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Abstract 24	

 25	

The present retrospective study investigates pregnancy rates, incidence of 26	

pregnancy losses and large offspring syndrome (LOS), and immune-related gene 27	

expression of sheep and goat somatic cell nuclear transfer (SCNT) pregnancies. We 28	

hypothesized that significantly higher pregnancy losses observed in sheep SCNT 29	

pregnancies compared to goats are due to the increased amounts of T-helper 1 cytokines 30	

and pro-inflammatory mediators at the maternal-fetal interface. Sheep and goat SCNT 31	

pregnancies were generated using the same procedure. Control pregnancies were 32	

established by natural breeding. Although SCNT pregnancy rates at 45 days were similar 33	

in both species, pregnancy losses between 45 and 60 days and incidence of LOS were 34	

significantly increased in sheep compared with goats. At term, the expression of pro-35	

inflammatory genes in sheep SCNT placentas was increased while the one of goat SCNT 36	

was similar to the control animals. Among the genes that had altered expression in sheep 37	

SCNT placentas are CTLA4, IL2RA, CD28, IFNG, IL6, IL10, TGFB1, TNF, IL1A and 38	

CXCL8. MHC-I protein expression was greater in sheep and goat SCNT placentas at term 39	

compared with control pregnancies. An unfavorable immune environment is present at 40	

the maternal-fetal interface in sheep SCNT pregnancies.  41	

 42	

 43	

1. Introduction 44	

 In sheep and cattle, pregnancies generated by somatic cell nuclear transfer 45	

(SCNT) are at increased risk of early pregnancy loss, late term pregnancy complications 46	
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(Campbell et al., 1996; Schnieke et al., 1997; Wells et al., 1997; Wilmut et al., 1997; 47	

Edwards et al., 2003; Fasouliotis and Schenker, 2003; Shevell et al., 2005; Loi et al., 48	

2006) and large offspring syndrome (LOS) (Behboodi et al., 1995; Young et al., 1998; 49	

Wilmut et al., 2002; Constant et al., 2006). For instance, approximately 50% of SCNT 50	

generated full-term calves and lambs are diagnosed with LOS (Constant et al., 2006). In 51	

addition to fetal abnormalities, calves with LOS also present placental anomalies, fewer 52	

and enlarged placentomes and reduced placental vascularization (Hill et al., 2000; 53	

Bertolini and Anderson, 2002; Chavatte-Palmer et al., 2002; Constant et al., 2006). In 54	

goats, SCNT outcomes have been variable with studies showing pregnancy loss after day 55	

60 of gestation(Baguisi et al., 1999; Keefer et al., 2001, 2002; Reggio et al., 2001); while 56	

others report pregnancy losses of approximately 100% (Zhu et al., 2009; Zhou et al., 57	

2013).. The increased pregnancy loss observed in SCNT pregnancies may be due, at least 58	

in part, to a deficient cross talk between the mother and the fetus. Abnormal trophoblast 59	

gene expression patterns in SCNT pregnancies have been observed in various species 60	

(Bauersachs et al., 2009; Mansouri-Attia et al., 2009; Rodríguez-Alvarez et al., 2010a; 61	

Isom et al., 2013). Expression of genes related to immune responses, metabolism, 62	

oxidative phosphorylation, cellular response to hypoxia and angiogenesis is misregulated 63	

in bovine SCNT pregnancies (Mansouri-Attia et al., 2009).  64	

  A shift from a T-helper 1 (Th1) to a T-helper 2 (Th2) response is an important 65	

factor in the maintenance of pregnancy in humans and mice.  In the uterus of a non-66	

pregnant woman there is a homeostasis between Th1 and Th2 activity (Sargent et al., 67	

2006). In normal pregnancies, this balance is shifted toward a Th2 type response because 68	

of the presence of progesterone and placental cytokines (Piccinni et al., 2000). However, 69	
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an extended Th1 response has been associated with recurrent miscarriages in humans 70	

(Jenkins et al., 2000; Lim et al., 2000). In abortion-susceptible mouse models, fetal loss 71	

has been associated with the expression of Th1 cytokines and deficient expression of Th2 72	

cytokines (Chaouat et al., 1990, 1995). The production of Th2 cytokines, mainly IL4, 73	

IL5, IL6, IL10 and IL13, promotes growth of trophoblast cells and may help maintain 74	

pregnancy (Lin et al., 1993; Wegmann et al., 1993). Conversely, Th1 cytokines such as 75	

IFNG, TNF and IL2 contribute to placental toxicity and damage, directly or indirectly 76	

through the activation of other immune cells (Arck et al., 1999; Lim et al., 2000). 77	

Recently, it has been reported that a shift towards a Th2 cytokine response is associated 78	

with normal pregnancies in cattle (Oliveira et al., 2013).  79	

In this retrospective study we determined the pregnancy rates and the incidence of 80	

pregnancy losses and LOS of sheep and goat SCNT pregnancies. We also investigated 81	

the immune-related gene expression profile of placentas originated from sheep and goat 82	

SCNT and from naturally conceived pregnancies. Our hypothesis is that in SCNT-83	

generated pregnancies, pregnancy losses between 45 days and term in sheep are 84	

significantly higher than in goats due to the increased amounts of Th1 cytokines and pro-85	

inflammatory mediators at the fetal-maternal interface, which contribute to placental 86	

dysfunction and pregnancy loss.  87	

 88	

2. Material and Methods 89	

2.1. Somatic Cell Nuclear Transfer 90	
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Sheep and goat SCNT pregnancies were generated as described by (Hall et al., 91	

2012). Passage 2-5 fibroblast cells were grown to 90-100% confluence and used as 92	

nuclear donor cells after 24 hours of serum starvation (0.5% FBS, Hyclone Laboratories, 93	

