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A Discussion of an Empirical Bayes 

Multiple Comparison Technique 

by 

Donna Baranowski, Master of Science 

Utah State University, 1979 

Major Professor: 
D e partment : Applied Statistics and Computer Science 

This paper considers the application and comparison of 

Bayesian and nonBayesian multiple comparison techniques applied to 

sets of chemical analysis data. Suggestions are also made as to which 

methods should be used. 
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Chapter I 

Introduction 

Statistics is an evolving science which sometimes lacks uni

formity of language but tries to express truth and to make accurate 

predictions. The use of statistical techniques contributes to a better 

understanding of natural phenomenona by quantifying and bounding 

stocha stie varia ble s. 

Re searchers often choose comparison methods to analyze the 

significane e of multiple treatment means. One that is used infrequently 

is Bayes method. This report is written to better inform the reader of 

the technique and significance of a Bayesian multiple comparison 

method. 

The controversy between Bayesians and non-Bayesians does not 

stem from the principle of Bayes I criterion but from the prior pro

babilities that must be specified. The major points of controversy 

between Bayesian methods and classical statistical methods concern the 

choice of the prior density function and the necessity of additional 

assumptions. Most classical statisticians do not accept the notion of 

random parameters required for a Bayesian framework. When the 

parameters of a distribution are unknown, the Bayes estimators require 
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a prior distribution for these parameters. These parameters are then 

treated as random variables rather than constants. 

In the following pages some examples of Bayesian estimation 

methods are derived and applied. 
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Chapter II 

Decision Theory 

A problem of choosing between two alternatives courses of 

action often arises in many disciplines. If all the facts are known, 

then the problem is lessened. Unfortunately, a decision is often 

required based on somewhat less than full information. 

Statistica! decision problems usually involve the use of data as 

an aid to decision making. The usual approach to treating decision 

problems involving data is to reduce their solution to the solving of a 

no-data problem. The problem of making a decision in the absence of 

data will first be considered followed by a problem with data. 

In arder to facilitate the following discussion, the notation and 

ba sic theory will now be given. The first things needed are the con-

cepts of prior and posterior distributions. 

Considera random experiment having severa! events, say E
1 

• , E ; of which at most one event may occur. Also suppose 
n 

that the judgmental probabilities of each event, P[E
1

], P[E
2

], ••. , 

P[E ] have been obtained. These are referred to as prior probabilities, 
n 

because they represent the chance of the event occuring before the 

results from the empirica! investigation are obtained. The investigation 

itself may have several possible outcomes or results, each of which 
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may be statistically dependent upon the events. A result is denoted as 

Rand the conditional probabilities, P[RjE], are often available. The 

result itself may be used to revise the probability of the events, since 

certain results may be more likely to follow certain events. These 

values are called posterior probabilities, since they revise the prior 

information andare calculated after obtaining the data. 

An as signment of probability to events can be defined as a 

probability distribution. The total probability is distributed or 

assigned to the points and regions of the sample space, according to 

the relative likelihood of occurrence. The prior distribution is the 

function which represents the assignment of prior probabilities to 

points in the space before the data has been collected. 

Bayesian Posterior Distribution 

A basic belief held by Bayesian statisticians is that the state of 

nature can be described by the prior probability distribution. This 

prior distribution is the premise or foundation of Bayesian estimation. 

The posterior distribution represents the statistician 1s (present) inter

pretation about a particular distribution, given or conditional upon the 

observed data. Bayes I theorem modifies past or prior information by 

incorporating present information from a sample. The new information 

better reflects the distribution of the function of the random variable. 

A random sample x
1

, •.• , x n from the density function X 

given or parameterized by À., denoted f(x! À.), will be used to estimate 
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the true value. Under the Bayesian framework, À is a random 

variable with the distribution function TT(À.). The function of x given X., 

f(x\:\.) is then a conditional probability density of X given }... Note that 

the joint density function of X and >..is given by: 

f(x, À) = TT (\) f(x/>..). ( 2. 1) 

The posterior distribution is then defined as the conditional distribution 

of À given x, h(>...!x) = f(x, À) / g(x), where g(x) is defined as the margina! 

density of X. This conditional density function of À given x is defined as 

the posters or probability distribution of À given the sample . 

The Bayes estimator of À corresponding to the prior distribution 

function G(X.) is the random variable cpG(x) defined by the function: 

f X.f(x \) dG(X.) J f(x À) dG(X.) 
(2. 2) 

which is the expe cted value of the posterior distribution of À given 

X= x. 
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Chapter III 

Estimation 

In most cases, the more numerous the observations and the less 

variable the data, the closer the estimate of the parameter will approach 

the truth. Using random samples to estimate the value of a population 

parameter is one of the most common statistical methods. Estimation 

of a parameter requires that the user consider many different estima

tors before a particular procedure is chosen. A major concern in 

adopting a particular method of e stimation is the accuracy and precision 

of the method. The estimator should not be subject to large variation 

and it should be close on a verage to the parameter it is e stimating. 

A numerically determined point estimate of a parameter À can 

be viewed as a decision which can be correct or incorrect, depending 

on whether the estimate is actually equal to À or not. Since the pro

ba bility of an e stimate being e qual to the para meter is zero for con

tinuous variables, a measure of the seriousness of the difference be-

tween the true value À.and the point estirra te, w(x) would be useful. 

The loss function will be used to quantify the severity of the conse

quences of taking a certain action. Assume that for each combination 

of state À. and action ~• there is a loss L(X.,~) giving the negative 

measure of utility due to the consequences of taking action ~ when 
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nature is in state À.. X. is taken as the parameter while ~ is the e sti-

mate or test decision. This loss function, L(À, a), is assumed to be 

known, but sometimes a good decision can be made knowing only cer

tain aspects of the loss function. Common loss functions include I a - ì--.l, 

2 
(a - :\.) , etc. Far further examples of loss functions in decision 

making see the paper by Duncan (1975). 

The loss value, L(;\.,~), is the calculated loss to the researcher 

if action a is taken when À is the true state of nature. The decision 

function ~ could be replaced with the function w(x) which is the Bayes 

decision function or estimator far the given prior distribution. This 

makes the loss function L(À, w(x)). It is reasonable to try to choose 

w(x) such that L(À, w(x)) is minimized. This minimization is rarely 

possible under a Bayesian framework since À is a random variable. 

This leads to the idea of risk which is the expected value of the los s 

function. The expectation is aver values of x far a fixed value of À. 

Since the Bayesian views À as a random variable, the next 

objective is to select that value of À which minimizes the expected loss 

or the risk. The value of À which minimizes this risk is then defined 

as the Bayes estimator of À. An example is presented in the fallowing 

pages to help clarify the foregoing. 

The Bayes Estimator 

The data in Table 1 are a collection of nitrogen values gathered 

from prior analyses which were made daily using a Coleman Nitrogen 
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Analyzer II. The data in Table 1 were collected as part of a Desert 

Biome project during 1976 at Utah State University, unde r the direction 

of James .Mac.Mahon (Principal Investigator). A plot of the frequency 

distribution with the percent nitrogen ranging from 9. 9 to 10. 4 (O. 1 

intervals) is gi ven in Figure 1. 

10.230 
10.060 
10. 134 
10. 187 

9.912 
10. 113 

9.912 
9.975 

10.049 
10. 155 

9.922 

Table 1 
Nitrogen Value s 

10.304 
10. 166 
10.283 
10.365 
10.314 
10. 134 
10. 155 
10.007 
10.102 
10. 261 
1 o. 198 

A subjective decision was made, based on prior experience 

with chemical analyses of this type, to try a normal distribution for 

the X parameter. The parameter À. was taken as being uniformly dis

tributed between the values of 9. O to 10. 6. The chosen or assumed 

interval corresponds with the range of individual observed x values. 

