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Abstract

This paper examines how water quality trading interacts with nonpoint-source abatement cost

sharing (e.g., as currently practiced by the National Resource Conservation Service through

its Environmental Quality Incentives Program (EQIP)) to promote the participation of non-

point sources in a water quality market; participation that has thus far been noticeably lacking

nationwide. As such, an idealized version of water quality trading is envisioned, where water

quality trading and nonpoint cost sharing are treated as complementary policy instruments

rather than substitutes. Toward this end, the subgame-perfect equilibrium concept is used to

model a “multilateral contracting” relationship between the regulatory authority and nonpoint

sources when the regulator has incomplete information about the nonpoint sources’ production

costs. We characterize ex ante (or second-best) nonpoint abatement levels when the regulator

chooses cost-share rates in concert with a water quality market. Numerical analysis indicates

that current EQIP cost-share rates would likely be lower and more flexibly determined in the

presence of water quality trading.



1 Introduction

The efficacy of incentives contracts for resolving asymmetric information problems is by now well

understood. Generally speaking, the principal (or regulator) pays the agent(s) an informational

rent in order to procure a desired (typically ex ante) outcome (Laffont and Tirole, 1993). In the

case of multilateral contracting, e.g., a single regulator contracting with two or more agents, the

procurement problem extends beyond controlling a single agent’s decision problem to designing a

game that accounts for the agents’ interactions with each other (Bolton and Dewatripont, 2005).1

The problem also extends to symmetric (or common) uncertainty regarding nature and the absence

of a unique dominant strategy equilibrium. This paper considers a multilateral contracting problem

where (1) the agents have hidden information about their respective production costs, (2) the

regulator is endowed with the authority to subsidize the agents’ costs, and (3) the agents trade

their product in a quantity-constrained market.2

A good example of this type of game is the idealized control of nonpoint-source (NPS) water

pollution in the US through water quality trading (WQT) in the presence of existing NPS abate-

ment cost subsidies. We say “idealized” because to date few successful WQT markets have been

established in the US for watersheds that include predominantly NPSs (Breetz, et al., 2004; King

and Kuch, 2003; Environomics, 1999; Hoag and Hughes-Popp, 1997; King, 2005; Ribaudo, 2001).

Therefore, to promote WQT among NPSs, it may be that policy instruments such as abatement

cost subsidization need to be used in a complementary fashion with – rather than as substitutes for

– WQT. Since the passage of the 1972 and 1977 Federal Water Pollution Control Act Amendments

(the Clean Water Act), approximately 34,000 of the US’s water bodies have either remained or

become non-compliant with the amendments’ standards for drinking water, contact recreation, or

aquatic life support (EPA, 2005). The main factor contributing to this noncompliance is “loading”

of nutrient- and pesticide-based pollutants from agricultural NPSs, e.g., crop and feedlot opera-

tions, through natural runoff and leaching processes (Freeman, 2002; EPA, 2011b). Control of NPS

loadings, particularly in agricultural-based watersheds, is therefore a crucial determinant of whether

1For a concise overview of the mechanism design problem see Mas-Colell, et al. (1995, Chapter 23).
2As described in the next section, to address this multifacited problem we adopt the subgame-perfect equilibrium

concept, which solves a two-stage game between the agents and the regulator. In the first stage of the game the
regulator chooses a fixed cost-share (i.e., subsidy) rate and an initial production allocation for each agent. Given
the regulator’s choices the agents then choose their preferred production allocations, and therefore how much of the
product to trade in the second stage of the game.
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compliance with the Clean Water Act will ultimately be achieved on a broad scale nationwide.

WQT is premised on the notion that sources within a given watershed (both point and nonpoint)

face different abatement cost structures. Assuming these cost differences are divergent enough, and

that a given source’s abatement level can be estimated with a reasonable amount of certainty, the

overall control costs of meeting a given watershed-wide pollution standard can be minimized if

sources facing relatively low control costs effectively abate at levels in excess of their respective,

required (or regulated) abatement levels and then sell their excess abatement “credits” to relatively

high-cost sources in a formal WQT market. To date, however, the involvement of NPSs in WQT has

been virtually non-existent in the US, even in spite of the potential for the National Resource Con-

servation Service’s (NRCS’s) existing best management practice (BMP) subsidy program, known

as the Environmental Quality Incentives Program (EQIP), to stimulate an interest in trading by

effectively reducing NPS abatement costs and thus engendering cost divergence between NPSs and

point sources in a given watershed.3

This paper characterizes one possible solution to the lack of NPS involvement in WQT in the

US by examining how a regulator might ideally subsidize BMPs. As demonstrated in Sections

2 and 3, our characterization is ideal in the sense that it (1) assumes WQT and abatement cost

subsidization can be used as complementary policy instruments, (2) requires enough information

about individual NPS abatement costs within a given watershed to estimate continuous marginal

cost functions, and (3) similarly requires enough information about the watershed’s topography,

soil types, and hydrology to estimate NPS loadings and delivery ratios (or transfer coefficients).4

It also assumes the regulator can choose cost-share rates on an individual NPS basis in an effort to

minimize the costs associated with meeting an environmental standard. This seemingly innocuous

assumption concerning the breadth of the regulator’s choice set in determining NPS-specific cost-

share rates is at odds with historical evidence in the US. Since the program’s inception, EQIP

cost-share rates as incurred by the NRCS) have traditionally been set by individual states (or

3EQIP was reauthorized in the Farm Security and Rural Investment Act of 2002 to inter alia provide financial and
technical assistance in support of BMP implementation on eligible agricultural land (NRCS, 2006). This program
represents one of only two federal programs currently in place nationwide to encourage voluntary control of nonpoint
pollution. The other program is the Conservation Reserve Program (CRP) administered through the US Department
of Agriculture. Obviously, regulatory reform of EQIP would be required before it could be used in tandem with
WQT.

