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ABSTRACT

A 2D finite element/1D Fourier solution

to the Fokker-Planck equation

by

Joseph Andrew Spencer, Doctor of Philosophy

Utah State University, 2012

Major Professor: Dr. Eric D. Held
Department: Physics

A method is proposed for a 2D finite element/1D Fourier solution of the Fokker-Planck

(FP) equation describing Coulomb collisions between particles in a fully ionized, spatially

homogeneous plasma. A full 3D velocity space dependence is maintained using cylindrical

coordinates
(
v‖,v⊥,γ

)
. When a magnetic field exists, v‖ is aligned with it and γ corresponds

to gyroangle. Distribution functions are approximated by a Fourier representation in the az-

imuthal angle, γ , and by a 2D finite element representation in the parallel and perpendicular

directions. Two different techniques are used to linearize the FP collision operator: one is

referred to as the δ f approach and the other is called the Chapman-Enskog-like (CEL) ap-

proach. The δ f approach uses the test particle operator, whereas the CEL approach uses

a combination of fluid equations with a kinetic equation employing both the test particle

and field operators. The finite element/Fourier treatment is discussed in detail and applied

to both linearization schemes for a number of test applications. The FP equation can be

solved in a fully implicit manner allowing large, stable time steps and simulations that ar-

rive quickly at equilibrium solutions. The results of several test problems are discussed,

including a calculation of the plasma resistivity/conductivity, the heating and cooling of a

test particle distribution, the slowing down of a beam of test particles, the acquisition of



iv
a perpedicular flow for a nonflowing Maxwellian test distribution, and thermalization of

plasma species with different temperatures. Robust convergence upon refinement of the

finite element/Fourier representation is highlighted.

(122 pages)
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PUBLIC ABSTRACT

A 2D Finite Element/1D Fourier Solution

to the Fokker-Planck Equation

Joseph Andrew Spencer

Plasma, the fourth state of matter, is a gas in which a significant portion of the atoms

are ionized. It is estimated that more than 99% of the material in the visible universe is

in the plasma state. The process that stars, including our sun, combine atomic nuclei and

produce large amounts of energy is called thermonuclear fusion. It is anticipated future

energy demands will be met by large terrestrial devices harnessing the energy of nuclear

fusion. A gas hot enough to produce the number of atomic collisions needed for fusion

is necessarily in the plasma state. Therefore, plasmas are of great interest to researchers

studying nuclear fusion. Stars are massive enough that the gravitational attraction heats and

confines the plasma. Gravitational confinement cannot be used to confine fusion plasmas

on Earth. Material containers cause cooling, which prevent a plasma from maintaining the

high temperature needed for fusion. Fortunately plasmas have electrical properties, which

allow them to be controlled by strong magnetic fields.

Although serious research into controlled thermonuclear fusion began over 60 years

ago, only a couple of man-made devices are even close to obtaining more energy from

fusion than is put into them. One difficulty lies in understanding the physics of particle

collisions. A relative few particle collisions result in the fusion of atomic nuclei, while

the vast majority of collisions are understood in terms of the electrostatic force between

particles. My work has been to create an a computer code, which can be executed in

parallel on supercomputers, to quickly and accurately calculate the evolution of a plasma

due to particle collisions. This work explains the physics and mathematics underlying our

code, as well as several tests which demonstrate the code is working as expected.
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CHAPTER 1

INTRODUCTION

The Fokker-Planck (FP) operator is a bilinear, integro-differential operator that governs

the evolution of a fully ionized plasma caused by Coulomb collisions between charged par-

ticles. The FP operator plays an important role in many areas of plasma physics including

astrophysical plasmas, laser-produced plasmas, and inertial and magnetic confinement. In

these types of plasmas, collisions between charged particles usually involve only two parti-

cles (binary collisions), as opposed to tertiary or even higher-order interactions. For weakly

coupled plasmas the potential energy of a binary interaction is much less than the average

kinetic energy of the particles, hence most collisions result in small angle deflections rather

than large changes to a particle’s velocity vector (see Figs. 1.1 & 1.2). In addition, the

Coulomb interaction between two particles in a plasma is screened by the remaining par-

ticles. The effective potential for a single particle within a plasma is a Yukawa potential,

with a characteristic length called the Debye length, λD. This screened potential is a re-

duction of the the usual Coulomb potential. At distances longer than the Debye length,

the potential exponentially decays meaning that binary collisions effectively occur when

the two particles are within a few Debye lengths of each other. The resulting interactions

between particles appear as random kicks to their velocity vectors, i.e. Brownian motion.

The complicated trajectories taken by the particles are then well described by statistical

treatments of the behavior.

A statistical account of Coulomb interactions in fully ionized plasmas leads to the FP

operator. This operator is part of the kinetic theory of plasmas that accounts for particle

position and velocity. It describes the evolution of what is called the single particle distribu-

tion function, which is a 7 dimensional quantity (3 spatial dimensions for particle position,

3 dimensions for particle velocity, and 1 time dimension). Because of the high dimension-

ality, numerical solutions play an important role in discovering new physics. There are
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Fig. 1.1: Depiction of trajectory of neutral test particle through partially ionized plasma.
Random positions of background electrons are depicted with -, ions with + and neutrals
with O. Neutrals take straight line paths between few abrupt atomic collisions.
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Fig. 1.2: Depiction of trajectory of charged test particle through partially ionized plasma.
Random positions of background electrons are depicted with -, ions with + and neutrals
with O. Charged particle trajectories are smooth curves dominated by many small-angle
collisions with other charged particles.
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currently many different methods used to solve the FP equation. A common approach has

been to apply finite differencing methods [1, 2, 3]. More recent work has focused on fast

multipole methods [4], full Fourier spectral treatments [5], wavelet approximations [6], and

spectral collocation methods [7]. The finite volume method, put forth by Xiong et al. [8],

will be discussed later for comparison purposes.

Much of the theory in plasma physics seeks to reduce the number of phase space di-

mensions to avoid the complications involved in the full kinetic description. Yet for a large

set of applications, including high-temperature tokamak plasmas and nearly collisionless

astrophysical plasmas, it seems the full kinetic description may be just what is needed to

provide the accuracy missing from simpler approaches.

Computer codes that solve the FP equation are referred to as Fokker-Planck codes. This

work describes the development and application of a Fokker-Planck code which imple-

ments the Finite Element Method (FEM) in combination with a Fourier series expansion to

represent the velocity dependence of the distribution function. The plasmas under consid-

eration are spatially homogeneous (for simplicity of addressing the velocity dependence).

We consider plasmas where collisions between particles are significant and play a compa-

rable role in the dynamics to other physical processes, such as a response to an external

field. The formulation we present is for a multispecies plasma with arbitrary masses, but

the current algorithm only treats a fully ionized, two species plasma.

The qualities of a successful algorithm are general applicability, numerical efficiency,

and preservation of the fundamental conservation properties of the FP operator. An implicit

time advance may also be desirable to quickly obtain steady-state solutions. Our algorithm

provides a θ -centered implicit time discretization, where for the centering parameter, 0 ≤

θ ≤ 1, the advance can range from fully explicit (θ = 0) to fully implicit (θ = 1). The

implicit scheme can be used to take large, stable time steps, ∆t, but has first order error in

∆t. The Crank-Nicolson method [9] (θ = 0.5) is order O
(
∆t2), and can thus be used to



4
obtain accurate time-dependent solutions.

Although the FEM has been used to treat the spatial dependence of the plasma fluid

equations [10], and to solve the neutron transport equation [11], it has not been applied

to the numerical solution of the velocity dependent distribution function for plasmas. As

shown in refinement tests presented in this work, the convergence properties of the FEM

make it desirable for solving the plasma kinetic equation. The algorithm proposed in this

paper uses the FEM/Fourier machinery of the NIMROD code [10]. NIMROD is a plasma

simulation tool that was written to operate on massively parallel supercomputers and is

normally used to solve the plasma fluid equations. NIMROD’s data structures, solver ca-

pabilities, and parallelism have been adapted to provide a FEM/Fourier analysis on the

velocity domain of the FP equation. My work has made use of many preexisting feature

of the NIMROD code including uniform quadrilateral grids and grid packing, serial and

parallel execution, C0 continuity, and Dirichlet boundary conditions.

In magnetized plasmas distribution functions tend to have a high degree of azimuthal

symmetry, with the magnetic field defining the direction of an axis for cylindrical coordi-

nates. Physically this is due to the rapid gyration of particles about magnetic field lines.

For this reason, a Fourier series representation is used in the azimuthal direction about this

axis, and it is anticipated the angular dependence quickly converges with only a few Fourier

terms. The case of large perpendicular flow, however, may require a more extensive Fourier

expansion in gyroangle. We consider an example where a flowing background accelerates

test particles perpendicular to the axis. Even with perpendicular background flows on the

order of the thermal speed, relatively few Fourier terms are required to represent the test

distribution.

We begin, in Chapter 2, by discussing the single particle distribution function, its prop-

erties and its physical interpretation. The equation that governs the time evolution of the

distribution function, called the plasma kinetic equation, is introduced. The term of primary
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importance in this work is the Fokker-Planck operator. The general form of this operator is

derived from statistical considerations, and then a particular form, called the Coulomb col-

lision operator, is given. The collision operator satisfies physically important conservation

laws which are then discussed. Next we derive two linearized forms of the collision oper-

ator, which will provide the foundation for the rest of the discussion. The two approaches

are referred to as the δ f approach, and the Chapman-Enskog-like (CEL) approach. The δ f

approach uses a linear form of the collision operator called the test particle operator. The

CEL approach uses the test particle operator as well as another linear form of the collision

operator called the field operator, along with fluid equations for the species densities, tem-

peratures, and flows. Both approaches lead to interesting physical calculations, and both

approaches have important uses in modern computational plasma physics.

Chapter 3 gives a detailed description of the numerical scheme used to treat the FP

equation. The description begins with the time-discretization scheme and continues with

discussion of the Fourier series expansion in the azimuthal direction, and the general theory

behind the finite element method. I include a brief accounting of the number of independent

unknowns in this representation. This provides a clean way to compare the efficiency of

my algorithm with other schemes. Next, the two linearized forms of the collision operator,

the test particle operator and the field operator, are treated using the FEM/Fourier scheme.

The next two chapters focus on solving particular problems using my Fokker-Planck

code. The code is tested against benchmark calculations, as well as problems designed to

utilize the Fourier representation in the azimuthal direction. The results in Chapter 4 are

included in a paper submitted to the Journal of Computational Physics, and is currently in

the peer review process. A paper with the results in Chapter 5 is in preparation. Chapter 4

looks at problems that involve the test particle operator and utilize the δ f approach, while

Chapter 5 looks at problems involving both test particle and field operators and utilize the

CEL approach. Chapter 4 begins by presenting a calculation of the electrical resistivity of
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a plasma. The results are compared to an analytic solution. This problem exhibits a power-

ful convergence property of the FEM, namely, exponential convergence under refinement

of the underlying polynomial degree. The convergence rate of the FEM is one of the pri-

mary motivations for conducting research into its use in a Fokker-Planck code. The next

benchmark calculation is the thermalization of a tenuous ion plasma with a hotter/cooler

background ion plasma. This problem was given in Ref. [8], where the finite volume

method, a cousin of the finite element method, is used. Upon comparison, we find our

algorithm gives comparable results with far fewer independent unknowns in the underlying

representation. In the context of this problem, the property of particle number or density

conservation for the collision operator is explored. Fidelity to this property is achieved

by our Fokker-Planck code when the velocity domain is large enough. Domain truncation

error is shown to decrease as the domain is enlarged, until only the errors inherent in the

FEM/Fourier representation are left.

The next problem solved in Chapter 4 is the equilibration of a beam of test particles

as it streams through and collides with particles in a background plasma. This problem

demonstrates many interesting properties of the collision operator, such as drag that slows

the beam down, dispersion or spreading that heats the beam, and diffusion in pitch angle.

The beam problem is followed by a problem where test particles initially have zero flow

and collisions with particles of a flowing background drag and heat the test particles un-

til equilibrium is reached. This problem is intended to test the Fourier representation by

having the background flow perpendicular to the cylindrical axis. The coupling of Fourier

modes is explored, and robust convergence is achieved with very few modes.

Chapter 5 examines the results of solving two problems using the CEL approach. First,

Chapter 5 reconsiders the conductivity of a plasma. This is similar to the resistivity problem

solved in Chapter 4. The difference is that the δ f approach does not conserve momentum,

while CEL approach conserves particle number, momentum and energy. Results are found
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to agree with accepted values of the conductivity, and momentum is conserved up to numer-

ical errors. The source of these errors is explored in detail. Finally, in Chapter 5, a problem

is considered where the electrons and ions in a plasma have different initial temperatures.

The dynamical problem of energy exchange between the two species until equilibrium is

achieved is calculated.

Chapter 6 gives a conclusion to this work, and lists several future efforts, which range

from minor improvements of efficiency to major developments, like the addition of spatial

dimensions for this Fokker-Planck code. In conclusion, I have had great success in using

a finite element/Fourier solution to the Fokker-Planck equation that includes both the test

particle and field operators and provides insight into the kinetic properties of fully ionized

plasmas.
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CHAPTER 2

THE FOKKER-PLANCK EQUATION

The physics of the Fokker-Planck equation

The velocity distribution function

Plasma physics investigates gases, which are hot enough that a significant portion of

the particles are ionized. The physics describing the individual motion of charged particles

is well known, and in principle could be used to predict the evolution of a plasma. How-

ever, calculating the motion of every particle is impractical and undesirable. Impractical

because common laboratory plasmas have densities on the order of 1020 particles in a cubic

meter, thus calculating the trajectory of every particle by taking into account its interaction

with every other particle cannot be done even with modern supercomputers. Undesirable

because even if a computer could be programmed to give the position and velocity of ev-

ery single ion and electron, the information content would be overwhelming and further

reduction of the results would be required anyway.

Fluid models describe plasmas in terms of spatially smoothed, continuous quantities

such as density, flow velocity, and temperature. A simple example of a fluid model is mag-

netohydrodynamics, or MHD, which treats the plasma as a single, electrically conducting

fluid. The two-fluid model is more sophisticated in that it treats the electrons and ions in

the plasma as separate fluids.

Historically, gases were thought to be continuous mediums. Today, of course, we know

gases are composed of a ridiculously large number of small particles. The development

of the kinetic theory of gases, and subsequently statistical mechanics, shortly preceded the

discovery of plasmas and the development of the theory describing them. Because of the

difficulty in solving the plasma kinetic equation with its seven independent variables (three

for particle position, three for particle velocity, and time), plasma fluid models, which
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involve only four independent variables (three for position and time) are also useful. How-

ever, many fluid models are only applicable within specific regimes of collisionality and

magnetic field strengths.

A theory for general collisionality and field strength requires a statistical account of

the rapid motion of individual particles, and hence the kinetic theory of ionized gases or

plasmas. Today fluid models are understood within the framework of kinetic theory. Plasma

kinetic theory is more general, rigorous and informative than plasma fluid models, and more

efficient than trying to account for every particle in the system. For these reasons the kinetic

theory of gases is a common starting point for modern treatments of the physics of plasmas.

The quantity of primary interest in kinetic theory, and in my research, is the single

particle distribution function. The distribution function, fa (x,v, t), is defined so that

fa (x,v, t)dxdv (2.1)

is the probable number of particles, of species a, within an infinitesimal three-dimensional

spatial volume, dx, and three-dimensional velocity-space volume, dv, about position x

and velocity v, at time t. The distribution function is a density of particles in position

and velocity space. Therefore, the distribution function may be used to calculate the total

density of particles, irrespective of their velocity vectors, using

na (x, t) =
ˆ

dv fa (x,v, t) . (2.2)

In addition to the density, na, the distribution function gives information about the location

and motion of the particles in the plasma. For instance, at position x and time t, the density

of particles with momentum mav0 is given by mav0 fa (x,v0, t), and the density of parti-

cles with kinetic energy 1
2mav2

0 is given by 1
2mav2

0 fa (x,v0, t). Logically, then, the average
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momentum density and kinetic energy density of species a are given by

n−1
a

ˆ
dvmav fa (x,v, t) , and n−1

a

ˆ
dv

1
2

mav2 fa (x,v, t) , (2.3)

respectively. In fact, the fluid flow, Va, the temperature, Ta, and all other fluid quantities of

species a are given in terms of velocity moments of the distribution function:

Va ≡ n−1
a

ˆ
dvv fa (x,v, t) , (2.4)

Ta ≡ n−1
a

ˆ
dv

1
3

maw2
a fa (x,v, t) , (2.5)

where wa = v−Va is called the random particle velocity. Note that temperatures within

this work will be given in units of energy, suppressing Boltzmann’s constant, kB.

