ') read(rec,*) weighting
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case num =20

write(*,*) 'Enter integer for case (',case_num,'):'
read(5,'(a)") rec

if(rec .ne. ') read(rec,*) case_num

open(unit = 20, File = 'fitness.txt")
write(20,*) ' sigmak kwall fitness fitness_uprofile fitness_4Cf'
close(20)

doi=1,5
sigmak = sigmak (i)

do j=1,4
kwall = kwall (j)
fitness_uprofile = case_fitness(case_num) ! done at ksp = 80000
fitness Moody = case_fitness Moody(case_num) ! ksp varies
fitness = weighting*fitnessMoody+(1.-weighting)*fitness_uprofile

open(unit = 20, File = 'fitness.txt', status = "OLD", access = "append", iostat = ierror)
write(20,'(100ES25.12)") sigmak kwall,fitness,fitness_uprofile,fitness Moody
close(20)

enddo
write(*,*) 'sigmak =", sigmak
enddo

! open(unit=15,file = 'fitness.txt")
! write(15,'(20ES24.14)" ) Roverks,kwall,A0,A1,B0,B1,B2,weighting,fitness
' close(15)

if (RoverksUser<0) then
open(unit=10,file = 'indiv_fitness.txt')
do i=1,8
write(10,*) Roverks_(i),fitness Moody (i),fitness uprofile (i),weighting*fitness Moody (i)+(1.-
weighting)*fitness_uprofile (i)
! enddo
! write(10,¥)
!

! write(10,*)
RoverksUser,sum(fitness_ Moody )/8.,sum(fitness uprofile )/8.,weighting*sum(fitness Moody )/8.+(1.-
weighting)*sum(fitness_uprofile )/8.

! close(10)

I else

! open(unit=10,file = "indiv_fitness.txt')

! write(10,*) Roverks,fitness Moody,fitness_uprofile,fitness
! close(10)

' endif

end program main

PERRLRTEEE I et e ety
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real function case fitness Moody(case num)
use solver
integer :: ngood,total,ierror,i,jj,case_num
real :: results(7),local_Roverks,Roverks (7)
character®(50) :: filename
results(:) = 0.0
total = 0
local_Roverks = Roverks

IRoverks =(/15.,30.6,60.,126.,252.,507.,0.5/0.0003,0.5/0.000058 /)
Roverks = (/15.,30.6,60.,126.,252.,507.,0.5/0.000058 /)

100 FORMAT (1X, 1000ES22.14)

write(filename,*) case_num

filename = 'caseMoody_'//trim(adjustl(filename))//".txt'
! open(unit = 10, File = filename, status="replace", action = "write", iostat = ierror)
! write(10,*) ' Roverks Re bulk 4CF Colebrook !

if(RoverksUser.gt.0.0) then
Roverks = RoverksUser
call run_case( Roverks, ngood,results(1)); total = total + ngood
do i=1,ngood
write(10,100) Roverks,vRebulk(i),vCF(i),func_Colebrook(vRebulk(i))
end do
write(10,*)
fitness Moody (1) = sqrt(results(1)/ngood)
case_fitness Moody = fitness Moody (1)

else
do jj=1,7
Roverks = Roverks_(jj)
call update_variable vRoverks()
call run_case( Roverks, ngood,results(jj)); total = total + ngood
! do i=1,ngood
! write(10,100)
Roverks,vRebulk(i),vCF(i),func_Colebrook(vRebulk(i)),(func_Colebrook(vRebulk(i)) - vCF(i))**2
! end do
! write(10,*)
fitness Moody_(jj) = (results(jj)/ngood)
enddo

case_fitness Moody = sum(fitness Moody )/7.
end if

Icase_fitness Moody = sqrt(sum(results)/real(total))

write(10,*) ' kappa = ',kappa
write(10,*) ' gamma ="',gamma
write(10,*)
do jj=1,8
write(10,*) Roverks_(jj),results(jj)
enddo
write(10,¥)
write(10,*) case_fitness Moody, ' = case fitness'
close(10)
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end function case fitness Moody

RN R AR AR AR AR

subroutine run_case(Roverks val,ngood,error)
use solver
integer :: ngood
real :: Roverks_val,error

Roverks = Roverks val
call update variable vRoverks()

call p_vksp(0,ngood,error)
' write(*,*) 'ngood =',ngood
' write(*,*) 'fitness Moody chart ="',error
end subroutine run_case

PERRTRREEE T et e ey

real function case_fitness(case_num)
use solver
integer :: ngood,ierror,i,jj,case_num
real,dimension(14) :: results,local Roverks
real :: Roverks (8)
character®(50) :: filename
results(:) = 0.0
Roverks =(/15.,30.6,60.,126.,252.,507.,0.5/0.0003,0.5/0.000058 /)
ksp = 80000.

100 FORMAT (1X, 1000ES22.14)
! write(filename,*) case_num
! filename = 'caseUprofile '/trim(adjustl(filename))//".txt'
! open(unit = 10, File = filename, status="replace", action = "write", iostat = ierror)
I write(10,*%) ' R/ks Fitness'

if(RoverksUser.gt.0.0) then
Roverks = RoverksUser
call update variable vRoverks()
call run_case Velocity( Roverks,1,results(1))
! write(10,100) Roverks,results(1)
! write(10,*)
total = 1
fitness_uprofile = results(1)
else
do jj=1,8
Roverks = Roverks_(jj)
call update variable vRoverks()
call run_case Velocity( Roverks,1,results(jj))
! write(10,100) Roverks,results(jj)
! write(10,*)
fitness_uprofile (jj) = results(jj)



enddo
total = 8
end if

case_fitness = sum(results)/real(total)
lwrite(*,*) 'fitness Velocity TOTAL =",case_fitness

write(10,%) ' A0="A0
write(10,%) ' Al ="Al
write(10,%) ' B0 =",B0
write(10,*) ' B1="Bl1
write(10,*) ' B2="B2
write(10,*) ' kwall =" kwall
write(10,*) 'lambdaWall = ',JambdaWall
lwrite(10,*) 'lambdaWallSlope = ',JambdaWallSlope
write(10,*) 'R/ks used =',local Roverks(1:nb_of sets)
write(10,%*)
write(10,*) case_fitness, ' = case fitness (Nikuradse u+ exp data)'
close(10)

end function case_fitness

R R R AR AR NN RN

subroutine run_case_Velocity(Roverks val,case number,error)

use solver
integer, intent(in) :: case_number ! can only be 1 through 6
real :: Roverks val,error

call update variable vRoverks()

call p_getu(case_number,kshat,error)

end subroutine run_case Velocity

RN R R R R R AR AR RN NN

subroutine set_solver_vals()

use solver
real :: RC_Itxt(50)
real :: a,b,c.d,e,f

Roverks = 15.0
kr = 0.5/Roverks
Cnu = 0.006
Clam = Cnu**2
sigmak = 2.0
ksp = 80000.0

kappa = 0.403

gamma = 0.0324

beta = 1.000002
n=3201
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nplot =51

nuhat = 2.*kr/ksp
Rtau = 1./nuhat
kshat = 2.*kr

a=
b=
c=
d=
e=

0.00233
0.659
0.0307
0.00551
0.209

f=0.0421

end subroutine set_solver vals

L e e e e e e rrrrrgennnnn

module solver
IMPLICIT NONE
integer :: n,nb_of sets,nb_pts_per_set,nplot,nstat
integer :: FullyRough,FullySmooth

real ::
real ::
real ::
real ::
real ::
real :
real

A0,A1,B0,B1,B2,A10,A11,A12,A13,B00,B01,B02,B03,B10,B11,B12,B20,B21,B22,A1 exp,Al cst

Rtau,kr,ksp,beta,nuhat,kshat,Rshat,Roverks,qkguess
kappa,RoverksUser,fitness Moody (7),fitness_uprofile (8)
Cnu, sigmak,Clam
kwall,lambdaWallSlope,lJambdaWall,lambdaCenter
Re,Df,um,km

. gamma

CHARACTER*(80):: rec,init,file r
CHARACTER(LEN=100)::fn

real, allocatable, dimension(:)::r_hat,yplus
real, allocatable, dimension(:)::k,kprime
real, allocatable, dimension(:)::qk,qkprime
real, allocatable, dimension(:)::u,uprime
real, allocatable, dimension(:)::nu

real, allocatable, dimension(:)::h,Jambda

real, allocatable, dimension(:)::vCF,vRebulk

contains

subroutine solver_allocate()
!Allocate Memory
ALLOCATE(r_hat(n)); ALLOCATE(yplus(n))
ALLOCATE(k(n)); ALLOCATE(kprime(n));
ALLOCATE(gk(n)); ALLOCATE(gkprime(n));
ALLOCATE(u(n)); ALLOCATE(uprime(n));
ALLOCATE(nu(n));
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ALLOCATE(h(n)); ALLOCATE(lambda(n));
ALLOCATE(vRebulk(nplot)); ALLOCATE(vCf(nplot))
end subroutine solver allocate

subroutine solver_ deallocate()
!Deallocate Memory
DEALLOCATE(r_hat); DEALLOCATE(yplus);
DEALLOCATE(k); DEALLOCATE(kprime);
DEALLOCATE(gk); DEALLOCATE(qkprime);
DEALLOCATE(u); DEALLOCATE(uprime);
DEALLOCATE((nu);
DEALLOCATE(h); DEALLOCATE(lambda);
DEALLOCATE(vRebulk);DEALLOCATE(vCY);
end subroutine solver deallocate

subroutine create _grid()
integer :: j
real :: eta,cbeta,dzeta

if (beta>0) then
dzeta = 1.0/real(n-1)
ICreate Grid
do j=1,n,1
eta = real(n-j)/real(n-1)
cbeta = ((beta+1.0)/(beta-1.0))**(1.0-cta)
if(beta .eq. 0.0) then
r_hat(j) = 1.0 - real(j-1)*dzeta
else
r_hat(j) = 1.0 - (beta+1.0 - (beta-1.0)*cbeta)/(1.0 + cbeta)
end if
end do
r_hat(1)=0.0
else ! uniform grid, same spacing
do j=1,n
r_hat(j) = real(j-1) / real(n-1)
enddo
endif

end subroutine create grid

subroutine update_variable vRoverks()

real :: C 0,C 1,C 2,C 3,C 4,C 5

real :: sigma k, k wall

real i
A lam0,A lam10,A laml11,A lam12,A lam13,B 1am00,B lam01,B lam02,B lam03,B lam10,B laml1,
B lam20,B lam21

kshat = 1./Roverks

kr = kshat/2.

