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Figure 3.1: Propulsion system.

in the event of main engine failure, during powered ascent. Such was the case with the Apollo

lunar ascent module. In general, two configurations of actuators are used for attitude control of the

launch vehicle. The first was alluded to in the discussion of the propulsion system, i.e., a gimbaled

main engine(s) for control about the body pitch and yaw axes, and smaller thrusters for control

about the body roll axis. The second arises when the main engine(s) is fixed (i.e., does not gimbal),

and RCS jets are used exclusively for control about all three body axes. Since the main engine

considered in this study does not gimbal, only the second configuration is discussed here.

Each ACS thruster (or RCS jet), like the main engine, can be characterized by its specific

impulse, vacuum thrust, effective exhaust velocity, and mass flow rate, and imparts a thrust force

on the launch vehicle. In general, however, the ACS thrusters are oriented and fired in such a

manner that neither their individual or combined thrust force is directed through the vehicle center

of mass, resulting in an applied torque or moment about the center of mass, hereafter referred to

as the net ACS moment.

The ACS induced moment, like the thrust force, is a vector quantity and is defined as the

vector sum of moments from N ACS thrusters,

mb
acs =

N∑

j=1

mb
acs,j , (3.20)

where mb
acs,j is the moment vector from the jth ACS thruster (expressed in body coordinates).

Since any torque or moment can be expressed as the vector product of the applied force and the
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moment arm or linear distance from the point of application of the force to the point of reference

(i.e., center of mass), the net ACS moment vector mb
acs can also be written as

mb
acs =

N∑

j

(
rbacs,j × f b

acs,j

)
, (3.21)

where rbacs,j is the moment arm of the jth ACS thruster (expressed in body coordinates), and f b
acs,j

is the applied thrust force vector of the jth ACS thruster (expressed in body coordinates).

In this study, the ACS consists of eight thrusters strategically mounted to the exterior of the

launch vehicle, as illustrated in Figure 3.2. Rather than model each of the thrusters individually,

a simpler and more unified approach is taken where only the net ACS moment about the launch

vehicle center of mass is modeled. The ACS thrusters are susceptible to the same variabilities as the

main thruster. As a result, these variabilities cause errors, hereafter referred to as ACS execution

errors, in the applied or actual net ACS moment vector. These errors can be represented by

scale factors sbacs, orthogonality misalignments εbacs, random biases bbacs, and noise wb
acs. The ACS

error parameter states, pb
acs = (sbacs, ε

b
acs, b

b
acs), are modeled as first-order Gauss-Markov processes,

as defined in § 3.1.5, and wb
acs is process noise, as defined in § 3.1.6. After incorporating all of

these error sources into the error model, the applied net ACS moment vector, expressed in body

coordinates, is given by

mb
acs(m̂

b
com,p

b
acs,w

b
acs) =

(
I3×3 − [εbacs×]

){(
I3×3 + [sbacs!]

)
m̂b

com + bbacs +wb
acs

}
, (3.22)

where m̂b
com is the commanded ACS moment issued by the attitude controller [see § 3.2.3].

3.1.4 Inertial Measurement Unit

The purpose of the inertial measurement unit (IMU) is to measure the motion of the

launch vehicle in three-dimensional Euclidean space relative to an inertial frame of reference. For

this reason, the IMU is generally the primary sensor on launch vehicles and a variety of other

spacecraft. Moreover, it is generally comprised of two inertial instrument packages: accelerometers

and gyros. These inertial instruments can be mounted on a set of rotating gimbals, called a

navigation platform, such that no matter how the vehicle rotates the instruments maintain their

inertial (or local-level) alignment. Hence, the navigation platform is commonly called a space
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Figure 3.2: Attitude control system.

stabilized or inertial platform. Alternatively, the inertial instruments can be rigidly mounted to the

vehicle structure, in what is referred to as a strapdown system, so that they rotate with the vehicle.

Consequently, the provided measurements are obtained in the rotating IMU case frame and must

be transformed to the desired frame of reference.

A strapdown IMU has several advantages over its counterpart, the inertial platform system,

in that it is generally lighter, cheaper, simpler, more robust, more reliable, and more easily config-

ured for odd-shaped spaces [60]. The disadvantages, however, are usually lower accuracy, complex

sensor alignment and calibration procedures, and gyros required to handle a large dynamic range of

rotation rates. In general, the IMU is installed with a position offset from the launch vehicle center

of mass, as depicted in Figure 3.3. This position is not known perfectly, and will vary with time

as fuel is expended. Moreover, if the IMU position offset is not properly accounted for, attitude

motion will inadvertently be measured as acceleration.

The IMU is located within the vehicle body frame, however, it measures the motion of the

vehicle with respect to its own case or platform frame, hereafter referred to as the IMU case frame.

This frame is defined by the orthogonal triad of basis vectors c1, c2, and c3, and can be thought

of as “fiducial lines which are physically inscribed” [61] on the IMU. The IMU coordinate system,

denoted with a superscript c, is the preferred coordinate system of the IMU case frame. Hence, the

coordinate axes 1c, 2c, and 3c are aligned with the basis vectors c1, c2, and c3, respectively. The
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Figure 3.3: (left) IMU position is generally offset from the vehicle center of mass. (right) IMU case
frame.

relationship between the IMU case and vehicle body frames is usually determined prior to launch

through some form of instrument alignment procedures, and represented with the IMU-to-body

transformation matrix T b
c .