4While the appropriateness of the second assumption remains an open question, the suitability of the third
assumption is becoming less so over time. We discuss this issue further in Section 2.2.
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in some cases, counties within states) at fixed levels across all NPSs, with fixed caps on total

funding, total acreage, or total years (NRCS, 2011a).5 For example, in Illinois the subsidy rate

for BMPs “not related to livestock” is fixed at 60 or 70 percent (75 percent for limited-resource

farmers), with a 400-acre limit on certain practices. The rate for confined livestock operations and

grazing land applications is fixed at 50, 60, or 70 percent (75 percent for limited-resource farmers)

(NRCS, 2011b). In contrast, the model presented in this paper provides a clear economic rationale

for endowing the regulator with complete flexibility in choosing its cost-share rates for individual

NPSs.

Although the economic literature on NPS pollution is quite extensive, it has until recently fo-

cused almost exclusively on the use of penalty schemes such as taxation and fines that account

for the uncertainty of NPS loadings.6 A nascent strand of this literature has also investigated the

properties of WQT as a potential NPS control mechanism.7 The main focus of this literature has

been to identify optimal trading ratios between NPSs and point sources that incorporate loading

uncertainty. To our knowledge, the role of subsidization of BMPs in fostering an efficient allocation

of NPS abatement effort via WQT has been explored in only one previous paper - Horan et al.

(2004).8 In light of recent recognition by a host of WQT practitioners concerning the potential

synergies between BMP subsidization and WQT (see for instance Kramer (2003), National Asso-

ciation of Conservation Districts (2003), Hall and Raffini (2005), and Breetz and Fisher-Vanden

(2007)), this lack of attention in the literature seems particularly glaring.

Horan et al. (2004) call the complementary BMP subsidization/WQT policy described above

“double-dipping,” and show under what circumstances double-dipping enhances the efficiency of

5In Section 2 we define cost-share rate as the rate incurred by a given NPS, which is one minus the rate incurred
by the regulator, solely for expository convenience.

6Good overviews of this literature are provided in Shortle and Horan (2001) and Tomasi, et al. (1994).
7As Shortle and Horan (2001) point out, NPS participation in a WQT market can be based on point-source

emissions for NPS input trading or point-source emissions for NPS estimated-loadings trading. In this paper, we
focus on the latter. More recent papers related to Shortle and Horan (2001) include Shortle and Horan (2005) and
Farrow, et al. (2005).

8Isik and Sohngen (2003) consider voluntary, performance-based contracts between point and nonpoint sources to
reduce joint loadings, where incentive problems are controlled through joint liability and peer pressure/monitoring.
Pushkarskaya (2003) investigates an alternative performance-based mechanism that closely resembles the mechanism
discussed in this paper. In Pushkarskaya’s case, the regulator’s payment to an association of NPSs is not in the
form of a cost-share subsidy. Rather, it is a lump-sum payment that increases with the group’s abatement level.
The association – which is constrained by the hidden actions of its members – subsequently decides on an optimal
transfer mechanism. Absent from Pushkarskaya’s model is a WQT market, which in this paper’s model is the vehicle
through which NPSs obtain surplus (profit). In Pushkarskaya’s case, the association’s surplus is created directly via
the regulator’s payment.
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NPS control. They find that a coordinated policy approach, where cost-sharing rates and WQT

parameters are set jointly and simultaneously by the regulator (as they are in this paper), out-

performs an uncoordinated approach, where the cost-sharing rates are set first and taken as given

when setting the trading parameters. While Horan et al. (2004) focus on the individual NPS’s

tradeoff between accepting a BMP subsidy and the amount of permits it subsequently has for sale

(i.e., the case of endogenously determined, partial double-dipping at the NPS level), this paper

focuses on the implications of the (information-asymmetric) relationship between the regulator and

the NPS when the NPS fully double-dips. Both papers’ results point to the advantages of a joint

policy when it comes to promoting the participation of NPSs in programs aimed at controlling NPS

nutrient loading.

In this paper, we characterize an ex ante (or second-best) solution (i.e., a solution to the

incomplete-information problem concerning the NPS abatement efforts) that arises as a result of

cost-sharing in concert with WQT. The extent to which the corresponding first-best solution (i.e.,

the solution to the full-information problem concerning the NPSs’ abatement efforts) is constrained

by hidden production cost information is demonstrated both analytically and numerically. These

solutions focus primarily on the relationship between the regulator and the NPSs, since common

practice is for the regulator to subsidize solely NPS abatement, not the abatement efforts of point

sources. As such, the solutions we present in this paper are not socially efficient in the broader

context of a WQT market. They may instead be considered constrained socially efficient (which

we nevertheless refer to as first best), where the constraint reflects the restriction on the regulator’s

authority over NPSs, in particular its cost-sharing authority. Although our theoretical approach is

premised on the notion of an ideal relationship as it might exist between the regulator and NPSs

in the US, the main issues addressed jointly in the paper – cost-sharing and pollution trading – are

pertinent to WQT markets as they might arise anywhere in the world. Our overriding goal is to

characterize NPS cost-sharing and WQT as a joint policy; a policy reflecting some of the realities

of current regulatory practice (i.e., the setting of fixed cost-share rates solely for NPSs) as well as

the ideal of a possible joint policy.

The next section lays out the basic contracting model describing the interaction between the

regulator and the NPSs, which in turn interact with each other and with point sources in a WQT

market. Analytical solutions to the model are provided for both the first- and second-best problems.
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Because the analytical solutions are cumbersome, Section 3 solves the model numerically in order

to provide estimates of the relative values of key variables. Section 4 summarizes the paper’s main

findings.