nuhat = 2.*kr/ksp

Rtau = 1./nuhat

Rshat = 1./(gamma*kshat)
sigma_k = sigmak

k_wall = kwall
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Cnu = 1.1430803817E-04*sigma_k**4 - 2.1568032682E-03*sigma_k**3 &
+ 1.5454411906E-02*sigma_k**2 - 5.3147683089E-02*sigma_k + 8.3648609370E-02 !
FINAL NO CHANGE FROM V8.1
!
A _lam0 = - 5.4806699600E-06*sigma_k**4 + 1.0829889892E-04*sigma_k**3 &
- 5.8824903497E-04*sigma_k**2 + 6.4266598213E-05*sigma_k + 7.0559295507E-03 !
FINAL NO CHANGE FROM V8.1
!
A laml10= 6.0548405176E-06*sigma_k**4 - 1.7464041639E-04*sigma_k**3 &
+ 1.7083135016E-03*sigma_ k**2 - 7.8015697237E-03*sigma k + 2.3620283331E-02 !
FINAL NO CHANGE FROM V8.1
!
A laml1 = 1.6430210539E-04*sigma_k**4 - 3.2876048062E-03*sigma_k**3 &
+ 2.3668508652E-02*sigma_k**2 - 7.4817705811E-02*sigma k + 1.3742572373E-01 !
FINAL NO CHANGE FROM V8.1
!
C 4 = - 3.6249854255E-04*k wall**2 - 2.3771783095E-04*k wall + 3.1811391789E-04 !
<LLLLLLLLL
C 3= 6.7456577268E-03*k wall**2 + 3.5031152723E-03*k wall - 7.6039769524E-03 !

L L

C 2 =-43056163634E-02*k wall**2 - 2.0050955122E-02*k wall + 5.7370834148E-02 !
<L

C 1= 1.1098738361E-01*k wall**2 + 5.7323021287E-02*k wall - 1.5770938564E-01 !
<L

C_0="-9.7888362645E-02*k_wall**2 - 7.6772775598E-02*k_wall + 1.6397877418E-01 !
<LK
A laml2 = C 4%sigma k**4 + C 3*sigma k**3 + C 2*sigma k**2 + C I*sigma k + C 0
! FINAL CHANGED FROM V8.1 <<<<<<<<<<
!
A lam13 = 2.1775071643E-04*sigma_k**4 - 4.6125648020E-03*sigma_k**3 &
+ 3.2004745006E-02*sigma k**2 - 7.6059412219E-02*sigma k + 2.6786227707E-01 !
FINAL NO CHANGE FROM V8.1
!
B lam00 = 1.5571555961E-03*sigma_k**4 - 3.7455015562E-02*sigma_k**3 &
+3.0085113473E-01*sigma_k**2 - 9.7875053089E-01*sigma_k + 1.1002011812E+00 Y
2.5 NO CHANGE FROM V&.1
!
B lam01 =-1.7611480539E-03*sigma_k**4 + 3.3472445299E-02*sigma_k**3 &
- 2.1562199190E-01*sigma_k**2 + 4.9483981773E-01*sigma k + 4.4081967221E-01 !
FINAL NO CHANGE FROM V8.1
!
C 4= 4.5958241000E-03*k wall**2 +2.0834333483E-03*k wall - 1.3277370846E-02
C 3=-9.3116503886E-02*k wall**2 -2.8569790820E-02*k wall +2.7587164438E-01
C 2= 6.0395589241E-01*k wall**2 + 1.8761243453E-01*k wall - 2.0079111202E+00
C_1=-1.4946016082E+00*k wall**2 -7.3780887177E-01*k_wall + 6.0340918034E+00
C 0= 1.2142113765E+00*k _wall**2 + 1.2696368571E+00*k wall - 7.2873561012E+00
B lam02 = C 4*sigma k**4 + C 3*sigma k**3 + C 2*sigma k**2 + C l*sigma k + C 0

! FINAL NO CHANGE FROM V8.1
!

B_lam03 = 6.3453858956E-04*sigma_k**4 - 1.7156286122E-02*sigma_k**3 &
+ 1.4904850864E-01*sigma_k**2 - 5.3187100685E-01*sigma_k + 7.9782349433E-01 !
FINAL NO CHANGE FROM V8.1
!
B_lam10 = - 1.0134626360E-03*sigma_k**4 + 1.9147367622E-02*sigma_k**3 &



230

- 1.2222170912E-01*sigma_k**2 + 2.5530412815E-01*sigma_k + 1.4355452292E+00 !
FINAL NO CHANGE FROM V8.1
!
B lamll = - 6.6206887937E-03*sigma_k - 1.3830728894E+01 'V2 NO
CHANGE FROM V8.1
B lamll =Bl11
C 4=-2.0201876364E-03*k wall**2 +4.3279392861E-03*k wall - 1.3949382336E-03
C 3= 2.6570830671E-02*k wall**2 - 6.4136620678E-02*k wall +2.3621757343E-02
C 2=-1.1989031734E-01*k wall**2 + 3.3373664338E-01*k wall - 1.3864710895E-01
C 1= 2.1942375688E-01*k wall**2 -7.0814005373E-01*k wall + 3.0315634574E-01
C 0=-1.4066477454E-01*k wall**2 +4.5837394149E-01*k wall - 8.0853545298E-01
B lam20 = C 4*sigma k**4 + C 3*sigma k**3 + C 2*sigma k**2 + C l*sigma k + C 0
! FINAL NO CHANGE FROM V8.1
!
B lam21 = - 2.6815510578E-03*sigma_k + 4.0037296283E+01 V2 NO
CHANGE FROM V8.1

AO0=A lam0

Al = A lamll + A laml2*kshat + (A _laml0 - A lamll - A laml2¥kshat)*exp(-
(kshat**A_lam13))

B0 = B lam01 + B_lam02*kshat + (B_1am00 - B_lam01 - B_lam02*kshat)*exp(-(kshat**B_lam03))

Bl = B laml0 + B _laml1*kshat

B2 = B lam20 + B_lam21*kshat

end subroutine

A T R A A R ER SRR A R R A Compare velocity ~ with ~ Nikuradse exp data
subroutine p_getu(case_number,ksoverR in,error)

integer :: iprint, niter,icompare,i,]

integer, intent(in) :: case_number

real :: error,junk,pRMS,RMS

real, intent(in) :: ksoverR in

real :: uplus_reference(12),uhat reference(12),r hat discretized(12),u fromEmpLambda(12)

real :: a,b,ul,u2,rl,r2

doi=1,n
lambda(i) = lambdahat(r_hat(i))
enddo

call integrate_ k fromWall()

write(*,*)

write(*,*) ' Re (um) =", Re

write(*,*)'4Cf =',Df

write(*,*) 'Colebrook =, func_Colebrook(Re)
write(*,*)

write(*,*)' B0 ="B0
write(*,*)'  B1="BI
write(*,*)'  B2="B2
write(*,¥)' A0 ="A0



write(*,*) ' Al="Al1

write(*,*) 'lambdaWall ="', lambdaWall
write(*,*) ' kwall =" kwall

write(*,*)

open(unit=10,file="data.txt')
do i=n,1,-1
write(10,*) r_hat(i),1.-r_hat(i),u(i),k(i),lambda(i),nu(i), r_hat(i)/( nuhat+nu(i) )
enddo
close(10)

! Compare u+ (u+ from empirical nut vs. u+ from RK4 with empirical lambda_hat)
r_hat _discretized = (/ 0.0,0.05,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.95 /)

j=1
u_fromEmpLambda(l) =u(1)
call get uplus_uhat(0.0,uplus_reference(1),junk)

do icompare=2,12
do while ((j<=n).and. (r_hat(j)-r_hat discretized(icompare)<=0.) )
=i+l
enddo
J=-1

if (r_hat discretized(icompare)-r_hat(j)> r_hat(j+1)-r_hat_discretized(icompare))

Ir_hat discretized(icompare) closer to r_hat(j+1)

call get uplus_uhat(r_hat(j+1),uplus_reference(icompare),junk)
u_fromEmpLambda(icompare) = u(j+1)
pRMS =

u_fromEmpLambda(icompare))/uplus_reference(icompare))

else
call get uplus_uhat(r_hat(j),uplus_reference(icompare),junk)
u_fromEmpLambda(icompare) = u(j)
pRMS =

u_fromEmpLambda(icompare))/uplus_reference(icompare))

endif

enddo

error = sum( abs(uplus_reference-u_fromEmpLambda)/uplus_reference)/12.

end subroutine p_getu

! uplus/uhat when nut = Eq. 106

subroutine get uplus_uhat(r_hat,u plus,u_hat)

real :: yhat,r_hat
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then

abs((uplus_reference(icompare)-

abs((uplus_reference(icompare)-
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real :: delta,deltap
real :: u_plus,u_hat
real :: D0,D1,D2,D3,D4,D5,C0,C1,C2,C3,C4,C5,C6,C7,Acoeff,Becoeff,ecoeff,nutc

Acoeff=1.2
Bcoeff=0.0
ecoeff=14
nutc = 0.053
C7=-13

DO = (Rshat+1.)**2*(log(Rshat+1.)-3./2.)+2.*Rshat+3./2.
C0 = Acoeff*kshat**ecoeff+Bcoeff

C1 = Rshat**3./((Rshat+1.)*D0)

C2 = Rshat**2 *(Rshat**2/((Rshat+1.)**2)-kappa/nutc)/(2.*D0)
C3 = Rshat**5./(3.*(Rshat+1.)**3*D0)

D1 =-C0-C1-C2-C3-C7

D2 =-C1-2.¥C2-3.*C3-7.*C7

D3 =-C0/2.-C1/3.-C2/4.-C3/5.-C7/9.