Where 

2-1. [. 2 2] 
f(x 'r...) = (2:xo- ) 2 exp -(x-ì...) / (2rr ) ( 3. 1) 
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Figure l. Frequency distribution of nitrogen values. 
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is substituted in equation (2. 2 ). This leads to the equation: 

~ 1 o. 6 
U(xl X.) d À. 

<j> G (x) = (3. 2) 

;9 1 o. 6 
f(xf X.) d X. 

A computer program was written to evaluate equation (3. 2) 

using the trapezoidal rule for each X. A plot of the estimates of X., vs 

the X I s is shown in Figure 2. The maximum value of \. over the range 

of data is shown in Figure 2 to be approximately 8. 95. The es timates 

À.. vary from approximately 8. 95 to about 8. 45 for X 1s between the 

values of 9. O and 10. 5 respectively. 

Empirica! Bayes Estimation 

Since one of the main complaints of classica! statisticians about 

Bayesian techniques is the need for more assumptions, a partial solu-

tion seems to be the concept of Empirica! Bayes Estimation. The 

empirica! adjective indicates that we will use past or historical data to 

estirrate the prior distribution (or its parameters), and then use this 

estimateci prior distribution in Bayesian methods. 

As an example of Bayes estimation, the following estimator was 

derived in an unpublished paper by Lowe and Boes (1971). In this 

paper, the authors derive an empirical Bayes point estimator of the 

2 
mean, assuming a normal prior distribution for X. of N(µ,7 ). Their 

first example gives the Bayes estimator of X.as: 



12.0 

li.O 

EST 

LAMBDA 

IO.O 

9.0 

8.0 
8.0 

• 20.9 

8.5 9.0 9.5 

X 

Figure 2. Bayes es timates Lambda vs. X . 

IO.O 10.5 

11 

' 16.37 
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T = 
B 

2 - 2 
(n/o- )X+ (1/T ) 

2 2 
(n/o- ) t ( 1 / T ) 

12 

(3. 3) 

2 2 
where o- , T , and µ are assumed known. T B is the mean of the prior 

distribution and is the estimator having the smallest risk with respect 

2 
to a squared-e rror los s function, L(\., T B) = (\.. - T B) . 

The risk function is based on the analysis of the expected value 

of the loss, where risk is the mean-squared-error and Bayes risk is 

the expected mean-squared-error (with respect to the prior di stribution). 

From this the Bayes risk of the Bayes estimator of \.., TB, is given as: 

2 
(J 

n 

2 
n/o-

2 2 
n/o- t 1/T 

(3. 4) 

Because the empirical Bayes estimator is dependent on prior data with 

added assumptions, its Bayes risk is also dependent on the information. 

Therefore, the empirical Bayes estimator approaches optimization as 

the number of independent random samples increases and the empirical 

Bayes risk decreases. 

It can be easily shown that the Bayes risk of T B is smaller than 

- 2 
the Bayes risk of X, which is o- /n. Comparing the two Bayes risk 

formulas we see 

2 2 
(J (J 
--> 

n n 

2 
(n/o- ) 
2 2 

(n / o- ) + ( 1 /T ) 
(3. 5) 
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Clearly there would be a greater risk using the e stima tor X than using 

the empirica! Bayes estimator. 

Consider the following example with the added as sumption that 

2 2 the ratio of the sample and prior variance is known so that u-./7 = o .• 
J J 

Substituting this into T B gives 

( 3. 6) 

where the only unknown parameter is 1.1. This suggests replacing µ by 

some estimate, say µ., based on past data. The following equation can 

then be used as an empirica! Bayes estimator, 

A 
T W = w X + ( 1 -w )µ , (3. 7) 

both µ and w are selected to minimize the expected Ba ye s risk. The 

parameter w is a weight for the present sample ranging between O and 1. 

This make s ( 1-w) the weight far the past data. The mean- squared-

errar of TW is 

2 2 2 >.. 2 
w (u- /n) + (1-w) (:\.-µ) , (3. 8) 

and the Ba ye s risk of T W can be shown to be 

2 2 2 2 ,._2 
w (u- /n) + (1-w) { 7 + (µ-µ) }. ( 3. 9) 

The expected Bayes risk of TW, with respect to w is 
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2 2 2 2 "'2 w (<T /n) + (1-w) {T +E[(µ-µ) ]} (3. 1 O) 

As in the previous example our goal is to show that the empirical 

Bayes estimator approach yields the least risk. This can be accom

plished by selecting~ and w so that the expected Bayes risk of TW is 

minimal. 

A 
To minimize the risk, first choose µ to minimize the mean 

I\ I\ 
square error for µ, E[(µ-µ)], and then choose w. The linear combina-

k 
tion of observations ~ 

1
w.X. =~ is an unbiased estimate ofµ if "DN.= 1. 

J= J J J 

Th e parti c ular combination that is most e fficient is th e one which mini-

mizes 

- 2 -var ("DN.X.) = "DN . var (X.) = var 
J J J J 

(X)"DN.2 
J 

(3. 11) 

2 
or the one that minimizes "DN. , subject to "DN. = 1. It can be shown by 

J J 

using Lagrange multipliers that the set of w . 's which miniru1zes (3. 11) 
J 

is given by: 

2 
- 1 

[ (<T . /n . ) + lJ 
w ~:<: = -1 

J k 2 2 
~ [<T .In.) + T ] 

i= 1 
1 1 

I\ 
By substituting w. ,:, fo r w, 

J 
µ becomes 

Bayes risk of TW is given by 

= 
k 
~ 

i= 1 

n. I (n. + o. ) 
.(3. 12) 

[n. / (n. + ò.)] 
1 1 1 

k 
~ w. X. and the expected 
j=l J J 

" 2 E[(µ*-µ) ] 
k 2 2 - l 

= ~ [n./(n. T + <T. )]. (3. 13) 
j=l J J J 
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The next problem is to select a w to minimize the expected Bayes 

risk of TW. A minimum w represented as w,:, is given as: 

W'~ = 

- 1 2 k 2 2 
T + {Z [n./(n. r +o-)]} 

J = 1 J J 

2 2 k 2 2 -l 
(o- /n) + 7 + {z

1 
[n./(n. 7 + o- .)]} 

j= J J J 

(3. 14) 

Dividing through by ,,.2 gives: 

k -1 

w :::;:: = 
1 + {~ [n./(n . + o_)]} 

J=l J J J 
k 

(o/n) + 1 + {~ 
1

[n . / (n. + èì. )]} 
J= J J J 

(3. 15) 

2 2 
where 6 = o- /,,- from the present sample. Substituting W '~ into the 

Empirica! Bayes estimator given previously yields: 

(3. 16) 

The expected Bayes risk of Tw':'is then (o-
2

/n)w':'. Note that if w':'= 1, 

then T W ,:, is e qual to the risk of the sample mean. If w,: , < 1, then the 

expected Ba!es risk of T W,:, is smaller than that of the sample mean, 

which means that Tw':' is a better estimator than X if better is defined 

to be an estimator with smaller expected Bayes risk. 

Another estimator similar to that developed by Lowe and Boes 

which also incorporates the Empirical Bayesian philosophy, is referred 

to as The James-Stein estimator. It uses observed averages to esti-

mate unobservable quantities. This estimate sometimes contradicts 
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the traditional statistica! theory that no other estimation rule is 

uniformly better than the observed average. Stein's paradox concerns 

the use of observed averages to estimate unobservable quantities. 

The initial step in applying the James-Stein method is to deter-

mine the grand ave rage, denoted by the symbol y. The essential pro-

cess in The James-Stein method is the "shrinking" of all the individua! 

averages toward this grand average. This shrinking factor is designateci 

as c. It is determined by the observed averages and is given by the 

equation 

e = 1 -
2 

(k- 3) o-

k - = 2 
~l(y.-y) 
3= J 

(3. 1 7) 

2 
Here k is the number of individua! averages, o- is the population 

vaL.1.a..!lce and 
k - = 2 
~ 

1 
(y. -y) is the sum of the squared deviations of the 

J= J 
= individua! averages y_ from the grand average y. The estimator is 

J 

found through the following equation: 

= 
-Z = y + e (y . -y). 