Other important moments of the distribution function, which will be used throughout

this work, are the scalar pressure, pa = naTa, the heat flux,

ha =
ˆ

dv
1
2

maw2
awa fa, (2.6)

and the viscosity tensor, which is the traceless part of the pressure tensor,

πππa = ma

ˆ
dv
(

wawa−
w2

a
3

I

)
fa. (2.7)

Here I is the identity tensor.

The informative capacity of the distribution function comes from the fact that it is de-

fined over the three extra velocity dimensions. This advantage is offset by the computa-

tional intensity of solving a partial differential equation in seven dimensions, as opposed to

solving small sets of fluid equations (for quantities like na, Va, Ta) in four dimensions.
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The kinetic equation

For any gas, the evolution of fa is given by the Boltzmann transport equation, also

called the kinetic equation,

∂ fa

∂ t
+v ·∇ fa +aa ·∇v fa =

δ fa

δ t

∣∣∣∣
coll

. (2.8)

Here ∇ = ∂

∂x and ∇v = ∂

∂v are gradients in configuration and velocity space, respectively,

and aa is the acceleration of particles of species a under the influence of macroscopic

forces. In the case of fully ionized laboratory plasmas, for a species with charge qa and

mass ma, forces other than the electromagnetic force, such as gravity can be ignored, and

aa = qa
ma

(E+v×B), where E and B are the macroscopic electric and magnetic fields acting

on the plasma. The quantity, δ fa
δ t

∣∣∣
coll

, on the right side of the kinetic equation is called the

collision operator and represents the time rate of change in fa produced by microscopic

forces between individual particles.

The collision operator can be rigorously derived from the Liouville equation for the full

N-particle distribution function, F , defined in phase space, via the BBGKY hierarchy [12].

There is no exact formula for the collision operator, only a sequence of more accurate and

less tractable approximations. The key insight Boltzmann had was to assume collisions

occur primarily between two particles at a time. This assumption truncates the BBGKY

hierarchy, and leads to a bilinear operator, which can be written symbolically as

δ fa

δ t

∣∣∣∣
coll

= ∑
b

C ( fa, fb) . (2.9)

The collision operator between species a and b will also appear in the abbreviated form

Cab = C ( fa, fb).

Without loss of generality, it is at this point that fluid models can be tied to kinetic

theory. By taking the
{

1,mawa,
1
2maw2

a
}

velocity moments of Eq. (2.8), the five-moment
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fluid equations for a fully ionized, multispecies plasma can be obtained. For reference, they

are

∂na

∂ t
+∇ · (naVa) = 0 (2.10)

mana
∂Va

∂ t
+manaVa ·∇Va−naqa (E+Va×B)+∇pa +∇ ·πππa = Ra (2.11)

3
2

na
∂Ta

∂ t
+

3
2

naVa ·∇Ta +naTa∇ ·Va +∇ ·ha +∇Va : πππa = Qa (2.12)

where the collisional friction,

Ra = ∑
b

ˆ
dvmawaCab, (2.13)

and collisional heating,

Qa = ∑
b

ˆ
dv

1
2

maw2
aCab. (2.14)

One particular distribution function of interest is called the Maxwell-Boltzmann distri-

bution, or Maxwellian:

f M
a (x,v, t) =

na (x, t)
π3/2v3

Ta (x, t)
exp

[
−
(

v−Va (x, t)
vTa (x, t)

)2
]

, (2.15)

where the thermal speed,

vTa (x, t) =

√
2Ta (x, t)

ma
. (2.16)

It can be shown the Boltzmann collision operator vanishes only when the distribution func-

tions of all species are Maxwellian, with the same temperature and flow velocity. Fluid

models are often accurate when the binary collisions are the dominant physical process,

keeping the distribution functions very close to a Maxwellian throughout the evolution.

When the magnetic field strength is strong (fusion plasmas), i.e., when the frequency
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of the cyclotron motion in the presence of the magnetic field is much greater than the

rate at which collisions are occurring, a simplified form of kinetic equation can be derived

from averaging over this rapid gyro motion. The resulting lowest-order, kinetic equation

describes the evolution of a distribution of guiding centers, which has the advantage of

being six dimensional rather than seven.

The algorithm proposed in this work was created with the intention of simulating plas-

mas where the diffusion, drag, dispersion and other dynamical processes in velocity space

related to binary Coulomb collisions are on the same order as other physically interesting

processes, such as the plasma’s response to an external field. This assumption is physically

more realistic for many plasmas as opposed to assuming either the high-collisionality or

low-collisionality limit. While many plasmas, even in fusion devices, are very close to

Maxwellian, there can be a significant portion of the distribution, which is not, and which

cannot be successfully modeled with a gyro-averaged kinetic equation. Where the dynam-

ical evolution of such a plasma is of interest is where the proposed algorithm will be of

greatest use.

The Fokker-Planck equation

The motion of a charged particle through a plasma is very complicated, resulting from

many collisions with other particles, but the form of the collision operator, δ fa
δ t

∣∣∣
coll

, in Eq.

(2.8) must be obtained through statistical analysis. Here it is useful to define a probability

distribution function, Pa (v,∆v), where Pa (v,∆v)d (∆v) is the probability, at time t, that a

particle of species a, with velocity v, will undergo several small-angle collision, which will

change its velocity by ∆v in a short time ∆t. We can assume the normalization condition

ˆ
Pa (v,∆v)d (∆v) = 1. (2.17)
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We also assume this probability does not depend on time explicitly, and it does not depend

on the previous random kick, ∆v, to the particles velocity vector. This is often referred to

as a Markov process.

The distribution function, fa (x,v, t), would then evolve as

fa (x,v, t) =
ˆ

d (∆v) fa (x,v−∆v, t−∆t)Pa (v−∆v,∆v) . (2.18)

Note, we have also assumed many collisions occur in a time short enough that the particle

does not change its spatial location significantly. The time derivative of fa, due to collisions,

would be given by

δ fa

δ t

∣∣∣∣
coll

= lim
∆t→0

fa (x,v, t)− fa (x,v, t−∆t)
∆t

. (2.19)

By Taylor expanding (2.18), to second order in ∆v, it can be shown in the limit as t→ 0,

δ fa

δ t

∣∣∣∣
coll

=−∇v ·
[〈

∆v
∆t

〉
a

fa

]
+

1
2

∇v∇v :
[〈

∆v∆v
∆t

〉
a

fa

]
, (2.20)

where 〈
∆v
∆t

〉
a
=

1
∆t

ˆ
d (∆v)∆vPa (v,∆v) , (2.21)

and 〈
∆v∆v

∆t

〉
a
=

1
∆t

ˆ
d (∆v)∆v∆vPa (v,∆v) . (2.22)

In the context of plasma kinetic theory, Eq. (2.20) is called the Fokker-Planck form of

the Coulomb collision operator,
〈

∆v
∆t

〉
a is called the dynamical friction vector and

〈
∆v∆v

∆t

〉
a

is called the diffusion tensor. The dynamical friction and the diffusion tensor are referred

to as Fokker-Planck coefficients. It is clear, in this form, that these coefficients are average

time rates of change in ∆v and ∆v∆v.
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Coulomb collision operator

The accuracy of Eq. (2.20) depends on a predominance of collisions that result in small

scattering angles. When collisions are simply the result of the Coulomb interaction between

two charged particles, the collision operator becomes a bilinear integro-differential operator

called the Coulomb collision operator, Cab, which can be written in many equivalent forms.

Introducing Γab = q2
aq2

b lnΛab

4πε2
0 m2

a
(SI units), where lnΛab = ln

(
rmax
rmin

)
is the Coulomb logarithm

and rmax and rmin are upper and lower limits for the impact parameter, one way of writing

the Coulomb collision operator is

Cab =−Γab

2
∇v ·

[
ma +mb

mb
(∇v ·Db) fa−∇v · (Db fa)

]
. (2.23)

Here the diffusion tensor is defined as

Db (v, t) =
ˆ

dv′ fb
(
v′, t
)
U, (2.24)

with the Landau tensor

U =
u2I−uu

u3 , (2.25)

and u = v−v′.

The diffusion tensor and its divergence are related to what are called the Trubnikov-

Rosenbluth (TR) potentials [13, 14]:

Db = ∇v∇vgb, (2.26)

∇v ·Db = 2∇vhb, (2.27)
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where gb and hb are defined as

gb (v, t) =
ˆ

dv′ fb
(
v′, t
)

u, (2.28)

hb (v, t) =
ˆ

dv′ fb
(
v′, t
)

u−1. (2.29)

By defining a velocity space Laplacian, ∆v = ∇v ·∇v, Eqs. (2.28) and (2.29) can be written

in differential form:

∆vhb = −4π fb, (2.30)

∆vgb = 2hb, (2.31)

having the same form as Poisson’s equation in electrostatics, hence the reason for calling

gb and hb potentials.

Eqs. (2.23-2.24) can be used to write the collision operator solely in terms of the distri-

bution functions and the scattering tensor, without reference to the diffusion tensor or TR

potentials, which is done in the formulation by Landau [15]. Keep in mind all three formu-

lations may be important when considering the best approach for computing the Coulomb

operator given any particular application.

By writing the total time derivative found on the left side of Eq. (2.8) as D
Dt = ∂

∂ t + v ·

∇+ qa
ma

(E+v×B) ·∇v, the plasma kinetic equation can be written as:

D fa

Dt
=−∇v ·

{
∑
b

Γab

2

[
ma +mb

mb
(∇v ·Db) fa−∇v · (Db fa)

]}
. (2.32)

This form of the Coulomb operator demonstrates the evolution of the distribution function

along characteristics arises from a divergent current of particles due to collisions - a law of

continuity in velocity space. In this form, Eq. (2.32) can also be recognized as the Fokker-
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Planck equation in velocity space - the first term on the right hand side of Eq. (2.23),

2ma+mb
mb

∇v ·Db, is the dynamical friction and governs drag in velocity space [16], and the

second term, Db, is the diffusion tensor and describes dispersion in velocity space.

By defining charge density as ρc = ∑a qana (often set to zero under the quasi-neutrality

assumption) and current density as J = ∑a qanaVa, the plasma kinetic equation with

Maxwell’s equations provide a closed system of coupled equations. This system of equa-

tions is relevant in many arenas of plasma physics, including space and astrophysical plas-

mas, laser-produced plasmas, and magnetic confinement plasmas. Because few analytic

solutions exist, numerical solutions have an important role in discovering new physics.

One important reason for constructing numerical solution is to offset the expense of build-

ing experiments, which test new concepts, particularly in the effort to build nuclear fusion

devices.

However, solving the Maxwell and plasma kinetic system is a very challenging task.

Many schemes have been constructed to simplify this task. One of the main challenges

is the distribution function generally depends on seven independent variables, with three

spatial coordinates, three velocity coordinates and one time dimension. Modern super com-

puters, with parallel processing, may have a real chance of solving such a complex system.

Much of the theory in plasma physics seeks to reduce the number of phase space dimen-

sions to avoid the complications involved with approaching the full kinetic description.

Nevertheless it seems the full kinetic description may be needed to provide the accuracy

missing from simpler approaches.

My research has involved developing and implementing an algorithm to solve a lin-

earized form of Eq. (2.32) acting on a spatially homogeneous distribution function. Algo-

rithms, which focus on solving the evolution of the velocity distribution function due to the

Coulomb collision operator of Eq. (2.32), such as the algorithm proposed in this work, are

called Fokker-Planck codes. The Fokker-Planck code that was developed over the course
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of this research project provides an important step toward a code that can solve the full

kinetic equation in a reasonable amount of time.

Conservation laws

Before moving on, it is important to recognize certain fundamental properties of the

Coulomb collision operator, which will be of particular interest in what follows. It can be

shown for arbitrary distributions fa and fb,

ˆ
dvC ( fa, fb) = 0, (2.33)

ˆ
dvv [maC ( fa, fb)+mbC ( fb, fa)] = 0, (2.34)

ˆ
dv

1
2

v2 [maC ( fa, fb)+mbC ( fb, fa)] = 0. (2.35)

These three equations have important physical interpretations. Equation (2.33) states Coulomb

collisions cannot create or destroy particles. Equation (2.34) states the total momentum is

conserved. Equation (2.35) states the total energy is conserved. Preserving these three laws

are of fundamental importance when constructing any numerical solution to Eq. (2.32).

By defining the collisional friction and collisional energy exchange between species as

Rab =
ˆ

dvmawaCab (2.36)

and

Qab =
ˆ

dv
1
2

maw2
aCab, (2.37)

Eqs. (2.34 & 2.35) can be written in an especially compact form:

Rab = −Rba, (2.38)

Qab = −Qba−Rba · (Vb−Va) . (2.39)
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Linearizing the Fokker-Planck equation

Since the Coulomb collision operator is nonlinear in the distribution functions, cf. Eq.

(2.23), it is desirable when constructing a Fokker-Planck code to first linearize the collision

operator in some way. Many plasmas of interest, both astrophysical and in the laboratory,

come very close to being described as Maxwellian, and it is appropriate to linearize the

collision operator by considering small perturbations away from a Maxwellian. However,

there is not a unique way of doing this. In order to build up from simple to more compli-

cated formulations, I chose to use two different approaches to linearize, which I refer to as

δ f -linearization and Chapman-Enskog-like (CEL) linearization.

The δ f approach assumes the distribution functions can be decomposed into static

Maxwellian backgrounds (all in thermal equilibrium with one another) and a small devia-

tions away from this:

fa (v, t) = f M
a (v)+Fa (v, t) , (2.40)

where Fa/ f M
a � 1. Importantly, the Maxwellian composes the bulk of the distribution

function, and is static. The background Maxwellians, f M
a , are called field particles, while

the small deviations, Fa, are called test particles. By small deviation, it is meant the test

particles are so tenuous that binary collisions between them may be ignored and evolution

of the field distributions is negligible. This assumption, of course, bears consideration when

obtaining results.

The CEL approach defines an evolving Maxwellian, (which may also be termed field

particles,)

f M
a = na

(
ma

2πTa

)3/2

exp

[
−ma (v−Va)

2

2Ta

]
, (2.41)

which is built from the time-dependent Maxwellian moments of the full distribution func-
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tion,

na =
ˆ

dv fa, (2.42)

Va = n−1
a

ˆ
dvv fa, (2.43)

Ta = n−1
a

ˆ
dv

1
3

maw2
a fa, (2.44)

for all times throughout the evolution of the plasma. The difference between the full distri-

bution function and this Maxwellian is conventionally called the kinetic distortion,

Fa (v, t) = fa (v, t)− f M
a (v, t) . (2.45)

Note, the kinetic distortion is not assumed to be small at this point, nor are the Maxwellians

of different species assumed to ever be in equilibrium. This construction is fully general in

that no ordering is necessary between the evolution equations for f M
a and Fa, in [17].

The important differences between this assumption and the assumption of the δ f -

linearization scheme are: (1) the Maxwellian background is allowed to evolve in time,

and (2) this decomposition is exclusive meaning the Maxwellian moments of the kinetic

distortion vanish. These two different linearization schemes lead to very different collision

operators, as will be shown in the discussion that follows. A wide variety of alternative

linearization schemes exist, including the diffusion approximation [18]. However, the ben-

efits of choosing these two particular schemes will become clear as we discuss the resulting

collision operators in the following subsections.
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δ f -linearization

Under the δ f -linearization scheme, cf. Eq. (2.40), the kinetic equation becomes

DFa

Dt
= ∑

b
C
(
Fa, f M

b
)

=−∑
b

Γab

2
∇v ·

(
ma

mb
Fa∇v ·DM

b −DM
b ·∇vFa

)
, (2.46)

where DM
b (v) ≡

´
dv′ f M

b (v′)U is the Maxwellian diffusion tensor. The term on the right

side of the equation is called the test particle operator, abbreviated in this text as CT
ab =

C
(
Fa, f M

b

)
. Note the collision operator C

(
f M
a , f M

b

)
does not appear in Eq. (2.46) because

all field distributions have the same flow velocity and temperature, by assumption, and the

collision operator C (Fa,Fb) is neglected since it involves the two small distributions, Fa

and Fb.

Using

∇v ·DM
b = − 2

vT b
zb ·DM

b , (2.47)

where zb = wb/vT b is the random particle velocity normalized by the thermal speed, Eq.

(2.46) simplifies to

DFa

Dt
= ∑

b

Γab

2
∇v ·

[(
2

vT b

ma

mb
zbFa +∇vFa

)
·DM

b

]
. (2.48)

Substituting f M
b into Eq. (2.24) yields an analytic form for the diffusion tensor

DM
b =

nb

vT b

[
3G(zb)−E (zb)

z3
b

zbzb +
E (zb)−G(zb)

zb
I

]
, (2.49)

where G(zb) = E(zb)
2z2

b
− e−z2

b√
πzb

is the Chandrasekhar function [16] and E (zb) = 2√
π

´ zb
0 dxe−x2

is the error function. Note, by keeping a finite background flow, Vb, in zb, we can examine

test particle distributions scattering off background distributions flowing in the lab frame.
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The simplicity of the test particle operator comes from analytically computing integrals

of Maxwellian distribution functions. This turns the kinetic equation for Fa into a partial

differential equation, which is much easier to deal with than the full integro-differential

operator of the full collision operator. For this reason the test particle operator was chosen

to be coded first. However, there are errors incurred in using this operator, which will be

discussed in the subsection, Conservation laws revisited.