For this research, only the strapdown implementation of the IMU is considered, as shown

in Figure 3.4. It is also assumed that the IMU and associated case frame are collocated at the

vehicle center of mass and the IMU-to-body transformation matrix T b
c is known perfectly. Note

that in general the IMU is not collocated with the center of mass, and the orientation of its frame

with respect to the body frame is not perfectly known.

Accelerometer

An accelerometer is a mechanical device that uses the “inertial” properties of matter or

light to measure the specific force, i.e., the nongravitational force per unit mass. The specific force

(also called the g-force or mass-specific force) has units of acceleration or m/s2. So it is not actually

a force at all, but a type of acceleration. To be more specific, the specific force is a “proper” accel-

eration, which is the acceleration relative to free-fall or an inertial path. Neither the acceleration

of gravity or “force of gravity” contribute to proper accelerations, thus the accelerometer does not

measure the acceleration due to gravity. There are a variety of accelerometers used in aerospace,

such as the pendulous accelerometer (in both open- and closed-loop varieties), the vibrating beam
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Figure 3.4: Strapdown IMU configuration.

accelerometer, the pendulous-integrating gyro accelerometer, and the micro-electro-mechanical sys-

tems (MEMS) accelerometer.

In general, three single-DOF accelerometers are mounted to the IMU case in such a manner

that their input axes instrument an orthogonal set and together are able to measure the (nongrav-

itational) acceleration in three dimensions, as depicted in Figure 3.5. Since perfect alignment of

the accelerometer input axes with the IMU coordinate axes can never be achieved, despite even

the most accurate alignment procedures, there exists some uncertainty in the coordinate transfor-

mation between the two right-handed, orthogonal systems of coordinates. If it is assumed that the

two coordinate systems are nearly coincident, i.e., they differ by only “small” angles, then the angle

from the coordinate axes 1c to 1a, 2c to 2a, and 3c to 3a are denoted by ε1, ε2, and ε3 (respectively),

as depicted in Figure 3.5. Thus, an orthogonal “small-angle” transformation between two almost

coincident coordinate systems is given by [61, pp. 21]

T a
c = I3×3 − [ε×] , (3.23)
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Figure 3.5: (left) Accelerometer input axes form orthogonal coordinate set. (right) Inertial instru-
ment small-angle orthogonality geometry on the unit sphere.

where [ε×] is the skew symmetric form of the three small angles, ε = (ε1, ε2, ε3), defined as

[ε×] ≡





0 −ε3 ε2

ε3 0 −ε1

−ε2 ε1 0




. (3.24)

Ideally, an accelerometer is sensitive to the specific force in only one precisely defined di-

rection, called the input axis, which is generally perpendicular to its mounting surface. However,

misalignments of the (maximum) sensitivity axis with respect to the input axis, due to manu-

facturing flaws and inaccuracies, cause the instrument to respond to components of the specific

force in the plane parallel to the mounting surface, as shown in Figure 3.6. This sensitivity in

the other directions is commonly referred to as the cross-axis or transverse sensitivity. Thus, the

input axes are physically instrumented by the sensitive axes of the accelerometers, which constitute

a nonorthogonal set of axes. Hence, special treatment is necessary in order to relate these axes

to the orthogonal set of input axes. If it is assumed that the accelerometer’s sensitive axes are

nonorthogonal, but differ by only “small” angles with respect to the input axes, then the angles

between the coordinate axes 1a and 1s, 2a and 2s, and 3a and 3s are denoted by γ1, γ2, and γ3,

respectively. These three angles are each broken up into two separate, independent rotations about

the orthogonal input axes, as illustrated in Figure 3.6. Thus, the coordinate transformation relating
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Figure 3.6: (left) Accelerometer input axes and sensitive axes geometry. (right) Inertial instrument
small-angle nonorthogonality geometry on the unit sphere.

the nonorthogonoal sensitive axes to the input axes is given by [61, pp. 39]

T s
a = I3×3 − Γ(γ) , (3.25)

where Γ(γ) is the nonorthogonal form of the six small angles, γ = (γ12, γ13, γ21, γ23, γ31, γ32),

defined as

Γ(γ) ≡





0 −γ13 γ12

γ23 0 −γ21

−γ32 γ31 0




. (3.26)

An instrument’s internal or input units are practically never the same as its output units.

For example, the internal units of an accelerometer might be volts, whereas the output units are

generally those of acceleration or m/s2. Thus, some internal unit conversion factor is necessary.