J 
(3. 18) 

If the shrinking factor is unity or one, the .23-is reduced to being equiva-

lent to the indi vidual a ve rage. 

The risk function far the James-Stein estimator is 

(3. 19) 
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This risk is less than that for the sample averages no matter what the 

true values of the :\.1s happen to be. The reduction of risk can be sub-

stantial when the number of means is lar ger than fi ve or six, The 

estimator does substantially better than the averages only if the true 

means lie near each other. It does at least marginally better no matter 

what the true means are. 

The James-Stein estimator is similar to that of Bayes's equa-

tion. The James -Stein procedure has one important advantage aver 

Bayes I method. The James-Stein method can be employed without 

knowledge of the prior distribution, and there is no need to assume the 

means being estimated are normally distributed. There is one draw-

back to the Jame s -Stein method: it increases the risk function by an 

arnount proportional to 3 /k, where k is again the nurnber of individual 

a verage s. The additional risk is negligible when k is greater than 15 

or 20 and tolerable for k as small as 9, 

As a second example of e stimating À., also taken from the Lowe 

and Boes report, assume the samples have the same variance and sam-

ple size. The variance is assumed unknown, but all the past samples 

have the same size, n. = n (j = 1, •.. , k), same unknown variance 
J 

2 2 
cr. =cr {j=l, •• . ' k), and À. is the value of a random variable which is dis-
J 

2 2 
tributed normally, N(µ, r ) where both µ and 7 are unknown. The prior 

2 
data has the distribution N(:\.., cr . ) where y .. is a random sample from 

J J Jl 

this data. 
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The form of the empirical Bayes estimator is: 

Te = e y + ( 1- ti) y, (3.20) 

= where y without a sub script is the mean of the present data, y is the 

grand average of the past data, and e is a statistic independent of y, 

but depending on the past data alone. Again e will be chosen, as was 

w, to make the expected Bayes risk of T ~ minimal. The mean squared 

2 2 2 = 
errar of T ~• with e and y fixed, is e (o- /n) + (1-~) (À.-y), and simi-

larly the Ba ye s risk is 

2 2 2 2 _ 2 e (a- /n) + (1-~) [T + (y-µ) ]. (3. 21) 

Assuming independence of .ti and y, the expected Bayes risk is: 

(3. 22) 

As in the previous example, the objective is to select a weight c. 

However, e is now a statistic which depends on the past data yet is 

independent of y, making the Bayes risk minimal. The statistics y, 
- 2 ::: 2 

~~(y .. -y .. ) and ~ y .- y) are mutually independent. As shown in 
Jl J J 

Graybill (1976), (.3. 23) below is a chi-square random variable with 

- 2 2 
k(n-1) degrees of freedom, y~N[µ, (cr /kn) + (T /k)], 

[~~(y .. - y_ ?J;u-2. 
Jl J• 

(3. 23) 

Thc above assun1ptions make the expected Bayes risk 



= 2 2 2 
Further, L (y. - y) / [cr /n + 7 ] can be shown to be a chi-square 

J• 
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random variable with (k-1) degrees of freedom. 2 2 
Since cr and r are 

unknown, the equation: 

1 - ~ = 
2 

(cr / n) 
2 2 

[(cr /n) + T ] [(k+l )/k] 
(3. 25) 

is not acceptable. The next step is to find a statistic Z which approxi

mates the right hand side of the above equatio n. Since the group sum 

of squares, the errar sum of squares from a one-way analysis of 

variance and y are all mutually independent. The ratio 

- 2 [ 2 ] LL(y .. - y_.) / cr k (n-1) 
l 

L (y .. - y/ /({//n) + /J (k-1) 
J 

(3.26) 

can be shown to be F-distributed with k(n-1) and k-1 degrees of freedom, 

- 2/ - =2 andtheexpectationofLL(y .. - y_.) L (y . - y) is proportional to 
Jl J J 

2 2 2 [ 2 - = 2] cr /(cr /n) + 7. The equation: (1 - r.) = b ~L(y .. - y_ ) /L(y. - y) , 
Jl J • J 

can be minimized, giving the expected Bayes risk as a function of b, say 

k(k-5) 
n(k+l) [k(n-1) + 2] (3. 27) 
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The existence of the variane e of z3-require s that k be greater than 

five; otherwise there would be no weight on the prior data in the cal-

culation of T .z=,:, 

Substituting b ,:, for b yields the weighting of z= = .z=':' equal to: 

[ 
- 2 - -2 

= 1-b ':' LL(y .. - y .. ) !L(y. - y) ] , 
Jl J J • 

(3. 28) 

and the empirical Bayes estimator equals to: 

(3. 29) 

The ex p ec t ed Ba ye s risk of T =-·- . . b = ··,- 1s g1ven y 

~ l cr _\ (n-1) k (k-5) 3 2 [ ( 2 \( 2 ~ n - / +n/ j (k-3) (k+l) [k(n-1) + 2] (
3

. O) 

which is derived on the following page. This is less than th c: Bayes 

2 
risk of y, which is cr /n. As k increases, T z;-,:, becomes asymptotically 

optimal. 

To compare the empirical Bayes estimator, we need the 

expected Bayes risk of T . 
z=':' 

When 

[ - 2 = 2] = 1 - b ~' L L ( y. . - y . ) / L( y . - y) 
Jl J• J• 

substituting b ,:, gives 
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[ - 2 - = 2] 1 - k(k-5) 1:1:(y .. - y. ) /--Z(y. - y) 
1 

n(k-1) [k(n-1) + 2] 
(3.31) 

where the expectation of: 

_ 2/ - = 2 
1:1: (y .. - y) I: (y . - y) 

Jl J• 
(3. 32) 

is proportional to 

(3.33) 

Therefore z3-,:, can be simplified by substitution to: 

2 
~,~ = l _ k (k - 5 ) a-

n (k + 1) [k(n-1) + 2] [a-2/n + i] 
(3. 34} 

Rearranging equation (3. 34) yields, 

( 
2 ) ( ) 

a- k(k - 5) 
27''' - 1 

,,,_ - /+n/ (k+l)[k(n - 1)+2] 
(3. 35) 

Taking T = z,:, y + (1 - ~,:,)y as an empirica! Bayes estimator, the z,:, 

expected Bayes risk of T is given by ~,:, 

2 

= 
n 

l ( a-
2 

) ( k(n-1) k(k-5) ) 
- / + n/ (k - 3) (k + 1) [k (n - 1) + 2] 

(3. 36) 

2 
Again, the Bayes risk of y, which is a- /n, is larger than the Bayes 

risk of T . _c-,:, 



An Application of 
Empirica! Esti mation of À 

An application of the previous process for determining the 
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empirica! Bayes estimator À is shown for the following data. These 

data, shown in Table 2, are derived from Table 1. Triplets of days 

were taken, and the adjoining columns give quantities needed for 

computing pertinent statistics. 

- 2 - = 2 The ratio of !:!: (y .. - y_ ) to !: (y .. - y) can be seen stabiliz-
Jl J. J 

ing as the number of prior data means increases as shown in Figure 3. 

This shows that each additional mean will have diminished influence on 

the ratio, and hence a smaller influence on the estimator as the number 

of samples increases. 

The James-Stein method was nex t applied to the data found in 

= Table 2 yielding the following statistics, where the grand average, y 

is e qual to 1 O. 16 and the variance is e qual to . 0248. 

Here k is again the number of unknown means, and c and z3-are 

defined in equation (3. 17) and (3. 18) respectively. As the number of 

past means increases, the value of c diminishes and the influence of the 

grand average, y, increases, which is parallel to the effect of increas-

ing the number of prior data means on the empirica! Bayes estimator, 

as mentioned before. 

