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Abstract

Statistical Methods for Launch Vehicle Guidance, Navigation, and

Control (GN&C) System Design and Analysis

by

Michael Benjamin Rose, Doctor of Philosophy

Utah State University, 2012

Major Professor: Dr. David K. Geller
Department: Mechanical and Aerospace Engineering

A novel trajectory and attitude control and navigation analysis tool for powered ascent

is developed. The tool is capable of rapid trade-space analysis and is designed to ultimately

reduce turnaround time for launch vehicle design, mission planning, and redesign work. It is

streamlined to quickly determine trajectory and attitude control dispersions, propellant dispersions,

orbit insertion dispersions, and navigation errors and their sensitivities to sensor errors, actuator

execution uncertainties, and random disturbances.

The tool is developed by applying both Monte Carlo and linear covariance analysis tech-

niques to a closed-loop, launch vehicle guidance, navigation, and control (GN&C) system. The non-

linear dynamics and flight GN&C software models of a closed-loop, six-degree-of-freedom (6-DOF),

Monte Carlo simulation are formulated and developed. The nominal reference trajectory (NRT) for

the proposed lunar ascent trajectory is defined and generated. The Monte Carlo truth models and

GN&C algorithms are linearized about the NRT, the linear covariance equations are formulated,

and the linear covariance simulation is developed.

The performance of the launch vehicle GN&C system is evaluated using both Monte Carlo

and linear covariance techniques and their trajectory and attitude control dispersion, propellant

dispersion, orbit insertion dispersion, and navigation error results are validated and compared.

Statistical results from linear covariance analysis are generally within 10% of Monte Carlo results,

and in most cases the differences are less than 5%. This is an excellent result given the many

complex nonlinearities that are embedded in the ascent GN&C problem. Moreover, the real value
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of this tool lies in its speed, where the linear covariance simulation is 1036.62 times faster than the

Monte Carlo simulation. Although the application and results presented are for a lunar, single-

stage-to-orbit (SSTO), ascent vehicle, the tools, techniques, and mathematical formulations that

are discussed are applicable to ascent on Earth or other planets as well as other rocket-powered

systems such as sounding rockets and ballistic missiles.

(230 pages)
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Public Abstract

Statistical Methods for Launch Vehicle Guidance, Navigation, and

Control (GN&C) System Design and Analysis

A new tool for launch vehicle design and analysis is developed. The tool is capable of rapid

analysis of requirements tradeoffs affecting system design and developed to reduce turnaround time

for launch vehicle design and mission planning. It is streamlined to quickly determine trajectory

and attitude control dispersions which represent how far the actual trajectory is expected to deviate

from the nominal flight path, propellant dispersions which represent how much propellant is required

to meet mission requirements, and navigation errors which represent how far the navigation filter’s

estimate of the actual trajectory is expected to deviate from the actual trajectory. Moreover, the

tool is able to measure sensitivities to instrument errors, engine performance uncertainties, and

random disturbances.

The tool is developed by applying both Monte Carlo and linear covariance analysis tech-

niques to a closed-loop, launch vehicle guidance, navigation, and control (GN&C) system. The

nonlinear equations, algorithms, and models for a Monte Carlo simulation are formulated and de-

veloped. The nominal reference trajectory (NRT) for the proposed lunar ascent trajectory is defined

and generated. The nonlinear equations, algorithms, and models associated with the Monte Carlo

simulation are linearized about the NRT. The linear covariance equations are formulated and the

linear covariance simulation is developed.

The performance of the launch vehicle GN&C system is evaluated using both Monte Carlo

and linear covariance simulations and their results are validated and compared. Statistical results

from linear covariance analysis are generally within 10% of Monte Carlo results, and in most cases

the differences are less than 5%. This is an excellent result given the many complex nonlinearities

that are embedded in the ascent GN&C problem. Moreover, the real value of this tool lies in its

speed, where the linear covariance simulation is 1036.62 times faster than the Monte Carlo simula-

tion. Although the application and results presented are for lunar ascent, the tools, techniques, and

mathematical formulations that are discussed are applicable to launch vehicles on Earth or other

planets as well as other rocket-powered systems such as sounding rockets and ballistic missiles.

This research was supported in part by National Aeronautics and Space Administration (NASA)



vi

Johnson Space Center and Draper Laboratory.

Michael Benjamin Rose
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Chapter 1

Introduction

“There is only one way in which a person acquires a new idea: by

the combination or association of two or more ideas he already

has into a new juxtaposition in such a manner as to discover a

relationship among them of which he was not previously aware.”

– Francis A. Cartier

A synthesis of Monte Carlo and linear covariance techniques can provide launch vehicle

designers and mission planners with a useful state-of-the-art tool for simulating, understanding,

and evaluating the performance of the launch vehicle guidance, navigation, and control (GN&C)

system during its first critical phase of operation, powered ascent. Although traditional approaches

to GN&C system analysis have thus far proved adequate, the need to reduce development costs,

shorten turnaround time for planning and redesign, and support rapid trade-space analysis for

new GN&C concepts, has sparked renewed interest in the community to explore and develop new

approaches or technologies. One approach that has the potential to meet many, if not all, of these

needs is the application of linear covariance and Monte Carlo methods in a novel manner so as

to exploit their respective strengths while circumventing many of their inherent weaknesses. This

dissertation demonstrates how both methods can be used to compliment, support, and validate one

another during the development and design process in order to provide greater confidence in the

performance results and system design. Moreover, it examines the practical challenges associated

with extending and applying linear covariance techniques to powered ascent.

1.1 Problem Definition

The problem that this dissertation considers is that of modeling, analyzing, and seeking to

understand the performance of a given launch vehicle GN&C system design as well as conducting

the analysis in a rapid fashion so as to foster in-depth trade space studies, shorten turnaround

time for planning and redesign, and by so doing reduce some of the development costs. Moreover,
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this dissertation also examines the difficult task of validating the implementation of the models and

algorithms in a simulation environment. However, no attempt will be made to verify the accuracy of

the models and algorithms in relation to the ‘real-world’ objects that they are meant to represent

and describe. To do so would require data from extensive experimentation (e.g., actual launch

vehicle, hardware, and software) and is beyond the scope of this research.

The performance of a launch vehicle GN&C system is traditionally evaluated using Monte

Carlo methods, i.e, a class of computational algorithms that relies upon repeated random sampling

in order to accurately describe a system. Monte Carlo methods are predominantly the method of

choice because they provide a thorough analysis of all aspects of GN&C system performance, are

capable of capturing the effects of nonlinear phenomena and flaws in model and algorithm design,

and allow for replacement of models and algorithms with actual data, hardware, or software as

they become available [1, pp. 341].

The problem with Monte Carlo methods, however, is that they are generally slow, time

consuming, and can often require significant computing resources. This is due primarily to the fact

that the necessary number of samples is dependent upon the desired statistical level of confidence

(or acceptable error margin) in the results [2, 3]. In other words, the higher the confidence level,

the more samples are required, and ultimately the more time it will take to obtain those samples.

Add in the fact that such simulations are generally comprised of high-fidelity nonlinear models and

algorithms of the six-degree-of-freedom (6-DOF) vehicle dynamics, sensors, actuators, environment,

and GN&C flight software, and it becomes readily apparent why Monte Carlo methods are imprac-

tical for in-depth trade-space and sensitivity studies and extremely inefficient for rapid planning

and redesign work. Consequently, there has been considerable effort in the literature to develop

alternative methods or techniques that are capable of achieving equivalent (or at least comparable)

results to those of Monte Carlo methods, but in a fraction of the time [1, 2, 4–6].

One of these alternative techniques is linear covariance analysis, which is based upon linear

system theory [7] and Kalman filtering for linear systems [8]. Hence, a linear covariance simulation

is essentially a linearized version of the nonlinear Monte Carlo simulation and designed specifically

to produce the same statistical results as Monte Carlo methods, but with one single run [4]. Also,

because it is a linear system it is very fast and thus extraordinarily well-suited for in-depth trade-

space and sensitivity studies as well as rapid planning and redesign work.
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However, the problem with linear covariance methods is that, like most linearized models,

they are generally unable to capture many of the effects of highly nonlinear phenomena. In addition,

the general form or implementation of the simulation does not allow for replacement of models and

algorithms with actual data, hardware, or software.1 Moreover, linear covariance techniques are

not widely understood by the GN&C community. As a result, their results are generally suspect

unless validated with those from Monte Carlo methods.

Despite the skepticism and apprehension that seems to surround them, linear covariance

techniques have been successfully applied to many GN&C system problems in aerospace, such as

orbital rendezvous and proximity operations [4, 9–11], cislunar trajectories, lunar powered descent

and landing [12, 13], interplanetary missions [14], and powered ascent, just to name a few. In the

case of powered ascent, however, existing linear covariance simulations are limited to evaluating the

performance of the navigation system in an open-loop setting, commonly referred to as navigation

system analysis. In other words, they are not able to evaluate the performance of the entire

GN&C system or examine performance metrics such as trajectory control dispersions, propellant

dispersions, orbit insertion dispersions, and true navigation errors, which are key to the powered

ascent problem. While an evaluation of the navigation system is important, it is the performance

of the entire GN&C system in the presence of sensor errors, actuator uncertainties, and random

disturbances that is of greater importance to launch vehicle designers and mission planners.

Several factors have prevented the development of a linear covariance simulation for eval-

uation of a launch vehicle GN&C system (in a closed-loop setting) during powered ascent. First,

when a project in industry has need of such a simulation, unless the simulation is already available

or in development, it is generally too late or impractical to begin the development process. This

is because a linear covariance simulation requires linearized models and algorithms of the vehicle

dynamics, actuators, sensors, environment, and GN&C flight software. Moreover, there is always

the possibility that linear covariance techniques may not be applicable or valid for a given applica-

tion. Consequently, there is some initial overhead and risk involved with its development. For this

reason, linear covariance simulations tend to be less amenable to development in industry, whereas

the university setting has proved to be more conducive. Second, only in the past few years has the

fundamental theory behind linear covariance analysis been expanded to include three key principles

that are essential to powered ascent, viz., use of inertial sensors for navigation state propagation [4],

1The reason for this will become evident in a later discussion of the linear covariance formulation and simulation.
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closed-loop guidance and control for continuous nonimpulsive maneuvers [4], and the handling of

events such as discrete maneuvers, sensor changes, and general GN&C mode changes triggered by

some criteria other than time [15]. Lastly, many GN&C algorithms, such as closed-loop guidance,

are in general very complex, highly nonlinear, and iterative in nature. As a result, most GN&C

flight algorithms pose a substantial challenge when it comes time to linearize them for use in the

linear covariance simulation.

1.2 Proposed Solution

In summary, each of the two methods previously described has both strengths and weak-

nesses that make it more or less suitable for particular tasks, which motivates the purpose of the

proposed research. The fundamental thesis of the dissertation is that a synthesis of Monte Carlo

and linear covariance techniques will provide launch vehicle designers and mission planners with

a useful state-of-the-art tool to rapidly and accurately simulate, evaluate, and characterize the

performance of a launch vehicle GN&C system in a closed-loop setting, in the presence of sensor

errors, actuator execution uncertainties, and random environment disturbances, and during its first

critical phase of operation—powered ascent. As such, the proposed tool will consist of both a

linear covariance simulation and a Monte Carlo simulation; the former to support in-depth trade-

space and sensitivity studies as well as rapid planning and redesign work, and the latter to provide

confidence in and validate the results of the former.

1.2.1 Scope

Although the proposed research will focus on the powered ascent problem for launch vehicle

GN&C systems, the tools, techniques, and mathematical formulations will be applicable—in a

general sense—to other rocket-powered systems such as sounding rockets and ballistic missiles.

There are, however, a few important aspects of the launch vehicle powered ascent problem that

this research will not be able to address or capture at this time, either due to time constraints or the

sheer magnitude and complexity of the topic. For example, the challenging task of incorporating

stochastic models of the atmosphere (e.g., winds, pressure, temperature) in a linear covariance

simulation is considered to be a dissertation-sized topic unto itself and therefore beyond the scope

of this research. For this reason, the launch scenario considered for this work is a launch from the

surface of the Moon, where the operating environment is modeled as the near vacuum of space.
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Furthermore, the proposed work does not stem from a specific mission nor is it constrained

to a single application. However, in order to properly demonstrate the capabilities of the analysis

tool, a specific launch vehicle must be defined and modeled. As such, it is assumed that the

launch vehicle is a rigid, single-stage-to-orbit (SSTO) vehicle with time-varying mass and moments

of inertia. Thrust will be provided by a single liquid-propellant engine that does not gimbal, is

not throttleable, and operates at maximum thrust. Attitude control will be provided by a series of

reaction thrusters and a proportional-derivative (PD) controller. The inertial navigation system will

employ a strapdown inertial measurement unit (IMU) that provides measurements of the specific

force and angular velocity, and an extended Kalman filter (EKF) to process the IMU measurements

and maintain an estimate of the navigation states and covariance of the navigation state error.

Lastly, the guidance system will operate in both open- and closed-loop modes. Predetermined

guidance commands will be used during the initial or open-loop portion of the ascent trajectory

and Shuttle’s powered explicit guidance (PEG) will generate the guidance commands on-the-fly

during the closed-loop portion.

1.2.2 Objectives

The objectives used to establish and substantiate the proposed thesis are five-fold: 1)

formulate and develop the models, algorithms, and equations for a high-fidelity, 6-DOF, Monte

Carlo simulation of the launch vehicle GN&C system, 2) define and develop the nominal reference

trajectory for the proposed ascent trajectory, 3) linearize the Monte Carlo simulation models,

algorithms, and equations to obtain the linear covariance equations, 4) evaluate the performance

of the launch vehicle GN&C system during powered ascent using linear covariance simulation and

analysis, and 5) validate the results with Monte Carlo simulation and analysis.

1.3 Dissertation Overview

The remainder of the dissertation is organized as follows. First, a brief summary of back-

ground material and related work is presented in Chapter 2. Chapter 3 addresses the first objective

and contains the nonlinear models and algorithms developed for the Monte Carlo simulation. The

second and third objectives are achieved in Chapters 4 and 5, where the nominal reference tra-

jectory is defined, the linearized models and algorithms are presented, and the linear covariance

equations are developed and formulated. In Chapter 6, the launch vehicle, launch scenario, and
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key simulation parameters are defined. The results associated with the last two objectives are

presented and discussed in Chapter 7. Finally, a summary of the key points of the dissertation,

lessons learned, and suggestions for future work is given in Chapter 8.
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Chapter 2

Background & Related Work

“Knowledge is of two kinds; we know a subject ourselves,

or we know where we can find information upon it.”

– Samuel Johnson

The research in this dissertation is inspired and influenced by the work of a host of engi-

neering professionals from various fields of study. Hence, the primary purpose of this chapter is to

provide a brief survey of this related material found in the literature and discuss its relationship

with the present work. Moreover, there are a number of basic concepts and general terminology

related to launch vehicle powered ascent and GN&C system analysis that are key to following and

understanding the present research. As such, the secondary purpose of this chapter is to provide

the necessary background material in a concise and comprehensible manner, particularly for those

readers who are not well-versed in the subject matter.

2.1 Literature Survey

Examination of the literature reveals four categories or types of analysis related to the

present research and where linear covariance techniques stand out as the method of choice. The

four types of analysis are sensitivity analysis, navigation error analysis, filter tuning, and consider

analysis. Sensitivity analysis is concerned with measuring the sensitivity in the performance of

a system to changes in hardware (e.g., sensors and actuators), system environment, and flight

computer GN&C algorithms [1, 4, 5]. This type of analysis routinely plays a vital role in major

trade space studies and preliminary design work. Navigation error analysis is the study of isolated

contributions of individual (or groups of) error sources on the accuracy of the navigation filter’s

estimate of the true states [1, 5, 11–14, 16]. This type of analysis is fundamental in evaluating

the performance of the navigation system and creating navigation error budgets. Filter tuning

becomes requisite when the navigation filter is based upon a different, lower-fidelity system model

than the truth and refers to the process of ‘tuning’ the strengths of the process and measurement
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noise or adding filter states in order to achieve the best possible estimation performance from a

navigation filter [1, 5]. Lastly, consider analysis is used to quantify the individual contributions and

effects of problem parameters and states, not modeled in the navigation filter, on the navigation

errors [17, 18].

Closer inspection of those papers in the literature that employ the term “linear covariance”

reveals two related yet different variations or classes. The first class is linear covariance for navi-

gation system analysis, hereafter referred to simply as navigation system analysis. It is the most

common form of linear covariance and is usually what most people think of when they hear “linear

covariance” mentioned. Navigation system analysis is primarily devoted to the study of the effects

of state1 and measurement2 uncertainties on the accuracy of the navigation filter’s estimate of the

true states, which is directly related to the performance of the navigation system. In principle,

the true values of the system states are not known, thus requiring an estimate or navigation state

vector. Navigation system analysis is not concerned with maintaining an actual estimate of the

true states, but rather in the statistical evolution of the covariance of the navigation state error.

Moreover, it operates in an open-loop setting and under the assumption that there are no state

dispersions, i.e., the true states are equivalent to the nominal states of the system. Navigation

system analysis has played an important role in a variety of aerospace applications that are related

either directly or indirectly to various aspects of the present work. Examples include attitude deter-

mination [17–20], ballistic missile trajectories [21, 22], interplanetary trajectories [14, 16, 23], lunar

powered descent and landing [12, 13], orbit determination [24], orbital rendezvous [25] , suboptimal

recursive filters [5, 26], and strapdown inertial navigation systems [27].

The second class is linear covariance for GN&C system analysis, hereafter referred to simply

as GN&C system analysis. It is the least understood form of linear covariance among the GN&C

community and is often confused with navigation system analysis. GN&C system analysis, also

referred to as closed-loop GN&C analysis in the literature, is the study of the statistical performance

of the entire GN&C system in a closed-loop setting and in the presence of sensor errors, actuator

execution uncertainties, and random environment disturbances. GN&C system analysis differs

from the more common form of linear covariance in several important ways. First, as the name

1State uncertainties, represented as process noise, accumulate over time and are due to errors in modeling the
system dynamics.

2Measurement uncertainties, represented as measurement noise, are due to errors in the measurements and the
error in quantities derived from the measurements.
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implies, it includes the navigation system as well as the guidance and control systems. Second, it

does not operate under the assumption that the state dispersions are zero. Rather, it is able to

generate performance metrics such as the covariance of the true state dispersions, the navigation

state dispersions, and the true navigation state errors, in addition to the covariance of the filter

navigation state errors provided by navigation system analysis. Lastly, it operates in a closed-loop

setting, instead of an open-loop setting. This allows it to evaluate not only the performance of

each element of the GN&C system, but also the effect that each element may have on another (e.g.,

navigation on guidance, guidance on control, etc).

Of the limited publications available in the literature on GN&C system analysis, the ma-

jority of them have appeared only in the past five years and tend to focus on the general orbital

rendezvous problem and its associated applications. For example, in 2006, Geller [4] developed the

general theory and demonstrated its potential for use in autonomous onboard mission planning. In

2007, Geller [9] presented a linear covariance analysis of the relative attitude estimation and control

problem for orbital rendezvous using angles-only navigation, which was then compared with results

obtained through Monte Carlo analysis by Woffinden and Geller [10]. In that same year, Geller [11]

also characterized four key parameters to define when onboard autonomous systems are required

for orbital rendezvous missions. In 2009, Geller et al. [15] extended linear covariance theory to

handle discrete events such as impulsive maneuvers,3 operational GN&C mode changes, and sensor

acquisition changes that are triggered by onboard estimates of position, velocity, or attitude rather

than time. Lastly, in 2010, Moesser [29] examined the lunar powered decent problem, which is

similar in many regards to the lunar powered ascent problem. Although the papers just mentioned

have primarily focused on the orbital rendezvous problem, they contain many useful and important

pieces of linear covariance theory that will be used extensively in the present research.

There are also many aspects of the launch vehicle ascent problem that have received con-

siderable attention in the literature, such as flight path constraints [30], guidance [31–39] and

control [40–42] techniques, modeling of launch vehicle dynamics [43, 44] and environment [45, 46],

trajectory design [47–51], and propulsion system performance [52], all of which may prove beneficial

to the proposed research.

3In 1991, Gossner [28] developed a similar analytical method for handling discrete events in linear covariance
analysis. However, this work was restricted to maneuver conditions only.
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Figure 2.1: Lunar powered ascent profile.

2.2 Ascent to Orbit Flight

The basic ascent-to-orbit problem can be separated into three distinct phases [53]: the

powered ascent phase, coasting phase, and target-orbit insertion phase. The powered ascent phase

starts at engine ignition or lift off and ends at main engine cut off (MECO). During this segment of

the flight, the propulsion system provides continuous, powered thrust, which lasts on the order of

a few minutes. At MECO the launch vehicle enters the powerless or coasting phase while traveling

along an elliptical transfer orbit. The length of time spent in the coasting phase is dependent upon

the orbital parameters of the target orbit. The final or target orbit insertion phase, the shortest

in terms of time of the three phases, occurs when a small, impulsive-like maneuver is executed to

place the launch vehicle payload or spacecraft in a desired, target orbit.

For this research, the powered ascent phase is separated into three segments (as depicted

in Figure 2.1): vertical rise, pitch over, and ascent. The first segment is vertical rise, which usually

lasts for only a few seconds and whose primary purpose is to safely clear the launch pad or tower

and any other potential hazards in the area. The second segment is pitch over, which generally

spans tens of seconds and whose primary purpose is to reorient the inertial thrust direction from the

vertical to the optimal heading for ascent. The third and final segment is ascent, which typically

lasts a few minutes and ends at MECO.
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2.3 GN&C System Analysis

A brief introduction to some important terminology related to GN&C system analysis is

given. This is followed by a general overview of the Monte Carlo and linear covariance simulations.

2.3.1 General Terminology

The general terminology is divided into three categories: states, dispersions and navigation

errors, and covariances. Each is defined and discussed in greater detail in the following sections.

States

In general, there are two basic types of states: vehicle states and error parameter states.

Vehicle states are associated with the dynamics and kinematics of the launch vehicle. Examples

include (but are not limited to) position, velocity, attitude, angular velocity, and mass. Error pa-

rameter states are used to represent sources of error in the sensors, actuators, and environment

models. Examples include (again not limited to) scale factors, misalignments, biases, and distur-

bances. Moreover, there are four groups or sets of states, each of which is comprised of vehicle

states and error parameter states. They are the true states, the nominal states, the navigation

states, and the filter design states. The true states, denoted by x ∈ Rn′
, represent the true or

actual flight path of the launch vehicle, whereas the nominal states, denoted by x̄ ∈ Rn′
, represent

the nominal or desired flight path. The filter design states, denoted by x ∈ Rm′
where m′ ≤ n′,

are used to design the navigation filter and represent the ‘truth’ for the filter design. Lastly, the

navigation states, denoted by x̂ ∈ Rm′
, are derived from the filter design states and represent the

navigation filter’s estimate of the true states.

The inertial-to-body attitude quaternion qbi ∈ R4 is the standard representation of the

launch vehicle orientation or attitude. However, due to state covariance matrix singularity issues

associated with the quaternion [54], a modified state vector approach is adopted and utilized to

form the state covariance propagation and update equations as well as the state vector update

equations. In this approach, the inertial-to-body attitude quaternions qbi , q̂
b
i ∈ R4 in the true and

navigation state vectors are replaced with the Euler rotation vectors θb, θ̂b ∈ R3, respectively,

and the corresponding quaternion kinematic equations are replaced with the linearized Bortz equa-

tion [55]. The result is a modified true state vector xm ∈ Rn (where n = n′ − 1) and a modified

navigation state vector x̂m ∈ Rm (where m = m′ − 1).
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Dispersions and Navigation Errors

There are two types of dispersions: true state dispersions and navigation state dispersions.

The true state dispersions, denoted by δx, are defined as the difference between the true state

vector x and the nominal state vector x̄. The navigation state dispersions, denoted by δx̂, are

defined as the difference between the navigation state vector x̂ and the nominal state vector x̄.

Moreover, there are two types of navigation errors: filter navigation state errors and true navigation

state errors. The filter navigation state errors, denoted by δê, are defined as the difference between

the filter design state vector x (which represents the true navigation state) and the navigation state

vector x̂. The true navigation state errors, denoted by δe, are defined as the difference between

the true state dispersions δx and the navigation state dispersions δx̂ or equivalently the difference

between the true state vector x and the navigation state vector x̂.

Covariances

The covariance of the true state dispersions, denoted by the matrix Dxx ∈ Rn×n, character-

izes how far from the nominal reference trajectory the actual flight path of the launch vehicle may

differ due to uncertainties in actuator execution, algorithm selection and performance, navigation

error, and various disturbances acting on the launch vehicle. The covariance of the navigation

state dispersions, denoted by the matrix Dx̂x̂ ∈ Rm×m, characterizes how far from the nominal

reference trajectory the estimated state may vary due to uncertainties in actuator execution, algo-

rithm selection and performance, navigation error, and various disturbances acting on the launch

vehicle. The covariance of the filter navigation state errors, denoted by the matrix P̂ ∈ Rm×m,

describes the accuracy or precision of the estimated values of the true states attributable to sensor

error, modeling error, uncertainties in initial conditions, and the error in quantities derived from

the measurements. It is important to emphasize that P̂ is what the navigation filter thinks is the

covariance of the navigation state error, and is computed by propagating and updating P̂ in the

navigation algorithm. The covariance of the true navigation state errors, denoted by the matrix

P ∈ Rm×m, also describes the accuracy or precision of the estimated values of the true states

caused by sensor error, modeling error, uncertainties in initial conditions, and the error in quanti-

ties derived from the measurements. However, P represents the true covariance of the navigation

error. It is important to note that P̂ and P are computed in completely different ways and the
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only time when they are identical is when the truth models, those that represent the best attempt

to model the “real-world” dynamics, and the filter design models, those that are used to formulate

and develop the navigation filter, are one and the same.

2.3.2 Monte Carlo Simulation

The high-fidelity Monte Carlo simulation of the launch vehicle GN&C system consists of

two main components (as illustrated in Figure 2.2): truth models and GN&C algorithm models.

The truth models are comprised of the 6-DOF vehicle dynamics, actuator force and torque models,

environment force and torque models, and sensor measurement models. The GN&C algorithm

models incorporate the guidance, navigation, and control algorithms needed to maneuver and

orient the launch vehicle along the desired or nominal flight path.

From Figure 2.2 it follows that white noise processes w, η, νk and actuator commands û

drive the truth models, which in turn generate the true state vector x of the system, actuator

forces f and torques m, and simulated sensor measurements ỹ, z̃k. The navigation algorithm

processes the sensor measurement data and produces the navigation state vector x̂ and the (filter)

navigation state error covariance matrix P̂ . The open-loop guidance algorithm employs guidance

commands computed and stored prior to launch, whereas the closed-loop algorithm uses the current

navigation state, a simplified vehicle dynamics model, and the mission-specific terminal constraints

to generate the guidance commands â. Lastly, the control algorithm utilizes the current navigation

state and guidance commands to produce the actuator commands û, which are then fed to the

truth models—thus closing the loop.

The covariances of the true state dispersions Dxx, navigation state dispersions Dx̂x̂, and

true navigation state errors P are determined by collecting the results of N simulation runs,

Dxx =
1

N − 1

N∑

j=1

δxj
[
δxj

]ᵀ
, (2.1)

Dx̂x̂ =
1

N − 1

N∑

j=1

δx̂j
[
δx̂j

]ᵀ
, (2.2)

P =
1

N − 1

N∑

j=1

δej
[
δej

]ᵀ
, (2.3)
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Figure 2.2: Monte Carlo simulation of the launch vehicle GN&C system.

where the output from a single simulation run is the time history of the true state vector x,

navigation state vector x̂, and filter navigation state covariance matrix P̂ .

2.3.3 Linear Covariance Simulation

The linear covariance simulation is able to produce the same important statistical quantities

(i.e., Dxx, Dx̂x̂, P , and P̂) as the Monte Carlo simulation, but it does it in a completely different

manner and with only one run of the simulation. It employs an augmented state covariance ma-

trix Ca where the augmented state vector, denoted by x ∈ R! (where # = n +m), is comprised of

both the true state dispersions δx and the navigation state dispersions δx̂. Thus, it follows that the

augmented state covariance matrix contains the covariances of the true state dispersions Dxx and

the navigation state dispersions Dx̂x̂. Moreover, it can be shown that the covariance of the true

navigation state errors P is obtained from the augmented state covariance matrix Ca. Figure 2.3

illustrates the high-level structure and flow of the linear covariance simulation of the launch vehicle

GN&C system. The time history of the covariances are generated by initializing, propagating,

updating, and shaping the augmented state covariance matrix Ca and initializing, propagating, and

updating the filter navigation state covariance matrix P̂ .



15

No

Yes

Yes

Initialize Ca, P̂

Propagate Ca, P̂

Measurement 
available?

Update Ca, P̂

Event trigger?

Shape Ca

No

Figure 2.3: Linear covariance simulation of the launch vehicle GN&C system.
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Chapter 3

Nonlinear Monte Carlo Models

“As far as the laws of mathematics refer to reality,

they are not certain; and as far as they are certain,

they do not refer to reality.”

– Albert Einstein

The purpose of this chapter is to address the first objective of this dissertation, which is to

formulate and develop the models, algorithms, and equations for the high-fidelity, 6-DOF, Monte

Carlo simulation of the launch vehicle GN&C system. In Chapter 2, a high-level description of

the Monte Carlo simulation was given, where it was shown that the simulation can be separated

into truth models and GN&C algorithm models. Hence, the chapter is organized as follows. First,

the truth models are defined and discussed. The chapter then concludes with a description of the

GN&C algorithm models.

3.1 Truth Models

The truth models are comprised of the six-degree-of-freedom vehicle dynamics, environment

force and torque models, actuator force and torque models, and sensor measurement models. Each

is introduced, defined, and discussed in greater detail in the following sections. The section finishes

with definitions of the error parameter states and noise.

3.1.1 Vehicle Dynamics

A launch vehicle experiences six degrees of freedom in Euclidean space. Three translational

degrees describe the motion of the center-of-mass (c.m.), and three rotational degrees describe

the orientation of the vehicle. If the c.m. of the launch vehicle is used as the reference point,

the translational and rotational motions can be described separately, where Newton’s second law

governs the translational dynamics and Euler’s law governs the rotational or attitude dynamics,

both of which are referenced to an inertial reference frame.
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Under the assumption that the launch vehicle can be represented as a rigid body,1 the 6-DOF

equations of motion that completely describe the launch vehicle in three-dimensional Euclidean

space can be decoupled and separated into the translational and rotational dynamics. For this

reason, the launch vehicle is hereafter modeled as a rigid body (i.e., fixed c.m.) with the added

complexity that the mass and associated mass moments-of-inertia (MOI) are allowed to change

with time. Although it would be more realistic to consider a time varying center of mass for a

launch vehicle, it can be shown that the translational and rotational dynamics are interdependent,

and therefore cannot be decoupled. Consequently, the inclusion of a time varying c.m. is reserved

for future work.

Translational Motion

The three-DOF translational dynamics of the launch vehicle’s c.m. with respect to the

inertial frame are given by

ṙi = vi , (3.1)

v̇i = ai
g(r

i) + [T (qbi )]
ᵀ ab

ng , (3.2)

where ri is the position vector with respect to the inertial frame expressed in inertial coordinates,

hereafter referred to as simply the inertial position, vi is the velocity vector with respect to the

inertial frame expressed in inertial coordinates, hereafter referred to as simply the inertial velocity,

ai
g is the gravitational acceleration vector represented in inertial coordinates, ab

ng is the nongrav-

itational acceleration vector represented in body coordinates, and T (qbi ) is the inertial-to-body

transformation matrix (using quaternion parameterization). Note that items in parentheses denote

that the variable to the immediate left is a function of the variables in parentheses. For example,

ai
g(r

i) denotes that the gravitational acceleration vector ai
g is a function of the inertial position

vector ri.
1A rigid body is generally defined as a collection of elements or particles where the relative distances between

every pair of particles are time invariant. See Rao [56, pp. 104] and Zipfel [57, pp. 18].
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Rotational Motion

The three-DOF rotational dynamics of the launch vehicle about its c.m. with respect to

the inertial frame are described by

q̇bi = −1

2
qω(ω

b
ib)⊗ qbi , (3.3)

ω̇b
ib = [J b

b ]
−1

[
mb

acs − ωb
ib × J b

b ω
b
ib

]
+αb

ng , (3.4)

where qbi is the attitude quaternion of the body frame with respect to the inertial frame expressed

in body coordinates, hereafter referred to as simply the inertial-to-body attitude, ωb
ib is the angular

velocity vector of the body frame with respect to the inertial frame expressed in body coordinates,

hereafter referred to as simply the body angular velocity, and qω is the pure quaternion of the

angular velocity vector ωb
ib as given by

qω =




ωb
ib

0



 . (3.5)

Moreover, J b
b is the mass MOI tensor with respect to the body frame and expressed in body

coordinates, mb
acs is the net applied moment or torque from the attitude control system (ACS)

expressed in body coordinates, andαb
ng is the nongravitational angular acceleration vector expressed

in body coordinates.

Note that the minus sign in the quaternion kinematics equation (3.3) is not a typographical

error, but rather the result of the quaternion convention chosen for this research. The quaternion

qba, representing the rotation from frame a to frame b, is defined as

qba =




v

s



 =




−ua sin(θ/2)

cos(θ/2)



 , (3.6)

where v is the vector component of the quaternion, s is the scalar component of the quaternion,

and a minus sign appears on the vector component. Quaternion multiplication, denoted by the ⊗

operator, is defined such that quaternions are multiplied in the “natural order” or the same order

as direction cosine matrices (DCMs). Note that this is the same convention used on the Space

Shuttle.
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Mass

The mass of a launch vehicle is often referred to in the literature as the wet mass and defined

as the mass of the launch vehicle, its contents, and propellant (or fuel). Thus, the differential

equation that describes how the wet mass changes with time is given by

ṁb = −β , (3.7)

where β is the (constant) mass flow rate of the propulsion system.

3.1.2 Environment Models

The environment models consist of both the gravitational and nongravitational acceleration

as well as the nongravigational angular acceleration. For this research, it is assumed that there are

no gravitational angular accelerations acting on the launch vehicle.

Gravitational Acceleration

The vector ai
g in the velocity dynamics equation (3.2) represents the vector sum of all grav-

itational (or volume) accelerations acting on the launch vehicle, expressed in inertial coordinates.

In this study, only the acceleration due to a single planetary body, as described by Newton’s law

of gravitation, is considered. The inertial acceleration due to gravity can be written as

ai
g(r

i) = − µ

‖ri‖2
ui
r , (3.8)

where µ is the gravitational constant of the planetary body and ui
r is the unit vector in the direction

of the inertial position. Note that this equation is valid under the assumption that the planetary

body and launch vehicle can be treated as rigid bodies (or point masses), each located at their

respective c.m.. As a result, the gravitational acceleration equation (3.8) is commonly referred to

as a point mass gravity model.

Nongravitational Acceleration

The vector ab
ng in the velocity dynamics equation (3.2) represents the vector sum of all

nongravitational (or surface) accelerations acting on the launch vehicle, expressed in body coordi-
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nates. In this study, only the acceleration due to thrust and the acceleration due to an unmodeled

sinusoidal disturbance (e.g., fuel-slosh) are considered, which is given by

ab
ng(mb,f

b
thr,a

b
od) =

f b
thr(p

b
thr,w

b
thr)

mb
+ ab

od , (3.9)

where f b
thr is the applied thrust force vector expressed in body coordinates, mb is the wet mass, and

ab
od represents the unmodeled sinusoidal disturbance acceleration expressed in body coordinates.

The unmodeled disturbance acceleration is defined as

ab
od = cb1 sin(ωod t) + cb2 cos(ωod t) , (3.10)

where ωod is the natural frequency of the oscillations, and the sinusoidal disturbance error source

parameters, pb
od = (cb1, c

b
2), represent the translational acceleration amplitudes of the oscillations

in the body frame and are modeled as first-order Gauss-Markov processes, as defined in § 3.1.5.

Nongravitational Angular Acceleration

The vector αb
ng in the angular velocity dynamics equation [see Eq. (3.4)] represents the

vector sum of all unmodeled nongravitational (or volume) angular accelerations acting on the

launch vehicle, expressed in body coordinates. Only the angular acceleration due to an unmodeled

sinusoidal disturbance (e.g., fuel-slosh) is considered, which is given by

αb
ng = αb

od ≡ db
1 sin(ωod t) + db

2 cos(ωod t) , (3.11)

where ωod is the natural frequency of the oscillations, and the sinusoidal disturbance error source

parameters, pb
od = (db

1,d
b
2), represent the rotational acceleration amplitudes of the oscillations in

the body frame and are modeled as first-order Gauss-Markov processes, as defined in § 3.1.5.

