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Abstract
A Discussion of an Empirical Bayes
Multiple Comparison Technique
by
Donna Baranowski, Master of Science
Utah State University, 1979
Major Professor:
Department: Applied Statistics and Computer Science
This paper considers the application and comparison of

Bayesian and nonBayesian multiple comparison techniques applied to
sets of chemical analysis data. Suggestions are also made as to which

methods should be used.

KEY WORDS: Bayesian Analysis; Multiple comparison; Estimation.
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Chapter 1

Introduction

Statistics is an evolving science which sometimes lacks uni-
formity of language but tries to express truth and to make accurate
predictions. The use of statistical techniques contributes to a better
understanding of natural phenomenona by quantifying and bounding
stochastic variables.

Researchers often choose comparison methods to analyze the
significance of multiple treatment means. One that is used infrequently
is Bayes method. This report is written to better inform the reader of
the technique and significance of a Bayesian multiple comparison
method.

The controversy between Bayesians and non-Bayesians does not
stem from the principle of Bayes' criterion but from the prior pro-
babilities that must be specified. The major points of controversy
between Bayesian methods and classical statistical methods concern the
choice of the prior density function and the necessity of additional
assumptions. Most classical statisticians do not accept the notion of

random parameters required for a Bayesian framework. When the

parameters of a distribution are unknown, the Bayes estimators require




a prior distribution for these parameters. These parameters are then
treated as random variables rather than constants.
In the following pages some examples of Bayesian estimation

methods are derived and applied.




Chapter II

Decision Theory

A problem of choosing between two alternatives courses of
action often arises in many disciplines. If all the facts are known,
then the problem is lessened. Unfortunately, a decision is often
required based on somewhat less than full information.

Statistical decision problems usually involve the use of data as
an aid to decision making. The usual approach to treating decision
problems involving data is to reduce their solution to the solving of a
no-data problem. The problem of making a decision in the absence of
data will first be considered followed by a problem with data.

In order to facilitate the following discussion, the notation and
basic theory will now be given. The first things needed are the con-
cepts of prior and posterior distributions.

Consider a random experiment having several events, say E

1

E « .+, E ; of which at most one event may occur. Also suppose
n

2’
that the judgmental probabilities of each event, P[E_], P[E_], . . . ,

1 Z

P[En] have been obtained. These are referred to as prior probabilities,
because they represent the chance of the event occuring before the

results from the empirical investigation are obtained. The investigation

itself may have several possible outcomes or results, each of which
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may be statistically dependent upon the events. A result is denoted as
R and the conditional probabilities, P[R‘E], are often available. The
result itself may be used to revise the probability of the events, since
certain results may be more likely to follow certain events. These
values are called posterior probabilities, since they revise the prior
information and are calculated after obtaining the data.

An assignment of probability to events can be defined as a
probability distribution. The total probability is distributed or
assigned to the points and regions of the sample space, according to
the relative likelihood of occurrence. The prior distribution is the
function which represents the assignment of prior probabilities to

points in the space before the data has been collected.

Bayesian Posterior Distribution

A basic belief held by Bayesian statisticians is that the state of
nature can be described by the prior probability distribution. This
prior distribution is the premise or foundation of Bayesian estimation.
The posterior distribution represents the statistician's (present) inter-
pretation about a particular distribution, given or conditional upon the
observed data. Bayes'theorem modifies past or prior information by
incorporating present information from a sample. The new information
better reflects the distribution of the function of the random variable.

A random sample x

1’ s oA from the density function X

given or parameterized by \, denoted f(x|)\), will be used to estimate




the true value. Under the Bayesian framework, \ is a random
variable with the distribution function m(A). The function of x given )\,

f(x|\) is then a conditional probability density of X given .. Note that

the joint density function of X and \is given by:
f(x,N) = (N £(x/N. (2. 1)

The posterior distribution is then defined as the conditional distribution
of \ given x, h(/\,[X) = f(x,\) / g(x), where g(x) is defined as the marginal
density of X. This conditional density function of \ given xis defined as
the posters or probability distribution of X given the sample.

The Bayes estimator of A corresponding to the prior distribution

function G(\) is the random variable ¢G(x) defined by the function:

_ f.\f(x N dG(N)
- f f(x N dG(N

(x) (2.2)

e

which is the expected value of the posterior distribution of \ given

X =%,




Chapter III

Estimation

In most cases, the more numerous the observations and the less
variable the data, the closer the estimate of the parameter will approach
the truth. Using random samples to estimate the value of a population
parameter is one of the most common statistical methods. Estimation
of a parameter requires that the user consider many different estima-
tors before a particular procedure is chosen. A major concern in
adopting a particular method of estimation is the accuracy and precision
of the method. The estimator should not be subject to large variation
and it should be close on average to the parameter it is estimating.

A numerically determined point estimate of a parameter A can
be viewed as a decision which can be correct or incorrect, depending
on whether the estimate is actually equal to A or not. Since the pro-
bability of an estimate being equal to the parameter is zero for con-
tinuous variables, a measure of the seriousness of the difference be-
tween the true value A and the point estina te, w(x) would be useful.

The loss function will be used to quantify the severity of the conse-
quences of taking a certain action. Assume that for each combination

of state Aand action a, there is a loss L(\,a) giving the negative

measure of utility due to the consequences of taking action a when




nature is in state N. \ is taken as the parameter while a is the esti-
mate or test decision. This loss function, L(\,a), is assumed to be
known, but sometimes a good decision can be made knowing only cer-
tain aspects of the loss function. Common loss functions include la - 7\‘,
(a - MZ, etc. For further examples of loss functions in decision
making see the paper by Duncan (1975).