2 Water Quality Trading and Abatement Cost Sharing

2.1 First-Best Benchmark

For ease of exposition, we assume a watershed is comprised of two NPSs, denoted 1 and 2. There

also exists a point source, denoted P . NPSs 1 and 2 interact with the regulator and with P in the

following two-stage game. In the first stage, the regulator sets the NPSs’ respective cost-share rates,

�1 and �2, 0 ≤ �j ≤ 1, j = 1, 2, i.e., the proportions of total abatement cost borne by the NPSs

themselves. The assumption of fixed cost-share rates set solely for the NPSs and not for the point

source is reflective of current regulatory practice in the US, e.g., the NRCS’s EQIP for NPS’s. The

regulator also sets initial abatement allocations ā1 ≥ 0 and ā2 ≥ 0 for the NPSs, respectively, and

āP ≥ 0 for P , which is reflective of the role a regulator would be required to play if a WQT program

were to be implemented.9 In essence, the regulator offers NPS j specific contract (�j , āj), j = 1, 2

and the point source P specific contract (āP ).

In the second stage, the NPSs and point source engage in competitive WQT by selecting their

respective abatement efforts, a1, a2, and aP , respectively, and thus their abatement credits available

for sale(in need of purchase), aj − āj > (<)0, j = 1, 2, and aP − āP > (<)0, whichever the case may

be. The assumption of price-taking behavior implies 1 and 2 are either “representative agents” of

the two main types of NPSs present in a wider market, or, as the only existing NPSs, they are

induced to price competitively by regulatory policy. Further, the price-taking assumption naturally

rules out strategic behavior among the NPSs.10

As a result of “moving” after the regulator, the NPSs take their respective subsidy rates and

initial allocations as given (as does the point source with respect to its initial allocation). However,

9In reality, the NRCS would not be responsible for setting the initial abatement allocations for WQT. Instead,
this responsibility would lie with state-level department(s) of environmental quality (DEQs), or with the U.S. En-
vironmental Protection Agency (EPA) itself. In the context of our model, the regulatory authority might therefore
best be interpreted as a joint agency, incorporating both the NRCS and EPA. This joint agency fully characterizes
the relationship between NPS polluters and the regulatory authority.

10For analysis of imperfectly competitive permit markets see Liski and Montero (2006), Cason et al. (2003),
Atkinson and Tietenberg (2001), and Hahn (1984).
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by moving first the regulator is able to anticipate the effects that its choices of the subsidy rates

and initial allocations have on the NPSs’ subsequent abatement efforts (i.e., the NPSs’ respec-

tive “response functions”) and the per-unit price of abatement credits, �. In a subgame perfect

equilibrium, the regulator correctly anticipates these response functions.

A subgame perfect equilibrium is solved through backward induction. We therefore begin our

analysis with the second stage of the game, i.e., the WQT market. In a WQT market, NPS j takes

�j , āj , and � as given and chooses its abatement effort aj to minimize its cost of participating in

the market, i.e.,11

min
aj

�jCj(aj)− ��j [aj − āj ], j = 1, 2

where Cj(aj) is j’s abatement cost function (increasing and convex in aj) and �j is j’s corresponding

delivery ratio (i.e., transfer coefficient or conveyance loss). This problem results in “modified

optimality conditions” for a competitive ambient permit market, where the modification is due to

the appearance of the regulator’s cost-share rates, �j , directly in the NPSs’ respective first-order

conditions,

�j

[
∂Cj
∂aj

]
= ��j , j = 1, 2 (1)

The point source P similarly chooses its abatement effort aP to minimize its cost of market partic-

ipation,

min
aP

CP (aP )− ��P [aP − āP ]

resulting in corresponding optimality condition,

∂CP
∂aP

= ��P . (2)

Lastly, a market-clearing condition closes the solution,

Ā = �1ā1 + �2ā2 + �P āP ≤ �1a1 + �2a2 + �PaP (3)

where Ā is a receptor point’s pre-determined aggregate abatement necessary to meet the target

11Parentheses denote a functional relationship, while square brackets indicate the application of a given operation
on the included variables.
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delivered load, e.g., as specified in Total Maximum Daily Load (TMDL).12 Invoking the implicit

function theorem, the NPSs’ and point source’s equilibrium abatement efforts, as well as the credit

price, may be written as a1 ≡ a1(�1, �2), a2 ≡ a2(�1, �2), aP ≡ aP (�1, �2), � ≡ �(�1, �2).13

Associated comparative statics for the system of equations (??) – (??) result in

∂aj
∂�j

< 0,
∂�

∂�j
> 0,

∂aj
∂�i

> 0, i, j = 1, 2 (4)

In other words, an NPS’s abatement effort is decreasing in its own cost-share percentage and

increasing in the cost-share percentage of the other NPS. This latter effect results indirectly from

the positive relationship between an NPS’s cost-share percentage and the equilibrium credit price.