Logan, UT, USA). Cumulus-oocyte complexes were recovered from ovaries using slicing 94	

and aspiration techniques. The quality of collected oocytes was assessed based on 95	

morphology. All good and fair quality oocytes were cultured in maturation medium as 96	

described elsewhere (Reggio et al., 2001). After 22 to 24 hours of culture, cumulus cells 97	

were removed from matured oocytes and oocytes with a first polar body were used as 98	

recipient cytoplasts. The first polar body and metaphase plate were removed, and 99	

subsequently single donor cells were transferred to the perivitelline space of recipient 100	

cytoplasts. Fusions of somatic cells with oocyte cytoplasm were performed in sorbitol 101	

fusion medium (0.28 M sorbitol, 100 µM calcium acetate, 0.5mM magnesium acetate and 102	

1 mg/ml BSA) by a single DC electric pulse of 1.75 kV/cm for 15 microseconds. Fusion 103	

of the donor cell with oocyte cytoplasm was evaluated by microscopy 30 minutes after 104	

the pulse. Fused embryos were activated between 27 and 29 hours after the onset of 105	

maturation by exposure to 5 µM ionomycin (Sigma-Aldrich, St. Louis, MO, USA) for 5 106	

minutes followed by a 4-hour incubation in 2 mM DMAP (Sigma-Aldrich, St. Louis, 107	

MO, USA) and 10 µg/ml cycloheximide (Sigma-Aldrich, St. Louis, MO, USA). 108	

Following activation, goat embryos were cultured in G1 medium (Vitrolife, Goteborg, 109	

Sweden) and sheep embryos were cultured in either G1 or SOF (Walker et al., 1996) 110	

media for 12 hours. Since no difference was observed in the pregnancy and LOS rates, 111	

and gene expression in sheep SCNT pregnancies using two different culture media the 112	

data were combined.   113	
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2.2. Establishment of Pregnancies and Sample Collection 114	

The use of animals for this study was approved by the Institutional Animal Care 115	

and Use Committee at Utah State University. Eighty-two domestic sheep (Ovis aries) and 116	

37 domestic goats (Capra aegagrus hircus) were used as recipients for embryo transfers. 117	

All animals were housed in an open sided barn with free access to food and water. 118	

Experiments were conducted simultaneously in both species. Somatic cell nuclear 119	

transfer pregnancies were established by surgically transferring 16 ± 3 embryos into the 120	

oviduct of recipients synchronized to show estrus within 12 hours of SCNT. 121	

Confirmation of pregnancy was determined by ultrasonography on days 45 and 60 of 122	

gestation.  123	

A subset of the SCNT pregnancies was used for placental gene expression 124	

analysis (sheep: n=6; goat: n=8). Since the main objective of the present study is to 125	

identify the immune-related genes that are altered in SCNT compared to normal 126	

pregnancies, control pregnancies (sheep: n=6; goat: n=8) were established by natural 127	

breeding. Parturition in animals that did not deliver naturally by 152 ± 1 days of gestation 128	

was pharmacologically induced by intramuscular administration of dexamethasone (20 129	

mg for sheep and 12 mg for goats) and prostaglandin F2α (10 mg for sheep and 15 mg for 130	

goats).  131	

Immediately after vaginal delivery, intercotyledonary and cotyledonary chorionic 132	

samples were collected separately, snap frozen in liquid nitrogen and stored at -80°C. For 133	

immunohistochemistry, placental samples collected from the ipsilateral horn to the 134	

pregnancy were frozen in a Tissue-Tek optimal cutting temperature (Sakura, 135	

Flemingweg, The Netherlands) compound. Eight µm thick sections acquired using a 136	
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cryostat microtome, were placed on pre-cleaned Superfrost Plus microscope slides, fixed 137	

in ice-cold acetone for 5 minutes, air-dried and then frozen at -80°C for long term 138	

storage. 139	

 140	

2.3. RNA Extraction and Gene Expression Analysis 141	

Total RNA was extracted from snap frozen tissues using the TRizol Plus 142	

Purification System (Life Technologies, Grand Island, NY, USA). Concentration of total 143	

RNA was determined with a Nanodrop 1000 spectrophotometer (Thermo Scientific, 144	

Waltham, MA, USA) and RNA integrity was determined using a 2100 Bioanalyzer 145	

(Agilent, Santa Clara, CA, USA).  146	

Five µg of RNA were reverse transcribed using SuperScriptTM VILO cDNA 147	

synthesis kit and master mix (Life Technologies, Grand Island, NY, USA) according to 148	

manufacturer’s instructions. A pre-amplification step was performed prior to the 149	

Fluidigm high throughput qPCR. One µl of each primer pair of interest (100 µM each) 150	

was pooled and made to a final volume of 100 µl of 1x TE buffer, pH 8.0. In order to 151	

make a 5 µl pre-amplification reaction, 1.25 µl of each sample was added to 2.5 µl of 152	

Preamp Master Mix (Life Technologies, Grand Island, NY, USA), and 1.25 µl of pooled 153	

primer mix. The final concentration of each primer was 50 nM. cDNA was amplified for 154	

14 cycles under the following conditions: 95°C for 15 seconds, and 60°C for 4 minutes. 155	

Unincorporated primers were removed by treating amplified cDNA with Exonuclease 156	

4U/ µl (New England Biolabs, Whitby, Ontario, Canada) for 30 minutes at 37°C and 15 157	

minutes at 80°C. This mixture was then diluted 1:5 with RNAse and DNAase free water.    158	
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Eva Green™ high-throughput nanoliter volume microfluidic chip quantitative 159	