3.1.3 Actuator Models

Two systems of actuators are considered for this research: propulsion and attitude control.

Each is introduced, defined, and discussed in greater detail in the following sections.
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Propulsion System

The primary purpose of the propulsion system is to lift the launch vehicle from the surface

of and place it into orbit about a planetary body. If the main engine(s) is able to gimbal, then a

secondary purpose may be to provide limited attitude control during powered ascent. Moreover,

the propulsion system provides a surface force, commonly referred to as the thrust force, on the

launch vehicle. This thrust force is the direct result of mass being expelled at high speeds from the

engine, typically in the form of hot exhaust gases.

In general, the engine and its performance is completely characterized by two parameters:

1. specific impulse, denoted by Isp (with units of s), and defined as the total impulse (or change

in momentum) per unit weight of propellant [58], and

2. vacuum thrust, denoted by Tvac (with units of N or lbf), and defined as the average maximum

thrust of the engine in vacuum.

From these parameters, two additional parameters of interest can be obtained. The first is the

effective exhaust velocity, denoted by c (with units of m/s), defined as the average nominal speed

of the exhaust gases exiting the engine in vacuum, and written as [58]

c = Isp g0 , (3.12)

where g0 is the standard acceleration of gravity at sea level on earth. The second is the mass flow

rate, denoted by β (with units of kg/s) , defined as the rate at which mass (i.e., propellant or fuel)

is converted to exhaust gases and ejected from the engine, and written as [58]

β =
T

Isp g0
, (3.13)

where T is the thrust. It follows from this equation that the only way to increase the thrust is to

either increase the velocity at which mass is expelled from the engine (i.e., the effective exhaust

velocity or specific impulse) or increase the amount of mass expelled from the engine (i.e., the mass

flow rate). The specific impulse or Isp is a measure of the efficiency of the engine, much like miles

per gallon (mpg) is for automobile engines, and considered to be a time-invariant quantity. The



22

mass flow rate, however, is an adjustable quantity and used to vary (or throttle) the thrust level of

the engine in flight.

The thrust force is a vector quantity described by Newton’s third law,

f b
thr ≡ −f b

ex , (3.14)

where f b
thr is the thrust force imparted on the vehicle (expressed in body coordinates), andf b

ex is

the force imparted on the exhaust gases (expressed in body coordinates). This is illustrated in

Figure 3.1, where the exhaust velocity vector vb
ex, expressed in body coordinates, is defined as

vb
ex = −cbb

1 = −Isp g0 b
b
1 , (3.15)

where bb
1 is the unit basis vector of the body frame b. The force f b

ex imparted on the exhaust gases,

as shown in Figure 3.1, can be written as

f b
ex = β vb

ex . (3.16)

Using Eqs. (3.16), (3.15), and (3.13) in Eq. (3.14), the thrust force vector, expressed in body

coordinates, can be written in the following equivalent forms,

f b
thr = −β vb

ex = β Isp g0 b
b
1 = T bb

1 . (3.17)

Finally, the thrust force vector, expressed in inertial coordinates, is given by

f i
thr = [T (qbi )]

ᵀ f b
thr . (3.18)

In this study, the propulsion system consists of a single liquid-propellant engine with the

following simplifications:

• engine does not gimbal or pivot but is mounted in a fixed orientation with respect to the

body frame;

• engine is not throttleable (i.e., the mass flow rate is held constant);
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• engine operates at maximum thrust (i.e., T = Tvac).

From Eqs. (3.18) and (3.17) it follows that errors in the desired inertial thrust force vector f i
thr

are due to errors in the inertial attitude of the launch vehicle T (qbi ), and variability in the engine

mounting, mass flow rate β, and exhaust velocity vector vp
ex. The maneuver execution errors due

to errors in the inertial attitude of the launch vehicle are modeled explicitly in the attitude or

rotational dynamics and not discussed here [see § 3.1.1]. From the simplifications listed above, it

is assumed that the engine mounting and mass flow rate are known to sufficient accuracy that the

errors in the desired thrust force vector due to variability in these quantitites can be neglected.

Consequently, only the thrust errors due to variability in the exhaust velocity or specific impulse

are considered here.

A thruster that expels mass consistently at speeds in excess of or less than the effective

exhaust velocity (each time it is fired) is referred to as running ‘hot’ or ‘cold’, respectively. This

results in some variability in the actual magnitude of the exhaust velocity vector. Furthermore,

the exit velocity of the exhaust gases is not uniform over the entire cross-section of the nozzle,

resulting in some variability in the actual direction of the exhaust velocity vector. Consequently,

these variations cause errors, hereafter referred to as thruster execution errors, in the applied

or actual thrust force vector. The source of the errors can be represented by scale factors sbthr,

misalignments εbthr, random biases bbthr, and noise wb
thr [59]. The thruster error parameter states,

pb
thr = (sbthr, ε

b
thr, b

b
thr), are modeled as first-order Gauss-Markov processes, as defined in § 3.1.5,

and wb
thr is process noise, as defined in § 3.1.6. After incorporating all of these error sources into

the actuator model, the applied thrust force vector, expressed in body coordinates, is given by

f b
thr(p

b
thr,w

b
thr) =

(
I3×3 − [εbthr×]

){(
I3×3 + [sbthr!]

)
Tvac b

b
1 + bbthr +wb

thr

}
. (3.19)

Attitude Control System

The primary purpose of the attitude control system (ACS) is to provide active attitude

control of the launch vehicle about its three body axes. If the ACS is comprised entirely of small

thrusters or ‘RCS jets’,2 then a secondary purpose may be to provide limited propulsion or thrust,

2Often times in the literature, when the ACS is comprised of only small thrusters or jets, the ACS is commonly
referred to as the reaction control system (RCS); hence the appellation ‘RCS jets’.
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Figure 3.1: Propulsion system.

in the event of main engine failure, during powered ascent. Such was the case with the Apollo

lunar ascent module. In general, two configurations of actuators are used for attitude control of the

launch vehicle. The first was alluded to in the discussion of the propulsion system, i.e., a gimbaled

main engine(s) for control about the body pitch and yaw axes, and smaller thrusters for control

about the body roll axis. The second arises when the main engine(s) is fixed (i.e., does not gimbal),

and RCS jets are used exclusively for control about all three body axes. Since the main engine

considered in this study does not gimbal, only the second configuration is discussed here.

Each ACS thruster (or RCS jet), like the main engine, can be characterized by its specific

impulse, vacuum thrust, effective exhaust velocity, and mass flow rate, and imparts a thrust force

on the launch vehicle. In general, however, the ACS thrusters are oriented and fired in such a

manner that neither their individual or combined thrust force is directed through the vehicle center

of mass, resulting in an applied torque or moment about the center of mass, hereafter referred to

as the net ACS moment.

The ACS induced moment, like the thrust force, is a vector quantity and is defined as the

vector sum of moments from N ACS thrusters,

mb
acs =

N∑

j=1

mb
acs,j , (3.20)

where mb
acs,j is the moment vector from the jth ACS thruster (expressed in body coordinates).

Since any torque or moment can be expressed as the vector product of the applied force and the
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moment arm or linear distance from the point of application of the force to the point of reference

(i.e., center of mass), the net ACS moment vector mb
acs can also be written as

mb
acs =

N∑

j

(
rbacs,j × f b

acs,j

)
, (3.21)

where rbacs,j is the moment arm of the jth ACS thruster (expressed in body coordinates), and f b
acs,j

is the applied thrust force vector of the jth ACS thruster (expressed in body coordinates).

In this study, the ACS consists of eight thrusters strategically mounted to the exterior of the

launch vehicle, as illustrated in Figure 3.2. Rather than model each of the thrusters individually,

a simpler and more unified approach is taken where only the net ACS moment about the launch

vehicle center of mass is modeled. The ACS thrusters are susceptible to the same variabilities as the

main thruster. As a result, these variabilities cause errors, hereafter referred to as ACS execution

errors, in the applied or actual net ACS moment vector. These errors can be represented by

scale factors sbacs, orthogonality misalignments εbacs, random biases bbacs, and noise wb
acs. The ACS

error parameter states, pb
acs = (sbacs, ε

b
acs, b

b
acs), are modeled as first-order Gauss-Markov processes,

as defined in § 3.1.5, and wb
acs is process noise, as defined in § 3.1.6. After incorporating all of

these error sources into the error model, the applied net ACS moment vector, expressed in body

coordinates, is given by

mb
acs(m̂

b
com,p

b
acs,w

b
acs) =

(
I3×3 − [εbacs×]

){(
I3×3 + [sbacs!]

)
m̂b

com + bbacs +wb
acs

}
, (3.22)

where m̂b
com is the commanded ACS moment issued by the attitude controller [see § 3.2.3].

3.1.4 Inertial Measurement Unit

The purpose of the inertial measurement unit (IMU) is to measure the motion of the

launch vehicle in three-dimensional Euclidean space relative to an inertial frame of reference. For

this reason, the IMU is generally the primary sensor on launch vehicles and a variety of other

spacecraft. Moreover, it is generally comprised of two inertial instrument packages: accelerometers

and gyros. These inertial instruments can be mounted on a set of rotating gimbals, called a

navigation platform, such that no matter how the vehicle rotates the instruments maintain their

inertial (or local-level) alignment. Hence, the navigation platform is commonly called a space
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Figure 3.2: Attitude control system.

stabilized or inertial platform. Alternatively, the inertial instruments can be rigidly mounted to the

vehicle structure, in what is referred to as a strapdown system, so that they rotate with the vehicle.

Consequently, the provided measurements are obtained in the rotating IMU case frame and must

be transformed to the desired frame of reference.

A strapdown IMU has several advantages over its counterpart, the inertial platform system,

in that it is generally lighter, cheaper, simpler, more robust, more reliable, and more easily config-

ured for odd-shaped spaces [60]. The disadvantages, however, are usually lower accuracy, complex

sensor alignment and calibration procedures, and gyros required to handle a large dynamic range of

rotation rates. In general, the IMU is installed with a position offset from the launch vehicle center

of mass, as depicted in Figure 3.3. This position is not known perfectly, and will vary with time

as fuel is expended. Moreover, if the IMU position offset is not properly accounted for, attitude

motion will inadvertently be measured as acceleration.

The IMU is located within the vehicle body frame, however, it measures the motion of the

vehicle with respect to its own case or platform frame, hereafter referred to as the IMU case frame.

This frame is defined by the orthogonal triad of basis vectors c1, c2, and c3, and can be thought

of as “fiducial lines which are physically inscribed” [61] on the IMU. The IMU coordinate system,

denoted with a superscript c, is the preferred coordinate system of the IMU case frame. Hence, the

coordinate axes 1c, 2c, and 3c are aligned with the basis vectors c1, c2, and c3, respectively. The
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Figure 3.3: (left) IMU position is generally offset from the vehicle center of mass. (right) IMU case
frame.

relationship between the IMU case and vehicle body frames is usually determined prior to launch

through some form of instrument alignment procedures, and represented with the IMU-to-body

transformation matrix T b
c .

For this research, only the strapdown implementation of the IMU is considered, as shown

in Figure 3.4. It is also assumed that the IMU and associated case frame are collocated at the

vehicle center of mass and the IMU-to-body transformation matrix T b
c is known perfectly. Note

that in general the IMU is not collocated with the center of mass, and the orientation of its frame

with respect to the body frame is not perfectly known.

Accelerometer

An accelerometer is a mechanical device that uses the “inertial” properties of matter or

light to measure the specific force, i.e., the nongravitational force per unit mass. The specific force

(also called the g-force or mass-specific force) has units of acceleration or m/s2. So it is not actually

a force at all, but a type of acceleration. To be more specific, the specific force is a “proper” accel-

eration, which is the acceleration relative to free-fall or an inertial path. Neither the acceleration

of gravity or “force of gravity” contribute to proper accelerations, thus the accelerometer does not

measure the acceleration due to gravity. There are a variety of accelerometers used in aerospace,

such as the pendulous accelerometer (in both open- and closed-loop varieties), the vibrating beam
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Figure 3.4: Strapdown IMU configuration.

accelerometer, the pendulous-integrating gyro accelerometer, and the micro-electro-mechanical sys-

tems (MEMS) accelerometer.

In general, three single-DOF accelerometers are mounted to the IMU case in such a manner

that their input axes instrument an orthogonal set and together are able to measure the (nongrav-

itational) acceleration in three dimensions, as depicted in Figure 3.5. Since perfect alignment of

the accelerometer input axes with the IMU coordinate axes can never be achieved, despite even

the most accurate alignment procedures, there exists some uncertainty in the coordinate transfor-

mation between the two right-handed, orthogonal systems of coordinates. If it is assumed that the

two coordinate systems are nearly coincident, i.e., they differ by only “small” angles, then the angle

from the coordinate axes 1c to 1a, 2c to 2a, and 3c to 3a are denoted by ε1, ε2, and ε3 (respectively),

as depicted in Figure 3.5. Thus, an orthogonal “small-angle” transformation between two almost

coincident coordinate systems is given by [61, pp. 21]

T a
c = I3×3 − [ε×] , (3.23)
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Figure 3.5: (left) Accelerometer input axes form orthogonal coordinate set. (right) Inertial instru-
ment small-angle orthogonality geometry on the unit sphere.

where [ε×] is the skew symmetric form of the three small angles, ε = (ε1, ε2, ε3), defined as

[ε×] ≡





0 −ε3 ε2

ε3 0 −ε1

−ε2 ε1 0




. (3.24)

Ideally, an accelerometer is sensitive to the specific force in only one precisely defined di-

rection, called the input axis, which is generally perpendicular to its mounting surface. However,

misalignments of the (maximum) sensitivity axis with respect to the input axis, due to manu-

facturing flaws and inaccuracies, cause the instrument to respond to components of the specific

force in the plane parallel to the mounting surface, as shown in Figure 3.6. This sensitivity in

the other directions is commonly referred to as the cross-axis or transverse sensitivity. Thus, the

input axes are physically instrumented by the sensitive axes of the accelerometers, which constitute

a nonorthogonal set of axes. Hence, special treatment is necessary in order to relate these axes

to the orthogonal set of input axes. If it is assumed that the accelerometer’s sensitive axes are

nonorthogonal, but differ by only “small” angles with respect to the input axes, then the angles

between the coordinate axes 1a and 1s, 2a and 2s, and 3a and 3s are denoted by γ1, γ2, and γ3,

respectively. These three angles are each broken up into two separate, independent rotations about

the orthogonal input axes, as illustrated in Figure 3.6. Thus, the coordinate transformation relating
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Figure 3.6: (left) Accelerometer input axes and sensitive axes geometry. (right) Inertial instrument
small-angle nonorthogonality geometry on the unit sphere.

the nonorthogonoal sensitive axes to the input axes is given by [61, pp. 39]

T s
a = I3×3 − Γ(γ) , (3.25)

where Γ(γ) is the nonorthogonal form of the six small angles, γ = (γ12, γ13, γ21, γ23, γ31, γ32),

defined as

Γ(γ) ≡





0 −γ13 γ12

γ23 0 −γ21

−γ32 γ31 0




. (3.26)

An instrument’s internal or input units are practically never the same as its output units.

For example, the internal units of an accelerometer might be volts, whereas the output units are

generally those of acceleration or m/s2. Thus, some internal unit conversion factor is necessary.

Moreover, the sensitivity of the instrument over a wide range of inputs is generally not a linear

one-to-one relationship, i.e., the output of the device is not exactly proportional to the input by

some constant, nonunitary factor. Thus, a scale factor is defined as the ratio between changes in

the input and output signals [62–64]. Ideally, the mapping from internal to output units is a linear

relationship, hence the scale factor can be computed as the slope of the best straight line fitted to

data obtained by varying the input over a wide range of values and recording the output. If it is

assumed that the accelerometer’s scale factors s1, s2, and s3 are linear, then the mapping is given
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by [61, pp. 90]

S = I3×3 + [s!] , (3.27)

where [s!] is the diagonal matrix of the scale factors, s = (s1, s2, s3), defined as

[s!] =





s1 0 0

0 s2 0

0 0 s3




. (3.28)

From the preceding discussion, it follows that errors in the measured nongravitational ac-

celeration with respect to the body frame are typically due to scale factor uncertainties, orthogonal

and nonorthogonal misalignments, random and systematic biases, and noise. After incorporating

all of these error sources into a stochastic error model, the measured nongravitational acceleration

vector, expressed in body coordinates, is given by

ãs
ng =

(
I3×3 + [sã!]

){
T s
a T a

c T c
b a

b
ng + bsã + ηs

ã

}
,

=
(
I3×3 + [sã!]

){(
I3×3 − Γ(γã)

)(
I3×3 − [εã×]

)
ab
ng + bsã + ηs

ã

}
. (3.29)

The accelerometer error parameter states, pã = (sã,γã, εã, bsã), are modeled as first-order Gauss-

Markov processes, as defined in § 3.1.5, and ηs
ã is measurement noise, as defined in § 3.1.6.

Gyroscope

A gyroscope or gyro is a mechanical device that exploits the “inertial” properties of matter

or light to measure the angular rate or velocity of the IMU case frame as it rotates with respect to

the inertial reference frame. There are a variety of gyros used in aerospace, such as the mechanical

single-DOF gyro (in both open- and closed-loop varieties), the mechanical two-DOF gyro, the

vibrating gyro, the optical gyro (i.e., ring laser, interferometric fiber optic), and the MEMS gyro.

A set of three single-DOF gyros is considered in this study. Moreover, all of the uncertainties

associated with inertial instruments discussed previously are applicable to the gyro. Thus, it follows

that errors in the measured angular velocity of the body frame with respect to the inertial frame are

typically due to scale factor uncertainties, orthogonal and nonorthogonal misalignments, random

and systematic biases, and noise. After incorporating all of these error sources into a stochastic
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error model, the measured angular velocity vector, expressed in body coordinates, is given by

ω̃s
ib =

(
I3×3 + [sω̃!]

){
T s
a T a

c T c
b ω

b
ib + bsω̃ + ηs

ω̃

}
,

=
(
I3×3 + [sω̃!]

){(
I3×3 − Γ(γω̃)

)(
I3×3 − [εω̃×]

)
ωb
ib + bsω̃ + ηs

ω̃

}
. (3.30)

The gyro error parameter states, pω̃ = (sω̃,γω̃, εω̃, bsω̃), are modeled as first-order Gauss-Markov

processes, as defined in § 3.1.5, and ηs
ω̃ is measurement noise, as defined in § 3.1.6.

3.1.5 Error Parameters

All expected error parameters and unmodeled sources of error incorporated in the nonlinear

models are modeled as continuous first-order Gauss-Markov processes, also known as exponentially

correlated random variables (ECRVs), with dynamics given by

ṗ = − 1

τp
p+ wp , p(t0) ∼ N (0,σ2

p) , (3.31)

where τp is the associated time constant or correlation time and wp is Gaussian white noise with

E{wp} = 0 , (3.32)

E
{
wp(t)wp(t

′)
}
=

2σ2
p

τp
δ(t− t′) , (3.33)

where σ2
p is the steady-state variance of p, E{ } is the expectation operator, and δ(t−t′) is the Dirac

delta function. Modeling the error parameters as ECRVs provides a great deal of flexibility, this

is because, depending on the time constant τp, the error parameter can range from being constant

like a bias (where τp → ∞) to something more like white noise (where τp → 0). Hence, a large

valued time constant results in a slowly changing random variable, whereas a small valued time

constant results in a rapidly changing random variable.

3.1.6 Noise

There are two types of noise used in this research, viz. process noise and measurement

noise. Process noise, denoted by the vector w(t), is modeled as uncorrelated Gaussian white noise
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with mean and covariance, respectively,

E
{
w(t)

}
= 0 , (3.34)

E
{
w(t)

[
w(t′)

]ᵀ}
= Sw(t) δ(t− t′) , (3.35)

where Sw(t) is a diagonal matrix that represents the strength of the process noise and essentially

defines the quality or accuracy of the truth models. Measurement noise, denoted with the vector

η(t), is also modeled as uncorrelated Gaussian white noise with mean and covariance, respectively,

E
{
η(t)

}
= 0 , (3.36)

E
{
η(t)

[
η(t′)

]ᵀ}
= Sη(t) δ(t− t′) , (3.37)

where Sη(t) is also a diagonal matrix that represents the strength of the measurement noise and

also defines the quality or accuracy of the measurement models.

3.2 GN&C Algorithm Models

The GN&C algorithm models are comprised of the inertial navigation, ascent guidance and

steering, and attitude control. Each is introduced, defined, and discussed in greater detail in the

following sections.

3.2.1 Inertial Navigation

Navigation is the determination of the position and velocity of a vehicle or body relative to

some frame of reference. For example, terrestrial navigation is relative to the Earth and celestial

navigation is relative to the stars, hence inertial navigation is relative to an inertial reference frame.

Often times, the attitude determination problem is solved separately from the translational deter-

mination problem. For this research, however, a fully integrated navigation structure is considered,

where inertial navigation refers to the determination of the position, velocity, and attitude of the

launch vehicle relative to the inertial reference frame.

Inertial navigation on launch vehicles is generally accomplished with an unaided inertial

navigation system (INS), which consists of an IMU and a data processing algorithm or navigation

filter. The INS is unaided in the sense that no external measurements (e.g., optic or radiometric)
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are used during powered ascent to aid in the estimation process. Moreover, the INS operates on the

principle of dead-reckoning, i.e., the estimation of the current vehicle states using prior estimates

or knowledge of the states, measured or computed rates, and the elapsed time. In other words, the

IMU-measured angular velocity is numerically integrated to obtain the attitude and corresponding

inertial-to-body transformation matrix, which is then used to transform the IMU-measured specific

force to inertial coordinates. The specific force, now expressed in inertial coordinates, is then added

to the inertial gravitational acceleration, which typically comes from an onboard gravity model, to

obtain the total inertial acceleration. Finally, the total inertial acceleration is numerically integrated

once to obtain the inertial velocity and a second time to obtain the inertial position.

The most extensively used data processing algorithm for nonlinear state estimation and

inertial navigation on launch vehicles is the extended Kalman filter (EKF), an extension of the

optimal linear estimator developed and proposed by Kalman [8] in 1960. In general, the EKF

incorporates the standard two-stage process (as illustrated in Figure 3.7): propagate and update.

The propagation stage makes use of the nonlinear system dynamics model and linearized error

dynamics, and the update stages makes use of the nonlinear measurement models and linearized

measurement sensitivities. Since the IMU (which provides the continuous inertial measurements ỹ)

is the only sensor considered for this research, it follows that additional sensors (which generally

provide discrete measurements z̃k) and the update stage of the filter, depicted in Figure 3.7, are

not considered here but left for future work. For a brief history of the EKF, the reader is referred

to the work of Jazwinski [65]. For a detailed examination of the practical aspects of filter design,

the reader is referred to the work of Gelb [5], whereas discussions on the more theoretical aspects

of Kalman filtering can be found in the works of Jazwinski [65], Maybeck [1], Tapley, Shutz, and

Born [24], and Crassidis and Junkins [66].

Filter Design Models

The true system models or simply the “truth” models, defined previously in § 3.1, are

generally the best representation of the “real world” for the research effort. In the development

of the navigation filter, the filter design models are the truth models of the system as far as the

the filter is concerned, but are usually simplified versions of the true system models. In other

words, they are scaled to capture the needed complexity required for state estimation but reduced
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Figure 3.7: Flow diagram of the extended Kalman filter for inertial navigation.

to meet computational limitations or requirements. For example, the gravitational acceleration

in the “truth” models may include an n-body gravity model and harmonic terms to respectively

account for the gravitational effects of other bodies (e.g., Sun, moon, or other planets) and the

nonspherical shape of the primary body, while the filter design models may include only a two-body

gravity model that assumes that the primary body is a point-mass. The inertial navigation filter

formulated and developed for this research includes models of the continuous inertial measurements

from the strapdown IMU, the translational and rotational dynamics of the launch vehicle, and the

dynamics of the modeled error parameters.

The continuous inertial measurements processed by the filter are solely those from the

IMU, viz. the specific force ãs ∈ R3 and angular rate (or angular velocity) ω̃s ∈ R3 as measured

respectively in the sensor frames by three accelerometers and three gyroscopes. It is assumed that

both sets of measurements are corrupted by scale factor (s) errors, orthogonal (ε) and nonorthogonal

(γ) misalignment uncertainties, random and systematic biases (b), and noise (η). Each of these
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measurement errors are described in greater detail in the IMU model as given in § 3.1.4. Hence,

the corrupted accelerometer measurement ãs, expressed in sensor coordinates, is given by

ãs(ab
ng,pã,η

s
ã) =

(
I3×3 + [sã!]

){(
I3×3 − Γ(γã)

)(
I3×3 − [εã×]

)
ab
ng + bsã + ηs

ã

}
, (3.38)

where ab
ng ∈ R3 is the true specific force (or nongravitational acceleration) vector expressed in body

coordinates, [sã!] is the diagonal matrix of the accelerometer scale factor error vector sã ∈ R3 as

defined in Eq. (3.28) on page 31, Γ(γã) is the nonorthogonal form of the accelerometer nonorthog-

onal misalignment error vector γã ∈ R6 as defined in Eq. (3.26) on page 30, and [εã×] is the skew

symmetric form of the accelerometer orthogonal misalignment error vector εã ∈ R3 as defined in

Eq. (3.24) on page 29. Moreover, the accelerometer error parameters pã = (sã,γã, εã, bsã) are mod-

eled as first-order Gauss-Markov processes as defined in § 3.1.5 on page 32, and the accelerometer

measurement noise ηs
ã ∈ R3 is modeled as Gaussian white noise with

E
{
ηs
ã(t)

}
= 0 , (3.39)

E
{
ηs
ã(t)

[
ηs
ã(t

′)
]ᵀ}

= σ2
ηãI3×3 δ(t− t′) . (3.40)

Similarly, the corrupted gyro measurement ω̃s, expressed in sensor coordinates, is given by

ω̃s(ωb
ib,pω̃,η

s
ω̃) =

(
I3×3 + [sω̃!]

){(
I3×3 − Γ(γω̃)

)(
I3×3 − [εω̃×]

)
ωb
ib + bsω̃ + ηs

ω̃

}
, (3.41)

where ωb
ib ∈ R3 is the true angular velocity of the launch vehicle with respect to the inertial

frame expressed in body coordinates, [sω̃!] is the diagonal matrix of the gyro scale factor error

vector sω̃ ∈ R3 as defined in Eq. (3.28), Γ(γω̃) is the nonorthogonal form of the gyro nonorthogonal

misalignment error vector γω̃ ∈ R6 as defined in Eq. (3.26), and [εω̃×] is the skew symmetric form

of the gyro orthogonal misalignment error vector εω̃ ∈ R3 as defined in Eq. (3.24). In addition, the

gyro error parameters pω̃ = (sω̃,γω̃, εω̃, bsω̃) are modeled as first-order Gauss-Markov processes as

defined in § 3.1.5 on page 32, and the gyro measurement noise ηs
ω̃ ∈ R3 is modeled as Gaussian
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white noise with

E
{
ηs
ω̃(t)

}
= 0 , (3.42)

E
{
ηs
ω̃(t)

[
ηs
ω̃(t

′)
]ᵀ}

= σ2
ηω̃I3×3 δ(t− t′) . (3.43)

Since continuous accelerometer measurements are available, the differential equations of

motion that describe the translational dynamics of the launch vehicle’s c.m. with respect to the

inertial frame, as governed by Newton’s second law, are written as

ṙi = vi , (3.44)

v̇i = ai
g(r

i) +
[
T (qbi )

]ᵀ
ab
ng(ã

s,pã,η
s
ã) , (3.45)

where ai
g ∈ R3 is the gravitational acceleration vector, expressed in inertial coordinates, and defined

by the two-body gravity (or point-mass) model

ai
g(r

i) = − µ
∥∥ri

∥∥3r
i , (3.46)

T (qbi ) ∈ R3×3 is the inertial-to-body transformation matrix, and ab
ng ∈ R3 is the nongravita-

tional acceleration vector, expressed in body coordinates, recovered from the accelerometer mea-

surement ãs by eliminating the effects of the accelerometer errors pã and noise ηs
ã through error

compensation, as given by

ab
ng(ã

s,pã,η
s
ã) =

(
I3×3 + [εã×]

)(
I3×3 + Γ(γã)

){(
I3×3 − [sã!]

)
ãs − bsã − ηs

ã

}
. (3.47)

This expression is the result of solving Eq. (3.38) for ab
ng and using the first-order inverse approxi-

mation [67]
(
In×n +A

)−1 "
(
In×n −A

)
, (3.48)

which can be derived from the Sherman-Morrison lemma [66, Eq. (A.20)]

(
In×n +A

)−1
= In×n −A

(
In×n +A

)−1
, (3.49)
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by recursively substituting the above expression into itself and keeping only the first-order terms.

Note that Eq. (3.48) holds if the elements of the matrix A ∈ Rn×n are ‘small’, which for this

particular application is met by definition of the IMU sensor error parameters (s,γ, ε) [see § 3.1.4

on page 25].

Since continuous gyro measurements are also available, the only differential equation of

motion needed to describe the rotational dynamics of the launch vehicle about its c.m. with

respect to the inertial frame is

q̇bi = −1

2
qω(ω

b
ib)⊗ qbi , (3.50)

where qω ∈ R4 is the pure quaternion defined as

qω(ω
b
ib) ≡




ωb
ib(ω̃

s,pω̃,ηs
ω̃)

0



 , (3.51)

and ωb
ib ∈ R3 is the angular velocity of the launch vehicle, expressed in body coordinates, recovered

from the gyro measurement ω̃s by eliminating the effects of the the gyro errors pω̃ and noise ηs
ω̃

through error compensation, as given by

ωb
ib(ω̃

s,pω̃,η
s
ω̃) =

(
I3×3 + [εω̃×]

)(
I3×3 + Γ(γω̃)

){(
I3×3 − [sω̃!]

)
ω̃s − bsω̃ − ηs

ω̃

}
. (3.52)

This expression is the result of solving Eq. (3.41) for ωb
ib and using the first-order inverse approx-

imation given in Eq. (3.48). Note that the gyro measurement provides the angular velocity of

the launch vehicle’s center-of-mass with respect to the inertial frame, thus eliminating the need to

explicitly integrate Euler’s equation, include an angular velocity state, or maintain models of the

vehicle’s mass moments-of-inertia, attitude control system, or any other disturbance torques acting

on the launch vehicle. This is referred to in the literature as model replacement [4, 54, 55, 68],

the advantage being that it greatly reduces the complexity of the filter. The disadvantage, how-

ever, being that because an angular velocity state is not explicitly maintained, its corresponding

covariance is not maintained either and hence unavailable.

The filter is capable of modeling error parameters to help mitigate the effects of various

errors, such as accelerometer and gyro errors, through error compensation, with examples given

in Eqs. (3.47) and (3.52). As mentioned earlier, these error parameters are modeled as first-order
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Gauss-Markov processes as defined in § 3.1.5 on page 32. For this research, the filter is setup to

model the accelerometer and gyro error parameters pã and pω̃ respectively, which were introduced

and defined previously, and the ACS error parameters pacs, which will be introduced and defined

later in § 3.2.3 on page 53.

The differential equations of motion given in Eqs. (3.44), (3.45), (3.50), and (3.31) can be

written in the form

ẋ(t) = f
(
x(t), t

)
− Bη(t) + Gw(t) , (3.53)

where f : Rm′ → Rm′
is a nonlinear vector function of the true navigation state vector x(t) ∈ Rm′

given by

x =
(
ri, vi, qbi , p

)
, (3.54)

η(t) ∈ Rl =
(
ηs
ã, η

s
ω̃

)
is the continuous inertial measurement noise vector, and w(t) ∈ Rp is a vector

of Gaussian white noise terms from Eq. (3.31) associated with the error parameter states p(t) ∈

Rp = (pã, pω̃, pacs). Moreover, B ∈ Rm′×l and G ∈ Rm′×p are matrices of ones and zeros that

respectively map η and w to the proper states in x. It is important to note that the function

f in Eq. (3.53) is not written explicitly as a function of the continuous inertial measurements

ỹ(t) ∈ Rl = (ãs, ω̃s) because, as far as the filter is concerned, the measurements are deterministic

inputs.

Navigation State Propagation

Now that the filter design models have been defined, the next step in developing the naviga-

tion filter is to formulate the navigation state propagation equations. Since the desired navigation

filter is to be an EKF, it is assumed that

E
{
x(t)

}
= x̂(t) , ∀ t . (3.55)

In other words, the conditional mean of x(t) is x̂(t), i.e., the estimate of the true navigation state

or simply the navigation state. Therefore, the navigation state propagation equations are obtained

by taking the expectation value of the filter design models, such that the differential equations of
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motion become

˙̂ri = v̂i , (3.56)

˙̂vi = âi
g(r̂

i) +
[
T̂ (q̂bi )

]ᵀ
âb
ng(ã

s, p̂ã) , (3.57)

˙̂qbi = −1

2
q̂ω(ω̂

b
ib)⊗ q̂bi , (3.58)

˙̂pj = − 1

τp̂j
p̂j , j = 1, 2, . . . , p (3.59)

where

âi
g(r̂

i) = − µ
∥∥r̂i

∥∥3 r̂
i , (3.60)

âb
ng(ã

s, p̂ã) =
(
I3×3 + [ε̂ã×]

)(
I3×3 + Γ(γ̂ã)

){(
I3×3 − [ŝã!]

)
ãs − b̂sã

}
, (3.61)

q̂ω(ω̂
b
ib) =




ω̂b
ib(ω̃

s, p̂ω̃)

0



 , (3.62)

and

ω̂b
ib(ω̃

s, p̂ω̃) =
(
I3×3 + [ε̂ω̃×]

)(
I3×3 + Γ(γ̂ω̃)

){(
I3×3 − [ŝω̃!]

)
ω̃s − b̂sω̃

}
, (3.63)

Moreover, it follows that the expectation value of Eq. (3.53) is

˙̂x(t) = f̂
(
x̂(t), t

)
, (3.64)

where f̂ : Rm′ → Rm′
is a nonlinear vector function of the navigation states x̂(t) ∈ Rm′

given by

x̂ =
(
r̂i, v̂i, q̂bi , p̂

)
, (3.65)

where p̂(t) ∈ Rp = (p̂ã, p̂ω̃, p̂acs).

Navigation State Error Covariance Propagation

Now that the filter navigation state propagation equations have been formulated, the final

step in developing the navigation filter is to formulate the filter navigation state error covariance

propagation equations. First, the filter navigation state error δê ∈ Rm′
is defined as the difference

between the true navigation states x (which represents the “truth” for the filter design) and the
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navigation states x̂ (which is the filter’s estimate of the true states),

δê(t) ≡ x(t)− x̂(t) , (3.66)

with

E
{
δê(t)

}
= 0 , ∀ t (3.67)

E
{
δê(t)

[
δê(t)

]ᵀ}
= P̂(t) , (3.68)

where P̂(t) ∈ Rm×m is the filter navigation state error covariance matrix, which represents the

filter’s measure of the estimation accuracy [5]. Next, Eq. (3.66) is substituted in Eq. (3.53) and f

is expanded in a first-order Taylor series about the current estimate (conditional mean) of the true

navigation state x̂(t),

f
(
x(t), t

)
" f̂

(
x̂(t), t

)
+

∂f
(
x(t), t

)

x(t)

∣∣∣∣∣
x(t)=x̂(t)

(
x(t)− x̂(t)

)
,

such that the linear differential equation is obtained

δ ˙̂e(t) = Fx
(
x̂(t), t

)
δê(t)− Bη(t) + Gw(t) , (3.69)

where Fx ∈ Rm×m is the Jacobian defined as

Fx
(
x̂(t), t

)
≡

∂f
(
x(t), t

)

xm(t)

∣∣∣∣∣
x(t)=x̂(t)

, (3.70)

and B ∈ Rm×l and G ∈ Rm×p are now matrices of ones and zeros that respectively map η and w

to the proper states in xm.