C4 =-39.*D1+3.*D2+168.*D3
C5=84.*D1-7.¥*D2-336.*D3

C6 = -44 *D1+4.*D2+168.*D3

yhat = 1.-r_hat

delta = CO + C1*r_hat + C2*r_hat**2 + C3*r_hat**3 + C4*r_hat**4 + C5*r_hat**5 + C6*r_hat**6
+ C7*r_hat**7

deltap = -(Cl + 2.*C2*r hat + 3.*C3*r hat**2 + 4.*C4*r hat**3 + 5*C5%r hat**4 +
6.*C6*r_hat**5 + 7.*C7*r_hat**6)

u_hat = Rshat**2*log(Rshat*yhat+1.)/D0+delta
u_plus = log(Rshat*yhat+1.)/kappa+D0*delta/(kappa*Rshat**2)

end subroutine

! Lambda_hat Empirical Function
!

function lambdahat(r_hat)
real :: r_hat,]lambdahat,yhat

yhat = 1.-r_hat
lambdahat = (AO*kshat+A1*yhat)*(1.-.5*yhat)*(B0+B1*r_hat**2+B2*r hat**4+(1.-B0-B1-
B2)*r_hat**6)

end function

! INTEGRATE from WALL
!

subroutine integrate k fromWall()
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integer :: i,niter,nitermax
real :: t0,y0(5),dt,y(5),qwall(3),qcenter(3)

! integrates from the wall, shoots to the centerline to have Q+ = 0 at the centerline
lkwall = 6120.1*kshat**3-1503.6*kshat**2+144.43*kshat-0.0309

Iwrite(*,*) 'kwall ="', kwall

niter = 1
nitermax = 200
nstat =0
gkguess =2.0

Iwrite(*,*) 'Tterate on Q...

do while ((gkguess>=-1.).and.(nstat==0) )
niter = 1

!'GUESS 1 ON Q

k(n) = kwall

qk(n) = gkguess ! initial guess for q(wall)
qwall(1) = qk(n)

yo(1) =k(n)

y0(2) = gk(n)

write(*,*) 1,k(n),qk(n)

doi=n-1,1,-1
dt =r_hat(i+1)-r_hat(i) ! dtis equivalent of dy, not dr_hat
call RK4 fromWall(2,t0,y0,dt,y)
t0 = tO+dt
yo=y
k(i) = y(1)
qk(i) = y(2)
enddo
qeenter(1) = gk(1)

Iwrite(*,*) niter, qk(1)

' GUESS 2 ON Q

niter = niter + 1
t0 =0.
k(n) = kwall
if (gkguess<0) then
gk(n) = gkguess*.95 ! initial guess for q(wall)
else
qk(n) = gkguess*1.05
endif
gwall(2) = qgk(n)
yo(1) = k(n)
y0(2) = gk(n)



doi=n-1,1,-1
dt =r_hat(i+1)-r_hat(i)
call RK4 fromWall(2,t0,y0,dt,y)
t0 = t0+dt
yo=y
k(i) = y(1)
qk(i) =y(2)
enddo
qcenter(2) = gk(1)
Iwrite(*,*) niter, qk(1)

I ITERATE ON Q (secant method)
!
do while ((abs(qk(1))>1.0e-12).and.(niter<nitermax))

niter = niter + 1

t0 = 0.

k(n) = kwall

gk(n) = qwall(2)-qcenter(2)*( qwall(2)-qwall(1) ) / ( qcenter(2)-qcenter(1) )

qwall(3) = gk(n)
yO(1) =k(n)
y0(2) = gk(n)

doi=n-1,1,-1
dt =r_hat(i+1)-r_hat(i)
call RK4 fromWall(2,t0,y0,dt,y)
t0 = t0+dt
y0=y
k(i) = y(1)
qk(i) = y(2)
enddo
gcenter(3) = qk(1)
Iwrite(*,*) niter, qk(1),qk(n)

qwall(1) = qwall(2)
qwall(2) = qwall(3)
qcenter(1) = qcenter(2)
qcenter(2) = qcenter(3)

enddo

niter = niter + 1

t0 = 0.

k(n) = kwall

qk(n) = qwall(2)-qcenter(2)*( qwall(2)-qwall(1) ) / ( qcenter(2)-qcenter(1) )
qwall(3) = qk(n)

y0=0.

yo(1) =k(n)

y0(2) = gk(n)

u(n) =0.

doi=n-1,1,-1
dt=r_hat(i+1)-r_hat(i)
call RK4 fromWall(5,t0,y0,dt,y)
t0 = t0+dt
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yo=y

k(i) =y(1)

qk(i) = y(2)

u(i) =y@3)
enddo
qcenter(3) = qk(1)
km =y(5)
um = y(4)
Iwrite(*,*) niter, Roverks,qk(1),qwall(3)
nu = lambda*sqrt(k)
h = Cnu*k /nuhat
Df= 8./um**2,
Re = 2.*um/nuhat

if (isnan(Re)) then
gkguess = gkguess-0.1
nstat =0

else
nstat =1

endif

enddo

if ((niter>=nitermax).or.(isnan(Re))) then
nstat =0
else
nstat =1
lwrite(*,*) niter, Roverks,qk(1),qwall(3)
endif

end subroutine

subroutine RK4 fromWall(nn,t0,y0,dt,y)
! solve a system of n first order differential equations
I dy(i)/dt = f(i,t,y)
! calls the function f

integer, intent(in) :: nn ! number of equation to be solved

real, dimension(nn,4) :: k_! table of coefficient (k1, k2, k3 k4); 4 coeffs per equation
real, intent(inout) :: t0, yO(nn),dt

real :: coeff(4),Rtau

real, intent(out) :: y(nn)

integer :: i,

if (t0+dt>1.) dt=1.-t0
coeff=(/1./6.,1./3.,1./3.,1./6./)
do j=I,nn
k (j,1)=f fromWall(j,t0,y0)*dt
y(§)=y0()+k_(,1)/2.
end do
do j=1,nn
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k_(,2)=f fromWall(j,t0+dt/2.,y)*dt
end do
do j=1,nn

y()=y0()+k_(j,2)/2.
end do
do j=I,nn

k_(§,3)=f fromWall(j,t0+dt/2.,y)*dt
end do
do j=1,nn

y(i)=y0()+k_(j.3)
end do
do j=1,nn

k (j,4)=f fromWall(j,t0+dt,y)*dt
end do
do j=1,nn

y()=y0()

doi=1,4

y()=y@)tcoeff(i)*k_(j.i)

end do

end do

end subroutine

function f fromWall(i,zeta,y)
integer, intent(in) :: i
real, intent(in) :: zeta,y(*) !y(1) =k, y(2)=q
real :: f fromWall,r hat
! input zeta = 0 at wall, 1 at centerline
lif (zeta<0.) zeta=0.

r_hat=1. - zeta ! r_hat =0 at centerline, 1 at wall
if (i==1) then ! dk/dr_hat
if (r_hat <= 10**(-16./6.)) then !(r_hat <= 10**(-16./6.)) then ! at the centerline, exception /0
f fromWall = 0.
else
f fromWall = -y(2)/r_hat*3./( nuhat+5.*(lambdahat(r_hat)*sqrt( abs(y(1)) ) )/sigmak) ! corresponds
to dk/dr_hat
Iwrite(*,*) nut(r_hat),y(2)

endif
elseif (i==2) then ! dq/dr hat
f fromWall = (lambdahat(r_hat)*sqrt(abs(y(1))))*r_hat**3./(nuhat+
(lambdahat(r_hat)*sqrt(abs(y(1)))) )¥*2. -

Cnu**2 *nuhat/(lambdahat(r_hat)*sqrt(abs(y(1))))**2.*y(1)**2.*r_hat
Hf ((nut(r_hat)==0.).and.(r_hat==0) ) f fromWall=0.
elseif (i==3) then ! du/dr hat
f fromWall = -r_hat/( nuhat+(lambdahat(r hat)*sqrt(y(1))) )
elseif (i==4) then ! dum/dr hat
f fromWall =-y(3)*r hat*2.
elseif (i==5) then ! dkm/dr hat
f fromWall = -y(1)*r hat*2.
end if
f fromWall = -f fromWall ! gives the variables in terms of d_/dy
1f (f_fromWall=='NaN') pause
end function
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subroutine p_vksp(iprint,ngood,error)
integer :: iprint,ngood,niter
real :: error,power

power = 2.0

ksp = 10**power
Re=0.0

ngood = 1

error = 0.0

Rshat = Roverks/(gamma)

if(iprint.eq.1) write(*,*)'" ngood R/ks ksp Re 4CF &
& 4Cf Reference error " lnum_iter'
do while (((Re<1.0e8).and.(ngood<=nplot)).or.(ngood<5))
nuhat = 2.*kr/ksp
Rtau = 1./nuhat

call integrate_k fromWall()
vRebulk(ngood) = Re
vCF(ngood) = Df

if((Re<1.0e8).or.(ngood<4)) error = error + abs(reference 4Cf(Re,Roverks) -
VCF(ngood))/reference 4Cf(Re,Roverks)
if((Re<1.0e8).or.(ngood<4)) error = error + ((reference 4Cf(Re,Roverks) -