The James-Stein procedure has one important advantage over 

the Lowe and Boe s method since the James -Stein e stima tor can be 



Table 2 
Quantities far calculating EmEirical Bayes estimators 

Type - 2 
Cumu- 2 

_2 J_ 
of data y .. 's Y- LL(y .. -y.) b,:, lati ve L n.y.- z,:, 

Tz,: , Jl J. Jl J SSy- j J J • Il 

Prior 1 o. 20, 1 o. 32, 1 o. 16 10.23 0.0139 
10.17, 10,11, 10.05 1 o. 11 0.0072 

9. 91, 1 o. 20, 1 o, 1 7 10.09 0.0509 
10.03, 10.32, 10.24 10.20 0.0449 
10. 01, 1 o. 00, 1 o. O 1 1 o. O 1 0.001 

9. 73, 10.26, 1 O. 11 10.03 o. 1493 . 2663 .3178 
Recent 9. 9 6, 9. 83, 9.61 9.80 0.0626 0.02048 . 3289 .5667 .9829 9.4595 

10.29, 10. 13, 9.95 1 o. 12 0.0579 . 036458 . 3868 . 3695 .9788 9.6920 
9. 84, 10. 00, 9.80 9.88 0.0224 . 049383 . 4092 • 4764 .9483 8.8484 

1 o. 35, 10.31, 9.97 1 o. 21 0.0872 . 06000 . 4964 .5413 .9368 8.9294 
1 o. 18, 1 o. 37, 1 o. 36 10.30 0.0229 .068871 .5193 . 4863 .9184 8.6380 
10.37, 10.20, 10.34 1 o. 30 0.0165 • 076389 . 5358 . 4061 .8907 8.0714 
1 o. 06, 10. 26, 1 o. 18 1 o. 1 7 0.0203 . 082840 .5561 . 6226 .9210 8.5681 
10.22, 10. 32, 10.29 1 o. 28 0.0053 . 088435 .5614 .8987 .9417 9.0912 
10. 52, 1 o. 34, 10.26 1 o. 37 0.0355 . 093333 .5969 .8652 .9326 8.9887 
10.35, 10.20, 10.40 10.32 0.0217 . 097656 . 6186 1. 161923 . 9460 9.2150 
1 O. 24, 10.02, 10. 13 1 o. 13 0.0242 . 101499 . 6428 1. 16250 .9420 8.9540 
10.18, 10.14, 1 o. 14 1 o. 15 o. 0011 . 104938 .6439 .9620 . 9277 8.6823 
10.06, 9. 93, 10.03 1 o. O 1 0.0093 . 108033 . 6532 1.2204 .9407 8.8145 
1 o. 13, 1 O. 08, 1 o. 1 O 1 o. 1 O 0.0013 . 110833 . 6545 1. 0228 .9274 8.6304 
1 o. 09, 1 o. 24, 10.42 10.25 o. 0545 .113379 .7090 .8465 . 9031 8.2741 
1 o. 24, 1 o. 15, 1 o. 21 10.20 0.0042 .115702 . 7132 .8548 .9035 8.2366 
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Figure 3. Minimized ex pected Bayes Ris k vs. amount of prior data. 
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employed without knowledge of the prior distribution. In fact, one 

need not even assume the means being estimateci are normally distri-

buted. 

Table 3 
James -Stein Method 

Triplet - =2 
number (") 

Z;" (y - y) k e 

7 1 O. 11 • 131 O 1 
8 1 o. 16 . 0018 2 
9 1 o. 12 • 0794 3 

10 1 o. 1 7 . 0023 4 .8833 
11 1 o. 18 . O 191 5 . 7858 
12 1 o. 18 . O 191 6 . 7032 
13 1 o. 16 . 0001 7 . 6045 
14 1 o. 18 . 0140 8 . 531 7 
15 1 o. 19 . 0433 9 .5170 
16 1 o. 18 . 0250 10 . 4788 
17 1 o. 16 . 0010 11 . 4460 
18 1 O. 16 . 0001 12 . 3784 
19 1 o. 14 . 0231 13 .3096 
20 1 o. 15 • 0038 14 • 2485 
21 1 o. 1 7 . 0078 15 . 1974 
22 1 o. 1 7 . 0014 16 • 1339 
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Chapter IV 

Empirica! Bayesian Multiple Comparison Procedures 

As a practical application of empirica! Bayesian methodology, 

the following section deals with testing a comparison suggested by the 

data, first introduced by H. Robbins (1955). 

Gi ven n treatment rneans, x , . . . , x each based on r replica-
1 n 

t i ons, a common probl e m is that o f testing any comparison b e twe e n 

means which may appear to be significant. The comparison may be a 

difference, (x. - x.), between two of the means, which is a test of 
1 J 

H : o>O against the one sided alternative H : 6>0, where 6 is definedas the O a 

true difference between the population means, 6 = µ 
1 

- µ f This can 

easily be applied to a given set of prior equally plausible differences 

d
1

, ... , d .. to be tested far the hypothesis and the alternative H :6.>0 
1 a 1 

where the set is very large. 

The incorrect decisions in choosing a hypothesis are referred to 

as Type I and Type II errors. A type I error is committed when a true 

H
0 

is rejected. A Type II error is made if H
0 

is accepted when it is 

actually false. It is conventional to denote the probabilities of these 

errors by a and [3, respectively. li a is set egual to 5%, then the 

right-tailed 5% level t tests are applied to the differences simultaneously. 

Since the error rate is operative for each comparison, this is termed 
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a 5% level comparisonwise rule. A comparisonwise rule makes a 

Type I errar in 100a% of the comparisons on the average. An experi

mentwise rule would allow a Type I errar in only 1 OOao/o of all expe ri-

ments on the average. 

If a comparisonwise rule is devised which sets both a and !3 

equal to 5%, two types of extreme results may occur. One extreme 

that is possible, Type A, results in only 5% of the tests being significant 

or only 5% of the null hypotheses being rejected. The other possible 

extreme, Type B, results in only 5% of the tests being not significant 

or only 5% of the null hypotheses not being rejected. 

A dilemma encountered in multiple comparisons problems is 

that no approach consisting of simultaneous applications of several t 

tests can realistically hope to be acceptable when their errar rate is 

specified based on~ priori considerations alone. This approach is 

avoided because it reacts to the possibility of a Type A outcome by 

increasing the comparison t value or t , therefore decreasing the a for 
e 

each prior test, although the actual outcome is Type A. If the outcome 

is intermediate, the increase in t should not have been made; if the 
e 

outcome is Type B, the t should have been decreased. 
e 

In arder to strike a compromise between Type A and Type B 

outcomes, an adequate rule for determining the significant t value must 

be allowed to depend on the overall outcome or significance for all the 

differences. The multiple comparison approaches of Fisher, Newman 

and Duncan achieve some of this dependence, but not nearly enough. 
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By never being less conservative than a comparisonwise rule, they 

too can fail to be as powerful as they should be for a Type B outcome. 

They can also fail to be sufficiently conservative fora Type A outcome. 

A relatively new approach which recognizes and makes valuable 

use of these two simple identifying characteristics of multiple compari-

son problems is the additi ve los se s concept developed by Duncan ( 1975 ). 

Additive losses are defined as the sum of the losses for the component 

decisio ns found in multiple comparison problems. As suming there are 

n sample means, there are n(n-1)/2 pairwise comparisons to be made. 

The additive loss is then the sum of the losses for each of th ese possible 

decisions. 