Recall that the inertial-to-body attitude quaternion qbi ∈ R4 is the standard representation

of the launch vehicle attitude. However, due to state covariance matrix singularity issues associated

with the quaternion [54], a modified state vector approach is adopted and utilized to form the filter

navigation state error covariance propagation equations. In this approach, the inertial-to-body

attitude quaternions qbi , q̂
b
i ∈ R4 respectively in the true navigation state vector x ∈ Rm′

defined

in Eq. (3.54) and the navigation state vector x̂ ∈ Rm′
defined in Eq. (3.65) are replaced with the
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Euler rotation vectors θb
i , θ̂

b
i ∈ R3, which represent the attitude of the body frame b with respect

to the inertial frame i expressed in body coordinates, resulting in a modified true navigation state

vector xm(t) ∈ Rm (where m = m′ − 1), given by

xm =
(
ri, vi, θb

i , p
)
, (3.71)

and a modified navigation state vector x̂m ∈ Rm given by

x̂m =
(
r̂i, v̂i, θ̂b

i , p̂
)
. (3.72)

In addition, the quaternion kinematics in Eqs. (3.50) and (3.58) are replaced with the linearized

Bortz equation [55]. As such, the linearized filter navigation state error dynamics equation, given

in Eq. (3.69), is based upon the modified true navigation state vector xm and modified navigation

state vector x̂m, i.e., δê(t) ∈ Rm, and the Jacobian Fx has been defined and mapping matrices B

and G have been redefined accordingly.

Given the definition of the modified true navigation state vector in Eq. (3.71), the Jaco-

bian Fx, defined in Eq. (3.70), can be expanded and written as

Fx
(
x̂(t), t

)
≡

∂f
(
x(t), t

)

xm(t)

∣∣∣∣∣
x(t)=x̂(t)

=





∂ṙi

∂xm

∣∣∣∣
x=x̂

∂v̇i

∂xm

∣∣∣∣
x=x̂

∂θ̇b
i

∂xm

∣∣∣∣∣
x=x̂

∂ṗj
∂xm

∣∣∣∣
x=x̂

...





. (3.73)

The elements of the Jacobian Fx associated with the inertial position kinematics, defined in Eq. (3.44),

are given by

∂ṙi

∂xm

∣∣∣∣
x=x̂

=
∂vi

∂xm

∣∣∣∣
x=x̂

=
∂v̂i

∂x̂m
. (3.74)

Given the definition of the modified navigation state vector x̂m in Eq. (3.72), it follows that the

partial derivative of the inertial velocity v̂i with respect to the modified navigation states x̂m can

be expanded and written in terms of each of the states contained in the modified navigation state
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vector as follows

∂v̂i

∂x̂m
=

[
∂v̂i

∂r̂i
∂v̂i

∂v̂i

∂v̂i

∂θ̂b
i

∂v̂i

∂p̂

]
. (3.75)

Each of these partial derivatives can then be evaluated, thereby resulting in

∂v̂i

∂x̂m
=

[
03×3 I3×3 03×3 03×p

]
. (3.76)

Note that the partial derivative of the inertial velocity v̂i with respect to the modified navigation

states x̂m is an example of a simple or basic partial derivative, i.e., evaluating the partial derivative

yields a matrix of ones and zeros. This is due to the fact that the inertial velocity v̂i is itself a

navigation state and a member of the modified navigation state vector x̂m. Rather than expand and

write out these basic partial derivatives explicitly, they are hereafter expressed only in their general

form, i.e., ∂v̂i

∂x̂m
. Subsequently, it can be shown that the elements of the Jacobian Fx associated with

the inertial velocity dynamics, defined in Eq. (3.45), are given by

∂v̇i

∂xm

∣∣∣∣
x=x̂

=
∂ai

g(r
i)

∂xm

∣∣∣∣∣
x=x̂

+
[
T̂ (q̂bi )

]ᵀ
(
−[âb

ng×]
∂θ̂b

i

∂x̂m
+

∂ab
ng(ã

s,pã,ηs
ã)

∂xm

∣∣∣∣∣
x=x̂

)
, (3.77)

where âb
ng is the compensated accelerometer measurement defined in Eq. (3.61) and

∂ai
g(r

i)

∂xm

∣∣∣∣∣
x=x̂

= − µ
∥∥r̂i

∥∥3
(
I3×3 − 3 ûi

r

[
ûi
r

]ᵀ) ∂r̂i

∂x̂m
, (3.78)

where ûi
r is the unit vector in the direction of the (estimated) inertial position vector r̂i. Moreover,

the partial derivative of ab
ng with respect to xm is given by

∂ab
ng(ã

s,pã,ηs
ã)

∂xm

∣∣∣∣∣
x=x̂

=
(
I3×3 + [ε̂ã×]

)(
I3×3 + Γ(γ̂ã)

)
(
−[ãs!]

∂ŝã
∂x̂m

− ∂b̂sã
∂x̂m

)

−
(
I3×3 + [ε̂ã×]

)
["#]

∂γ̂ã

∂x̂m
− [#×]

∂ε̂ã
∂x̂m

, (3.79)

where ["#] is the nonorthogonal form, defined in Eq. (4.39) on page 64, of the vector " ∈ R3

defined as

" ≡
(
I3×3 − [ŝã!]

)
ãs − b̂sã , (3.80)
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and [#×] is the skew symmetric form, defined in Eq. (3.24) on page 29, of the vector # ∈ R3 defined

as

# ≡
(
I3×3 + Γ(γ̂ã)

){(
I3×3 − [ŝã!]

)
ãs − b̂sã

}
. (3.81)

Furthermore, it can be shown that the elements of the Jacobian Fx associated with the attitude

quaternion kinematics, defined in Eq. (3.50), are given by

∂θ̇b
i

∂xm

∣∣∣∣∣
x=x̂

=
∂ωb

ib(ω̃
s,pω̃,ηs

ω̃)

∂xm

∣∣∣∣
x=x̂

− [ω̂b
ib×]

∂θ̂b
i

∂x̂m
, (3.82)

where the above expression is commonly referred to as the linearized Bortz equation, ω̂b
ib is the

compensated gyro measurement defined in Eq. (3.63), and the partial derivative of ωb
ib with respect

to xm is given by

∂ωb
ib(ω̃

s,pω̃,ηs
ω̃)

∂xm

∣∣∣∣
x=x̂

=
(
I3×3 + [ε̂ω̃×]

)(
I3×3 + Γ(γ̂ω̃)

)
(
−[ω̃s!]

∂ŝω̃
∂x̂m

− ∂b̂sω̃
∂x̂m

)

−
(
I3×3 + [ε̂ω̃×]

)
[$#]

∂γ̂ω̃

∂x̂m
− [%×]

∂ε̂ω̃
∂x̂m

, (3.83)

where [$#] is the nonorthogonal form, defined in Eq. (4.39) on page 64, of the vector $ ∈ R3

defined as

$ ≡
(
I3×3 − [ŝω̃!]

)
ω̃s − b̂sω̃ , (3.84)

and [%×] is the skew symmetric form, defined in Eq. (3.24) on page 29, of the vector % ∈ R3

defined as

% ≡
(
I3×3 + Γ(γ̂ω̃)

){(
I3×3 − [ŝω̃!]

)
ω̃s − b̂sω̃

}
. (3.85)

Lastly, the elements of the Jacobian Fx associated with the jth error parameter dynamics, defined

in Eq. (3.31), are given by
∂ṗj
∂xm

∣∣∣∣
x=x̂

= − 1

τp̂j

∂p̂j
∂x̂m

. (3.86)

From linear system theory [7], it follows that the solution to the linear differential equation

specified in Eq. (3.69) is given by

δê(t) = Φ̂(t, t0) δê(t0)−
ˆ t

t0

Φ̂(t, τ)Bη(τ) dτ +

ˆ t

t0

Φ̂(t, τ)Gw(τ) dτ , (3.87)
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where the filter navigation state error transition matrix Φ̂(t, t0) ∈ Rm×m is the unique solution to

the matrix differential equation

˙̂Φ(t, t0) = Fx
(
x̂(t), t

)
Φ̂(t, t0) , (3.88)

with the initial condition Φ̂(t0, t0) = Im×m. Then from the definition given in Eq. (3.68), it can

be shown that the discrete form of the Ricatti equation or filter navigation state error covariance

propagation equation is given by

P̂(t) = Φ̂(t, t0) P̂(t0)
[
Φ̂(t, t0)

]ᵀ
+ Q̂η(t) + Q̂w(t) , (3.89)

where Q̂η(t) and Q̂w(t) are the integrals defined as

Q̂η(t) =

ˆ t

t0

Φ̂(t, τ)B Ŝη(τ)
[
B
]ᵀ[

Φ̂(t, τ)
]ᵀ
dτ , (3.90)

Q̂w(t) =

ˆ t

t0

Φ̂(t, τ)G Ŝw(τ)
[
G
]ᵀ[

Φ̂(t, τ)
]ᵀ
dτ , (3.91)

and Ŝη and Ŝw respectively represent the strength of the continuous inertial measurement noise η(t)

and the Gaussian white noise w(t) associated with the error parameter states p̂(t). Rather than

numerically integrating Φ̂(t, t0), Q̂η(t), and Q̂w(t), it is assumed that the simulation time step

dt = t− t0 is ‘small’ enough such that the following approximations hold

Φ̂(t, t0) " Im×m + Fx
(
x̂(t), t

)
dt+

[
Fx

(
x̂(t), t

)
dt
]2

2!
+ · · ·+

[
Fx

(
x̂(t), t

)
dt
]n

n!
, (3.92)

Q̂η(t) " Φ̂(t, t)B Ŝη(t)
[
B
]ᵀ[

Φ̂(t, t)
]ᵀ
dt = B Ŝη(t)

[
B
]ᵀ

dt , (3.93)

Q̂w(t) " Φ̂(t, t)G Ŝw(t)
[
G
]ᵀ[

Φ̂(t, t)
]ᵀ
dt = G Ŝw(t)

[
G
]ᵀ

dt . (3.94)

Hence, for this research, these approximations are used in conjunction with the discrete Ricatti

equation, defined in Eq. (3.89), to propagate the filter navigation state error covariance P̂ .

3.2.2 Ascent Guidance and Steering

In general, guidance for powered ascent consists of both open-loop and closed-loop algo-

rithms in order to achieve mission requirements. The open-loop guidance is employed during the
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early phases of powered ascent3 (e.g., vertical rise, pitch over, gravity turn) and consists of prede-

termined body attitude and attitude rate commands to steer the vehicle along a designated ascent

profile designed to satisfy in-flight constraints (e.g., dynamic pressure, angle of attack, sideslip an-

gle). The closed-loop guidance operates during the last phase of powered ascent4 and utilizes the

current navigation state solution along with a model of the system dynamics to compute the fuel-

optimal thrust pointing commands needed to satisfy terminal or engine cut-off constraints (e.g.,

altitude, velocity, flight path angle, orbital plane).

Open-Loop Guidance

For the vertical rise segment, the launch vehicle attitude is held constant with respect to

the rotating planet. Thus, the commanded attitude rate or angular velocity vector ω̂i
ib,com is simply

equal to the angular velocity of the planet ωi
ip with respect to the inertial frame,

ω̂i
ib,com = ωi

ip . (3.95)

The commanded inertial-to-body attitude quaternion q̂b̂i,com can be expressed in terms of transfor-

mation matrices as

T̂ (q̂b̂i,com) = T̄ b
g (t0)T

g
p T p

i , (3.96)

where T̄ b
g (t0) is the nominal planetographic-to-body transformation matrix at time t0, T

g
p is the

planet-fixed-to-planetographic transformation matrix, and T p
i is the inertial-to-planet-fixed trans-

formation matrix. During vertical rise, the transformation matrices T̄ b
g and T g

p are time invariant,

where as T p
i is time varying due to the rotation of the planet. See Appendix A for definitions of

these frames and coordinate transformation matrices.

For the pitch-over maneuver segment, a quaternion-based eigenaxis slew command propa-

gator was developed and used to eliminate the large unrealistic torque requirements observed with

incremental step-input commands, and to improve the angular response of the vehicle by gradu-

ally reorienting the vehicle over a time period that meets the capabilities of the actuators. The

command propagator operates under the premise that any attitude transformation can be achieved

by a single axis rotation (SAR), i.e., a single rotation about a special vector called an eigenvector

3In the literature, this is often referred to as the first stage, however, not necessarily in reference to the stages or
segments of a launch vehicle.

4This is commonly referred to in the literature as the second stage.
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or eigenaxis ê. Given the maximum angular acceleration αmax and velocity ωmax capabilities of

the actuators, the command propagator generates the necessary angular position θ̂ and velocity

ω̂ values that produce what is commonly known as a trapezoidal velocity profile. In other words,

the vehicle accelerates until it reaches the maximum allowable angular velocity. Once the vehicle

reaches this maximum rate, it continues to rotate at this angular speed until it is time to begin

deceleration. At this time the vehicle decelerates until the desired attitude and angular velocity

are achieved.

The commanded angular velocity vector ω̂i
ib,com can be written in terms of the commanded

angular velocity magnitude ω̂ and the eigenaxis êi expressed in inertial coordinates,

ω̂i
ib,com = ω̂ êi . (3.97)

The commanded inertial-to-body attitude quaternion q̂b̂i,com can be written in terms of the com-

manded angular position θ̂, the eigenaxis êb expressed in body coordinates, and the current nominal

inertial-to-body quaternion q̄bi ,

q̂b̂i,com = q̂b̂b ⊗ q̄bi , (3.98)

where

q̂b̂b =




−êb sin(θ̂/2)

cos(θ̂/2)



 . (3.99)

Note that the negative sign in the previous expression is not a typographical error, but rather the

result of the quaternion convention chosen for this research.

Closed-Loop Guidance

The literature is replete with closed-loop guidance algorithms that utilize various methods

or approaches to compute the fuel optimal pointing commands [31–33, 35, 36, 69] necessary to steer

the launch vehicle into the desired orbit. Very few of these algorithms, however, are ever tested or

flown on an actual launch vehicle. The closed-loop vacuum guidance algorithm currently flown on

the Space Shuttle [70], proposed for future lunar ascent missions [48], and hence selected for this

research is known as powered explicit guidance (PEG).
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PEG, originally called Linear Tangent Guidance (LTG), was developed by Roland F. Jag-

gers, circa 1970, while working for Boeing in support of the new Space Shuttle program. The

innovative vector-based LTG theory was a product of Jagger’s intimate knowledge of the Saturn

Iterative Guidance Mode (IGM) and extensive experience developing optimal trajectories at NASA

Marshall Space Flight Center. After LTG was selected for Space Shuttle ascent to orbit, around late

1972, it was refined and generalized by a team comprised of NASA Johnson Space Center engineers

and supporting contractor personnel to handle all Shuttle exoatmospheric maneuvers and require-

ments, including nominal ascent, ascent aborts, and deorbit. In June of 1974 LTG was renamed

PEG. PEG was later chosen for Orion orbit insertion, deorbit, and rendezvous burn guidance, and

saw use in trade studies for Altair lunar landing guidance [71]. Only a brief discussion of PEG

is given here. A general overview of the Space Shuttle implementation of PEG can be found in

McHenry et al. [70], whereas the original theoretical formulation of PEG is given in Jaggers [72].

PEG is the explicit solution to the two point boundary-value problem of exoatmospheric

powered flight guidance and trajectory optimization for launch vehicles [72]. It is “explicit” in the

sense that the formulas for the steering commands are derived as direct solutions to the equations

of motion, and expressed in terms of and valid for any values of the current (initial) and desired

(final) boundary conditions [73]. The current navigation state solution for the inertial position and

velocity vectors provide the initial boundary conditions and anywhere from one to six terminal

or cut-off constraints provide the final boundary conditions.5 For ascent, five cut-off constraints

are necessary [72]; they are (planetocentric) altitude, inertial velocity magnitude, (inertial) flight

path angle, inclination, and right ascension of the descending node6 [70], all of which are mission

dependent and determined a priori.

PEG is formulated under four important assumptions: (1) the aerodynamic forces acting

on the vehicle are negligible, (2) the engine exhaust velocity is constant, (3) either the thrust

(mass flow rate) or acceleration is constant,7 and (4) the target conditions are independent of

time and functions only of the estimated (navigation) inertial position and velocity states, r̂i and

v̂i, respectively [72]. Moreover, PEG uses a vector form of the linear tangent steering law to

generate real time values of the unit inertial thrust vector, ui
f, and the rate of change of the said

5PEG is flexible in the sense that it is capable of handling many different types of maneuvers along with a wide
variety of cut-off constraints. For example, in order to meet six terminal conditions, engine throttling is required.[70]

6In this research, the ascending node, which differs from the descending node by a factor of π or 180 deg, will be
used instead.

7Constant acceleration requires engine throttling.
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thrust vector that steer the vehicle to the desired target conditions while minimizing propellant

expenditures8 [70].

Classical optimization theory, as described in Lawden [74], states that if gravity is assumed

to be constant9 and the downrange component of the desired or target position is unconstrained,

then the optimal inertial thrust vector is a linear function of time as given by [70, 72]

λi
f = ui

λ + λ̇i(t− tλ) , (3.100)

where λi
f points in the direction of the the optimal thrust, ui

λ is a unit reference vector in the

direction of the velocity-to-be-gained, λ̇i is a vector that represents the rate of change of the

optimal thrust vector, and tλ is an arbitrary reference time chosen so that the total velocity change

due to thrust is along the velocity-to-be-gained direction, ui
λ. Since the downrange component of

the terminal position is generally unspecified, this leads to the transversality condition that λ̇i is

always normal to ui
λ,

[ui
λ]

ᵀ λ̇i = 0 . (3.101)

Lawden [74] showed that in a constant gravity field the fuel optimal trajectory is achieved when

the tangent of the angle between λi
f and ui

λ varies linearly with time, as depicted in Figure 3.8a.

The vector λ̇i tgo denotes the total change in thrust direction over the maneuver time tgo and θlt

is the angle between λi
f and ui

λ. From this vector diagram and the transversality condition given

in Eq. (3.101), it can be shown that the linear tangent steering law can be written as [72]

tan θlt = λ̇ (t− tλ) , (3.102)

where λ̇ =
∥∥λ̇i

∥∥. Given that ui
λ is a unit vector and normal to λ̇i, it follows that the unit inertial

thrust vector ui
f can be written as

ui
f =

λi
f∥∥λi
f

∥∥ =
ui
λ + λ̇i (t− tλ)√
1 + λ̇2 (t− tλ)2

. (3.103)

This expression for the unit inertial thrust vector is the key to the simplicity and accuracy of PEG.

8Minimizing propellant expenditures is also equivalent to minimizing burn time.
9A constant gravity is equivalent to and commonly referred to as a flat-earth model.



50

In addition to computing the steering parameters ui
λ, λ̇, and tλ, PEG also calculates the

remaining burn time tgo, i.e., the time-to-go until the terminal targets are achieved and MECO

should occur. As the remaining burn time approaches zero, however, small perturbations or vari-

ations in the flight path result in large changes in the guidance commands. In other words, PEG

becomes rapidly unstable as tgo goes to zero [72]. To avoid this, when the time-to-go reaches a

certain predefined value, PEG terminates and guidance modes to ‘fine count’, where the last com-

manded unit inertial thrust vector ui
f is held constant, tgo is decremented until it reaches zero and

the engine shutdown command is issued.

The guidance/control steering interface, hereafter referred to simply as steering, operates

in conjunction with PEG and refers to the process of converting the steering parameters λν , λ̇,

and tλ to body attitude and attitude rate commands, which are used by the attitude control

system to generate the actuator commands. This process can be described as follows: Given the

steering parameters ui
λ, λ̇, and tλ, the commanded unit inertial thrust vector ui

f is computed

using Eq. (3.103). Next, the commanded inertial-to-desired-body attitude quaternion q̂b̂i,com is

computed by first forming the desired-body-to-inertial transformation matrix T i
b̂
then converting

it to a quaternion.10

The desired-body-to-inertial transformation matrix T i
b̂
can be formed by defining three

orthogonal unit vectors (as illustrated in Figure 3.8b) that represent the body x, y, z axes, each

expressed in inertial coordinates, as given by

T i
b̂
=

[
ui
x ui

y ui
z

]
. (3.104)

The unit inertial thrust vector ui
f is defined to point in the same direction as the body x axis,

ui
x = ui

f . (3.105)

By convention, the body y axis is defined to point in the direction normal to the plane formed by

the unit inertial thrust vector ui
f and the (estimated) inertial position vector r̂i,

ui
y =

ui
f × r̂i∥∥ui
f × r̂i

∥∥ . (3.106)

10The process or method of converting a DCM to a quaternion is not discussed here, but can be found in texts by
Sidi [75, pp. 318-327], Markley [76], or Riegsecker [77].
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(a) (b)

Figure 3.8: (a) Vector diagram of the linear tangent steering law. (b) The orthogonal unit vectors
of the body r, p, y axes, expressed in inertial coordinates, that are used to form the inertial-to-
body-desired DCM.

The body z axis completes the right-handed triad,

ui
z = ui

x × ui
y . (3.107)

Finally, the commanded angular velocity vector, expressed in inertial coordinates, is computed

using the following expression [70]

ω̂i
ib,com = ui

λ × λ̇i . (3.108)

3.2.3 Attitude Control

Attitude control, as it pertains to launch vehicles, is the process of computing the actuator

commands necessary to perform rotational maneuvers in the presence of random disturbances

and attitude uncertainties, while satisfying constraints associated with the mission and vehicle.

Although there exists a wide variety of control methods or techniques available in the literature,

ranging from the very complex to the ultra simple, classical control techniques for space vehicles,

as outlined in the texts of Wie [78] and Sidi [75], are sufficient for the needs of this study. This

is primarily due to the fact that the focus of this research is on guidance and navigation system
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analysis and design and not on control system design and analysis. Consequently, only the closed-

loop proportional-derivative (PD) feedback controller is considered for this research.

For this research, it is assumed that the main engine of the launch vehicle is not throttleable

nor is it gimbaled. Consequently, the translational motion is controlled by adjusting the direction of

the inertial thrust vector over time, which is accomplished through control of the rotational motion

or attitude of the launch vehicle. A quaternion-based control law is chosen for the attitude controller

because the attitude of the launch vehicle and associated kinematics are already expressed in terms

of the quaternion, and the quaternion control law is better suited for large attitude maneuvers

and more efficient than the simpler Euler angles control law in minimizing the length of the total

angular path followed by the vehicle during a particular maneuver [75, §7.2.5].

Quaternion Attitude Control Law

The attitude controller uses the current estimated attitude and angular velocity from nav-

igation and the desired attitude and angular velocity commands from guidance to compute the

attitude and angular velocity error vectors. The attitude error quaternion that represents the rota-

tion from the current attitude to the desired attitude is defined as the product of the commanded

attitude quaternion q̂b̂i,com and the current estimate of the body-to-inertial attitude quaternion q̂ib,

δq̂b̂b = q̂b̂i,com ⊗ [q̂bi ]
−1 . (3.109)

The attitude error quaternion can also be expressed in terms of the unit vector along the single

axis of rotation ub and the rotation angle θ about the axis of rotation,

δq̂b̂b =




−ub sin(θ/2)

cos(θ/2)



 . (3.110)

From this latter expression, the attitude error vector θ̂b
err, also referred to as the Euler rotation

vector [77], is given by

θ̂b
err = θ ub . (3.111)

The angular velocity error vector is defined as the difference between the desired angular velocity

vector ω̂i
ib,com and the compensated gyro measurement ω̂b

ib,
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ω̂b
err = T̂ (q̂bi ) ω̂

i
ib,com − ω̂b

ib . (3.112)

Note that this expression assumes that a gyro measurement is available such that the angular

velocity state need not be estimated. As a result, the compensated gyro measurement is used in

place of the estimated angular velocity state.

The required moment or torque to achieve the guidance commands, expressed in body

coordinates, is then defined as

m̂b
err = K̂b

θ θ̂
b
err + K̂b

ω ω̂b
err , (3.113)

where K̂b
θ and K̂b

ω are the proportional and derivative control gain matrices, respectively. It can

be shown that for a given natural frequency ωacs, desired damping ratio ζacs, and mass MOI tensor

J b
b , the proportional and derivative control gains are given by [79, Section 5.2.3]

K̂b
θ = ω2

acs J
b
b , (3.114)

K̂b
ω = 2 ζacs ωacs J

b
b . (3.115)

For this research, it is assumed that the time-varying mass MOI tensor J b
b is computed prior

to launch and stored onboard. Consequently, the time-varying control gains K̂b
θ and K̂b

ω are

independent of the estimated states of the system.

ACS Error Compensation

The actual moment applied by the ACS is generally corrupted by actuator errors modeled

here as scale factor uncertainties, orthogonality misalignments, random biases, and noise. If these

scale factor, misalignment, and bias errors are observable and estimated in the navigation algorithm

as error parameter states, then the effects of these errors can be mitigated to some extent through

error compensation. This is accomplished by modifying the commanded moment issued to the

ACS m̂b
err, defined in Equation (3.113), in the following manner,

m̂b
com(m̂

b
err, p̂

b
acs) =

(
I3×3 − [ŝbacs !]

){(
I3×3 + [ε̂bacs×]

)
m̂b

err(θ̂
b
err, ω̂

b
err)− b̂bacs

}
, (3.116)

where ŝbacs, ε̂bacs, and b̂bacs are the estimated ACS scale factor, orthogonality, and bias vectors,
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respectively. These estimated ACS error parameters states p̂b
acs = (ŝbacs, ε̂

b
acs, b̂

b
acs) are modeled as

first-order Gauss-Markov processes, as defined by Eq. (3.59).
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Chapter 4

Linearized Models and Algorithms

“The moment a person forms a theory, his imagination

sees in every object only the traits which favor that theory.”

– Thomas Jefferson

In the preceding chapter, the nonlinear truth models and GN&C algorithm models associ-

ated with the Monte Carlo simulation were defined. The purpose of this chapter is to address the

next step in the development process, which is to define the nominal reference trajectory (NRT)

and linearize the Monte Carlo nonlinear models about the NRT. Hence the chapter is organized as

follows: First, the NRT is defined, followed by a brief discussion of the general method for lineariz-

ing a nonlinear system of equations about the NRT. With this foundation in hand, the nonlinear

truth models and GN&C algorithm models are expressed in their general forms, linearized about

the NRT, and the associated partial derivatives are presented.

Before proceeding, it is important to note that the presentation of the linearized models and

algorithms herein closely follows that of the previous chapter. However, out of necessity, there are

a number of equations referenced that have not yet appeared in the material. Although referencing

in this manner is somewhat unorthodox, this approach facilitates easy finding of those expressions

that appear in the equation at hand but who are not defined until later in the chapter.

4.1 Nominal Reference Trajectory

The NRT is the path that the launch vehicle would follow in the absence of sensor measure-

ment errors, actuator execution variabilities, and random environment disturbances. It is generated

with a single, error-less, noise-less run of the Monte Carlo simulation, and consists of the nomi-

nal states x̄, nominal actuator commands ū, nominal guidance commands ξ̄, and nominal sensor

measurements ȳ and z̄k, where the bar ¯ above the variable denotes the nominal value.
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4.2 Linearization of Nonlinear Systems of Equations

A nonlinear system of equations can be linearized using a Taylor-series expansion about

some operating point, such as the NRT introduced above. The linearization process is best il-

lustrated with the following example. The true state dynamics defined in Eqs. (3.1)-(3.7) can be

written in the form

ẋ(t) = f
(
x(t), û(t),w(t), t

)
, (4.1)

where f : Rn′ ×Ra×Rs → Rn′
is a nonlinear vector function of the true states x(t) ∈ Rn′

, actuator

commands û(t) ∈ Ra, and state process noise w(t) ∈ Rs. Let

δx(t) ≡ x(t)− x̄(t) and δû(t) ≡ û(t)− ū(t) , (4.2)

where δx(t) and δû(t) represent deviations from the nominal or dispersions; more specifically, δx(t)

represents the true state dispersions. It is important to note that an expression for the state process

noise has been omitted because the nominal value of the state process noise is defined to be zero

(i.e., w̄(t) = 0) such that the corresponding deviation from the nominal δw(t) is simply the state

process noise w(t),

δw(t) ≡ w(t) . (4.3)

Thus, the nominal state dynamics equation is given by

˙̄x(t) = f
(
x̄(t), ū(t), t

)
. (4.4)

Given the expressions in Eq. (4.2), the nonlinear true state dynamics equation can now be

written as

˙̄x(t) + δẋ(t) = f
(
x̄(t) + δx(t), ū(t) + δû(t),w(t), t

)
. (4.5)

Next, f is expanded in a Taylor series about the NRT x̄(t) and ū(t). Then, under the assumption

that the magnitude of the deviations from the nominal δx(t) and δû(t) are small relative to the

magnitude of the nominal values, only the first-order terms of the series are retained, resulting in
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the following truncated Taylor series expansion of f ,

f
(
x̄(t) + δx(t), ū(t) + δû(t),w(t), t

)
" f

(
x̄(t), ū(t), t

)
+

∂f
(
x(t), û(t),w(t), t

)

∂x(t)

∣∣∣∣∣
x̄,ū,w̄

(x− x̄)

+
∂f

(
x(t), û(t),w(t), t

)

∂û(t)

∣∣∣∣∣
x̄,ū,w̄

(û− ū)

+
∂f

(
x(t), û(t),w(t), t

)

∂w(t)

∣∣∣∣∣
x̄,ū,w̄

(w − w̄) ,

where ∂f(x,û,w,t)
∂x

∣∣∣
x̄,ū,w̄

denotes the Jacobian of f with respect to the true states x evaluated at

the NRT x̄ and ū. As a result, Eq. (4.5) can now be written as

˙̄x(t) + δẋ(t) = f
(
x̄(t), ū(t), t

)
+

∂f
(
x(t), û(t),w(t), t

)

∂x(t)

∣∣∣∣∣
x̄,ū,w̄

δx(t)

+
∂f

(
x(t), û(t),w(t), t

)

∂û(t)

∣∣∣∣∣
x̄,ū,w̄

δû(t) +
∂f

(
x(t), û(t),w(t), t

)

∂w(t)

∣∣∣∣∣
x̄,ū,w̄

w(t) .

Using the expression for the nominal state dynamics defined in Eq. (4.4) to cancel terms on both

sides of the previous expression, it follows that the linear time-varying true-state dynamics equation

is given by

δẋ(t) = Fx(t) δx(t) + Fû(t) δû(t) + Fw(t)w(t) , (4.6)

where the Jacobians Fx(t) ∈ Rn×n, Fû(t) ∈ Rn×u, and Fw(t) ∈ Rn×s are respectively defined as

Fx(t) =
∂f

(
x(t), û(t),w(t), t

)

∂xm(t)

∣∣∣∣∣
x̄,ū,w̄

, Fû(t) =
∂f

(
x(t), û(t),w(t), t

)

∂û(t)

∣∣∣∣∣
x̄,ū,w̄

, (4.7)

and

Fw(t) =
∂f

(
x(t), û(t),w(t), t

)

∂w(t)

∣∣∣∣∣
x̄,ū,w̄

. (4.8)

Recall that the inertial-to-body attitude quaternion qbi ∈ R4 is the standard representation of the

launch vehicle attitude. However, due to state covariance matrix singularity issues associated with

the quaternion [54], a modified state vector approach is adopted and utilized to form the state

covariance propagation and update equations as well as the state vector update equations. In this

approach, the inertial-to-body attitude quaternion qbi ∈ R4 in the true state vector x ∈ Rn′
, given
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by

x =
(
ri, vi, qbi , ω

b
ib, mb, p

)
, (4.9)

is replaced with the Euler rotation vector θb
i ∈ R3, which represents the attitude of the body frame b

with respect to the inertial frame i expressed in body coordinates, resulting in a modified true state

vector xm ∈ Rn (where n = n′ − 1), given by

xm =
(
ri, vi, θb

i , ω
b
ib, mb, p) . (4.10)

Moreover, the quaternion kinematics equation is replaced with the linearized Bortz equation [55].

As such, the linearized true state dynamics equation, given in Eq. (4.6), is based upon the modified

true state vector xm, i.e., δx(t) ∈ Rn, and the Jacobians Fx, Fû, and Fw have been defined

accordingly.

4.3 Truth Models

The truth models defined in Chapter 3 are comprised of the launch vehicle dynamics, envi-

ronment acceleration models, actuator force and torque models, and inertial measurement models.

Since the first three are directly related to the true state dynamics, the following three sections

define the elements of the Jacobians Fx, Fû, and Fw associated with the launch vehicle dynamics,

environment models, and actuator models. In the fourth section, the inertial measurement models

are linearized about the NRT.

4.3.1 Launch Vehicle Dynamics

The linearized launch vehicle dynamics include the inertial position ri, inertial velocity vi,

body attitude θb
i , body angular velocity ωb

ib, and wet mass mb.

Inertial Position

The elements of the Jacobians Fx, Fû, and Fw associated with the inertial position kine-

matics, defined in Eq. (3.1) on page 17, are respectively given by

∂ṙi

∂xm

∣∣∣∣
x̄,ū,w̄

=
∂vi

∂xm
,

∂ṙi

∂û

∣∣∣∣
x̄,ū,w̄

= 03×a , and
∂ṙi

∂w

∣∣∣∣
x̄,ū,w̄

= 03×s . (4.11)
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Given the definition of the modified true state vector xm in Eq. (4.10), it follows that the partial

derivative of the inertial velocity vi with respect to the modified true states xm can be expanded

and written in terms of each of the states contained in the modified true state vector as follows

∂vi

∂xm
=

[
∂vi

∂ri
∂vi

∂vi

∂vi

∂θb
i

∂vi

∂ωb
ib

∂vi

∂mb

∂vi

∂p

]
. (4.12)

Each of these partial derivatives can then be evaluated, thereby resulting in

∂vi

∂xm
=

[
03×3 I3×3 03×3 03×3 03×1 03×p

]
. (4.13)

Note that the partial derivative of the inertial velocity vi with respect to the modified true states xm

is an example of a simple or basic partial derivative, i.e., evaluating the partial derivative yields

a matrix of ones and zeros. This is because the inertial velocity vi itself is a true state and a

member of the modified true state vector xm. Rather than expand and write out these partial

derivatives explicitly, they are hereafter expressed only in their general form, i.e., ∂vi

∂xm
. Moreover,

to help distinguish them from the other more complex partial derivatives, the evaluation operator

(denoted by the vertical bar | on the right hand side of the partial derivative) is subsequently

implied and therefore left off.

Inertial Velocity

It can be shown that the elements of the Jacobians Fx, Fû, and Fw associated with the

inertial velocity dynamics, defined in Eq. (3.2) on page 17, are respectively given by

∂v̇i

∂xm

∣∣∣∣
x̄,ū,w̄

=
∂ai

g

∂xm

∣∣∣∣∣
x̄,ū,w̄

+
[
T̄ (q̄bi )

]ᵀ


−
[
āb
ng×

] ∂θb
i

∂xm
+

∂ab
ng

∂xm

∣∣∣∣∣
x̄,ū,w̄



 , (4.14)

∂v̇i

∂û

∣∣∣∣
x̄,ū,w̄

= 03×a , and
∂v̇i

∂w

∣∣∣∣
x̄,ū,w̄

=
[
T̄ (q̄bi )

]ᵀ ∂ab
ng

∂w

∣∣∣∣∣
x̄,ū,w̄

, (4.15)

where it can be shown that the nominal nongravitational acceleration āb
ng, expressed in body

coordinates, is given by

āb
ng =

T̄vac

m̄b
bb
1 , (4.16)

and the partial derivatives of the gravitational and nongravitational acceleration ai
g, ab

ng with
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respect to the modified true states xm and state process noise w are specified respectively in

Eqs. (4.21), (4.22), and (4.23).

Body Attitude

It can be shown that the elements of the Jacobians Fx, Fû, and Fw associated with the

attitude quaternion kinematics, defined in Eq. (3.3) on page 18, are respectively given by

∂θ̇b
i

∂xm

∣∣∣∣∣
x̄,ū,w̄

=
∂ωb

ib

∂xm
−

[
ω̄b
ib×

] ∂θb
i

∂xm
,

∂θ̇b
i

∂û

∣∣∣∣∣
x̄,ū,w̄

= 03×a , and
∂θ̇b

i

∂w

∣∣∣∣∣
x̄,ū,w̄

= 03×s , (4.17)

where the first expression above is the linearized Bortz equation.