The CEL equation

In this subsection, evolution equations for f M
a and Fa, (Eq. (2.45)), are constructed,

and a hybrid set of kinetic and fluid equations is obtained. Note the fluid equations, Eqs.

(2.10 - 2.12), were derived for a general distribution function. Since the Maxwellian, f M
a ,

(Eq. (2.41)) , is built from the Maxwellian moments of fa, it follows the fluid equations

completely describe the evolution of f M
a . For a spatially homogeneous plasma, the five-

moment fluid equations can be written as

∂na

∂ t
= 0, (2.50)

∂Va

∂ t
=

qa

ma
(E+Va×B)+

1
mana

∑
b

Rab, (2.51)

∂Ta

∂ t
=

2
3na

∑
b

Qab. (2.52)

The collisional friction, Rab, and collisional energy exchange, Qab, given in Eqs. (2.36 &

2.37) are defined in terms of the full distribution function, and provide closure for the fluid

theory.

The time derivative of f M
a can be written as

D f M
a

Dt
=

Dna

Dt
∂ f M

a
∂na

+
DVa

Dt
· ∂ f M

a
∂Va

+
DvTa

Dt
∂ f M

a
∂vTa

+
Dv
Dt
· ∂ f M

a
∂v

. (2.53)
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This expression is simplified using Eqs. (2.50-2.52):

D f M
a

Dt
=

2 f M
a

manavTa
∑
b

[
za ·Rab + v−1

Ta

(
2
3

z2
a−1

)
Qab

]
. (2.54)

Substituting this expression into Eq. (2.32) yields

DFa

Dt
= ∑

b

{
Cab−

2 f M
a

manavTa

[
za ·Rab + v−1

Ta

(
2
3

z2
a−1

)
Qab

]}
. (2.55)

This equation is the Chapman-Enskog-like (CEL) kinetic equation, introduced in [17].

Here, however, all spatial dependency have been removed. The CEL equation governs

the evolution of the kinetic distortion, while Eqs. (2.50-2.52) govern the evolution of the

Maxwellian part of the distribution function. If the macroscopic electric and magnetic

fields are given as sources, then this set of equations constitute a closed system of coupled

equations. The fluid equations are closed by solving for the kinetic distortion, and the ki-

netic distortion evolves according to the kinetic equation, Eq. (2.55). The method, which

will be used to approximate the kinetic distortion, is the 1D Fourier + 2D Finite element

representation described later.

The linearized CEL equation

At this point Eq. (2.55) is fully general, with no assumptions about ordering the kinetic

distortion relative to the Maxwellian. While it is possible to construct a fully nonlinear

solution to the CEL kinetic equation, this work is focused on solving linearized forms of the

collision operator. The plasmas considered in this work are assumed to have such tenuous

kinetic distortions that binary collisions between them may be ignored. This assumption

yields a collision operator linear in the kinetic distortion:

Cab ≈CM
ab +CT

ab +CF
ab, (2.56)
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where CM

ab = C
(

f M
a , f M

b

)
, CT

ab = C
(
Fa, f M

b

)
, and the field operator, CF

ab = C
(
Fa, f M

b

)
. As

in the subsection, δ f -linearization, we refer to CT
ab as the test particle operator, which

was given previously. While it is possible to write CM
ab in a similar way, and perform

further simplifications, it is more practical to add the Maxwellian distribution to the kinetic

distortion and use the test particle operator to compute C
(

fa, f M
b

)
= CM

ab +CT
ab.

The field operator does not simplify like the test particle operator because the diffusion

tensor of a generic kinetic distortion does not take a specific analytic form. Therefore, the

diffusion tensor or TR potentials must be computed numerically. Since these integrals must

be computed over the entire velocity domain, the field operator is much more computation-

ally expensive than the test particle operator.

Conservation laws revisited

Recall Eqs. (2.38 & 2.39) are a statement that Coulomb collisions must conserve mo-

mentum and energy, respectively. Incidentally, these properties imply that Raa = 0 and

Qaa = 0, and hence, are skipped in the calculation. In order to simplify the following dis-

cussion, I must define a few more symbols. The collisional friction or collisional energy

exchange with a superscript M, T, or F are computed using the collision operator with

the corresponding superscript. For example, RT
ab will be understood to be the collisional

friction the field particles exert on the test particles (i.e., the test particle operator, CT
ab, is

used).

A principle reason for developing the CEL equation, Eq. (2.55), is that a kinetic equa-

tion using the test particle operator alone is not capable of conserving momentum and

energy, since RT
ab = −RF

ba, and QT
ab = −QF

ba−RF
ba · (Vb−Va). In the δ f -linearization

scheme, the test particle friction and energy exchange are finite, but the field terms are nec-

essarily zero, and are never used to evolve the static Maxwellian backgrounds. The CEL

approach has exactly the necessary terms present to preserve these conservation laws.
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However, the differences in how the test particle operator and field operator are calcu-

lated (e.g., the test particle operator is a differential operator, whereas the field operator is

an integro-differential operator) can lead to numerical errors that spoil these conservation

properties in poorly resolved simulations. Thus, although the CEL approach analytically

guarantees conservation of momentum and energy, numerical errors can spoil exact con-

servation. These matters will be discussed in detail in Chapter 5.
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CHAPTER 3

NUMERICAL SCHEME

In this chapter, we discuss the general approach for approximating solutions to initial

value problems involving Eq. (2.32). The temporal discretization and treatment of the

time derivative are first discussed. Next the discretization of the velocity domain using

the finite element method in combination with a Fourier series expansion is explained. A

common argument justifying the use of the finite element method, based on a variational

principle, is summarized. This leads to the construction of an algebraic system of equations

approximating Eq. (2.32). C0 continuity of the solution requires converting this system of

algebraic equations to the so-called weak form. Exact details of how this is done for the

two linearized forms of the collision operator are discussed at the end of this chapter.

Time-discretization

We approximate the time derivative in Eq. (2.32) using first order finite differencing.

More precisely, a semi-implicit time-discretization scheme [9] with centering parameter

0≤ θ ≤ 1 is used to advance Eq. (2.32) over time step ∆t = tk+1− tk. This is explained in

the following way. Consider a differential equation of the form

∂ f
∂ t

= O( f ) , (3.1)

where O is some linear velocity-space (integro-)differential operator. Recall that we are

considering spatially homogeneous plasmas such that the total time derivative, D
Dt , may be

replaced by the partial derivative, ∂

∂ t , in the left side of Eqs. (2.46 & 2.55). For problems

with external fields, the acceleration term within D
Dt will appear explicitly as a source term

on the right side and will not affect the time-discretization scheme. Therefore, the Fokker-

Planck equations resulting from either the δ f approach, or the CEL approach take the form

of Eq. (3.1).
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A θ -centered, time-discretized form of Eq. (3.1) is written as

∆ f −θ∆tO(∆ f ) = ∆tO
(

f k
)

, (3.2)

where f k = f
(
tk), and ∆ f ≡ f k+1− f k. To solve for the evolution of f , one solves this

equation for ∆ f and adds this to the solution at the previous time step. When θ = 0, the

time advance is fully explicit, meaning ∆ f is solved for explicitly in terms of the solution at

the previous time step. When θ = 1, the time advance is fully implicit, meaning that f k+1,

which appears in O(∆ f ) on the left side of Eq. (3.2), is solved for implicitly.

The fully explicit solution has the disadvantage of being numerically unstable under

certain conditions, forcing the time steps to be small. A fully implicit equation is uncondi-

tionally stable, and can be used to jump quickly to an equilibrium solution. In taking large

time steps, however, the time evolution will not be accurately resolved, and the solution ac-

cumulates errors on the order of ∆t. Once equilibrium is reached, however, these errors are

due strictly to the velocity space representation. When θ = 1
2 , the solution is also uncondi-

tionally stable, and the error is second order in ∆t, giving more accurate time evolution for

small time steps than the fully implicit method. This amounts to a trapezoidal rule for the

time-discretization. Error accumulation due to time-discretization will be demonstrated in

some of the example problems discussed later. Since any one of these centering parameters

may be useful, depending on the situation, it is important to construct a solution which

keeps the centering parameter generic.

Applying this scheme to the test particle operator of the δ f approach yields

∆Fa−θ∆t ∑
b

C
(
∆Fa, f M

b
)

= ∆t ∑
b

C
(

Fk
a , f M

b

)
, (3.3)

where the Maxwellians are simply the initial Maxwellians, f M
b (t = 0).

For the CEL equation two subtleties exist regarding this time-discretization scheme.
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First, the field operator in Eq. (2.56) is a summation of collision operators acting on kinetic

distortions of different species, Fb. If these terms are to be treated implicitly, then all

kinetic distortions must be advanced simultaneously. Alternatively, a staggered approach

that solves for a single Fa at a time may be taken. This approach treats the field operator

terms for unlike species explicitly. Our algorithm has been designed to handle either case.

Second, the right hand side of Eq. (2.55) is dependent upon the Maxwellian moments,

na, Va, and Ta. An implicit treatment of these quantities would require both Fa and the

Maxwellian moments to be advanced simultaneously. For simplicity, Fa and f M
a will be

advanced in a time staggered fashion, allowing Eq. (2.55) to be advanced independent of

Eqs. (2.50-2.52). However, this means that the collision term, CM
ab, as well as

RM
ab =

ˆ
dvmavCM

ab, and QM
ab = Ta

ˆ
dvz2

aCM
ab (3.4)

must be treated explicitly.

With these considerations, the time discretized form of Eq. 2.55 is written as:

∆Fa−θ∆t ∑
b

{
∆Cab−

2 f M
a

manavTa

[
za ·∆Rab + v−1

Ta

(
2
3

z2
a−1

)
∆Qab

]}
= ∆t ∑

b

{
Cab−

2 f M
a

manavTa

[
za ·Rab + v−1

Ta

(
2
3

z2
a−1

)
Qab

]}
, (3.5)

where all quantities on the right side are calculated using Fa
(
v, tk) and f M

b

(
v, tk+1/2

)
,

and all quantities on the left side are calculated using ∆Fa and f M
b

(
v, tk+1/2

)
. Table (3.1)

diagrams the process by which the fluid and kinetic quantities are updated in a staggered

fashion. As stated previously, CM
ab, RM

ab, and QM
ab are included on the right side of Eq. (3.5),

but not the left side. By setting θ = 1, Eq. (3.5) becomes fully implicit in all terms except

those involving CM
ab, RM

ab and QM
ab. By setting θ = 0, Eq. (3.5) becomes fully explicit. Our

algorithm’s task is to solve Eq. (3.5) for ∆Fa, and add it to the solution at the previous time
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Table 3.1: Diagram of staggered update of the CEL approach. Shown are the updated
quantities, the order in which they are calculated, and the equations used in their update.

Time step k k + 1
2 k +1

Equation used Eq. (3.5) Eqs. (2.50 - 2.52) Eq. (3.5)
Quantity updated Fa −→ f M

a (na,Va,Ta) −→ Fa

step, Fa
(
v, tk). The fact that collisions between Maxwellians, CM

ab, are treated explicitly

may limit the size of ∆t for a numerically stable time advance, however, the extent to

which this is true is presently unclear.

Equations (3.3 & 3.5) are the paramount equations of this work, and the primary func-

tion of my Fokker-Planck code is to solve these two equations. The remaining text of

this work focuses on my numerical treatment, and its application to various problems of

interest.

A 2D finite element/1D Fourier representation

This section describes in detail the expansion used to construct a numerical approxima-

tion to Fa. First, the cylindrical velocity space coordinate system is explained and a Fourier

series is defined to handle the azimuthal direction. The remaining two velocity dimensions

use a finite element representation.

Azimuthal Fourier expansion

Cylindrical coordinates
(
v‖,v⊥,γ

)
are chosen such that v‖ is the component of a parti-

cle’s velocity parallel to a preferred direction b̂, v⊥ is the component of a particle’s velocity

directed radially perpendicular to b̂ and γ is the azimuthal angle defined relative to another

vector field perpendicular to b̂. Additionally, each distribution function is defined over co-

ordinates normalized by that species thermal speed, ca = v/vTa. This coordinate system

permits a Fourier series representation of the distribution function in the azimuthal direc-
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tion:

Fa (ca, t) =
N

∑
n=−N

Fa,n
(
ca‖,ca⊥, t

)
einγ , (3.6)

where Fa,−n
(
ca‖,ca⊥, t

)
= F∗a,n

(
ca‖,ca⊥, t

)
for the real quantity Fa.

If b̂ is parallel to a magnetic field, v‖ is the velocity along the field and γ is gyroangle.

For plasmas in the presence of a strong magnetic field, rapid convergence in the periodic

γ-direction is expected, hence the distribution function would be well approximated with

only a few Fourier terms. Indeed, most Fokker-Planck codes use the gyroaveraged form of

the Fokker-Planck operator [8], basically solving for Fa,0
(
ca‖,ca⊥, t

)
only. However, dis-

tributions with a finite flow perpendicular to the b̂ axis must have at least the n = 1 Fourier

modes, and mode coupling in the Fokker-Planck equation necessitates the use of higher

order harmonics. Such a problem is considered in Chapter 4 where robust convergence in

the Fourier representation is achieved even in extreme cases of perpendicular flows on the

order of thermal speeds.

Note, since the velocity space is scaled by thermal speeds, which are changing in the

CEL approach, the time derivative in the kinetic distortion is calculated as

∂Fa

∂ t
=

∂Fa

∂ t

∣∣∣∣
vTa

+
∂vTa

∂ t
∂Fa

∂vTa
, (3.7)

where the first term is the total time derivative holding the thermal speed constant, and

the second term corrects for an evolving grid. Using the temperature fluid equation, and

simplifying, this second term becomes

∂vTa

∂ t
∂Fa

∂vTa
=

2
3manav2

Ta
Qaca ·∇caFa. (3.8)

This term is taken to the right side of the CEL kinetic equation, and treated in a similar way

to the terms involving the collisional friction and energy exchange.



31
Finite element representation

For |ca|= |v|
vTa
� 1, we assume the velocity space distribution function approaches zero,

causing every term in the kinetic equation to vanish. This implies the velocity domain can

be truncated at sufficiently high velocities. The errors introduced by using a finite domain

for velocity space are referred to as domain truncation errors. By breaking this truncated

velocity domain, Ω, into L contiguous subdomains, Ωl , such that
⋃L

l=1 Ωl = Ω, the Fourier

coefficients in Eq. (3.6) may be approximated by a finite element basis representation

Fa,n
(
ca‖,ca⊥, t

)
=

I

∑
i=1

Fa,n,i (t)αi
(
ca‖,ca⊥

)
, (3.9)

where the αi are I piecewise bipolynomial trial functions defined over only one Ωl , vanish-

ing elsewhere. A Lagrange quadrilateral expansion is used, meaning the αi are Lagrange

bipolynomials with equispaced nodes defined over the unit square and mapped bilinearly

to quadrilaterals, Ωl . Since only one polynomial takes on a value of unity on a particular

node, and the rest vanish, the coefficients, Fa,n,i, represent the value of Fa,n at the nodes.

Additionally, C0 continuity is enforced across Ω, meaning that nodes along cell boundaries,

∂Ωl , overlap, and the coefficients, which represent values there must be equivalent. How-

ever, the first derivatives at these nodes are independent, and hence efforts must be taken

in the formulation to avoid second order derivatives of the kinetic distortion. Finally, since

cylindrical coordinates are being used, regularity along the axis (|ca|= 0) is enforced by

setting all coefficients Fa,n,i with n > 0 to zero.

Combining Eqs. (3.9 & 3.6) yields the full representation of Fa:

Fa

(
ca, tk

)
=

N

∑
n=−N

I

∑
i=1

Fk
a,n,iαi

(
ca‖,ca⊥

)
einγ . (3.10)

In the language of the finite element method, the functions used in this series expansion,

αieinγ , are called trial functions.
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Degrees of freedom

It is important, when comparing this representation to other numerical solutions (such

as finite difference or finite volume schemes), to count the number of independent coef-

ficients, Fa,n,i, in this representation. This is referred to as the degrees of freedom of the

representation. While it may seem like there are I× (2N +1) degrees of freedom, this is a

slight over count. It was previously mentioned that C0 continuity will be enforced over the

domain Ω. This, as well as the regularity condition along the cylindrical axis, reduces the

degrees of freedom.