Moreover, the sensitivity of the instrument over a wide range of inputs is generally not a linear

one-to-one relationship, i.e., the output of the device is not exactly proportional to the input by

some constant, nonunitary factor. Thus, a scale factor is defined as the ratio between changes in

the input and output signals [62–64]. Ideally, the mapping from internal to output units is a linear

relationship, hence the scale factor can be computed as the slope of the best straight line fitted to

data obtained by varying the input over a wide range of values and recording the output. If it is

assumed that the accelerometer’s scale factors s1, s2, and s3 are linear, then the mapping is given
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by [61, pp. 90]

S = I3×3 + [s!] , (3.27)

where [s!] is the diagonal matrix of the scale factors, s = (s1, s2, s3), defined as

[s!] =





s1 0 0

0 s2 0

0 0 s3




. (3.28)

From the preceding discussion, it follows that errors in the measured nongravitational ac-

celeration with respect to the body frame are typically due to scale factor uncertainties, orthogonal

and nonorthogonal misalignments, random and systematic biases, and noise. After incorporating

all of these error sources into a stochastic error model, the measured nongravitational acceleration

vector, expressed in body coordinates, is given by

ãs
ng =

(
I3×3 + [sã!]

){
T s
a T a

c T c
b a

b
ng + bsã + ηs

ã

}
,

=
(
I3×3 + [sã!]

){(
I3×3 − Γ(γã)

)(
I3×3 − [εã×]

)
ab
ng + bsã + ηs

ã

}
. (3.29)

The accelerometer error parameter states, pã = (sã,γã, εã, bsã), are modeled as first-order Gauss-

Markov processes, as defined in § 3.1.5, and ηs
ã is measurement noise, as defined in § 3.1.6.

Gyroscope

A gyroscope or gyro is a mechanical device that exploits the “inertial” properties of matter

or light to measure the angular rate or velocity of the IMU case frame as it rotates with respect to

the inertial reference frame. There are a variety of gyros used in aerospace, such as the mechanical

single-DOF gyro (in both open- and closed-loop varieties), the mechanical two-DOF gyro, the

vibrating gyro, the optical gyro (i.e., ring laser, interferometric fiber optic), and the MEMS gyro.

A set of three single-DOF gyros is considered in this study. Moreover, all of the uncertainties

associated with inertial instruments discussed previously are applicable to the gyro. Thus, it follows

that errors in the measured angular velocity of the body frame with respect to the inertial frame are

typically due to scale factor uncertainties, orthogonal and nonorthogonal misalignments, random

and systematic biases, and noise. After incorporating all of these error sources into a stochastic
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error model, the measured angular velocity vector, expressed in body coordinates, is given by

ω̃s
ib =

(
I3×3 + [sω̃!]

){
T s
a T a

c T c
b ω

b
ib + bsω̃ + ηs

ω̃

}
,

=
(
I3×3 + [sω̃!]

){(
I3×3 − Γ(γω̃)

)(
I3×3 − [εω̃×]

)
ωb
ib + bsω̃ + ηs

ω̃

}
. (3.30)

The gyro error parameter states, pω̃ = (sω̃,γω̃, εω̃, bsω̃), are modeled as first-order Gauss-Markov

processes, as defined in § 3.1.5, and ηs
ω̃ is measurement noise, as defined in § 3.1.6.

3.1.5 Error Parameters

All expected error parameters and unmodeled sources of error incorporated in the nonlinear

models are modeled as continuous first-order Gauss-Markov processes, also known as exponentially

correlated random variables (ECRVs), with dynamics given by

ṗ = − 1

τp
p+ wp , p(t0) ∼ N (0, σ2

p) , (3.31)

where τp is the associated time constant or correlation time and wp is Gaussian white noise with

E{wp} = 0 , (3.32)

E
{
wp(t)wp(t

′)
}
=

2σ2
p

τp
δ(t− t′) , (3.33)

where σ2
p is the steady-state variance of p, E{ } is the expectation operator, and δ(t−t′) is the Dirac

delta function. Modeling the error parameters as ECRVs provides a great deal of flexibility, this

is because, depending on the time constant τp, the error parameter can range from being constant

like a bias (where τp → ∞) to something more like white noise (where τp → 0). Hence, a large

valued time constant results in a slowly changing random variable, whereas a small valued time

constant results in a rapidly changing random variable.

3.1.6 Noise

There are two types of noise used in this research, viz. process noise and measurement

noise. Process noise, denoted by the vector w(t), is modeled as uncorrelated Gaussian white noise
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measurement errors are described in greater detail in the IMU model as given in § 3.1.4. Hence,

the corrupted accelerometer measurement ãs, expressed in sensor coordinates, is given by

ãs(ab
ng,pã,η

s
ã) =

(
I3×3 + [sã!]

){(
I3×3 − Γ(γã)

)(
I3×3 − [εã×]

)
ab
ng + bsã + ηs

ã

}
, (3.38)

where ab
ng ∈ R3 is the true specific force (or nongravitational acceleration) vector expressed in body

coordinates, [sã!] is the diagonal matrix of the accelerometer scale factor error vector sã ∈ R3 as

defined in Eq. (3.28) on page 31, Γ(γã) is the nonorthogonal form of the accelerometer nonorthog-

onal misalignment error vector γã ∈ R6 as defined in Eq. (3.26) on page 30, and [εã×] is the skew

symmetric form of the accelerometer orthogonal misalignment error vector εã ∈ R3 as defined in

Eq. (3.24) on page 29. Moreover, the accelerometer error parameters pã = (sã,γã, εã, bsã) are mod-

eled as first-order Gauss-Markov processes as defined in § 3.1.5 on page 32, and the accelerometer

measurement noise ηs
ã ∈ R3 is modeled as Gaussian white noise with

E
{
ηs
ã(t)

}
= 0 , (3.39)

E
{
ηs
ã(t)

[
ηs
ã(t

′)
]ᵀ}

= σ2
ηãI3×3 δ(t− t′) . (3.40)

Similarly, the corrupted gyro measurement ω̃s, expressed in sensor coordinates, is given by

ω̃s(ωb
ib,pω̃,η

s
ω̃) =

(
I3×3 + [sω̃!]