Body Angular Velocity

It can be shown that the elements of the Jacobians Fx, Fû, and Fw associated with the

body angular velocity dynamics, defined in Eq. (3.4) on page 18, are respectively given by

∂ω̇b
ib

∂xm

∣∣∣∣
x̄,ū,w̄

=
[
J̄ b
b

]−1

{
∂mb

acs

∂xm

∣∣∣∣
x̄,ū,w̄

+
([

J̄ b
b ω̄

b
ib×

]
−

[
ω̄b
ib×

]
J̄ b
b

)∂ωb
ib

∂xm

}
+

∂αb
d

∂xm

∣∣∣∣
x̄,ū,w̄

, (4.18)

∂ω̇b
ib

∂û

∣∣∣∣
x̄,ū,w̄

=
[
J̄ b
b

]−1 ∂mb
acs

∂û

∣∣∣∣
x̄,ū,w̄

, and
∂ω̇b

ib

∂w

∣∣∣∣
x̄,ū,w̄

=
[
J̄ b
b

]−1 ∂mb
acs

∂w

∣∣∣∣
x̄,ū,w̄

, (4.19)

where the partial derivatives of the applied ACS torque mb
acs with respect to the modified true

states xm, actuator commands û, and state process noise w are respectively defined in Eqs. (4.29)

and (4.30), and the partial derivative of the sinusoidal disturbance angular acceleration αb
d with

respect to the modified true states xm is given in Eq. (4.26).

Wet Mass

The elements of the Jacobians Fx, Fû, and Fw associated with the wet mass dynamics,

defined in Eq. (3.7) on page 19, are respectively given by
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∂ṁb

∂xm

∣∣∣∣
x̄,ū,w̄

= 01×n ,
∂ṁb

∂û

∣∣∣∣
x̄,ū,w̄

= 01×a , and
∂ṁb

∂w

∣∣∣∣
x̄,ū,w̄

= 01×s . (4.20)

4.3.2 Environment Models

The environment models include the gravitational acceleration ai
g, the nongravitational

acceleration ab
ng, and the rotational sinusoidal disturbance αb

d.

Gravitational Acceleration

The partial derivative of the gravitational acceleration ai
g, defined in Eq. (3.8) on page 19,

with respect to the true states x is given by

∂ai
g

∂xm

∣∣∣∣∣
x̄,ū,w̄

= − µ
∥∥r̄i

∥∥3
(
I3×3 − 3 ūi

r

[
ūi
r

]ᵀ) ∂ri

∂xm
, (4.21)

where ūi
r is the unit vector in the direction of the nominal inertial position r̄i.

Nongravitational Acceleration

The partial derivatives of the nongravitational acceleration ab
ng, defined in Eq. (3.9) on

page 20, with respect to the modified true states xm and state process noise w are respectively

given by

∂ab
ng

∂xm

∣∣∣∣∣
x̄,ū,w̄

=
1

m̄b

∂f b
thr

∂xm

∣∣∣∣
x̄,ū,w̄

−
f̄ b
thr

m̄2
b

∂mb

∂xm
+

∂ab
d

∂xm

∣∣∣∣
x̄,ū,w̄

(4.22)

and
∂ab

ng

∂w

∣∣∣∣∣
x̄,ū,w̄

=
1

m̄b

∂f b
thr

∂w

∣∣∣∣
x̄,ū,w̄

, (4.23)

where it can be shown the nominal thrust force f̄ b
thr, expressed in body coordinates, is given by

f̄ b
thr = T̄vacb

b
1 , (4.24)

the partial derivatives of the thrust force f b
thr with respect to the modified true states xm and state

process noise w are respectively given in Eqs. (4.27) and (4.28), and the partial derivative of the

sinusoidal disturbance acceleration ab
od with respect to the modified true states xm is specified in
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Eq. (4.25).

Sinusoidal Disturbance

The partial derivative of the sinusoidal disturbance acceleration ab
d, defined in Eq. (3.10)

on page 20, with respect to the modified true states xm is given by

∂ab
d

∂xm

∣∣∣∣
x̄,ū,w̄

= sin(ωdt)
∂c1
∂xm

+ cos(ωdt)
∂c2
∂xm

, (4.25)

and the partial derivative of the sinusoidal disturbance angular accelerationαb
d, defined in Eq. (3.11)

on page 20, with respect to the modified true states xm is given by

∂αb
d

∂xm

∣∣∣∣
x̄,ū,w̄

= sin(ωdt)
∂d1

∂xm
+ cos(ωdt)

∂d2

∂xm
. (4.26)

4.3.3 Actuator Models

The actuator models include the thrust force f b
thr and ACS torque mb

acs.

Thrust Force

The partial derivatives of the applied thrust force f b
thr, defined in Eq. (3.19) on page 23,

with respect to the modified true states xm and state process noise w are respectively given by

∂f b
thr

∂xm

∣∣∣∣
x̄,ū,w̄

=
[
T̄vacb

b
1!

]∂sthr
∂xm

+
[
T̄vacb

b
1×

]∂εthr
∂xm

+
∂bthr
∂xm

(4.27)

and

∂f b
thr

∂w

∣∣∣∣
x̄,ū,w̄

=
∂wthr

∂w
. (4.28)

ACS Torque

The partial derivatives of the applied ACS torque mb
acs, defined in Eq. (3.22) on page 25,

with respect to the modified true states xm, actuator commands û, and state process noise w are

respectively given by

∂mb
acs

∂xm

∣∣∣∣
x̄,ū,w̄

=
[
m̄b

com!
]∂sacs
∂xm

+
[
m̄b

com×
]∂εacs
∂xm

+
∂bacs
∂xm

(4.29)



63

and

∂mb
acs

∂û

∣∣∣∣
x̄,ū,w̄

=
∂m̂b

com

∂û

∣∣∣∣
x̄,ū,w̄

, and
∂mb

acs

∂w

∣∣∣∣
x̄,ū,w̄

=
∂wacs

∂w
, (4.30)

where m̄b
com is the nominal commanded ACS torque.

4.3.4 Inertial Measurements

The continuous inertial measurements ỹ = (ãb
ng, ω̃

b
ib) defined in Eqs. (3.29) and (3.30) can

be written in the form

ỹ(t) = c
(
x(t),w(t),η(t), t

)
, (4.31)

where c : Rn′ × Rs × Rl → Rc is a nonlinear vector function of the true states x(t) ∈ Rn′
, state

process noise w(t) ∈ Rs, and continuous measurement noise η(t) ∈ Rl. Next, let

δỹ(t) ≡ ỹ(t)− ȳ(t) , (4.32)

where δỹ(t) represents the deviation from the nominal. Moreover, expressions for the state pro-

cess noise and continuous measurement noise have been omitted because the nominal values are

defined to be zero (i.e., w̄(t) = 0 and η̄(t) = 0) such that the corresponding deviations from the

nominal δw(t) and δη(t) are respectively the state process noise w(t) and continuous measurement

noise η(t). As such, it follows that the nominal continuous inertial measurements ȳ(t) is given by

ȳ(t) = c
(
x̄(t), t

)
. (4.33)

Then, following the linearization process outlined in § 4.2, the linear time-varying inertial measure-

ments equation is given by

δỹ(t) = Cx(t) δx(t) +Cw(t)w(t) +Cη(t)η(t) , (4.34)

where the Jacobians Cx(t) ∈ Rc×n, Cw(t) ∈ Rc×s, and Cη(t) ∈ Rc×l are respectively defined as

Cx(t) =
∂c

(
x(t),w(t),η(t), t

)

∂xm(t)

∣∣∣∣∣
x̄,w̄,η̄

, Cw(t) =
∂c

(
x(t),w(t),η(t), t

)

∂w(t)

∣∣∣∣∣
x̄,w̄,η̄

, (4.35)
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and

Cη(t) =
∂c

(
x(t),w(t),η(t), t

)

∂η(t)

∣∣∣∣∣
x̄,w̄,η̄

. (4.36)

Recall that due to state covariance matrix singularity issues associated with the quaternion [54],

a modified state vector approach is adopted and utilized to form the state covariance propagation

and update equations as well as the state vector update equations. As such, the linearized inertial

measurements equation, given in Eq. (4.34), is based upon the modified true state vector xm, i.e.,

δx(t) ∈ Rn, and the Jacobians Cx, Cw, and Cη have been defined accordingly.

Accelerometer Measurement

It can be shown that the elements of the Jacobians Cx, Cw, and Cη associated with the

accelerometer measurement ãb
ng, defined in Eq. (3.29) on page 31, are respectively given by

∂ãb
ng

∂xm

∣∣∣∣∣
x̄,w̄,η̄

=
∂ab

ng

∂xm

∣∣∣∣∣
x̄,w̄,η̄

+
[
āb
ng!

] ∂sã
∂xm

+
[
āb
ng#

] ∂γã

∂xm
+

[
āb
ng×

] ∂εã
∂xm

+
∂bã
∂xm

(4.37)

and
∂ãb

ng

∂w

∣∣∣∣∣
x̄,w̄,η̄

=
∂ab

ng

∂w

∣∣∣∣∣
x̄,w̄,η̄

, and
∂ãb

ng

∂η

∣∣∣∣∣
x̄,w̄,η̄

=
∂ηã

∂η
, (4.38)

where the nominal nongravitational acceleration āb
ng is defined in Eq. (4.16),

[
a#

]
is the nonorthog-

onal form of the three-dimensional vector a = (a1, a2, a3) defined as

[
a#

]
≡





a3 −a2 0 0 0 0

0 0 −a3 a1 0 0

0 0 0 0 a2 −a1




, (4.39)

and the partial derivatives of the nongravitational acceleration ab
ng with respect to the modified

true states xm and state process noise w are specified respectively in Eqs. (4.22) and (4.23).

Gyro Measurement

It can be shown that the elements of the Jacobians Cx, Cw, and Cη associated with the

gyro measurement ω̃b
ib, defined in Eq. (3.30) on page 32, are respectively given by
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∂ω̃b
ib

∂xm

∣∣∣∣
x̄,w̄,η̄

=
∂ωb

ib

∂xm
+
[
ω̄b
ib!

] ∂sω̃
∂xm

+
[
ω̄b
ib#

] ∂γω̃

∂xm
+
[
ω̄b
ib×

] ∂εω̃
∂xm

+
∂bω̃
∂xm

(4.40)

and

∂ω̃b
ib

∂w

∣∣∣∣
x̄,w̄,η̄

= 03×s , and
∂ω̃b

ib

∂η

∣∣∣∣
x̄,w̄,η̄

=
∂ηω̃

∂η
, (4.41)

where ω̄b
ib is the nominal body angular velocity.

4.4 GN&C Algorithm Models

4.4.1 Navigation State Dynamics

The navigation state dynamics defined in Eqs. (3.56)-(3.59) can be written in the form

˙̂x(t) = f̂
(
x̂(t), ỹ(t), t

)
, (4.42)

where f̂ : Rm′×Rc → Rm′
is a nonlinear function of the navigation states x̂(t) ∈ Rm′

and continuous

inertial measurements ỹ(t) ∈ Rc. Next, let

δx̂(t) ≡ x̂(t)− x̄(t) , (4.43)

where x̄(t) denotes the nominal value of the true navigation states and δx̂(t) represents the deviation

from the nominal or navigation state dispersions. Given this expression and Eq. (4.32), it follows

that the nominal navigation state dynamics can be written as

˙̄x(t) = f̂
(
x̄(t), ȳ(t), t

)
. (4.44)

Then, following the linearization process outlined in § 4.2, linear time-varying navigation-state

dynamics equation is given by

δ ˙̂x(t) = F̂x̂(t) δx̂(t) + F̂ỹ(t) δỹ(t) , (4.45)
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where the Jacobians F̂x̂(t) ∈ Rm×m and F̂ỹ(t) ∈ Rm×c are respectively defined as

F̂x̂(t) =
∂f̂

(
x̂(t), ỹ(t), t

)

∂x̂m(t)

∣∣∣∣∣
x̄,ȳ

and F̂ỹ(t) =
∂f̂

(
x̂(t), ỹ(t), t

)

∂ỹ(t)

∣∣∣∣∣
x̄,ȳ

. (4.46)

Recall that due to state covariance matrix singularity issues associated with the quaternion [54], a

modified state vector approach is adopted and utilized to form the state covariance propagation and

update equations as well as the state vector update equations. In this approach, the inertial-to-body

attitude quaternion q̂bi ∈ R4 in the navigation state vector x̂ ∈ Rm′
, given by

x̂ =
(
r̂i, v̂i, q̂bi , p̂

)
, (4.47)

is replaced with the Euler rotation vector θ̂b ∈ R3, which represents the estimated attitude of the

body frame b with respect to the inertial frame i expressed in body coordinates, resulting in a

modified navigation state vector x̂m ∈ Rm (where m = m′ − 1), given by

x̂m =
(
r̂i, v̂i, θ̂b

i , p̂
)
. (4.48)

Moreover, the quaternion kinematics equation is replaced with the linearized Bortz equation [55].

As such, the linearized navigation state dynamics equation, given in Eq. (4.45), is based upon

the modified navigation state vector x̂, i.e., δx̂(t) ∈ Rm, and the Jacobians F̂x̂ and F̂ỹ have been

defined accordingly.

Inertial Position

The elements of the Jacobians F̂x̂ and F̂ỹ associated with the inertial position kinematics,

defined in Eq. (3.56) on page 40, are respectively given by

∂ ˙̂ri

∂x̂m

∣∣∣∣∣
x̄,ȳ

=
∂v̂i

∂x̂
and

∂ ˙̂ri

∂ỹ

∣∣∣∣∣
x̄,ȳ

= 03×c . (4.49)

Inertial Velocity

It can be shown that the elements of the Jacobians F̂x̂ and F̂ỹ associated with the inertial

velocity dynamics, defined in Eq. (3.57) on page 40, are respectively given by
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∂ ˙̂vi

∂x̂m

∣∣∣∣∣
x̄,ȳ

=
∂âi

g

∂x̂m

∣∣∣∣∣
x̄,ȳ

+
[
T̄ (q̄bi )

]ᵀ


−
[
āb
ng×

] ∂θ̂b
i

∂x̂m
+

∂âb
ng

∂x̂m

∣∣∣∣∣
x̄,ȳ



 (4.50)

and

∂ ˙̂vi

∂ỹ

∣∣∣∣∣
x̄,ȳ

=
[
T̄ (q̄bi )

]ᵀ ∂âb
ng

∂ỹ

∣∣∣∣∣
x̄,ȳ

, (4.51)

where the nominal accelerometer measurement āb
ng is equal to the nominal nongravitational accel-

eration defined in Eq. (4.16) on page 59, the partial derivative of the gravitational acceleration âi
g

with respect to the modified navigation states x̂m is given in Eq. (4.54), and the partial deriva-

tives of the compensated accelerometer measurement âb
ng with respect to the modified navigation

states x̂m and the continuous inertial measurements ỹ are respectively specified in Eqs. (4.55) and

(4.56).

Body Attitude

It can be shown that the elements of the Jacobians F̂x̂ and F̂ỹ associated with the attitude

quaternion kinematics, defined in Eq. (3.58) on page 40, are respectively given by

∂ ˙̂θb
i

∂x̂m

∣∣∣∣∣
x̄,ȳ

=
∂ω̂b

ib

∂x̂m

∣∣∣∣
x̄,ȳ

−
[
ω̄b
ib×

] ∂θ̂b
i

∂x̂m
(4.52)

and

∂ ˙̂θb
i

∂ỹ

∣∣∣∣∣
x̄,ȳ

=
∂ω̂b

ib

∂ỹ

∣∣∣∣
x̄,ȳ

, (4.53)

where the first expression above is the linearized Bortz equation, the nominal gyro measurement ω̄b
ib

is equal to the nominal angular velocity and the partial derivatives of the compensated gyro mea-

surement ω̂b
ib with respect to the modified navigation states x̂m and the continuous inertial mea-

surements ỹ are respectively specified in Eqs. (4.57) and (4.58).

Gravitational Acceleration

The partial derivative of the gravitational acceleration âi
g with respect to the navigation

states x̂ is given by
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∂âi
g

∂x̂m

∣∣∣∣∣
x̄,ȳ

= − µ
∥∥r̄i

∥∥3
(
I3×3 − 3 ūi

r̂

[
ūi
r̂

]ᵀ) ∂r̂i

∂x̂m
, (4.54)

where ūi
r̂ is the unit vector in the direction of the nominal inertial position r̄i.

Compensated Accelerometer Measurement

The partial derivatives of the compensated accelerometer measurement âb
ng, defined in

Eq. (3.61) on page 40, with respect to the modified navigation states x̂m and continuous iner-

tial measurements ỹ are respectively given by

∂âb
ng

∂x̂m

∣∣∣∣∣
x̄,ȳ

= −
[
āb
ng!

] ∂ŝã
∂x̂m

−
[
āb
ng#

] ∂γ̂ã

∂x̂m
−
[
āb
ng×

] ∂ε̂ã
∂x̂m

− ∂b̂ã
∂x̂m

(4.55)

and
∂âb

ng

∂ỹ

∣∣∣∣∣
x̄,ȳ

=
∂ãb

ng

∂ỹ
, (4.56)

where it is straightforward to show that the nominal accelerometer measurement āb
ng is equal to

the nominal nongravitational acceleration defined in Eq. (4.16).

Compensated Gyro Measurement

The partial derivatives of the compensated accelerometer measurement ω̂b
ib, defined in

Eq. (3.63) on page 40, with respect to the modified navigation states x̂m and continuous iner-

tial measurements ỹ are respectively given by

∂ω̂b
ib

∂x̂m

∣∣∣∣
x̄,ȳ

= −
[
ω̄b
ib!

] ∂ŝω̃
∂x̂m

−
[
ω̄b
ib#

] ∂γ̂ω̃

∂x̂m
−
[
ω̄b
ib×

] ∂ε̂ω̃
∂x̂m

− ∂b̂ω̃
∂x̂m

(4.57)

and

∂ω̂b
ib

∂ỹ

∣∣∣∣
x̄,ȳ

=
∂ω̃b

ib

∂ỹ
, (4.58)

where it is readily shown that the nominal gyro measurement ω̄b
ib is equal to the nominal angular

velocity.
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4.4.2 Filter Navigation State Error

The inertial navigation filter developed in § 3.2.1 for the Monte Carlo simulation is modified

here for use in the linear covariance simulation. First, a linearized EKF is simply a standard Kalman

filter, such that

E
{
x(t)

}
= x̄(t) , ∀ t . (4.59)

In other words, the conditional mean of x(t) is the nominal value of the true navigation state x̄(t).

Next, the linearized filter navigation state error dynamics equation, defined in Eq. (3.69) on page 41,

is rewritten as

δ ˙̂e(t) = Fx(t) δê(t)− Bη(t) + Gw(t) , (4.60)

where Fx(t) ∈ Rm×m is the Jacobian defined as

Fx(t) ≡
∂f
(
x(t), t

)

xm(t)

∣∣∣∣∣
x(t)=x̄(t)

, (4.61)

and B ∈ Rm×l and G ∈ Rm×p are matrices of ones and zeros that respectively map η and w to

the proper states in xm. The elements of the Jacobian Fx associated with the inertial position

kinematics, defined in Eq. (3.44) on page 37, are given by

∂ṙi

∂xm

∣∣∣∣
x=x̄

=
∂ri

∂xm
. (4.62)

Next, it can be shown that the elements of the Jacobian Fx associated with the inertial velocity

dynamics, defined in Eq. (3.45) on page 37, are given by

∂v̇i

∂xm

∣∣∣∣
x=x̄

=
∂ai

g(r
i)

∂xm

∣∣∣∣∣
x=x̄

+
[
T̄ (q̄bi )

]ᵀ
(
−
[
āb
ng×

] ∂θb
i

∂xm
+

∂ab
ng(ã

s,pã,ηs
ã)

∂xm

∣∣∣∣∣
x=x̄

)
, (4.63)

where the partial derivative of the gravitational acceleration vector ai
g, defined in Eq. (3.46) on

page 37, with respect to xm is given by

∂ai
g(r

i)

∂xm

∣∣∣∣∣
x=x̄

= − µ
∥∥r̄i

∥∥3
(
I3×3 − 3 ūi

r

[
ūi
r

]ᵀ) ∂ri

∂xm
, (4.64)
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where ūi
r is the unit vector in the direction of the nominal inertial position vector r̄i. Moreover, āb

ng

is the nominal value of the compensated nongravitational acceleration vector defined in Eq. (3.47)

on page 37, and the partial derivative of the compensated nongravitational acceleration vector ab
ng

with respect to xm is given by

∂ab
ng(ã

s,pã,ηs
ã)

∂xm

∣∣∣∣∣
x=x̄

= −[¯̃as!]
∂sã
∂xm

− [¯̃as#]
∂γã

∂xm
− [¯̃as×]

∂εã
∂xm

− ∂bsã
∂xm

, (4.65)

where ¯̃as is the nominal accelerometer measurement. Next, it can be shown that the elements of the

Jacobian Fx associated with the attitude quaternion kinematics, defined in Eq. (3.50) on page 38,

are given by

∂θ̇b
i

∂xm

∣∣∣∣∣
x=x̄

=
∂ωb

ib(ω̃
s,pω̃,ηs

ω̃)

∂xm

∣∣∣∣
x=x̄

− [ω̄b
ib×]

∂θb
i

∂xm
, (4.66)

where the above expression is commonly referred to as the linearized Bortz equation, ω̄b
ib is the

nominal value of the compensated gyro measurement defined in Eq. (3.52) on page 38, and the

partial derivative of the compensated gyro measurement ωb
ib with respect to xm is given by

∂ωb
ib(ω̃

s,pω̃,ηs
ω̃)

∂xm

∣∣∣∣
x=x̄

= −[ ¯̃ωs!]
∂sω̃
∂xm

− [ ¯̃ωs#]
∂γω̃

∂xm
− [ ¯̃ωs×]

∂εω̃
∂xm

− ∂bsω̃
∂xm

, (4.67)

where ¯̃ωs is the nominal gyro measurement. Lastly, the elements of the Jacobian Fx associated

with the jth error parameter dynamics, defined in Eq. (3.31) on page 32, are given by

∂ṗj
∂xm

∣∣∣∣
x=x̄

= − 1

τpj

∂pj
∂xm

. (4.68)

4.4.3 Guidance Commands

Let the guidance commands ξ̂ = (q̂b̂i,com, ω̂
i
ib,com) defined in § 3.2.2 be written as

ξ̂(t) = ĥ
(
x̂(t), t

)
, (4.69)

where ĥ : Rm′ → Rg′ is a nonlinear function of the navigation states x̂(t) ∈ Rm′
. Next, let

δξ̂(t) ≡ ξ̂(t)− ξ̄(t) , (4.70)
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where ξ̄(t) denotes the nominal guidance commands and δξ̂(t) represents the deviation from the

nominal. Given this expression and a similar expression for the navigation states in Eq. (4.43), it

follows that the nominal guidance commands ξ̄(t) can be written as

ξ̄(t) = ĥ
(
x̄(t), t

)
. (4.71)

Then, following the linearization process outlined in § 4.2, the linear time-varying guidance com-

mands equation is given by

δξ̂(t) = Ĥx̂(t) δx̂(t) , (4.72)

where the Jacobian Ĥx̂(t) ∈ Rg×m is defined as

Ĥx̂(t) =
∂ĥ

(
x̂(t), t

)

∂x̂m(t)

∣∣∣∣∣
x̄

. (4.73)

Note that these last two equations represent the linearized guidance algorithm. Also, recall that due

to state covariance matrix singularity issues associated with the quaternion [54], the inertial-to-body

attitude quaternions qbi , q̂
b
i ∈ R4 in the true and navigation state vectors were replaced with the

Euler rotation vectors θb
i , θ̂

b
i ∈ R3, resulting in modified true and modified navigation state vectors.

Since one of the guidance commands is an attitude quaternion, it follows that this modified state

vector approach must also be applied here. Thus, the commanded attitude quaternion q̂b̂i,com ∈ R4

in the guidance commands vector ξ̂ ∈ Rg′ , given by

ξ̂ =
(
q̂b̂i,com, ω̂

i
ib,com

)
, (4.74)

is replaced with the Euler rotation vector θ̂b̂
i,com ∈ R3, which represents the desired attitude of the

body frame b with respect to the inertial frame i expressed in desired body coordinates, resulting

in a modified guidance commands vector ξ̂m ∈ Rg (where g = g′ − 1), given by

ξ̂m =
(
θ̂b̂
i,com, ω̂

i
ib,com

)
. (4.75)

As such, the linearized guidance commands equation, given in Eq. (4.72), is based upon the modified

guidance commands vector ξ̂m, i.e., δξ̂(t) ∈ Rg, and the dimensions of the Jacobian Ĥx̂ have been
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defined accordingly.

Recall from § 3.2.2 that during vertical rise and pitch over, guidance operates in an open-loop

fashion where the guidance commands issued by guidance were computed prior to launch and stored

in the flight computer. Since these precomputed guidance commands are based upon the desired

or NRT and not on the current navigation states, it follows that they are the nominal guidance

commands during this period and therefore must satisfy Eq. (4.71). Consequently, δξ̂(t) = 0

and it follows that the Jacobian Ĥx̂ must also be zero (or the null matrix). In other words, the

partial derivatives of the guidance commands with respect to the navigation states x̂ during vertical

rise and pitch over are zero. From the end of pitch over to when guidance modes to fine count,

guidance operates in a closed-loop fashion where the guidance commands are computed on-the-fly

with PEG and the current navigation solution. Thus, it follows that the guidance commands during

this period satisfy Eq. (4.69) and that Eqs. (4.72) and (4.73) represent the linearized closed-loop

guidance algorithm or PEG.

Until this point, it has been possible to formulate closed-form analytic expressions for

all of the requisite partial derivatives. However, since PEG is a very complex, highly nonlinear

algorithm and contains an iterative solver, it follows naturally that closed-form analytic expressions

for the partial derivatives associated with PEG are not obtainable and therefore numerical methods

must be employed. The problem with numerical methods is that they are never exact and are at

best approximations of the values or functions that they represent. For example, if standard

finite-divided difference methods, such as the forward difference or central difference formulas,

are employed to evaluate the partial derivatives, then one is faced with the well-known “step-size

dilemma,” i.e., what step size to use. If the step size is too small, then the obtained value of the

derivative may be subject to subtractive cancellation or round-off errors, which are due to the finite

precision of the digital computer. Conversely, if the step size is too large, then the obtained value

of the derivative may be subject to truncation errors, which are due to the finite number of terms in

the Taylor series that were included in the derivative approximation. In order to find the so-called

“optimal” step size, i.e., the step size that minimizes both round-off and truncation errors for a

given function and computer, one must generally devote a considerable amount of time and effort.

It is worth noting that higher-order finite-divided difference methods, such as Richardson

Extrapolation and Romberg Integration, have been developed to obtain more accurate values of the
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derivative [80]. They basically employ more higher-order terms in the Taylor series in the derivative

approximation so as to reduce the effect of truncation errors. They are, however, still subject to

round-off errors and the step-size dilemma. Moreover, they require a minimum of four1 separate

evaluations of the function or algorithm, thus there is also a computational penalty associated with

these higher-order methods.

Complex-Step Derivative

One numerical method that is not subject to the step-size dilemma and has been shown to

achieve near analytic accuracy (to within machine precision) when computing the first derivative of

real-valued functions or algorithms is the complex-step derivative approximation [81], which states

that if a function f(x) is analytic, i.e., differentiable in the complex plane, then the first derivative

of the function at the operating point x0 is given by

f ′(x0) ≈
Im

{
f(x0 + ih)

}

h
, (4.76)

where Im{f} represents the imaginary part of the function f evaluated at the complex value x0+ih,

and h denotes the step size, i.e., the length of the interval along x over which the approximation

is made. Notice that Eq. (4.76) does not contain a difference operation, thus it is not subject to

subtractive cancellation or round-off errors. Therefore, extremely small step sizes (e.g., h = 10−40)

can be used with no loss of accuracy or precision. As a result, the truncation error in the ap-

proximation, which is of O(h2), can be either eliminated altogether or minimized and rendered

negligible [81, 82]. Furthermore, Eq. (4.76) involves only one2 function evaluation, thus the compu-

tational penalty associated with this method is simply due to the time required to perform complex

arithmetic. General implementation procedures and common issues (and their solutions) associated

with several popular programming languages (e.g., MATLAB, C/C++, FORTRAN) are outlined

and discussed in Martins et al. [81]. There are, however, a few additional issues that were discovered

in the course of this research that are not mentioned in Ref. [81] or the literature.

In order to apply the complex-step derivative (CSD) method to PEG or any other computer

1This is for a scalar single-variable function using Richardson Extrapolation. The number of function evaluations
increases for vector and multivariable functions as well as for Romberg Integration with more than one iteration. [80]

2This is for a scalar single-variable function. The number of function evaluations increases for vector and multi-
variable functions.
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algorithm for that matter, the algorithm and all of its subfunctions must be defined to handle

complex values. The reason for this is that the derivative information is captured and maintained in

the imaginary part of the variables. Therefore, should one of the subfunctions inadvertently discard

or improperly modify the imaginary part of a complex variable, then the derivative information

would be lost, resulting in an incorrect derivative. Hence, one issue that was discovered is that

the intrinsic MATLAB functions norm and atan2, both of which are employed by the guidance

algorithm, are not defined to handle complex values. Since the functions are intrinsic to MATLAB

and cannot be edited, it became necessary to develop and create customized functions that are

able to handle both real and complex values, then replace all calls to the intrinsic functions in the

guidance algorithm with calls to the replacement functions. The details of how the customized

functions were developed and coded are not discussed here but can be found in Appendix B.1.

Another issue that was encountered is how to properly apply the CSD method to vector

functions or algorithms when one or more of the input or output variables is an attitude quaternion.

In this research, PEG is the vector algorithm of interest, the navigation states x̂ are the inputs, the

guidance commands ξ̂ are the outputs, and both the input and output variables include attitude

quaternions. There are actually two separate problems associated with this issue. The first prob-

lem deals with how the perturbation step is added to the input quaternion. This is because the

perturbation step isn’t added to the quaternion in the same manner as a vector and the method

requires that the perturbation be added to the imaginary part of the nominal input variable. The

second problem, however, deals with how the derivative information is extracted from the output

quaternion. This is because the derivative information is contained in the imaginary part of the

four-dimensional quaternion whereas the partial derivative is of the three-dimensional attitude vec-

tor. The details of how to properly apply the CSD method to quaternions is not discussed here

but can be found in Appendix B.2.

Fine-Count Partial-Derivative Dilemma

During fine count, the last commanded inertial thrust direction computed by PEG is held

constant, which corresponds to a constant attitude command and a zero attitude rate command.

Since the guidance commands during fine count are not a function of the current navigation states,

one might conclude that the associated partial derivatives must be zero, just as those during vertical
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rise and pitch over were zero. This is a correct conclusion for the partial derivatives associated with

the zero attitude rate command, because from a Monte Carlo perspective the attitude rate command

is invariant from sample run to sample run. This is an incorrect deduction, however, for the partial

derivatives associated with the constant attitude command, because the last attitude command

computed by PEG will undoubtedly vary from sample run to sample run due to variations in the

sample trajectories and the corresponding navigation states. In other words, the variation in the

commanded attitude at some time tc during fine count, observed from collecting N Monte Carlo

samples, is due to variations in the navigation states at the last time that PEG was called or

time te−1 (where te−1 denotes the time step just before the event time te and te−1 < tc). Thus,

it follows that the partial derivatives associated with the constant attitude command with respect

to the current modified navigation states during fine count should not be zero. Consequently, one

might conclude that since the attitude command is held constant, the associated partial derivatives

must also be constant and therefore equal to those computed at time te−1. However, when the

partial derivatives are applied in this fashion, it is equivalent to stating that the variation in the

commanded attitude at time tc is somehow due to variations in the current navigation states at time

tc, which contradicts the statement above that the guidance commands during fine count are not

a function of the current navigation states. Thus, it follows that the partial derivatives associated

with the constant attitude command with respect to the current modified navigation states during

fine count should not be constant. As a result, one is faced with the dilemma of how to properly

compute the partial derivatives associated with the constant attitude command during fine count,

where PEG is no longer called.

The first approach that was attempted was to write the partial derivative of the constant

attitude command at time te (the first time step into fine count) in terms of the partial derivative

computed at time te−1 (the time step just before guidance modes to fine count and the last time

that PEG was called) as follows

∂θ̂b̂
i,com(te)

∂x̂m(te)

∣∣∣∣∣
x̄

=
∂θ̂b̂

i,com(te−1)

∂x̂m(te−1)

∂x̂m(te−1)

∂x̂m(te)

∣∣∣∣∣
x̄

,

where it is noted that θ̂b̂
i,com(te−1) = θ̂b̂

i,com(te) because the attitude command is held constant

during fine count. Furthermore, it is straightforward to show that the last term on the right-hand
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side is simply the state transition matrix Φ̂(te, te−1), thus the previous expression can be written

as
∂θ̂b̂

i,com(te−1)

∂x̂m(te)

∣∣∣∣∣
x̄

=
∂θ̂b̂

i,com(te−1)

∂x̂m(te−1)
Φ̂(te, te−1)

∣∣∣∣∣
x̄

. (4.77)

This expression can then be readily adapted for any future time t > te−1. Unfortunately, this

state transition matrix approach was not able to properly capture the effects that the constant

attitude command has on the true and navigation states during fine count, as seen with Monte

Carlo analysis. Hence, it was subsequently abandoned.

A second approach was undertaken that seems to avoid this whole fine-count partial-

derivative dilemma altogether, i.e., it does not require the partial derivatives of the attitude com-

mand during fine count at all. More importantly, it is able to correctly capture the effects that the

constant attitude command has on the true and navigation states during fine count. In this ap-

proach, a pseudo-state θ̂b̂
i,com (i.e, the Euler rotation vector representation of the attitude command

quaternion q̂b̂i,com) is created and appended to the modified true state vector xm as follows

xm =
(
ri, vi, θb

i , ω
b
ib, mb, p, θ̂

b̂
i,com) . (4.78)

Then, each time that PEG is called, the updated attitude command is applied as an instantaneous

state covariance correction, which uses the partial derivatives of the attitude command. Finally,

when guidance modes to fine count and PEG is no longer called, no state covariance corrections

are made, thus eliminating the need for the partial derivatives of the attitude command during fine

count. The details of the state covariance correction are not discussed here, but can be found in

§ 5.5.3.

It is important to note a few things at this point. First, this new pseudo-state is only for

linear covariance purposes, i.e., it is only used in the formulation of the linear covariance equations

and in the linear covariance simulation. Actually, it is common practice in linear covariance to

append extra states in order to capture the covariance of certain aspects of the problem that are not

normally captured with the traditional states of the system. Second, a pseudo-state for the attitude

rate command ω̂i
ib,com could also have been created and appended in the same manner. However,

since the partial derivatives associated with the attitude rate command were not a factor in the
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fine-count partial-derivative dilemma,3 this option was not explored. Third, the attitude command

pseudo-state was initially appended to the modified navigation state vector x̂m, primarily because

the attitude command is a function of the navigation states x̂ and it made more sense. However,

this doesn’t work because current linear covariance theory, particularly the theory associated with

event triggers, is unable to handle the case where the navigation state vector (or modified navigation

state vector) contains states that are not in the true state vector or are not linear (or nonlinear)

functions of the true states. For this reason, the pseudo-state was appended to the modified true

state vector instead.

4.4.4 Actuator Commands

Since the modified attitude command θ̂b̂
i,com is now a true state, it follows that the actuator

commands defined in Eq. (3.116) can be written in the form

û(t) = ĝ
(
x̂(t), ỹ(t),x(t), t

)
, (4.79)

where ĝ : Rm′ × Rc × Rn′ → Ra is a nonlinear function of the navigation states x̂(t) ∈ Rm′
,

continuous inertial measurements ỹ(t) ∈ Rc, and true states x(t) ∈ Rn′
. Given the expressions in

Eqs. (4.2), (4.32), and (4.43), it follows that the nominal actuator commands ū(t) can be written

as

ū(t) = ĝ
(
x̄(t), ȳ(t), x̄(t), t

)
. (4.80)

Then, following the linearization process outlined in §4.2, the linear time-varying actuator com-

mands equation is given by

δû(t) = Ĝx̂(t) δx̂(t) + Ĝỹ(t) δỹ(t) + Ĝx(t) δx(t) , (4.81)

where the Jacobians Ĝx̂(t) ∈ Ra×m, Ĝỹ(t) ∈ Ra×c and Ĝx(t) ∈ Ra×n, are respectively defined as

Ĝx̂(t) =
∂ĝ

(
x̂(t), ỹ(t),x(t), t

)

∂x̂m(t)

∣∣∣∣∣
x̄,ȳ,x̄

, Ĝỹ(t) =
∂ĝ

(
x̂(t), ỹ(t),x(t), t

)

∂ỹ(t)

∣∣∣∣∣
x̄,ȳ,x̄

, (4.82)

3During fine count, the attitude rate command ω̂i
ib,com is like an open loop command, i.e., ω̂i

ib,com is always zero.
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and

Ĝx(t) =
∂ĝ

(
x̂(t), ỹ(t),x(t), t

)

∂xm(t)

∣∣∣∣∣
x̄,ȳ,x̄

. (4.83)

Recall that due to state covariance matrix singularity issues associated with the quaternion [54],

a modified state vector approach is adopted and utilized to form the state covariance propagation

and update equations as well as the state vector update equations. As such, the linearized actuator

commands equation, given in Eq. (4.81), is based upon the modified navigation state vector x̂m

and modified true state vector xm, i.e., δx̂(t) ∈ Rm and δx(t) ∈ Rn, and the Jacobians Ĝx̂, Ĝỹ,

and Ĝx have been defined accordingly.