In the first stage, the regulator chooses the NPSs’ respective cost-share rates �j and initial

allocations āj to minimize its own cost-share obligation,

min
�j ,āj

[1− �1]C1(a1(�1, �2)) + [1− �2]C2(a2(�1, �2))

subject to (??) and,

�1�(�1, �2)[a1(�1, �2)− ā1]− �1C1(a1(�1, �2)) ≥ NBAlt
1 (5)

�2�(�1, �2)[a2(�1, �2)− ā2]− �2C2(a2(�1, �2)) ≥ NBAlt
2 (6)

where NBAlt
j ≥ 0, j = 1, 2, represents the net benefit of NPS j’s next-best alternative.14 Equations

(??) and (??) are the NPSs’ respective participation constraints, i.e., the necessary profitability

12In models where the regulator is precluded from setting initial abatement allocations, e.g., āj , j = 1, 2, such as
in the ambient penalty models of Segerson (1988) and Horan et al. (1998), monitoring and enforcement of NPS
loads is essentially a non-issue. In contrast, the need for monitoring and enforcement in a WQT market would seem
to naturally arise. However, as pointed out by Ross and Associates Environmental Consulting, Ltd. (2000), WQT
is premised on the need for all parties to a trade (including the regulator itself) to agree on monitoring methods
and measured outcomes before the trade can be transacted. Thus, in practical terms, monitoring and enforcement
naturally occurs in WQT as a precursor to the trades themselves. We adopt this line of reasoning in our model by
not explicitly endowing the regulator with the authority to levy penalties for cheating on the part of the NPSs or the
point source. For a concise definition of TMDL see EPA (2011a).

13For expository purposes, the delivery ratios �j , j = 1, 2, and �P , and TMDL aggregate abatement level Ā are
subsumed in these implicit functions. The initial allocations āj , j = 1, 2, and āP affect neither market price � nor
abatement effort at an interior solution (only the agents’ respective profitabilities).

14NBAlt
j > 0 would need to hold in cases where NPS j suffers a decrease in the profitability of its agricultural

enterprise as a result of implementing a BMP, in which case revenues earned by participating as a seller in WQT
would need to exceed the cost of BMP implementation.
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conditions that must be met before the NPSs will agree to participate in the WQT market with

abatement-cost subsidization. Letting �1 and �2 represent the Lagrangian multipliers on constraints

(??) and (??), respectively, and � the Lagrangian multiplier on equation constraint (??), the

optimality conditions for the regulator’s problem are (??), (??), (??), and

C1(⋅)− [1− �1]

[
∂C1(⋅)
∂a1(⋅)

∂a1(⋅)
∂�1

]
= [1− �2]

[
∂C2(⋅)
∂a2(⋅)

∂a2(⋅)
∂�1

]
− �1Ω11 − �2Ω12 (7)

C2(⋅)− [1− �2]

[
∂C2(⋅)
∂a2(⋅)

∂a2(⋅)
∂�2

]
= [1− �1]

[
∂C1(⋅)
∂a1(⋅)

∂a1(⋅)
∂�2

]
− �1Ω21 − �2Ω22 (8)

�1 = �2 (9)

and

Ω11 = C1(⋅) + �1

[
∂C1(⋅)
∂a1(⋅)

∂a1(⋅)
∂�1

]
− �1

[
∂�(⋅)
∂�1

]
[a1(⋅)− ā1]− �(⋅)�1

[
∂a1(⋅)
∂�1

]

Ω12 = �2

[
∂C2(⋅)
∂a2(⋅)

∂a2(⋅)
∂�1

]
− �2

[
∂�(⋅)
∂�1

]
[a2(⋅)− ā2]− �(⋅)�2

[
∂a2(⋅)
∂�1

]

Ω21 = �1

[
∂C1(⋅)
∂a1(⋅)

∂a1(⋅)
∂�2

]
− �1

[
∂�(⋅)
∂�2

]
[a1(⋅)− ā1]− �(⋅)�1

[
∂a1(⋅)
∂�2

]

Ω22 = C2(⋅) + �2

[
∂C2(⋅)
∂a2(⋅)

∂a2(⋅)
∂�2

]
− �2

[
∂�(⋅)
∂�2

]
[a2(⋅)− ā2]− �(⋅)�2

[
∂a2(⋅)
∂�2

]
.

One obvious corner solution to this problem would be to (1) provide zero subsidies to the NPSs,

i.e., set �1 = �2 = 1, (2) shift the entire initial abatement allocation to the point source, i.e., set

ā1 = ā2 = 0 and āP = Ā/�P , and, (3) given sufficient abatement-cost differences between the NPSs

and the point source, rely on the water quality market to generate profits for the NPSs. This would

result in zero cost to the regulator. However, in the case of NBAlt
j > 0 for some j, relying solely

on WQT to generate the requisite profit for unsubsidized NPSs may not ensure satisfaction of the

NPS participation constraints, e.g., if NPS j’s profit generated through trading is not larger than

NBAlt
j . More importantly, because we are explicitly investigating the relationship between WQT

and the subsidization of NPS abatement costs, we confine our analysis to interior solutions.

Equations (??) and (??) solve for the regulator’s benchmark cost-share rates �1 and �2, respec-

tively, under full-information. The left-hand sides of these two equations represent the marginal

benefits (in terms of reduced cost-share obligations for the regulator) associated with incremental
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increases in the respective �js, while the right-hand sides represent the associated marginal costs.

For example, in equation (??) marginal benefits accrue to the regulator through a reduction in NPS

1’s abatement cost, and thus in the attendant subsidy cost incurred by the regulator. In specific,

marginal benefits occur through (1) a reduction in NPS 1’s abatement effort (and thus its corre-

sponding abatement cost, which in turn reduces the cost shared by the regulator), i.e., the term

[1− �1]
[
∂C1(⋅)
∂a1(⋅)

∂a1(⋅)
∂�1

]
< 0, and (2) a direct reduction in the regulator’s share of NPS 1’s abatement

cost (i.e., the term C1(⋅) > 0).15 Marginal costs consist of (1) a “cross-effect” increase in the abate-

ment effort (and corresponding abatement cost) of NPS 2 (i.e., the term [1− �2]
[
∂C2(⋅)
∂a2(⋅)

∂a2(⋅)
∂�1

]
> 0)

and (2) the added net costs associated with changes in the profitabilities of NPSs 1 and 2, and

thus the ability of the regulator to satisfy participation constraints (??) and (??), i.e. the terms

�1Ω11 and �2Ω12. Finally, equation (??) results from the regulator’s choice of the initial allocations

āj , j = 1, 2 and reflects the fact that the regulator values the participation of each NPS equally

on the margin. Solving equations (??) – (??) simultaneously establishes the first-best benchmark,

characterized by the value set
(
�∗1 , �

∗
2 , a
∗
j , ā
∗
j , a
∗
P , ā

∗
P , �

∗, �∗1, �
∗
2, �
∗
)
, j = 1, 2.