RT-PCR (48.48 Dynamic Array; Fluidigm Corporation, South San Francisco, CA, USA) 160	

was used to determine the level of gene expression for the following genes: IL1A, IL2, 161	

IL4, IL5, IL6, CXCL8, IL10, IL12B, IL13, IL15, IL17A, IL18, IL23A, IFNG, TNF, 162	

TGFB1, CSF2, IL2RA, CD28, CTLA4, GATA3, TBX21, GNLY, MHCI, IFNA2. Primer 163	

details are shown in Table 1. Two primer sets for glyceraldehyde- 3-phosphate-164	

dehydrogenase (GAPDH) and β-actin (ACTB) were used as housekeeping genes. 165	

Standard PCR reactions were performed to confirm the specificity of each primer set. 166	

Quantitative RT-PCR reactions were performed following the standard Fluidigm protocol 167	

(Spurgeon et al., 2008). A 48.48 Dynamic Array chip (Fluidigm Corporation, South San 168	

Francisco, CA, USA) was first primed with Krytox in the IFC controller (Fluidigm 169	

Corporation, South San Francisco, CA, USA). Then, 5 µl sample mixtures containing 2.5 170	

µl of 2x TaqMan Gene Expression Master Mix (Life Technologies, Grand Island, NY, 171	

USA), 0.25 µl of DNA sample loading reagent (Fluidigm Corporation, South San 172	

Francisco, CA, USA), 0.25 µl of EvaGreen DNA binding dye (Biotium, Hayward, CA, 173	

USA) and 2 µl of pre-amplified cDNA sample were pipetted into the sample inlets of the 174	

chip. Five µl assay mix containing 2.5 µl of 2x assay loading reagent (Fluidigm 175	

Corporation, South San Francisco, CA, USA), 0.25 µl of 1x TE buffer and 2.25 µl of 176	

primer pairs (20 µM) were pipetted into the assay inlets and chip was loaded in the IFC 177	

controller (Fluidigm Corporation, South San Francisco, CA, USA). Quantitative RT-PCR 178	

was performed using the Biomark Real-Time PCR System (Fluidigm Corporation, South 179	

San Francisco, CA, USA) under the following conditions: 10 minutes at 95°C followed 180	

by 40 cycles of 95°C for 15 seconds and 60°C for 1 minute. 181	
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Data were analyzed using Fluidigm Real-Time PCR Analysis software version 182	

3.02 (Fluidigm Corporation, South San Francisco, CA, USA) to yield relative 183	

quantitation values calibrated to control animals. Analysis of variance was used to 184	

determine that amplification of the housekeeping genes, GAPDH and ACTB, was not 185	

statistically different across groups (P = 0.48). Relative gene expression data was 186	

analyzed by the 2-ΔΔCt method (Livak and Schmittgen, 2001) using the average of the 187	

housekeeping genes GAPDH and ACTB for normalization. The values presented here 188	

reflect the fold change of gene expression in the SCNT groups in sheep and goats 189	

compared with the control groups of the respective species. The fold change in gene 190	

expression was only considered biologically significant if above 2.   191	

 192	

2.4. Immunohistochemistry 193	

  Slides containing frozen sections were allowed to thaw at room temperature and 194	

then rehydrated in 2 changes of PBS for 10 minutes. Sections were treated with 0.3% 195	

hydrogen peroxide in PBS for 10 minutes to block endogenous peroxidase activity. All 196	

incubations were done at room temperature in a humidity chamber and slides were 197	

washed in three changes of PBS between incubations except for when the blocking 198	

solution and primary antibody incubation treatments were used. Nonspecific binding sites 199	

were blocked with PBS containing 1% bovine serum albumin (BSA) and 2% normal goat 200	

serum for 20 minutes. Immediately after treatment with blocking solution, sections were 201	

incubated for one hour with anti-H58 monoclonal primary antibody (Washington State 202	

University Monoclonal Antibody Center, Pullman, WA, USA). This antibody reacts 203	
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strongly with ovine and caprine MHC-I proteins (Davis et al., 1987). Sections were then 204	

treated with 1 ml of 7.5 µg/ml of biotinylated goat anti-mouse IgG secondary antibody 205	

(Vector Laboratories, Burlingame, CA, USA) for 20 minutes followed by streptavidin 206	

peroxidase incubation for 20 minutes. Slides were incubated with 3-amino-9-207	

ethylcarbazole (AEC) kit (Life Technologies, Grand Island, NY, USA) for 5 minutes and 208	

excess AEC was removed by washing in distilled water.  Sections were counterstained 209	

with haematoxylin for 1 minute and the excess was removed by washing in distilled 210	

water. Slides were mounted using the water-soluble Fluoromount-G mounting medium. 211	

Stained sections were analyzed using a Zeiss Axio Observer microscope (Zeiss, 212	

Gottingen, Germany) with a 10x objective. Digital images were acquired using 213	

AxioVision software (Zeiss, Gottingen, Germany) and a high-resolution AxioCam HRC 214	

digital camera. The MHC-I+ protein expression levels of trophoblast cells was assessed by 215	

the area percent of the total trophoblast area that was occupied by these cells using the 216	

AxioVision software (Zeiss, Gottingen, Germany). 217	

 218	

2.5. Statistical Analysis 219	

Analyses of gene expression employed one-way ANOVA (analysis of variance) 220	

models using the MIXED procedure of SAS (SAS for Windows, version 9.3, SAS 221	

Institute Inc., Cary, NC, USA) with treatment as the sole fixed effect and cell type and 222	

embryo culture medium as covariables. Significant differences between treatments were 223	

determined by t-test with the pdiff option and Tukey’s adjustment. Treatment effects on 224	

pregnancy rates, pregnancy losses and incidence of LOS were examined by chi-squared 225	
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analysis using the FREQ procedure of SAS (SAS for Windows, version 9.3, SAS 226	