){(
I3×3 − Γ(γω̃)

)(
I3×3 − [εω̃×]

)
ωb
ib + bsω̃ + ηs

ω̃

}
, (3.41)

where ωb
ib ∈ R3 is the true angular velocity of the launch vehicle with respect to the inertial

frame expressed in body coordinates, [sω̃!] is the diagonal matrix of the gyro scale factor error

vector sω̃ ∈ R3 as defined in Eq. (3.28), Γ(γω̃) is the nonorthogonal form of the gyro nonorthogonal

misalignment error vector γω̃ ∈ R6 as defined in Eq. (3.26), and [εω̃×] is the skew symmetric form

of the gyro orthogonal misalignment error vector εω̃ ∈ R3 as defined in Eq. (3.24). In addition, the

gyro error parameters pω̃ = (sω̃,γω̃, εω̃, bsω̃) are modeled as first-order Gauss-Markov processes as

defined in § 3.1.5 on page 32, and the gyro measurement noise ηs
ω̃ ∈ R3 is modeled as Gaussian
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Gauss-Markov processes as defined in § 3.1.5 on page 32. For this research, the filter is setup to

model the accelerometer and gyro error parameters pã and pω̃ respectively, which were introduced

and defined previously, and the ACS error parameters pacs, which will be introduced and defined

later in § 3.2.3 on page 53.

The differential equations of motion given in Eqs. (3.44), (3.45), (3.50), and (3.31) can be

written in the form

ẋ(t) = f
(
x(t), t

)
− Bη(t) + Gw(t) , (3.53)

where f : Rm′ → Rm′
is a nonlinear vector function of the true navigation state vector x(t) ∈ Rm′

given by

x =
(
ri, vi, qbi , p

)
, (3.54)

η(t) ∈ Rl =
(
ηs
ã, η

s
ω̃

)
is the continuous inertial measurement noise vector, and w(t) ∈ Rp is a vector

of Gaussian white noise terms from Eq. (3.31) associated with the error parameter states p(t) ∈

Rp = (pã, pω̃, pacs). Moreover, B ∈ Rm′×l and G ∈ Rm′×p are matrices of ones and zeros that

respectively map η and w to the proper states in x. It is important to note that the function

f in Eq. (3.53) is not written explicitly as a function of the continuous inertial measurements

ỹ(t) ∈ Rl = (ãs, ω̃s) because, as far as the filter is concerned, the measurements are deterministic

inputs.

Navigation State Propagation

Now that the filter design models have been defined, the next step in developing the naviga-

tion filter is to formulate the navigation state propagation equations. Since the desired navigation

filter is to be an EKF, it is assumed that

E
{
x(t)

}
= x̂(t) , ∀ t . (3.55)

In other words, the conditional mean of x(t) is x̂(t), i.e., the estimate of the true navigation state

or simply the navigation state. Therefore, the navigation state propagation equations are obtained

by taking the expectation value of the filter design models, such that the differential equations of
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motion become

˙̂ri = v̂i , (3.56)

˙̂vi = âi
g(r̂

i) +
[
T̂ (q̂bi )

]ᵀ
âb
ng(ã

s, p̂ã) , (3.57)

˙̂qbi = −1

2
q̂ω(ω̂

b
ib)⊗ q̂bi , (3.58)

˙̂pj = − 1

τp̂j
p̂j , j = 1, 2, . . . , p (3.59)

where

âi
g(r̂

i) = − µ
∥∥r̂i

∥∥3 r̂
i , (3.60)

âb
ng(ã

s, p̂ã) =
(
I3×3 + [ε̂ã×]

)(
I3×3 + Γ(γ̂ã)

){(
I3×3 − [ŝã!]

)
ãs − b̂sã

}
, (3.61)

q̂ω(ω̂
b
ib) =




ω̂b
ib(ω̃

s, p̂ω̃)

0



 , (3.62)

and

ω̂b
ib(ω̃

s, p̂ω̃) =
(
I3×3 + [ε̂ω̃×]

)(
I3×3 + Γ(γ̂ω̃)

){(
I3×3 − [ŝω̃!]

)
ω̃s − b̂sω̃

}
, (3.63)

Moreover, it follows that the expectation value of Eq. (3.53) is

˙̂x(t) = f̂
(
x̂(t), t

)
, (3.64)

where f̂ : Rm′ → Rm′
is a nonlinear vector function of the navigation states x̂(t) ∈ Rm′

given by

x̂ =
(
r̂i, v̂i, q̂bi , p̂

)
, (3.65)

where p̂(t) ∈ Rp = (p̂ã, p̂ω̃, p̂acs).