2.2 The Second-Best Problem

As alluded to earlier, uncertainty about the NPSs’ abatement costs limits the regulator’s ability

to implement the first-best benchmark derived in Section 2.1. An additional type of uncertainty

pertains to the diffuse nature of NPS emissions and the whims of nature, which can affect the

ultimate effectiveness of any given level of abatement effort implemented by an NPS. In other words,

abatement effort at the source does not necessarily translate into a certain measured reduction in

concentration at the receptor point, due to environmental factors such as seasonal or weather-related

variations as well as the general limitations of hydrological and topographical data. To overcome

this type of uncertainty we have assumed that the regulator (1) selects the receptor point’s target

concentration Ā with certainty (in accordance with a TMDL, as mentioned previously), (2) likewise

sets the NPSs’ respective delivery ratios, �j , j = 1, 2, and �P in accordance with accurate (albeit

probabilistic) scientific information, and (3) as importantly, communicates this information (along

15There is a scaling issue associated with this direct-reduction effect – with respect to the first-order conditions for
both �1 and �2 – due to the fact that the �js are measured in percentage terms and the abatement costs are measured
in (potentially large) dollar values. This issue is addressed in Section 3 by scaling Cj(⋅), j = 1, 2 in conditions (??)
and (??) each by a factor of 0.01 in order to reduce their values to a scale commensurate with that of the respective
�js.
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with āj , j = 1, 2) to the NPSs. Recent research suggests that estimation of seasonal, field-level

nutrient loadings and delivery ratios through the application of sophisticated hydrologic models

can provide “reasonable assurance” that TMDL standards can be met through WQT (Caplan, et

al., 2009; Horan, et al., 2002a and 2002b) and thus overcome the type of environmental uncertainty

explicitly modeled in Malik, et al. (1993) and Shortle and Horan (2001). In this way, the target

concentration and delivery ratios play similar roles as concentration standards in the Segerson

(1988) and Horan, et al. (1998) linear ambient tax models, and the communication of tax schedules

in the Shortle and Dunn (1986) management-practices models.

The uncertainty left unresolved in this paper pertains to an NPS’s ability to misrepresent itself,

i.e., to “hide” information from the regulator with respect to whether it is able to abate at high

or low cost. For instance, if a low-cost NPS believes the regulator’s cost-share rule is monotone in

abatement costs (i.e., NPSs with higher abatement cost functions tend to receive higher subsidy

rates) the NPS may have incentive to misrepresent itself as high cost in order to receive a lower

�j and āj .
16 To capture the potential effect of this hidden information, we introduce standard

probability parameters (i.e., odds ratios) �j > 0, j = 1, 2, which represents the regulator’s estimate

of the (relative) likelihood that NPS j is indeed providing the regulator with its true abatement

cost information; information the regulator then uses to set NPS j’s �j and āj .

To further motivate our analysis, we assume that NPS 1 is a low-cost producer of abatement

and NPS 2 is a high-cost producer, i.e., C2(a) > C1(a) for any common abatement level a. Further,

the difference in costs abides by the single-crossing property, i.e.,

∂C2(a)

∂a
>
∂C1(a)

∂a
(10)

for any common a. Thus, not only is NPS 2’s abatement cost everywhere larger than NPS 1’s, but

it also increases at a faster rate. In addition to being a standard assumption in hidden-information

models of the type developed here (see Varian, 1992), the single-crossing property is reflective of the

underlying presumption – first mentioned in Section 1 – of divergence between the NPSs’ abatement

costs.

16For simplicity we assume that each NPS has only two possible abatement cost schedules – its own and that of the
other NPS. Assuming the NPSs have wider cost spaces would unnecessarily complicate the ensuing analysis without
adding much by way of insight. This is a common approach to modeling the hidden information problem. See Varian
(1992) and Hart and Holmstrom (1987) for further discussion.
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As a result of the regulator’s choices in the first stage, the NPSs are subsequently induced

to portray themselves truthfully. Truthful revelation occurs as a result of the regulator satisfying

both the participation and incentive-compatibility constraints in its first-stage problem (see below).

Thus, NPS j’s (as well as point source P ’s) cost minimization problem in the second stage of its

game with the regulator is identical to that described in Section 2.1. The resulting optimality

conditions are (??) – (??), which again characterize the second-stage WQT market equilibrium.

In the first stage of the game, the regulator again chooses the NPSs’ respective cost-share rates

�j and initial allocations āj to minimize its cost-share obligation,17

min
�j ,āj

�1[1− �1]C1(a1(�1, �2)) + �2[1− �2]C2(a2(�1, �2))

subject to (??) – (??), (??), (??), and,

�1�(�1, �2)[a1(�1, �2)− ā1]− �1C1(a1(�1, �2)) ≥

�1�(�1, �2)[a2(�1, �2)− ā2]− �2C1(a2(�1, �2)) (11)

�2�(�1, �2)[a2(�1, �2)− ā2]− �2C2(a2(�1, �2)) ≥

�2�(�1, �2)[a1(�1, �2)− ā1]− �1C2(a1(�1, �2)) (12)

where we henceforth assume NBAlt
1 = NBAlt

2 ≥ 0.18 Equations (??) and (??) are standard self-

selection (or incentive-compatibility) constraints. For example, constraint (??) states that cost-

shares �1 and �2 are chosen such that the profit NPS 1 obtains from adopting its true (low-cost)

level of abatement effort is never less than the profit it would obtain by adopting NPS 2’s true