The loss value, L(X\,a), is the calculated loss to the researcher
if action a is taken when X\ is the true state of nature. The decision
function a could be replaced with the function w(x) which is the Bayes
decision function or estimator for the given prior distribution. This
makes the loss function L(\,w(x)). It is reasonable to try to choose
w(x) such that L(\,w(x)) is minimized. This minimization is rarely
possible under a Bayesian framework since X\ is a random variable.
This leads to the idea of risk which is the expected value of the loss
function. The expectation is over values of x for a fixed value of A

Since the Bayesian views \ as a random variable, the next
objective is to select that value of A which minimizes the expected loss
or the risk. The value of X which minimizes this risk is then defined
as the Bayes estimator of A. An example is presented in the following

pages to help clarify the foregoing.

The Bayes Estimator

The data in Table 1 are a collection of nitrogen values gathered

from prior analyses which were made daily using a Coleman Nitrogen
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Analyzer II. The data in Table 1 were collected as part of a Desert
Biome project during 1976 at Utah State University, under the direction
of James MacMahon (Principal Investigator). A plot of the frequency
distribution with the percent nitrogen ranging from 9.9 to 10.4 (0.1

intervals) is given in Figure 1.

Table 1
Nitrogen Values

10,250 10.304
10.060 10 166
10.134 10, 285
10. 187 10. 565
9,912 16.314
10,115 10. 134
9.912 10, 155
9.9/75 10.007
10. 049 10, 102
10.155 10.261
9.922 10.198

A subjective decision was made, based on prior experience
with chemical analyses of this type, to try a normal distribution for
the X parameter. The parameter \ was taken as being uniformly dis-
tributed between the values of 9.0 to 10.6. The chosen or assumed
interval corresponds with the range of individual observed x values.

Where

bt

B ix) = (Zxcrz) ~72exp [-(x—)h)z/(Zorz)] (3. 1)




OBSERVED
FREQUENCY

e | 1 L]

99 10.0 0.1 0.2 10.3 0.4
X of 3

Figure l. Frequency distribution of nitrogen values.
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is substituted in equation (2.2). This leads to the equation:

/9 198 i
(x) = (3.2)

/9 L f(x]N) da

*G

A computer program was written to evaluate equation (3. 2)
using the trapezoidal rule for each X plot of the estimates of \, vs
the X's is shown in Figure 2. The maximum value of \ over the range
of data is shown in Figure 2 to be approximately 8.95. The estimates
A vary from approximately 8.95 to about 8. 45 for X's between the

values of 9.0 and 10.5 respectively.

Empirical Bayes Estimation

Since one of the main complaints of classical statisticians about
Bayesian techniques is the need for more assumptions, a partial solu-
tion seems to be the concept of Empirical Bayes Estimation. The
empirical adjective indicates that we will use past or historical data to
estima te the prior distribution (or its parameters), and then use this
estimated prior distribution in Bayesian methods.

As an example of Bayes estimation, the following estimator was
derived in an unpublished paper by Lowe and Boes (1971). In this
paper, the authors derive an empirical Bayes point estimator of the

2
mean, assuming a normal prior distribution for A of N(u,7 ). Their

first example gives the Bayes estimator of Aas:




4 }
20.9 16.37
12.0 -
1.0 -
EST

LAMBDA |
10.0 -
9.0 -

8.0 , :

80 85 .0

Figure 2. Bayes estimates Lambda vs. X.
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(n/62)§+ (1/72)H
T - o
= a0

2 2
where ¢ , 7, and p are assumed known. TB is the mean of the prior

distribution and is the estimator having the smallest risk with respect

2

to a squared-error loss function, L(\, T_) = (\ - TB)

B
The risk function is based on the analysis of the expected value

of the loss, where risk is the mean-squared-error and Bayes risk is

the expected mean-squared-error (with respect to the prior distribution).

From this the Bayes risk of the Bayes estimator of )\, ’I.’B, is given as:

2 /2
o n/o (3. 4)

2 2
nflec + 1/71

Because the empirical Bayes estimator is dependent on prior data with
added assumptions, its Bayes risk is also dependent on the information.
Therefore, the empirical Bayes estimator approaches optimization as
the number of independent random samples increases and the empirical
Bayes risk decreases.

It can be easily shown that the Bayes risk of TB is smaller than

= 2
the Bayes risk of X, which is ¢ /n. Comparing the two Bayes risk

formulas we see
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Clearly there would be a greater risk using the estimator X than using
the empirical Bayes estimator.
Consider the following example with the added assumption that
. : : . 2
the ratio of the sample and prior variance is known so that ch./T = 0.

J
Substituting this into TB gives

6
- n ~ j
TBA[M&] X ——L———nM] . (3. 6)
j ]

where the only unknown parameter is u. This suggests replacing u by
: A G ) m Feliag o .
some estimate, say u, based on past data. The following equation can

then be used as an empirical Bayes estimator,

i = wX + (1-wit, o

both i and w are selected to minimize the expected Bayes risk., The
parameter w is a weight for the present sample ranging between 0 and 1.
This makes (1-w) the weight for the past data. The mean-squared-

error of T L s
W

2 2 2 A2
w (0 /n) + (1-w) (A-p), (5.8)
and the Bayes risk of TW can be shown to be
2 2 Z 2 A2
W @/nlt(low) (7 4 (1p) ), (3.9)

The expected Bayes risk of T with respect to w is

W)
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)

w2 (0‘2/1’1) + (l—w)2 {72 + E[(u-p) (3.10)

As in the previous example our goal is to show that the empirical
Bayes estimator approach yields the least risk. This can be accom-
. : A : .
plished by selecting i and w so that the expected Bayes risk of TW is
minimal.
To minimize the risk, first choose yu to minimize the mean
A A . .
squate error for |, E[(p—p.)], and then choose w. The linear combina-
k
oz

e A . : r
w X, 6 = is an unbiased estimate of y if 2w = 1.
1

tion of observations :
=1 i J

The particular combination that is most efficient is the one which mini-
mizes

—— 2 — P
var(>Xw X ) =>w  wvar (X ) - var (X) Z)w,z (3.11)
]3] J J J

z
or the one that minimizes ij , subject to Zw. = 1. It can be shown by
J

using Lagrange multipliers that the set of w 's which mininnzes (3.11)