Navigation State Error Covariance Propagation

Now that the filter navigation state propagation equations have been formulated, the final

step in developing the navigation filter is to formulate the filter navigation state error covariance

propagation equations. First, the filter navigation state error δê ∈ Rm′
is defined as the difference

between the true navigation states x (which represents the “truth” for the filter design) and the
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navigation states x̂ (which is the filter’s estimate of the true states),

δê(t) ≡ x(t)− x̂(t) , (3.66)

with

E
{
δê(t)

}
= 0 , ∀ t (3.67)

E
{
δê(t)

[
δê(t)

]ᵀ}
= P̂(t) , (3.68)

where P̂(t) ∈ Rm×m is the filter navigation state error covariance matrix, which represents the

filter’s measure of the estimation accuracy [5]. Next, Eq. (3.66) is substituted in Eq. (3.53) and f

is expanded in a first-order Taylor series about the current estimate (conditional mean) of the true

navigation state x̂(t),

f
(
x(t), t

)
" f̂

(
x̂(t), t

)
+

∂f
(
x(t), t

)

x(t)

∣∣∣∣∣
x(t)=x̂(t)

(
x(t)− x̂(t)

)
,

such that the linear differential equation is obtained

δ ˙̂e(t) = Fx
(
x̂(t), t

)
δê(t)− Bη(t) + Gw(t) , (3.69)

where Fx ∈ Rm×m is the Jacobian defined as

Fx
(
x̂(t), t

)
≡

∂f
(
x(t), t

)

xm(t)

∣∣∣∣∣
x(t)=x̂(t)

, (3.70)

and B ∈ Rm×l and G ∈ Rm×p are now matrices of ones and zeros that respectively map η and w

to the proper states in xm.

Recall that the inertial-to-body attitude quaternion qbi ∈ R4 is the standard representation

of the launch vehicle attitude. However, due to state covariance matrix singularity issues associated

with the quaternion [54], a modified state vector approach is adopted and utilized to form the filter

navigation state error covariance propagation equations. In this approach, the inertial-to-body

attitude quaternions qbi , q̂
b
i ∈ R4 respectively in the true navigation state vector x ∈ Rm′

defined

in Eq. (3.54) and the navigation state vector x̂ ∈ Rm′
defined in Eq. (3.65) are replaced with the
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respectively. These estimated ACS error parameters states p̂b
acs = (ŝbacs, ε̂

b
acs, b̂

b
acs) are modeled as

first-order Gauss-Markov processes, as defined by Eq. (3.59).
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Chapter 4

Linearized Models and Algorithms

“The moment a person forms a theory, his imagination

sees in every object only the traits which favor that theory.”

– Thomas Jefferson

In the preceding chapter, the nonlinear truth models and GN&C algorithm models associ-

ated with the Monte Carlo simulation were defined. The purpose of this chapter is to address the

next step in the development process, which is to define the nominal reference trajectory (NRT)

and linearize the Monte Carlo nonlinear models about the NRT. Hence the chapter is organized as

follows: First, the NRT is defined, followed by a brief discussion of the general method for lineariz-

ing a nonlinear system of equations about the NRT. With this foundation in hand, the nonlinear

truth models and GN&C algorithm models are expressed in their general forms, linearized about

the NRT, and the associated partial derivatives are presented.

Before proceeding, it is important to note that the presentation of the linearized models and

algorithms herein closely follows that of the previous chapter. However, out of necessity, there are

a number of equations referenced that have not yet appeared in the material. Although referencing

in this manner is somewhat unorthodox, this approach facilitates easy finding of those expressions

that appear in the equation at hand but who are not defined until later in the chapter.

4.1 Nominal Reference Trajectory

The NRT is the path that the launch vehicle would follow in the absence of sensor measure-

ment errors, actuator execution variabilities, and random environment disturbances. It is generated

with a single, error-less, noise-less run of the Monte Carlo simulation, and consists of the nomi-

nal states x̄, nominal actuator commands ū, nominal guidance commands ξ̄, and nominal sensor

measurements ȳ and z̄k, where the bar ¯ above the variable denotes the nominal value.
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4.2 Linearization of Nonlinear Systems of Equations

A nonlinear system of equations can be linearized using a Taylor-series expansion about

some operating point, such as the NRT introduced above. The linearization process is best il-

lustrated with the following example. The true state dynamics defined in Eqs. (3.1)-(3.7) can be

written in the form

ẋ(t) = f
(
x(t), û(t),w(t), t

)
, (4.1)

where f : Rn′ ×Ra×Rs → Rn′
is a nonlinear vector function of the true states x(t) ∈ Rn′

, actuator

commands û(t) ∈ Ra, and state process noise w(t) ∈ Rs. Let

δx(t) ≡ x(t)− x̄(t) and δû(t) ≡ û(t)− ū(t) , (4.2)

where δx(t) and δû(t) represent deviations from the nominal or dispersions; more specifically, δx(t)

represents the true state dispersions. It is important to note that an expression for the state process

noise has been omitted because the nominal value of the state process noise is defined to be zero