VCF(ngood))/func Colebrook(Re))**2 ! % RMS
if(iprint.eq.1) write(*,*) ngood,Roverks,ksp,Re,Dfreference 4Cf(Re,Roverks),error !,niter
ngood = ngood + 1
power = power + 0.25
ksp = 10.0**power
end do
ngood = ngood - 2
end subroutine p_vksp

real function func_Colebrook(Re)
implicit none
real :: Re,old,new

if(Re<100.0) then
func_Colebrook = 64.0/Re
else
new = (-1.8*log10((kr/3.7)**(1.11) + 6.9/Re))**(-2.0)
old=10.0
do while(abs((new-old)/new) .gt. 1.0e-5)
old = new
new = (-2.0*log10(kr/3.7 + 2.51/(Re*sqrt(old))))**(-2.0)
end do
func_Colebrook = new
end if

return; end function func_Colebrook

real function reference_4Cf(Re,Roverks)
real :: Re,Roverks
integer :: 1,indix
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reference 4Cf = (2.0*logl0(Roverks)+1.74)**(-2.0)
end function

end module solver

program readOUtput

real :: junk,Roverks,sigmak,kwall,coefl,coef2,weighting,fitness
integer:: ierr

open(unit=10,file='output.txt')
open(unit=99,file='sk1kw1//optimization.txt')
read(99,%)
ierr=1
do while (ierr/=-1)
read(99,* iostat=ierr) junk,junk,junk,Roverks,sigmak,kwall,coefl,coef2,weighting, fitness, junk,junk
enddo
write(10,*) Roverks,sigmak, kwall,coefl,coef2,weighting, fitness
close(99)

open(unit=99,file="sk 1kw05//optimization.txt')
read(99,*)
ierr=1
do while (ierr/=-1)
read(99,* iostat=ierr) junk,junk,junk,Roverks,sigmak kwall,coefl,coef2,weighting, fitness, junk,junk
enddo
write(10,*) Roverks,sigmak kwall,coefl,coef2,weighting, fitness
close(99)

open(unit=99,file='sk1kw01//optimization.txt')
read(99,*)
ierr=1
do while (ierr/=-1)
read(99,* iostat=ierr) junk,junk,junk,Roverks,sigmak kwall,coefl,coef2,weighting, fitness, junk,junk
enddo
write(10,*) Roverks,sigmak kwall,coefl,coef2,weighting, fitness
close(99)

open(unit=99 file="sk1kw005//optimization.txt')
read(99,%)
ierr=1
do while (ierr/=-1)
read(99,* iostat=ierr) junk,junk,junk,Roverks,sigmak,kwall,coefl,coef2,weighting,fitness, junk,junk
enddo
write(10,*) Roverks,sigmak kwall,coefl,coef2,weighting, fitness
close(99)

open(unit=99,file='sk2kw1//optimization.txt')
read(99,*)
ierr=1
do while (ierr/=-1)
read(99,* iostat=ierr) junk,junk,junk,Roverks,sigmak kwall,coefl,coef2,weighting,fitness, junk,junk
enddo
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write(10,*) Roverks,sigmak kwall,coefl,coef2,weighting,fitness
close(99)

open(unit=99,file='sk2kw05//optimization.txt')
read(99,*)
ierr=1
do while (ierr/=-1)
read(99,* iostat=ierr) junk,junk,junk,Roverks,sigmak,kwall,coefl,coef2,weighting, fitness, junk,junk
enddo
write(10,*) Roverks,sigmak, kwall,coefl,coef2,weighting, fitness
close(99)

open(unit=99,file='sk2kw01//optimization.txt')
read(99,*)
ierr=1
do while (ierr/=-1)
read(99,* iostat=ierr) junk,junk,junk,Roverks,sigmak,kwall,coefl,coef2,weighting, fitness, junk,junk
enddo
write(10,*) Roverks,sigmak kwall,coefl,coef2,weighting, fitness
close(99)

open(unit=99, file='sk2kw005//optimization.txt')
read(99,*)
ierr=1
do while (ierr/=-1)
read(99,* iostat=ierr) junk,junk,junk,Roverks,sigmak,kwall,coefl,coef2,weighting, fitness, junk,junk
enddo
write(10,*) Roverks,sigmak kwall,coefl,coef2,weighting, fitness
close(99)

open(unit=99file="sk3kw1//optimization.txt')
read(99,*)
ierr=1
do while (ierr/=-1)
read(99,* iostat=ierr) junk,junk,junk,Roverks,sigmak, kwall,coefl,coef2,weighting,fitness, junk,junk
enddo
write(10,*) Roverks,sigmak kwall,coefl,coef2,weighting, fitness
close(99)

open(unit=99 file="sk3kw05//optimization.txt')
read(99,*)
ierr=1
do while (ierr/=-1)
read(99,* iostat=ierr) junk,junk,junk,Roverks,sigmak kwall,coefl,coef2,weighting,fitness, junk,junk
enddo
write(10,*) Roverks,sigmak kwall,coefl,coef2,weighting,fitness
close(99)

open(unit=99,file='sk3kw01//optimization.txt')
read(99,*)
ierr=1
do while (ierr/=-1)
read(99,* iostat=ierr) junk,junk,junk,Roverks,sigmak kwall,coefl,coef2,weighting, fitness, junk,junk
enddo
write(10,*) Roverks,sigmak, kwall,coefl,coef2,weighting, fitness
close(99)
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open(unit=99,file="sk3kw005//optimization.txt')
read(99,*)
ierr=1
do while (ierr/=-1)
read(99,* iostat=ierr) junk,junk,junk,Roverks,sigmak,kwall,coefl,coef2,weighting, fitness, junk,junk
enddo
write(10,*) Roverks,sigmak kwall,coefl,coef2,weighting, fitness
close(99)

open(unit=99, file='sk4kw1//optimization.txt')
read(99,%)
ierr=1
do while (ierr/=-1)
read(99,* iostat=ierr) junk,junk,junk,Roverks,sigmak kwall,coefl,coef2,weighting, fitness, junk,junk
enddo
write(10,*) Roverks,sigmak kwall,coefl,coef2,weighting, fitness
close(99)

open(unit=99, file='sk4kw05//optimization.txt')
read(99,*)
ierr=1
do while (ierr/=-1)
read(99,* iostat=ierr) junk,junk,junk,Roverks,sigmak,kwall,coefl,coef2,weighting,fitness, junk,junk
enddo
write(10,*) Roverks,sigmak kwall,coefl,coef2,weighting, fitness
close(99)

open(unit=99 file="sk4kw01//optimization.txt')
read(99,*)
ierr=1
do while (ierr/=-1)
read(99,* iostat=ierr) junk,junk,junk,Roverks,sigmak kwall,coefl,coef2,weighting,fitness, junk,junk
enddo
write(10,*) Roverks,sigmak kwall,coefl,coef2,weighting,fitness
close(99)

open(unit=99,file='sk4kw005//optimization.txt')
read(99,*)
ierr=1
do while (ierr/=-1)
read(99,* iostat=ierr) junk,junk,junk,Roverks,sigmak kwall,coefl,coef2,weighting, fitness, junk,junk
enddo
write(10,*) Roverks,sigmak, kwall,coefl,coef2,weighting, fitness
close(99)

open(unit=99,file='skSkw1//optimization.txt')
read(99,*)
ierr=1
do while (ierr/=-1)
read(99,* iostat=ierr) junk,junk,junk,Roverks,sigmak,kwall,coefl,coef2,weighting, fitness, junk,junk
enddo
write(10,*) Roverks,sigmak kwall,coefl,coef2,weighting, fitness
close(99)

open(unit=99, file='skSkw05//optimization.txt')
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read(99,*)
ierr=1
do while (ierr/=-1)
read(99,* iostat=ierr) junk,junk,junk,Roverks,sigmak kwall,coefl,coef2,weighting, fitness, junk,junk
enddo
write(10,*) Roverks,sigmak kwall,coefl,coef2,weighting, fitness
close(99)

open(unit=99, file='skSkw01//optimization.txt')
read(99,*)
ierr=1
do while (ierr/=-1)
read(99,* iostat=ierr) junk,junk,junk,Roverks,sigmak, kwall,coefl,coef2,weighting,fitness, junk,junk
enddo
write(10,*) Roverks,sigmak kwall,coefl,coef2,weighting, fitness
close(99)

open(unit=99 file="skSkw005//optimization.txt')
read(99,*)
ierr=1
do while (ierr/=-1)
read(99,* iostat=ierr) junk,junk,junk,Roverks,sigmak kwall,coefl,coef2,weighting,fitness, junk,junk
enddo
write(10,*) Roverks,sigmak kwall,coefl,coef2,weighting, fitness
close(99)

open(unit=99,file='skokw1//optimization.txt')
read(99,*)
ierr=1
do while (ierr/=-1)
read(99,* iostat=ierr) junk,junk,junk,Roverks,sigmak kwall,coefl,coef2,weighting, fitness, junk,junk
enddo
write(10,*) Roverks,sigmak, kwall,coefl,coef2,weighting, fitness
close(99)

open(unit=99,file="sk6kw05//optimization.txt')
read(99,*)
ierr=1
do while (ierr/=-1)
read(99,* iostat=ierr) junk,junk,junk,Roverks,sigmak kwall,coefl,coef2,weighting, fitness, junk,junk
enddo
write(10,*) Roverks,sigmak kwall,coefl,coef2,weighting, fitness
close(99)

open(unit=99,file='sk6kw01//optimization.txt')
read(99,*)
ierr=1
do while (ierr/=-1)
read(99,* iostat=ierr) junk,junk,junk,Roverks,sigmak,kwall,coefl,coef2,weighting, fitness, junk,junk
enddo
write(10,*) Roverks,sigmak kwall,coefl,coef2,weighting, fitness
close(99)

open(unit=99, file='sk6kw005//optimization.txt')
read(99,*)
ierr=1



do while (ierr/=-1)
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read(99,* iostat=ierr) junk,junk,junk,Roverks,sigmak, kwall,coefl,coef2,weighting,fitness, junk,junk

enddo
write(10,*) Roverks,sigmak kwall,coefl,coef2,weighting, fitness
close(99)

close(10)

end program

program createCase
real :: skl ini,sk2 ini,sk3 ini,sk4 ini,sk5 ini,sk6 ini
real :: skl ini0,sk2 ini0,sk3 ini0,sk4 ini0,sk5 ini0,sk6 ini0

skl ini0 = 0.04
sk2 ini0 = 0.04
sk3 ini0 = 0.04
sk4 ini0 = 0.04
sk5 ini0 = 0.04
sk6_ini0 = 0.04

sk1_ini =-0.06
sk2_ini = -0.06
sk3_ini = -0.06
sk4_ini = -0.06
sk5_ini = -0.06
sk6_ini = -0.06

call createFiles(8,'sk1kw005',1.,0.05,sk1 _ini0,sk1_ini)
call createFiles(7,'sk1kw01',1.0,0.1,sk1 _ini0,sk1 _ini)
call createFiles(7,'sk1kw05',1.0,0.5,sk1 _ini0,sk1 _ini)
call createFiles(6,'sk1kw1',1.0,1.0,sk1_ini0,sk1_ini)
write(*,*) 'sk1'