.

is given by:

-1
.2
. [(U_L/nj) + 72] . n, /(nj +6.)
Ll - : =] . (3.12)
= L b > [n/@ +6}]
i 1 - 1 i i
i=1 i=1
A A k -
By substituting w * for w, pu becomes p* = X w,_ X, and the expected
J i Jd )
j=1
Bayes risk of TW is given by
‘A D k .
Eljp*p) ] =2 {nj/(nj T+ (rj)]- (3. 13)
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The next problem is to select a w to minimize the expected Bayes

risk of TW. A minimum W represented as w¥* is given as:

-1
k
7'2 + {_]Z:l [n./(n. 7-2 +(yz)]}

WX = L L (3° 14)

]

2 2 k 2 2
0 /m)+ 7 +4= . In/m 7 +o )1}
Bl j

2
Dividing through by 7 gives:

. 2.2 . -
where 6 = o /7 from the present sample. Substituting w* into the

Empirical Bayes estimator given previously yields:

T k- wr X & (1~W*)ﬁ*. (3.16)

The expected Bayes risk of Tw*is then ((rz/n)w*. Note that if wk= 1,
then TW* is equal to the risk of the sample mean. If W*< 1, then the
expected Bayes risk of TW* is smaller than that of the sample mean,
which means that TW* is a better estimator than X if better is defined
to be an estimator with smaller expected Bayes risk.

Another estimator similar to that developed by Lowe and Boes

which also incorporates the Empirical Bayesian philosophy, is referred

to as The James-Stein estimator. It uses observed averages to esti-

mate unobservable quantities. This estimate sometimes contradicts
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the traditional statistical theory that no other estimation rule is
uniformly better than the observed average. Stein's paradox concerns
the use of observed averages to estimate unobservable quantities.

The initial step in applying the James-Stein method is to deter-
mine the grand average, denoted by the symbol ;' The essential pro-
cess in The James-Stein method is the ''shrinking!'' of all the individual
averages toward this grand average. This shrinking factor is designated
as c. It is determined by the observed averages and is given by the

equation

c =1 - —E—_"—‘—*E- (3.17)

2
Here k is the number of individual averages, ¢ is the population

k 2
vaiiance and X 1 (yj—y) is the sum of the squared deviations of the
J:
individual averages y. from the grand average 3:, The estimator is
J

found through the following equation:
¥ = viec(y-y). (3.18)

If the shrinking factor is unity or one, the # is reduced to being equiva-

lent to the individual average.

The risk function for the James-Stein estimator is

E[(x-z)z

] (3.19)
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This risk is less than that for the sample averages no matter what the
true values of the A's happen to be. The reduction of risk can be sub-
stantial when the number of means is larger than five or six. The
estimator does substantially better than the averages only if the true
means lie near each other. It does at least marginally better no matter
what the true means are.

The James-Stein estimator is similar to that of Bayes's equa-
tion. The James-Stein procedure has one important advantage over
Bayes! method. The James-Stein method can be employed without
knowledge of the prior distribution, and there is no need to assume the
means being estimated are normally distributed. There is one draw-
back to the James-Stein method: it increases the risk function by an
amount proportional to 3/k, where k is again the nurnber of individual
averages. The additional risk is negligible when k is greater than 15
or 20 and tolerable for k as small as 9.

As a second example of estimating A, also taken from the Lowe
and Boes report, assume the samples have the same variance and sam-
ple size. The variance is assumed unknown, but all the past samples

have the same size, n. =n (j=1, . . . , k), same unknown variance
J

2 2
o.=c (j=1, . . ., k),and\isthe value ofa randomvariable which is dis-

J
. 2 2
tributed normally, N(u,7 ) where both u and 7 are unknown. The prior

2
data has the distribution N(\., o J,) where Y is a random sample from
J J

this data.
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The form of the empirical Bayes estimator is:
TZ_:Z-§+(1-Z-);, (3.20)

where y without a subscript is the mean of the present data, 3:/ is the
grand average of the past data, and # is a statistic independent of }:f,
but depending on the past data alone. Again % will be chosen, as was

., minimal. The mean squared

w, to make the expected Bayes risk of Tzé

- 2 2 2. -
error of T'?-’ with #Z and y fixed, is # (o /n) + (1-Z) (L-y), and simi-

larly the Bayes risk is

2

) 2.2 - 2
I+ 1+ G | (3.21)

% (o /n) + (1-%)

Assuming independence of % and ;, the expected Bayes risk is:

2. 2 2
]

ElZ |(c In)+E[(1-%) ('rZ + Var [y]). (3.22)

As in the previous example, the objective is to select a weight %.

However, % is now a statistic which depends on the past data yet is

independent of y, making the Bayes risk minimal. The statistics v,

= 2 . :
ZZ(y,i—y.. ) and > yj— y) are mutually independent. As shown in
1

Graybill (1976), (3.23) below is a chi-square random variable with

2

= .
k(n-1) degrees of freedom, y~Nlu, (¢ /kn) + (7 /k)],

Davaly VJ_.) /e . (3.23)

The above assumptions make the expected Bayes risk
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2 2
tle Jka) & (7 [B)]. (5. 24
L =2 2 2 |
Further, (v, - y) /o /n +t 7 ] can be shown to be a chi-square
.
random variable with (k-1) degrees of freedom. Since gZ and ’T‘Z are

unknown, the equation:

2
1 = e 1) (3. 25)

e o e ki

is not acceptable. The next step is to find a statistic Z which approxi-
mates the right hand side of the above equation. Since the group sum

of squares, the error sum of squares from a one-way analysis of

variance and y are all mutually independent. The ratio

Sy, - v . = T (n-1)]

2

(3. 26)