Compensated Torque Command

The elements of the Jacobians Ĝx̂, Ĝỹ, and Ĝx associated with the compensated ACS

torque command m̂b
com, defined in Eq. (3.116), are respectively given by

∂m̂b
com

∂x̂m

∣∣∣∣
x̄,ȳ,x̄

=
∂m̂b

err

∂x̂m

∣∣∣∣
x̄,ȳ,x̄

−
[
m̄b

err!
]∂ŝacs
∂x̂m

−
[
m̄b

err×
]∂ε̂acs
∂x̂m

− ∂b̂acs
∂x̂m

, (4.84)

∂m̂b
com

∂ỹ

∣∣∣∣
x̄,ȳ,x̄

=
∂m̂b

err

∂ỹ

∣∣∣∣
x̄,ȳ,x̄

and
∂m̂b

com

∂xm

∣∣∣∣
x̄,ȳ,x̄

=
∂m̂b

err

∂xm

∣∣∣∣
x̄,ȳ,x̄

, (4.85)

where m̄b
err is the nominal value of the required ACS torque and the partial derivatives of the

required ACS torque m̂b
err with respect to the modified navigation states x̂m, continuous inertial

measurements ỹ, and modified true states xm are specified in Eqs. (4.86) and (4.87).

Attitude Control Law

It can be shown that the partial derivatives of the required ACS torque m̂b
err, defined in

Eq. (3.113), with respect to the modified navigation states x̂m, continuous inertial measurements ỹ,

and modified true states xm are respectively given by

∂m̂b
err

∂x̂m

∣∣∣∣
x̄,ȳ,x̄

=
(
K̄b

ω

[
T̄ (q̄bi ) ω̄

i
ib,com×

]
− K̄b

θ

) ∂θ̂b
i

∂x̂m
+ K̄b

ω T̄ (q̄bi )
∂ω̂i

ib,com

∂x̂m

∣∣∣∣∣
x̄,ȳ,x̄

− K̄b
ω
∂ω̂b

ib

∂x̂m

∣∣∣∣
x̄,ȳ,x̄

, (4.86)
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∂m̂b
err

∂ỹ

∣∣∣∣
x̄,ȳ,x̄

= −K̄b
ω
∂ω̂b

ib

∂ỹ

∣∣∣∣
x̄,ȳ,x̄

and
∂m̂b

err

∂xm

∣∣∣∣
x̄,ȳ,x̄

= K̄b
θ

∂θ̂b̂
i,com

∂xm
, (4.87)

where K̄b
θ and K̄b

ω are respectively the nominal proportional and derivative attitude control gains,

ω̄i
ib,com is the nominal attitude rate command from guidance, and the partial derivatives of the

compensated gyro measurement ω̂b
ib with respect to the modified navigation states x̂m and inertial

measurements ỹ are respectively specified in Eqs. (4.57) and (4.58). The partial derivative of the

attitude rate command ω̂i
ib,com with respect to the modified navigation states x̂m is computed

with the complex-step derivative approximation described in §4.4.3. The partial derivative of the

attitude command θ̂b̂
i,com with respect to the modified true states xm,which appears in Eq. (4.87),

is due to the attitude command being added to the true states, as described in §4.4.3. The partial

derivative of the attitude command θ̂b̂
i,com with respect to the modified navigation states x̂m does

not appear here, but is used in the state covariance correction [see §5.5.3].

In summary, the NRT was defined and the nonlinear truth models and GN&C algorithm

models associated with the Monte Carlo simulation were linearized about the NRT. However,

since PEG is a very complex, highly nonlinear algorithm, closed-form analytic expressions of the

partial derivatives could not be obtained, hence the CSD method was employed to get the most

accurate numerical partial derivatives possible. The linearized models derived herein will be used

in the next chapter to formulate the linear covariance equations. Lastly, in order to solve the

fine-count partial-derivative dilemma, the guidance attitude command vector pseudo-state was

created and appended to the modified true state vector, so that each time that PEG is called the

updated attitude command is applied as an instantaneous state covariance correction. Then when

guidance modes to fine count and PEG is no longer called, no more state covariance corrections are

made, thereby capturing the effects of the constant attitude command on both the true states and

navigation states while eliminating the need for the partial derivatives of the attitude command

during fine count.
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Chapter 5

Linear Covariance Formulation

“Simplicity is the ultimate sophistication.”

– Leonardo da Vinci

In the preceding chapter, the NRT was defined and the nonlinear truth models and GN&C

algorithm models were linearized about the nominal reference trajectory. The purpose of this

chapter is to present the final step in the development process, which is to formulate the linear

covariance equations that constitute the linear covariance simulation, thereby accomplishing the

third objective of this dissertation. The chapter is organized as follows: First, the linearized propa-

gation equations for the true state dispersions and navigation state dispersions are obtained, which

are then used to define the augmented state vector and associated propagation equation. Next,

the true navigation state errors are derived and expressed in terms of the augmented state vector.

This is followed by a reformulation of the event trigger theory needed to handle discrete events

triggered by something other than time. Lastly, the linear covariance equations are formulated and

presented. This includes initialization, propagation, correction, and shaping of the augmented state

covariance matrix and initialization and propagation of the filter navigation state error covariance

matrix, as well as covariance post-processing.

5.1 Linearized Propagation Equations

Now that linearized expressions have been obtained for the true state dynamics, inertial

measurements, navigation state dynamics, and actuator commands, it follows that the linearized

actuator commands, given in Eq. (4.81), can be substituted into the linearized true state dynamics,

given in Eq. (4.6), such that

δẋ(t) =
[
Fx(t) + Fû(t) Ĝx(t)

]
δx(t) + Fû(t) Ĝx̂(t) δx̂(t) + Fû(t) Ĝỹ(t) δỹ(t) + Fw(t)w(t) .
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Next, the linearized inertial measurements, given in Eq. (4.34), can be substituted into the above

expression, such that the linearized propagation equation for the true state dispersions is given by

δẋ(t) =
{
Fx(t) + Fû(t)

[
Ĝx(t) + Ĝỹ(t)Cx(t)

]}
δx(t) + Fû(t) Ĝx̂(t) δx̂(t)

+
[
Fû(t) Ĝỹ(t)Cw(t) + Fw(t)

]
w(t) + Fû(t) Ĝỹ(t)Cη(t)η(t) . (5.1)

Similarly, the linearized inertial measurements, given in Eq. (4.34), can be substituted into

the linearized navigation state dynamics, given in Eq. (4.45), such that the linearized propagation

equation for the navigation state dispersions is given by

δ ˙̂x(t) = F̂ỹ(t)Cx(t) δx(t) + F̂x̂(t) δx̂(t) + F̂ỹ(t)Cw(t)w(t) + F̂ỹ(t)Cη(t)η(t) . (5.2)

5.2 Augmented Linear System

Let the true state dispersions δx ∈ Rn and navigation state dispersions δx̂ ∈ Rm be formed

into an augmented state vector xa ∈ R! (where # = n+m),

xa =
(
δx, δx̂

)
, (5.3)

such that Eqs. (5.1) and (5.2) can be condensed to the following linear augmented-state propagation

equation,

ẋa(t) = F(t)xa(t) +W(t)w(t) +G(t)η(t) , (5.4)

where the matrices F(t) ∈ R!×!, W(t) ∈ R!×s, and G(t) ∈ R!×c are defined as

F(t) =




Fx(t) + Fû(t)

[
Ĝx(t) + Ĝỹ(t)Cx(t)

]
Fû(t) Ĝx̂(t)

F̂ỹ(t)Cx(t) F̂x̂(t)



 , (5.5)

W(t) =




Fû(t) Ĝỹ(t)Cw(t) + Fw(t)

F̂ỹ(t)Cw(t)



 , and G(t) =




Fû(t) Ĝỹ(t)Cη(t)

F̂ỹ(t)Cη(t)



 . (5.6)
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5.3 True Navigation State Errors

The true navigation state errors δe(t) ∈ Rm′
are defined as the difference between the true

navigation states x(t) ∈ Rm′
and the navigation states x̂(t) ∈ Rm′

δe(t) ≡ x(t)− x̂(t) . (5.7)

where the true navigation states can be written in the general form

x(t) = m
(
x(t)

)
, (5.8)

where m : Rn′ → Rm′
is a nonlinear function that maps the true states x ∈ Rn′

to the true

navigation states x. It is important to emphasize that this mapping function represents the general

case, i.e., it is valid for both full- and reduced-state filters as well as for both inertial- and relative-

state filters. Next, given that the true states x can be written as

δx(t) ≡ x(t)− x̄(t) , (5.9)

it follows that m can be linearized about the nominal reference trajectory, following the process

outlined in § 4.2, such that Eq. (5.8) becomes

x(t) = m
(
x̄(t)

)
+Mx(t) δx(t) , (5.10)

where the Jacobian Mx(t) ∈ Rm×n is defined as

Mx(t) =
∂m

(
x(t)

)

∂x(t)

∣∣∣∣∣
x(t)=x̄(t)

. (5.11)

Recall from the previous chapter that due to state covariance matrix singularity issues associated

with the quaternion, the inertial-to-body attitude quaternions qbi , q̂
b
i in the true and navigation

state vectors were respectively replaced with the Euler rotation vectors θb
i , θ̂

b
i , resulting in modified

true and modified navigation state vectors. As such, the linearized mapping function, given in

Eq. (5.10), is derived using the modified true state vector, i.e., δx ∈ Rn, and the dimensions of the

mapping function Jacobian Mx have been defined accordingly. Next, the navigation states x̂ can
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be written as

x̂(t) = x̄(t) + δx̂(t) = m
(
x̄(t)

)
+ δx̂(t) , (5.12)

which is also derived using the modified navigation state vector, for the reasons just described.

Substituting this expression and Eq. (5.10) into the definition given in Eq. (5.7) and canceling

terms yields the following expression for the true navigation state errors in terms of the true state

dispersions δx and navigation state dispersions δx̂,

δe(t) = Mx(t) δx(t)− δx̂(t) . (5.13)

which can also be expressed in terms of the augmented state xa

δe(t) =

[
Mx(t) −Im×m

]
xa(t) . (5.14)

5.4 Event Triggers

Recall that the time-to-go parameter tgo, calculated by PEG and discussed in § 3.2.2, is

dependent upon the current estimated flight path (i.e., navigation states) and the terminal targets,

hence variations in either will result in variations in the burn time. Since the terminal targets are

constant, it follows that, from a Monte Carlo perspective, the time when guidance modes from

PEG to fine count occurs relative to lift-off (t0) will vary from sample run to sample run due to

variations in the flight path. The problem is that a linear covariance simulation has only one flight

path (i.e., the nominal reference trajectory) from which to generate and capture the covariance

of this time-varying event, not N (where N > 1) trajectories like Monte Carlo methods. Hence,

the purpose of this section is to address this problem of how to properly handle discrete events

that are triggered by some criteria other than time, known as event triggers, in a linear covariance

simulation.

An event trigger is a condition or constraint that can be expressed mathematically as a

function of the estimated or navigation states x̂, [15]

Ψ
[
x̂(te)

]
= 0 . (5.15)

When this condition is satisfied, a discrete event at time te is triggered. Examples of discrete
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events include (but are not limited to) impulsive maneuvers, sensor changes, and general GN&C

mode changes. Examples of trigger conditions include (but are not limited to) estimates of the

altitude, downrange position, velocity magnitude, and the remaining burn time. The theory and

techniques developed for implementing event triggers in a linear covariance simulation are presented

and outlined in Geller et al. [15]. It is important to point out, however, that their formulation is

only applicable to the special case where the navigation algorithm incorporates a full-state filter,

i.e., the navigation state vector x̂ ∈ Rn′
contains the same states as the true or environment state

vector x ∈ Rn′
. In other words, it does not allow for a reduced-state filter (e.g., x̂ ∈ Rm′

, x ∈ Rn′
,

where m′ ≤ n′) or a relative-state filter in lieu of the more traditional inertial-state filter. In order

for the event trigger theory and techniques to be suitable for a wide variety of problems in aerospace

and this research, a modified formulation was developed for the more general case where the filter

design states (and true navigation states) x ∈ Rm′
, from which the navigation states x̂ ∈ Rm′

are

derived, are defined to be a nonlinear function of the true states x ∈ Rn′
, as given by Eq. (5.8).

From a Monte Carlo perspective, an event occurs for a given sample when the navigation

states x̂(te) at the time te satisfies the condition in Eq. (5.15). At the nominal time t̄e of the event,

the true states x(t̄e) and navigation states x̂(t̄e) for a given Monte Carlo sample can be respectively

written as

x(t̄e) = x̄(t̄e) + δx(t̄e) (5.16)

and

x̂(t̄e) = x̄(t̄e) + δx̂(t̄e) = m
(
x̄(t̄e)

)
+ δx̂(t̄e) . (5.17)

The time derivative of the first expression is simply

ẋ(t̄e) = ˙̄x(t̄e) + δẋ(t̄e) , (5.18)

whereas the time derivative of second expression will require a few more steps. First, the time

derivative of the nonlinear term on the right-hand side of Eq. (5.17) can be expanded using the

chain rule as follows

dm
(
x̄(t̄e)

)

dt
=

∂m
(
x̄(t̄e)

)

∂x̄(t̄e)

dx̄(t̄e)

dt
=

∂m
(
x(te)

)

∂x(te)

∣∣∣∣∣
x̄

˙̄x(t̄e) = Mx(t̄e) ˙̄x(t̄e) .
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From this expression and Eq. (5.17), it follows that the time derivative of the navigation state can

now be written as

˙̂x(t̄e) = Mx(t̄e) ˙̄x(t̄e) + δ ˙̂x(t̄e) . (5.19)

Moreover, at the sample time te of the event, the true states and navigation states for a given

Monte Carlo sample can be respectively approximated to first order as

x(te) " x(t̄e) + ẋ(t̄e) [te − t̄e] = x(t̄e) + ẋ(t̄e) δte , (5.20)

and

x̂(te) " x̂(t̄e) + ˙̂x(t̄e) [te − t̄e] = x̂(t̄e) + ˙̂x(t̄e) δte , (5.21)

where δte = te − t̄e represents the event time dispersion. Next, Eqs. (5.16) and (5.18) can be

substituted into the first expression to yield

x(te) " x̄(t̄e) + δx(t̄e) + ˙̄x(t̄e) δte +

2nd order︷ ︸︸ ︷
δẋ(t̄e) δte .

Thus to first order, the true states x(te) for a given Monte Carlo sample at the sample time te of

the event can be written as

x(te) = x̄(t̄e) + δx(t̄e) + ˙̄x(t̄e) δte . (5.22)

After applying the same methodology to Eq. (5.21), it follows that to first order the navigation

states x̂(te) can be written as

x̂(te) = m
(
x̄(t̄e)

)
+ δx̂(t̄e) +Mx(t̄e) ˙̄x(t̄e) δte . (5.23)

Substituting this last expression into the event trigger condition in Eq. (5.15) produces

Ψ
[
m

(
x̄(t̄e)

)
+ δx̂(t̄e) +Mx(t̄e) ˙̄x(t̄e) δte

]
= 0 . (5.24)
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The condition function on the left hand side of this expression can then be linearized about the

nominal using a truncated first-order Taylor series

Ψ
[
m

(
x̄(t̄e)

)
+δx̂(t̄e)+Mx(t̄e) ˙̄x(t̄e) δte

]
" Ψ

[
m

(
x̄(t̄e)

)]
+

∂Ψ[x̂(te)
]

∂x̂(te)

∣∣∣∣∣
x̄

[
δx̂(t̄e)+Mx(t̄e) ˙̄x(t̄e) δte

]
.

Using this result in Eq. (5.24) and noting that by definition

Ψ
[
m

(
x̄(t̄e)

)]
= 0 , (5.25)

it follows that to first order

Ψx̂(t̄e) δx̂(t̄e) +Ψx̂(t̄e)Mx(t̄e) ˙̄x(t̄e) δte = 0 ,

where the Jacobian Ψx̂ ∈ R1×m is defined as

Ψx̂(t̄e) =
∂Ψ

[
x̂(te)

]

∂x̂(t)

∣∣∣∣∣
x̂=x̄

. (5.26)

Solving this expression for the event time dispersion δte yields the first expression of interest

δte = −
[
Ψx̂(t̄e)Mx(t̄e) ˙̄x(t̄e)

]−1
Ψx̂(t̄e) δx̂(t̄e) . (5.27)

At first glance, it would appear that this equation is valid if and only if the quantity in the

square brackets is invertible. A simple dimensional analysis using matrix multiplication, however,

is sufficient to show that the quantity actually reduces to a scalar, which is always invertible under

the condition that it is nonzero. Eq. (5.27) is important because it represents to first order the

difference between the time that the event occurs in the nominal reference trajectory and the time

that the event occurs for a given Monte Carlo sample.
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The event time dispersion δte given Eq. (5.27) can also be written in terms of of the aug-

mented states xa at the nominal time t̄e of the event as follows

δte = 01×n δx(t̄e) +
{
−
[
Ψx̂(t̄e)Mx(t̄e) ˙̄x(t̄e)

]−1
Ψx̂(t̄e)

}
δx̂(t̄e)

=

[
01×n −

[
Ψx̂(t̄e)Mx(t̄e) ˙̄x(t̄e)

]−1
Ψx̂(t̄e)

]



δx(t̄e)

δx̂(t̄e)





= A(t̄e)xa(t̄e) .

The variance of the event time σ2
te is determined by squaring the previous expression and taking

the expected value over all Monte Carlo samples at the nominal event time t̄e as follows

σ2
te = E{δt2e} = E {A(t̄e)xa(t̄e) [A(t̄e)xa(t̄e)]

ᵀ} = E
{
A(t̄e)xa(t̄e)

[
xa(t̄e)

]ᵀ[
A(t̄e)

]ᵀ}
.

Since A(t̄e) is a known nonstochastic quantity, it can be moved out of the expectation operator

σ2
te = A(t̄e)E

{
xa(t̄e)

[
xa(t̄e)

]ᵀ} [
A(t̄e)

]ᵀ
.

Then, recognizing that Ca(t̄e) = E
{
xa(t̄e)

[
xa(t̄e)

]ᵀ}
, it follows that the second expression of

interest is given by

σ2
te = A(t̄e)Ca(t̄e)

[
A(t̄e)

]ᵀ
, (5.28)

where Ca(t̄e) is the covariance of the augmented states at the nominal event time t̄e. Eq. (5.28) is

important because it represents to first order the variance of the event time as a function of the

augmented state covariance at the nominal event time along the nominal reference trajectory.

From a Monte Carlo perspective, the next step is to collect all of the true and navigation

states at their respective event trigger times and evaluate the covariance of these states. Analyti-

cally, this is achieved by first substituting the event time dispersion in Eq. (5.27) into Eqs. (5.22)
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and (5.23) to obtain the states at their respective trigger times,

x(te) = x̄(t̄e) + δx(t̄e)− ˙̄x(t̄e)
[
Ψx̂(t̄e)Mx(t̄e) ˙̄x(t̄e)

]−1
Ψx̂(t̄e) δx̂(t̄e) , (5.29)

x̂(te) = m
[
x̄(t̄e)

]
+ δx̂(t̄e)−Mx(t̄e) ˙̄x(t̄e)

[
Ψx̂(t̄e)Mx(t̄e) ˙̄x(t̄e)

]−1
Ψx̂(t̄e) δx̂(t̄e) . (5.30)

Since the mean values of the true dispersions δx(t̄e) and navigation dispersions δx̂(t̄e) are both

zero at the nominal event time t̄e, the mean values of the states at the sample event time te are

equal to the nominal states at the nominal event time,

E
{
x(te)

}
= E

{
x̄(t̄e)

}
, (5.31)

E
{
x̂(te)

}
= E

{
x̄(t̄e)

}
= E

{
m

(
x̄(t̄e)

)}
. (5.32)

This is important because it allows the covariance of the states at the trigger times to be computed

analytically. Next, the augmented states xa(te) at the sample event time te can be written as

follows

xa(te) =




δx(te)

δx̂(te)



 =




x(te)− x̄(t̄e)

x̂(te)−m
(
x̄(t̄e)

)





=




δx(t̄e)− ˙̄x(t̄e)

[
Ψx̂(t̄e)Mx(t̄e) ˙̄x(t̄e)

]−1
Ψx̂(t̄e) δx̂(t̄e)

δx̂(t̄e)−Mx(t̄e) ˙̄x(t̄e)
[
Ψx̂(t̄e)Mx(t̄e) ˙̄x(t̄e)

]−1
Ψx̂(t̄e) δx̂(t̄e)



 ,

which can then be expressed in the traditional state-space form

xa(te) = Φs(t̄e)xa(t̄e) , (5.33)

where Φs(t̄e) is the covariance shaping matrix,

Φs(t̄e) =




In×n − ˙̄x(t̄e)

[
Ψx̂(t̄e)Mx(t̄e) ˙̄x(t̄e)

]−1
Ψx̂(t̄e)

0m×n Im×m −Mx(t̄e) ˙̄x(t̄e)
[
Ψx̂(t̄e)Mx(t̄e) ˙̄x(t̄e)

]−1
Ψx̂(t̄e)



 . (5.34)

Since the mean value of the augmented states xa(te) by definition is zero, it follows that the third

and final expression of interest is the covariance of the augmented states immediately after the
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nominal event time t̄e, which is given by

C+s
a (t̄e) = Φs(t̄e)C−s

a (t̄e)
[
Φs(t̄e)

]ᵀ
, (5.35)

where the superscripts −s and +s on the augmented state covariance matrix denote before and after

shaping, respectively. Eq. (5.35) is important because application of the covariance shaping matrix

allows the linear covariance simulation to capture the effects of the time-varying discrete event.

From a Monte Carlo perspective, it is equivalent to resetting the simulation clock to a common

time t̄e for each sample as the event is triggered such that all subsequent results are then measured

with respect to the common time t̄e.

5.5 Covariance Equations

By definition, the augmented state covariance matrix Ca ∈ R!×! is given by

Ca(t) = E
{
xa(t)

[
xa(t)

]ᵀ}
. (5.36)

Substituting Eq. (5.3) into the above expression, it is straightforward to show that the augmented

state covariance matrix can be written in the following block-partition form,

Ca(t) =




Dxx(t) Dxx̂(t)

[
Dxx̂(t)

]ᵀ Dx̂x̂(t)



 , (5.37)

where the covariance of the true state dispersions Dxx(t) ∈ Rn×n is given by

Dxx(t) = E
{
δx(t)

[
δx(t)

]ᵀ}
, (5.38)

the covariance of the navigation state dispersions Dx̂x̂ ∈ Rm×m is given by

Dx̂x̂(t) = E
{
δx̂(t)

[
δx̂(t)

]ᵀ}
, (5.39)

and the cross correlation Dxx̂ ∈ Rn×m is given by

Dxx̂(t) = E
{
δx(t)

[
δx̂(t)

]ᵀ}
. (5.40)
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By definition, the true navigation state error covariance matrix P ∈ Rm×m is given by

P(t) = E
{
δe(t)

[
δe(t)

]ᵀ}
. (5.41)

From Eqs. (5.37)–(5.39) it follows that the covariance matrices of the true and navigation

state dispersions can also be respectively written as

Dxx(t) =

[
In×n 0n×m

]
Ca(t)

[
In×n 0n×m

]ᵀ
(5.42)

and

Dx̂x̂(t) =

[
0m×n Im×m

]
Ca(t)

[
0m×n Im×m

]ᵀ
. (5.43)

Moreover, from Eqs. (5.41) and (5.14) it follows that the covariance matrix of the true navigation

state errors can written as

P(t) =

[
Mx(t) −Im×m

]
Ca(t)

[
Mx(t) −Im×m

]ᵀ
. (5.44)

Hence, given the augmented state covariance matrix Ca(t), the covariance matrices of the true

state dispersions, navigation state dispersions, and true navigation state errors can be respectively

computed with these last three expressions.

5.5.1 Covariance Initialization

This section describes the methodology used to initialize the augmented state covariance

matrix Ca and the filter navigation state error covariance matrix P̂ , where it is assumed that the

modified true state vector xm ∈ Rn and modified navigation state vector x̂m ∈ Rm are respectively

given by

xm =
(
ri, vi, θb

i , ω
b
ib, mb, p, θ̂

b̂
i,com

)
(5.45)

and

x̂m =
(
r̂i, v̂i, θ̂b

i , p̂
)
. (5.46)

It is important to point out that, other than the pseudo-state θ̂b
i,com, the modified navigation state

vector x̂m contains only a subset of the true states for two reasons. First, it is assumed that an
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IMU is present, which provides nearly continuous measurements of the specific force and angular

velocity. As such, the body angular velocity vector ω̂b
ib is not estimated and therefore not included

in the modified navigation state vector. Second, the wet mass is assumed to be a known quantity

(i.e., as a function of time), thus it is not estimated nor included in the modified navigation state

vector.

True State Dispersions

The covariance matrix of the true state dispersions Dxx ∈ Rn×n at time t0 can be written

as

Dxx(t0) =





Di
rr(t0) Di

rv(t0) 03×3 03×3 03×1 03×q 03×3

[
Di

rv(t0)
]ᵀ Di

vv(t0) 03×3 03×3 03×1 03×q 03×3

03×3 03×3 Db
θθ(t0) Db

θω(t0) 03×1 03×q 03×3

03×3 03×3
[
Db

θω(t0)
]ᵀ Db

ωω(t0) 03×1 03×q 03×3

01×3 01×3 01×3 01×3 σ2
mb

01×q 01×3

0q×3 0q×3 0q×3 0q×3 0q×1 Dpp(t0) 0q×3

03×3 03×3 03×3 03×3 03×1 03×q 03×3





, (5.47)

where the elements along the main diagonal are defined as

E
{
δri(t0)

[
δri(t0)

]ᵀ}
= Di

rr(t0) , E
{
δvi(t0)

[
δvi(t0)

]ᵀ}
= Di

vv(t0) , (5.48)

E
{
δθb

i (t0)
[
δθb

i (t0)
]ᵀ}

= Db
θθ(t0) , E

{
δωb

ib(t0)
[
δωb

ib(t0)
]ᵀ}

= Db
ωω(t0) , (5.49)

E
{
δmb(t0) δmb(t0)

}
= σ2

mb
(t0) , E

{
δp(t0)

[
δp(t0)

]ᵀ}
= Dpp(t0) , (5.50)

and

E
{
δθ̂b

i,com(t0)
[
δθ̂b

i,com(t0)
]ᵀ}

= 03×3 . (5.51)

Moreover, it is assumed that, with a few notable exceptions, all of the true states are initially

uncorrelated, as denoted in Eq. (5.47) with a light-gray color. Due to the nature of the problem,

it will be shown that the inertial position and velocity states are initially correlated, as well as the
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body attitude and angular velocity states. Hence, the nonzero off-diagonal elements are defined as

E
{
δri(t0)

[
δvi(t0)

]ᵀ}
= Di

rv(t0) (5.52)

and

E
{
δθb

i (t0)
[
δωb

ib(t0)
]ᵀ}

= Db
θω(t0) . (5.53)

For a launch vehicle sitting on the launch pad, it is more intuitive to define the covariance

matrix of the inertial position true dispersions at time t0 in terms of the planetographic coordinate

system (i.e., north-east-down) [see § A.2.4] and then transform it to the inertial coordinate system.

As such, the initial covariance matrix of the position true state dispersions, assuming that there

is no initial correlation between the three position components, is a diagonal matrix Dg
rr ∈ R3×3

with the north, east, and down variances σ2
rn , σ

2
re , and σ2

rd , respectively, along the main diagonal,

Dg
rr(t0) =





σ2
rn 0 0

0 σ2
re 0

0 0 σ2
rd




. (5.54)

Then, it can be shown that the initial covariance matrix of the inertial position true state dispersions

is given by

Di
rr(t0) = T i

g(t0)Dg
rr(t0)

[
T i
g(t0)

]ᵀ
, (5.55)

where T i
g is the planetographic-to-inertial transformation matrix at time t0. Note that Di

rr(t0) is

a nondiagonal matrix. This arises from the fact that the planetographic and inertial coordinate

frames are generally not coincident, i.e., mathematically T i
g -= I3×3.

Since the inertial position of the launch vehicle at time t0 is fixed with respect to the planet,

it follows that the initial inertial velocity vector vi(t0) is given by

vi(t0) = ωi
ip × ri(t0) , (5.56)

where ωi
ip is the angular velocity vector of the planet, expressed in inertial coordinates. With this

linear expression and Eqs. (5.48) and (5.52), it is then straightforward to show that the initial
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covariance matrix of the inertial velocity true state dispersions can be written as

Di
vv(t0) =

[
ωi
ip×

]
Di

rr(t0)
[
ωi
ip×

]ᵀ
, (5.57)

and the initial cross correlation matrix of the inertial position and velocity true state dispersions

can be written as

Di
rv(t0) = Di

rr(t0)
[
ωi
ip×

]ᵀ
, (5.58)

where
[
ωi
ip×

]
is the cross-product form of the planet’s inertial angular velocity vector.

The covariance matrix of the body attitude true state dispersions at time t0, assuming

that there is no initial correlation between the three attitude components, is a diagonal matrix

Db
θθ ∈ R3×3 with the body x, y, and z variances σ2

θx
, σ2

θy
, and σ2

θz
, respectively, along the main

diagonal. Since the attitude of the launch vehicle is also initially fixed with respect to the planet,

it follows that the body angular velocity vector ωb
ib at time t0 is given by

ωb
ib(t0) = T b

i (t0)ω
i
ip , (5.59)

where T b
i = T (qbi ) is the initial inertial-to-body transformation matrix and a nonlinear function of

the inertial-to-body attitude quaternion at time t0. This expression is then linearized about the

nominal to yield the following linear expression for the initial body angular velocity true dispersions,

δωb
ib(t0) =

[
T̄ b
i (t0)ω

i
ip×

]
δθb

i (t0) , (5.60)

where T̄ b
i (t0) is the nominal initial inertial-to-body transformation matrix and δθb

i (t0) is the body

attitude true state dispersions at time t0. With this expression and Eqs. (5.49) and (5.53), it can

be shown that the initial covariance matrix of the body angular velocity true state dispersions can

be written as

Db
ωω(t0) =

[
T̄ b
i (t0)ω

i
ip×

]
Db

θθ(t0)
[
T̄ b
i (t0)ω

i
ip×

]ᵀ
, (5.61)

and the initial cross correlation matrix of the body attitude and angular velocity true state disper-

sions can be written as

Db
θω(t0) = Db

θθ(t0)
[
T̄ b
i (t0)ω

i
ip×

]ᵀ
. (5.62)
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The initial variance of the wet mass true state dispersions is σ2
mb

and the initial covariance

matrix of the error parameter true state dispersions is a diagonal matrix Dpp ∈ Rq×q with the error

parameter variances σ2
pk (k = 1, 2, . . . , q) along the main diagonal. Lastly, the initial covariance

matrix of the pseudo-state dispersions is simply the 3× 3 null matrix, i.e., 03×3.

Navigation State Errors

The initial covariance matrix of the true navigation state errors P ∈ Rm×m can be written

as

P(t0) =





P i
rr(t0) P i

rv(t0) 03×3 03×o

[
P i

rv(t0)
]ᵀ P i

vv(t0) 03×3 03×o

03×3 03×3 Pb
θθ(t0) 03×o

0o×3 0o×3 0o×3 Ppp(t0)





, (5.63)

where the elements along the main diagonal are defined as

E
{
δeir(t0)

[
δeir(t0)

]ᵀ}
= P i

rr(t0) , E
{
δeiv(t0)

[
δeiv(t0)

]ᵀ}
= P i

vv(t0) , (5.64)

E
{
δebθ(t0)

[
δebθ(t0)

]ᵀ}
= Pb

θθ(t0) , E
{
δep(t0)

[
δep(t0)

]ᵀ}
= Ppp(t0) . (5.65)

Moreover, it is assumed that, with the notable exception of the inertial position and velocity states,

all of the true navigation states are initially uncorrelated. Hence, the only nonzero off-diagonal

element is defined as

E
{
δeir(t0)

[
δeiv(t0)

]ᵀ}
= P i

rv(t0) . (5.66)

Like the inertial position true state dispersions, the covariance matrix of the inertial position

true navigation state errors at time t0 is defined in terms of the planetographic coordinate system,

then transformed to the inertial coordinate system. As such, the initial covariance matrix of the

position true navigation state errors, assuming that there is no initial correlation between the three

position components, is a diagonal matrix Pg
rr ∈ R3×3 with the north, east, and down variances

σ2
rn , σ

2
re , and σ2

rd , respectively, along the main diagonal. It then follows that the initial covariance

matrix of the inertial position true navigation state errors is given by

P i
rr(t0) = T i

g(t0)Pg
rr

[
T i
g(t0)

]ᵀ
. (5.67)
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The covariance matrix of the inertial velocity true navigation state errors at time t0 is found in the

same manner as that of the inertial velocity true state dispersions [see Eq. (5.57)] and therefore is

given by

P i
vv(t0) =

[
ωi
ip×

]
P i

rr(t0)
[
ωi
ip×

]ᵀ
. (5.68)

Moreover, it can be shown that the cross correlation matrix of the inertial position and velocity

true navigation state errors is given by

P i
rv(t0) = P i

rr(t0)
[
ωi
ip×

]ᵀ
. (5.69)

The covariance matrix of the body attitude true navigation state errors at time t0, assuming

that there is no initial correlation between the three attitude components, is a diagonal matrix

Pb
θθ ∈ R3×3 with the body x, y, and z variances σ2

θx
, σ2

θy
, and σ2

θz
, respectively, along the main

diagonal. In like manner, the initial covariance matrix of the navigation error parameter state errors

is a diagonal matrix Ppp ∈ Ro×o with the error parameter variances σ2
pk (k = 1, 2, . . . , o) along the

main diagonal. Lastly, the covariance matrix of the filter navigation state errors P̂ ∈ Rm×m at

time t0 is assumed to be equal to that of the true navigation state error, i.e.,

P̂(t0) = P(t0) ,

where P(t0) is defined in Eq. (5.63).