call createFiles(8,'sk2kw005',2.0,0.05,sk2 _ini0,sk2 ini)
call createFiles(7,'sk2kw01',2.0,0.1,sk2 _ini0,sk2 ini)
call createFiles(7,'sk2kw05',2.0,0.5,sk2 ini0,sk2 ini)
call createFiles(6,'sk2kw1',2.0,1.0,sk2 _ini0,sk2_ini)
write(*,*) 'sk2'

call createFiles(8,'sk3kw005',3.0,0.05,sk3 _ini0,sk3_ini)
call createFiles(7,'sk3kw01',3.0,0.1,sk3 ini0,sk3 ini)
call createFiles(7,'sk3kw05',3.0,0.5,sk3 ini0,sk3 ini)
call createFiles(6,'sk3kw1',3.0,1.0,sk3 ini0,sk3 ini)
write(*,*) 'sk3'

call createFiles(8,'sk4kw005',4.0,0.05,sk4 ini0,sk4 ini)
call createFiles(7,'sk4kw01',4.0,0.1,sk4 ini0,sk4 ini)
call createFiles(7,'sk4kw05',4.0,0.5,sk4 ini0,sk4 ini)
call createFiles(6,'sk4kw1',4.0,1.0,sk4 ini0,sk4 ini)
write(*,*) 'sk4'
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call createFiles(8,'skSkw005',5.0,0.05,sk5 ini0,sk5 ini)
call createFiles(7,'sk5kw01',5.0,0.1,sk5 ini0,sk5 ini)
call createFiles(7,'sk5kw05',5.0,0.5,sk5 ini0,sk5 _ini)
call createFiles(6,'skSkw1',5.0,1.0,sk5_ini0,sk5_ini)
write(*,*) 'sk5'

call createFiles(8,'sk6kw005',6.0,0.05,sk6_ini0,sk6 _ini)
call createFiles(7,'sk6kw01',6.0,0.1,sk6 _ini0,sk6 _ini)
call createFiles(7,'sk6kw05',6.0,0.5,sk6_ini0,sk6_ini)
call createFiles(6,'sk6kw1',6.0,1.0,sk6 _ini0,sk6 _ini)
write(*,*) 'sk6'

end program

subroutine createFiles(len,myDir,sk,kw,initialGuess1,initialGuess2)
integer :: len

character(len) :: myDir

real :: initialGuess|,initialGuess2,sk,kw

call system('mkdir ' // trim(myDir) )

call system('cp commonFiles/bfgs.f90 ./' // trim(adjustl(myDir)) )
call system('cp commonFiles/main_bfgs.f90 ./' // trim(myDir) )
call system('cp commonFiles/solver.f90 ./' // trim(myDir) )

call system('cp commonFiles/main_solve.f90 ./' // trim(myDir) )
call system('cp commonFiles/Makefile ./' // trim(myDir) )

open(unit=99,file='job")
write(99,*) '#PBS -q sawtooth'
write(99,*) '#PBS -S /bin/bash'’
write(99,*) #PBS -1 nodes=1:ppn=8'
write(99,*) '#PBS -1 walltime=72:00:00'
write(99,%) '#PBS -N ' // trim(myDir)
write(99,*) '#PBS -j o¢'
write(99,*)
write(99,*) 'WORK DIR=/home/A01208071/TRANSITION/122811/currentRun/' // trim(myDir)
write(99,*)
write(99,*) 'cd SWORK_DIR'
write(99,*) 'make’'
write(99,*) './bfgs.out '
write(99,*) 'm *.0*'

close(99)

call system('cp job ./ // trim(myDir) )

call system('rm job")

open(unit=99,file="bfgs_start.txt')

write(99,%) ' 6 num vars'

write(99,%) ' R/ks sigmak kwall B00 B20
weighting '

write(99,*) '-1.0000000000000E+00 ',sk,kw,initialGuess],initial Guess2 ,'5.0000000000000E-01"'

write(99,%) ' 0 0 0 1 1 0

write(99,*) '1.00000000000000000E-008  default line search alpha'
write(99,*) '1.00000000000000000E-005  delta step size used for gradient calculations'
write(99,%) ' 1 differencing scheme (1=central diff, O=forward diff)'



write(99,%) '1.00000000000000000E-012  stop delta’
write(99,%) ' 8  number of simultaneous cases in the line search'

close(99)
call system('cp bfgs_start.txt ./' / trim(myDir) )
call system('rm bfgs_start.txt')

end subroutine

IV. Matlab Code

function moody()
clc;clear all;format compact;close all

set(0,' DefaultTextFontsize',8, ...
'DefaultTextFontname', Times New Roman', ...
'DefaultTextFontWeight','normal’, ...
'DefaultAxesFontsize',10, ...
'DefaultAxesFontname','Times New Roman',...
'DefaultLineLineWidth',0.4)

%
% COLEBROOK EQUATION
%

xmax = 9;

xstart = log10(3500);
Ncolebrook = 101;
backgroundColor =[1 1 1]*.2;
symbolWidth = 0.05;

dlog=(xmax-xstart)/real(Ncolebrook);
for i=1:Ncolebrook;
ReSmooth(i)=10"(xstart+i*dlog);
DfSmooth(i)=get Df Colebrook(0.0,ReSmooth(i));
end

figure;
set(gcf, 'Units','inches',Position’, [2 2 6.5 4])
set(gca,'fontsize',10,'position’,[0.1 0.12 .88 .85])

smooth = loglog(ReSmooth,DfSmooth,'color',backgroundColor);

set(get(get(smooth,' Annotation'),'LegendInformation'),'IconDisplayStyle','off");

ylabel('Darcy Friction Factor");
xiner = [10"3 1074 105 1076 1077 1078 1079];
yincr =[0.01 0.02 0.04 0.06 0.08 0.17;
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xlim([610 2.*10"xmax]);
ylim([0.008 0.1]);

axl=gca;

set(gca,'ytick',yincr);
set(gca,'xtick',xincr);
xlabel('Bulk Reynolds Number');

hold on

Y%kr =[0.05*2 1/15 1/30.6 1/60 1/126 1/252 1/507 0.0003*2 0.000058*2]/2.;
kr =[1/151/30.6 1/60 1/126 1/252 1/507 0.0003*2 0.000058*2]/2.;

for j=I:length(kr );
for i=1:Ncolebrook;
Re(i) = 10”(xstart+real(i)*dlog);
Df(i) = get Df Colebrook(kr (j),Re(i));
end
Re(end)=2.*10"9;
Df(end) = get Df Colebrook(kr (j),Re(end));
rough = loglog(Re,Df,'color',backgroundColor);
set(get(get(rough,' Annotation'),'LegendInformation'), IconDisplayStyle','off');
end

%
% EXPERIMENTAL DATA
%

nikuradsel5 = load('nikuradsel5.txt');
nikuradse30p6 = load('nikuradse30p6.txt');
nikuradse60 = load('nikuradse60.txt");
nikuradse126 = load('nikuradse126.txt');
nikuradse252 = load('nikuradse252.txt'");
nikuradse507 = load('nikuradse507.txt'");
shockling8621 = load('shockling8621.txt');

loglog(nikuradse15(:,1),nikuradse15(:,2),'0",'Markersize',3,"MarkerEdgeColor',backgroundColor, LineWidth
', symbolWidth);
loglog(nikuradse30p6(:,1),nikuradse30p6(:,2),"™,'Markersize',3,'MarkerEdgeColor',backgroundColor,'Line
Width',symbolWidth);

loglog(nikuradse60(:,1),nikuradse60(:,2),'s', Markersize',3,'MarkerEdgeColor',backgroundColor, LineWidth
', symbolWidth);

loglog(nikuradse126(:,1),nikuradse126(:,2),'v', Markersize',3,"MarkerEdgeColor',backgroundColor, LineWi
dth',symbolWidth);
loglog(nikuradse252(:,1),nikuradse252(:,2),'d',Markersize',3,'MarkerEdgeColor',backgroundColor, Line Wi
dth',symbolWidth);

loglog(nikuradse507(:,1),nikuradse507(:,2),'p', Markersize',3,'MarkerEdgeColor',backgroundColor, LineWi
dth',symbolWidth);
loglog(shockling8621(:,1),shockling8621(:,2),'d",'Markersize',3,'MarkerEdgeColor',backgroundColor, Mark
erFaceColor',backgroundColor,' LineWidth',symbolWidth);

%
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% ADD OTHER DATA
%
moody = load("'moody.txt');

loglog(moody(:,2),moody(:,3),'0', Markersize',3,'MarkerEdgeColor','k', MarkerFaceColor','k');
%loglog(moody(:,2),moody(:,3),'0",'Markersize',6,'MarkerEdgeColor','k");

%loglog(moody dataOLD(:,2),moody dataOLD(:,3),'0','Markersize',2,'MarkerEdgeColor','’k','MarkerFace
Color','k");

%
% ADD LEGEND
%

legend handle = legend(\itR/k_s\rm = 15'\itR/k_s\rm = 30.6"\itR/k_s\rm = 60, ...
\itR/k_s\rm = 126" \itR/k_s\rm = 252' \itR/k_s\rm = 507/, ...
\itR/k_s\rm = 8621','Phillips model','Location’,'southwest");

legend('boxoff")

set(legend handle, 'fontsize', 7)

%
% SAVE PLOT
%

set(gcf,'paperpositionmode','auto")
saveas(gcf,'moody.eps','epsc’)

%
% FUNCTIONS
%

function [Df] = get Df Colebrook(kr,Re);