(i.e., w̄(t) = 0) such that the corresponding deviation from the nominal δw(t) is simply the state

process noise w(t),

δw(t) ≡ w(t) . (4.3)

Thus, the nominal state dynamics equation is given by

˙̄x(t) = f
(
x̄(t), ū(t), t

)
. (4.4)

Given the expressions in Eq. (4.2), the nonlinear true state dynamics equation can now be

written as

˙̄x(t) + δẋ(t) = f
(
x̄(t) + δx(t), ū(t) + δû(t),w(t), t

)
. (4.5)

Next, f is expanded in a Taylor series about the NRT x̄(t) and ū(t). Then, under the assumption

that the magnitude of the deviations from the nominal δx(t) and δû(t) are small relative to the

magnitude of the nominal values, only the first-order terms of the series are retained, resulting in
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Table 7.21: GN&C system performance study. Body angular velocity RSS true state dispersions 3σ
and normalized percent difference for the baseline, high cost, and low cost cases from MC and LC
analysis at five key points along the trajectory.

High Cost Baseline Low Cost

MC 3.8210E-07 3.8219E-06 3.8230E-05

LC 3.7642E-07 3.7642E-06 3.7642E-05

% Diff. 1.48497 1.50967 1.53833

MC 3.1688E-02 0.316880 3.17408

LC 3.0828E-02 0.308282 3.08282

% Diff. 2.71465 2.71335 2.87522

MC 3.1858E-02 0.318469 3.17940

LC 3.0855E-02 0.308549 3.08549

% Diff. 3.14937 3.11488 2.95369

MC 0.112599 1.10241 11.0063

LC 0.108838 1.08838 10.8838

% Diff. 3.33940 1.27190 1.11266

MC 3.1610E-02 0.317747 3.27254

LC 3.0895E-02 0.308951 3.08951

% Diff. 2.26174 2.76824 5.59284

tPEG

tFC

tMECO

Body Angular Velocity RSS, deg/s

!x, 3"

t0

tPO

Table 7.22: GN&C system performance study. Wet mass true state dispersions 3σ and normalized
percent difference for the baseline, high cost, and low cost cases from MC and LC analysis at five
key points along the trajectory.

High Cost Baseline Low Cost

MC 5.74629 57.4629 574.629

LC 6.00000 60.0000 600.000

% Diff. 4.41514 4.41514 4.41514

MC 5.74629 57.4629 574.629

LC 6.00000 60.0000 600.000

% Diff. 4.41514 4.41514 4.41514

MC 5.74629 57.4629 574.629

LC 6.00000 60.0000 600.000

% Diff. 4.41514 4.41514 4.41514

MC 4.10670 40.9902 409.043

LC 4.40551 44.0551 440.551

% Diff. 7.27626 7.47724 7.70297

MC 4.10670 40.9902 409.043

LC 4.40551 44.0551 440.551

% Diff. 7.27626 7.47724 7.70297

tMECO

Mass, kg

!x, 3"

t0

tPO

tPEG

tFC
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Chapter 8

Conclusions and Future Research

“By prevailing over all obstacles and distractions, one

may unfailingly arrive at his chosen goal or destination.”

– Christopher Columbus

In recent years there has been considerable effort to develop alternative methods or tech-

niques that are capable of achieving equivalent results to those of Monte Carlo methods, but in a

fraction of the time. One of these alternative techniques, linear covariance analysis, has been suc-

cessfully applied in this research to create an accurate and fast ascent GN&C analysis tool. This

research has shown that linear covariance analysis provides the accuracy required for preliminary

ascent GN&C system design. Statistical results from linear covariance analysis are generally within

10% of Monte Carlo results, and in most cases the differences are less than 5%. This is an excellent

result given the many complex nonlinearities that are embedded in the ascent GN&C problem.

However, the real value of this tool lies in its speed. CPU times were collected using the

tic/toc functions in MATLAB R2010a on a MacBook laptop with Mac OS X 10.5.8, 2.4 GHz

Intel Core 2 Duo processor, and 2 GB 667 MHz DDR2 SDRAM. The linear covariance data was

generated for the baseline, high cost, and low cost cases in 357.108 s (5 min 57.108 s), 357.657 s,

and 357.089 s, respectively. The Monte Carlo data, for the baseline case, was generated with an

average of 740.369 s (12 min 20.369 s) per sample run and a standard deviation of 4.0872 s. The

total time for 500 sample runs is approximately 370184.5 s (4 days 6 hrs 49 min 44.5 s). Therefore,

the linear covariance simulation is 1036.62 times faster than the Monte Carlo simulation.

To achieve this result, there were several challenging theoretical and technical research

problems that needed to be solved. The first was the implementation of a closed-loop ascent

guidance algorithm in a linear covariance analysis environment. Ascent guidance algorithms such

as the Space Shuttle PEG are very complex, highly nonlinear, and iterative in nature. As a result, an

algorithm like PEG poses a substantial challenge to a linear covariance simulation. In this research,
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the linearization of this guidance law was successfully accomplished using a very careful numerical

approach and a complex-step derivative technique for computing numerical partial derivatives.