Navigation State Dispersions

The initial covariance matrix of the navigation state dispersionsDx̂x̂ ∈ Rm×m can be written

as

Dx̂x̂(t0) =





Di
r̂r̂(t0) Di

r̂v̂(t0) 03×3 03×o

[
Di

r̂v̂(t0)
]ᵀ Di

v̂v̂(t0) 03×3 03×o

03×3 03×3 Db
θ̂θ̂
(t0) 03×o

0o×3 0o×3 0o×3 0o×o





, (5.70)
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where the elements along the main diagonal are defined as

E
{
δr̂i(t0)

[
δr̂i(t0)

]ᵀ}
= Di

r̂r̂(t0) , E
{
δv̂i(t0)

[
δv̂i(t0)

]ᵀ}
= Di

v̂v̂(t0) , (5.71)

E
{
δθ̂b

i (t0)
[
δθ̂b

i (t0)
]ᵀ}

= Db
θ̂θ̂
(t0) , E

{
δp̂(t0)

[
δp̂(t0)

]ᵀ}
= 0o×o . (5.72)

Moreover, it is assumed that, with the notable exception of the inertial position and velocity states,

all of the navigation states are initially uncorrelated. Hence, the only nonzero off-diagonal element

is defined as

E
{
δr̂i(t0)

[
δv̂i(t0)

]ᵀ}
= Db

r̂v̂(t0) . (5.73)

From the definition of the true navigation state error, it follows that the inertial position

navigation state dispersion δr̂i can be written as the sum of the inertial position true state dispersion

δri and the inertial position true navigation state error δeir,

δr̂i = δri + δeir . (5.74)

Using this expression and assuming that the inertial position true state dispersions and true naviga-

tion state errors are initially uncorrelated (i.e., E
{
δri(t0)

[
δeir(t0)

]ᵀ}
= 03×3), it is straightforward

to show that the covariance matrix of the inertial position navigation state dispersions at time t0

is given by

Di
r̂r̂(t0) = Di

rr(t0) +P i
rr(t0) . (5.75)

In like manner, it can be shown that the initial covariance matrices of the inertial velocity and

body attitude navigation state dispersions are respectively given by

Di
v̂v̂(t0) = Di

vv(t0) +P i
vv(t0) , (5.76)

Db
θ̂θ̂
(t0) = Db

θθ(t0) +Pb
θθ(t0) , (5.77)
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and the initial cross correlation matrix of the inertial position and velocity navigation state disper-

sions can be written as

Di
r̂v̂(t0) =

[
Di

rr(t0) +P i
rr(t0)

][
ωi
ip×

]ᵀ
,

= Di
rv(t0) +P i

rv(t0) . (5.78)

Augmented State Cross Correlations

The initial augmented state cross correlations matrix Dxx̂ ∈ Rn×m can be written as

Dxx̂(t0) =





Di
rr̂(t0) Di

rv̂(t0) 03×3 03×o

Di
vr̂(t0) Di

vv̂(t0) 03×3 03×o

03×3 03×3 Db
θθ̂
(t0) 03×o

03×3 03×3 Db
ωθ̂
(t0) 03×o

01×3 01×3 01×3 01×o

0q×3 0q×3 0q×3 0q×o

03×3 03×3 03×3 03×o





, (5.79)

where the nonzero elements are defined as

E
{
δri(t0)

[
δr̂i(t0)

]ᵀ}
= Di

rr̂(t0) , E
{
δvi(t0)

[
δv̂i(t0)

]ᵀ}
= Di

vv̂(t0) , (5.80)

E
{
δri(t0)

[
δv̂i(t0)

]ᵀ}
= Di

rv̂(t0) , E
{
δvi(t0)

[
δr̂i(t0)

]ᵀ}
= Di

vr̂(t0) , (5.81)

E
{
δθb

i (t0)
[
δθ̂b

i (t0)
]ᵀ}

= Db
θθ̂
(t0) , E

{
δωb

ib(t0)
[
δθ̂b

i (t0)
]ᵀ}

= Db
ωθ̂
(t0) . (5.82)

It is straightforward to show that the cross correlation matrix of the inertial position true

and navigation state dispersions at time t0 is simply equal to the initial covariance matrix of the

inertial position true state dispersions, i.e.,

Di
rr̂(t0) = Di

rr(t0) . (5.83)

Likewise, the initial cross correlation matrix of the inertial velocity true and navigation state

dispersions is given by

Di
vv̂(t0) = Di

vv(t0) . (5.84)
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Next, it can be shown that the initial cross correlation matrix of the inertial position true state

dispersions and the inertial velocity navigation state dispersions is given by

Di
rv̂(t0) = Di

rr(t0)
[
ωi
ip×

]ᵀ
, (5.85)

and the initial cross correlation matrix of the inertial velocity true state dispersions and the inertial

position navigation state dispersions is given by

Di
vr̂(t0) =

[
ωi
ip×

]
Di

rr(t0) . (5.86)

Lastly, it follows that the cross correlation matrix of the body attitude true and navigation state

dispersions at time t0 is given by

Db
θθ̂
(t0) = Db

θθ(t0) , (5.87)

and the cross correlation matrix of the body angular velocity true state dispersions and the body

attitude navigation state dispersions at time t0 is given by

Db
ωθ̂
(t0) =

[
T̄ b
i (t0)ω

i
ip×

]
Db

θθ(t0) . (5.88)

Due to the nature of the problem, the true and navigation state dispersions are highly corre-

lated, which is illustrated by the fact that there are nonzero elements in the augmented state cross

correlation matrix defined in Eq (5.79). Moreover, the inertial velocity true and navigation state

dispersions are highly correlated with the inertial position true and navigation state dispersions,

and the body angular velocity true state dispersions are highly correlated with the body attitude

true state dispersions, which is evidenced by the nonzero off-diagonal elements in the initial true

state dispersion, navigation state dispersion, and true navigation state error covariance matrices

defined in Eqs. (5.47), (5.70), and (5.63), respectively.

When states are highly correlated, i.e., the correlation coefficients are close to ±1, it has

been observed that the covariance matrix will generally contain small negative eigenvalues, so that

numerically it is no longer positive-semi-definite (PSD). This can cause numerical instabilities as

the covariance matrix is propagated [83] in the linear covariance simulation and will undoubtedly

cause problems in Monte Carlo simulation initialization routine because the states of the system
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are initialized with the associated eigenvalues and eigenvectors of the initial covariance matrix. If

the states are highly correlated only at time t0, then one way to ensure that the initial covariance

matrix is PSD is to add some additional variance to the diagonal elements of the correlated states.

For example, if the inertial velocity state is highly correlated with the inertial position state, then

one would simply add some additional variance to the diagonal elements of the inertial velocity

state covariance until the negative eigenvalues disappear. There is, however, no general rule of

thumb for the amount of additional variance to add. It follows naturally though that it should be

large enough so that the covariance matrix is PSD, yet small enough that the modified values of

the state variance still represent the original values.

5.5.2 Covariance Propagation

From linear system theory, it follows that the solution to Eq. (5.4) is given by [7]

xa(t) = Φa(t, t0)xa(t0) +

ˆ t

t0

Φa(t, τ)G(τ)η(τ) dτ +

ˆ t

t0

Φa(t, τ)W(τ)w(τ) dτ , (5.89)

where the augmented state transition matrix Φa(t, t0) ∈ R!×! is the unique solution to the matrix

differential equation

Φ̇a(t, t0) = F(t)Φa(t, t0) , (5.90)

with the initial condition Φa(t0, t0) = I!×! . Using Eq. (5.89) in the definition of the augmented

state dispersion covariance matrix given in Eq. (5.36) and utilizing the covariance of the process

noise Sw and measurement noise Sη respectively defined in Eqs. (3.35) and (3.37) to replace terms,

it follows that the augmented state covariance propagation equation is given by

Ca(t) = Φa(t, t0)Ca(t0)
[
Φa(t, t0)

]ᵀ
+Qw(t) +Qη(t) , (5.91)

where

Qw(t) =

ˆ t

t0

Φa(t, τ)W(τ)Sw(τ)
[
W(τ)

]ᵀ[
Φa(t, τ)

]ᵀ
dτ . (5.92)

and

Qη(t) =

ˆ t

t0

Φa(t, τ)G(τ)Sη(τ)
[
G(τ)

]ᵀ[
Φa(t, τ)

]ᵀ
dτ . (5.93)

In lieu of having to numerically integrate Eq. (5.90) and solve the integrals in Eqs. (5.92) and (5.93),
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it is assumed that the simulation time step dt = t− t0 is ‘small’ enough such that the following are

valid approximations,

Φa(t, t0) " I!×! + F(t) dt+

[
F(t) dt

]2

2!
+

[
F(t) dt

]3

3!
+ · · ·+

[
F(t) dt

]n

n!
, (5.94)

Qw(t) " Φa(t, t)W(t)Sw(t)
[
W(t)

]ᵀ[
Φa(t, t)

]ᵀ
dt = W(t)Sw(t)

[
W(t)

]ᵀ
dt , (5.95)

Qη(t) " Φa(t, t)G(t)Sη(t)
[
G(t)

]ᵀ[
Φa(t, t)

]ᵀ
dt = G(t)Sη(t)

[
G(t)

]ᵀ
dt . (5.96)

Therefore, for this research, these approximations are used in conjunction with Eq. (5.91) to prop-

agate the augmented state covariance matrix Ca. The filter navigation state error covariance P̂ is

propagated in a similar manner with Eqs. (3.89)–(3.94) on page 45 and Fx defined in Eq. (4.61) on

page 69.

5.5.3 Covariance Correction

In general, discrete instantaneous state covariance corrections are associated with and

used to account for impulsive translational or rotational maneuvers. In this research, there are

no impulsive translational or rotational maneuvers. However, in order to resolve the fine-count

partial-derivative dilemma encountered and discussed in the previous chapter [see § 4.4.3], the

pseudo-state θ̂b̂
i,com (i.e., the Euler rotation vector of the inertial-to-desired-body attitude quater-

nion q̂b̂i,comcommand issued by guidance) was introduced and appended to the true and modified

true state vectors. Then, every time PEG is called the issued attitude command is applied as an

instantaneous augmented state covariance correction, and when guidance modes to fine count (and

PEG is no longer called) no more covariance corrections are made, thereby properly capturing the

effects of the constant attitude command on the covariance of the augmented state while eliminating

the need for the partial derivatives of the attitude command during fine count.

The general form of a discrete instantaneous state correction at time tj is written as

x+c[tj ] = x−c[tj ] + d(x−c[tj ], tj) , (5.97)

where the correction d : Rn → Rn is a nonlinear function of the state x−c[tj ] ∈ Rn, and the

superscripts −c and +c on the state x denote respectively just before and after state correction.

When PEG is called there is an instantaneous change in the pseudo-state θ̂b̂
i,com, which can be



101

written in the same general form as Eq. (5.97),

θ̂b̂,+c
i,com[tk] = θ̂b̂,−c

i,com[tk] +
{
θ̂PEG

(
x̂−c[tk], tk

)
− θ̂b̂,−c

i,com[tk]
}

, (5.98)

where PEG is denoted here as θ̂PEG : Rm′ → R3, which is a nonlinear function of the navigation

states x̂−c[tk] at time tk [see § 3.2.2]. It is important to note that the pseudo-state θ̂b̂
i,com is the

only state that changes, i.e., all other true and navigation states remain unchanged. Therefore, the

following expressions respectively represent the true and navigation state corrections at time tk,

x+c[tk] = x−c[tk] + d
(
x−c[tk], x̂

−c[tk], tk
)
, (5.99)

x̂+c[tk] = x̂−c[tk] , (5.100)

where the correction d : Rn′ × Rm′ → Rn′
is now a nonlinear function of not only the true

states x−c[tk] ∈ Rn′
but also the navigation states x̂−c[tk] ∈ Rm′

as well. Next, given that the

true and navigation states at time tk can be respectively written as

x[tk] = x̄[tk] + δx[tk] , (5.101)

x̂[tk] = x̄[tk] + δx̂[tk] , (5.102)

and the nominal true and nominal navigation state correction equations at time tk are respectively

x̄+c[tk] = x̄−c[tk] + d
(
x̄−c[tk], x̄

−c[tk], tk
)
, (5.103)

x̄+c[tk] = x̄−c[tk] , (5.104)

then it follows that Eqs. (5.99) and (5.100) can be linearized using the process outlined in § 4.2,

yielding the following linear state correction expressions

δx+c[tk] =
{
In×n +D−c

x [tk]
}
δx−c[tk] +D−c

x̂ [tk] δx̂
−c[tk] , (5.105)

δx̂+c[tk] = δx̂−c[tk] , (5.106)
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where D−c
x [tk] ∈ Rn×n and D−c

x̂ [tk] ∈ Rn×m are the Jacobians defined respectively as

D−c
x [tk] ≡

∂d
(
x−c[tk], x̂−c[tk], tk

)

∂xm[tk]

∣∣∣∣∣
x̄, x̄

(5.107)

and

D−c
x̂ [tk] ≡

∂d
(
x−c[tk], x̂−c[tk], tk

)

∂x̂m[tk]

∣∣∣∣∣
x̄, x̄

. (5.108)

Recall that the inertial-to-body attitude quaternion qbi ∈ R4 is the standard representation of

the launch vehicle attitude. However, due to state covariance matrix singularity issues associated

with the quaternion [54], a modified state vector approach is adopted and utilized to form the

augmented state covariance correction equations. In this approach, the inertial-to-body attitude

quaternions qbi , q̂
b
i ∈ R4 respectively in the true state vector x ∈ Rn′

, defined as

x =
(
ri, vi, qbi , ω

b
ib, mb, p, θ̂

b̂
i,com

)
, (5.109)

and the navigation state vector x̂ ∈ Rm′
, defined as

x̂ =
(
r̂i, v̂i, q̂bi , p̂

)
, (5.110)

are respectively replaced with the Euler rotation vectors θb
i , θ̂

b
i ∈ R3, which represent the attitude

of the body frame b with respect to the inertial frame i expressed in body coordinates, resulting

in the modified true state vector xm ∈ Rn (where n = n′ − 1), as defined in Eq. (5.45), and the

modified navigation state vector x̂m ∈ Rm, as defined in Eq. (5.46). Consequently, the linearized

state correction equations, given in Eqs. (5.105) and (5.106), are based upon the modified state

vectors, such that δx ∈ Rn, δx̂ ∈ Rm, and the dimensions of the Jacobians D−c
x and D−c

x̂ have

been defined accordingly. Since θ̂b̂
i,com is the only state that changes, it follows that the Jacobians

are simply

D−c
x [tk] =




0n−3×n−3 0n−3×3

03×n−3 −I3×3



 (5.111)
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and

D−c
x̂ [tk] =





0n−3×m

∂θ̂PEG
(
x̂−c[tk], tk

)

∂x̂m[tk]

∣∣∣∣∣
x̂=x̄



 , (5.112)

where the remaining partial derivatives are those of the guidance attitude command issued by PEG

with respect to the navigation states x̂ at time tk.

Lastly, the linearized state correction equations, given in Eqs. (5.105) and (5.106), can be

combined using the definition of the augmented state vector xa, defined in Eq. (5.3), to form the

augmented state correction equation at time tk,

x+c
a [tk] =

[
I!×! +Dxa [tk]

]
x−c
a [tk] , (5.113)

where

Dxa [tk] ≡




D−c

x [tk] D−c
x̂ [tk]

0m×n 0m×m



 . (5.114)

Multiplying Eq. (5.113) by its transpose, applying the expectation operator E{ }, and recogniz-

ing that Ca(tk) = E
{
xa(tk)

[
xa(tk)

]ᵀ}
, it follows that the augmented state covariance correction

equation at time tk is given by

C+c
a [tk] =

[
I!×! +Dxa [tk]

]
C−c
a [tk]

[
I!×! +Dxa [tk]

]ᵀ
. (5.115)

5.5.4 Covariance Shaping

In order to simulate in linear covariance the discrete event that occurs when guidance modes

from PEG to fine count, the nominal value of the modified true state vector x̄m, the nominal time

derivative of the modified true state vector ˙̄xm, the event trigger Ψ, the event trigger Jacobian Ψx̂,

and the mapping function Jacobian Mx must all be specified at the nominal event time t̄e. Under

the assumption that the modified true state vector xm ∈ Rn is given by Eq. (5.45), it follows that

the nominal value of the modified true state vector x̄m at the nominal event time t̄e is given by

x̄m(t̄e) =
(
r̄i, v̄i, θ̄b

i , ω̄
b
ib, m̄b, p̄, θ̄

b
i,com

)
, (5.116)
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and the corresponding vector of nominal time derivatives is given by

˙̄xm(t̄e) =
(
˙̄ri, ˙̄vi, ˙̄θb

i , ˙̄ωb
ib, ˙̄mb, ˙̄p, ˙̄θb

i,com

)
. (5.117)

These nominal time derivatives of the modified true states at the nominal event time t̄e are computed

with the following set of first-order differential equations:

˙̄ri(t̄e) = v̄i(t̄e) , (5.118)

˙̄vi(t̄e) = − µ
∥∥r̄i(t̄e)

∥∥2 ū
i
r(t̄e) +

[
T̄ b
i (t̄e)

]ᵀ Tvac

m̄b(t̄e)
bb
1 , (5.119)

˙̄θb(t̄e) = ω̄b
ib(t̄e) , (5.120)

˙̄ωb
ib(t̄e) =

[
J̄ b
b (t̄e)

]−1[
m̄b

com(t̄e)− ω̄b
ib(t̄e)× J̄ b

b (t̄e) ω̄
b
ib(t̄e)

]
, (5.121)

˙̄mb(t̄e) = −β , (5.122)

˙̄p(t̄e) = 0p×1 , (5.123)

˙̄θb
i,com(t̄e) = T̄ b

i (t̄e) ω̄
i
ib,com(t̄e) . (5.124)

It is important to note that the nominal values of the true error parameter states p̄ ∈ Rp are zero

for all time t. For this reason, the corresponding nominal dynamics are set to zero as well.

The event trigger is defined to occur when the time-to-go tgo is equal to desired length of

fine count tfc, as given by

Ψ(x̂, te) = tgo
[
x̂(te)

]
− tfc , (5.125)

where the time-to-go is written as tgo
[
x̂(te)

]
to denote that it is computed by PEG and therefore

a function of the navigation states x̂ at the event time te. The Jacobian of the event trigger with

respect to the navigation states at the nominal event time t̄e is therefore given by

Ψx̂(t̄e) =
∂tgo

[
x̂(te)

]

∂x̂

∣∣∣∣∣
x̄

. (5.126)

Due to the highly nonlinear nature of PEG, an analytic expression for the time-to-go tgo parameter

in terms of the navigation states x̂ could not be obtained. For this reason, the partial derivatives

of the event trigger were computed numerically using the methods described in § 4.4.3.
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In the formulation of the event trigger theory, found in § 5.4, it was shown that the covariance

of the augmented states at the nominal event time t̄e is given by

C+s
a (t̄e) = Φs(t̄e)C−s

a (t̄e)
[
Φs(t̄e)

]ᵀ
, (5.127)

where the covariance shaping matrix Φs is given by

Φs(t̄e) =




In×n − ˙̄x(t̄e)

[
Ψx̂(t̄e)Mx(t̄e) ˙̄x(t̄e)

]−1
Ψx̂(t̄e)

0m×n Im×m −Mx(t̄e) ˙̄x(t̄e)
[
Ψx̂(t̄e)Mx(t̄e) ˙̄x(t̄e)

]−1
Ψx̂(t̄e)



 , (5.128)

and Mx is the mapping function Jacobian defined in Eq. (5.11).

For this research, the only discrete event of concern is the last guidance mode change or

transition from PEG to fine count. It is important to note that although, from a Monte Carlo

perspective, MECO takes place at varying times with respect to lift-off (t0), it always occurs tfc

seconds after the sample event time te. Thus, it is a time driven event and covariance shaping is

not needed.

5.5.5 Covariance Post-Processing

In a Monte Carlo simulation, if a variable of interest is not explicitly modeled as one of

the system states (i.e., in the true or navigation state vectors) but can be expressed as a linear

or nonlinear function of the system states (true or navigation), then the covariance of the variable

of interest can be computed in a relatively straightforward manner. For example, let x ∈ Ra be

the vector of system states and y ∈ Rb be the variable of interest defined by the nonlinear vector

function

y(t) = f(x, t) . (5.129)

Using this expression, the covariance Pyy of the variable of interest at the time tk, from N Monte

Carlo samples, is then computed as follows

Pyy(tk) =
1

N − 1

N∑

j=1

[
yj(tk)− ȳ(tk)

][
yj(tk)− ȳ(tk)

]ᵀ

=
1

N − 1

N∑

j=1

[
f(xj , tk)− f(x̄, tk)

][
f(xj , tk)− f(x̄j , tk)

]ᵀ
,

(5.130)
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where ¯ above the variable denotes the nominal value. Note that this last equation can also be

equivalently expressed using the expectation operator,

Pyy(tk) = E
{[

f(x, tk)− f(x̄, tk)
][
f(x, tk)− f(x̄, tk)

]ᵀ}
. (5.131)

In a linear covariance simulation, however, there is only the nominal value and covariance of the

system states, thus the calculation of the covariance of the variable of interest requires a different

approach. First, the nonlinear vector function is linearized about the nominal using a truncated

first-order Taylor series expansion,

f(x, tk) " f(x̄, tk) +
∂f(x, tk)

∂x

∣∣∣∣
x̄

[
x(tk)− x̄(tk)

]
. (5.132)

Substituting this expression into Eq. (5.131) and canceling terms produces

Pyy(tk) = E

{[
∂f(x, tk)

∂x

∣∣∣∣
x̄

[
x(tk)− x̄(tk)

]] [ ∂f(x, tk)
∂x

∣∣∣∣
x̄

[
x(tk)− x̄(tk)

]]ᵀ}
.

Moving the transpose inside the square brackets and reversing the order of the factors yields

Pyy(tk) = E

{
∂f(x, tk)

∂x

∣∣∣∣
x̄

[
x(tk)− x̄(tk)

][
x(tk)− x̄(tk)

]ᵀ
[
∂f(x, tk)

∂x

∣∣∣∣
x̄

]ᵀ}
.

The partial derivatives can now be moved out of the expectation operator because they are known

nonstochastic quantities

Pyy(tk) =
∂f(x, tk)

∂x

∣∣∣∣
x̄

E
{[

x(tk)− x̄(tk)
][
x(tk)− x̄(tk)

]ᵀ}
[
∂f(x, tk)

∂x

∣∣∣∣
x̄

]ᵀ
,

and noting that by definition

Pxx(tk) = E
{[

x(tk)− x̄(tk)
][
x(tk)− x̄(tk)

]ᵀ}
, (5.133)

it follows that the covariance of the variable of interest can be computed as follows

Pyy(tk) =
∂f(x, tk)

∂x

∣∣∣∣
x̄

Pxx(tk)

[
∂f(x, tk)

∂x

∣∣∣∣
x̄

]ᵀ
. (5.134)
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Now that the theory has been introduced, it is applied several important variables of interest

for the powered ascent problem. They are the five guidance target parameters: altitude, velocity

magnitude, flight path angle, inclination, and right ascension of the ascending node. Two additional

variables of interest, not used in this research but important for powered ascent flight through an

atmosphere, are the inertial velocity magnitude and flight path angle relative to the planet, hereafter

referred to simply as the relative velocity magnitude and relative flight path angle, respectively.

Planetocentric Altitude

The planetocentric altitude ralt is given by

ralt =
∥∥ri

∥∥− req , (5.135)

where ri is the inertial position vector expressed in inertial coordinates, and req is the mean

equatorial radius of planet. Since the altitude is only a function of the inertial position, it follows

that the associated variance σ2
alt can be computed as follows

σ2
alt =

∂ralt
∂ri

∣∣∣∣
x̄

Prr

[
∂ralt
∂ri

∣∣∣∣
x̄

]ᵀ
, (5.136)

where Prr ∈ R3×3 is the covariance of the inertial position vector and the corresponding partial

derivative is given by

∂ralt
∂ri

∣∣∣∣
x̄

=
[
ūi
r

]ᵀ
, (5.137)

where ūi
ris the unit vector of the nominal inertial position expressed in inertial coordinates.

Inertial Velocity Magnitude

The inertial velocity magnitude v is given by

v =
∥∥vi

∥∥ , (5.138)
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where vi is the inertial velocity vector expressed in inertial coordinates. The associated variance

σ2
v can be computed as follows

σ2
v =

∂v

∂vi

∣∣∣∣
x̄

Pvv

[
∂v

∂vi

∣∣∣∣
x̄

]ᵀ
, (5.139)

where Pvv ∈ R3×3 is the covariance of the inertial velocity vector and the corresponding partial

derivative is given by

∂v

∂vi

∣∣∣∣
x̄

=
[
ūi
v

]ᵀ
,

where ūi
v is the unit vector of the nominal inertial velocity expressed in inertial coordinates.

Inertial Flight Path Angle

The inertial flight path angle (FPA) γ can be written as

sin γ =
[
ui
r

]ᵀ
ui
v , (5.140)

where ui
r and ui

v are respectively the unit vectors of the inertial position and velocity expressed

in inertial coordinates. Since the flight path angle is a function of both the inertial position and

velocity states, it follows that the associated variance σ2
γ can be computed as follows

σ2
γ =

[
∂γ

∂ri

∣∣∣∣
x̄

∂γ

∂vi

∣∣∣∣
x̄

]



Prr Prv

[
Prv

]ᵀ
Pvv




[

∂γ

∂ri

∣∣∣∣
x̄

∂γ

∂vi

∣∣∣∣
x̄

]ᵀ
, (5.141)

where Prv ∈ R3×3 is the cross correlation covariance of the inertial position and velocity vectors

and the corresponding partial derivatives are given by

∂γ

∂ri

∣∣∣∣
x̄

=

{[
ūi
v

]ᵀ
∥∥r̄i

∥∥
(
I3×3 − ūi

r

[
ūi
r

]ᵀ)
}

1

cos γ̄
, (5.142)

∂γ

∂vi

∣∣∣∣
x̄

=

{[
ūi
r

]ᵀ
∥∥v̄i

∥∥
(
I3×3 − ūi

v

[
ūi
v

]ᵀ)
}

1

cos γ̄
. (5.143)
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Inclination

The inclination i can be written as

cos i =
[
ii3
]ᵀ
ui
h , (5.144)

where ii3 is the unit inertial frame basis vector, as defined in Appendix A.1, and ui
h is the unit

angular momentum vector of the launch vehicle, expressed in inertial coordinates respectively. The

angular momentum vector hi is defined as

hi = ri × vi . (5.145)

Since the inclination is a function of both the inertial position and velocity states, it follows that

the associated variance σ2
inc can be computed as follows

σ2
inc =

[
∂i

∂ri

∣∣∣∣
x̄

∂i

∂vi

∣∣∣∣
x̄

]



Prr Prv

[
Prv

]ᵀ
Pvv




[

∂i

∂ri

∣∣∣∣
x̄

∂i

∂vi

∣∣∣∣
x̄

]ᵀ
, (5.146)

where the corresponding partial derivatives are given by

∂i

∂ri

∣∣∣∣
x̄

=

{ [̄
ii3
]ᵀ

∥∥h̄i(t)
∥∥
(
I3×3 − ūi

h

[
ūi
h

]ᵀ)[−v̄i×
]
}

1

− sin ī
, (5.147)

∂i

∂vi

∣∣∣∣
x̄

=

{[̄
ii3
]ᵀ

∥∥h̄i
∥∥
(
I3×3 − ūi

h

[
ūi
h

]ᵀ)[
r̄i×

]
}

1

− sin ī
. (5.148)

Right Ascension of the Ascending Node

The right ascension of the ascending (RAAN) Ω can be written as

cosΩ =
[
ii1
]ᵀ
ui
n , (5.149)

where ii1 is the unit inertial frame basis vector, as defined in Appendix A.1, and ui
n is the unit node

vector, expressed in inertial coordinates respectively. The node vector ni is defined as

ni = ii3 × hi , (5.150)
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where ii3 is the unit inertial frame basis vector and hi is the angular momentum vector defined

in Eq. (5.145). Note that if the second component of the node vector n2 < 0, then the RAAN

computed with Eq. (5.149) needs to be placed in the appropriate quadrant with Ω = 360◦ − Ω.

Since the RAAN is a function of both the inertial position and velocity states, it follows that the

associated variance σ2
Ω can be computed as follows

σ2
Ω =

[
∂Ω

∂ri

∣∣∣∣
x̄

∂Ω

∂vi

∣∣∣∣
x̄

]



Prr Prv

[
Prv

]ᵀ
Pvv




[

∂Ω

∂ri

∣∣∣∣
x̄

∂Ω

∂vi

∣∣∣∣
x̄

]ᵀ
, (5.151)

where the corresponding partial derivatives are given by

∂Ω

∂ri

∣∣∣∣
x̄

=

{
[̄ii1]

ᵀ
∥∥n̄i

∥∥
(
I3×3 − ūi

n

[
ūi
n

]ᵀ)[̄
ii3×

][
−v̄i×

]
}

1

− sin Ω̄
, (5.152)

∂Ω

∂vi

∣∣∣∣
x̄

=

{
[̄ii1]

ᵀ
∥∥n̄i

∥∥
(
I3×3 − ūi

n

[
ūi
n

]ᵀ)[̄
ii3×

][
r̄i×

]
}

1

− sin Ω̄
. (5.153)

Relative Velocity Magnitude

The relative velocity magnitude vrel is given by

vrel =
∥∥vi

rel

∥∥ , (5.154)

where the relative velocity vector vi
rel, expressed in inertial coordinates, is defined as

vi
rel = vi − ωi

ip × ri , (5.155)

and ωi
ip is the angular velocity vector of the planet expressed in inertial coordinates. Since the

relative velocity magnitude is a function of both the inertial position and velocity states, it follows

that the associated variance σ2
vrel can be computed as follows

σ2
vrel =

[
∂vrel
∂ri

∣∣∣∣
x̄

∂vrel
∂vi

∣∣∣∣
x̄

]



Prr Prv

[
Prv

]ᵀ
Pvv




[

∂vrel
∂ri

∣∣∣∣
x̄

∂vrel
∂vi

∣∣∣∣
x̄

]ᵀ
, (5.156)
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where the corresponding partial derivatives are given by

∂vrel
∂ri

∣∣∣∣
x̄

= −
[
ūi
vrel

]ᵀ[
ω̄i
p×

]
, (5.157)

∂vrel
∂vi

∣∣∣∣
x̄

=
[
ūi
vrel

]ᵀ
, (5.158)

and ūi
vrel is the nominal unit relative velocity vector expressed in inertial coordinates.

Relative Flight Path Angle

The relative flight path angle γrel can be written as

sin γrel =
[
ui
r

]ᵀ
ui
vrel , (5.159)

where ui
r and ui

vrel are respectively the unit inertial position and unit Moon-relative velocity vectors

expressed in inertial coordinates. Since the relative FPA is a function of both the inertial position

and velocity states, it follows that the associated variance σ2
γrel can be computed as follows

σ2
γrel =

[
∂γrel
∂ri

∣∣∣∣
x̄

∂γrel
∂vi

∣∣∣∣
x̄

]



Prr Prv

[
Prv

]ᵀ
Pvv
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x̄
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∂vi
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x̄

]ᵀ
, (5.160)

where the corresponding partial derivatives are given by

∂γrel
∂ri

∣∣∣∣
x̄

=

{[
ūi
vrel

]ᵀ
∥∥r̄i
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I3×3 − ūi

r

[
ūi
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[
ūi
r

]ᵀ
∥∥v̄i

rel
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(
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[
ūi
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]ᵀ)[
ω̄i
p×

]
}

1

cos γ̄rel
, (5.161)

∂γrel
∂vi

∣∣∣∣
x̄

=

{ [
ūi
r

]ᵀ
∥∥v̄i

rel

∥∥
(
I3×3 − ūi

vrel

[
ūi
vrel

]ᵀ)
}

1

cos γ̄rel
. (5.162)

In summary, the purpose of this chapter was to formulate the linear covariance equations,

thereby completing the development process of the linear covariance simulation. To this end, the

augmented state vector and its associated covariance matrix were introduced, the event trigger

theory was developed for the general case, and the methods for initializing, propagating, correct-

ing, and shaping the augmented state covariance matrix were established. It is important to point

out that the linear covariance equations presented herein constitute the first formulation and de-

velopment of a linear covariance simulation for evaluation of a launch vehicle GN&C system in a
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closed-loop setting during powered ascent.
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Chapter 6

Launch Scenario & Nominal Ascent Profile

“A theory can be proved by experiment; but no path leads

from experiment to the birth of a theory.”

– Albert Einstein

Now that all of the necessary theory and equations have been developed, the next step

is to setup and define the details of the experiment that will be used to test the theory and

demonstrate the capabilities of the analysis tool. Hence, the purpose of this chapter is to define

and describe the launch scenario and accompanying nominal reference trajectory or nominal ascent

profile. The launch scenario and nominal ascent profile designed for this dissertation are based

upon the scenarios and ascent trajectories outlined in Sostaric and Merriam [48] and Fill [71].

6.1 Launch Scenario

The launch scenario consists of a launch from the surface of the Moon, where the the operat-

ing environment is the vacuum of space and the Moon is modeled as a spheroid with a 1738.09018 km

radius, rotational rate of 1.52504146e-4 deg/s, and gravitational constant of 4902.777969 km3/s2.

The launch site is the Aristarchus Plateau located at 26 deg latitude and 311 deg (east) longitude,

and the target orbit is defined by a 1783.2 km semi-major axis, 0.0168 eccentricity, 145.765 deg

inclination, and 356.768 deg RAAN. In addition, the first opportunity to launch into the target

orbit corresponds to a northerly launch direction and 290.1 deg launch azimuth.

The launch vehicle is modeled as a rigid, SSTO vehicle with time-varying mass and mass

MOI. The initial wet mass of the launch vehicle is 6100 kg, which consists of 3100 kg of dry mass

and a fuel budget of 3000 kg, and the mass flow rate is a constant 8.16 kg/s. Moreover, the

initial principle-axis mass MOI about the body x, y, and x axes are respectively 4540.0 kgm2,

7491.6 kgm2, and 8491.6 kgm2. Thrust is provided by a single liquid-propellant engine with a

320 s specific impulse and a 25.6 kN (5755.1 lbf) nominal average thrust, in vacuum.
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Figure 6.1: Nominal reference trajectory. Plot of the nominal planetocentric altitude versus nominal
downrange position with respect to the launch site.

6.2 Nominal Ascent Profile

The nominal ascent profile begins with a 3 s vertical rise to an altitude of 11.6 m, during

which the attitude of the launch vehicle remains constant with respect to the rotating Moon. This

is followed by a 10 s pitch-over maneuver, which rotates the thrust direction from the vertical to

the optimal heading and pitch angle for ascent. PEG takes over 13 s after lift-off and steers the

vehicle into the desired target orbit. At 321.73 s after lift-off, PEG is terminated and guidance

modes into fine count, where the inertial thrust command is held constant. MECO occurs 4 s later

or 325.73 s after lift-off. Figure 6.1 shows the nominal altitude versus downrange position profile.

Nominal time history profiles for each of the five vehicle states (i.e., inertial position, inertial

velocity, body attitude, body angular velocity, and wet mass) are shown in Figures 6.2–6.6. Observe

that each figure contains a bar near the bottom that denotes the portions of the time line over which

vertical rise (VR), pitch over (PO), and PEG occur. Moreover, in order to present a better view of

the VR and PO segments of the nominal trajectory, the first 16 s of the trajectory are plotted on

a different scale than the rest of the trajectory. Figure 6.4 (body y-axis) shows that the optimal

pitch angle for ascent is approximately 50 deg off of the vertical, which therefore attests to the

necessity of a pitch-over maneuver. The nominal wet mass at MECO is 3442.8 kg, thus leaving

342.8 kg in reserve, as shown in Figure 6.6. Figures 6.7 and 6.8 show the nominal time history

profiles respectively of the principle-axis mass MOI and ACS torque command. Figures 6.9 and

6.10 show the nominal time history profiles respectively of the commanded body attitude and body
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Table 6.1: Nominal reference trajectory. Guidance targets and simulation insertion errors.

Target Parameter Target Value Insertion Error

Planetocentric Altitude, ralt 15.24 km −0.2555639 m

Inertial Velocity Magnitude, v 1686.156 m/s −0.0239552 m/s

Inertial Flight Path Angle, γ 0 deg −0.0068248 deg

Inclination, i 145.765 deg −0.0000252 deg

RAAN, Ω 356.786 deg −0.0000709 deg

angular velocity from guidance along with the actual values for direct comparison. Figure ?? shows

the nominal time history profile of the thrust acceleration.

Recall that the five terminal targets for PEG are planetocentric altitude, inertial velocity

magnitude, inertial FPA, inclination, and RAAN. The values used in this research are given in

Table 6.1 and corresponding nominal time history profiles are provided in Figures 6.11–6.15. In

Figures 6.14 and 6.15, it would appear that the target values for the inclination and RAAN are

achieved early on in the trajectory (i.e., around 50 s) rather than at the end or MECO. However, this

is nothing more than an artifact of the scaling of the vertical axes in these two figures. What is not

clearly shown is that the inclination and RAAN actually overshoot their targets slightly, approach

the targets from above, and finally converge to their target values near MECO. Ideally, the terminal

targets would be achieved perfectly in the nominal reference trajectory, i.e., the orbit insertion errors

would nominally be zero. In reality, however, the simulation that generates the nominal reference

trajectory is only able to get close to the target values. As such, the orbit insertion errors are

generally nonzero and therefore provide a simple measure of how well the simulation is able to

perform under nominal conditions. The simulation induced insertion errors for this research are

given in Table 6.1, which indicate a well-tuned and reasonably accurate simulation.
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Figure 6.11: Nominal reference trajectory. Nominal time history of the nominal planetocentric
altitude with a target value of 15.24 km.
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Figure 6.12: Nominal reference trajectory. Nominal time history of the nominal inertial velocity
magnitude with a target value of 1686.156 m/s.
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Figure 6.13: Nominal reference trajectory. Nominal time history of the nominal inertial flight path
angle with a target value of 0 deg.
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Figure 6.14: Nominal reference trajectory. Nominal time history of the nominal inclination angle
with a target value of 145.765 deg.
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Figure 6.15: Nominal reference trajectory. Nominal time history of the nominal right ascension of
the ascending node (RAAN) angle with a target value of 356.786 deg.
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Chapter 7

Results & Discussion

“The study and knowledge of the universe would somehow

be lame and defective were no practical results to follow.”