/[(er/n) + 7] (-1}

can be shown to be F-distributed with k(n-1) and k-1 degrees of freedom,

— . = 2
andthe expectation of = (y . - V. )2 2y ~ ¥ = proportional to
g J
2 2 2 : _ . .
o /o /n)+ 7. The equation: (I - £} =} [Zz(yji i yj ) /Z(Yj -yl

can be minimized, giving the expected Bayes risk as a function of b, say

k(k-5)

(3.27)

n(k+l) [k(n-1) + 2]
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The existence of the variance of % requires that k be greater than
five; otherwise there would be no weight on the prior data in the cal-
culation of T . .
ulati Z

Substituting b* for b yields the weighting of Z = %% equal to:
me-lopelonly,. -y ) (20 -y ], (5.28)

and the empirical Bayes estimator equals to:

rf%;:: = Z"*? + (1-2%) y. (3.29)
The expected Bayes risk of T
The expected Bayes risk of T, . _ given by
2 2 A 2
A9 1 o \I (n-1) k (k-5) \ (3. 30)
= 2 2 53 Ty = > .
- o +nT / (ko) il Lkm 1) 4 ]]

which is derived on the following page. This is less than the Bayes

- 2
risk of y, which is ¢ /n. As k increases, T becomes asymptotically

optimal.

To compare the empirical Bayes estimator, we need the
expected Bayes risk of TZ_*.
When

B = 1k [mxlyy -5, 022, - )

substituting b* gives
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: s 2 = — 7
1 -kkS)[m2tly. -7 J (2. -] ]
Zk = R AL .51
ank-1) [kn-1) + 2]
where the expectation of:
. .z =2 ,
ZL(YJ--I -y 205 -] (3.32)
J.

is proportional to

L.¢ 2 2 v /

o /il /ot 4l (3.33)
Therefore Z* can be simplified by substitution to:

2
alb ;
o Mo nle - (3.34)
nik + 1) [k(n-1 ¢ 2][¢ /n +7 |
Rearranging equation (3.34) yields,
2
-5
=L = s (3.35)

o +n72/ k+1)[k(n-1) + 2]

Taking TZ* = Zxy (1 - Z*); as an empirical Bayes estimator, the

expected Bayes risk of TZ—"’ is given by

2
{T’ __ o k(n-1) k(k - 5) (3.36)

P 2 k-3)(k * 1T 1) 2]

. . - . -
Again, the Bayes risk of y, which is ¢ /n, is larger than the Bayes

risk of T |
7=k
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An Application of
Empirical Estimation of )\

An application of the previous process for determining the
empirical Bayes estimator \ is shown for the following data. These
data, shown in Table 2, are derived from Table 1. Triplets of days
were taken, and the adjoining columns give quantities needed for
computing pertinent statistics.

. . - _ 2
lhe ratioof 2> (y..-y. ) fo 5 (y.-y] canbe dseen stabiliz-
Ji J. J
ing as the number of prior data means increases as shown in Figure 3.
This shows that each additional mean will have diminished influence on
the ratio, and hence a smaller influence on the estimator as the number

of samples increases.

The James-Stein method was next applied to the data found in

Table 2 yielding the following statistics, where the grand average, y
is equal to 10. 16 and the variance is equal to . 0248.

Here k is again the number of unknown means,andcand Z are
defined in equation (3.17) and (3. 18) respectively. As the number of
past means increases, the value of ¢ diminishes and the influence of the
grand average, }:r, increases, which is parallel to the effect of increas-
ing the number of prior data means on the empirical Bayes estimator,

as mentioned before.

The James-Stein procedure has one important advantage over

the Lowe and Boes method since the James-Stein estimator can be




Table 2
Quantities for calculating Empirical Bayes estimators

e 's 5 Sy v b ?iinb > ‘2——XE Z% ¥

of data i . T éas;j’e 0 Z%

Prior 10,20, 10 92, 10.16 10.23 0. 0139
10,17 18,11, 10.05 10.11 0. o072
991, 10,20 10 17 10.09 00509
10,60 10 92 10,24 10.20 0.0449
10 0F 10,060 10.61 10.01 0.001
9.5, 10,26 1011 1003 0 1493 . 2663 3l

Recent 9,96 "8 B3 9§ ] 9.80 0.0626 0.07042 32y 5667 .9829  9.4595
16.29 10.13. 9.95 10.12 0.0579 . 036458 . 3868 . 3695 L9788 9 .6920
9.84 10 00 9.80 9,88 0 D224 . 049383 4092 . 4764 .9483  8.8484
18.35 10,31, 9.97 10 21 00372 . 06000 .4964 .5413 .9368  8.9294
10128 16,37 10 36 10.30 0.0229 . 068871 .5193 . 4863 .9184 8.6380
10 57, 10 76, 1024 10,30 0.0165 .076389 5358 . 4061 .8907 8 0il4
10,06, 10264, 1018 10.17 0. 0203 . 082840 .5561 . 6226 9210 8 5631
18,27, 10.52. 1079 10.28 0.0053 . 088435 .5614 .8987 9417 9.0917
10.52 10,54 10 6 1037 0 035 . 093333 . 5969 . 8652 9326 8 98u7
162> 18 20 10.40 10.32 0, 0217 :097656 6186 1.lelaps 9460 9 2150
10,21 10.02 10.12 10,13 0.0242 .1Dk499 . 6dPs 1 1600 .9420  8.9540
§0 13, 10.14, 10.14 10,15 0. 0011l . 104938 . 6439 . 9620 9277 B 6o
10,06, 995 l0.0°> 10.01 0. 0093 .108033 ¢582 1 2204 .9407 B.314%
16 13 1908 1010 1010 0.8013 .110833 .6545 1.p228 .9274 8 6204
16.0J, 10,24 10.42 10.25 0. 0545 113379 7000 . 8465 9031 8. 241
0.2 1015 10 21 10,20 0.0042 .1l5702 7132 . 8548 90 B 2500

oo
w
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Figure 3. Minimized expected Bayes Risk vs. amount of prior data.