A second major challenge was to determine how to address the fine-count partial-derivative

dilemma. During fine count, the last commanded inertial thrust direction computed by PEG is held

constant, which corresponds to a constant attitude command and a zero attitude rate command.

This represents an in-flight guidance mode change that is not easily described in a linear covariance

context. The solution was to first represent the guidance mode change as an event trigger, and

then to introduce a pseudo-state for the attitude-hold command. While the theory for the event

trigger is well known, the addition of a pseudo-state was a new and key element of this research. The

pseudo-state effectively collected and captured the correlations between the attitude-hold command

and all system uncertainties. Then, during the final seconds of flight, these correlations are used

to effectively propagate the final rocket position and velocity errors based on the variance of the

attitude-hold command and the variance of the associated pseudo-state. This was a key important

development of this research.

The continuation of this research is important and the next steps to be taken can be divided

into two groups: detailed ascent design models, and system design optimization. In the area of

detailed linear covariance ascent design models what is needed most are models for a stochastic

atmosphere and models for ascent vehicle staging. For the atmosphere model, an important step

forward will be to convert a know stochastic atmosphere model, e.g., Earth Global Reference

Atmospheric Model (GRAM), into a covariance-based atmosphere model. For vehicle staging,

event triggers will need to be implemented for each stage. The addition of these two models will

significantly increase the range of ascent guidance/launch vehicle applications that can be studied

using linear covariance techniques.

The second area of potential future research exploits the speed of linear covariance analysis

to design and optimize ascent GN&C systems. In the research just presented, only three system

configurations were evaluated: the baseline (or nominal), high cost, and low cost. In a more detailed

future analysis, a full spectrum/range of actuators, sensors, and disturbance models will need to

be considered. By exploiting the efficiency of linear covariance analysis, it becomes possible to

imbed the linear covariance tool inside a Monte Carlo analysis where random samples/combinations

of sensors and actuators are selected. For each sample, key mission performance metrics can
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be compared with mission requirements to determine suitable, cost-effective, hardware system

configurations.

Finally, it is also feasible to develop analytical and/or numerical optimization tools that

utilize linear covariance techniques. Once again, it is the efficiency of the linear covariance analysis

that makes this research topic feasible. The goal is to create a stochastic optimization tool that

receives mission requirements as input and provides optimal hardware configurations that meet

those mission requirements as output.

Clearly, there is considerably more work to be done. The research presented in this disser-

tation has made the first important steps towards implementing the complexities of ascent GN&C

analysis techniques in a linear covariance analysis environment. Future developments in ascent

GN&C system design and optimization will be able to build upon the results of this research.
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B.2 Quaternions

Perhaps the best way to illustrate how to properly apply the complex-step derivative (CSD)

method to vector functions or algorithms with quaternions is through a series of examples. Let the

nonlinear vector function that we desire to linearize be given by

y = f(x) , (B.2)

where y ∈ Ra′ and f : Rb′ → Ra′ is a nonlinear function of x ∈ Rb′ . Moreover, the input and

output variables can be respectively written in terms of their scalar elements y = (y1, y2, . . . , ya′)

and x = (x1, x2, . . . , xb′). Following the linearization process outlined in § 4.2, the resulting linear

vector function is given by

δy = Fx δx , (B.3)

where the Jacobian Fx ∈ Ra′×b′ can be written as

Fx =
∂f(x)

∂x

∣∣∣∣
x̄

=

[
∂f(x)

∂x1

∣∣∣∣
x̄

∂f(x)

∂x2

∣∣∣∣
x̄

· · · ∂f(x)

∂xb′

∣∣∣∣
x̄

]
. (B.4)

To evaluate the first partial derivative ∂f(x)
∂x1

∣∣∣
x̄
in the above Jacobian using the CSD method, the

vector function f is evaluated with the complex-valued input variable given by

x =





x̄1 + ih

x̄2 + i0
...

x̄b′ + i0





, (B.5)

where the perturbation step h has been added to the imaginary part of the first scalar element and

the horizontal bar ¯ denotes the nominal value of the states xk (k = 1, 2, . . . , b′). The resulting
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complex-valued output variable is therefore given by

y =





ȳ1 + i∆y1

ȳ2 + i∆y2
...

ȳa′ + i∆ya′





, (B.6)

where the derivative information, ∆yl (l = 1, 2, . . . , a′), is captured in the imaginary part. Hence,

it follows that the first partial derivative in Eq. (B.4) is given by

∂f(x)

∂x1

∣∣∣∣
x̄

=
1

h





∆y1

∆y2
...

∆ya′





. (B.7)

This process is then repeated for the remaining partial derivatives.

B.2.1 Input Quaternion Case

Consider now the case where the input variable contains a quaternion. Therefore, let the

first four elements of input variable x be the attitude quaternion q = (q1, q2, q3, q4), such that x =

(q1, q2, q3, q4, . . . , xb′). Recall that due to state covariance matrix singularity issues associated with

the quaternion, the attitude quaternion q ∈ R4 is replaced with the Euler rotation vector θ ∈ R3,

resulting in a modified input variable xm ∈ Rb (where b = b′−1), such that xm = (θ1, θ2, θ3, . . . , xb).