To illustrate the foregoing, consider the following problem 

originally presented by Duncan (1975). The number of differences, s, is 

equal to l. Instead of choosing an a and 13, a simple los s function is 

chosen. The loss function, L(d
0

16), is defined as the loss when decision 

d
0 

is taken but o is the corresponding true difference between the means: 

Similarly, L(d j ò) is defined as 
a 

= cost when o = O 

= cost when o = 6 . 
a 

( 4. 1) 
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L(d /o) 
= cost of rejecting H when o = O 

O (4. 2) 
a = cost of rejecting H when o=o 

O a 

The Bernoulli prior probability function is defined as the probability 

of o taking on the value s of O or o ; 
a 

P( ò IP ) 
a 

= 
{

P if o=o 
a a 

p if o=O 
o 

(4 . 3) 

where p = 1 - p . Instead of seeking the most powerful a level test of O a 

H
0

: o= O against H :6 = o with power 1 - (3., a Bayes rule or test is 
a a 

used which minimizes the Bayes risk: 

ò 
a a 

B ( r ) = r= o l'= o p (di / o) p ( o I p a) 

(4. 4) 

Minimizing the above with Bayes rule by substituting the normal den-

sities and taking the logarithms, it is found to be a right-tailed t value 

given by the equation: 

t = 6 / 2 + (ln e - ln p) / o 
e a a 

( 4. 5) 
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where c is the loss or the seriousness ratio of a Type I to a Type II 

errar, c = c 
1 

/ c
0 

and p is the prior odds ratio in favor of the alternate 

hypothesis (H) or p = p /(1 - p ). 
a a a 

Therefore, if the costs of a Type I and Type II errar are equal 

and the prior probabilities of H happening are equal to the probability 
a 

of H
0 

happening, then the t is equal to o / 2. 
c a 

An example of the empirical-Bayes additive losses approach 

when there is more than a single difference (s> 1), is given below. The 

additive losses result in the function: 

(4. 5) 

If the losses fora joint problem are the sums of the losses of its com-

ponent problems, then the optimal rule for the sum is the same as that 

rule which minimizes loss for each of its components. 

li the prior odds ratio p for H is unknown and if a difference, 
a 

d, from a set of prior differences, p , approaches O (indicating a Type I 
a 

result), then t will be very large and conservative. If p is near 1 c a 

(indicating a Type II result), t will be very small and powerful. There
c 

fare, t is dependent on p • An exa mple of this dependency is shown in 
a 

Figure 4, derived from Tabl e 4. As p nears zero or as p nears zero, 
a 

t will b e very large and conserv ative, indicating a Type I result. If p c 

nears infinity, th en p nears one and t will be very small and very 
a e 

powerful, or th e likelihood of a Type II r esu lt is grea ter than that of a 

Type I errar. 
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Table 4 
Empirica! Bayes critica! t values, t . 

c 

pa Po P = palpo t 
c 

o. 1 0.9 o. 111 2.4457 

0.2 0.8 0.250 2.0397 

0.3 0.7 0.430 1. 7686 

0.4 0.6 0.670 1. 5468 

o. 5 o. 5 l. 000 1. 3466 

o. 6 0.4 1. 500 1. 1439 

o. 7 o. 3 2.330 0.9237 

o. 8 0.2 4.000 0.6534 

o. 9 o. 1 9.000 0.2479 

Waller-Duncan k-ratio t-test 

A more widely applicable test for differences is the one by 

Waller and Duncan (1969). Critica! values of the form t =t(k F f) 
c , , q, 

are required where F is the F ratio for groups in the data set at hand, 

and f is the degrees of freedom for the between treatment mean square. 

The parameter k is the Type I to Type II error seriousness ratio, 

k /k and q is the amount of difference to be tested for. Since tables l o 

of t( F f) are not available for arbitrary values of the parameters, k, 'q, 

the a pproximation 
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Figure 4. Critical t values vs. prior odds ratio. 
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l 

t ~ ( 1 - 1 / F) - 2 23-(k) (4. 6) 
e 

is used where 23-(k) is obtained from Table 6 of Duncan (1965 ). For two 

means to be declared significantly different using this procedure then 

requires t >t where t = (y. - y.)/sd with 
e 1 J 

2 l_ 
=[2s /r]2 

e 
(4. 7) 

where s
2 

is the error mean square used:informing the sample F ratio 
e 

and r is the number of observations in each of the two means being 

comp ar ed. If the calculated t exceeds the t given by (4. 6), then the 
e 

groups are declared statistically different. 

Example 

As an example of the foregoing technique, magnesium contents 

were determined for black gram several times after the seed coats 

were removed. The data along with their means and the analysis of 

variance are presented in Appendix A where the F ratio of 7. 6103 is 

seen to be highly significant. Duncan (1965) suggests using k = 100 if 

no additional information on error seriousness is available since this 

corresponds to the usual a= • 05 type test. Using Duncan's (1965) 

l 

Table 6 gives t = (1 - 1/7. 6103)- 2 (1. 721) = 1. 84659 to test say the 
e 

1 

difference between times O and 5, t = (2. 35167 - 2. 38833/[2(. 001128)/61 2 = 

1. 8904. Since t > 1. 84659, there is sufficient e vide ne e to cause the 

rejectionofH :µ =p.
2

. 
o l 
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This Waller-Duncan technique was applied to all pairwise 

differences by ranking the means and placing a continuous line beside 

homogeneous subsets in Table 5. Using this approach, two means 

must differ by at least . 03581 to be significantly different. Several 

other multiple comparison techniques have also been included in Table 5 

for comparison. The 5% LSD value for pairwise differences is . 03919. 

Tukey's HSD value is . 06349. Scheffé 1s value is . 08043. Minimum 

difference values for the Student-Newman-Keuls (SNK) and Duncans 

shorte st significant range (SSR) are pre sented in Table 6, and their 

differences are summarized in Table 5. From Table 5, it is clear that 

the Duncan-Waller technique is the most liberal, declaring 32 of the 

36 pairwise comparisons significantly different. The LSD and the SSR 

are just slightly less liberal, declaring 31 of the 36 comparisons differ

ent. The SNK procedure is more conservative, declaring 29 of the 36 

different. The HSD procedure, which uses the most conservative value 

of the SNK, declares only 27 significant differences while the Scheffé 

procedure detects only 24 differences. 

In selecting one of these six procedures, one would almost cer

tainly not suggest the use of either the HSD or the Scheffé approach since 

they are so conservative. While there is little difference between the 

LSD, the SNK and the SSR, the LSD (used after a significant F test) is 

the easiest of the three. The Waller-Duncan procedure is the most 

liberal of the set and is as easily applied as the LSD, HSD or Scheffé 
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procedure since only one critica! value is needed. A good reference 

for all but the SNK procedure is Ott (1977). 

Table 5 
Application of various multiple comparison technique s to 

the Black Gram data of Appendix A. 

Group 
Ranked 
means 

Duncan
Waller 

LSD SSR SNK HSD Scheffé 

2.095 
2.098 
2. 140 
2. 170 
2. 232 
2 . 298 
2.352 
2.383 
2.388 

I 
I 

I 
I 

I 
I 

Table 6 
Minimum significant (a=. 05) differences for the Black Gram 

data of Appendix A for the Student-Newman-Keuls (SNK) 
and Duncan I s Shorte st Significant Range (SSR) 

multiple comparisons. Duncan-Waller 
(D-W), LSD and Scheffé 1s values 

are included for comEarison 
Number of 

SNK SSR Others Means 

2 . 0392 . 0392 LSD = 
3 . 0472 . 0413 D-W = 
4 . 0520 . 0425 HSD = 
5 . 0554 .0435 Scheffé = 
6 • 0580 . 0442 
7 . 0602 . 0448 
8 . 0620 .0452 
9 . 0635 .0457 

. 0392 

. 0358 
• 0635 
. 0804 
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Chapter V 

Conclusion 

The controversy between Bayesians and non-Bayesians stems 

from the prior probabilities that are required of the Bayes method. It 

is important to realize that the use of Bayes techniques depends heavily 

on judgement and experience. 

A ba sic belief of Bayes users is that the state of nature can be 

de scribed by the probability distribution or prior distribution. The 

prior information is modified by incorporating present sample data 

which better represent the distribution function ofthe random variable. 