Df=(-1.8*1og10((kr/3.7)"1.11 + 6.9/Re))(-2);
R=Df-(-2.0*log10((kt/3.7) + 2.51/(Re*sqrt(Df)))) (-2);

while(abs(R)>1e-8)
Df=(-2.0¥log10((kt/3.7) + 2.51/(Re*sqrt(Df))))(-2);
R=Df-(-2.0%¥log10((kt/3.7) + 2.51/(Re*sqrt(Df)))) (-2);

end
end

end

clc;clear all;close all

datal5 fromEmpLambda = load('datal5 fromEmpLambda.txt");
data30p6_fromEmpLambda = load('data30p6_fromEmpLambda.txt');
data60_fromEmpLambda = load('data60 fromEmpLambda.txt");
datal26 fromEmpLambda = load('datal26 fromEmpLambda.txt');
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data252 fromEmpLambda = load('data252 fromEmpLambda.txt');
data507 fromEmpLambda = load('data507 fromEmpLambda.txt');
datal667 fromEmpLambda = load('datal667 fromEmpLambda.txt');
data8621 fromEmpLambda = load('data8621 fromEmpLambda.txt');

backgroundColor=[1 1 1]*0;
yhat = datal5 fromEmpLambda(1:2:end,2);

fl = figure;

set(gcf, 'Units','inches',Position’, [2 2 6.5 4])
set(gca,'fontsize',10,'position’,[0.1 0.12 .88 .85])
kappa=0.403;

gamma=0.0324;

Roverks =[15 30.6 60 126 252 507 0.5/0.0003 0.5/0.000058];

nsymboll5 = 161;
nsymbol30 = 158;
nsymbol60 = 155;
nsymbol126 = 152;
nsymbol252 = 149;
nsymbol507 = 145;
nsymbol1667 = 141;
nsymbol8621 = 135;

semilogx(datal5 fromEmpLambda(nsymboll5,2),datal5 fromEmpLambda(nsymboll5,3),'-
ok','MarkerFaceColor','’k");hold on

emp = semilogx(datal5 fromEmpLambda(1:2:end,2),datal5 fromEmpLambda(1:2:end,3),-k");
set(get(get(emp,'Annotation'),'LegendInformation'), TconDisplayStyle','off");

lawWall =
semilogx(yhat,1/kappa*log(yhat*Roverks(1))+1/kappa*log(1/gamma),"','color',backgroundColor, linewidt
h',1);

set(get(get(lawWall,' Annotation"),'LegendInformation'), TconDisplayStyle','off");

semilogx(data30p6_fromEmpLambda(nsymbol30,2),data30p6_fromEmpLambda(nsymbol30,3),"-ok");

emp = semilogx(data30p6 fromEmpLambda(1:2:end,2),data30p6_fromEmpLambda(1:2:end,3),"-k');
set(get(get(emp,' Annotation'),'LegendInformation'),'IconDisplayStyle','off");

lawWall =
semilogx(yhat,1/kappa*log(yhat*Roverks(2))+1/kappa*log(1/gamma),"','color’,backgroundColor, linewidt
h',1);

set(get(get(lawWall,' Annotation"),'LegendInformation'), TconDisplayStyle','off");

semilogx(data60_fromEmpLambda(nsymbol60,2),data60 fromEmpLambda(nsymbol60,3),'-
dk','MarkerFaceColor','’k");

emp = semilogx(data60 fromEmpLambda(1:2:end,2),data60 fromEmpLambda(1:2:end,3),-k");
set(get(get(emp,' Annotation'),'LegendInformation'),'IconDisplayStyle','off");

lawWall =
semilogx(yhat, 1/kappa*log(yhat*Roverks(3))+1/kappa*log(1/gamma),"','color',backgroundColor, linewidt
h',1);

set(get(get(lawWall,' Annotation'),'LegendInformation'), TconDisplayStyle','off");

semilogx(datal26 fromEmpLambda(nsymbol126,2),datal26 fromEmpLambda(nsymbol126,3),'-dk");
emp = semilogx(datal26 fromEmpLambda(1:2:end,2),datal26 fromEmpLambda(1:2:end,3),-k");
set(get(get(emp,'Annotation"),'LegendInformation'), TconDisplayStyle','off");
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lawWall =
semilogx(yhat, 1/kappa*log(yhat*Roverks(4))+1/kappa*log(1/gamma),":','color',backgroundColor, linewidt
h',1);

set(get(get(lawWall,' Annotation’),'LegendInformation'), TconDisplayStyle','off");

semilogx(data252 fromEmpLambda(nsymbol252,2),data252 fromEmpLambda(nsymbol252,3),'-
sk','MarkerFaceColor','k");

emp = semilogx(data252 fromEmpLambda(1:2:end,2),data252 fromEmpLambda(1:2:end,3),-k");
set(get(get(emp,'Annotation"),'LegendInformation'), TconDisplayStyle','off");

lawWall =
semilogx(yhat,1/kappa*log(yhat*Roverks(5))+1/kappa*log(1/gamma),"','color',backgroundColor, linewidt
h',1);

set(get(get(lawWall,' Annotation'),'LegendInformation'), TconDisplayStyle','off");

semilogx(data507 fromEmpLambda(nsymbol507,2),data507 fromEmpLambda(nsymbol507,3),'-sk");

emp = semilogx(data507 fromEmpLambda(1:2:end,2),data507 fromEmpLambda(1:2:end,3),-k");
set(get(get(emp,' Annotation'),'LegendInformation’), TconDisplayStyle','off");

lawWall =
semilogx(yhat, 1/kappa*log(yhat*Roverks(6))+1/kappa*log(1/gamma),":','color',backgroundColor,'linewidt
h',1);

set(get(get(lawWall,' Annotation'),'LegendInformation'), TconDisplayStyle','off");

semilogx(datal 667 fromEmpLambda(nsymboll1667,2),datal667 fromEmpLambda(nsymbol1667,3),'-
>k','markersize',8,'MarkerFaceColor','k');

emp = semilogx(datal667 fromEmpLambda(1:2:end,2),datal667 fromEmpLambda(1:2:end,3),"-k");
set(get(get(emp,'Annotation'),'LegendInformation'), TconDisplayStyle','off");

lawWall =
semilogx(yhat, 1/kappa*log(yhat*Roverks(7))+1/kappa*log(1/gamma),":','color',backgroundColor,'linewidt
h',1);

set(get(get(lawWall,' Annotation'),'LegendInformation'),'IconDisplayStyle','off");

semilogx(data8621 fromEmpLambda(nsymbol8621,2),data8621 fromEmpLambda(nsymbol8621,3),'-
>k','markersize',8);

emp = semilogx(data8621 fromEmpLambda(1:2:end,2),data8621 fromEmpLambda(1:2:end,3),"-k');
set(get(get(emp,' Annotation'),'LegendInformation'),'IconDisplayStyle','off");

lawWall =
semilogx(yhat,1/kappa*log(yhat*Roverks(8))+1/kappa*log(1/gamma),"','color’,backgroundColor, linewidt
h',1);

set(get(get(lawWall,' Annotation"),'LegendInformation'), TconDisplayStyle','off");

Y%annotation(fl,'textarrow',[0.3 0.4] ,[0.5,0.4],'String','All k_r values','FontSize',10,' TextEdgeColor','none");

Y%xlim([10"xstart 10"xend])
xlabel("\ity / R")

ylabel(\itV_z/u \tau')
text(107-5.57,14.6,' ''rotation',90)
ylim([0 32])

xlim([107-5.1 1])

legend handle = legend(\itR/k_s\rm = 15" \itR/k_s\rm = 30.6"\itR/k_s\rm = 60'\itR/k_s\rm = 126'...
SNItR/K s\rm = 252" N\itR/k s\rm = 507",\itR/k_s\rm = 1667"...
NitR/k s\rm = 8621','location’, northwest')

legend('boxoff")

set(legend handle, 'fontsize', 7)



%
% SAVE semilogx
%

set(gcf,'paperpositionmode’,'auto")
saveas(gcf,'alluplus.eps','epsc')

clc;close all;clear all

datal5 fromEmpLambda = load('datal5 fromEmpLambda.txt');
data30p6_fromEmpLambda = load('data30p6 fromEmpLambda.txt');
data60 fromEmpLambda = load('data60 fromEmpLambda.txt');
datal26 fromEmpLambda = load('datal26 fromEmpLambda.txt');
data252 fromEmpLambda = load('data252 fromEmpLambda.txt');
data507_fromEmpLambda = load('data507 fromEmpLambda.txt');
datal667 fromEmpLambda = load('datal667 fromEmpLambda.txt');
data8621 fromEmpLambda = load('data8621 fromEmpLambda.txt");

backgroundColor=[1 1 1]*0;

f1 = figure;
set(gcf, 'Units','inches','Position’, [2 2 6.5 4])
set(gca,'fontsize',10,'position’,[0.1 0.12 .88 .85])

Roverks =[15 30.6 60 126 252 507 0.5/0.0003 0.5/0.000058];

xstart=-2;
xend=3;

dx=xend-xstart;
npts=100;
kappa=0.403;
gamma=0.0324;
for i=1:npts
yoverks(i)=10"(xstart+(i-1)/(npts-1)*dx);
uplus_emp(i) = 1/kappa*log(yoverks(i))+1/kappa*log(1/gamma);
uplus ml nrWI1l_fllrgh(i)=1/kappa*log(yoverks(i)/gamma-+1);
end

semilogx(yoverks,uplus_emp ,"','color',backgroundColor,'linewidth',1);
hold on
semilogx(yoverks,uplus ml_ nrWll_fllrgh ,'-','color’,backgroundColor);

semilogx(datal5_fromEmpLambda(:,2)*Roverks(1),datal5 fromEmpLambda(:,3),-k');
semilogx(data30p6_fromEmpLambda(:,2)*Roverks(2),data30p6_fromEmpLambda(:,3),"-k');
semilogx(data60 fromEmpLambda(:,2)*Roverks(3),data60 fromEmpLambda(:,3),-k');
semilogx(datal26 fromEmpLambda(:,2)*Roverks(4),datal26 fromEmpLambda(:,3),-k');
semilogx(data252 fromEmpLambda(:,2)*Roverks(5),data252 fromEmpLambda(:,3),-k');
semilogx(data507 fromEmpLambda(:,2)*Roverks(6),data507 fromEmpLambda(:,3),-k');
%semilogx(datal667 fromEmpLambda(:,2)*Roverks(7),datal667 fromEmpLambda(:,3),-k');
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%semilogx(data8621 fromEmpLambda(:,2)*Roverks(8),data8621 fromEmpLambda(:,3),"-k");

x = [yoverks(npts/2) 1000];

y = [uplus_emp(npts/2) 20];

%annotation(fl,textarrow',ds2nfu(x, y),ds2nfu(x, y),'String','All kr
values','FontSize',10,' TextEdgeColor','none");

%annotation(fl,'textarrow',ds2nfu(x, y),' TextEdgeColor','none’,...