(high-cost) abatement level (which NPS 1 would conceivably do if it thinks the added benefits

associated with obtaining from the regulator �2 (rather than �1) and ā2 (rather than ā1) outweigh

the added costs associated with the higher-cost level of abatement). Constraint (??) does likewise

17We follow Varian (1992) and Mas-Colell et al. (1995) by retaining the odds ratios in the regulator’s objective
function. Since we ultimately assume the regulator is able to simultaneously satisfy both the participation and
incentive-compatibility constraints (introduced below), the odds ratios essentially become superfluous to this problem.
In other words, by the Revelation Principle if incentive compatibility constraints are satisfied, truth-telling is the
dominant strategy and thus there is no randomness remaining in the regulator’s objective function. See Baron and
Myerson (1982) for a discussion of the Revelation Principle.

18The assumption of equally valued next-best alternatives simplifies the ensuing analysis without qualitatively
changing the results in this section, as well as the numerical results in Section 3.
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for NPS 2.19

To begin, we compare constraints (??) and (??). Using (??), and the fact that NPS 1(2) is

low(high) cost, we see that when

�1�(�1, �2)[a2(�1, �2)− ā2]− �2C1(a2(�1, �2)) ≥

�2�(�1, �2)[a2(�1, �2)− ā2]− �2C2(a2(�1, �2)) ≥ NBAlt
2 = NBAlt

1 ≥ 0,

e.g., when �1 ≥ �2, constraint (??) does not bind, implying that constraint (??) does.20 By contrast,

when conditions are such that (??) does not bind, then as long as constraint (??) binds and �2 > �1

by a sufficient amount, constraint (??) will bind as well.

We can compare constraints (??) and (??) in a similar manner. Again assuming (??) binds, it

can be substituted to (??) resulting in,

�2�2C1(a2(�1, �2))

�1
− �1�2C1(a1(�1, �2))

�1
≥ �2C2(a2(�1, �2))− �1C2(a1(�1, �2))

By condition (??), and for (1) inequality a1(⋅) > a2(⋅) (which, for small enough differences between

�1 and �2, is a natural outcome given C2(a) > C1(a) for any a) and (2) similarly small enough

differences between �1 and �2, constraint (??) does not bind (implying that (??) binds). This

particular result – where (??) and (??) are the binding constraints – is common in the hidden-

information literature (e.g., Varian, 1992; Mas-Colell, et al., 1995). Here, it indicates that the

regulator chooses �1 and �2 such that (1) the high-cost NPS just obtains its reservation profit

(which nonetheless satisfies its incentive-compatibility constraint slack), and (2) the low-cost NPS

receives more than its reservation profit (but still a profit level that just satisfies its incentive-

compatibility constraint). For this particular case, therefore, we obtain a system of equations that

includes the regulator’s first-stage optimality conditions, equations (??) – (??), binding constraints

19Note that for this problem we do not have �(�2, �2) and a2(�2, �2) on the right-hand side of (??) because these
reaction functions must nevertheless account for the responses of � and a2 in the WQT market to the regulator’s
previous choices of �1 and �2 in the first stage of the game. Likewise with respect to not having �(�1, �1 and a1(�1, �1)
on the right-hand side of (??).

20Note that �1 ≥ �2 is sufficient but not necessary for the above inequality to hold.
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(??) and (??), and 21

�1C1(⋅)− �1[1− �1]

[
∂C1(⋅)
∂a1(⋅)

∂a1(⋅)
∂�1

]
= �2[1− �2]

[
∂C2(⋅)
∂a2(⋅)

∂a2(⋅)
∂�1

]
− �1Ψ11 − �2Ψ12 (13)

�2C2(⋅)− �2[1− �2]

[
∂C2(⋅)
∂a2(⋅)

∂a2(⋅)
∂�2

]
= �1[1− �1]

[
∂C1(⋅)
∂a1(⋅)

∂a1(⋅)
∂�2

]
− �1Ψ21 − �2Ψ22 (14)

�2 =
�2�1

�1 + �2
(15)

where �1 and �2 now represent the multipliers on constraints (??) and (??), respectively, and

Ψ11 = −�2

[
∂C2(⋅)
∂a2(⋅)

∂a2(⋅)
∂�1

]
+ �2

[
∂�(⋅)
∂�1

]
[a2(⋅)− ā2] + �(⋅)�2

[
∂a2(⋅)
∂�1

]

Ψ12 = −C1(⋅)− �1

[
∂C1(⋅)
∂a1(⋅)

∂a1(⋅)
∂�1

]
− �1

[
∂�(⋅)
∂�1

]
[a2(⋅)− ā2] + �(⋅)�1

[
∂a1(⋅)
∂�1

]

+�1

[
∂�(⋅)
∂�1

]
[a1(⋅)− ā1]− �(⋅)�1

[
∂a2(⋅)
∂�1

]
+ �2

[
∂C1(⋅)
∂a2(⋅)

∂a2(⋅)
∂�1

]

Ψ21 = −�2

[
∂C2(⋅)
∂a2(⋅)

∂a2(⋅)
∂�2

]
+ �2

[
∂�(⋅)
∂�2

]
[a2(⋅)− ā2] + �(⋅)�2

[
∂a2(⋅)
∂�2

]
− sC2(⋅)

Ψ22 = C1(⋅)− �1

[
∂C1(⋅)
∂a1(⋅)