– Marcus Tullius Cicero

For this research, four studies were selected and performed using the two related but very

different techniques, viz., Monte Carlo (MC) and linear covariance (LC). The first three studies are

each focused on a specific group of states or parameters, i.e., vehicle states, sensor error parameters,

and actuator error parameters. The purpose of these studies was to validate the implementation of

the nonlinear models and algorithms in the MC simulation and the corresponding linearized models

and algorithms in the LC simulation. The fourth and final study examines the performance of the

entire GN&C system in the presence of sensor errors, actuator execution uncertainties, and random

environment disturbances. The purpose of this study is to demonstrate the remarkable capabilities

of the linear covariance simulation and analysis tool as it pertains to the thesis of the dissertation.

Only the results from the fourth and final study are presented, compared, and discussed here.

The GN&C system performance study consists of three cases or levels of uncertainty: base-

line, low cost, and high cost. The baseline case represents the nominal or typical uncertainty that

one might expect for a lunar launch. The low/high cost cases, on the other hand, represent a ten-

fold decrease/increase in accuracy with respect to the baseline, which can in general be associated

with the cost of the sensors, actuators, or other various system components. The purposes behind

including the low and high cost cases are two-fold: 1) to push and test the capabilities of the

linear covariance simulation beyond the nominal operating regime to see if there are areas in the

trajectory where the linear approximation might no longer hold, and 2) to explore and quantify the

effects (if any) that the accuracy/cost of sensors, actuators, or other system components as well as

knowledge of the environment might have on system performance.
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7.1 Performance Metrics

In this research, two key metrics are used to evaluate, measure, and quantify the perfor-

mance of the launch vehicle GN&C system during powered ascent. They are 1) the covariance of

the true state dispersions D and 2) the covariance of the true navigation state errors P . Recall

that the true state dispersions δx are defined as the difference between the true states x and the

nominal states x̄, i.e., the deviation of the actual trajectory from the nominal reference trajec-

tory. This deviation is caused by several contributing factors, including but not limited to actuator

execution variability, GN&C algorithm selection and performance, navigation error, and random

disturbances acting on the launch vehicle. The covariance of the true state dispersions is therefore

a measure of how far the actual trajectory is expected to deviate from the nominal path, given the

contributing factors previously mentioned. On the other hand, the true navigation state errors δe

are defined as the difference between the true navigation states x and the navigation states x̂, i.e.,

the deviation of the actual trajectory from the estimated trajectory. This deviation is also caused

by several contributing factors, including but not limited to sensor errors, system modeling errors,

initial condition uncertainties, and errors in the quantities derived from imperfect measurements.

The covariance of the true navigation state errors is therefore a measure of how far the naviga-

tion filter’s estimate or knowledge of the actual trajectory is expected to deviate from the actual

trajectory, given the contributing factors listed above.

7.1.1 Plots

Before proceeding with the presentation and discussion of the results, a brief introduction

to the type of plots that will be used to present and compare the results from MC and LC analysis

is in order. The most commonly used type of plot is the nominal time history of the ±3σ bounds,

where σ is the standard deviation or square root of the variance, and the term ‘nominal’ refers

only to the time line or horizontal plot axis. An example is given in Figure 7.1, which shows the

nominal time history of the planetocentric altitude true state dispersions ±3σ. In MC analysis,

the time histories of the true state dispersions δx(t) and true navigation state errors δe(t) from

N simulations are computed and collected. Figure 7.2 (top plot) shows the nominal time history

of the planetocentric altitude true state dispersions from 150 MC simulations (or samples). From

these N samples, the covariance of the true state dispersions D(t) and the true navigation state
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Figure 7.1: Sample results. Nominal time history comparison of the planetocentric altitude true
state dispersions ±3σ from MC and LC analysis.

errors P(t) are computed respectively using

D(t) =
1

N − 1

N∑

i=1

δxi(t)
[
δxi(t)

]ᵀ
, (7.1)

P(t) =
1

N − 1

N∑

i=1

δei(t)
[
δei(t)

]ᵀ
, (7.2)

and from the covariance matrices the associated ±3σ bounds are obtained. The ±3σ bounds are

significant in that, for a normal or Gaussian distribution, they will contain 99.73% of the samples,

as illustrated in Figure 7.2 (bottom plot). LC is able to generate the same statistical ±3σ bounds,

as shown in Figure 7.1, but with only one simulation run. The gap in the MC data near the end

of the trajectory, which is most obvious in Figure 7.2, is due to the time-varying nature of the

guidance mode change from PEG to fine count and the result of resetting the simulation clock

(during post processing) to a common time t̄e for each sample run as the event is triggered, such

that all subsequent results are then measured with respect to the common time t̄e. This is key

because doing so allows for direct comparison of the MC and LC time history results.

7.1.2 Fractional Error

It is important to recall and note that the statistical accuracy of MC analysis, i.e., the error

in the estimate of the true standard deviation, is a function of and determined by the number of

MC samples obtained. For example, the estimated or computed standard deviation from 100 MC
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Figure 7.2: Sample results. Nominal time history of the planetocentric altitude true state disper-
sions. (top) Hair plot of 150 MC samples. (bottom) For a normal or Gaussian distribution, 99.73%
of the MC samples will fall within the ±3σ bounds.

samples would not be as accurate a representation of the true standard deviation as would that of

1000 MC samples. To quantify this, the fractional error εσ in the estimate of the true standard

deviation is used, which is given by [84]

εσ =
1√

2(N − 1)
, (7.3)

where N is the number of MC samples. Note that the fractional error is the same for any multiplier

of the standard deviation σ (i.e., 1σ, 2σ, 3σ, etc.). This is due to the fact that any multiplier

applied to the estimated value must also be applied to the true value, and since the fractional error

is essentially a ratio it can be shown that the multipliers cancel one another. From the expression

above, it follows that the fractional error for N = 300, 500, and 1000 is respectively 4.1%, 3.2%,
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Figure 7.3: Sample results. Nominal time history comparison of the planetocentric altitude true
state dispersions ±3σ from 300, 500, and 1000 MC samples.

and 2.2%. There are two important things to take away from this: 1) there is only a 1% increase

in accuracy by doubling the number of MC samples from 500 to 1000, and 2) the fractional error is

never zero, not even for 100,000 MC samples. Now, it is one thing to talk about the fractional error

associated with the number of sample runs and quite another to visualize graphically the impact

that the number of runs has on the actual results. Figure 7.3 was generated for this purpose, which

shows the nominal time history of the planetocentric altitude true state dispersions ±3σ for 300,

500, and 1000 MC samples. In this example, it is readily observed that the three sets of results are

nearly identical. Admittedly, this may not always be the case. However, after taking all of these

things into consideration, it was decided that 500 MC samples and a corresponding fractional error

of 3.2% would be sufficient (i.e., provide enough accuracy) for the needs of this research.

7.1.3 Normalized Percent Difference

When comparing the results from MC and LC analysis, it is of primary interest to this

research to provide a quantitative measure of just how much the two sets of results differ. The

most common method and the one selected for this research is the normalized percent difference,

which in this case is MC normalized, as given by

%Diff. =

∣∣σMC − σLC
∣∣

σMC
∗ 100 , (7.4)

where | · | denotes the absolute value operator and ∗ denotes the multiplication operator. It is
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Figure 7.4: Nominal reference trajectory. Guidance modes and five key points along the nominal
reference trajectory (NRT).

important to note that this method fails when either σMC or σLC is exactly zero. For example, if

σLC is zero and σMC is nonzero, then the percent difference is 100%, regardless of the actual value

of σMC. Furthermore, if σMC is zero then a division by zero occurs in Eq. (7.4), which makes the

percent difference undefined, regardless of the value of σLC. This measure is hereafter computed at

five key points along the trajectory, which are illustrated in Figure (7.4) and described in greater

detail as follows:

• t0 (t = 0 s) engine ignition, guidance in VR mode, guidance flying open-loop;

• tPO (t = 3 s) guidance switches from VR to PO mode, guidance continues flying open-loop;

• tPEG (t = 13 s) guidance switches from PO to PEG mode, guidance switches to closed-loop;

• tFC (t̄ = 321.73 s) guidance switches from PEG to fine count (FC), event trigger occurs,

guidance switches back to open-loop;

• tMECO (t̄ = 325.73 s) MECO occurs, end of simulation.

7.2 GN&C System Performance Study

The purpose of this study is to examine the performance of the entire GN&C system in the

presence of sensor errors, actuator execution variabilities, and random environment disturbances.

As such, the uncertainty values in the initial conditions of all of the true states (i.e., vehicle states,

sensor parameters, actuator parameters, and environment disturbance parameters) are considered.

Since the inertial navigation filter operates unaided, i.e., no other measurements are available

besides those from the IMU, it follows that only the inertial position, inertial velocity, and body

attitude navigation states are estimated. This is because without additional sensor measurements

the sensor and actuator error parameters are not observable.
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7.2.1 Baseline Case

The 3σ uncertainty values in the initial conditions of the true states and initial knowledge

of the navigation states employed in this baseline case of the GN&C system performance study

are provided in Tables 7.1 and 7.2. Recall that the baseline case represents the nominal or typical

uncertainty that one might expect for a lunar launch. For a launch vehicle that is initially sitting

on the launch pad, it is perhaps more intuitive to define the uncertainty in the initial value of

the inertial position state in terms of the planetographic coordinate system (i.e., north-east-down)

and then later transform it to the inertial coordinate system. Hence, the 3σ uncertainty values

associated with the initial inertial position state, specified in Tables 7.1 and 7.2, are expressed in

planetographic coordinates rather than inertial coordinates. Moreover, it can be shown that due

to the nature of the problem the initial inertial velocity state is highly correlated with the initial

inertial position state. As a result, any uncertainty in the initial inertial velocity state is due solely

to the uncertainty in the initial inertial position state. For example, an uncertainty of 100.0 m

(3σ) in the north/south and east/west directions and 10.0 m (3σ) in the up/down directions of

the inertial position corresponds to an uncertainty of 0.27 mm/s (3σ) in the north/south and

east/west directions and 0 mm/s (3σ) in the up/down directions in the inertial velocity. Hence,

the uncertainty values associated with the initial inertial velocity state, given in Tables 7.1 and 7.2,

are not user-defined but rather the result of the values chosen for the initial inertial position state.

Furthermore, it can be shown that the same applies to the initial body angular velocity state, i.e.,

it is highly correlated with the initial body attitude state error and thus the uncertainty in the

initial angular velocity is solely determined by the uncertainty in the initial attitude of the launch

vehicle. Lastly, the baseline 3σ value specified for the uncertainty in the initial wet mass is 1% of

the initial nominal wet mass of the launch vehicle.

The 3σ values specified in Table 7.1 associated with the gyro and accelerometer sensor error

parameters are consistent with those used in [85] and [12], whereas the 3σ values associated with

the thruster and ACS actuator error parameters are based upon a 1% error or uncertainty, i.e.,

for a scale factor with units of parts-per-million (PPM), a 1% error corresponds to 1% of 1 million

parts or 1× 104 PPM. For a misalignment with units of radians, a 1% uncertainty corresponds to

1% of 1 rad or 0.01 rad. However, for the bias and noise, 1% of the nominal thrust and 1% of the

nominal torque are respectively employed for the thruster and ACS. Furthermore, it is assumed
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that the thruster bias will only affect the thrust vector along the nominal thrust direction or body

x-axis. Accordingly, a value of zero is specified for the thruster bias in the body y- and z-axis

directions. Lastly, it is assumed that all of the sensor error parameters and the majority of the

actuator error parameters will be nearly constant throughout the ascent burn. Hence, the associated

time constants τ are set to values much larger than the nominal ascent burn or 1 × 108 s. The

notable exception is the thruster misalignment, which could conceivably vary more rapidly due to

fluctuations in the exhaust velocity vector. Thus, the thruster misalignment time constant is set

to a conservative value of 10 s.

The translational and rotational acceleration amplitudes listed in Table 7.1 correspond to

the amplitudes of the sinusoidal disturbance models defined in Eqs. (3.10) and (3.11) on page 20,

which represent a crude attempt at modeling the effects of fuel slosh on the vehicle dynamics.

The actual amplitudes and frequencies of the sinusoidal disturbances associated with fuel slosh are

dependent upon many factors, e.g., fuel mass, fuel tank geometry, fuel damping mechanisms, vehicle

mass, moments-of-inertia, and attitude control law design. It is thus impossible to know exactly

what the frequencies and amplitudes will be for the lunar ascent vehicle at this time. However, LC

analysis provides a way for the GN&C engineer to evaluate the GN&C system performance over a

range of frequencies and amplitudes in a fraction of the time that it would take using MC techniques.

In this research, a single disturbance frequency ωod = 2.33 rad/s (0.37 Hz) is considered, which is

consistent with those employed in [86] and derived from the following expression expression for a

cylindrical fuel tank geometry [87]

ωod =

√
2 g

r
, (7.5)

where g = 1.6m/s2 is the acceleration due to gravity (in this case, that of the moon) and r = 0.6 m

is the radius of the cylindrical fuel tank. A simple pendulum model, based upon [88], was used

to generate the 3σ values associated with the translational and rotational acceleration amplitudes

specified in Table 7.1.

Launch Vehicle States

The launch vehicle’s ascent trajectory is completely represented by the five launch vehicle

states: inertial position, inertial velocity, body attitude, body angular velocity, and wet mass.

Figures 7.5–7.14 show the nominal time history results from MC and LC analysis of the true
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Table 7.1: GN&C system performance study, baseline case. Summary of true states and associated
initial conditions 3σ.

Error Source 3σ Uncertainty τ , s

Vehicle States

Position
100.0 m (north/south, east/west) —

10.0 m (up/down) —

Velocity
0.27 mm/s (north/south, east/west) —

0 mm/s (up/down) —

Attitude 1.0 deg (per axis) —

Angular Velocity

2.4× 10−6 deg/s (x axis) —

1.2× 10−6 deg/s (y axis) —

2.7× 10−6 deg/s (z axis) —

Mass 60.0 kg —

Gyro

Scale Factor 4.8 PPM (per axis) 1× 108

Misalignment 60.0 arcsec (per axis) 1× 108

Bias 0.06 deg/hr (per axis) 1× 108

Noise 1.5× 10−4 deg/
√
s (per axis) —

Accelerometer

Scale Factor 198.0 PPM (per axis) 1× 108

Misalignment 60.0 arcsec (per axis) 1× 108

Bias 90.0 µg (per axis) 1× 108

Noise 5.1× 10−4 m/s
√
s (per axis) —

Thruster

Scale Factor 1× 104 PPM (per axis) 1× 108

Misalignment 0.01 rad (per axis) 10.0

Bias
256.0 N (x axis) 1× 108

0 N (y axis, z axis) —

Noise 256.0 N/
√
s (per axis) —

ACS

Scale Factor 1× 104 PPM (per axis) 1× 108

Misalignment 0.01 rad (per axis) 1× 108

Bias 4.45 N-m (per axis) 1× 108

Noise 4.45 N-m/
√
s (per axis) —

Translational Acceleration Amplitudes 1, 2 0.03 m/s2 (per axis) 1× 108

Rotational Acceleration Amplitudes 1, 2 0.015 rad/s2 (per axis) 1× 108
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Table 7.2: GN&C system performance study, baseline case. Summary of true and filter navigation
states and associated initial conditions 3σ.

Error Source 3σ Uncertainty τ , s

Vehicle States

Position
100.0 m (north/south, east/west) —

10.0 m (up/down) —

Velocity
0.27 mm/s (north/south, east/west) —

0 mm/s (up/down) —

Attitude 0.1 deg (per axis) —

state dispersions ±3σ and true navigation state errors ±3σ associated with the five launch vehicle

states.1 The true state dispersions are a measure of how far the actual flight path is expected

to deviate from the nominal flight path, whereas the true navigation state errors are a measure

of how far the navigation filter’s estimate (or knowledge) of the actual trajectory is expected to

deviate from the actual trajectory. Hence, the corresponding ±3σ bounds respectively represent

the performance envelope of the GN&C system and navigation filter. Furthermore, the position

and velocity, attitude and angular velocity, and wet mass true state dispersions are also known as

trajectory control dispersions, attitude control dispersions, and propellant dispersions, respectively.

All of the figures associated with the first four launch vehicle states (i.e., position, velocity,

attitude, and angular velocity) contain plots of the x, y, and z components as well as a plot of

the root-sum-square (RSS) of the components, which represents the total true state dispersions or

total true navigation state errors of a given state. In order to provide a quick and easy way to

visually compare these results, the vertical axes of the x, y, and z results are plotted on the same

scale, and the vertical axes of the true navigation state error results are plotted on the same scales

as the corresponding true state dispersion results. Occasionally, important transients or trends

are inadvertently masked by the scaling of the vertical or horizontal axes of a given plot and are

therefore somewhat difficult to discern or recognize. Figures 7.9 and 7.12 are a good example of

this. Consequently, Figures 7.10 and 7.13 have been added, which provide a zoomed-in view of the

first and last 16 s of Figures 7.9 and 7.12, respectively.

It is important to note that the gap in the MC data, near the end of the trajectory, is due to

1Note that there are no true navigation state error results for the body angular velocity and wet mass states. This
is due to them not being estimated by the navigation filter, as explained in § 3.2.1.
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the time-varying nature of the guidance mode change from PEG to fine count event and the result

of resetting the simulation clock (during post processing) for each sample run to a common time

t̄e (i.e., the nominal time of the event) as the event is triggered, such that all subsequent results

are then measured with respect to the common time t̄e. This allows the MC and LC results to be

plotted together. The abrupt change in the LC true state dispersion results, towards the end of the

trajectory, is also due to the guidance mode change from PEG to fine count event and the result of

applying covariance shaping to the augmented state covariance matrix at the nominal time of the

event, as explained in § 5.5.4. Notice that, as expected, the covariance shaping has no affect on the

LC true navigation state error results.

It is observed in Figures 7.5–7.14 that the MC and LC results match exceptionally well. In

many of the plots, the two sets of results are practically indistinguishable. In order to get at better

sense of just how much they actually differ, the normalized percent difference was computed at five

key points along the trajectory, as explained in § 7.1.3. Tables 7.3–7.6 list the MC and LC 3σ values

and corresponding normalized percent difference for the true state dispersions and true navigation

state errors (denoted respectively as δx and δe) associated with the five launch vehicle states.

Recall that the percent difference measure fails when either the MC or LC σ value is exactly zero.

Such a failure occurs at time t0 in the z-component of the inertial velocity true state dispersions and

true navigation state errors, as shown in Table 7.4, where the LC values are exactly zero, thereby

resulting in a percent difference of 100%. The corresponding MC values were originally zero but

were made nonzero because the inertial position and inertial velocity states are highly correlated,

such that several of the eigenvalues of the initial true state dispersion and true navigation state error

covariance matrices were negative. This caused problems in the MC simulation state initialization

routine because the states of the system are initialized with the eigenvalues and eigenvectors of the

covariance matrices and the routine requires that the eigenvalues be nonnegative. To circumvent

this problem, some additional variance was added to the diagonal elements of the inertial velocity

state covariance until the negative eigenvalues disappeared.

Orbit Insertion

Orbit insertion dispersion results at MECO for the burn time, guidance target parameters,

and propellant expenditure are provided in Table 7.7, which includes the nominal, MC and LC 3σ,
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Figure 7.6: GN&C system performance study, baseline case. Nominal time history comparison of
the inertial position true navigation state errors ±3σ from MC and LC analysis.
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Figure 7.9: (1 of 2) GN&C system performance study, baseline case. Nominal time history compar-
ison of the body attitude true state dispersions ±3σ from MC and LC analysis.
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Figure 7.11: GN&C system performance study, baseline case. Nominal time history comparison of
the body attitude true navigation state errors ±3σ from MC and LC analysis.
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Figure 7.12: (1 of 2) GN&C system performance study, baseline case. Nominal time history com-
parison of the body angular velocity true state dispersions ±3σ from MC and LC analysis.
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Figure 7.13: (2 of 2) GN&C system performance study, baseline case. Nominal time history compar-
ison of the body angular velocity true state dispersions ±3σ from MC and LC analysis. Zoomed-in
view of the first and last 16 s.



148

!!"#

!!$#

!!%#

!!!#

!!%#

!!$#

!!"#

!# !&# !'## !'&# !%## !%&# !(##

)
*+
+,
!-
.

/012,!+

/342!56*62!70+823+09:+!;(!!!!<=>?!5@+621!A23B931*:C2!564D@,!E*+2F0:2!?*+2

G?
)?

Figure 7.14: GN&C system performance study, baseline case. Nominal time history comparison of
the wet mass true state dispersions ±3σ from MC and LC analysis.

Table 7.3: GN&C system performance study, baseline case. Inertial position true state dispersions
3σ, true navigation state errors 3σ, and normalized percent difference from MC and LC analysis
at five key points along the trajectory.

!x, 3" !e, 3" !x, 3" !e, 3" !x, 3" !e, 3" !x, 3" !e, 3"

MC 76.5139 83.1256 72.2200 69.8368 86.0061 88.3215 135.894 139.956

LC 80.9800 80.9800 73.7883 73.7883 89.9862 89.9862 141.774 141.774

% Diff. 5.83691 2.58120 2.17167 5.65827 4.62776 1.88485 4.32732 1.29918

MC 76.4975 83.1252 72.2287 69.8363 85.9966 88.3216 135.883 139.956

LC 80.9798 80.9793 73.7891 73.7885 89.9863 89.9859 141.775 141.774

% Diff. 5.85942 2.58155 2.16028 5.65923 4.63938 1.88430 4.33570 1.29909

MC 76.4506 83.1254 72.7686 69.8192 85.9392 88.3210 136.108 139.947

LC 81.0681 80.9739 73.9558 73.7857 90.0755 89.9808 141.969 141.766

% Diff. 6.03989 2.58829 1.63154 5.68113 4.81298 1.87924 4.30553 1.29990

MC 2724.81 369.228 1246.26 310.802 974.219 387.150 3150.69 618.718

LC 2827.36 376.281 1263.88 338.509 1017.47 403.158 3259.85 647.080

% Diff. 3.76346 1.91033 1.41410 8.91467 4.44003 4.13489 3.46451 4.58396

MC 2730.04 377.724 1238.60 319.835 971.918 397.630 3151.49 634.885

LC 2834.44 385.010 1256.21 348.217 1015.40 413.934 3262.39 663.950

% Diff. 3.82412 1.92897 1.42180 8.87384 4.47408 4.10042 3.51890 4.57791

y z

t0

RSS

Inertial Position, m

tPO

tPEG

tFC

tMECO

x
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Table 7.4: GN&C system performance study, baseline case. Inertial velocity true state dispersions
3σ, true navigation state errors 3σ, and normalized percent difference from MC and LC analysis
at five key points along the trajectory.

!x, 3" !e, 3" !x, 3" !e, 3" !x, 3" !e, 3" !x, 3" !e, 3"

MC 1.922E-04 1.860E-04 2.037E-04 2.212E-04 1.442E-07 1.442E-07 2.801E-04 2.890E-04

LC 1.964E-04 1.964E-04 2.155E-04 2.155E-04 0 0 2.916E-04 2.916E-04

% Diff. 2.17167 5.61161 5.79480 2.55494 100.000 100.000 4.10416 0.90718

MC 0.17439 0.01780 0.18356 0.01676 0.17203 0.01973 0.30610 0.03142

LC 0.17939 0.01831 0.18898 0.01672 0.16521 0.02029 0.30852 0.03204

% Diff. 2.86679 2.84600 2.95358 0.19191 3.96535 2.80829 0.79082 1.97603

MC 0.48917 0.08542 0.76516 0.05419 0.64038 0.07430 1.11123 0.12551

LC 0.49048 0.08795 0.77509 0.05453 0.63437 0.07759 1.11524 0.12934

% Diff. 0.26748 2.96188 1.29837 0.63686 0.93880 4.43845 0.36052 3.05444

MC 2.47664 2.17462 3.47787 2.32887 3.34016 2.71709 5.42088 4.18750

LC 2.78981 2.23014 3.69733 2.49802 3.33579 2.78677 5.70796 4.35657

% Diff. 12.6452 2.55278 6.31023 7.26331 0.13069 2.56453 5.29581 4.03741

MC 2.38235 2.19500 3.60462 2.37558 3.48493 2.76541 5.55100 4.25545

LC 2.63675 2.25103 3.80199 2.54762 3.43458 2.83502 5.76228 4.42661

% Diff. 10.67832 2.55260 5.47540 7.24213 1.44465 2.51723 3.80620 4.02198

tPO

tPEG

tFC

tMECO

Inertial Velocity, m/s

x y z RSS

t0

Table 7.5: GN&C system performance study, baseline case. Body attitude true state dispersions
3σ, true navigation state errors 3σ, and normalized percent difference from MC and LC analysis
at five key points along the trajectory.

!x, 3" !e, 3" !x, 3" !e, 3" !x, 3" !e, 3" !x, 3" !e, 3"

MC 0.96090 0.09521 1.01445 0.09728 1.00744 0.09808 1.72261 0.16777

LC 1.00000 0.10000 1.00000 0.10000 1.00000 0.10000 1.73205 0.17321

% Diff. 4.06942 5.03166 1.42418 2.79305 0.73897 1.96277 0.54828 3.23829

MC 0.12366 0.09519 0.12678 0.09730 0.12596 0.09807 0.21732 0.16777

LC 0.12590 0.10000 0.12573 0.10000 0.12570 0.10000 0.21785 0.17321

% Diff. 1.80757 5.05244 0.82846 2.77597 0.20035 1.96925 0.24228 3.24134

MC 0.12708 0.10261 0.12342 0.09609 0.12629 0.09525 0.21755 0.16981

LC 0.12733 0.10143 0.12617 0.10022 0.12719 0.10152 0.21979 0.17504

% Diff. 0.20068 1.14762 2.22604 4.28998 0.71279 6.58533 1.02868 3.07945

MC 0.23694 0.10178 1.45061 0.09638 1.37834 0.10027 2.01500 0.17235

LC 0.22995 0.10357 1.37229 0.10040 1.34120 0.10352 1.93258 0.17755

% Diff. 2.94903 1.75828 5.39912 4.17120 2.69502 3.23832 4.09049 3.01868

MC 0.24995 0.10177 1.77577 0.09642 1.68850 0.10027 2.46310 0.17236

LC 0.23919 0.10358 1.70073 0.10041 1.68073 0.10352 2.40303 0.17756

% Diff. 4.30552 1.77592 4.22576 4.13761 0.46020 3.24554 2.43889 3.01696

tPO

tPEG

tFC

tMECO

Body Attitude, deg

x y z RSS

t0



150

Table 7.6: GN&C system performance study, baseline case. (left) Body angular velocity and (right)
wet mass true state dispersions 3σ and normalized percent difference from MC and LC analysis at
five key points along the trajectory.

x y z RSS

!x, 3" !x, 3" !x, 3" !x, 3"

MC 2.4102E-06 1.1746E-06 2.7236E-06 3.8219E-06

LC 2.3923E-06 1.1668E-06 2.6617E-06 3.7642E-06

% Diff. 0.743645 0.661167 2.27334 1.50967

MC 0.183478 0.178958 0.186340 0.316880

LC 0.178453 0.177796 0.177710 0.308282

% Diff. 2.73869 0.649236 4.63169 2.71335

MC 0.180536 0.191801 0.179001 0.318469

LC 0.178623 0.177966 0.177832 0.308549

% Diff. 1.05968 7.21322 0.653027 3.11488

MC 0.215020 0.776454 0.752452 1.10241

LC 0.204769 0.765876 0.745710 1.08838

% Diff. 4.76735 1.36241 0.895915 1.27190

MC 0.187651 0.185243 0.177300 0.317747

LC 0.178896 0.178189 0.178033 0.308951

% Diff. 4.66576 3.80798 0.413412 2.76824

tPO

tPEG

tFC

tMECO

Body Angular Velocity, deg/s

t0

Mass, kg

!x, 3"

MC 57.4629

LC 60.0000

% Diff. 4.41514

MC 57.4629

LC 60.0000

% Diff. 4.41514

MC 57.4629

LC 60.0000

% Diff. 4.41514

MC 40.9902

LC 44.0551

% Diff. 7.47724

MC 40.9902

LC 44.0551

% Diff. 7.47724

tMECO

t0

tPO

tPEG

tFC

and normalized percent difference values. With the exception of the inertial velocity magnitude,

all of the normalized percent difference values for the orbit insertion dispersion results are less than

4%. One thing that the normalized percent difference does not take into account is the nominal

value. In the case of the inertial velocity magnitude, the difference in the 3σ values from the two

sets of results is only 0.17454 m/s, which is fairly insignificant when compared to the nominal value

of 1686.13 m/s.

7.2.2 High Cost Case

The purpose of the high cost case is to explore what effects the accuracy/cost of the sensors,

actuators, or other system components and knowledge of the system and environment might have

on the performance of the GN&C system. The 3σ uncertainty values in the initial conditions of the

true state and initial knowledge of the navigation states employed in this high cost case are simply

those specified in Tables 7.1 and 7.2, respectively, decreased by a factor of 10.
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Table 7.7: GN&C system performance study, baseline case. Orbit insertion dispersion results at
MECO.

Parameter Nominal MC, 3σ LC, 3σ % Diff.

Burn Time, s 325.730 4.76313 4.81843 1.16115

Planetocentric Altitude, m 15239.7 398.687 409.697 2.76146

Inertial Velocity Magnitude, m/s 1686.13 1.26162 1.08708 13.8350

Flight Path Angle, deg −6.8248e−03 9.6515e−02 9.9958e−02 3.56713

Inclination, deg 145.765 6.5890e−03 6.8274e−03 3.61803

RAAN, deg 356.786 0.148147 0.151769 2.44455

Propellant Expenditure, kg 2657.22 40.9902 44.0551 7.47724

Launch Vehicle States

Figures 7.15–7.24 show the nominal time history results from MC and LC analysis of the

true state dispersions ±3σ and true navigation state errors ±3σ associated with the five launch

vehicle states: inertial position, inertial velocity, body attitude, body angular velocity, and wet

mass. Figures 7.20 and 7.23 provide a zoomed-in view of the first and last 16 s of Figures 7.19 and

7.22, respectively. It is observed in all of the nominal time history results that the MC and LC

results are nearly indistinguishable. To quantify just how much the two sets of results actually differ,

the normalized percent difference was computed at five key points along the trajectory, as explained

in § 7.1.3. Tables 7.8–7.11 list the MC and LC 3σ values and corresponding normalized percent

difference for the true state dispersions and true navigation state errors (denoted respectively as

δx and δe) associated with the five launch vehicle states.

Orbit Insertion

Orbit insertion dispersion results at MECO for the burn time, guidance target parameters,

and propellant expenditure are provided in Table 7.12, which includes the nominal, MC and LC 3σ,

and normalized percent difference values. With the exception of the inertial velocity magnitude,

all of the normalized percent difference values for the orbit insertion dispersion results are less than

9%. In the case of the inertial velocity magnitude, the difference in the 3σ values from the two sets

of results is only 0.027481 m/s, which is clearly negligible when compared to the nominal value of

1686.13 m/s.
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Figure 7.15: GN&C system performance study, high cost case. Nominal time history comparison
of the inertial position true state dispersions ±3σ from MC and LC analysis.
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Figure 7.16: GN&C system performance study, high cost case. Nominal time history comparison
of the inertial position true navigation state errors ±3σ from MC and LC analysis.
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Figure 7.17: GN&C system performance study, high cost case. Nominal time history comparison
of the inertial velocity true state dispersions ±3σ from MC and LC analysis.
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Figure 7.18: GN&C system performance study, high cost case. Nominal time history comparison
of the inertial velocity true navigation state errors ±3σ from MC and LC analysis.
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Figure 7.19: (1 of 2) GN&C system performance study, high cost case. Nominal time history
comparison of the body attitude true state dispersions ±3σ from MC and LC analysis.
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Figure 7.20: (2 of 2) GN&C system performance study, high cost case. Nominal time history
comparison of the body attitude true state dispersions ±3σ from MC and LC analysis. Zoomed-in
view of the first and last 16 s.
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Figure 7.21: GN&C system performance study, high cost case. Nominal time history comparison
of the body attitude true navigation state errors ±3σ from MC and LC analysis.
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Figure 7.22: (1 of 2) GN&C system performance study, high cost case. Nominal time history
comparison of the body angular velocity true state dispersions ±3σ from MC and LC analysis.
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Figure 7.23: (2 of 2) GN&C system performance study, high cost case. Nominal time history
comparison of the body angular velocity true state dispersions ±3σ from MC and LC analysis.
Zoomed-in view of the first and last 16 s.
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Figure 7.24: GN&C system performance study, high cost case. Nominal time history comparison
of the wet mass true state dispersions ±3σ from MC and LC analysis.

Table 7.8: GN&C system performance study, high cost case. Inertial position true state disper-
sions 3σ, true navigation state errors 3σ, and normalized percent difference from MC and LC
analysis at five key points along the trajectory.

!x, 3" !e, 3" !x, 3" !e, 3" !x, 3" !e, 3" !x, 3" !e, 3"

MC 7.65141 8.31255 7.22199 6.98365 8.60061 8.83217 13.5894 13.9956

LC 8.09800 8.09800 7.37883 7.37883 8.99862 8.99862 14.1774 14.1774

% Diff. 5.83671 2.58111 2.17173 5.65873 4.62771 1.88463 4.32726 1.29923

MC 7.64979 8.31267 7.22290 6.98379 8.59966 8.83219 13.5884 13.9958

LC 8.09798 8.09793 7.37891 7.37885 8.99863 8.99859 14.1775 14.1774

% Diff. 5.85876 2.58334 2.15987 5.65671 4.63939 1.88399 4.33538 1.29770

MC 7.64576 8.31579 7.27765 6.98585 8.59373 8.83308 13.6115 13.9992

LC 8.10681 8.09739 7.39558 7.37857 9.00755 8.99808 14.1969 14.1766

% Diff. 6.03015 2.62633 1.62042 5.62167 4.81528 1.86799 4.30016 1.26730

MC 271.997 36.0266 124.573 32.8187 100.489 39.2962 315.593 62.6034

LC 282.736 37.6281 126.388 33.8509 101.747 40.3158 325.985 64.7080

% Diff. 3.94816 4.44533 1.45672 3.14497 1.25221 2.59456 3.29276 3.36181

MC 272.505 36.8396 123.812 33.7495 100.306 40.3276 315.673 64.2067

LC 283.444 38.5010 125.621 34.8217 101.540 41.3934 326.239 66.3950

% Diff. 4.01444 4.50977 1.461531 3.17683 1.230935 2.64295 3.34712 3.40815

tPO

tPEG

tFC

tMECO

x y z

t0

RSS

Inertial Position, m
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Table 7.9: GN&C system performance study, high cost case. Inertial velocity true state disper-
sions 3σ, true navigation state errors 3σ, and normalized percent difference from MC and LC
analysis at five key points along the trajectory.

!x, 3" !e, 3" !x, 3" !e, 3" !x, 3" !e, 3" !x, 3" !e, 3"

MC 1.922E-05 1.859E-05 2.037E-05 2.212E-05 1.667E-07 1.667E-07 2.801E-05 2.890E-05

LC 1.964E-05 1.964E-05 2.155E-05 2.155E-05 0 0 2.916E-05 2.916E-05

% Diff. 2.17173 5.65018 5.81129 2.56870 100.000 100.000 4.11094 0.912418

MC 1.738E-02 1.713E-03 1.842E-02 1.650E-03 1.720E-02 1.977E-03 3.061E-02 3.092E-03

LC 1.794E-02 1.831E-03 1.890E-02 1.672E-03 1.652E-02 2.029E-03 3.085E-02 3.204E-03

% Diff. 3.22100 6.89632 2.58081 1.35305 3.93922 2.63155 0.779606 3.60037

MC 4.854E-02 8.211E-03 7.691E-02 5.405E-03 6.384E-02 7.572E-03 1.111E-01 1.241E-02

LC 4.905E-02 8.795E-03 7.751E-02 5.453E-03 6.344E-02 7.759E-03 1.115E-01 1.293E-02

% Diff. 1.05027 7.10611 0.782609 0.886728 0.627874 2.48088 0.370583 4.23684

MC 0.243737 0.208322 0.354733 0.240019 0.310632 0.267221 0.530788 0.415228

LC 0.278981 0.223014 0.369733 0.249802 0.333579 0.278677 0.570796 0.435657

% Diff. 14.4600 7.05266 4.22847 4.07571 7.38730 4.28702 7.53756 4.91993

MC 0.232603 0.210266 0.368734 0.244744 0.320621 0.271829 0.541171 0.421903

LC 0.263675 0.225103 0.380199 0.254762 0.343458 0.283502 0.576228 0.442661

% Diff. 13.3581 7.05624 3.10946 4.09365 7.12275 4.29443 6.47797 4.92011

tPO

tPEG

tFC

tMECO

Inertial Velocity, m/s

x y z RSS

t0

Table 7.10: GN&C system performance study, high cost case. Body attitude true state disper-
sions 3σ, true navigation state errors 3σ, and normalized percent difference from MC and LC
analysis at five key points along the trajectory.