Institute Inc., Cary, NC, USA). Effects were considered to be significant when the P 227	

value was equal or below 0.05.  228	

 229	

3. Results 230	

3.1. Pregnancy Rates and Pregnancy Loss 231	

As depicted in Table 2, 82 SCNT embryo transfers were performed in sheep and 232	

37 in goats. Pregnancy rates at 45 days after SCNT were similar (P = 0.38) between the 233	

two species (32.9% for sheep and 32.4% for goats). Pregnancy rates declined (P = 0.042) 234	

at 60 days in sheep compared to goats (19.5% versus 32.4%, respectively). In sheep, 235	

pregnancy rates at term did not differ from day 60 suggesting that the critical period for 236	

loss of SCNT pregnancies in sheep occur between days 45 and 60 of gestation. A 237	

significant difference (P < 0.001) was observed between sheep and goat in pregnancy 238	

losses between 45 days and term with 11 of 27 pregnancies (40.7%) being lost in sheep 239	

while none of the 12 pregnancies were lost in goats (Table 2).   240	

For pregnancies generated by natural breeding, day 45 pregnancy rates were 241	

similar (P = 0.94) with 82% (18/22) and 81% (17/21) for sheep and goats, respectively 242	

and losses between gestation day 45 and term were 5.6% (1/18) for sheep and 5.9% 243	

(1/17) for goats (P = 0.97).  244	

 245	

3.2. Incidence of Large Offspring Syndrome  246	
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Large offspring syndrome was characterized by increased birth weight combined 247	

with placental and/or fetal anomalies such as: enlarged organs and umbilical cord, 248	

hydrops of the fetus, lethargy, skeletal and cranial malformations and abdominal wall 249	

defects. Incidence of LOS was greater (P = 0.03) in sheep SCNT pregnancies than in 250	

goats SCNT pregnancies (31.3% versus 0%, respectively; Table 2).  251	

 252	

3.3. Expression of Genes Related to Immune Function in the Placenta 253	

Our data indicate that the expression patterns of genes related to immune function 254	

are aberrant in sheep placental samples from SCNT-generated pregnancies compared 255	

with pregnancies established by natural breeding, and goat SCNT pregnancies.  256	

The intercotyledonary region of sheep SCNT placentas showed upregulation (P < 257	

0.05) of immune-related genes such as CTLA4, IL2RA, CD28,  IL6, TGFB1, IL1A and 258	

CXCL8, while goat SCNT placentas showed no significant change in expression of such 259	

genes relative to pregnancies established by natural breeding. Sheep SCNT 260	

intercotyledonary placentas also expressed greater levels of Th1 cytokines such as TNF 261	

and IFNG. Upon comparing goat and sheep SCNT intercotyledonary placentas, sheep 262	

had greater (P < 0.04) mRNA expression of the above-mentioned genes (Fig. 1).  263	

As shown in Figure 2, the cotyledonary region followed a similar pattern of gene 264	

expression as the intercotyledonary region. Sheep SCNT placentas had greater (P < 0.05) 265	

mRNA expression levels of CD28, IL10, IL1A, CXCL8, TGFB1 and TNF compared with 266	

sheep control placentas and to goat SCNT placentas. Whereas, CSF2 expression was 267	



	 13	

greater in SCNT goats compared with SCNT sheep (P = 0.035) and with control goat 268	

placentas (P = 0.022).  269	

In the intercotyledonary region of the placenta, the level of expression of CTLA4, 270	

IL2RA, CD28, IFNG, IL6, TGFB1, TNF, IL1A and CXCL8 was similar (P > 0.2) between 271	

sheep and goat control pregnancies (Fig. 3A). Comparably, expression levels of CD28, 272	

CSF2, IL10, IL1A, CXCL8, TGFB1 and TNF were similar (P > 0.21) in the cotyledonary 273	

region of sheep and goat control placentas (Fig. 3B).  274	

 275	

3.4. MHC-I Expression in the Trophoblast  276	

 The expression levels of MHC-I were examined by quantitative RT-PCR and 277	

immunohistochemistry in the trophoblast cells of sheep and goat pregnancies established 278	

by SCNT and natural breeding. The gene expression levels of MHC-I was greater (P < 279	

0.05) in the intercotyledonary region of the placenta of sheep and goat SCNT pregnancies 280	

than in their respective control groups. Major histocompatibility complex class I gene 281	

expression did not differ between sheep and goat SCNT pregnancies. Gene expression 282	

findings were in agreement with protein expression (Fig. 4; data not shown).  283	

 284	

4. Discussion 285	

This study is the first of its kind to demonstrate a direct comparison between 286	

successful and abortion prone SCNT pregnancies in which pregnancy, embryonic loss 287	

and LOS rates were compared in sheep and goat SCNT pregnancies established under the 288	

same conditions. The major finding of this study was the identification of a pro-289	

inflammatory cytokine pattern at the maternal-fetal interface in abortion-prone 290	



	 14	

pregnancies (sheep SCNT pregnancies). The data also showed that these pregnancies 291	

generate a high percentage of LOS fetuses.   292	

Assisted reproductive technologies are used for faster dissemination of desirable 293	

traits in production herds (Mapletoft and Hasler, 2005; Polejaeva et al., 2013). Tracking 294	

by the International Embryo Transfer Society indicates that nearly 374,000 in vitro-295	

produced bovine embryos were transferred worldwide in 2011, a 10% increase from 2010 296	

(‘International Embryo Transfer Society (IETS)’). In humans, pregnancies generated by 297	