employed without knowledge of the prior distribution. In fact, one

need not even assume the means being estimated are normally distri-

buted.
Table 3
James-Stein Method

Triplet , - =2

Inué;er () - oY) - .
7 1011 1310 1 -
8 10. 16 .0018 2 -
9 10. 1 . 0794 3 L
10 10.17 . 0025 4 .8833
11 10. 18 0191 5 . 7858
1 10,1 .0191 6 . 7032
13 10.16 .0001 7 . 6045
14 10. 18 . 0140 & .b317
15 10.19 . 0433 9 . 5170
16 10, 18 . 0250 10 .4788
17 10.16 L0010 11 . 4460
18 10.16 20001 12 .3784
19 10.14 .0231 13 . 3096
20 10. 15 .0038 14 . 2485
21 10.17 .0078 15 . 1974

22 10. 17 .0014 16 . 1539
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Chapter IV

Empirical Bayesian Multiple Comparison Procedures

As a practical application of empirical Bayesian methodology,
the following section deals with testing a comparison suggested by the
data, first introduced by H. Robbins (1955).

X each based on r replica-

Given n treatment means, XI' :
n

tions, a common problem is that of testing any comparison between
means which may appear to be significant. The comparison may be a
difference, (;l - X_), between two of the means, which is a test of
HO: 6>0 against the one sided alternative Ha: 6>0, where 0 is definedas the
true difference between the population means, 6 = oM This can
easily be applied to a given set of prior equally plausible differences
dl’ ., di. to be tested for the hypothesis and the alternative Ha:bi>0
where the set is very large.

The incorrect decisions in choosing a hypothesis are referred to

as Typel and Type Il errors. A type I error is committed when a true

HO is rejected. A Type Il error is made if H

0 is accepted when it is
actually false. It is conventional to denote the probabilities of these

errors by @ and B, respectively. If @ is set equal to 5%, then the

right-tailed 5% level t tests are applied to the differences simultaneously.

Since the error rate is operative for each comparison, this is termed




2
a 5% level comparisonwise rule. A comparisonwise rule makes a
Type I error in 100a% of the comparisons on the average. An experi-
mentwise rule would allow a Type I error in only 100a% of all experi-
ments on the average.

If a comparisonwise rule is devised which sets both o and 8
equal to 5%, two types of extreme results may occur. One extreme
that is possible, Type A, results in only 5% of the tests being significant
or only 5% of the null hypotheses being rejected. The other possible
extreme, Type B, results in only 5% of the tests being not significant
or only 5% of the null hypotheses not being rejected.

A dilemma encountered in multiple comparisons problems is
that no approach consisting of simultaneous applications of several t
tests can realistically hope to be acceptable when their error rate is
specified based on a priori considerations alone. This approach is
avoided because it reacts to the possibility of a Type A outcome by
increasing the comparison t value or tc, therefore decreasing the o for
each prior test, although the actual outcome is Type A. If the outcome
is intermediate, the increase in tc should not have been made; if the
outcome is Type B, the 1:C should have been decreased.

In order to strike a compromise between Type A and Type B
outcomes, an adequate rule for determining the significant t value must
be allowed to depend on the overall outcome or significance for all the

differences. The multiple comparison approaches of Fisher, Newman

and Duncan achieve some of this dependence, but not nearly enough.
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By never being less conservative than a comparisonwise rule, they
too can fail to be as powerful as they should be for a Type B outcome.
They can also fail to be sufficiently conservative for a Type A outcome.

A relatively new approach which recognizes and makes valuable
use of these two simple identifying characteristics of multiple compari-
son problems is the additive losses concept developed by Duncan (1975).
Additive losses are defined as the sum of the losses for the component
decisions found in multiple comparison problems. Assuming there are
n sample means, there are n(n-1)/2 pairwise comparisons to be made.
The additive loss is then the sum of the losses for each of these possible
decisions.

To illustrate the foregoing, consider the following problem
originally presented by Duncan (1975). The number of differences, s, is
equal to 1. Instead of choosing an a« and B, a simple loss function is

chosen. The loss function, L(d }6), is defined as the loss when decision

0

d is taken but 6 is the corresponding true difference between the means:

(@)
"
1

()

cost when 0
0) = (4. 1)
cost when 6

(e}
]
1
O

Similarly, L(da} ) is defined as
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(e}
1

cost of rejecting HO when 6 = 0
Lidi}i6) = (4, 2)
cost of rejecting HO when 6=06

o
i

a

The Bernoulli prior probability function is defined as the probability

of 6 taking on the values of 0 or ¢ ;
a

p if 6=6
{ a a .
P(e ]pa) = (4.
if 6=0
\pO . .

(SY)
ol

where pO =1 - p . Instead of seeking the most powerful o level test of
a
H :6=0 against Ha:o = 6 with power 1 - B, a Bayes rule or test is

0 a

used which minimizes the Bayes risk:

0
a a [
Blr)= & B 6) P(6
(5= 2, 2 P[5 BELp )

= P(d [6 )copa+o(da[0)clpl.

Minimizing the above with Bayes rule by substituting the normal den-

sities and taking the logarithms, it is found to be a right-tailed t value

given by the equation:

tC = 6a/2 +({lne¢ - In p)/éa (4.5)
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where c is the loss or the seriousness ratio of a Type I to a Type II
error, c — CI/CO and p is the prior odds ratio in favor of the alternate
hypothesis (Ha) oFr p = pa/(l - pa).

Therefore, if the costs of a Type I and Type Il error are equal
and the prior probabilities of Ha happening are equal to the probability
of HO happening, then the tc is equal to éa/Z.

An example of the empirical-Bayes additive losses approach
when there is more than a single difference (s> 1), is given below. The

additive losses result in the function:
cdlai =t j6 ). . B (df6). (4.5)

If the losses for a joint problem are the sums of the losses of its com-
ponent problems, then the optimal rule for the sum is the same as that
rule which minimizes loss for each of its components.