The Lagrange bipolynomials, αi, are constructed by taking all possible products of

one dimensional Lagrange polynomials of a particular order, p. Therefore, the number

of nodes within a single cell, Ωl , is (p+1)2. The domain is broken into mx cells in the

perpendicular direction, and my cells in the parallel direction, yielding a total of mx× my

cells. Therefore, I = (p+1)2× mx× my. Redundancy along cell boundaries gives p2×

mx×my+ p(mx+my)+1 degrees of freedom.

Before the regularity condition is taken into account, we must discuss the parametric

mapping from logical space to velocity space. It is wise not to use the real coordinates in the

labeling of the Lagrange bipolynomials, αi. In fact, we expand the coordinates themselves

in the 2D finite element basis:

ca‖ =
I

∑
i=1

ca‖,iαi (x,y) , (3.11)

ca⊥ =
I

∑
i=1

ca⊥,iαi (x,y) . (3.12)

One advantage of using a mapping from logical space (a unit square for each cell) to real

space is the reuse of data structures storing the bipolynomials, as well as the abscissa,

weights and Jacobians used in performing numerical quadrature. Having this extra layer of

abstraction means the real space coordinates are not tied to the geometry of the grid used
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to partition the domain. This permits constructing two different types of grids (rectangular

and semicircular) for different applications. Examples of these two grids are given in Figs.

(3.1 & 3.2). The beauty of this mapping is the Fokker-Planck code, written in cylindrical

coordinates, does not need to be rewritten to use the semicircular grid.

ca||-10 -5 0 5 10

2

4

6

8

10
ca⊥

Fig. 3.1: Example rectangular grid. Here mx = 6 and my = 10. The logical x-direction
corresponds to ca⊥ and the logical y-direction corresponds to ca‖.

ca||-10 -5 0 5 10

2

4

6

8

10
ca⊥

Fig. 3.2: Example semicircular grid. Here mx= 6 and my= 10. The logical x-direction cor-
responds to the radial direction in real space, |ca|, and the logical y-direction corresponds
to pitchangle, ξ = cos−1

(
ca‖
|ca|

)
.
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The rectangular grid is useful when a test particle distribution or kinetic distortion has a

significant portion lying away from the origin, such as problems involving particle beams.

The circular grid is useful when most of the important collisional physics lies within a

couple of thermal speeds away from the origin, such as thermalization and conduction

problems. Both grids can handle grid packing which means cells can be strategically con-

centrated near regions of velocity space where higher resolution is critical.

Returning now to the issue of accounting for degrees of freedom, the two different grid

styles have slightly different degrees of freedom. In the case of the rectangular grid, the

regularity condition demands that the coefficients, Fa,n,i, that correspond to values on nodes

along the ca‖ axis must vanish for all n 6= 0. These nodes lie along the logical y-axis. This

yields the following total degrees of freedom:

[p×mx(2N +1)+1] (p×my+1) . (3.13)

For the circular grid, all |ca| = 0 nodes along the logical y-axis collapse to a single node.

The regularity condition is the same as above, yet the coefficients which must be removed

have nodes in the logical x-axis. This yields the following total degrees of freedom:

p×mx [(2N +1)(p×my−1)+2]+1. (3.14)

Solving the Fokker-Planck equation

For demonstrative purposes, we return momentarily to the generic time-discretized

equation, Eq. (3.2). The way in which a partial differential equation gets transformed

into an algebraic system of equations can be explained in the following way. A finite ele-

ment solution can be viewed in terms of a variational formulation. Consider the residual of



35
Eq. (3.2)

R(∆ f )≡ ∆ f −θ∆tO(∆ f )−∆tO
(

f k
)

, (3.15)

where ∆ f is defined over the velocity domain Ω, and subject to appropriate boundary and

initial conditions. Solutions to Eq. (3.2) satisfy R(∆F) = 0, and the inner product between

R(∆F) and any complex test function, φ (v) (whose conjugate is φ̄ ), must vanish

〈φ ,R(∆F)〉 ≡ 1
2π

ˆ
Ω

dcaφ̄ (ca)R(∆F) = 0. (3.16)

Here a factor of 1
2π

is included in this definition to normalize the inner product of Fourier

modes. To ensure that ∆F is a solution to Eq. (3.2), it is sufficient to demand that Eq.

(3.16) vanish for a complete basis of test functions {φi|i = 1,2, · · · ,∞}. An approximation

to ∆F is then found by demanding that Eq. (3.16) vanish for a finite subset of test functions,

{φi|i = 1,2, · · · , imax}. In other words, the resulting set of imaxequations, 〈φi,R(∆F)〉= 0,

form a system of equations that approximate ∆F . Only an approximation is obtained in this

manner since a finite subset of the complete basis of test functions is used.

Many numerical methods can be viewed as this type of variational formulation. For in-

stance, a Fourier series solution is found by expanding ∆F as a truncated Fourier series. The

test functions, φi, are then identified with the conjugate Fourier modes, and the resulting

system of equations is used to solve for the Fourier coefficients. This general procedure can

also be used to describe the general moment method, Laplace transforms, spectral methods

in general, and many many others. Guided by the geometry of particular problems, differ-

ent test functions and representations are chosen so the sequence of approximations leads

to rapid convergence toward the exact solution.

My algorithm uses the Galerkin FEM scheme [19], which identifies the test functions,

φi, with the functions found in the expansion of the approximate solution, Eq. (3.10). Thus

the test functions used in Eq. (3.16) will be identified with the trial functions αiein′γ . The
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solution to R(∆F) = 0 is then approximated by enforcing

〈
α jein′γ ,∆F−θ∆tO(∆F)

〉
=
〈

α jein′γ ,∆tO
(

Fk
)〉

, (3.17)

for 1≤ j ≤ I, and 0≤ n′ ≤ N. If the differential operator, O, is a linear operator (which is

the case for the linearized collision operators), then

N

∑
n=−N

I

∑
i=1

〈
α jein′γ ,αieinγ −θ∆tO

(
αieinγ

)〉
∆Fn,i =

〈
α jein′γ ,∆tO

(
Fk
)〉

. (3.18)

In principle this system of equations can be viewed as an inhomogeneous matrix equa-

tion,

A ·∆F = b, (3.19)

which could be solved using a numerical linear algebra solver. Even for simple simulations,

this would require an extraordinary amount of memory to store every matrix element and

invert the matrix A. For example, for the rectangular grid shown in Fig. 3.1, with p = 3, and

N = 3, there are 3937 independent ∆Fn,i for each species (cf. Eq. 3.13). This would require

inverting a matrix with (3937)2 = 15,499,969 elements. Note, because of the nature of

finite elements, most of the entries in A are zero. Such matrices are referred to as sparse.

Several simplifications are possible. For instance

〈
α jein′γ ,O

(
αieinγ

)〉
, (3.20)

(where O is the test particle operator), vanishes if α j and αi are nonzero in different cells,

Ωl . This causes most of the matrix elements of A to vanish. Also, when the background

flow is parallel to the cylindrical axis, only the n = n′= 0 elements of A survive. One could,

in principle, invert a very simple-looking matrix in this special case. However, it does not

take much to spoil these conditions. For example, the field operator, collisional friction and
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collisional energy exchange involve integrals of Fa and u over the whole velocity domain.

In this case the matrix A would require elements which couple every single ∆Fn′, j.

Instead of forming and inverting the full matrix A, my Fokker-Planck code makes use

of the matrix-free, general minimum residual (GMRES) solver [20], which is implemented

in NIMROD [10]. The GMRES solver is aided by constructing the n′ = n blocks of A,

which are inverted and applied in a preconditioning step. For magnetized plasmas, n = 0

dominates and coupling to n 6= 0 is relatively weak. This results in the GMRES solver

quickly converging upon a solution.

For a differential operator, O, such as the test particle operator, elements of A are

nonzero only when a test function is pared with an overlapping trial function, such as when

the two functions are defined over the same cell or when their cells are contiguous. How-

ever, in an integro-differential operator, such as the field operator, every element of A is

nonzero, and the trial functions of every cell couple to one another. To avoid additional

couplings that the field operator brings, our algorithm includes only the test particle opera-

tor in the preconditioning matrix.

Note about cylindrical coordinates

The coordinates used by my algorithm are normalized by the thermal speeds for the

Fa being advanced, rather than being in SI units, or normalized by a common speed. The

reason for this is that the thermal speeds set a reasonable scale for the bulk of the particles,

and hence the domain where most of the Coulomb interactions take place. For distribu-

tions with comparable temperatures but disparate masses (such as protons and electrons)

these scales are very different. By scaling v by vTa I avoid having to construct multiple

coordinates and grids for different species.

Now, the azimuthal angle must be referenced from a vector field well defined in physical

space. This point is not terribly important for the current work, but needs to be addressed in
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future works that may expand the functionality of this code to include spatial dimensions.

Nevertheless, it is necessary to define this vector field when discussing vectors, such as the

heat flow, flow velocity and collisional friction.

I define the azimuthal angle, γ , by vector fields ê2 (x) and ê3 (x), which form an or-

thonormal basis with b̂:

ca = ca‖b̂+ ca⊥v̂⊥ = ca‖b̂+ ca⊥ (ê2 cosγ + ê3 sinγ) . (3.21)

It is anticipated future works will define the basis vector fields in relation to the magnetic

geometry of a particular application. Regardless of how these vector field are defined, the

basis vectors v̂⊥ and γ̂γγ are simply ê2 and ê3 rotated by γ:

 v̂⊥

γ̂γγ

=

 cosγ sinγ

−sinγ cosγ


 ê2

ê3

 . (3.22)

Then a spatial vector, such as the flow velocity, with components V = V‖b̂ +Vxê2 +Vyê3

can be written as

V = V‖b̂+(Vx cosγ +Vy sinγ) v̂⊥+(−Vx sinγ +Vy cosγ) γ̂γγ. (3.23)

It is also important to define this relationship because frequently, it is necessary to

compute differences of velocities, such as when computing za, or u, with two velocities

given in different bases. A useful identity in this context is the velocity gradient

∇ca = b̂
∂

∂ca‖
+ v̂⊥

∂

∂ca⊥
+ γ̂

1
ca⊥

∂

∂γ
(3.24)

= b̂
∂

∂ca‖
+ ê1

(
cosγ

∂

∂ca⊥
− sinγ

ca⊥

∂

∂γ

)
+ ê2

(
sinγ

∂

∂ca⊥
+

cosγ

ca⊥

∂

∂γ

)
. (3.25)
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Weak form

As previously mentioned, only C0 continuity is enforced, and second order derivatives

of Fa must be avoided. This is done by partial integration of the system of equations in

Eq. (3.17). The resulting equation after integration by parts, is called the weak form. This

section gives detailed explanations of how this is done for the right side of Eq. (3.17) where

O includes the test particle and field operators. The other terms in Eq. (3.5) are then easily

explained within this context. The method in which the terms on the left side of Eq. (3.17)

are incorporated into the proposed Fokker-Planck code are also briefly explained.

Test particle operator

The conversion of the test particle operator to weak form is done by simply integrating

by parts the outermost divergence. Defining

IT,n′
ab, j ≡

1
2π

ˆ
Ω

dcaα je−in′γ
∆tCT

ab, (3.26)

and partially integrating yields

IT,n′
ab, j = − ∆t

2πvTa
∑
b

Γab

2

ˆ
Ω

dca∇ca

(
α je−in′γ

)
·[(

2
vT b

ma

mb
zbFk

a +
1

vTa
∇caFk

a

)
·DM

b

]
, (3.27)

where ∇ca

(
α je−in′γ

)
=
(

∂α j
∂ca‖

b̂+ ∂α j
∂ca⊥

v̂⊥− in′
ca⊥

α jγ̂
)

e−in′γ . The two vector dot products in

the integrand of this equation can then be evaluated explicitly and the integral computed.

Field operator

When working with the field operator, we choose to use the TR potential formalism in

Eqs. (2.28 & 2.29). Using this formalism, the Fokker-Planck form of the collision operator
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is written as

C ( fa, fb) = −Γab

2
∇v ·

(
2

ma

mb
fa∇vhb−∇v∇vgb ·∇v fa

)
. (3.28)

As with the test particle operator, the field operator on the right side of Eq. (3.5) is multi-

plied by 1
2π

α je−in′γ , and then integrated over velocity space,

IF,n′
ab, j ≡

1
2π

ˆ
Ω

dcaα je−in′γ
∆tCF

ab. (3.29)

The problem of producing a weak form of this expression (through partial integration)

is different from many other finite element problems because the field operator is given in

terms of the TR potentials rather than the kinetic distortion directly. There exist several par-

tial integrations that can be performed with this integro-differential operator. For instance,

it is possible, as with the case of the test particle operator, to remove the outer divergence

in the collision operator by partial integration. Alternatively, the outer divergence could be

distributed to each term with no partial integration being performed. In both cases, ∇v∇vgb

would need to be computed, which would be equivalent to computing the diffusion tensor,

Db. Rather than compute the components of this tensor, partial integration yields a weak

form involving only the TR potentials and their gradients. One caveat to keep in mind

is that partial integration can potentially introduce domain truncation errors from surface

terms, which do not exactly vanish, but nonetheless are ignored in my algorithm.

The weak form used in this work was carefully selected to give the best results within

the context of the conduction problem presented in Chapter 5. The sequence of partial inte-

grations used to get to this form is outlined here, but the reason for selecting this particular

selection of partial integrations will not be fully justified until Chapter 5. With this in mind,
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Eq. (3.29) is expanded as

IF,n′
ab, j = − ∆t

2π

Γab

2

ˆ
Ω

dcaα je−in′γ ×[
2

ma

mb
∇v ·

(
f M
a ∇vhb

)
−2∇v f M

a ·∇vhb−∇v∇v f M
a : ∇v∇vgb

]
. (3.30)

The term, which involves ∇v ·
(

f M
a ∇vhb

)
, could be further expanded into two terms, one of

which would involve the product f M
a Fb. This is undesirable because Fb (cb, t) is defined over

cb, whereas the integration is over ca with α j = α j
(
ca‖,ca⊥

)
, hence Fb would require in-

terpolation on a velocity domain that is normalized by what can be a very different thermal

speed. To avoid this complication, ∇vhb is computed and the term in question is partially

integrated. Furthermore, by using ∇v f M
a =− 2

vTa
f M
a za, ∇v∇v f M

a =− 2
v2

Ta
f M
a (I−2zaza), and

I : ∇v∇vgb = ∆vgb = 2hb, IF,n′
ab, j can be written as

IF,n′
ab, j = − ∆t

2π

Γab

2

ˆ
Ω

dcaα je−in′γ
[

2
ma

mb
∇v ·

(
f M
a ∇vhb

)
+

4
vTa

f M
a za ·∇vhb

+
4

v2
Ta

f M
a hb−

4
v2

Ta
f M
a zaza : ∇v∇vgb

]
. (3.31)

In order to integrate the last term by parts, the following identity is used

α je−in′γ f M
a zaza : ∇v∇vgb = ∇v ·

[
α je−in′γ f M

a za (za ·∇vgb)
]

− f M
a

vTa
e−in′γ

[−→
α

n′
j · za +2α j

(
2− z2

a
)]

(za ·∇vgb) ,(3.32)

where
−→
αn′

j ≡ ein′γ∇ca

(
α je−in′γ

)
. Then, partially integrating the first, second and last terms
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of Eq. (3.31) yields

IF,n′
ab, j = − ∆t

2π

Γab

2

ˆ
Ω

dcae−in′γ f M
a

{
−2

ma

mb

vT b

vTa

−→
α

n′
j ·∇cb h̄b

−4
(

vT b

vTa

)2[−→
α

n′
j · za +2α j

(
1− z2

a
)]

h̄b

+4
(

vT b

vTa

)3[−→
α

n′
j · za +2α j

(
2− z2

a
)]

za ·∇cb ḡb

}
. (3.33)

Here we have used

h̄b ≡
1

v2
T b

hb =
ˆ

dc′bF ′bū−1
b (3.34)

∇cb h̄b ≡
1

vT b
∇vhb =−

ˆ
dc′bF ′b

1
ū3

b
ūb (3.35)

∇cb ḡb ≡
1

v3
T b

∇vgb =
ˆ

dc′bF ′b
1
ūb

ūb, (3.36)

where

ūb ≡
vTa

vT b
ca− c′b. (3.37)

This form is indicative of how these potentials are actually calculated. The integrals over

γ in the TR potentials are convolutions of Fb with some form of ūb. NIMROD permits

the use of dealiased Fast Fourier Transforms, by which γ is discretized into Nγ equispaced

gyroangles and only N = Nγ

3 + 1 independent complex Fourier modes are used in the ex-

pansion of Fa. Therefore, it is faster to compute the γ integrals within the TR potentials

using the convolution theorem,

1
2π

ˆ 2π

0
dγ
′ f
(
γ
′)g
(
γ− γ

′)≈ N

∑
n=−N

fngneinγ , (3.38)

which requires the Fourier coefficients of various forms of ūb to be precomputed. The fact

these coefficients can be precomputed also greatly speeds up the calculation, with the caveat
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that if thermal speeds change during the evolution, the potentials must be recomputed. This

recomputation is done when any temperature changes by more than a specified tolerance.