∂a1(⋅)
∂�2

]
− �1

[
∂�(⋅)
∂�2

]
[a2(⋅)− ā2] + �(⋅)�1

[
∂a1(⋅)
∂�2

]

+�1

[
∂�(⋅)
∂�2

]
[a1(⋅)− ā1]− �(⋅)�1

[
∂a2(⋅)
∂�2

]
+ �2

[
∂C1(⋅)
∂a2(⋅)

∂a2(⋅)
∂�2

]
Solving equations (??) – (??), binding (??) and (??), and (??) – (??) simultaneously establishes this

particular second-best outcome, characterized by the value set
(
�′1, �

′
2, a
′
j , ā
′
j , a
′
P , ā

′
P , �

′, �′1, �
′
2, �
′
)
, j =

1, 2, where �′ is the multiplier on constraint (??). Note that (??) is consistent with the low-cost

NPS receiving an informational rent from the regulator, since the added cost to the regulator of

allowing high-cost NPS 2 to exceed its reservation profit level (i.e., �1) is larger than the added

cost of allowing low-cost NPS 1 to exceed its incentive-compatible profit level (i.e., �2).

To see this particular result more clearly, we now turn to numerical simulations of the basic

model. As shown in the next section, these simulations are based on simple functional forms for the

NPSs’ and point source’s abatement cost functions. The numerical simulations also consider cases

21As with conditions (??) and (??) in Section 2.1, the direction-reduction effects in conditions (??) and (??), i.e.,
the �1C1 and �2C2 terms, are ultimately scaled by a factor of 0.01 for the numerical simulations in Section 3.
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where other sets of constraints are binding besides (??) and (??). Thus, we are able to distinguish

a unique second-best benchmark for the numerical model.

3 Numerical Simulations

In order to simulate possible equilibrium outcomes under full and incomplete information, we

assume the following abatement cost functions for NPSs 1 and 2 and point source P , respectively,22

C1(a1) =
a2

1

2

C2(a2) =
2a2

2

3

CP (aP ) = a2
P

Thus, NPS 2(1) is high(low) cost and condition (??) is duly satisfied. Table 1 contains the various

parameter values for our initial and alternative simulation exercises. Note that for the initial

simulation we assume that NPS 1 is located “downstream” from NPS 2 vis-a-vis the receptor

point, i.e., �1 = 1 > �2 = 0.95, and that the relative likelihoods of each NPS choosing to abate

according to their true abatement costs are each equal to 2, i.e., �1 = �2 = 2.23 Results for the

first- and second-best scenarios for this initial simulation are presented in Table 2.

For the first-best benchmark, note from Table 2 that NPS 2 receives a slightly lower subsidy in

percentage terms, i.e., it shares 51% of its abatement cost with the regulator while NPS 1 shares

49% of its cost. These cost-share rates are generally higher than the typical EQIP cost-share rates

reported by the NRCS, which range between 25 and 40 percent (i.e., between 60 and 75 percent

when defining the rate as percentage of cost incurred by the NRCS)(NRCS, 2011a and 2011b). In

contrast, NPS 2 receives a lower initial abatement allocation (24 units vs. NPS 1’s 37 units). As a

result of WQT, NPS 1 abates more than NPS 2 (79 units vs. 54 units). The excess of abatement

22GAMS IDE version 2.0.20.0 is used to generate the simulations. Copies of the input code are available upon
request from the author.

23Recall from Section 2.2 that unambiguous analytical results for the second-best solution depend on sufficiently
small differences between �1 and �2. We nevertheless perform sensitivity analysis on the values of �j in order to
test the stability of our simulations. Also, we assume that the regulator has access to enough information about the
NPSs’ respective abatement cost functions to be relatively confident about which NPS is which, as evidenced by the
relatively large values assumed for �1 and �2, e.g., the regulator believes that NPS 1 is two times as likely to identify
itself as NPS 1 than is NPS 2 and vice-versa for NPS 2.
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over initial allocation obtained by each respective NPS is then sold to point source P , so that P can

effectively meet its abatement allocation, i.e., (89.87 - 19.46) = (79.00 - 36.93) + (54.26 - 24.42).

The regulator effectively ensures that each NPS’s surplus (i.e., profit) from participating in WQT

equals the value of its next best alternative (i.e., participation constraints (??) and (??) bind).

However, point source P obtains negative profit (driven by its relatively large initial abatement

allocation and the fact that it does not receive a subsidy from the regulator).24 The total cost of

the subsidy program for the regulator amounts to approximately $2,540.

The third column of Table 2 contains the results for the second-best scenario. In reacting to

the uncertainties associated with NPS costs and abatement effectiveness, the regulator maintains

its subsidization rate for NPS 1 and increases NPS 2’s (NPS 2’s cost-share falls from 51% to 48%).

In addition, the regulator shifts more of the initial abatement allocation toward point source P

(from 90 units in the ex post outcome to 98 units in the ex ante outcome). As a result, the initial

allocation to NPS 1 is reduced by more than the allocation is increased for NPS 2 (from 37 to 28

units for NPS 1 and from 24 to 26 units for NPS 2).25

Further, the pattern of trade in the permit market is altered. NPS 1(2) now abates less(more),

and the point source in turn abates slightly less itself. Although the equilibrium permit price is

slightly lower, the negative profit incurred by the point source is now larger (from approximately

-$3,100 to -$3,400). Although NPS 2’s profit is constrained to equal the value of its next-best

alternative, NPS 1, being the low-cost NPS, is able to extract a rent from the regulator worth

approximately $316. Finally, the regulator’s total cost rises, from approximately $2,540 in the

second-best scenario to $2,630 in the first-best scenario, indicating an “informational cost” to the

regulator of approximately $90, or only 4%.