If the prior odds ratio p for Ha is unknown and if a difference,
d, from a set of prior differences, P, approaches 0 (indicating a Type I
result), then tC will be very large and conservative. If B is near 1
(indicating a Type II result), tC will be very small and powerful. There-
fore, t is dependent on P : An example of this dependency is shown in
Figure 4, derived from Table 4. As p nears zero or as P nears zero,
tc. will be very large and conservative, indicating a Type I result. If o)
nears infinity, then p_ nears omne and t will be very small and very

(o

powerful, or the likelihood of a Type II result is greater than that of a

Type lerror,
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Table 4
Empirical Bayes critical t values, tC.

P, Py PR g te

0, 1 0.9 0,111 2.4457
0.2 0.8 0. 250 2.0597
0.3 0.7 0.430 1.7686
0.4 0.6 0.670 1.5468
0.5 0.5 1.000 1.3466
0.6 0.4 1.500 1.1439
0.7 0.3 2. 350 0. 9257
0.8 0.2 4. 000 0.6534
0.9 0.1 9.000 0.2479

Waller-Duncan k-ratio t-test

A more widely applicable test for differences is the one by
Waller and Duncan (1969). Critical values of the form t =t
c (kB , q,f)
are required where F is the F ratio for groups in the data set at hand,
and f is the degrees of freedom for the between treatment mean square.
The parameter k is the Type Ito Type Il error seriousness ratio,

kl/ko and q is the amount of difference to be tested for. Since tables

of t(k B are not available for arbitrary values of the parameters,

the approximation
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25 1
20+
9o (nd) np)
1.5 £ & 4
*C
10 1
05 1
0.0 T T T T 1 I 1 I |
e | =2 @38 4 .8 & I 8 B0

PRIOR ODDS RATIO IN FAVOR OF H,=p

Figure 4. Critical t values vs. prior odds ratio.
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b
oo 1/F) 2#(k) (4. 6)

is used where %(k) is obtained from Table 6 of Duncan (1965). For two
means to be declared significantly different using this procedure then

requires t 2t where t = (71 - _j)/sd with

2 1
5, = 2 se/r]2 (4. 7)

. 2 . . . .
where s is the error mean square used:informing the sample F ratio
e
and r is the number of observations in each of the two means being
compared. If the calculatedt exceeds the t given by (4.6), then the
o

groups are declared statistically different.

ExamEle

As an example of the foregoing technique, magnesium contents
were determined for black gram several times after the seed coats
were removed. The data along with their means and the analysis of
variance are presented in Appendix A where the F ratio of 7.6103 is
seen to be highly significant. Duncan (1965) suggests using k = 100 if
no additional information on error seriousness is available since this
corresponds to the usual @ = . 05 type test. Using Duncan's (1965)
Table 6 gives b = (1 1/7.6103)_%(1. 721) = 1.84659 to test say the
difference between times 0 and 5, t=(2.35167 - 2.38833/[2(. 001128)/6|%:

1.8904. Sincet >1.84659, there is sufficient evidence to cause the

jection of H :p. =
reJeL ion o o Hl 88

2
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This Waller-Duncan technique was applied to all pairwise
differences by ranking the means and placing a continuous line beside
homogeneous subsets in Table 5. Using this approach, two means
must differ by at least . 03581 to be significantly different. Several
other multiple comparison techniques have also been included in Table 5
for comparison. The 5% LSD value for pairwise differences is .03919.
Tukey's HSD value is . 06349. Scheffé's value is . 08043. Minimum
difference values for the Student-Newman-Keuls (SNK) and Duncans
shortest significant range (SSR) are presented in Table 6, and their
differences are summarized in Table 5. From Table 5, it is clear that
the Duncan-Waller technique is the most liberal, declaring 32 of the
36 pairwise comparisons significantly different. The LSD and the SSR
are just slightly less liberal, declaring 31 of the 36 comparisons differ-
ent. The SNK procedure is more conservative, declaring 29 of the 36
different. The HSD procedure, which uses the most conservative value
of the SNK, declares only 27 significant differences while the Scheffé
procedure detects only 24 differences.

In selecting one of these six procedures, one would almost cer-
tainly not suggest the use of either the HSD or the Scheffé approach since
they are so conservative. While there is little difference between the
L.SD, the SNK and the SSR, the LSD (used after a significant F test) is

the easiest of the three. The Waller-Duncan procedure is the most

liberal of the set and is as easily applied as the LLSD, HSD or Scheffé
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procedure since only one critical value is needed. A good reference

for all but the SNK procedure is Ott (1977).

Table 5
Application of various multiple comparison techniques to
the Black Gram data of Appendix A.

Growp " TEem L0y SR s D o e

means Waller

. 095 l l ' !

. 098 i
14D l !
170 ] !
. 232 l
. 298 ! g

350 !
. 383 '

. 388

oo

Ul Oy 3 W W

oo

o

DYDY DN

Table 6
Minimum significant (@=.05) differences for the Black Gram
data of Appendix A for the Student-Newman-Keuls (SNK)
and Duncan's Shortest Significant Range (SSR)
multiple comparisons. Duncan-Waller
(D-W), LSD and Scheffé's values
are included for comparison

Number of

Mo SNK SSR Others
2 . 0392 . 0392 LSD = .0392
3 . 0472 .0413 D-W = .0358
4 . 0520 . 0425 HSD = .0635
5 . 0554 . 0435 Scheffé = .0804
6 . 0580 . 0442
7/ . 0602 . 0448
8 . 0620 . 0452
9 . 0655 . 0457
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Chapter V
Conclusion

The controversy between Bayesians and non-Bayesians stems
from the prior probabilities that are required of the Bayes method. It
is important to realize that the use of Bayes techniques depends heavily
on judgement and experience.

A basic belief of Bayes users is that the state of nature can be
described by the probability distribution or prior distribution. The
prior information is modified by incorporating present sample data
which better represent the distribution function of the random variable.