ART account for 1-3% of births in developed countries. The increased risk of 298	

embryonic/fetal loss and late term complications in pregnancies generated by ART has 299	

limited a broader use of the technology (Edwards et al., 2003; Fasouliotis and Schenker, 300	

2003; Shevell et al., 2005). The mechanisms causing these reproductive problems are still 301	

not fully understood.  302	

Similarly to our findings in this study, multiple reports have shown high 303	

pregnancy losses following SCNT in sheep ranging from 34 to 62% between day 60 of 304	

gestation and term (Campbell et al., 1996; Schnieke et al., 1997; Wells et al., 1997; 305	

Wilmut et al., 1997; Loi et al., 2006).  Up to 40% of full-term lambs exhibit LOS (Wells 306	

et al., 1997; Young et al., 1998, 2003; Fletcher et al., 2007) and perinatal mortality can 307	

be as high as 100% (Schnieke et al., 1997; Wells et al., 1997; Loi et al., 2006). In goats 308	

the outcome is different where  birth weights of SCNT-derived goats are typically within 309	

the normal range (Reggio et al., 2001; Keefer et al., 2002; Lan et al., 2006; Amiri Yekta 310	

et al., 2013), except for one report of a LOS phenotype in a male goat (Chen et al., 2002). 311	

Pregnancy losses reported in goat SCNT vary substantially between different research 312	

groups. Several groups have shown that when goat SCNT pregnancies reach 30 or 60 313	
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days they will typically go to term with no perinatal mortality (Baguisi et al., 1999; 314	

Keefer et al., 2001, 2002; Reggio et al., 2001); whereas, other studies describe pregnancy 315	

losses of 100% (Zhu et al., 2009; Zhou et al., 2013).  Since most of the reports are using 316	

transgenic fibroblasts, the type of transgene, the oocyte activation method, the length of 317	

cell culture and the type of selection pressure applied to the fibroblasts prior to SCNT 318	

likely contributes to differences in  pregnancy rates and losses. The time of pregnancy 319	

detection could also contribute to outcome differences. Ultrasonography at 30-35 days of 320	

gestation often fails to detect fetal heartbeats in sheep and goats (personal observation) 321	

and therefore, trophoblastic vesicles (in the absence of  an embryo proper) are often 322	

mistaken as pregnancies (Baguisi et al., 1999; Zhou et al., 2013). This would result in 323	

false positive pregnancies leading to superficially higher pregnancy losses. To avoid 324	

potential bias, all pregnancies in this study were confirmed positive only if a fetal 325	

heartbeat could be detected.  326	

Although the etiology of LOS and placental insufficiency has not been fully 327	

elucidated abnormal gene expression at the maternal-fetal interface has been described by 328	

several research groups. (Mansouri-Attia et al., 2009) observed abnormal transcriptome 329	

profiles in endometrial samples collected from bovine pregnancies generated by SCNT 330	

compared to those generated by artificial insemination. Most of the genes that are 331	

abnormally expressed in these pregnancies are related to immune responses, metabolism, 332	

oxidative phosphorylation, cellular response to hypoxia and angiogenesis (Mansouri-333	

Attia et al., 2009). Consistent with altered expression of hypoxia- and angiogenesis-334	

related genes, impaired vascular development is seen in both sheep and bovine concepti 335	

generated by SCNT (Hill et al., 2000, 2002; De Sousa et al., 2001; Palmieri et al., 2007). 336	
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Trophoblast gene expression is also abnormal in SCNT and in vitro fertilization 337	

pregnancies in various species (Bauersachs et al., 2009; Mansouri-Attia et al., 2009; 338	

Rodríguez-Alvarez et al., 2010a, b; Isom et al., 2013).   339	

Our data show that the expression profile of immune-related genes in sheep 340	

SCNT placentas at term is aberrant. These pregnancies showed significant upregulation 341	

of pro-inflammatory genes whereas goat SCNT pregnancies did not show a change in 342	

expression of the same genes relative to natural breeding. This suggests that, at least in 343	

part, the low survival rate of sheep SCNT embryos and fetuses is caused by a lack of 344	

immune-mediated mechanisms that protect the fetus from the maternal immune system. 345	

Immunological rejection of SCNT fetuses could be a consequence of a breakdown of 346	

mechanisms that prevent the maternal immune system from becoming activated by 347	

antigens expressed by the developing fetus.    348	

 We have determined that upregulation of genes IL2RA, IFNG, IL6, TNF, IL1A 349	

and CXCL8 in the placenta of SCNT sheep pregnancies is significantly more pronounced 350	

than in the SCNT goat pregnancies. The increased expression of these proteins has been 351	

associated with miscarriages in humans (Shaarawy and Nagui, 1997; Wang et al., 2010; 352	

Galazios et al., 2011; Jin et al., 2011a; Prins et al., 2012). The balance between trophic 353	

and toxic cytokines seems to determine the fate of a developing conceptus. It has been 354	

proposed that pregnancy depends on a bias towards Th2 type immune responses rather 355	

than Th1. A predominant Th2 cytokine profile favors pregnancy whereas a Th1 biased 356	

response has been associated with pregnancy loss in humans and mice (Chaouat et al., 357	

1990, 1995; Jenkins et al., 2000; Lim et al., 2000). A Th1 biased response causes an 358	

inflammatory reaction, with the increase in IFNG and TNF likely to contribute to 359	
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placental toxicity and subsequent pregnancy failure in humans (Raghupathy, 1997) and 360	

mouse models (Tangri and Raghupathy, 1993). The excess of these pro-inflammatory 361	

cytokines also skews the adaptive immune response towards cytotoxicity and away from 362	

generation of T regulatory cells (Trowsdale and Betz, 2006; Moldenhauer et al., 2009; 363	