The distribution function is used in the determination of an 

es timator. It was shown with this method that the Bayes r isk of TB is 

smaller than the Bayes risk of X. Therefore, there would be a greater 

risk using the estimator X than using the empirica! Bayes estimator. 

A concern in using the Bayes method for estimation is the con

fidence the user has that it is the best method for the data. Considera-

tion must also be given to the possibility of calculating an incorrect 

e stimate. 

The loss function is used for weighing the negative effect of 

taking a certain action because of an incorrect estimate. Data changes 

the problem of selecting an action to the selection of a decision function 

in view of a certain risk function. 
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Empirica! Bayes estimation uses past datato estimate the 

prior distribution and then uses this prior estimate in Bayesian methods. 

When the overall average of the decision errors is weighed, the 

Bayes risk accounts for every one of these errors, its loss factor, and 

its prior probability. This eliminates the need of choosing an appro

priate a for each comparison example and analyzing the data in a non

Bayesian manner. 

The Bayesian approach requires the user to specify a few more 

quantities, but in the end, the gain in control of comparisonwise and 

experimentive erros should far outweigh the added inconvenience of 

specifying more quantitie s. 
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Time Magnesium Time 
Variances (minutes) mg/g means 

2.38 2., 29 
o 2.44 2.24 2.35167 . 00854 

2.47 2. 29 

2.52 2.27 
5 2.54 2.22 2.38833 . 02554 

2.54 2.24 

2. 17 2.02 
10 2. 17 2.02 2.09500 . 00675 

2. l 7 2.02 

2. 11 2. 01 
15 2.22 l. 97 2.09833 . 01530 

2.27 2. 01 

2. 21 2. 3 l 
20 2. 21 2. 21 2.23167 • 00202 

2. 19 2.26 

2. 18 2. 17 
25 2. 15 2. l 7 2. l 7000 . 00012 

2. 18 2. l 7 

2.08 2. 19 
30 2.08 2. 19 2. 14000 . 00264 

2. 13 2. 17 

2.24 2.32 
35 2.24 2.32 2.29833 .00570 

2.24 2. 43 

2.29 2.55 
40 2. 18 2.55 2.38333 . 03495 

2. 18 2.55 

- --·--- -

Analysis of Variance 

Source df MS F 
-

Total(cor) 53 .01392 
Time 8 .08586 7.6103 
Errar 45 .001128 
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SIGNIFICANT STUDENTIZED RANGES FOR A 5% LEVEL NEW MULTIPLE RANGE TosT 
g 

2 3 4 5 6 7 8 9 10 12 14 16 18 20 50 100 "• 
1 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 180 2 6.09 6.09 6.<ì9 6.09 6.09 6.09 6.09 6.09 6.09 6.09 6.09 6.09 6.09 E.09 6.09 3 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.EO 4.50 4.50 4.50 4 50 4.50 4 3.93 4.01 4.02 4.02 4.02 4.02 4.02 4.02 4.02 4.(2 4.02 4.02 4.02 4.02 4.02 
5 3.64 3.74 3.79 3.83 3.83 3.83 3.83 3.83 3.83 3.83 3.83 3.83 3.83 3.83 3.83 6 3.46 3.58 3.64 3.68 3.68 3.68 3.68 3.€8 3.68 3.f8 3.68 3.68 3.68 3.68 3.E8 7 3.35 , 3.47 3.54 3.58 3.60 3.61 3.61 3.61 3.61 3.61 3.61 3.61 3.61 3.61 3.61 8 3.26 ' 3.39 3.47 3.52 3.55 3.56 3.56 3.56 3.56 3.56 3.!:6 3.56 3.56 3.56 3.56 9 3.20 3.34 3.41 3.47 3.50 3.52 3.52 3.52 3.52 3.52 3.52 3.52 3.52 3.52 3.52 

10 3.15 3.30 3.37 3.43 3.46 3.47 3.47 3.47 3.47 3.47 3.47 3.47 3.47 348 3.48 11 3.11 3.27 3.35 3.39 3.43 3.44 3.45 3.46 3.46 3.46 3.46 3.46 3.47 3.48 348 12 3.08 3.23 3.33 3.36 3.40 3.42 3.44 3.44 3.46 3.46 3.46 3.46 3.47 3.48 3.48 13 3.06 3.21 3.30 3.35 3.38 3.41 3.42 3.44 3.45 3.45 3.46 3.46 3.47 3.47 3.47 14 3.o3 I 3.18 3.27 3.33 3.37 3.39 3.41 3.42 3.44 3.45 3.46 3.46 3.47 3.47 3.47 
15 3.01 I 3.16 3.25 3.31 3.36 3.38 3.40 3.42 3.43 3.44 3.45 3.46 3.47 3.47 3.47 16 3.00 3.15 3.23 3.30 3.34 3.37 3.39 3.41 3.43 3.44 3.45 3.46 3.47 3.47 3.47 17 2.98 I 3.13 3.22 3.28 3.33 3.36 3.38 3.40 3.42 3.44 3.45 3.46 3.47 3.47 3.47 18 2.97 i 3.12 3.21 3.27 3.32 3.35 3.37 3.39 3.41 3.43 3.45 3.46 3.47 3.47 3.47 19 2.96 3.11 3.19 3.26 3.31 3.35 3.37 3.39 3.41 3.43 3.44 3.46 3.47 3.47 3.47 
20 2.95 3.10 3.18 3.25 3.30 3.34 3.26 3.38 3.40 3.43 3.44 3.46 346 3.47 3.47 22 2.93 3.08 3.17 3.24 3.29 3.32 3.35 3.37 3.39 3.42 3.44 3.45 3.46 , 3.47 347 24 2.92 3.07 3.15 3.22 3.28 3.31 3.34 3.37 3.38 3.41 3.44 3.45 346 3.47 3.47 26 2.91 3.06 3.14 3.21 3.27 3.30 3.34 3.36 3.38 3.41 3.43 3.45 3.46 3.47 3.47 28 2.90 3.04 3.13 3.20 3.26 3.30 3.33 3.35 3.37 3.40 3.43 3.45 3.46 3.47 3.47 
30 2.89 3.04 3.12 3.20 3.25 3.29 3.32 3.35 3.37 3.40 3.43 3.44 3.46 3.47 3.47 40 2.86 3.01 3.10 3.17 3.22 3.27 3.30 3.33 3.35 3.39 3.42 3.44 3.46 3.47 3.47 60 2.83 2.98 3.08 3.14 3.20 3.24 3.28 3.31 3.33 3.37 3.40 3.43 3.45 3.47 3.48 100 2.80 2.95 3.05 3.12 3.18 3.22 3.26 3.29 3.32 336 3.40 3.42 3.45 3.47 3.53 00 2.77 2.92 3.02 3.09 3.15 3.19 3.23 3.26 3.29 3.24 3.38 3.41 3.44 3.47 3.61 

SIGNIFICANT STUDE.NTIZED RANGES FOR A }_% LEVEL NEW MULTIPLE RANGE TusT 

~ g 
2 3 4 5 6 7 8 9 10 12 14 16 !8 20 50 100 

r t ' 1 "' 

1 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 2 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 3 8.26 8.5 8.6 8.7 8.8 8.9 8.9 9.0 9.0 9.0 9.1 9.2 9.3 9.3 9.3 4 6.51 6.8 6.9 7.0 7.1 7.1 7.2 7.2 7.3 7.3 7.4 7.4 7.5 7.5 7.5 
5 5.70 5.96 6.11 6.18 6.26 6.33 6.40 6.44 6.5 6.6 6.6 6.7 6.7 6.8 6.8 6.8 6 5.24 5.51 5.65 5.73 5.81 5.88 5.95 6.00 6.0 6.1 6.2 6.2 6.3 6.3 6.3 6.3 7 4.95 5.22 5.37 5.45 5.53 5.61 5.69 5.73 5.8 5.8 5.9 5.9 6.0 6.0 6.0 6.0 8 4.74 5.00 5.14 5.23 5.32 5.40 5.47 5.51 5.5 5.6 5.7 5.7 5.8 5.8 5.8 5.8 9 4.60 4.86 4.99 5.08 5.17 5.25 5.32 5.36 5.4 5.5 5.5 5.6 5.7 5.7 5.7 5.7 