The distribution function is used in the determination of an
estimator. It was shown with this method that the Bayes risk of TB is
smaller than the Bayes risk of X Therefore, there would be a greater
risk using the estimator X than using the empirical Bayes estimator.

A concern in using the Bayes method for estimation is the con-
fidence the user has that it is the best method for the data. Considera-
tion must also be given to the possibility of calculating an incorrect
estimate.

The loss function is used for weighing the negative effect of

taking a certain action because of an incorrect estimate. Data changes

the problem of selecting an action to the selection of a decision function

in view of a certain risk function.
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Empirical Bayes estimation uses past data to estimate the
prior distribution and then uses this prior estimate in Bayesian methods.

When the overall average of the decision errors is weighed, the
Bayes risk accounts for every one of these errors, its loss factor, and
its prior probability. This eliminates the need of choosing an appro-
priate a for each comparison example and analyzing the data in a non-
Bayesian manner.

The Bayesian approach requires the user to specify a few more
quantities, but in the end, the gain in control of comparisonwise and

experimentive erros should far outweigh the added inconvenience of

specifying more quantities.
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Appendix A

Magnesium Data
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Time Magnesium Time .
: Variances
(minutes) mg/g means
2. 36 2629
0 2.44 2.24 2. 35107 . 00854

2.47 2.29

2.52 2. 20

5 2.54 2. 22 2.38833 . 02554
2.54 2.24
217 2.02

10 2. 17 2.02 2.09500 . 00675
2.7 2.02
2. 11 2. 01

15 2.22 Lo9y 2.09833 .01530
2. LU 2. 01
Zz. 21 2.51

20 2.21 Z. 21 2.23167¢ . 00202
2,19 2. 26

2.18 2.17

25 2.15 2.17 2.17000 . 00012
2. 18 2. 17
2.08 2. 19

30 2.08 2.19 2.14000 . 00264

2.13 2. 147

2.24 2.32
35 2.24 2.32 2.29833 . 00570
2.24 2.43

oo
oo

40 .18 .55 4. 33835 . 03495

Analysis of Variance
Source df 15 F

Total (cor) 53 (1392 -
Time 8 08586 7.6108
Error 45 .001128 -
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Appendix B