As indicated in Table 1, we test the stability of the simulation model by examining an alter-

native scenario where the NPSs’ respective delivery ratios are reversed, i.e., NPS 2 is now located

downstream from NPS 1. Table 3 reports the results. Due to the ambiguity associated with the

second-best outcome for the case of �2 > �1 (as discussed in Section 2.2), we have solved the regu-

lator’s first-stage problem for each of the three combinations of constraints that the regulator could

24Note that the regulator is precluded from simply assigning the entire initial abatement allocation Ā to point
source P because of the binding participation constraints for both NPSs. This preclusion is also evident in the
second-best scenario discussed below, where only NPS 2’s participation constraint binds.

25Thus, the regulator in effect compensates NPS 1 for not having received a decrease in its cost share with a larger
decrease in its initial abatement allocation.
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conceivably face, and have then selected the solution corresponding to the lowest total abatement

cost. The three constraint combinations are represented by equations {(??),(??)}, {(??),(??)}, and

{(??),(??)}. As demonstrated in Section 2.2, the constraints included in combinations {(??),(??)}

and {(??),(??)} cannot hold simultaneously. In addition, the constraint combination {(??),(??)}

is incompatible with the regulator’s choices of āj , j = 1, 2 (a proof of this result is available from

the authors upon request). In our case, constraint set {(??),(??)} results in the lowest total cost

of regulation for the regulator and is therefore considered the set of binding constraints for the

second-best solution to this problem.

Comparing the first-best results in Table 3 with those in Table 2, we see that the resulting

equilibrium changes only slightly in response to the changes in the delivery ratios. In relative

terms, all of the results obtained for the initial first-best equilibrium are retained in this alternative

equilibrium, e.g., NPS 2 receives a slightly lower subsidy in percentage terms than NPS 1, as well

as a lower initial abatement allocation.

However, with respect to the second-best equilibrium, the changes are more pronounced. Al-

though NPS 1’s cost-share rate stays constant at 48%, NPS 2’s increases to 52% (or, alternatively

stated, its subsidy rate falls from 57% to 48%). In concert with these rates, NPS 1’s(2’s) abatement

allocation rises(falls) from 34(27) to 36(26) units. Thus, although NPS 2’s loadings are now rela-

tively more potent than NPS 1’s (due to �2 > �1), and thus, all else equal, it is more cost effective

to encourage more abatement from NPS 2, the regulator nevertheless balances a lower abatement

allocation for NPS 2 with a lower subsidy rate. By eliminating NPS 1’s rent payment, which is a

consequence of constraint (??) now binding (rather than (??)), the regulator is able to reduce its

total cost to $2,591, which is now only slightly larger than the first-best benchmark of $2,573.

4 Summary

This paper has examined how a regulatory authority might consider subsidizing the participation of

nonpoint sources (through a cost-sharing arrangement) in the surplus-generating economic activity

of water quality trading. Toward this end, the subgame-perfect equilibrium concept is adopted to

model the “multilateral contracting” relationship between the regulatory authority and the non-

point sources when the regulator has incomplete information about the nonpoint sources’ respective
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abatement costs. We derive analytical expressions for first-best allocations in the presence of regu-

lator uncertainty regarding these costs. The extent to which the first-best allocation is constrained

by asymmetric information concerning the nonpoint sources’ costs is also demonstrated analytically.

In numerical analysis we find that the regulator reacts to its problem of incomplete information

by increasing its cost-share ratios and, in some cases, providing additional rent to the low-cost

nonpoint source. It also shifts more of the required abatement to the point source, for which there

is no asymmetric information problem. As a result, the overall cost of regulation increases relative

to the first-best benchmark.

Our results suggest that a cost-sharing arrangement in the presence of incomplete information

about an nonpoint sources’ abatement costs can successfully be coupled with the development of a

market within which the nonpoint sources are able to generate surplus through trading abatement

credits with one another and with point sources. In cases where the nonpoint sources can voluntarily

decide whether to enter the cost-sharing arrangement with the regulator, such as for the control of

nonpoint pollution, the development of such a market may be a strong enough inducement for the

nonpoint sources to enter the cost-sharing arrangement in the first place.
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Table 1: Parameter Values for Simulations of First- and Second-Best Scenarios.

Parameter Initial Value Alternative Value

Ā 150 150

�1 1 0.95

�2 0.95 1

�P 1 1

NBAlt
1 = NBAlt

2 100 100

�1 = �2 2 2
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Table 2: Results for Initial Simulation of First- and Second-Best Scenarios.

Variable First-Best Second-Best

�1 0.49 0.49
�2 0.51 0.48
ā1 36.93 27.51
ā2 24.42 25.69
āP 89.87 98.08
a1 79.00 76.93
a2 54.26 56.92
aP 19.46 19.01
� 38.91 38.01
Profit1 100 416.26
Profit2 100 100
ProfitP -3,118.20 -3,367.16
�1 0.35 1.06
�2 0.35 0.52
� 13.73 19.63

Total Cost to Regulator ((1− �1)C1(⋅) + (1− �2)C2(⋅)) 2,543.43 2,628.59
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Table 3: Results for Alternative Simulation of First- and Second-Best Scenarios.

Variable First-Best Second-Best

�1 0.49 0.48
�2 0.51 0.52
ā1 35.65 36.20
ā2 26.21 25.70
āP 89.93 89.91
a1 76.64 77.75
a2 57.49 56.50
aP 19.70 19.64
� 39.40 39.27
Profit1 100 100
Profit2 100 100
ProfitP -3,155.10 -3,145.35
�1 0.39 0.41
�2 0.39 0.41
� 15.46 16.23

Total Cost to Regulator ((1− �1)C1(⋅) + (1− �2)C2(⋅)) 2,573.37 2,591.08
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