% 'String',{'here'});

% xPlot=yoverks(npts/2);

% yPlot=uplus_emp(npts/2);

%

% axPos = get(gca,'Position’);

% xMinMax = xlim;

% yMinMax = ylim;

% xAnnotation(1) = axPos(1) + ((xPlot - xMinMax(1))/((xMinMax(2)-xMinMax(1))-xMinMax(1))) *
axPos(3)

% yAnnotation(1) = axPos(2) + ((yPlot - yMinMax(1))/((yMinMax(2)-yMinMax(1))-yMinMax(1))) *
axPos(4)

%

% xAnnotation(2) = xAnnotation(1)+0.1;

% yAnnotation(2) = yAnnotation(1)+0;

%annotation(fl,'textarrow',[ xAnnotation(1) yAnnotation(1)],[xAnnotation(2) yAnnotation(2)],'String','All
k rvalues','FontSize', 10, TextEdgeColor','none");

annotation(fl,'textarrow',[0.3  0.36] ,[0.5,0.32],'String',char({\itk r\rm values''in the range','[0.0020-
0.034]'}),'FontSize', 10, TextEdgeColor','none');

xlim([10"xstart 10”xend])

ylim([0 257)

xlabel(\ity / k_s")
ylabel(\itV_z/u_\tau')
text(10-2.45,11.3," ''rotation',90)

legend(sprintf('Log Law"),'location’,'southeast')
legend('boxoft")

%
% SAVE PLOT
%

set(gcf,'paperpositionmode','auto")
saveas(gcf,'allkr.eps','epsc')
clc;close all;clear all

Nikuradse = load('Nikuradse.txt");
Phillips = importdata('vRoverks.txt');
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Reichardt = load('Reichardt.txt");
yoverR =[0:0.01:1]";

kappa = 0.404;

gamma = 0.0341;

figure
set(gcf, 'Units','inches','Position’, [2 2 6.5 4])
set(gca,'fontsize',10,'position’,[0.1 0.12 .88 .85])

plot(Nikuradse(1:90,1),Nikuradse(1:90,2),'dk','MarkerSize',4);
hold on;

xlabel("\ity / R")

ylabel(\it\nu_t / (u_\tau R)")

plot(Reichardt(:,1),Reichardt(:,2),>k','MarkerSize',4);

A0=0.345;

Al1=0;

a=0;

ksoverR = 1/30.6;

yoverRP69 =[0:0.01:0.177';

nearWall = kappa*(gamma*ksoverR+(1-gamma/2*ksoverR)*yoverRP69);
plot(yoverRP69,nearWall,'k-.");
plot(Phillips.data(1:201,2),Phillips.data(1:201,7),'k-");
plot(Phillips.data(202:402,2),Phillips.data(202:402,7),'k-");

legend handle = legend('Nikuradse','Reichardt',...
'Near-wall fully rough limit',"Phillips','Location’,'Best")

legend("boxoff")

set(legend handle, 'fontsize', 10)

%
% SAVE PLOT
%

set(gcf,'paperpositionmode','auto")
saveas(gcf,'compareNut.eps','epsc')

return

clc;close all;clear all

data = importdata('vksp.txt');
symbolWidth = 0.05;
n=201;

%r" y* ut k+ w+ lambda” nu+

%
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% OMEGA
%
figure

set(gcf, 'Units','inches',Position’, [2 2 6.5 4])

set(gca,'fontsize',10,'position',[0.1 0.12 .88 .8])

xColumn = 2;

yColumn = 5;

nbegin = 1;

nend = n;

semilogx(data.data(nbegin:nend,xColumn),data.data(nbegin:nend,yColumn),'-
k','MarkerSize',2,'markerfacecolor','k','LineWidth',symbol Width);

hold on;
semilogx(data.data(nbegin+n:nend+n,xColumn),data.data(nbegintn:nend+n,yColumn),":k','MarkerSize',5,'
LineWidth',2);
semilogx(data.data(nbegin+2*n:nend+2*n,xColumn),data.data(nbegin+2*n:nend+2*n,yColumn), k-
.!'MarkerSize',7);

xlabel(\ity/R")

ylabel(\it\omegaR/u_\tau')

legend handle = legend(N\itk s+ = \rm80,000'"\itk _s"+ =\rm 1000' itk s+
\rm100','location’,'southeast");

% legend handle = legend('’k"+ {wall} = 1.0,'k"+ {wall} = 0.5'k"+ {wall} = 0.1'k"+ {wall}
0.05",'"location','northeast')

% NitR/k s\rm = 126' \itR/k s\rm = 126" \itR/k_s\rm = 507',...

%  char({'Near-wall fully','rough limit'}),char({'Fully rough','empirical fit'}),...

%  '"Location','SouthEast')

legend('boxoft")

set(legend handle, 'fontsize', 10)

set(gcf,'paperpositionmode’','auto’)
saveas(gcf,'omega_ vksplog.eps','epsc')

%
%k
%
figure

set(gcf, 'Units','inches','Position’, [2 2 6.5 4])

set(gca,'fontsize',10,'position',[0.1 0.12 .88 .8])

xColumn = 2;

yColumn = 4;

nbegin = 1;

nend = n;

plot(data.data(nbegin:nend,xColumn),data.data(nbegin:nend,yColumn),'-
k','MarkerSize',2,'markerfacecolor','’k','LineWidth',symbolWidth);

hold on;
plot(data.data(nbegin+n:nend+n,xColumn),data.data(nbegin+n:nend+n,yColumn),":k','MarkerSize',5, Line
Width',2);

plot(data.data(nbegin+2*n:nend+2*n,xColumn),data.data(nbegin+2*n:nend+2*n,yColumn), k-

. 'MarkerSize',7);

xlabel(\ity/R")

ylabel(\itk/u_\tau”2")




legend handle = legend(N\itk s+ = \rm80,000"\itk_s"+ =\rm
\rm100','location’,'southeast");

% legend handle = legend('’k"+ {wall} = 1.0'k"+ {wall} = 0.5.'k"+ {wall}
0.05','"location','northeast')

% NitR/k_s\rm = 126' \itR/k s\rm = 126" \itR/k_s\rm = 507',...

%  char({'Near-wall fully','rough limit'}),char({'Fully rough','empirical fit'}),...

%  '"Location','SouthEast')

legend('boxoff")

set(legend handle, 'fontsize', 10)

set(gcf,'paperpositionmode’','auto’)
saveas(gef,'’k_vksp.eps','epsc')

%
% OMEGA
%
figure

set(gcf, 'Units','inches',"Position’, [2 2 6.5 4])
set(gca,'fontsize',10,'position',[0.1 0.12 .88 .8])

xColumn = 2;

yColumn = 5;

nbegin = 1;

nend = n;
plot(data.data(nbegin:nend,xColumn),data.data(nbegin:nend,yColumn), -
k','MarkerSize',2,'markerfacecolor','’k','LineWidth',symbolWidth);

hold on;

plot(data.data(nbegin+n:nend+n,xColumn),data.data(nbegin+n:nend+n,yColumn),'ok','MarkerSize',2,'Line

Width',symbolWidth,'markerfacecolor','k');
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1000' itk _s"+

= 0.10k M {wall}

plot(data.data(nbegin+2*n:nend+2*n,xColumn),data.data(nbegin+2*n:nend+2*n,yColumn),'’ko','MarkerSiz

e, 7);

xlabel("\ity/R")

ylabel(\it\omegaR/u_\tau')

ylim([0 1000])

legend handle = legend("\itk_s"+ = \rm80,000"\itk s+ =\rm
\rm100','location','northeast');

% legend handle = legend('’k"+ {wall} = 1.0k {wall} = 0.5kt {wall}
0.05","location','northeast')

% NitR/k_s\rm = 126' \itR/k_s\rm = 126" \itR/k_s\rm = 507',...

%  char({'Near-wall fully','rough limit'}),char({'Fully rough','empirical fit'}),...
%  '"Location','SouthEast')

legend('boxoff")

set(legend handle, 'fontsize', 10)

set(gcf,'paperpositionmode','auto")
saveas(gcf,'omega_vksp.eps','epsc')

%
% lambda
%
figure

1000' itk s"+

= 0.1k _{wall}
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set(gcf, 'Units','inches','Position’, [2 2 6.5 4])

set(gca,'fontsize',10,'position',[0.1 0.12 .88 .8])

xColumn = 2;

yColumn = 6;

nbegin = 1;

nend = n;

plot(data.data(nbegin:nend,xColumn),data.data(nbegin:nend,yColumn),'-
k','MarkerSize',2,'markerfacecolor','’k','LineWidth',symbolWidth);

hold on;
plot(data.data(nbegin+n:nend+n,xColumn),data.data(nbegin+n:nend+n,yColumn),'ok','MarkerSize',2,'Line
Width',symbolWidth,'markerfacecolor','k");
plot(data.data(nbegint+2*n:nend+2*n,xColumn),data.data(nbegin+2*n:nend+2*n,yColumn),'ko','MarkerSiz
e.7);

xlabel("\ity/R")

ylabel("\it\lambda/R")

legend handle = legend("\itk_s"+ = \rm80,000"\itk s+ =\rm 1000' itk s"+
\rm100','location’,'southeast");

% legend handle = legend('’k"+ {wall} = 1.0kt {wall} = 0.5kt {wall} = 0.1k"+ {wall}
0.05","location','northeast')

% NitR/k_s\rm = 126' \itR/k s\rm = 126" \itR/k_s\rm = 507',...

%  char({'Near-wall fully','rough limit'} ),char({'Fully rough','empirical fit'}),...