R Values




SIGNIFICANT STUDENTIZED RANGES FOR A 5% LEvEL NEw MULTIPLE RANGE TEST

1 2 I 3 4 5 6 7 8 9 10 12 14 16 18 ; 20 50 100
Vs |
1 18.0 l 180 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 | 180 180 18.0
2 6.09 ; 6.09 6.09 6.09 6.09 6.09 6.09 6.09 6.09 6.09 6.09 6.09 6.09 ‘ €.09 6.09 6.09
5) 450 | 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.0 4.50 4.50 450 | 4:50 4.50 4.50
41 393 401 | 402 | 402 | 402 | 402 | 402 | 402 | 402 | 402 | 402 | 402 | 402 | 402 | 402| 402
5 3.64 3.74 3.79 3.83 3.83 3.83 3.83 3.83 3.83 3.83 3.83 ‘ 3.83 383 | 383 3.83 3.83
6 346 | 3.58 3.64 3.68 3.68 3.68 3.68 3.68 3.68 3.€8 368 | 3.68 368 | 368 3.€8 3.68
v 335 | 347 3.54 3.58 3.60 3.61 3.61 3.61 361 3.61 361 [ 361 361 | 361 361 3.61
8 326 | 3.39 3.47 3.52 3.55 3.56 3.56 3.56 3.56 3.56 356 356 356 | 3.56 3.56 3.56
9 320 0 334 341 3.47 3.50 3.52 3.52 3.52 3.52 3:52 352 ; 3.52 3.52 ; 352 3:52 3.52
10 315 330 3.37 3.43 3.46 3.47 347 3.47 3.47 3.47 3.47 | 347 3.47 | 348 3.48 3.48
11 3.11 1 3.27 3.35 3.39 3.43 3.44 3.45 346 3.46 3.46 346 | 3.46 347 | 348 3.48 3.48
12 308 { 3.23 3.33 3.36 3.40 3.42 3.44 3.44 3.46 3.46 346 | 346 347 | 34B 3.48 3.48
13 3.06 | 321 3.30 3.35 3.28 341 3.42 3.44 3.45 3.45 346 | 346 347 | 347 3.47 3.47
14 3.03 | 318 3.27 3.33 337 3.39 341 3.42 3.44 3.45 3.46 | 346 347 | 347 3.47 3.47
15 301 | 1316 3.25 3.31 3.36 3.38 3.40 3.42 3.43 3.44 345 | 346 347 | 347 3.47 3.47
16 300! 315 3.23 3.30 3.34 3.37 3.39 341 3.43 3.44 345 | 346 347 | 347 3.47 347
17 298 | 313 3:22 3.28 333 32 3.3 3.40 3.42 3.44 3.45 ’ 3.46 347 | 3.47 3.47 347
18 297 ¢ 312 3.21 327 3.32 3.3 3.37 3.39 3.41 3.43 345 | 3.46 347 | | 347 3.47 3.47
19 296 « 311 319 3.26 3.31 3.35 337 3.39 341 3.43 3.44 | 3.46 347 | 3.47 3.47 3.47
20 2.95 3.10 ; 3.18 3.25 3.30 3.34 3.26 338 | 340 3.43 3.44 3.46 346 | 3.47 347 2.47 l
22 || 293 3.08 | 317 3.24 3.29 3.32 3.35 337 1 339 342 344 | 345 346 | adi | 347 3.47
24 | 292 307 315 322 3.28 331 [ 334 3.37 3.28 3.41 344 | 3.45 346 Sd7 | 347 3.47
26 291 | 3.06 3.14 3.21 3.27 330 | 324 3.36 3.38 3.41 343 | 3.45 246 | 347 | 347 3.47
28 2.90 3.04 3.13 3.20 3.26 3.30 3.33 3.35 | 3.37 3.40 ‘ 3.43 ; 3.45 346 347 . 347 3.47
30 289 | 3.04 3.12 3.20 325 3.29 332 335 337 340 | 343 | 3.44 3.46 | 3.47 3.47 3.47
40 286 | 3.01 3.10 3.17 322 3.27 3.30 3.33 3.35 339 | 342 | 3.44 3.46 | 347 3.47 347
60 283 | 298 3.08 3.14 3:20: | 324 3.28 3.31 333 337 3.40 | 3.43 345 | 3.47 3.48 3.48
100 2.80 “ 2.95 3.05 3.12 318 | 322 | 396 3.29 332 3.36 3.40 3.42 3.45 3.47 3.53 3.93
oo 270 J‘ 2.92 3.02 3.09 3.15 ] 3.19 J 3.23 3.26 3.29 3.24 3.28 I\ 3.41 344 | 3.47 3.61 3.67
! !
SIGNIFICANT STUDENTIZED RANGES FOR A 1% LeVEL NEW MuLTiPLE RANGE TEST
Nz | [ | 1
2 ’ 3 : 4 5 6 g 7 8 9 10 12 14 ; 16 18 20 50 100
vg N\ | |
111900 | 90 |90 |90 |90 |90 |90 |90 | 9o | o0 9.0 | 900 | 9.0 | 9.0 | 9.0 | 9.0
! 2 14.0 { 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 140 { 140 | 140 14.0 14.0
3 826 | 85 8.6 8.7 8.8 89 8.9 9.0 9.0 9.0 9.1 9.2 9.3 ] 9.3 9.3 9.3
4 6.51 6.8 6.9 7.0 7.1 71 12 72 73 73 7.4 74 75 | 7.5 75 7.5
5| 5.70 5.96 6.11 6.18 6.26 6.33 6.40 6.44 6.5 6.6 6.6 6.7 6.7 6.8 6.8 6.8
6 5.24 | 5.51 5.65 5.73 5.81 5.88 5.95 6.00 6.0 6.1 6.2 6.2 6.3 6.3 6.3 6.3
7 4.95 5,22 537 5.45 5.63 5.61 5.69 573 5.8 5.8 5.9 5.9 6.0 6.0 6.0 6.0
8 4.74 5.00 5.14 523 5.32 5.40 5.47 551 55 5.6 5.7 5.7 5.8 5.8 5.8 5.8
9 4.60 4.86 4.99 5.08 5.17 5.25 5.32 5.36 5.4 55 5.5 5.6 5.7 5.7 5.7 5.7
10 4.48 4.73 4.88 4.96 5.06 513 5.20 5.24 5.28 5.36 5.42 5.48 5.54 5.55 555 | 5.55
11 4.39 4.63 4.77 4.86 4.94 5.01 5.06 512 515 5.24 5.28 5.34 558 | 539 5.39 5.39
12 4.32 4.55 4.68 4.76 4.84 4.92 4.96 5.02 5.07 5.13 .17 5.22 5.24 5.26 5.26 5.26
13 4.26 4.48 4.62 4.69 4.74 4.84 4.88 494 4.98 5.04 5.08 5:13 5.14 5.15 515 5:15
14 4.21 4.42 4.55 4.63 4.70 4.78 4.83 4.87 4.91 4.96 5.00 5.04 5.06 5.07 5.07 5.07
15 4.17 4.37 4.50 4.58 4.64 4.72 4.77 4.81 4.84 4.90 4.94 497 499 | 500 | 5.00 5.00
16 4.13 4.34 4.45 4.54 4.60 4.67 4.72 4.76 4.79 4.84 4.88 4.91 493 i 494 | 494 4.94
17 4.10 4.30 4.41 4.50 4.56 4.63 4.68 4.72 4.75 4.80 4.83 4.86 488 | 489 | 4.89 4.89
18 4.07 4.27 4.38 4.46 4.53 4.59 4.64 4.68 4.71 4.76 4.79 4.82 4.84 1 4.85 485 485
i 19 4.05 4.24 4.35 4.43 4.50 4.56 4.61 4.64 4.67 4.72 4.76 4.79 4.81 4.82 4.82 4.82
20 4.02 4.22 4.33 4.40 4.47 4.53 4.58 4.61 4.65 4.69 4.73 4.76 4.78 4.79 4.79 4.79
b 22 3.99 4.17 4.28 4.36 4.42 448 4.53 457 4.60 4.65 4.68 4.71 474 /| 475 4.75 4.75
24 3.96 4.14 4.24 4.33 4.39 4.44 4.49 4.53 4.57 4.62 4.64 4.67 4.70 | 4.72 4.74 4.74
26 3.93 4.11 4.21 4.30 4.36 441 4.46 4.50 4.53 4.58 4.62 4.65 4.67 ‘ 4.69 4.73 4.73
28 3.91 4.08 4.18 4.28 4.34 4.39 4.43 4.47 4.51 4.56 4.60 4.62 4.65 ‘ 4.67 4.72 4.72
30 3.89 4.06 4.16 4.22 4.32 4.36 4.41 4.45 4.48 4.54 4.58 4.61 4.63 4.65 4.71 4.71
40 3.82 3.99 4.10 4.17 4.24 4.30 4.34 437 4.41 4.46 4.51 4.54 4.57 4.59 4.69 4.69
60 3.76 3.92 4.03 4.12 4.17 4.23 4.27 4.31 4.34 4.39 444 447 4.50 4.53 4.66 4.66
¢ 100 371 3.86 3.98 4.06 4.11 4.17 421 4.25 4.29 4.35 4.28 442 445 ‘ 4.48 4.64 4.65
:L [s) 3.64 | 3.80 3.90 3.98 4.04 4.09 4.14 4.17 4.20 4.26 4.31 424 4.38 l 441 4.60 4.68

This table is reproduced from David B. Duncan, “Multiple range and multiple F tests,” Bicmetrics, Volume 11 (1955), p. 4,
with the permission of the author of the article and the editor of Biometrics.
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Appendix C

Q Values
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