10 4.48 4.73 4.88 4.96 5.06 5.13 5.20 5.24 5.28 5.36 5.42 5.48 5.54 5.55 5.55 11 4.39 4.63 4.77 4.86 4.94 5.01 5.06 5.12 5.15 5.24 5.28 5.34 5.~8 5.39 5.39 ' 12 4.32 4.55 4.68 4.76 4.84 4.92 4.96 5.02 5.07 5.13 5.17 5.22 5.24 5.26 5.26 13 4.26 4.48 4.62 4.69 4.74 4.84 4.88 4.94 4.98 5.04 5.08 5.13 5.14 5.15 5.15 14 4.21 4.42 4.55 4.63 4.70 4.78 4.83 4.87 4.91 4.96 5.00 5.04 5.06 5.07 5.07 
15 4.17 4.37 4.50 4.58 4.64 4.72 4.77 4.81 4.84 4.90 4.94 4.97 4.99 5.00 5.00 16 4.13 4.34 4.45 4.54 4.60 4.67 4.72 4.76 4.79 4.84 4.88 4.91 4.93 4.94 4.94 17 4.10 4.30 4.41 4.50 4.56 4.63 4.68 4.72 4.75 4.80 4.83 4.86 4.88 4.89 4.89 18 4.07 4.27 4.38 4.46 4.53 4.59 4.64 4.68 4.71 4.76 4.79 4.82 4.84 4.85 485 I 19 4.05 4.24 4.35 4.43 4.50 4.56 4.61 4.64 4.67 4.72 4.76 4.79 4.f\1 4.82 4.82 
20 4.02 4.22 4.33 4.40 4.47 4.53 4.58 4.61 4.65 4.69 4.73 4.76 4.78 4.79 4.79 I 22 :i.99 4.17 4.28 4.36 4.42 4.48 4.53 4.57 4.60 4.65 4.68 4.71 4.74 4.75 4.75 24 :1.96 4.14 4.24 4.33 4.39 4.44 4.49 4.53 4.57 4.62 4.64 4.67 4.70 4.72 4.74 2ti 3.93 ~-11 4.21 4.30 4.36 4.41 4.46 4.50 4.53 4.58 4.62 4.65 4.67 4.69 4.73 28 3.91 4.08 4.18 4.28 4.34 4.39 1.43 4.47 4.51 4.56 4.60 4.62 4.65 4.67 4.72 
30 3.89 4.06 4.16 4.22 4.32 4.36 4.41 4.45 4.48 4.54 4.58 4.61 4.63 4.65 4.71 40 3.82 3.99 4.10 4.17 4.24 4.30 4.34 4.37 4.41 4.46 4.51 4.54 4.57 4.59 4.69 60 3.76 3.92 4.03 4.12 4.17 4.23 4.27 4.31 4.34 4.39 4.44 4.47 4.50 4.53 4.66 100 3.71 3.86 3.98 4.06 4.11 4.17 4.21 4.25 4.29 4.35 4.38 4.42 4.45 4.48 4.64 00 3.64 3.80 3.90 3.98 4.04 4.09 4.14 4.17 4.20 4.26 4.31 4.34 4.38 4.41 4.60 

This table is reproduced from David B. Duncan, "Multiple range and multiple F tests," Bicmctrics, Volume 11 (1955), p. 4, 
with the permission of the author of the article and the editor of Biometrics. 
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UPPER PERCENTAOE PorNTS OP THE STUDl!.NTIZED RANOE, qz = 
Xm<IX - Xmin 

UP PER 5 % POJNTS 
s;; 

p =- numhcr of !rcatmcnt mca os Error 
df 2 3 4 6 7 9 IO Il 12 13 14 15 16 17 18 19 20 

I 18.0 27.0 32.8 37.1 40.4 43 .1 45 .4 47.4 49 .1 50.6 52.0 53 .2 54.3 55.4 56.3 57 .2 58.0 58 .8 59.6 2 6.09 8.3 . 9.8 10.9 11.7 12.4 13.0 13.5 14.0 14.4 14.7 15. I 15.4 15.7 15.9 16.1 16.4 16.6 16.8 3 4.50 5.91 6.82 7.50 8.04 8.48 8.85 9.18 9.46 9.72 9.95 10.15 10.35 10.52 10.69 10.84 10.98 11.11 I 1.24 4 3.93 5.04 5.76 6.29 6.7 1 7.05 7 .35 7.60 7.83 8.03 8 .21 8.37 8.52 8.66 8.79 8.91 9.03 9.13 9.23 5 3.63 4.60 5.22 5.67 6.03 6.33 6.58 6.80 6.99 7.17 7.32 7.47 7.60 7.72 7.83 7.93 8.03 8.12 6 3.46 4.34 4.90 5.31 5.63 5.89 6.12 6.32 6.49 6.65 6.79 6.92 7.03 7.14 7.24 7 .34 7.43 7 .51 7.59 7 3.34 4.16 4.68 5.06 5.36 5.61 5.82 6.00 6.16 6.30 6.4 3 6.55 6. 66 6.76 6.85 6 .94 7.02 7.09 7. 17 8 3.26 4.04 4.53 4.89 5.17 5.40 5.60 5.77 5.92 6.05 6.18 6.29 6.39 6.48 6.57 6 .65 6.73 6.80 6.87 9 3.20 3.95 4.42 4.76 5.02 5.24 5.43 5.60 5.74 5.87 5.98 6.09 6.1 9 6. 28 6.36 6 .44 6.51 6.58 6.64 10 3.15 3 88 4.33 4.65 4.91 5. 12 5.,o 5.46 5.6G 5.72 5.83 5.93 6.03 6. 11 6. 20 6. 27 6.34 6.40 6.47 11 3.1 I 3.82 4.26 4.57 4.82 5.03 5.20 5.35 5.49 5.61 5.71 5.81 5.90 5.99 6.06 6 .14 6.20 6.26 6.33 12 3.08 3.77 4.20 4.51 4.75 4.95 5.12 5.2 7 5.40 5.51 5.62 5.71 5.80 5.88 5.95 6.03 6.09 6.15 6.21 13 3.06 3.73 4. 15 4.45 4.69 4.88 5.05 5.19 5.32 5.43 5.53 5.63 5.71 5.79 5.86 5.93 6.00 6.05 6.11 14 3.03 3.70 4.11 4.41 4.64 4.83 4.99 5. 13 5.2 5 5.36 5.46 5.55 5.64 5.72 5.79 5.85 5.92 5.97 6.03 15 3.01 3.67 4.08 4.37 4.60 4.78 4.94 5.08 5.20 5.31 5.40 5.49 5.58 5.65 5.72 5.79 5.85 5.90 5.96 16 3.00 3.65 4.05 4.33 4.56 4.74 4.90 5.03 5.1 5 5.26 5.35 5.44 5.52 5.59 5.66 5 .72 5.79 5.84 5.90 17 2.98 3.63 4.02 4.30 4.52 4.71 4.86 4.99 5.1 1 5.21 5.31 5.39 5.47 5.55 5.6 1 5.68 5.74 5.79 5.84 18 2.97 3.61 4.00 4.28 4.49 4.67 4.82 4.96 5.07 5. 17 5.27 5.35 5.43 5.50 5.57 5.63 5.69 5.74 5.79 19 2.96 3.59 3.98 4.25 4.47 4.65 4.79 4.92 5.04 5. 14 5.2 3 5.32 5.39 5.46 5.53 5.59 5.65 5.70 5.75 20 2.95 3.58 3.96 4.23 4.45 4.62 4.77 4.90 5.01 5.11 5.20 5.28 5.36 5.43 5.49 5.55 5.61 5.66 5.71 24 2.92 3.53 3.90 4.17 4.37 4.54 4.60 4.81 4.92 · 5.01 5.10 5.18 5.25 5.32 5.38 5.44 5.50 5.54 5.59 30 2.89 3.49 3.84 4.10 4.30 4.46 4.60 4 .72 4.83 4.92 5.00 5.08 5.15 5.21 5.27 5.33 5.38 5.43 5.48 40 2.86 3.44 3.79 4.04 4.23 4.39 4.52 4.63 4,74 4.82 4.91 4.98 5.05 5.11 5. 16 5.22 5.27 5.31 5.36 60 2.83 3.40 3.74 3.98 4. 16 4.31 4.44 4.55 4 .65 4.73 4.81 4 .88 4.94 5.00 5.06 5.1 I 5. 16 5.20 5.24 120 2.80 3.36 3.69 3.92 4. 10 4.24 4.36 4.48 4.56 4.64 4.72 4,78 4.84 4.90 4.95 5.0 0 5.05 5.09 5.13 2.77 3.31 3.63, 3.86 4.03 4. 17 4.29 4 .39 4.47 4.55 4.62 4.68 4.74 4,80 4.85 4.89 4.93 4.97 5.01 