Collisional friction, heating and implicit terms

In this subsection, the treatment of the other terms in Eq. (3.5) is summarized. Note

the collisional friction, Rab, is related to the integrals, IT,n′
ab, j and IF,n′

ab, j. The difference is

that rather than multiplying the right side of Eq. (3.5) by ∆t
2π

α je−in′γ and integrating, we

multiply by mav4
Taca and integrate. Thus

RT
ab = −mav3

Ta
Γab

2

ˆ
Ω

dca

(
2

vT b

ma

mb
zbFa +

1
vTa

∇caFa

)
·DM

b , (3.39)

RF
ab = −2mav4

TaΓab

ˆ
Ω

dca f M
a

×

{
−1

2
ma

mb

vT b

vTa
∇cb h̄b +

(
vT b

vTa

)3

zaza ·∇cb ḡb−
(

vT b

vTa

)2

zah̄b

+2ca

[(
z2

a−1
)(vT b

vTa

)2

h̄b +
(
2− z2

a
)(vT b

vTa

)3

za ·∇cb ḡb

]}
. (3.40)

It is also worth noting that since the velocity dependence is integrated away, the components

of the collisional friction are calculated in a spatial coordinate system,
(
b̂, ê2, ê3

)
(Eq. 3.22).

Qab is calculated similarly with ∆t
2π

α je−in′γ replaced by mav5
Ta

2 z2
a:

QT
ab = −mav4

Ta
Γab

2

ˆ
Ω

dcaza ·
[(

2
vT b

ma

mb
zbFa +

1
vTa

∇caFa

)
·DM

b

]
, (3.41)

QF
ab = −2mav5

TaΓab

ˆ
Ω

dca f M
a

{
−1

2
ma

mb

vT b

vTa
za ·∇cb h̄b

+z2
a
(
z2

a−2
)(vT b

vTa

)2

h̄b + z2
a
(
3− z2

a
)(vT b

vTa

)3

za ·∇cb ḡb

}
. (3.42)

The quantities in Eq. (3.5) with the superscript M are calculated with the test particle

operator by adding f M
a to the kinetic distortion. The quantities with the ∆ prefix are calcu-

lated in a subroutine that looks almost identical to the one that computes the right side of
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Eq. (3.5), with the minor change that instead of using the kinetic distortion at the previous

time step, quantities are calculated using the current iterate of the GMRES algorithm.

Numerical quadrature

Anywhere an integral is performed in velocity space, such as in the weak formulation

of the Fokker-Planck equation, three independent integrals are performed using numerical

quadrature. The γ integral is quickly computed using a Fast Fourier Transform algorithm.

The remaining integrals over ca‖ and ca⊥ are performed using Gaussian quadrature [21].

This means that integrals in velocity space are first transformed to integrals in logical space,

¨
Ωl

dca‖dca⊥→
ˆ 1

0

ˆ 1

0
J dxdy, (3.43)

where x and y are the logical coordinates and J is the Jacobian. Then integrals in logical

space are approximated as sums,

ˆ 1

0

ˆ 1

0
dxdy f (x,y) =

m

∑
i=1

wi f (xi,yi) , (3.44)

where (xi,yi) is the ith root of the mth Legendre bi-polynomial, and the weights, wi, are

defined to give exact results when f (x,y) is any polynomial of order 2m−1 or less in x and

y. Given the test and trial functions are all possible two dimensional products of p-degree

Lagrange polynomials, my algorithm uses (p+1)2 point Gaussian quadrature in each cell,

giving exact results for integrands, which are the product of any test function with any trial

function.

Since many of the integrals, such as IT,n′
ab, j , IF,n′

ab, j and h̄b have integrands, which are not

polynomials, this quadrature scheme is often not exact. Nevertheless, highly accurate re-

sults are obtained given sufficient grid resolution and polynomial degree. In the calculation

of the TR potentials, the Fourier coefficients of u are coupled, and several coefficients, un,
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must be computed in order to use the first few in the convolution theorem with Fb,n. If N +1

is the number of independent coefficients in the Fourier expansion of Fb,n, and Nu +1 is the

number of independent coefficients in the Fourier expansion of u, then my algorithm uses

Nu = max{12,N} to ensure an accurate calculation involving the necessary un.
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CHAPTER 4

THE TEST PARTICLE OPERATOR

Chang and Cooper [22] described solving the FP equation best when they wrote, “The

underlying objectives of any practical numerical scheme are the following: (1) large time

and velocity steps, (2) accuracy and stability, and (3) preservation of any intrinsic properties

implied by the Fokker-Planck equation.” One may enlarge this list to include general appli-

cability, which is the objective of a code that can be reliably used in multiple applications.

It is by these standards the methods of this work are judged.

This chapter will discuss several problems, which were solved using the algorithm im-

plementing the δ f linearized collision operator, i.e., the test particle operator. Some of

the problems were chosen to show this algorithm reproduces previously accepted results.

These benchmark calculations are used to illustrate the superior convergence properties of

the finite element method, a primary reason for considering its use. These calculations are

also used to examine how well this algorithm preserves the intrinsic conservation laws im-

plied by the collision operator. Additional problems demonstrate the algorithm’s capacity

for going beyond gyro-averaged kinetics. The chapter summary returns to the three objec-

tives stated by Chang and Cooper, and summarizes how well the algorithm is able to fulfill

these objectives.

Resistivity of an unmagnetized Lorentz plasma

This section discusses a comparison of the analytic form of the resistivity of an unmag-

netized plasma using the Lorentz gas approximation [23] with results obtained by using

my algorithm. For test particle electrons scattering off a background of immobile ions,

fi (v) = niδ (v) , the Coulomb collision operator reduces to the Lorentz pitch angle scatter-

ing operator,

C
(
Fe, f M

i
)

=
neΓei

2
∂

∂v
·
(

v2I−vv
v3 · ∂Fe

∂v

)
. (4.1)
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Although the Lorentz operator does not correctly take into account the collisional effects on

the ion distribution function nor the slowing down of the electrons, this operator conserves

energy as well as density.

If a weak electric field, E ≡ Eb̂, is present, and the initial electron distribution is

Maxwellian, i.e., Fe (v, t = 0) = 0, the electrons will accelerate until collisions with ions

balance the electric force. The steady state solution is obtained by solving the linearized

first order Boltzmann equation

qe

me
E · ∂ f M

e
∂v

=
neΓei

2
∂

∂v
·
(

v2I−vv
v3 · ∂Fe

∂v

)
, (4.2)

which has the solution,

Fe =
2qeE

nemev2
TeΓei

v3v‖ f M
e . (4.3)

Calculating the current density, J = qe
´

dvvFe, and defining electrical resistivity through

the relationship ηLJ = E, leads to an electrical resistivity

ηL =
Zq2

e lnΛei

32
√

πε2
0 mev3

T e
, (4.4)

where Z ≡ qi/ |qe| is the ion charge in units of the electron charge.

As a tools to estimate errors in the finite element/Fourier representation, the mean point-

wise error of a test particle distribution function, Fa (v, t), is defined as

ε (t)≡ 1
M

M

∑
i=1

∣∣Fa (vi, t)−Fexact
a (vi, t)

∣∣ . (4.5)

Here vi are M = 100×100 equally spaced points throughout the domain, and Fexact
a is the

distribution function found in Eq. (4.3).

Table 4.1 demonstrates the exponential convergence of the steady state solution, Fe, as

the polynomial order, p, is increased. We refer to this as p-type refinement. The resistivity
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Table 4.1: p-type refinement of the electrical resistivity, ηL, of a Lorentz plasma in response
to an electric field, E = 10−5 V/m, and the mean pointwise error, ε , cf. Eq. (4.5). In
this example, the electron temperature was set to Te = 2.25keV. The velocity domain is
rectangular, with

(
v⊥,v‖

)
∈ [0,10vT e]× [−10vT e,10vT e] and a grid resolution of 16×32.

Te is given in units of K.

p ηL (Ω–cm)×T 3/2
e /(Z lnΛei) ε[Fe]

(
s3/m6)

1 3.697866×103 4.83×10−12

2 3.797414×103 4.91×10−13

3 3.797144×103 2.98×10−14

4 3.797167×103 6.13×10−15

Exact 3.797282×103 0

is accurate for the lowest few p, since it depends only on the flow moment of Fe. The

resistivity, with a more detailed account of the collisional effects on both the ions and

the electrons, was computed by Landshoff [24] and Spitzer and Härm [25]. However, to

replicate this correct resistivity, the CEL kinetic equation must be used, which includes the

field terms to be discussed in the next chapter.

Thermalization of test particles

To further test the convergence properties of the FEM treatment of velocity space, con-

sider a tenuous ion Maxwellian test particle distribution thermalizing due to collisions with

a background ion Maxwellian of different temperature. Neither distribution is flowing. The

density of the field particles, ni, and test particles, ntest, are 1020 m−3 and 1018 m−3, respec-

tively. The initial temperature of the test particles is Ttest ≡ 1.5keV. The background has a

temperature of Ti = 2.25keV for heating, or 1.125keV for cooling.

The calculation of the evolution of the test particle distribution was also performed by

Xiong et al. [8]. For consistency with Ref. [8], lnΛii = 16, mi = mD and qi = e, where mD

and e are the mass and charge of the deuteron, respectively. In this case the field particle

thermal speed is vT i = 4.64×105 m/s, and the time step is normalized by the characteristic

collision time, τ = 4πε2
0 m2

Dv3
T i

nie4 lnΛii
. These parameters are used to normalize velocity space coor-
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dinates,

(
v⊥,v‖

)
, and time, t. Finally, as in the previous resistivity calculation, this problem

only involves the n = 0 Fourier coefficient, hence the preconditioning step of the GMRES

algorithm provides the inverse for the full problem.

Temperature evolution

If one assumes the test distribution remains Maxwellian during the thermalization pro-

cess, the temperature evolves as [14]

dTtest

dt
=− 8

3
√

π

Ttest−Ti

τ
i/i
l

, (4.6)

where τ
i/i
l (ε) =

√
mD

π
√

2q4
i

ε3/2

lnΛcni
, and ε = Ttest + Ti. The evolution given by Eq. (4.6) is only

approximate since a nonmaxwellian part develops in the thermalization process. Neverthe-

less, it gives a standard by which to compare our results.

The temperature evolution for the heating and cooling problems are shown in Figs.

4.1 and 4.2 as the number of finite element cells is increased. We refer to this as h-type

refinement. Note, the nonmaxwellian elements of the solution slow down the evolution

in comparison to Eq. (4.6) and for both the heating and cooling problems the 5× 5 and

20×20 grid solutions are nearly identical.

Comparison with the finite volume method in Ref. [8] is straightforward. There the

coordinates are the normalized particle energy and magnetic moment, the maximum value

for each is Emax = µmax = 16, and an external magnetic field of B = 1.2T is present. This

corresponds roughly to setting the parameters of our code to have a maximum particle

velocity of
(
v⊥max,v‖max

)
= (5vT i,5vT i). One grid used in Ref. [8] is 20× 20, with 15

coefficients for the polynomial representation per cell, giving 6000 degrees of freedom,

globally.

Alternatively, the finite element representation, using Lagrange polynomials of degree
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Fig. 4.1: The heating of a tenuous Maxwellian ion distribution scattering off of a higher
energy, 2.25keV, Maxwellian ion distribution with p = 4.
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Fig. 4.2: The cooling of a tenuous Maxwellian ion distribution scattering off of a lower
energy, 1.125keV, Maxwellian ion distribution with p = 4.

p on a ξ × ξ grid, gives a total of (ξ · p+1)2 degrees of freedom, cf. Eq. (3.13). To

achieve roughly the same number of degrees of freedom a 20× 20 grid, and polynomial
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degree p = 4 is used. Comparing Figs. 4.1 and 4.2 with Figs. 6 and 7 in [8] shows

that convergence occurs much more rapidly under h-type refinement with the proposed

algorithm than in the finite volume method. For example, the finite element solution on a

5× 5 grid, with 441 degrees of freedom, is comparable to the finite volume solution on a

60×60 grid, with 54,000 degrees of freedom.

Basic convergence properties

This section focuses on the heating problem to demonstrate the basic convergence prop-

erties of the FEM. The grid resolution (h-type refinement) and polynomial order (p-type

refinement) are increased while computing the mean pointwise error, ε (t) in Eq. (4.5),

at t = 0 and 25τ . Here Fexact
i is the distribution function found with the greatest poly-

nomial degree and grid resolution. For these cases, the refinement procedure ends with

pmax = hmax = 7. The velocity space grid has
(
v⊥,v‖

)
∈Ω = [0,10vT i]× [−10vT i,10vT i],

with 2h×2h+1 cells.

Typically in a FEM discussion, h would refer to a characteristic length of each cell, and

h-type refinement (decreasing the cell size) would lead to algebraic convergence. In this

refinement, the cell size decreases by increasing the number of cells in the domain. The

convergence with this h-type refinement is seen in Fig. 4.3. The exponential convergence,

seen in Fig. 4.4, is commonly observed under p-type refinement. Note the grid resolution

and polynomial degree must be large enough to properly resolve the initial condition. For

example, in the case where p = 1, for small grid resolution (e.g. h = 1, and 2) the initial

error is quite large, and only increases as the distribution function evolves. The cases of

extremely low resolution are considered here simply for demonstrative purposes.

Another important refinement process to consider is the convergence of a solution as

the time step ∆t is reduced. Figure 4.5 shows the error, after 25 collision times, associated

with the heating problem, with a 5×5 grid and p = 4, using a fully implicit, θ = 1.0, and a
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Fig. 4.3: The mean error, ε (t), associated
with using a 2h × 2h+1 grid, and p = 1,
bilinear trial functions showing h-type re-
finement, with hmax = 7. ε is calculated at
t = 0τ and t = 25τ .
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Fig. 4.4: The mean error, ε (t), associated
with using a 16× 32 grid and p-order La-
grange polynomial trial functions showing
p-type refinement, with pmax = 7. ε is cal-
culated at t = 0τ and t = 25τ .
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Fig. 4.5: The mean error, ε (t = 25τ), associated with using a 5×5 grid, and p = 4, bilin-
ear trial functions showing time step refinement, using fully implicit, θ = 1, and θ = 0.5
implicit time advance [9].
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semi-implicit, θ = 0.5, advance. The error of the fully implicit advance is seen to be O (∆t),

while the error of the semi-implicit advance is O
(
∆t2) for small time steps [9]. The semi-

implicit scheme can be used to accurately resolve dynamic processes which occur before

equilibrium is reached. However, the fully implicit scheme can take large, stable time steps

to quickly advance to time asymptotic solutions.

Density conservation

This section discusses domain truncation error. Because the δ f linearization assumes

a stationary Maxwellian background, C
(

f M
a , fb

)
is ignored, and we do not conserve mo-

mentum and energy. Nevertheless, the density of the test particle distribution should be

conserved.

The velocity space domain must be large enough for the distribution function to evolve

in. If the domain is too small, domain truncation leads to source and/or sink errors at the

boundary. To illustrate this problem, consider the Spitzer heating problem with p = 3, and

a 4×8 grid on the domain
(
v⊥,v‖

)
∈ [0,2.5vT i]× [−2.5vT i,2.5vT i]. Although the residual

error from the initial condition is tolerable, as the particles pick up speed by colliding with

the hotter background particles some escape the domain, reducing the number density, cf.

Figs. (4.6 & 4.7). Table 4.2 shows the relative error in the number density after 50 collision

times as the velocity space domain is increased, keeping the grid resolution fixed.

The smallest error, due to the finite element representation, found in Fig. 4.4 can be used

to estimate the relative error in test particle density due to the finite element representation,

ˆ
dv
∣∣Fi (vi, t)−Fexact

i (vi, t)
∣∣

ntest (t = 0τ)
≈

ε
´

Ω
dv

ntest (t = 0τ)
≈ 6×10−6, (4.7)

where Ω is the cylindrical domain used to calculate ε in the section, Basic convergence

properties. The last two tests in Table 4.2 have a domain truncation error much smaller

than the error due to the FEM representation. This demonstrates the domain truncation
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Fig. 4.6: The finite element representation of the initial condition Fi (t = 0τ) is well re-
solved with polynomial degree p = 3, and grid resolution 4× 8. The vertices of the over-
layed mesh are the nodes of the Lagrange polynomials.

c i||

-2
-1

0
1

2
c
i⊥

0
1

2

1.5
1.3
1.1
0.9
0.7
0.5
0.3
0.1

Fi (t = 50τ)

Particle loss out of

the velocity boundary

with heating

Fig. 4.7: Test distribution, Fi, at t = 50τ . Because the velocity domain is too small, some
particles gain energy from collisions with the hotter background and escape causing the
density to decrease.
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Table 4.2: Maintaining a constant cell size, but increasing the velocity domain shows im-
proved conservation in ntest and mitigated domain truncation error. Note the error for
the larger domains is much smaller than the error due to the FEM representation itself
≈ 6×10−6.

p h v⊥max
∣∣v‖max

∣∣ ntest(t=50τ)−ntest(t=0τ)
ntest(t=0τ)

3 2 2.5vT i 2.5vT i −9.82×10−2

3 3 5.0vT i 5.0vT i −2.11×10−9

3 4 10.0vT i 10.0vT i 5.00×10−16

error can be mitigated to the extent that the dominant error comes from the finite element

method itself. Also, if the background is flowing, it can drag test particles toward the edge

of the velocity domain. This must also be taken into consideration when deciding how

large to construct the velocity space domain.