As a result, Eq. (B.3) is now derived using the modified input variable xm and the dimensions of

the Jacobian in Eq. (B.4) have changed, such that Fx ∈ Ra′×b is given by

Fx =
∂f(x)

∂xm

∣∣∣∣
x̄

=

[
∂f(x)

∂θ1

∣∣∣∣
x̄

∂f(x)

∂θ2

∣∣∣∣
x̄

∂f(x)

∂θ3

∣∣∣∣
x̄

· · · ∂f(x)

∂xb

∣∣∣∣
x̄

]
. (B.8)

In order to evaluate the first partial derivative ∂f(x)
∂θ1

∣∣∣
x̄
in the above Jacobian using the CSD method,

the perturbation step h must be added to the input attitude quaternion. However, the perturbation

step cannot be added to a quaternion in the same manner as a vector. This is due to the fact that

the quaternion must always be unitary, i.e., have a norm of 1. Hence, the perturbation step h is
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the imaginary part. It follows then that the first partial derivative in Eq. (B.8) is given by

∂f(x)

∂θ1

∣∣∣∣
x̄

=
1

h





∆y1

∆y2
...

∆ya′





. (B.14)

Since only the first three partial derivatives correspond to the input attitude quaternion, this process

is then repeated for the next two partial derivatives, but with the perturbation step h being added

respectively to the imaginary parts of the second and third scalar elements of δθ. The remaining

partial derivatives are then computed using the process outlined previously for the vector input

variable.

B.2.2 Output Quaternion Case

Lastly, consider the case where the output variable also contains a quaternion. Therefore,

let the first four elements of the output variable y be the attitude quaternion * = (31, 32, 33, 34),

such that y = (31, 32, 33, 34, . . . , ya′). Recall that due to state covariance matrix singularity issues

associated with the quaternion, the output attitude quaternion * ∈ R4 is replaced with the Euler

rotation vector ϑ ∈ R3, resulting in a modified output variable ym ∈ Ra (where a = a′ − 1), such

that ym = (ϑ1, ϑ2, ϑ3, . . . , ya). As a result, the linearized vector function in Eq. (B.3) is now derived

using the modified input and output variables ym and xm, and the dimensions of the Jacobian Fx

have changed, such that Fx ∈ Ra×b as given by

Fx =
∂f(x)

∂xm

∣∣∣∣
x̄

=

[
∂f(x)

∂θ1

∣∣∣∣
x̄

∂f(x)

∂θ2

∣∣∣∣
x̄

∂f(x)

∂θ3

∣∣∣∣
x̄

· · · ∂f(x)

∂xb

∣∣∣∣
x̄

]
. (B.15)

To evaluate the first partial derivative ∂f(x)
∂θ1

∣∣∣
x̄
in the above Jacobian using the CSD method, the

perturbation step h is added to the complex-valued input variable x using the process outlined

above for the input attitude quaternion. The resulting complex-valued output variable is therefore



204

given by

y =





3̄1 + i∆31

3̄2 + i∆32

3̄3 + i∆33

3̄4 + i∆34
...

ȳa′ + i∆ya′





, (B.16)

where the derivative information is captured in the imaginary part. From this expression it is

observed that the perturbed output attitude quaternion * ∈ C4 is given by

* =





3̄1 + i∆31

3̄2 + i∆32

3̄3 + i∆33

3̄4 + i∆34





. (B.17)

It is important to point out, however, that the desired partial derivative ∂f(x)
∂θ1

∣∣∣
x̄
actually contains

the partial derivative of the output rotation vector ϑ, not the output attitude quaternion *. In

other words, the desired partial derivative can be written as

∂f(x)

∂θ1

∣∣∣∣
x̄

=





∂ϑ
∂θ1
...

∂ya
∂θ1




. (B.18)

Hence, the derivative information in the imaginary part of the output attitude quaternion * needs

to be manipulated so as to yield a perturbed output rotation vector δϑ. This is done by first

forming the nominal output attitude quaternion *̄ ∈ C4 as follows

*̄ =





3̄1 + i0

3̄2 + i0

3̄3 + i0

3̄4 + i0





. (B.19)
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Next, the output perturbation quaternion δ* ∈ C4 is computed as follows

δ* = *⊗
[
*̄
]−1

=




−δϑ/2

1 + i0



 , (B.20)

where the resulting perturbed output rotation vector δϑ ∈ C3 is given by

δϑ =





0 + i∆ϑ1

0 + i∆ϑ2

0 + i∆ϑ3




. (B.21)

Note that the real part of the output perturbation quaternion δ* needs to be the identity quaternion

so that the derivative information is contained in only the first three elements of the imaginary

part. It follows then that the first partial derivative in Eq. (B.15) is given by

∂f(x)

∂θ1

∣∣∣∣
x̄

=
1

h





∆ϑ1

∆ϑ2

∆ϑ3

...

∆ya′





, (B.22)

where the first four elements in the imaginary part of the perturbed output variable y, given in

Eq. (B.16), have been replaced with the imaginary part of the perturbed output rotation vector

δϑ given in Eq. (B.21). This process is then repeated for the remaining partial derivatives in the

Jacobian Fx, defined in Eq. (B.15).
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