LJpJ•ER PERCt:NTA G ~ POJNlS o,- THE STUDl!:NTfZED RANGE , q.r =: 
Xmax - Xmin 

L1
1'PP..R l % POJNTS Sz 

Error µ = n ,11111.,cr o t 1rca 11ncn 111C""ans df 2 3 --------- -
6 9 10 Il 12 13 14 I 5 16 I 7 18 19 20 

1 90 .0 135 164 186 202 216 227 2J7 24 6 253 260 2 14,0 19.0 22.3 24.7 26.6 28.2 29 .5 30.7 266 272 277 282 286 290 294 298 3 8.26 10.6 12.2 13.3 3 1.7 32.6 33.4 34. 1 34.8 35 .4 36.0 36.5 37.0 37.5 
14.2 15.0 15.6 16.2 16.7 17.1 37.9 

4 6.51 8.12 9.17 9.96 10.6 17.5 17.9 18.2 I 8.5 18.8 19. 1 19.3 I 9.5 
11.1 11.5 11.9 12.3 12.6 12.8 13.1 13.3 I 3.5 19.8 5 5.70 6.97 7.80 8.42 13.7 13.9 14,1 14.2 14.4 8.91 9.32 9.67 9.97 10.24 10.48 10,70 10.89 11.08 

6 5.24 6.33 7.03 7.56 7.97 8.32 8.61 8.87 9.10 9.30 9.49 11.24 11.40 11.55 11.68 11.81 11.93 
7 4.95 5.92 6.54 7.01 7.37 7.68 7.94 8.17 9.65 9.81 9.95 10,08 10.21 10.32 10.43 10.54 8 8.37 8.55 8.71 8.86 9.00 9.12 

4.74 5.63 6.20 6.63 6.96 7.24 7.47 7.68 7.87 8.0 3 8 . 18 9.24 9.35 9.46 9.55 9.65 9 4.60 5.43- 5.96 6.35 6.66 6.91 7.13 8.31 8.44 8.55 8.66 8.76 8.85 8.94 9.03 7.32 7.49 7.65 7.78 7.91 8.03 8. 13 8.23 8 .32 8.41 8.49 
IO 4.48 5.27 5.77 6. 14 6.43 6.67 6.87 8.57 7.05 7.21 7. 36 7.48 7.60 
li 4.39 5. 14 5.62 5.97 6.25 6.48 6.67 7.71 7.81 7,91 7,99 8.07 8.15 8.22 
12 4.32 5.04 5.50 5.84 6.84 6.99 7.13 7.25 7.36 7.46 7.56 7.65 7.73 7.81 7.88 

6.10 6.32 6.51 7.95 
13 4.26 4.96 5.40 6.67 6.81 6.94 7.06 7. 17 7.26 7.36 7.44 7.52 7.59 7.66 

5.73 5.98 6.19 6.37 6.53 6.67 6.79 6.90 7.01 7.73 
14 4.21 4,89 5.32 5.63 5.88 6.08 7.10 7.19 7.27 7.34 7.42 7.48 7.55 

6.26 6.41 6.54 6.66 6.77 6.87 6.96 15 4. I 7 4.83 5.25 7.05 7.12 7.20 7.27 7.33 7.39 5.56 5.80 5.99 6.16 6.31 6.•4 6.55 6.66 6.76 
16 4.13 4.78 5. 19 5.49 6.84 6.93 7.00 7.07 7.14 7.20 7.26 

5.72 5.92 6.08 6.22 6.35 6.46 6.56 6.66 
17 4.10 4.74 5.14 5.43 5.66 5.85 6.74 6.82 6.90 6.97 7,0J 7.0 '1 7.15 

6.01 6.15 6.27 6.38 6.48 6.57 
18 4.07 4.70 5.09 5.38 5.60 6.66 6.73 6.80 6.87 6.94 7.00 7.05 

5. 79 5.94 6.08 6.20 6.31 19 4.05 4.67 5.05 5.33 5.55 6.41 6.50 6.58 6.65 6.72 6.79 6.85 6.91 6.96 
5,73 5.89 6.02 6. 14 6.25 6.34 6.43 6.51 6.58 6.65 6.72 6.78 6.84 

20 4.02 4.64 5.02 5.29 6.89 5.51 5.69 5.84 5.97 6.09. 24 3.96 4.54 4.91 6.19 6.29 6.37 6.45 6.52 6.59 6.65 6.71 6.76 6.'82 
5. 17 5.37 5.54 5.69 5.81 5.92 30 3.89 4.45 6.02 6. 11 6.19 6.26 6.33 6.39 6.45 6.51 

4.80 5.05 5.24 5.40 5.54 5.65 5. 76 6.56 6.61 40 3.82 4.37 4.70 4.93 5.11 5.27 5.85 5.93 6.01 6.08 6.14 6.20 6.26 6.31 6.36 6.41 5.39 5.50 5.60 5.69 5.77 5.84 5.90 5.96 6.02 6.07 6.12 6,17 6.21 
60 3.76 4.28 4.60 4.82 4.99 5.13 5.25 5 . .36 5.45 120 3.70 4.20 4.50 4.71 5.53 5.60 5.67 5.73 5.79 5.84 5.89 5.93 5.98 6.02 

4.87 5.01 5.12 5.2 I 5.30 3.64 4. 12 4.40 4.60 5.38 5.44 5.51 5.56 5.61 5.66 5.71 5.75 5, 79 5.83 
4,76 4.88 4.99 5.08 5.16 5.23 5.29 5.35 5.40 5.45 5.49 5.54 5.57 5.61 5.65 .Sourcc: 'fhi1 tabi~ h1 -.sbridg~d !rom l'ahlc 29, JJiom,1,iA.a Tabi, ., fo, S1t11t.,t,u t1nJ \'u/ I ( > · · · , . . • . ~11/nka lru~tr:c1 n1HI t!l!' f't!11o~!'I, I·;· S. Prttr11on and li. O . ll;1nlr) '. ·J'tit"" 111i~i11nl w,;1k li ·, ,~,1r ·:;ii ."rHI,'(~ lJr~1vr-n111y I rr1111, 1~~~ · 11 111 1·r1H ·wh1n·d w1tl1 prrn11, .•uo11 nf tlu· llrn • it"OINgr polnltn(1hr S!tulrnllJ'rd rn 11gr," /(""'"'"io, 19 · 1')',l icn (I•, '\ ,)} 11 r 111 11 p ,1pr1 hy .J. M. Mo)', 1•.,tlrndrd 1111d currr1 ·1rd 1:,l,k~ 11(1hr 1tpprr pt'r• 
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