Tenuous beam of test particles

Next consider the evolution of a tenuous beam of electrons given by

Fe
(
v‖,v⊥, t = 0

)
= Φe−

[
(v‖−v‖0)

2
+(v⊥−v⊥0)

2
]
/v2

T test , (4.8)

scattering off background species of electrons and ions with equal density and temperature.

The background ion and electron temperature, 3.30× 106 K (284eV), corresponds to a

background electron thermal speed of vT e = 107 m/s. For demonstrative purposes, both

Maxwellian background distributions have a finite flow of Ve = Vi = 1
2vT e b̂. It is also

assumed that v⊥0 = v‖0 = 2.5vT e, vT test = vT e, and Φ = 2.028×10−5 s3 m−6. This choice

of Φ yields a beam density of ntest = 1018 m−3. The velocity domain has v⊥max =
∣∣v‖max

∣∣=
10vT e. The Lagrange polynomials have degree p = 3, and the grid resolution is 16× 32.

The FP equation is solved using the θ = 0.5 advance with time steps one hundredth of the

collision time τee = 4πε2
0 m2

ev3
T e

neq4
e lnΛee

where ne = 1020 m−3 and lnΛee = 16.

Figure 4.8 illustrates the time dependent evolution of this electron beam. As expected,
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Fig. 4.8: The evolution of a tenuous beam of electrons scattering off flowing electron and
ion Maxwellian backgrounds with V‖ = 1

2vT e. Here p = 3, and a grid resolution of 16×32
is used. Although the calculation uses v⊥max =

∣∣v‖max
∣∣ = 10vT e, these plots are scaled to

show detail. The significant changes take place within the first few collision times, after
which the beam thermalizes with the background and ultimately acquires the same flow as
the background distributions.

the electrons experience diffusion in velocity space, pitch angle scattering, as well as dy-

namic friction. The beam’s flow velocity slows until it matches the background flow, and

the beam’s temperature eventually assumes the background temperature. Most of the evo-
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lution takes place roughly within the first six collision times.

Perpendicular flow

In this section, we explore two examples which require n > 0 terms in the Fourier

representation of Fe. We consider an ion test particle distribution with no flow scattering

off of a flowing ion background. Both test and field distributions are Maxwellian with the

same initial temperature, Ti = 1keV. The initial test and field particle distributions can be

written as

Fi =
ntest

π3/2v3
T i

exp

[
−
(

v
vT i

)2
]

, (4.9)

f M
i =

ni

π3/2v3
T i

exp

[
−
(

v−Vi

vT i

)2
]

, (4.10)

where ntest = 1018 m−3, ni = 1020 m−3, and vT i = 3.096× 105 m/s. As in section, Ther-

malization of test particles, the Coulomb logarithm is taken to be lnΛii = 16, the ions are

deuterons, and the characteristic collision time is τ = 4πε2
0 m2

Dv3
T i

nie4 lnΛii
. Recall the Cartesian unit

vectors, (ê2, ê3), explained in the subsection, Note about cylindrical coordinates, esp. Eq.

(3.22). Without loss of generality, we choose coordinates such that ê2 ‖ Vi. In the first

case, we set Vi = 0.1vT iê2, and in the second case Vi = vT iê2. These examples require a

representation of the test particle distribution, Eq. (3.10), with more than one term in the

Fourier series because zi, in Eq. (3.27), and the diffusion tensor in Eq. (2.49) depend on γ .

Figure 4.9 shows in both cases, the test particles accelerate until the flow matches the

background flow. For the slower background, this acceleration occurs more quickly. Addi-

tionally, the test particle temperature remains roughly constant when the background flow

is small compared to the thermal speed, Vi = 0.1vT iê1. However, the temperature actually
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increases as an initial response to collisions with the flowing background, Vi = vT iê1. This

describes an initial spreading in addition to acceleration of the test particle distribution. Af-

ter three collision times the acceleration decreases and the spread in the distribution begins

to shrink. The test particles cool until equilibrium with the background is achieved. Note

the equilibrium temperature and flow are not a weighted average between the field and test

particles because the δ f approach linearizes about a fixed Maxwellian background. Addi-

tionally, if the field terms had been included in the FP equation, then energy and momentum

would also be conserved throughout the equilibration process.

As a means of estimating the relative importance of Fourier modes, we sum the absolute

values of the complex Fourier coefficients, Fk
i,n, j, (cf. Eq. (3.10)) defined at the vertex nodes

of the FEM representation,

Ξn (t)≡ ∑
j∈vertex nodes

∣∣∣Fk
i,n, j (t)

∣∣∣ . (4.11)

Figure 4.10 shows how the Ξn’s evolve during equilibration for the case of small and large

background flows. We see the Fourier series converges more quickly for Vi⊥
vT i
� 1. Equation

(3.27) indicates the number of Fourier modes needed depends directly on the magnitude of

perpendicular background flow.

The mode coupling expressed in Eq. (3.27) was confirmed to be very weak in con-

structing Fig. 4.10, as the Ξn (t) common among the N = 1,2, and 5 representations differ

very little. This coupling is even weaker in cases where Vi⊥/vT i is small. As previously

discussed, the solution converges with far fewer Fourier coefficients for small Vi⊥/vT i. The

mode coupling had the most significant effect within the first few time steps, where the

GMRES solver took the most iterations. GMRES iterations decreased until the steady state

was reached. In the case where Vi⊥ = vT i the solver took roughly ten times as many itera-

tions as in the case where Vi⊥ = 0.1vT i.
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Fig. 4.9: The perpendicular flow, Vtest⊥, and temperature, Ttest, of an initially unshifted
Maxwellian ion test distribution scattering off a flow-shifted Maxwellian field distribution
with a flow of (1) Vi⊥ = 0.1vT i, and (2) Vi⊥ = vT i. In both cases, the velocity domain has a
16×32 mesh with v⊥max = v‖max = 10vT i, and p = 3.

It is instructive to consider this problem in the frame of the background species, in

which case, mode coupling does not exist. In this case the initial condition for our test

particles would be represented by a Fourier sum and n > 0 coefficients would decay as

t → ∞. Nevertheless, we would be required to take the Fourier transform of a flow-
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Fig. 4.10: Ξn, calculated from Eq. (4.11) for the two examples in Fig. 4.9. Left:
Vi⊥ = 0.1vT i and N = 2 in the Fourier representation. Right: Vi⊥ = vT i and N = 5 in the
Fourier representation. In the second case more Fourier modes are required to represent the
distribution function.

shifted Maxwellian test particle distribution to provide our initial condition. Treating

the γ dependent cross term, vi⊥Vi⊥ cosγ , in the exponent of Eq. (2.15) with the identity

exp(xcosγ) = I0 (x) + 2∑
∞
n=1 In (x)cos(nγ) [21], where the In are modified Bessel func-

tions of the first kind, it can be shown that the nth Fourier coefficient of the flow-shifted
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Maxwellian test particle distribution is

Fi,n (t = 0) =
ntest

π3/2v3
T i

exp
(
−

v2 +V 2
i⊥

v2
T i

)
(−1)n In

(
2

v⊥Vi⊥
v2

T i

)
, (4.12)

where v2 = v2
‖+ v2

⊥.

The modified Bessel functions of the first kind are shown graphically in Fig. 4.11. I0 is
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Fig. 4.11: Modified Bessel functions of the first kind, In, in Eq. (4.12).
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the only function that has a nonzero value when its argument,
(

x = 2 v⊥Vi⊥
v2

T i

)
, is zero. Thus,

if Vi⊥ = 0, only the n = 0 mode is needed, and the form of Eq. (3.27) ensures that no other

modes will develop as the test particles evolve in time. If 0 < Vi⊥
vT i
� 1, the smallness of the

n > 0 modes is guaranteed by the smallness of the In>0’s where v⊥/vT i � 1, and by the

exponential term in Eq. (4.12) where v⊥/vT i & 1. If Vi⊥
vT i

> 1, In>0 enhance the significance

of the n > 0 Fourier modes. Nevertheless, the convergence of the Fourier representation is

still guaranteed by the fact that for a given argument, the In’s quickly decay with increasing

n. Therefore, the rate at which the Fourier representation of a Maxwellian distribution

converges is seen to be directly tied to the ratio Vi⊥/vT i.

Chapter summary

As previously stated, the qualities of a successful Fokker-Planck algorithm are gen-

eral applicability, numerical efficiency, and preservation of the fundamental conservation

properties of the FP operator. It is these qualities that have been explored by testing the

proposed algorithm using the problems described in this chapter.

The δ f approach, described in Chapter 3, can be implemented as a fully implicit

scheme, allowing large, stable time steps. Within this chapter, some of the considerations

and limitations of this scheme were discussed within the context of simple experiments.

We have shown this scheme conserves number density to within the errors inherent in the

representation and time advance, so long as the distribution function is well resolved and

the velocity space domain is large enough to mitigate particle loss at the boundary.

The results in sections, Resistivity of an unmagnetized Lorentz plasma, and Thermal-

ization of test particles, were compared to the finite volume approach in Ref. [8]. Using 441

degrees of freedom, the proposed algorithm obtained results comparable to those of Ref.

[8] using 54,000 degrees of freedom. Convergence under h-type and p-type refinement was

also shown, along with second order accuracy in time with θ = 0.5 time discretization.
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Ultimately, the parameters of the FEM, h and p, as well as the semi-implicit time stepping

yields a robust method for obtaining accurate solutions to the δ f equation.

In the section entitled, Tenuous beam of test particles, the dynamic process of a beam

scattering off a background plasma until equilibrium is reached was explored. This was

shown to occur within only a few collision times. The last section considered a simple

problem that requires the use of the Fourier expansion, when the test distribution and field

distribution have different perpendicular flows. The number of Fourier harmonics required

for a solution, as well as how strongly they couple together, was shown to be related to

the strength of the relative flow. However, even with perpendicular flows on the order of

the background thermal speed, relatively few Fourier terms are needed in the expansion to

obtain converged results.

All of the results reported in this chapter were obtained on a laptop utilizing a 1 GHz

processor, and 4 GB of memory. Many of the calculations took less than a minute to com-

pute. This code is distributable to multiple processors, but this feature was not necessary

for the applications presented here because of the speed of the algorithm. The necessity of

the multiprocessing feature is anticipated when considering adding spatial dimensions, and

is demonstrated in the next chapter for computing the field terms.

In summary, my proposed scheme applied to the test particle operator is a powerful

tool for efficiently obtaining accurate solutions to a number of relevant test problems and

extends the range of problems FP codes are currently equipped to handle by solving for the

full 3D velocity dependence.
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CHAPTER 5

THE FIELD OPERATOR

The Chapman-Enskog-like (CEL) approach described in Chapter 3 introduces the field

operator into the FP equation, and its velocity space moments into the fluid equations. This

is challenging to code and difficult to make computationally efficient. The reason for the

difficulty lies in the calculation of the TR potentials, which are integrals defined over the

entire domain. While the finite element method is parallelizable over many computers by

dividing the computational domain into blocks of cells owned by groups of processors, the

TR potentials require calculating the relative velocity u at every point in velocity space

and sharing the numerical integration data among all the processors. Additionally, the TR

potentials must be updated at every time step. Furthermore, a θ -centered implicit time ad-

vance requires the calculation of the TR potentials at every iteration of the GMRES solver.

A major accomplishment of my thesis work involved an efficient implicit implementation

of the field operator that is capable of using hundreds of processors.

This chapter will demonstrate numerical results, which have been obtained using the

field operator through the CEL approach. In the first simulation, we calculate the conduc-

tivity of an unmagnetized plasma by applying an electric field, and evolving the electrons

and ions until collisional friction balances the electric force. Complications arise, and the

present solutions to these complications are discussed in detail. The second section of this

chapter examines the thermalization of ion and electron distribution functions with different

initial temperatures.

Spitzer conductivity

As a numerical experiment to test the accuracy and efficiency of our Fokker-Planck

code including the field operator, we compute the conductivity of an unmagnetized plasma

and compare with accepted values. To understand the dynamical features of this problem
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consider the following thought experiment. Imagine a spatially homogeneous, fully ionized

plasma in thermal equilibrium, i.e., the ion and electron distributions are Maxwellians with

equal temperatures and the kinetic distortions are initially zero, Fa = 0. If a weak electric

field, E ≡ Eb̂, is suddenly turned on, the electrons will accelerate in the −b̂ direction.

Unlike the assumptions under the δ f approach, which lead to the resistivity of a Lorentz

plasma of immobile ions, presented in Chapter 4, here the ions are mobile and begin to

accelerate in the direction of the electric field. The inertia of the ions prevent them from

accelerating as quickly as the electrons, and the magnitude of the ion flow velocity is much

smaller than that of the electron flow.

The current, J, is primarily due to the flow of electrons. The total momentum is con-

served during the acceleration due to E, and the Coulomb collision operator also conserves

total momentum despite collisions the particles experience with each other. Friction be-

tween particle species due to collisions slows the increase of current until a steady state is

achieved. In addition, collisional heating takes place as the energy particles gain from the

electric field is distributed through collisions within and between species. Heating of the

plasma continues even after the semi-steady-state current is achieved. This ohmic heating is

very important in the heating of fusion plasmas, such as tokamaks, where a toroidal current

is induced in the plasma to provide this primary form of heating and the confining poloidal

magnetic field. Ohmic heating is capable of increasing the temperature to about 2∼ 3keV

at which point the lower resistivity makes this heating process inefficient. However, this

happens on a much longer timescale than we are interested in presently. For our test, it is

the semi-steady state that we are interested in, and the dynamical evolution leading to it.

Analysis of the test particle operator gives us insight into the timescales of these pro-

cesses. A reference collision frequency for particles streaming, with a velocity, v, through



66
a background of particles is often defined as

ν
a/b
0 =

nbΓab

v3 , (5.1)

where Γab is the coefficient of the Coulomb collision operator defined in Chapter 2. For

this discussion we normalize other timescales by τee =
(

ν
e/e
0

)−1
. The test particle operator

reveals the timescale for the ion-electron interaction, which slows the ions down, is on the

order, O
(

mi
me

τee

)
= O (1836× τee), and the timescale for ion energy loss of ions to elec-

trons is on the order, O

((
mi
me

)2
τee

)
= O

(
3.37×106× τee

)
. The ion slowing down time

is characteristic of the frictional heating in this conductivity problem, and the energy loss

time is characteristic of the ohmic heating, both of which are far longer than the timescales

we are interested in when calculating the conductivity.

The conductivity, σ , of the plasma is defined by the relationship

J = σE, (5.2)

and can be calculated from the current and electric field. In an unmagnetized plasma,

σ = α
3π3/2ε2

0 mev3
T e

q2
e lnΛee

, (5.3)

where commonly accepted estimates of α are between 1.96 and 1.98 [25, 26, 27]. This

experiment provides a good test to verify the field operator is implemented correctly and

the CEL approach can preserve the conservation of momentum inherent in the collision

operator, which was violated when the δ f approach was used.

In the first attempts to calculate the dynamic evolution of σ , the code implemented a θ -

centered implicit form of the test particle operator and an explicit form of the field operator
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and CEL terms in the time advance:

∆Fa−θ∆t ∑
b

{
∆CT

ab−
2 f M

a
manavTa

[
za ·∆RT

ab + v−1
Ta

(
2
3

z2
a−1

)
∆QT

ab

]}
= ∆t ∑

b

{
Cab−

2 f M
a

manavTa

[
za ·Rab + v−1

Ta

(
2
3

z2
a−1

)
Qab

]}
. (5.4)

This is different from the formulation in Eq. (3.5), which has field operator terms on the left

side. Explicit terms are generally easier to implement, and are usually coded first. Initially,

a uniform rectangular grid was used (see Fig. 5.2), giving the results shown in Fig. 5.1.