Robertson et al., 2009; Shima et al., 2010). IL1A, TNF and IFNG have been shown to be 364	

elevated in serum samples of patients experiencing recurrent miscarriages. IL2R has a 365	

role in cell-mediated inflammation and in promoting Th1 activation and has been shown 366	

to be upregulated in decidual chorionic tissue in cases of recurrent miscarriages during 367	

the first trimester (Giannubilo et al., 2012). Additionally, IL6 and CXCL8 were elevated 368	

in serum samples of women who had second trimester miscarriages (Galazios et al., 369	

2011). Although a Th2 cytokine, IL6 levels are often elevated in cytokine profiles 370	

characteristic of infertility, recurrent pregnancy loss and complications (Prins et al., 371	

2012).  372	

Here we have shown that TGFB1 expression follows the same pattern as the other 373	

cytokines with sheep SCNT placentas having greater expression than the other groups. 374	

TGFB1 has multiple functions within and outside the immune system. It promotes the 375	

generation of T regulatory cells and is involved in cell proliferation, differentiation, 376	

angiogenesis and tissue remodeling. The role of TGFB1 during pregnancy is still 377	

controversial. TGFB1 has a role in trophoblast invasion and its expression is upregulated 378	

in preeclamptic placentas and its inhibition restores the invasive capacity of trophoblast 379	

cells (Caniggia et al., 1999); whereas, Giannubilo et al. (2012) reported that TGFB1 380	

expression is downregulated in recurrent miscarriages.  381	
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Although IL10 is a Th2 cytokine and it has been associated with trophoblast 382	

growth and maintenance of pregnancy (Lin et al., 1993; Wegmann et al., 1993), we have 383	

observed that this cytokine is upregulated in the intercotyledonary regions of sheep 384	

SCNT placentas. Similarly, Rosbottom et al. (2011) reported that IL10 was upregulated 385	

in the placenta of cattle infected with Neospora caninum. This upregulation could be a 386	

compensatory effect to preserve integrity and homeostasis of the endometrium epithelium 387	

during inflammation (reviewed by Ouyang et al., 2011) 388	

We observed that the cotyledonary region of term goat SCNT placentas has 389	

increased levels of CSF2 compared to the control groups and sheep SCNT. In cattle 390	

(Loureiro et al., 2009; Denicol et al., 2014), humans (Ziebe et al., 2013), mice 391	

(Robertson et al., 2001; Sjöblom et al., 2005) and pigs (Lee et al., 2013) the addition of 392	

CSF2 to embryo culture media has been shown to promote blastocyst development and to 393	

increase implantation success. CSF2 also has been shown to improve embryonic cell 394	

survival, inhibit apoptosis and facilitate glucose uptake (Robertson et al., 2001; Chin et 395	

al., 2009). Although the function of CSF2 has not yet been completely elucidated in term 396	

pregnancies, it appears to have a role in the development and maintenance of a fully 397	

functional placenta in goat SCNT pregnancies possibly due to an inhibition of trophoblast 398	

cell apoptosis.  399	

Furthermore, we compared the upregulation of CD28 and CTLA4 in sheep with 400	

goat SCNT and control pregnancies. CD28 and CTLA4 are co-stimulatory receptors 401	

involved in regulating immune responses. CD28 expression has been correlated with Th1 402	

cytokine response, while CTLA4 exerts an inhibitory effect on the immune system (Liu, 403	

1997; Chambers, 2001). Even though the mechanisms underlying the regulation of the 404	



	 19	

maternal-fetal immune response by these factors are largely unknown, studies have 405	

shown that the expression of CD28 is upregulated and CTLA4 downregulated in first 406	

trimester decidual tissues of miscarriages (Jin et al., 2011a, b), and that the CTLA4/CD28 407	

ratios in miscarriage cases were observed to be lower than in normal pregnancies (Jin et 408	

al., 2009). Here we observed that the ratio of CTLA4/CD28 in goat SCNT pregnancies 409	

(1.37) is significantly reduced compared with the ratio in sheep SCNT (0.75; data not 410	

shown), while ratios in goat and sheep control pregnancies are similar (1.32 and 1.30, 411	

respectively). . 412	

To the best of our knowledge there is only one study examining MHC-I 413	

expression by trophoblast cells in sheep where the MHC-I protein was not detected at any 414	

time of the pregnancy (Gogolin-Ewens et al., 1989). Trophoblast MHC-I expression in 415	

cattle has been investigated in greater details. (Davies et al., 2000) reported that its 416	

expression is temporally and regionally regulated in the placenta and that trophoblast 417	

cells downregulate MHC-I expression in the first trimester of pregnancy, which is most 418	

likely a mechanism to protect the semiallogeneic conceptus from recognition by the 419	

maternal immune system. In the intercotyledonary region a significant number of 420	

trophoblast cells were positive for classical and non-classical MHC-I proteins from the 421	

sixth month on of pregnancy (Davies et al., 2000). In the cotyledonary villi, the area of 422	

intimate contact between fetal cells and the maternal epithelium, trophoblast cells were 423	

negative for MHC-I proteins throughout gestation (Davies et al., 2000). The 424	

downregulation of trophoblast MHC-I expression during the first trimester in cattle seems 425	

to be essential to prevent a maternal immune response to fetal proteins. Cattle SCNT 426	

derived pregnancies express abnormal amounts of classical MHC-I proteins on the 427	
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surface of trophoblast cells during the first trimester and this is associated with 428	

infiltration of mainly CD3+ T lymphocytes into the endometrium (Hill et al., 2000).  429	