%  '"Location','SouthEast')

legend('boxoff")

set(legend handle, 'fontsize', 10)

set(gcf,'paperpositionmode','auto")
saveas(gcf,'lambda_vksp.eps','epsc')

%
% nu
%
figure

set(gcf, 'Units','inches',"Position’, [2 2 6.5 4])

set(gca,'fontsize',10,'position',[0.1 0.12 .88 .8])

xColumn = 2;

yColumn = 7;

nbegin = 1;

nend = n;

plot(data.data(nbegin:nend,xColumn),data.data(nbegin:nend,yColumn), -
k','MarkerSize',2,'markerfacecolor','k','LineWidth',symbolWidth);

hold on;
plot(data.data(nbegin+n:nend+n,xColumn),data.data(nbegin+n:nend+n,yColumn),'k:','MarkerSize',4,'Line
Width',2);

plot(data.data(nbegin+2*n:nend+2*n,xColumn),data.data(nbegin+2*n:nend+2*n,yColumn),'k-
.!'MarkerSize',7);

xlabel("\ity/R")

ylabel(\it\nu/(u_\tau R)")

legend handle = legend(N\itk s+ = \rm80,000"\itk_s"+ =\rm 1000' itk s+
\rm100','location’,'southeast");

% legend handle = legend('’k"+ {wall} = 1.0,'k"+ {wall} = 0.5'k"+ {wall} = 0.1'k"+ {wall}
0.05',"location','northeast')
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%  NitR/k _s\rm = 126'\itR/k_s\rm = 126'\itR/k_s\rm = 507',...

%  char({'Near-wall fully','rough limit'} ),char({'Fully rough','empirical fit'}),...
%  '"Location','SouthEast')

legend('boxoff")

set(legend handle, 'fontsize', 10)

set(gcf,'paperpositionmode','auto")
saveas(gcf,'nut_vksp.eps','epsc')

return

clc;close all;clear all
data = importdata('vkwall.txt');

symbolWidth = 0.05;
n=201;
%r" y* ut k+ w+ lambda” nu+

%
% kwall
%
figure

set(gcf, 'Units',"inches','Position’, [2 2 6.5 4])

set(gca,'fontsize',10,'position',[0.1 0.12 .88 .8])

xColumn = 2;

yColumn = 4;

nbegin = 1;

nend =n;

semilogx(data.data(nbegin:nend,xColumn),data.data(nbegin:nend,yColumn),'-
k','MarkerSize',2,'markerfacecolor','’k','LineWidth',symbolWidth);

hold on;
semilogx(data.data(nbegin+n:nend+n,xColumn),data.data(nbegin+n:nend+n,yColumn), k', MarkerSize',5,'
LineWidth',2);
semilogx(data.data(nbegin+2*n:nend+2*n,xColumn),data.data(nbegin+2*n:nend+2*n,yColumn), k-
.!'MarkerSize',7);

xlabel("\ity/R")

ylabel(\itk/u_\tau”2")

xlim([107-5 17)

legend handle = legend(\itk"+ {\rmwall} \rm= 0.05'\itk+ {\rmwall} \rm= 0.1'N\itk+ {\rmwall} \rm=
1.0'",'location’','southeast');

% legend handle = legend('’k"+ {wall} = 1.0'k"+ {wall} = 0.5'k"+ {wall} = 0.1,'k"+ {wall} =
0.05",'"location','northeast')

% NitR/k_s\rm = 126' \itR/k_s\rm = 126'\itR/k_s\rm = 507',...

%  char({'Near-wall fully','rough limit'}),char({'Fully rough','empirical fit'}),...

%  '"Location','SouthEast')

legend('boxoft")

set(legend handle, 'fontsize', 10)

set(gcf,'paperpositionmode','auto")
saveas(gef,'’k_vkwalllog.eps','epsc’)
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%
%k
%
figure

set(gcf, 'Units','inches',Position’, [2 2 6.5 4])

set(gca,'fontsize',10,'position',[0.1 0.12 .88 .8])

xColumn = 2;

yColumn = 4;

nbegin = 1;

nend = n;

plot(data.data(nbegin:nend,xColumn),data.data(nbegin:nend,yColumn),'-
k','MarkerSize',2,'markerfacecolor','’k','LineWidth',symbolWidth);

hold on;
plot(data.data(nbegin+n:nend+n,xColumn),data.data(nbegin+n:nend+n,yColumn),'ok',' MarkerSize',2,'Line
Width',symbolWidth,'markerfacecolor','k');
plot(data.data(nbegin+2*n:nend+2*n,xColumn),data.data(nbegin+2*n:nend+2*n,yColumn),'’ko','MarkerSiz
e',7);

xlabel("\ity/R")

ylabel(\itk/u_\tau”2")

legend handle = legend(\itk"+ {\rmwall} \rm= 0.05'\itk"+ {\rmwall} \rm= 0.1'N\itk+ {\rmwall} \rm=
1.0'",'location','southeast');

% legend handle = legend('’k"+ {wall} = 1.0'k"+ {wall} = 0.5'k"+ {wall} = 0.1,'k"+ {wall} =
0.05','location','northeast")

% NitR/k s\rm = 126' \itR/k s\rm = 126" \itR/k_s\rm = 507',...

%  char({'Near-wall fully','rough limit'}),char({'Fully rough','empirical fit'}),...

%  'Location','SouthEast")

legend('boxoft")

set(legend handle, 'fontsize', 10)

set(gcf,'paperpositionmode','auto")
saveas(gcf,'k_vkwall.eps','epsc')

%
% OMEGA
%
figure

set(gcf, 'Units','inches',Position’, [2 2 6.5 4])
set(gca,'fontsize',10,'position',[0.1 0.12 .88 .8])
xColumn = 2;

yColumn = 5;

nbegin = 1;

nend = n;

plot(data.data(nbegin:nend,xColumn),data.data(nbegin:nend,yColumn),'-
k','MarkerSize',2,'markerfacecolor','’k','LineWidth',symbol Width);

hold on;
plot(data.data(nbegin+n:nend+n,xColumn),data.data(nbegin+n:nend+n,yColumn),'ok','MarkerSize',2,'Line
Width',symbolWidth,'markerfacecolor','k');
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plot(data.data(nbegint+2*n:nend+2*n,xColumn),data.data(nbegin+2*n:nend+2*n,yColumn),'ko','MarkerSiz
e',7);

xlabel("\ity/R")

ylabel(\it\omegaR/u_ \tau')

ylim([0 10007)

legend handle = legend(\itk"+ {\rmwall} \rm= 0.05"\itk"+ {\rmwall} \rm= 0.1'Nitk+ {\rmwall} \rm=
1.0',"location’,'northeast');

% legend handle = legend('’k"+ {wall} = 1.0k {wall} = 0.5kt {wall} = 0.1'k"+ {wall} =
0.05",'"location','northeast')

% NitR/k_s\rm = 126' \itR/k_s\rm = 126'\itR/k_s\rm = 507',...

%  char({'Near-wall fully','rough limit'}),char({'Fully rough','empirical fit'}),...

%  'Location','SouthEast')

legend('boxoff")

set(legend handle, 'fontsize', 10)

set(gcf,'paperpositionmode','auto")
saveas(gcf,'omega_vkwall.eps','epsc')

%
% lambda
%
figure

set(gcf, 'Units',"inches','Position’, [2 2 6.5 4])

set(gca,'fontsize',10,'position',[0.1 0.12 .88 .8])

xColumn = 2;

yColumn = 6;

nbegin = 1;

nend =n;

plot(data.data(nbegin:nend,xColumn),data.data(nbegin:nend,yColumn), -
k','MarkerSize',2,'markerfacecolor','’k','LineWidth',symbol Width);

hold on;
plot(data.data(nbegin+n:nend+n,xColumn),data.data(nbegin+n:nend+n,yColumn),'ok','MarkerSize',2,'Line
Width',symbolWidth,'markerfacecolor','k");
plot(data.data(nbegin+2*n:nend+2*n,xColumn),data.data(nbegin+2*n:nend+2*n,yColumn),'ko','MarkerSiz
e',7);

xlabel("\ity/R")

ylabel(\it\lambda/R")

legend handle = legend(\itk"+ {\rmwall} \rm= 0.05"\itk"+ {\rmwall} \rm= 0.1'Nitk+ {\rmwall} \rm=
1.0",'location’,'southeast');

% legend handle = legend('’k"+ {wall} = 1.0,k {wall} = 0.5k {wall} = 0.1k {wall} =
0.05",'"location','northeast')

% NitR/k_s\rm = 126' \itR/k_s\rm = 126" \itR/k_s\rm = 507',...

%  char({'Near-wall fully','rough limit'} ),char({'Fully rough','empirical fit'}),...

%  'Location','SouthEast')

legend('boxoff")

set(legend handle, 'fontsize', 10)

set(gcf,'paperpositionmode','auto")
saveas(gcf,'lambda_vkwall.eps','epsc')
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%
% nu
%
figure

set(gcf, 'Units',"inches','Position’, [2 2 6.5 4])

set(gca,'fontsize',10,'position',[0.1 0.12 .88 .8])

xColumn = 2;

yColumn = 7,

nbegin = 1;

nend =n;

plot(data.data(nbegin:nend,xColumn),data.data(nbegin:nend,yColumn),'-
k','MarkerSize',2,'markerfacecolor','k','LineWidth',symbol Width);

hold on;
plot(data.data(nbegin+n:nend+n,xColumn),data.data(nbegin+n:nend+n,yColumn),'ok','MarkerSize',2,'Line
Width',symbolWidth,'markerfacecolor','k");
plot(data.data(nbegin+2*n:nend+2*n,xColumn),data.data(nbegin+2*n:nend+2*n,yColumn),'ko','MarkerSiz
e',7);

xlabel(\ity/R")

ylabel(\it\nu/(u_\tau R)")

legend handle = legend(\itk*+ {\rmwall} \rm= 0.05'\itk"+ {\rmwall} \rm= 0.1'\itk*+ {\rmwall} \rm=
1.0",'location’,'southeast');

% legend handle = legend('k"+ {wall} = 1.0,k {wall} = 0.5k {wall} = 0.1k {wall} =
0.05',"location','northeast')

% NitR/k_s\rm = 126' \itR/k_s\rm = 126" \itR/k_s\rm = 507',...

%  char({'Near-wall fully','rough limit'} ),char({'Fully rough','empirical fit'}),...

%  '"Location','SouthEast')

legend('boxoff")

set(legend handle, 'fontsize', 10)

set(gcf,'paperpositionmode','auto")
saveas(gcf,'nut_vkwall.eps','epsc')

return
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