The exact result, showing an increase in conductivity until the steady-state value of 1.97 is

reached, is compared with our results for p = 2,3&4. Clearly the steady-state conductivity

is not obtained and convergence with increasing p is quite slow. The results in Fig. 5.1 are

well resolved in time. This was verified by repeating the simulation with smaller time steps

and finding essentially the same result. After a lot of debugging and experimenting with

different input parameters, it was apparent the code was performing as it should, and there

must be a reasonable explanation for the decrease in the conductivity over time.

An important part of this problem is accurately computing the collisional friction, which

controls the evolution of the flows, and hence the conductivity. For a physical interpreta-

tion, consider the following. When ions collide with electrons, it is like a collision between

a car and a fly. The fly’s momentum changes significantly but the car’s momentum changes

very little. The collisions that make the most significant changes to an ion’s momentum

are with electrons traveling close to the same velocity. This lengthens the interaction time

of the collision, allowing the electron to have more of an influence on the ion. In terms

of grid resolution, this demands resolving the electron distribution at lower energies where

significant interaction with the ion distribution occurs. If this interaction is not accurately

computed, the system will evolve as expected at first before the small inaccuracies in these

long timescale interactions build up and spoil the long-term evolution (see Fig. 5.1).
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Fig. 5.1: Conductivity coefficient, α , of an unmagnetized plasma, using a 4×12 rectangu-
lar grid, and a few different polynomial degrees, over the domain Ω = [0,4]× [−6,6]. The
curve labeled DKE was calculated using a different code, which solves the drift-kinetic
equation (a gyro-averaged form of the kinetic equation).
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Fig. 5.2: Contour plot of the electron kinetic distortion in the conductivity problem, after
400 µs, with no grid packing. p = 3, on a 4×12 grid. Note the lack of resolution near the
origin where |Fe| is large. Vertices of the grid are nodal points.
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Thinking that the approximation of the kinetic distortion was poorly resolved, the poly-

nomial degree of the underlying finite element representation was increased. However,

under p-type refinement, convergence toward a well-behaved solution with a nearly con-

stant conductivity was very slow. Examination of the kinetic distortion at the end of the

simulations presented in Fig. 5.1 revealed they were not very well resolved in the region

where the kinetic distortion had the greatest magnitude. Unfortunately, decreasing the uni-

form grid size and increasing the polynomial degree was computationally prohibitive due

to the TR potential calculations, hence grid packing became a feature of the code worth

exploring. Since the kinetic distortion is largest within a region of a couple thermal speeds

of the origin, grid packing near the axes of this rectangular grid was turned on (see Fig.

5.4). Although this improved the results, (see Fig. 5.3), p-type refinement was still not

converging quickly.

t (s)
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p = 2
p = 3
p = 4

Fig. 5.3: Conductivity coefficient, α , of an unmagnetized plasma, using a 4× 12 rectan-
gular grid with packing near the ca⊥ = 0 and ca‖ = 0 axes, and a few different polynomial
degrees, over the domain Ω = [0,4]× [−6,6]. The curve labeled DKE was calculated us-
ing a different code, which solves the drift-kinetic equation (a gyro-averaged form of the
kinetic equation).
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Fig. 5.4: Contour plot of the electron kinetic distortion in the conductivity problem, after
400 µs, with grid packing near the axes. Here p = 3, on a 4×12 grid. Vertices of the grid
are nodal points. Resolution near the origin was enhanced compared to that of Fig. 5.2.

As mentioned previously, momentum conservation in the conductivity problem heav-

ily relies upon the accurate resolution of the ion-electron interaction in the field term,

C
(

f M
i ,Fe

)
. The reason this field term is difficult to resolve is because the ion domain

is roughly
√

me
mi
≈ 1

43 times smaller than the electron domain. Fortunately, τee is roughly

me
mi
≈ 1

1836 times the timescale of ion-electron collisions, thus packing within
√

me
mi

vT e of

the origin of the electron velocity domain resolves the ion-electron interaction but does not

compromise taking large stable time steps.

Grid packing near the axes of a rectangular grid is problematic for a couple of reasons.

First, it wastefully packs cells in regions far from the origin where the kinetic distortion is

extremely tenuous. Second, with an explicit advance of the field operator, the small cell

size away from the origin limits the time step due to numerical stability considerations.

For these reasons a semicircular grid with grid packing near the origin of velocity space is

desirable.

Additionally, the θ -centered implicit advance, with θ > 0 is desirable for taking large
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time steps while maintaining numerical stability. The simultaneous advancement of the

ions with the electrons meant an absolute timescale needed to be used rather than scaling

time steps by the species collision time, which was done in the δ f approach. The field

operator inherently takes much longer to compute than the test particle operator, because

calculating the TR potentials requires integrating over the whole domain. However, chang-

ing the centering of the time advance of the field operator was a nontrivial task. Doing so

involves programming the Fokker-Planck code to recompute the TR potentials, collisional

friction and collisional energy exchange using the current iterate at each iteration of the

GMRES solver. It also meant changing the algorithm to solve for the ion and electron ki-

netic distortions simultaneously. Finally, in order to perform the simulation in a practical

amount of time, the code needed to be run in parallel.

After several months of making the necessary changes, debugging the code, and writ-

ing several diagnostic routines to ensure everything was being calculated correctly, it was

possible to compute the steady-state plasma conductivity and show convergence under p-

type refinement (see Fig. 5.5) to the accepted steady-state result of α = 1.96 in the p = 4

case. Figures 5.6 & 5.7 show contours of the electron kinetic distortion for the bulk of the

electron velocity domain and in the packed region with |ce| ≤ 0.1, respectively. Finally,

Fig. 5.8 shows satisfactory momentum conservation using the semicircular grid with grid

packing near the origin.

Trubnikov-Rosenbluth potentials

Figures 5.5 - 5.8 show when grid packing is used in a very small region about the origin,

e.g., a radius of 0.1 or smaller, the correct steady-state condition is obtained. While this

is strictly needed for the electron domain, the implementation applies this grid packing

to the ions as well. Tracking down errors in the field terms that capture the ion-electron

interaction is a very complicated venture since there are so many pieces used to do the
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Fig. 5.5: Conductivity coefficient, α , of an unmagnetized plasma, using a 6×12 semicir-
cular grid (using packing within 0.1 radius of origin

(
ca⊥,ca‖

)
= (0,0)), and a few differ-

ent polynomial degrees, over a semicircular domain Ω with maximum speed of 6 thermal
speeds. The curve labeled DKE was calculated using a different code, which solves the
drift-kinetic equation.
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Fig. 5.6: Contour plot of the electron kinetic distortion in the conductivity problem, after
400 µs. p = 3, on a 12×6 semicircular grid with 6×6 cells packed into 0.1 radius of the
origin. The radius of the domain, Ω, is 6.
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Fig. 5.7: Contour plot of the electron kinetic distortion in the conductivity problem, after
400 µs, showing grid packing near the origin. p = 3, on a 12×6 semicircular grid showing
6×6 cells packed into 0.1 radius of the origin. The radius of the domain, Ω, is 6.
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Fig. 5.8: Momentum conservation for the conduction problem.

calculation. Due to the importance of these issues, we now take up a careful discussion of

calculating the TR potentials. There are several components, which make up the calculation
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and several tests were done to verify the hypothesis that the unexpected evolution of the

conductivity lies in the numerical errors of these potentials.

The algorithm is tested by calculating the TR potentials of Maxwellians, which have

analytic forms for comparison. We use the following normalized potentials:

h̄b =
1

v2
T b

hb =
ˆ

dc′bFb
(
c′b
)

ū−1
b (5.5)

∇cb h̄b =
1

vT b
∇vhb =−

ˆ
dc′bFb

(
c′b
) 1

ū3
b

ūb (5.6)

∇cb ḡb =
1

v3
T b

∇vgb =
ˆ

dc′bFb
(
c′b
) 1

ūb
ūb, (5.7)

where

ūb =
vTa

vT b
ca− c′b. (5.8)

Recall the γ integral is calculated using a fast Fourier transform and the convolution theo-

rem:
1

2π

ˆ 2π

0
dγ
′ f
(
γ
′)g
(
γ− γ

′)≈ N

∑
n=−N

fngneinγ . (5.9)

For example, the TR potential, h̄b, is the convolution of Fb and

ū−1
b (γ) =

[(
vTa

vT b
ca‖− c′b‖

)2

+
(

vTa

vT b

)2

c2
a⊥+ c′2b⊥−

vTa

vT b
ca⊥c′b⊥ cos(γ)

]−1/2

. (5.10)

h̄b can then be calculated by taking the inverse fast Fourier transform (FFT) of the product

of Fa,n with the Fourier coefficients of ū−1
b (γ). In principle these coefficients could be

computed analytically resulting in a linear combination of complete elliptic integrals of the

first and second kind. However, a general formulation in terms of the elliptic integrals has

not yet been obtained for this purpose. Additionally, it is not clear that such a formulation

would provide a faster or more accurate method for calculating these coefficients.

A singularity in the integrands of Eqs. (5.5 - 5.7), occurs where v = v′. This is avoided
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by simply ignoring this term in the Gaussian quadrature sum over the 2D finite element

domain. Recall that Gaussian quadrature is formulated to exactly integrate integrands,

which are well-approximated by polynomials. Having a singular point in a cell spoils

this assumption. Nevertheless this crude scheme is remarkably successful, as will now be

shown.

In Chapter 2 the diffusion tensor, cf. Eq. (2.49), was calculated using a Maxwellian dis-

tribution in the test particle operator. By defining h̄M
b =
´

dc′b f M′
b ū−1

b and ḡM
b =
´

dc′b f M′
b ūb,

one can employ similar integration techniques to get the following results:

h̄M
b =

nb

v3
T b

E (zb)
zb

, (5.11)

∇cb h̄M
b = −2

nb

v3
T b

G(zb)
zb

zb
, (5.12)

ḡM
b = − nb

v3
T b

{
E (zb)

zb
+ zb [E (zb)−G(zb)]

}
, (5.13)

∇cb ḡM
b = − nb

v3
T b

[E (zb)−G(zb)]
zb

zb
, (5.14)

where E (zb) and G(zb) are the error function and Chandrasekhar function, respectively.

For reference, a contour plot of a nonshifted, electron Maxwellian distribution, for

constant γ , is given in Fig. 5.9, and several of the TR potentials listed in Eqs. (5.11 -

5.14), are given in the Appendix.

Using the exact Maxwellian TR potentials, relative errors that arise from using the

convolution theorem and numerical quadrature may be defined as

η (v)≡ |h(v)−hexact (v)|
|hexact (v)|

. (5.15)

The absolute error is given by

ε (v)≡ |h(v)−hexact (v)| . (5.16)
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Fig. 5.9: Contour plot, for the γ = 0 plane, of the nonshifted Maxwellian used to compute
the TR potentials in Figs. A.1 - A.11. Grid vertices are nodal points. The figures remaining
in this section use p = 2 on a 15×8 grid with 7×8 cells packed in a 0.1 radius about the
origin.

The reason for defining two errors is that while a relative error is more informative as to

how large the error is, the absolute error is needed to quantify the error when the exact

solution vanishes, as it does for the gradients in Eqs. (5.12 & 5.14). The relative errors of

h̄M
e and ḡM

e are depicted as contour plots in Figs. 5.10 and 5.12. The absolute errors of the

perpendicular components of ∇ce h̄
M
e and ∇ce ḡ

M
e are depicted as contour plots in Figs. 5.11

and 5.13.

Figures 5.10 - 5.13 reveal the least amount of error occurs in the calculation of h̄M
e ,

in spite of the crude treatment of the singularity of the integrand where v = v′. Though

difficult to make an exact comparison, ∇ce ḡ
M
e has an error very close to that of h̄M

e . The

relative error in ḡM
e is worse. ∇ce h̄

M
e seems to have the greatest error, which occurs near

the origin, where important interactions between electrons and ions take place. This error

is likely due to the fact that integrand’s singularity is ignored, hence a more sophisticated

numerical scheme may be necessary. This is a topic of future research. This error may
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Fig. 5.10: Contour plot of relative error, η , of h̄M
e , defined in Eq. (5.15). This view shows

detail near the origin.
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Fig. 5.11: Contour plot of absolute error, ε , of perpendicular component of ∇ce h̄
M
e , defined

in Eq. (5.16). This view shows detail near the origin.
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Fig. 5.12: Contour plot of relative error, η , of ḡM
e , defined in Eq. (5.15).
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Fig. 5.13: Contour plot of absolute error, ε , of perpendicular component of ∇ce ḡ
M
e , defined

in Eq. (5.16).
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be tied to errors observed in calculations of the plasma conductivity and thermalization,

discussed in the next section.

While a possible contributor, it seems as though the singularity in the integrand is not

entirely to blame for the errors seen in Figs. 5.10 - 5.13. If this were the case, then the

least conspicuous integrand is in ḡM
e with no singularity. Yet it has an error, which is

second only to ∇ce h̄
M
e , with the highest order singularity. Another very important feature of

these figures is the regions of high and low errors. These regions do not look entirely like

random noise accumulated through numerical errors, such as the snowflake-like features

in Fig. 5.10. Instead, the errors are concentrated in regions near the origin, far away from

the origin, or in geometric patterns around the origin. This feature may be as important, or

more important than the overall accuracy throughout the domain.

In the conductivity calculation, the large timescale behavior is dominated by the in-

teraction between very slow electrons and ions. In order for momentum to be conserved,

the test particle collisional friction, RT
ei, which is calculated using an exact form of the

diffusion tensor, must be balanced by field collisional friction, RF
ie, using the numerically

integrated TR potentials. By examining Figs. 5.10 - 5.13, we see that h̄M
e and ∇ce ḡ

M
e not

only have the best overall accuracy, but they are also more accurate in the important region

of ion-electron interaction near the origin. The opposite is true of ḡM
e and ∇ce h̄

M
e where the

regions of least accuracy lies near the origin. The consequences of this observation will

be discussed in the next section where the weak form of the field operator is revisited in

greater detail.
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Weak form of the field operator

The sequence of partial integration, which leads to Eq. (3.33), namely,

IF,n′
ab, j = −2Γab

∆t
2π

ˆ
Ω

dcae−in′γ f M
a ×{

vT b

vTa

(
−1

2
ma

mb

)−→
α

n′
j ·∇cb h̄b

−
(

vT b

vTa

)2[−→
α

n′
j · za +2α j

(
1− z2

a
)]

h̄b

+
(

vT b

vTa

)3[−→
α

n′
j · za +2α j

(
2− z2

a
)]

za ·∇cb ḡb

}
, (5.17)

where
−→
α

n′
j ≡ ein′γ

∇ca

(
α je−in′γ

)
, (5.18)

is not unique, and several other possible partial integrations were tested in the calculation

of the plasma conductivity. The derivation presented in Chapter 3 was the one that gave

the closest conductivity evolution when compared to accepted results. This subsection will

discuss several approaches that seem like benign alternatives to the one presently used.

These alternatives are shown to produce small errors, which accumulate over time. These

are possibly due to domain truncation errors and/or errors in the calculation of the TR

potentials (see the previous subsection). An approach that completely eliminates these

errors is presently unknown, and will be the target of future research.

To begin, recall the result of multiplying the field operator by test functions and inte-

grating over the velocity domain, cf. Eq. 3.31:

IF,n′
ab, j = −2Γab

∆t
2π

ˆ
Ω

dcaα je−in′γ
[

1
2

ma

mb
∇v ·

(
f M
a ∇vhb

)
+

1
vTa

f M
a za ·∇vhb

+
1

v2
Ta

f M
a hb−

1
v2

Ta
f M
a zaza : ∇v∇vgb

]
. (5.19)
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In order to partially integrate the last term, the following is used

α je−in′γ f M
a zaza : ∇v∇vgb

= ∇v ·
[
α je−in′γ f M

a za (za ·∇vgb)
]

− f M
a

vTa
e−in′γ

[−→
α

n′
j · za +2α j

(
2− z2

a
)]

(za ·∇vgb) . (5.20)

Note, any perfect divergence in IF,n′
ab, j may be converted to a surface integral at infinity.