This is the first study undertaken to investigate MHC-I expression in placentas of 430	

SCNT pregnancies in sheep and goats. Our data suggest that MHC-I expression by 431	

trophoblast cells is over 10 times greater in the intercotyledonary region of both sheep 432	

and goat SCNT placentas compared with placentas originated from natural breeding (Fig. 433	

3); whereas, gene expression of pro-inflammatory cytokines was upregulated only in the 434	

sheep SCNT pregnancies. There are three possible explanations for this observation. The 435	

most likely explanation is that trophoblast cells express MHC-I proteins on their surface 436	

earlier in sheep SCNT pregnancies than in goat SCNT pregnancies, which could trigger a 437	

more severe immune response leading to pregnancy loss and complications. 438	

Since the primers used in this study could not differentiate mRNA encoding 439	

classical and non-classical MHC-I, a second possibility is that MHC-I expression in goat 440	

SCNT placentas is predominantly composed of non-classical MHC-I proteins while in 441	

sheep it is predominantly composed of classical MHC-I proteins. There are two 442	

subclasses of MHC-I proteins: classical and non-classical. Classical MHC-I proteins are 443	

highly polymorphic, expressed by most nucleated cells, and present peptides derived 444	

from intracellular proteins to CD8+ cytotoxic T cell. Non-classical MHC-I proteins are 445	

oligomorphic and the expression pattern of these proteins is limited to a few types of 446	

tissues including the trophoblast (for a review see Rodgers and Cook, 2005). Even though 447	

the function of non-classical MHC-I proteins has only been described in a few species, it 448	

is generally accepted that the protection of the conceptus is a common function of these 449	

proteins particularly among eutherian mammals (Ellis et al., 1986; Comiskey et al., 2003; 450	
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Hunt et al., 2005).  451	

The third possibility is that sheep are more sensitive to immunological challenges 452	

than goats. Roth et al. (1991) showed that the proliferation of sheep lymphocytes was 453	

suppressed more than goat lymphocytes when these cells were treated with trophoblast 454	

tissue-conditioned medium thus suggesting that sheep pregnancies are more dependent on 455	

conceptus derived signals for survival than goat pregnancies. It is reasonable to propose 456	

that sheep SCNT concepti are deficient in expressing immunosuppressive factors, which 457	

play a critical role in mediating maternal immuno-tolerance.  458	

The retrospective nature of this study was not permissive for controlling for the 459	

source of fibroblasts for SCNT (fetal vs. adult). Although it has been postulated that 460	

donor cell type affects cloning efficiency, direct comparisons of nuclear donor cells of 461	

different origins show no evidence for this (for a review see Oback, 2008). Additionally, 462	

(Hirasawa et al., 2013) demonstrated that extraembryonic gene expression was relatively 463	

consistent across pregnancies generated by different somatic cell donor types (cumulus, 464	

neonatal Sertoli and fibroblast cells) in cloned mice.  465	

This is the first study to investigate the local immunological and inflammatory 466	

aspects at the maternal-fetal interface in term pregnancies generated by SCNT in sheep 467	

and goats. Further studies investigating the immunology of the maternal-fetal interface in 468	

early and mid-term SCNT pregnancies are now warranted. We propose that faulty 469	

nuclear reprogramming of SCNT embryos contribute to an altered expression of 470	

immuno-modulatory fetal proteins by the trophoblast cells, which then promotes a 471	

cytokine imbalance at the maternal-fetal interface causing placental insufficiency, 472	

pregnancy loss and various other complications. A dysfunctional maternal-fetal immune 473	
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relationship may contribute to metabolic conditions that affect fetal, newborn and even 474	

adult health and survival (Mcmillen and Robinson, 2005). This study reaffirms the 475	

importance of adequate maternal immuno-tolerance that will sustain pregnancy and result 476	

in the birth of a normal, healthy neonate. These data could be used not only to improve 477	

the outcomes of SCNT but also to understand the underlying mechanisms involved in 478	

placental insufficiency and embryonic loss in livestock and humans.  479	
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Table 1.  Primers used for real time RT-PCR.  

Gene GenBank accession number Primer sequence 

GAPDH U85042, AJ000039, 
AF022183, J04038  

FP: GAGAAGGCTGGGGCTCACTT 
RP: GCTGACAATCTTGAGGGTGTTG 

ACTB AY141970 FP: GGCCGAGCGGAAATCG 
RP: GCCATCTCCTGCTCGAAGTC 

IL1A M37211 FP: GCCTTCAATAACTGTGGAACCAAT 
RP: GTATATTTCAGGCTTGGTGAAAGGA 

IL2 M12791, M13204, X17201 FP: GCTGGATTTACAGTTGCTTTTGGAG 
RP: GATGTTTCAATTCTGTAGCGTTAACC 

IL4 M77120, U14131, U14159, 
U14160 

FP: GGCGTATCTACAGGAGCCACAC 
RP: CAAGAGGTCTTTCAGCGTACTTGT 

IL5 Z67872 FP: TGGTGGCAGAGACCTTGACA 
RP: GAATCATCAAGTTCCCATCACCTA 

IL6 X57317, X62501 FP: GGCTCCCATGATTGTGGTAGTT 
RP: GCCCAGTGGACAGGTTTCTG 

CXCL8 AF232704, S74436 FP: GGAAAAGTGGGTGCAGAAGGT 
RP: GGTGGTTTTTTCTTTTTCATGGA 

IL10 U00799 FP: GAGCAAGGCGGTGGAGAAGG 
RP: GATGAAGATGTCAAACTCACTCATGG 

IL12B U11815 FP: GCTGGGAGTACCCTGACACG 
RP: GGCTGAGGTTTGGTCCATGAAG 

IL13 AJ132441 FP: CAGTGTCATCCAAAGGACCAAG 
RP: CGGACGTACTCACTGGAAACC 

IL15 U42433 FP: GGGCTGTATCAGTGCAAGTCTTC 
RP: ATTGGGATGAGCATCACTTTCAG 

IL17A AF412040 FP: CATCATCCCACAGAGTCCAGG 
RP: CACTTGGCCTCCCAGATCAC 

IL18 AF124789 FP: ACTGTTCAGATAATGCACCCCAG 
RP: GAAACAATTTTGTTCTCACAGGAGAG 

IL23A XM_588269 FP: CCTCCTTCTCCGTCTCAAGATC 
CGGAGGTCTGGGTGTCATCCT 

IFNG M29867, Z54144 FP: GATAACCAGGTCATTCAAAGGAGC 
RP: GATCATCCACCGGAATTTGAATC 

TNF Z48808, Z14137 FP: TCTACCAGGGAGGAGTCTTCCA 
RP: GTCCGGCAGGTTGATCTCA 

TGFB1 M36271 FP: CTGAGCCAGAGGCGGACTAC 
RP: TGCCGTATTCCACCATTAGCA 

CSF2 U22385 FP: CAGAAGTGGAAGCTTACCTCACAGA 
RP: CCTCCAGTGTGAAGATCCTGAGTT 

IL2RA NM_174358 FP: GCAGGGACCACAAATTTCCA 
RP: GTACTCAGTGGTAAATATGAACGTATCC 

CD28 X93304 FP: GGAGGTCTGTGCTGTGAATGG 
RP: CGGTGCAGTTGAATTCCTTATTT 
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CTLA4 X93305 FP: GCAGCCAGGTGACCGAAGT 
RP: TCATCCAGGAAGGTTAGCTCATC 

GATA3 
XM581415, XM_864421, 
XM_872964, XM_873167, 
XM_873270, XM_873370 

FP: CCGTGGTGTCTGTGTTCTCACT 
RP: TCAATAGGGAATGTGAGTCTGAATG 

TBX21 XM_583748 FP: GGACACTGAAGCCCAGTTTTATAAC 
RP: CCAACCTAACGACATTCTTCCTGT 

GNLY AY245798 FP: GACAAGTTGGGAGATCAGCCC 
RP: ACCTACTGGCTTGCTTTTGCA 

MHCI EF569216 
AJ874681.2  

FP: GTGAGGTCACCCTGAGG 
   RP: TGCTCCTCTCCAGAAGGCA 

IFNA2 HQ585524 FP: GCACTGGATCAGCAGCTCACTG 
RP: CTCATGACTTCTGCTCTGACAACCT 



	 34	

a Pregnancy rates were similar (P = 0.38) at 45 days of gestation between sheep and goat 

SCNT generated embryos. 

b SCNT pregnancy rates were greater (P = 0.042) in goat compared with sheep 

pregnancies at 60 days and term. 

c SCNT pregnancy losses between 45 days and term were greater (P < 0.001) in sheep 

compared with goats.  

d Incidence of large offspring syndrome was greater (P < 0.001) in sheep SCNT than in 

goat SCNT generated offspring. 

 

 

 

 

 

 

 

Table 2. SCNT pregnancy rates and complications in sheep and goats. 

 

Number 

of 

transfers 

Pregnancy 

rate, 45 days 

(%) a 

Pregnancy 

rate, 60 days 

(%) b 

Pregnancy 

rate, term 

(%) b 

Pregnancy 

loss, 45 days 

to term       

(%) c 

Large offspring 

syndrome      

(%) d 

Sheep 82 
32.9    

(27/82) 

19.5  

(16/82) 

19.5 

(16/82) 

40.7   

(11/27) 

31.3        

(5/16) 

Goat 37 
32.4    

(12/37) 

32.4  

(12/37) 

32.4 

(12/37) 

0          

(0/12) 

0             

(0/12) 
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Figure captions 

Figure 1. Fold change of gene expression of A. CTLA4, IL2RA, CD28, IFNG, IL6,  

TGFB1, TNF and; B. IL1A and CXCL8 in the intercotyledonary region of caprine and 

ovine placentas at term relative to placentas of pregnancies originated from natural 

breeding. Stars (*) indicate significant differences (P ≤ 0.05) between SCNT pregnancies 

and the respective control group.  

 

Figure 2. Fold change of gene expression in the cotyledonary region of term placentas 

from sheep and goat SCNT generated pregnancies relative to placentas of pregnancies 

originated from natural breeding. Stars (*) indicate significant differences (P ≤ 0.05) 

between SCNT and the respective control group. 

 

Figure 3 A. Fold change of gene expression relative to the expression of housekeeping 

genes (fold change of delta Ct) in the intercotyledonary region of term placentas from 

sheep and goat pregnancies established by natural breeding (control pregnancies). B. Fold 

change of gene expression relative to the expression of housekeeping genes (fold change 

of delta Ct) in the cotyledonary region of term placentas from sheep and goat control 

pregnancies. There was no statistical difference (P > 0.05) in gene expression between 

sheep and goat control pregnancies.  

 

Figure 4.A. Fold change of MHC-I gene expression in the intercotyledonary region of 

term placentas from sheep and goat SCNT generated pregnancies relative to placentas of 

pregnancies originated from natural breeding. Stars (*) indicate significant differences (P 
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≤ 0.05) between SCNT and the respective control group. B. Immunohistochemical 

labeling of intercotyledonary trophoblast cells for MHC-I in the placenta of goat and 

sheep SCNT pregnancies, and goat and sheep pregnancies established by natural breeding 

(control groups). Scale bar = 50 µm. 
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