Distribution functions vanish at infinity by definition and hence, these surface integrals

vanish. In Eq. (5.19), the first and last terms must be partially integrated, given reasons

previously stated in Chapter 3. The second term, however, may be left alone, and doing so

leads to

IF,n′
ab, j = −2Γab

∆t
2π

ˆ
Ω

dcae−in′γ f M
a ×{

vT b

vTa

(
−1

2
ma

mb

)−→
α

n′
j ·∇cb h̄b

+
vT b

vTa
α jza ·∇cb h̄b +

(
vT b

vTa

)2

α jh̄b

+
(

vT b

vTa

)3[−→
α

n′
j · za +2α j

(
2− z2

a
)]

za ·∇cb ḡb

}
. (5.21)

Alternatively, the diffusion tensor, in Eq. (5.20), can be written as

α je−in′γ f M
a zaza : ∇ca∇cb ḡb

= α je−in′γ f M
a za ·∇ca

(
za ·∇cb ḡb−

vT b

vTa
ḡb

)
= ∇ca ·

[
α je−in′γ f M

a za

(
za ·∇cb ḡb−

vT b

vTa
ḡb

)]
−e−in′γ f M

a

[−→
α

n′
j · za +α j

(
3−2z2

a
)](

za ·∇cb ḡb−
vT b

vTa
ḡb

)
. (5.22)
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This approach yields the following weak form of the integral IF,n′

ab, j:

IF,n′
ab, j = −2Γab

∆t
2π

ˆ
dcae−in′γ f M

a ×{−→
α

n′
j ·
[

vT b

vTa

(
−1

2
ma

mb

)
∇cb h̄b

]
+α j

vT b

vTa
za ·∇cb h̄b +α j

(
vT b

vTa

)2

h̄b

+
[−→

α
n′
j · za +α j

(
3−2z2

a
)][(vT b

vTa

)3

za ·∇cb ḡb−
(

vT b

vTa

)4

ḡb

]}
. (5.23)

Partially integrating the second term, proportional to za ·∇cb h̄b, yields

IF,n′
ab, j = −2Γab

∆t
2π

ˆ
dcae−in′γ f M

a ×{
−→
α

n′
j ·
[

vT b

vTa

(
−1

2
ma

mb

)
∇cb h̄b

]
+α j

(
vT b

vTa

)2

h̄b

+
[−→

α
n′
j · za +α j

(
3−2z2

a
)][(vT b

vTa

)3

za ·∇cb ḡb

−
(

vT b

vTa

)4

ḡb−
(

vT b

vTa

)2

h̄b

]}
. (5.24)

Finally, all terms having products of α j with gradients can be partially integrated, yield-

ing a weak form with the maximum number of partial integrations:

IF,n′
ab, j = −2Γab

∆t
2π

ˆ
dcae−in′γ f M

a ×{−→
α

n′
j ·
[

vT b

vTa

(
−1

2
ma

mb

)
∇cb h̄b

]
−
[−→

α
n′
j · za +2α j

(
1− z2

a
)](vT b

vTa

)2

h̄b +
−→
α

n′
j · za

(
vT b

vTa

)3

za ·∇cb ḡb

−2
[−→

α
n′
j · za

(
2− z2

a
)
+α j

(
2z4

a−9z2
a +6

)](vT b

vTa

)4

ḡb

}
. (5.25)
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Gradients dotted into
−→
αn′

j are not further partially integrated because the C0 continuity con-

straint on the representation limits the number of derivatives that can be taken.

In the limit that surface terms vanish, Eqs. (5.17, 5.21, 5.23, 5.24 & 5.25) represent

equivalent analytic forms. However, the numerical errors that arise from evaluating each

of them are considerably different. The reason for this may be that the TR potentials are

computed using numerical quadrature and have different orders of singularities in the inte-

grands. Domain truncation errors can also affect the weak form of an operator, when the

surface term does not identically vanish. The conductivity problem, has been recalculated

using these five different weak forms and the results are shown in Fig. 5.14. The sim-

ulations were also run with a reduced domain, with very similar results, suggesting that

domain truncation errors are not responsible for the disparate results. This also suggests

that ignoring surface terms is not problematic.

Figure 5.14 clearly demonstrates that, for the conduction problem, the most accurate

weak form of the field operator is given in Eq. (5.17). When the different forms are com-

pared, it can be seen the distinguishing feature of this weak form is that it maximizes the

appearance of terms involving h̄b and ∇cb ḡb, and minimizes the appearance of terms involv-

ing ḡb and ∇cb h̄b. This is consistent with the contour plots of errors in the TR potentials

found in the previous subsection, see Figs. A.1 - 5.13, which suggest h̄b and ∇cb ḡb have the

least overall error, with regions of accuracy that are critical for capturing the correct long

timescale ion-electron interactions. Since these TR potentials are computed using numer-

ical quadrature, while the test particle operator is computed using an analytic form of the

diffusion tensor, the collisional frictions, RT
ei and RF

ie do not exactly conserve momentum,

cf. Eq. (2.38), contributing error, which simply accumulates over time resulting in the

evolution seen in Fig. 5.14.

If momentum is not being conserved because of errors in calculating the TR potentials,

then momentum conservation should get better by increasing the grid resolution and in-
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Fig. 5.14: Conductivity factor, α , defined in Eq. (5.3), calculated with different weak forms
of the field operator, Eqs. (5.17, 5.21 - 5.25). Eq. 5.17 is closest to the correct evolution
and approaches an equilibrium value close to 1.96.

creasing the polynomial degree, p, of the trial functions. Reaching a steady state in the

conduction problem requires fidelity to the conservation laws. This is confirmed in the

simulations, which undergo such refinement procedures (see Figs. 5.5 and 5.8).

Thermalization problem

In this section, we consider a problem where the ion and electron Maxwellian distribu-

tions start with different initial temperatures and come into thermal equilibrium. The initial

kinetic distortions for both species are set to zero. Physically, the expected result is that

the two species heat/cool until they reach thermal equilibrium at an average temperature.

During the evolution, collision effects, which arise from the difference in temperatures,

generate kinetic distortions during the process of equilibration. In this problem no colli-
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sional friction exists because the distributions are not flowing relative to one another. The

kinetic distortions play a minor role in mediating the collisional energy exchange, and after

equilibrium is reached the kinetic distortions vanish.

The simplicity of this problem makes it another good test to see our algorithm has been

programmed correctly. In addition, this problem tests the efficiency of the underlying rep-

resentation to approximate a solution. Results showing the ion and electron temperatures,

as well as the average temperature, which is constant when energy is conserved, are given

in Fig. 5.15. Contour plots of the electron kinetic distortion at different times throughout

thermalization are given in Fig. 5.16. This demonstrates the role of the kinetic distortion

in the process. As discussed in the previous section, ion-electron energy exchange sets the

longest collisional timescale, which is on the order, O

((
mi
me

)2
τee

)
. A time step of 1 µs

gave a solution, which was numerically stable over the time to equilibration. Using this

small of a time step required 40,000 steps to produce Fig. 5.15.

This calculation took approximately four hours to complete using 48 processors on

Hopper, the world’s 8th fastest supercomputer housed at Lawrence Berkeley National Lab-

oratory. The temperatures can be seen to approach the correct average temperature, al-

though over longer timescales imperfect energy conservation is seen. As in the conductivity

problem, the long timescale evolution seems to suffer from an accumulation of numerical

errors. Improving the results of this calculation is a goal of future research.
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Fig. 5.15: Thermalization of electrons and ions with different initial temperatures. A 6×8
grid (3× 8 cells packed into a radius of 3vTa) over a semicircular domain with maximum
speed of 10vTa was used. In this case, p = 2, and 40,000 steps of ∆t = 1 µs were taken
using the implicit time discretization scheme. The initial ion temperature is 200eV, and
the initial electron temperature is 205.4eV. We also see the total energy is very nearly
conserved.
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Fig. 5.16: Contours of electron kinetic distortion, Fe, at particular time steps of the ther-
malization of electrons and ions with different initial temperatures in Fig. 5.15. Note the
kinetic distortion decays as the temperatures reach a common value.



88
CHAPTER 6

CONCLUSION AND FUTURE WORK

In this work we presented an approach to solving the plasma kinetic equation, which

describes the evolution of spatially homogeneous, fully ionized plasmas. The NIMROD

code, which implements a finite element/Fourier approximation to fluid quantities coupled

to Maxwell’s equations, was adapted to the purpose of providing numerically efficient so-

lutions of the Fokker-Planck equation. Existing NIMROD machinery included data struc-

tures that hold the coefficients of the FEM/Fourier expansion, routines that interpolate and

store quadrature point data used for numerical integration, and routines that implement the

GMRES solver. This work required adaptation of this machinery for the purpose of solving

the kinetic equation including creating new storage for the distribution functions, creating

a weak formulation of the collision operators, and implementing this formulation into in-

tegration routines used by the GMRES solver for a θ -centered implicit time advance. In

addition, I played a fundamental role in parallelizing the additional code, and creating a

semicircular grid to pack cells near the origin of velocity space.

The first step taken toward adapting the NIMROD code to solve the kinetic equation

was to employ the simplest form of the collision operator, the test particle operator. The δ f

approach, which yields a Fokker-Planck equation that uses the test particle operator, was

described in Chapter 3. Then in Chapter 4, the δ f approach was tested by solving several

different problems with known solutions. The resistivity of a plasma with immobile ions

was computed demonstrating the powerful convergence properties of p-type refinement

with its exponential convergence. The resistivity was also shown to converge very quickly

to the analytic value.

Next, the problem of a test particle distribution coming into thermal equilibrium with a

hotter/cooler background was explored. This problem was chosen to correspond with the

same problem in Ref. [8], which implemented a finite volume method. Comparison of



89
accuracy and degrees of freedom between the two different representations for distribution

functions were made. Our algorithm was found to be much more efficient at solving the

thermalization problem. This problem also provided us with insight as to how a truncated

domain can be a source of error when representing a distribution function defined over the

infinite domain of velocity space. When the domain was too small, heating and cooling

of the test particle distribution allowed particles to escape/appear. The domain truncation

error was found to be easily mitigated by increasing the domain to a reasonable size. This

also provided an appropriate point to talk about the intrinsic density conservation property

of the test particle operator. It was shown the density was conserved with the FEM/Fourier

representation, provided the domain truncation errors were mitigated.

The next simulation discussed in Chapter 4 was the equilibration of a beam of test par-

ticles scattering off a flowing background plasma. This demonstrated the basic properties

of the collision operator to produce diffusion and drag on the velocity distribution function.

The next problem considered in Chapter 4 tested the efficiency of the Fourier representation

in azimuthal (or gyro) angle. This section discussed a Maxwellian test particle distribution

with a different perpendicular flow than the background. Collisions cause the test par-

ticle distribution to heat and accelerate until the flows match and thermal equilibrium is

achieved. It was found that a relatively small number of Fourier coefficients were needed

to effectively represent the solution. This was demonstrated from an analytical perspective

and a numerical one.

Chapter 5 provided insight into two very important problems, plasma conductivity and

thermalization of two Maxwellians with different initial temperatures. In order to con-

serve momentum and energy, the field operator was included and the CEL approach was

adopted. The CEL kinetic equation involves both the test particle and field operators, as

well as terms involving the collisional friction and collisional energy exchange. Because it

is integro-differential, the field operator was more difficult to implement and computation-
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ally expensive to use in simulations than the test particle operator. It requires the calculation

of the TR potentials using the kinetic distortion. The TR potentials must be computed at

each time step throughout the evolution. In addition, a θ -centered implicit time advance

requires the calculation of the TR potentials at every iteration of the GMRES solver. Fi-

nally, the coupling of the ion and electron distribution functions through the field operator

require a simultaneous advance of both distribution functions.

The field operator was first tested in a computation of plasma conductivity. The im-

portant difference between this problem and the conductivity calculation in Chapter 4 was

the ions were mobile, the primary concern being to conserve momentum throughout the

simulation. It was found a semicircular grid with packing near the origin of velocity

space was necessary for numerical accuracy of the ion-electron collisional effects over

long timescales. Using this grid convergence to the steady-state conductivity was obtained.

The section on the conductivity problem also took a detailed look at how the numerical

accuracy of the TR potentials may be responsible for errors in the conservation properties

and hence secular errors in the conductivity. Different weak forms of the field operator

were also considered and shown to have different long timescale accuracy. Again this is

likely tied to the numerical accuracy of the TR potentials calculation.

The last simulation in Chapter 5 showed the equilibration of ion and electron distribu-

tions with different initial temperatures. Collisional effects between the two distribution

functions, initially Maxwellian, drive kinetic distortions, which mediate the equilibration

process, then decay as the two Maxwellians reach an average temperature. Although the

basic features of this type of evolution were seen in the results, the long timescale errors

seen in the conductivity problem were present.

Recall what Chang and Cooper [22] wrote about solving the FP equation, “The un-

derlying objectives of any practical numerical scheme are the following: (1) large time and

velocity steps, (2) accuracy and stability, and (3) preservation of any intrinsic properties im-
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plied by the Fokker-Planck equation.” In this regard, the implementation of the test particle

operator, was extremely successful in fulfilling the first two objectives. Using a θ -centered

implicit time advance allowed for large time steps in the δ f scheme. Furthermore, using

relatively course grids in velocity space still gave accurate results. The intrinsic density

conservation property of the test particle operator was well preserved as long as domain

truncation errors were mitigated by using a suitably large domain. The intrinsic properties

of the full Coulomb collision operator of momentum and energy conservation, cannot be

satisfied with the test particle operator alone, and hence the need for including the field

operator via the CEL approach. The conservation of momentum is critical for the conduc-

tivity problem. This requires grid packing near the origin of the electron velocity domain

to prevent error accumulation over long timescales. The source of this error seems to be

tied to the numerical accuracy of the TR potentials calculation.

Future work includes a long list of ways to improve the numerical accuracy and ef-

ficiency, and expanding the functionality of our algorithm as it is presently coded. The

first item is to find a more accurate way of calculating the TR potentials. This will likely

solve the long timescale conservation problems discussed in Chapter 5. Increasing ac-

curacy may be to compute the collision term, C
(

f M
a , f M

b

)
, using an exact, analytic form.

Another possibility is to find an analytic form for the Fourier coefficients of u, or else com-

pute the diffusion tensor, in the field operator, rather than the TR potentials. In terms of

computational efficiency, the calculation of the TR potentials dominates simulations that

include the field operator. Future research will improve the efficiency of this calculation

by finding ways to precompute quantities, which are used repetitively in the time advance.

This includes consolidation of calls to FFT routines, which could reduce the time to set up

communication between processors.

There are several ways of expanding the functionality of the present Fokker-Planck al-

gorithm. A fully nonlinear approach might eliminate the need of distinguishing between
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test particles and the background field, eliminating the need for multiple collision operators.

Future research might also include introducing spatial dimensions. A logical progression

towards this goal would be to introduce one spatial dimension at a time. In tokamak simu-

lations, the preferred spatial dimension would be a radial flux label, which is typically one

of two spatial coordinates used in existing Fokker-Planck codes [28].
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MAXWELLIAN TRUBNIKOV-ROSENBLUTH POTENTIALS

In Chapter 2 the diffusion tensor, cf. Eq. (2.49), was calculated using a Maxwellian dis-

tribution in the test particle operator. By defining h̄M
b =
´

dc′b f M′
b ū−1

b and ḡM
b =
´

dc′b f M′
b ūb,

one can employ similar integration techniques to get the following results:

h̄M
b =

nb

v3
T b

E (zb)
zb

, (A.1)

∇cb h̄M
b = −2

nb

v3
T b

G(zb)
zb

zb
, (A.2)

ḡM
b = − nb

v3
T b

{
E (zb)

zb
+ zb [E (zb)−G(zb)]

}
, (A.3)

∇cb ḡM
b = − nb

v3
T b

[E (zb)−G(zb)]
zb

zb
, (A.4)

where E (zb) and G(zb) are the error function and Chandrasekhar function, respectively.

Contour plots, for the γ = 0 plane, are given in this appendix for several of the TR

potentials listed in Eqs. (A.1 - A.4). For comparison, contour plots of both the exact

potentials, and potentials calculated using my algorithm are shown. The contour plots of

the γ̂γγ component of the gradients of h̄M
e and ḡM

e have been omitted from these figures since

they are identically zero. The contour levels for each potential are the same and are set by

the exact solutions,
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Fig. A.1: Contour plot of h̄M
e , defined in Eq. (5.11).

-10 -5 0 5 10

2

4

6

8

10

0.016
0.012
0.008
0.004

ce⊥

ce||

Fig. A.2: Contour plot of h̄M
e , calculated by our Fokker-Planck code.
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Fig. A.3: Contour plot of parallel component of ∇ce h̄
M
e , defined in Eq. (5.12).
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Fig. A.4: Contour plot of parallel component of ∇ce h̄
M
e , calculated by our Fokker-Planck

code.
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Fig. A.5: Contour plot of perpendicular component of ∇ce h̄
M
e , defined in Eq. (5.12).
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Fig. A.6: Contour plot of perpendicular component of ∇ce h̄
M
e , calculated by our Fokker-

Planck code.
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Fig. A.7: Contour plot of ḡM
e , defined in Eq. (5.13).
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Fig. A.8: Contour plot of ḡM
e , calculated by our Fokker-Planck code.
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Fig. A.9: Contour plots of parallel component of ∇ce ḡ
M
e , defined in Eq. (5.14).
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e , calculated by our Fokker-Planck

code.
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Fig. A.11: Contour plot of perpendicular component of ∇ce ḡ
M
e , defined in Eq. (5.14).
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e , calculated by our Fokker-
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