!x, 3" !e, 3" !x, 3" !e, 3" !x, 3" !e, 3" !x, 3" !e, 3"

MC 9.594E-02 9.778E-03 1.015E-01 9.450E-03 1.007E-01 9.835E-03 1.722E-01 1.678E-02

LC 1.000E-01 1.000E-02 1.000E-01 1.000E-02 1.000E-01 1.000E-02 1.732E-01 1.732E-02

% Diff. 4.23414 2.27501 1.50901 5.82045 0.718639 1.67650 0.574686 3.20948

MC 1.215E-02 9.775E-03 1.243E-02 9.451E-03 1.262E-02 9.833E-03 2.149E-02 1.678E-02

LC 1.259E-02 1.000E-02 1.257E-02 1.000E-02 1.257E-02 1.000E-02 2.178E-02 1.732E-02

% Diff. 3.57687 2.30196 1.11299 5.81401 0.417935 1.69450 1.38631 3.22299

MC 1.283E-02 1.020E-02 1.215E-02 9.268E-03 1.240E-02 1.002E-02 2.158E-02 1.704E-02

LC 1.273E-02 1.014E-02 1.262E-02 1.002E-02 1.272E-02 1.015E-02 2.198E-02 1.750E-02

% Diff. 0.759876 0.526872 3.86598 8.13072 2.58495 1.28007 1.82773 2.72365

MC 2.446E-02 1.042E-02 1.408E-01 9.280E-03 1.396E-01 1.025E-02 1.998E-01 1.732E-02

LC 2.300E-02 1.036E-02 1.372E-01 1.004E-02 1.341E-01 1.035E-02 1.933E-01 1.776E-02

% Diff. 5.99837 0.621765 2.55342 8.19999 3.93915 0.964295 3.27865 2.53443

MC 2.421E-02 1.042E-02 1.729E-01 9.280E-03 1.719E-01 1.026E-02 2.450E-01 1.732E-02

LC 2.392E-02 1.036E-02 1.701E-01 1.004E-02 1.681E-01 1.035E-02 2.403E-01 1.776E-02

% Diff. 1.19217 0.625399 1.64405 8.19303 2.23670 0.935799 1.93090 2.52106

tPO

tPEG

tFC

tMECO

Body Attitude, deg

x y z RSS

t0
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Table 7.11: GN&C system performance study, high cost case. (left) Body angular velocity and
(right) wet mass true state dispersions 3σ and normalized percent difference from MC and LC
analysis at five key points along the trajectory.

x y z RSS

!x, 3" !x, 3" !x, 3" !x, 3"

MC 2.4098E-07 1.1766E-07 2.7218E-07 3.8210E-07

LC 2.3923E-07 1.1668E-07 2.6617E-07 3.7642E-07

% Diff. 0.724186 0.828975 2.20926 1.48497

MC 1.8351E-02 1.7888E-02 1.8639E-02 3.1688E-02

LC 1.7845E-02 1.7780E-02 1.7771E-02 3.0828E-02

% Diff. 2.75454 0.608702 4.65615 2.71465

MC 1.8071E-02 1.9181E-02 1.7902E-02 3.1858E-02

LC 1.7862E-02 1.7797E-02 1.7783E-02 3.0855E-02

% Diff. 1.15584 7.21581 0.663495 3.14937

MC 2.1094E-02 8.2051E-02 7.4169E-02 0.112599

LC 2.0477E-02 7.6588E-02 7.4571E-02 0.108838

% Diff. 2.92472 6.65886 0.541780 3.33940

MC 1.8408E-02 1.7451E-02 1.8863E-02 3.1610E-02

LC 1.7890E-02 1.7819E-02 1.7803E-02 3.0895E-02

% Diff. 2.81440 2.10599 5.61657 2.26174

tPO

tPEG

tFC

tMECO

Body Angular Velocity, deg/s

t0

Mass, kg

!x, 3"

MC 5.74629

LC 6.00000

% Diff. 4.41514

MC 5.74629

LC 6.00000

% Diff. 4.41514

MC 5.74629

LC 6.00000

% Diff. 4.41514

MC 4.10670

LC 4.40551

% Diff. 7.27626

MC 4.10670

LC 4.40551

% Diff. 7.27626

tMECO

t0

tPO

tPEG

tFC

Table 7.12: GN&C system performance study, high cost case. Orbit insertion dispersion results at
MECO.

Parameter Nominal MC, 3σ LC, 3σ % Diff.

Burn Time, s 325.730 0.476812 0.481843 1.05520

Planetocentric Altitude, m 15239.7 38.3075 40.9697 6.94960

Inertial Velocity Magnitude, m/s 1686.13 0.136189 0.108708 20.1790

Flight Path Angle, deg −6.8248e−03 9.2014e−03 9.9958e−03 8.63334

Inclination, deg 145.765 6.5013e−03 6.8274e−03 5.01655

RAAN, deg 356.786 1.4290e−02 1.5177e−02 6.20754

Propellant Expenditure, kg 2657.22 4.10670 4.40551 7.27626
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7.2.3 Low Cost Case

The purposes of the low cost case are to test the capabilities of the LC simulation beyond the

nominal operating regime to see if there are areas in the trajectory where the linear approximation

might no longer hold, and to explore what effects the accuracy/cost of the sensors, actuators,

or other system components and knowledge of the system and environment might have on the

performance of the GN&C system. The 3σ uncertainty values in the initial conditions of the true

state and initial knowledge of the navigation states used in this low cost case study are simply

those specified in Tables 7.1 and 7.2, respectively, increased by a factor of 10.

Launch Vehicle States

Figures 7.25–7.34 show the nominal time history results from MC and LC analysis of the

true state dispersions ±3σ and true navigation state errors ±3σ associated with the five launch

vehicle states: inertial position, inertial velocity, body attitude, body angular velocity, and wet

mass. Figures 7.30 and 7.33 provide a zoomed-in view of the first and last 16 s of Figures 7.29 and

7.32, respectively. It is observed in all of the nominal time history results that the MC and LC

results are nearly indistinguishable. To quantify just how much the two sets of results actually differ,

the normalized percent difference was computed at five key points along the trajectory, as explained

in § 7.1.3. Tables 7.13–7.16 list the MC and LC 3σ values and corresponding normalized percent

difference for the true state dispersions and true navigation state errors (denoted respectively as

δx and δe) associated with the five launch vehicle states.

Orbit Insertion

Orbit insertion dispersion results at MECO for the burn time, guidance target parameters,

and propellant expenditure are provided in Table 7.17, which includes the nominal, MC and LC 3σ,

and normalized percent difference values. All of the normalized percent difference values for the

orbit insertion dispersion results are less than 11%.

7.2.4 Case Comparison

Figures 7.35–7.38 show the nominal time history results from LC analysis of the total true

state dispersions 3σ and total true navigation state errors 3σ associated with the first four launch

vehicle states (i.e., inertial position, inertial velocity, body attitude, and body angular velocity)
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Figure 7.25: GN&C system performance study, low cost case. Nominal time history comparison of
the inertial position true state dispersions ±3σ from MC and LC analysis.
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Figure 7.26: GN&C system performance study, low cost case. Nominal time history comparison of
the inertial position true navigation state errors ±3σ from MC and LC analysis.
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Figure 7.27: GN&C system performance study, low cost case. Nominal time history comparison of
the inertial velocity true state dispersions ±3σ from MC and LC analysis.
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Figure 7.28: GN&C system performance study, low cost case. Nominal time history comparison of
the inertial velocity true navigation state errors ±3σ from MC and LC analysis.
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Figure 7.29: (1 of 2) GN&C system performance study, low cost case. Nominal time history com-
parison of the body attitude true state dispersions ±3σ from MC and LC analysis.
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Figure 7.30: (2 of 2) GN&C system performance study, low cost case. Nominal time history com-
parison of the body attitude true state dispersions ±3σ from MC and LC analysis. Zoomed-in view
of the first and last 16 s.
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Figure 7.31: GN&C system performance study, low cost case. Nominal time history comparison of
the body attitude true navigation state errors ±3σ from MC and LC analysis.
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Figure 7.32: (1 of 2) GN&C system performance study, low cost case. Nominal time history com-
parison of the body angular velocity true state dispersions ±3σ from MC and LC analysis.
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Figure 7.33: (2 of 2) GN&C system performance study, low cost case. Nominal time history compar-
ison of the body angular velocity true state dispersions ±3σ from MC and LC analysis. Zoomed-in
view of the first and last 16 s.
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Figure 7.34: GN&C system performance study, low cost case. Nominal time history comparison of
the wet mass true state dispersions ±3σ from MC and LC analysis.

Table 7.13: GN&C system performance study, low cost case. Inertial position true state disper-
sions 3σ, true navigation state errors 3σ, and normalized percent difference from MC and LC
analysis at five key points along the trajectory.

!x, 3" !e, 3" !x, 3" !e, 3" !x, 3" !e, 3" !x, 3" !e, 3"

MC 765.136 831.260 722.200 698.374 860.062 883.209 1358.94 1399.56

LC 809.800 809.800 737.883 737.883 899.862 899.862 1417.74 1417.74

% Diff. 5.83734 2.58161 2.17167 5.65734 4.62762 1.88560 4.32740 1.29910

MC 764.913 831.233 722.330 698.378 859.963 883.219 1358.82 1399.56

LC 809.798 809.793 737.891 737.885 899.863 899.859 1417.75 1417.74

% Diff. 5.86796 2.57936 2.15427 5.65695 4.63970 1.88402 4.33676 1.29923

MC 764.055 830.820 727.747 698.426 859.331 883.420 1360.83 1399.46

LC 810.681 809.739 739.558 737.857 900.755 899.808 1419.69 1417.66

% Diff. 6.10238 2.53736 1.62295 5.64572 4.82050 1.85511 4.32538 1.30057

MC 27553.6 3401.98 12311.4 3378.65 9689.92 3906.64 31696.4 6184.70

LC 28273.6 3762.81 12638.8 3385.09 10174.7 4031.58 32598.5 6470.80

% Diff. 2.61318 10.6067 2.65951 0.190617 5.00335 3.19804 2.84589 4.62583

MC 27610.2 3480.97 12231.9 3474.31 9662.27 4009.54 31706.5 6345.43

LC 28344.4 3850.10 12562.1 3482.17 10154.0 4139.34 32623.9 6639.50

% Diff. 2.65915 10.6041 2.69981 0.225983 5.08940 3.23723 2.89330 4.63429

tPO

tPEG

tFC

tMECO

x y z

t0

RSS

Inertial Position, m
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Table 7.14: GN&C system performance study, low cost case. Inertial velocity true state disper-
sions 3σ, true navigation state errors 3σ, and normalized percent difference from MC and LC
analysis at five key points along the trajectory.

!x, 3" !e, 3" !x, 3" !e, 3" !x, 3" !e, 3" !x, 3" !e, 3"

MC 1.922E-03 1.859E-03 2.036E-03 2.213E-03 1.317E-05 1.317E-05 2.800E-03 2.890E-03

LC 1.964E-03 1.964E-03 2.155E-03 2.155E-03 0 0 2.916E-03 2.916E-03

% Diff. 2.17167 5.65301 5.86447 2.60981 100.000 100.000 4.13928 0.889205

MC 1.75833 0.170911 1.84167 0.158675 1.69014 0.198354 3.05615 0.306157

LC 1.79388 0.183067 1.88976 0.167241 1.65208 0.202873 3.08522 0.320375

% Diff. 2.02202 7.11279 2.61170 5.39823 2.25216 2.27837 0.951308 4.64402

MC 4.90396 0.816996 7.67053 0.530353 6.32532 0.768767 11.0858 1.24087

LC 4.90480 0.879501 7.75090 0.545341 6.34371 0.775941 11.1524 1.29345

% Diff. 0.01708 7.65061 1.04774 2.82606 0.290677 0.933254 0.600550 4.23705

MC 24.5465 20.3564 37.1457 24.5783 33.1968 26.6995 55.5371 41.6093

LC 27.8981 22.3014 36.9733 24.9802 33.3579 27.8677 57.0796 43.5657

% Diff. 13.6543 9.55481 0.464153 1.63528 0.485227 4.37527 2.77752 4.70172

MC 23.2176 20.5480 37.9419 25.0559 34.2015 27.1481 56.1105 42.2734

LC 26.3675 22.5103 38.0199 25.4762 34.3458 28.3502 57.6228 44.2661

% Diff. 13.56679 9.54959 0.205651 1.67747 0.421915 4.42807 2.695323 4.71383

tPO

tPEG

tFC

tMECO

Inertial Velocity, m/s

x y z RSS

t0

Table 7.15: GN&C system performance study, low cost case. Body attitude true state disper-
sions 3σ, true navigation state errors 3σ, and normalized percent difference from MC and LC
analysis at five key points along the trajectory.

!x, 3" !e, 3" !x, 3" !e, 3" !x, 3" !e, 3" !x, 3" !e, 3"

MC 9.77717 1.00616 9.82049 0.929096 10.2322 0.968407 17.2259 1.67732

LC 10.0000 1.00000 10.0000 1.00000 10.0000 1.00000 17.3205 1.73205

% Diff. 2.27913 0.612134 1.82793 7.63154 2.26895 3.26241 0.549138 3.26329

MC 1.23251 0.999850 1.25292 0.930107 1.25310 0.973565 2.15850 1.67709

LC 1.25897 1.00000 1.25726 1.00000 1.25704 1.00000 2.17850 1.73206

% Diff. 2.14679 0.015371 0.346564 7.51488 0.314501 2.71562 0.92631 3.27757

MC 1.25115 0.998978 1.19579 0.919623 1.27312 1.02054 2.14852 1.69857

LC 1.27332 1.01432 1.26166 1.00215 1.27185 1.01525 2.19790 1.75039

% Diff. 1.77221 1.53564 5.50876 8.97451 0.099690 0.518354 2.29832 3.05076

MC 2.57219 1.03599 13.8880 0.920011 13.3303 1.02256 19.4214 1.72202

LC 2.29953 1.03572 13.7229 1.00404 13.4120 1.03519 19.3258 1.77551

% Diff. 10.6005 0.026274 1.18895 9.13401 0.612374 1.23426 0.492275 3.10642

MC 2.54970 1.03764 17.2580 0.917612 16.3489 1.02282 23.9088 1.72188

LC 2.39186 1.03575 17.0073 1.00408 16.8073 1.03522 24.0303 1.77557

% Diff. 6.19075 0.181648 1.45277 9.42371 2.80368 1.21170 0.508383 3.11803

tPO

tPEG

tFC

tMECO

Body Attitude, deg

x y z RSS

t0
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Table 7.16: GN&C system performance study, low cost case. (left) Body angular velocity and
(right) wet mass true state dispersions 3σ and normalized percent difference from MC and LC
analysis at five key points along the trajectory.

x y z RSS

!x, 3" !x, 3" !x, 3" !x, 3"

MC 2.4483E-05 1.1942E-05 2.6824E-05 3.8230E-05

LC 2.3923E-05 1.1668E-05 2.6617E-05 3.7642E-05

% Diff. 2.28457 2.29181 0.773281 1.53833

MC 1.84023 1.79785 1.85905 3.17408

LC 1.78453 1.77796 1.77710 3.08282

% Diff. 3.02686 1.10656 4.40805 2.87522

MC 1.79565 1.91959 1.78869 3.17940

LC 1.78623 1.77966 1.77832 3.08549

% Diff. 0.52450 7.28944 0.579476 2.95369

MC 2.21825 7.87991 7.35698 11.0063

LC 2.04769 7.65876 7.45710 10.8838

% Diff. 7.68853 2.80651 1.36090 1.11266

MC 1.87228 1.94386 1.85081 3.27254

LC 1.78896 1.78189 1.78033 3.08951

% Diff. 4.45030 8.33242 3.80787 5.59284

tPO

tPEG

tFC

tMECO

Body Angular Velocity, deg/s

t0

Mass, kg

!x, 3"

MC 574.629

LC 600.000

% Diff. 4.41514

MC 574.629

LC 600.000

% Diff. 4.41514

MC 574.629

LC 600.000

% Diff. 4.41514

MC 409.043

LC 440.551

% Diff. 7.70297

MC 409.043

LC 440.551

% Diff. 7.70297

t0

tPO

tPEG

tFC

tMECO

Table 7.17: GN&C system performance study, low cost case. Orbit insertion dispersion results at
MECO.

Parameter Nominal MC, 3σ LC, 3σ % Diff.

Burn Time, s 325.730 47.8166 48.1843 0.769103

Planetocentric Altitude, m 15239.7 3745.53 4096.97 9.38294

Inertial Velocity Magnitude, m/s 1686.13 12.0836 10.8708 10.0368

Flight Path Angle, deg −6.8248e−03 0.928371 0.999583 7.67068

Inclination, deg 145.765 0.670425 0.682743 1.83741

RAAN, deg 356.786 1.48380 1.51769 2.28369

Propellant Expenditure, kg 2657.22 409.043 440.551 7.70297
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Figure 7.35: GN&C system performance study. Nominal time history comparison of the inertial
position RSS (top) true state dispersions 3σ and (bottom) true navigation state errors 3σ for the
baseline, high cost, and low cost cases from LC analysis .

for the baseline, high cost, and low cost cases. Figure 7.39 shows the nominal time history results

from LC analysis of the wet mass true state dispersions 3σ for the baseline, high cost, and low cost

cases. Notice that in order to properly view the LC results from all three cases, it was necessary

to plot the vertical axes on a log-scale. It is observed that the results from the low and high cost

cases are almost exactly a factor of 10 larger and smaller than the baseline case results. In all

three cases, the normalized percent difference was computed at five key points along the trajectory,

as explained in § 7.1.3. Tables 7.18–7.22 provide the MC and LC 3σ values and corresponding

normalized percent difference for the total true state dispersions and total true navigation state

errors (denoted respectively as δx and δe) associated with the five launch vehicle states for the

baseline, high cost, and low cost cases.
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Figure 7.36: GN&C system performance study. Nominal time history comparison of the inertial
velocity RSS (top) true state dispersions 3σ and (bottom) true navigation state errors 3σ for the
baseline, high cost, and low cost cases from LC analysis .
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Figure 7.37: GN&C system performance study. Nominal time history comparison of the body
attitude RSS (top) true state dispersions 3σ and (bottom) true navigation state errors 3σ for the
baseline, high cost, and low cost cases from LC analysis .
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Figure 7.38: GN&C system performance study. Nominal time history comparison of the body
angular velocity RSS true state dispersions 3σ for the baseline, high cost, and low cost cases from
LC analysis .
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Figure 7.39: GN&C system performance study. Nominal time history comparison of the wet mass
true state dispersions 3σ for the baseline, high cost, and low cost cases from LC analysis .

Table 7.18: GN&C system performance study. Inertial position RSS true state dispersions 3σ, true
navigation state errors 3σ, and normalized percent difference for the baseline, high cost, and low
cost cases from MC and LC analysis at five key points along the trajectory.

High Cost Baseline Low Cost High Cost Baseline Low Cost

MC 13.5894 135.894 1358.94 13.9956 139.956 1399.56

LC 14.1774 141.774 1417.74 14.1774 141.774 1417.74

% Diff. 4.32726 4.32732 4.32740 1.29923 1.29918 1.29910

MC 13.5884 135.883 1358.82 13.9958 139.956 1399.56

LC 14.1775 141.775 1417.75 14.1774 141.774 1417.74

% Diff. 4.33538 4.33570 4.33676 1.29770 1.29909 1.29923

MC 13.6115 136.108 1360.83 13.9992 139.947 1399.46

LC 14.1969 141.969 1419.69 14.1766 141.766 1417.66

% Diff. 4.30016 4.30553 4.32538 1.26730 1.29990 1.30057

MC 315.593 3150.69 31696.4 62.6034 618.718 6184.70

LC 325.985 3259.85 32598.5 64.7080 647.080 6470.80

% Diff. 3.29276 3.46451 2.84589 3.36181 4.58396 4.62583

MC 315.673 3151.49 31706.5 64.2067 634.885 6345.43

LC 326.239 3262.39 32623.9 66.3950 663.950 6639.50

% Diff. 3.34712 3.51890 2.89330 3.40815 4.57791 4.63429

tPEG

tFC

tMECO

Inertial Position RSS, m

!x, 3" !e, 3"

t0

tPO
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Table 7.19: GN&C system performance study. Inertial velocity RSS true state dispersions 3σ, true
navigation state errors 3σ, and normalized percent difference for the baseline, high cost, and low
cost cases from MC and LC analysis at five key points along the trajectory.

High Cost Baseline Low Cost High Cost Baseline Low Cost

MC 2.801E-05 2.801E-04 2.800E-03 2.890E-05 2.890E-04 2.890E-03

LC 2.916E-05 2.916E-04 2.916E-03 2.916E-05 2.916E-04 2.916E-03

% Diff. 4.11094 4.10416 4.13928 0.912418 0.90718 0.889205

MC 3.0614E-02 0.306101 3.05615 3.0924E-03 3.1417E-02 0.306157

LC 3.0852E-02 0.308522 3.08522 3.2038E-03 3.2038E-02 0.320375

% Diff. 0.779606 0.790819 0.951308 3.60037 1.97603 4.64402

MC 0.111112 1.11123 11.0858 1.2409E-02 0.125511 1.24087

LC 0.111524 1.11524 11.1524 1.2934E-02 0.129345 1.29345

% Diff. 0.370583 0.36052 0.600550 4.23684 3.05444 4.23705

MC 0.530788 5.42088 55.5371 0.415228 4.18750 41.6093

LC 0.570796 5.70796 57.0796 0.435657 4.35657 43.5657

% Diff. 7.53756 5.29581 2.77752 4.91993 4.03741 4.70172

MC 0.541171 5.55100 56.1105 0.421903 4.25545 42.2734

LC 0.576228 5.76228 57.6228 0.442661 4.42661 44.2661

% Diff. 6.47797 3.80620 2.69532 4.92011 4.02198 4.71383

tPEG

tFC

tMECO

Inertial Velocity RSS, m/s

!x, 3" !e, 3"

t0

tPO

Table 7.20: GN&C system performance study. Body attitude RSS true state dispersions 3σ, true
navigation state errors 3σ, and normalized percent difference for the baseline, high cost, and low
cost cases from MC and LC analysis at five key points along the trajectory.

High Cost Baseline Low Cost High Cost Baseline Low Cost

MC 0.172215 1.72261 17.2259 1.6782E-02 0.167772 1.67732

LC 0.173205 1.73205 17.3205 1.7321E-02 0.173205 1.73205

% Diff. 0.574686 0.548281 0.549138 3.20948 3.23829 3.26329

MC 2.1487E-02 0.217323 2.15850 1.6780E-02 0.167768 1.67709

LC 2.1785E-02 0.217850 2.17850 1.7321E-02 0.173206 1.73206

% Diff. 1.38631 0.242276 0.926306 3.22299 3.24134 3.27757

MC 2.1584E-02 0.217552 2.14852 1.7040E-02 0.169810 1.69857

LC 2.1979E-02 0.219790 2.19790 1.7504E-02 0.175039 1.75039

% Diff. 1.82773 1.02868 2.29832 2.72365 3.07945 3.05076

MC 0.199809 2.01500 19.4214 1.7316E-02 0.172348 1.72202

LC 0.193258 1.93258 19.3258 1.7755E-02 0.177551 1.77551

% Diff. 3.27865 4.09049 0.492275 2.53443 3.01868 3.10642

MC 0.245034 2.46310 23.9088 1.7319E-02 0.172357 1.72188

LC 0.240303 2.40303 24.0303 1.7756E-02 0.177557 1.77557

% Diff. 1.93090 2.43889 0.508383 2.52106 3.01696 3.11803

tPEG

tFC

tMECO

Body Attitude RSS, deg

!x, 3" !e, 3"

t0

tPO
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Table 7.21: GN&C system performance study. Body angular velocity RSS true state dispersions 3σ
and normalized percent difference for the baseline, high cost, and low cost cases from MC and LC
analysis at five key points along the trajectory.

High Cost Baseline Low Cost

MC 3.8210E-07 3.8219E-06 3.8230E-05

LC 3.7642E-07 3.7642E-06 3.7642E-05

% Diff. 1.48497 1.50967 1.53833

MC 3.1688E-02 0.316880 3.17408

LC 3.0828E-02 0.308282 3.08282

% Diff. 2.71465 2.71335 2.87522

MC 3.1858E-02 0.318469 3.17940

LC 3.0855E-02 0.308549 3.08549

% Diff. 3.14937 3.11488 2.95369

MC 0.112599 1.10241 11.0063

LC 0.108838 1.08838 10.8838

% Diff. 3.33940 1.27190 1.11266

MC 3.1610E-02 0.317747 3.27254

LC 3.0895E-02 0.308951 3.08951

% Diff. 2.26174 2.76824 5.59284

tPEG

tFC

tMECO

Body Angular Velocity RSS, deg/s

!x, 3"

t0

tPO

Table 7.22: GN&C system performance study. Wet mass true state dispersions 3σ and normalized
percent difference for the baseline, high cost, and low cost cases from MC and LC analysis at five
key points along the trajectory.

High Cost Baseline Low Cost

MC 5.74629 57.4629 574.629

LC 6.00000 60.0000 600.000

% Diff. 4.41514 4.41514 4.41514

MC 5.74629 57.4629 574.629

LC 6.00000 60.0000 600.000

% Diff. 4.41514 4.41514 4.41514

MC 5.74629 57.4629 574.629

LC 6.00000 60.0000 600.000

% Diff. 4.41514 4.41514 4.41514

MC 4.10670 40.9902 409.043

LC 4.40551 44.0551 440.551

% Diff. 7.27626 7.47724 7.70297

MC 4.10670 40.9902 409.043

LC 4.40551 44.0551 440.551

% Diff. 7.27626 7.47724 7.70297

tMECO

Mass, kg

!x, 3"

t0

tPO

tPEG

tFC
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Chapter 8

Conclusions and Future Research

“By prevailing over all obstacles and distractions, one

may unfailingly arrive at his chosen goal or destination.”

– Christopher Columbus

In recent years there has been considerable effort to develop alternative methods or tech-

niques that are capable of achieving equivalent results to those of Monte Carlo methods, but in a

fraction of the time. One of these alternative techniques, linear covariance analysis, has been suc-

cessfully applied in this research to create an accurate and fast ascent GN&C analysis tool. This

research has shown that linear covariance analysis provides the accuracy required for preliminary

ascent GN&C system design. Statistical results from linear covariance analysis are generally within

10% of Monte Carlo results, and in most cases the differences are less than 5%. This is an excellent

result given the many complex nonlinearities that are embedded in the ascent GN&C problem.

However, the real value of this tool lies in its speed. CPU times were collected using the

tic/toc functions in MATLAB R2010a on a MacBook laptop with Mac OS X 10.5.8, 2.4 GHz

Intel Core 2 Duo processor, and 2 GB 667 MHz DDR2 SDRAM. The linear covariance data was

generated for the baseline, high cost, and low cost cases in 357.108 s (5 min 57.108 s), 357.657 s,

and 357.089 s, respectively. The Monte Carlo data, for the baseline case, was generated with an

average of 740.369 s (12 min 20.369 s) per sample run and a standard deviation of 4.0872 s. The

total time for 500 sample runs is approximately 370184.5 s (4 days 6 hrs 49 min 44.5 s). Therefore,

the linear covariance simulation is 1036.62 times faster than the Monte Carlo simulation.

To achieve this result, there were several challenging theoretical and technical research

problems that needed to be solved. The first was the implementation of a closed-loop ascent

guidance algorithm in a linear covariance analysis environment. Ascent guidance algorithms such

as the Space Shuttle PEG are very complex, highly nonlinear, and iterative in nature. As a result, an

algorithm like PEG poses a substantial challenge to a linear covariance simulation. In this research,
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the linearization of this guidance law was successfully accomplished using a very careful numerical

approach and a complex-step derivative technique for computing numerical partial derivatives.

A second major challenge was to determine how to address the fine-count partial-derivative

dilemma. During fine count, the last commanded inertial thrust direction computed by PEG is held

constant, which corresponds to a constant attitude command and a zero attitude rate command.

This represents an in-flight guidance mode change that is not easily described in a linear covariance

context. The solution was to first represent the guidance mode change as an event trigger, and

then to introduce a pseudo-state for the attitude-hold command. While the theory for the event

trigger is well known, the addition of a pseudo-state was a new and key element of this research. The

pseudo-state effectively collected and captured the correlations between the attitude-hold command

and all system uncertainties. Then, during the final seconds of flight, these correlations are used

to effectively propagate the final rocket position and velocity errors based on the variance of the

attitude-hold command and the variance of the associated pseudo-state. This was a key important

development of this research.

The continuation of this research is important and the next steps to be taken can be divided

into two groups: detailed ascent design models, and system design optimization. In the area of

detailed linear covariance ascent design models what is needed most are models for a stochastic

atmosphere and models for ascent vehicle staging. For the atmosphere model, an important step

forward will be to convert a know stochastic atmosphere model, e.g., Earth Global Reference

Atmospheric Model (GRAM), into a covariance-based atmosphere model. For vehicle staging,

event triggers will need to be implemented for each stage. The addition of these two models will

significantly increase the range of ascent guidance/launch vehicle applications that can be studied

using linear covariance techniques.

The second area of potential future research exploits the speed of linear covariance analysis

to design and optimize ascent GN&C systems. In the research just presented, only three system

configurations were evaluated: the baseline (or nominal), high cost, and low cost. In a more detailed

future analysis, a full spectrum/range of actuators, sensors, and disturbance models will need to

be considered. By exploiting the efficiency of linear covariance analysis, it becomes possible to

imbed the linear covariance tool inside a Monte Carlo analysis where random samples/combinations

of sensors and actuators are selected. For each sample, key mission performance metrics can
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be compared with mission requirements to determine suitable, cost-effective, hardware system

configurations.

Finally, it is also feasible to develop analytical and/or numerical optimization tools that

utilize linear covariance techniques. Once again, it is the efficiency of the linear covariance analysis

that makes this research topic feasible. The goal is to create a stochastic optimization tool that

receives mission requirements as input and provides optimal hardware configurations that meet

those mission requirements as output.

Clearly, there is considerably more work to be done. The research presented in this disser-

tation has made the first important steps towards implementing the complexities of ascent GN&C

analysis techniques in a linear covariance analysis environment. Future developments in ascent

GN&C system design and optimization will be able to build upon the results of this research.
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Appendix A

Reference Frames and Coordinate Systems

“Tous les problemes de geometrie se peuvent facilement reduire a

tels termes, qu’il n’est besoin par apres que de connaitre la

longeur de quelques lignes droites, pour les construire.”

– René Descartes

Ascent guidance, inertial navigation, and attitude determination and control, all of which

are subjects of importance in this work, require the precise definition of a number of reference

frames and their associated coordinate systems and coordinate transformations. As such, the

purpose of this chapter is to present and define the various frames of reference, coordinate systems,

and coordinate tranformations used in this study.

A.1 Reference Frames

Using the notions that a reference frame is “a perspective from which observations are made

regarding the motion of a system” [56, pp. 28] and that reference frames and coordinate systems

are two different and distinct entities [56, 57], three frames of reference of primary importance to

modeling the motion of aerospace vehicles in three-dimensional Euclidean space are considered, viz.

planet-centered inertial (J2000), planet fixed, and body fixed.

A.1.1 Planet-Centered Inertial (J2000) Frame

The planet-centered inertial (J2000) reference frame, denoted with i and hereafter referred

to as simply the inertial frame, is located at the center of the planet. Its orientation is fixed with

respect to the stars, as defined by the J2000 epoch and the basis vectors i1, i2, and i3. The first basis

vector i1 lies in the equatorial plane and points in the direction of the vernal equinox,1 denoted by

1The vernal equinox refers to both a point of reference and a time or epoch. The point is the intersection of
the ecliptic (path of the Sun on the celestial sphere) and the celestial equator. In other words, the point where the
Sun crosses the celestial equator in the spring. The most common epoch used today is the J2000 system. The term
‘vernal’ is derived from the Latin word ver, meaning spring, and ‘equinox’ is derived from the Latin words aequus,
meaning equal, and nox, meaning night.
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Figure A.1: Primary frames of reference: (left) Inertial reference frame. (right) Planet frame.

Υ. The third basis vector i3 points along the planet’s axis of rotation (or angular velocity vector),

and i2 (also in the equatorial plane) completes the right-handed orthogonal set, as illustrated in

Figure A.1.

A.1.2 Planet-Fixed Frame

The planet-fixed frame, denoted with p and hereafter referred to as simply the planet frame,

is collocated with the inertial frame, i.e., its origin is also at the center of the planet. Its orientation,

however, is fixed with the planet as it rotates and defined by the basis vectors p1, p2, and p3. The

first basis vector p1 lies in the equatorial plane and points in the direction of the intersection of

the prime meridian and the equator. The third basis vector p3 points along the planet’s axis of

rotation (or angular velocity vector), and p2 (also in the equatorial plane) completes the right-

handed orthogonal set, as depicted in Figure A.1.

A.1.3 Body Fixed Frame

The body-fixed frame, denoted with b and hereafter referred to as simply the body frame,

is located with its origin at the center of mass of the vehicle. Its orientation is aligned with the

principle axes of the moment of inertia tensor and defined by the basis vectors b1, b2, and b3. The

first basis vector b1 points out the nose of the vehicle, b2 points out the right side of the vehicle

in the plane of symmetry, and b3 (also in the plane of symmetry) completes the right-handed

orthogonal set, as illustrated in Figure A.2.
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Figure A.2: Primary frame of reference: Body frame.

A.2 Coordinate Systems

Using the notion that a coordinate system “provides a way to measure the motion of the

system within a particular reference frame” [56, pp. 27], four coordinate systems are considered,

viz. inertial, planet, body, and planetographic coordinate systems.

A.2.1 Inertial Coordinate System

The inertial coordinate system, denoted with a superscript i, is the preferred coordinate

system of the inertial frame, i.e., the coordinate axes 1i, 2i, and 3i are chosen to be aligned with

the orthogonal triad i1, i2, and i3, respectively.

A.2.2 Planet Coordinate System

The planet coordinate system, denoted with a superscript p, is the preferred coordinate

system of the planet frame, i.e., the coordinate axes 1p, 2p, and 3p are chosen to be aligned with

the orthogonal triad p1, p2, and p3, respectively. The inertial and planet coordinate systems are

related by a single rotation about the 3i, 3p axes through the angle Ξ, as illustrated in Figure A.3.

Thus the inertial-to-planet transformation matrix T p
i is given by [57, pp. 71]

T p
i =





cosΞ sinΞ 0

− sinΞ cosΞ 0

0 0 1




. (A.1)
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A.2.3 Body Coordinate System

The body coordinate system, denoted with a superscript b, is the preferred coordinate system

of the body frame, i.e., the coordinate axes 1b, 2b, and 3b are chosen to be aligned with the orthogonal

triad b1, b2, and b3, respectively. The relationship between the inertial and body coordinate

systems (or attitude of the vehicle) is generally represented with the attitude quaternion, which

can be thought of as a single rotation about a special axis called an eigenaxis. However, the

quaternion parameterization of the inertial-to-body transformation is not discussed or given here,

but can be found in §{quaternions}. Alternatively, the inertial and body coordinate frames can

be related by three successive rotations through the so-called Euler angles: yaw ψ, pitch ϑ, and

roll ϕ. It can be shown that the Euler angle parameterization (ψ → ϑ → ϕ sequence) of the

inertial-to-body transformation matrix T b
i is given by [57, pp. 74-75]

T b
i =





cosψ cosϑ sinψ cosϑ − sinϑ

cosψ sinϑ sinϕ− sinψ cosϕ sinψ sinϑ sinϕ+ cosψ cosϕ cosϑ sinϕ

cosψ sinϑ cosϕ+ sinψ sinϕ sinψ sinϑ cosϕ− cosψ sinϕ cosϑ cosϕ




. (A.2)

A.2.4 Planetographic Coordinate System

In order to navigate on the surface of the planet, a grid consisting of lines of longitude and

latitude is usually specified. Longitude, denoted by λ, is divided into ±180◦ and measured from the

prime meridian with the positive direction to the east and negative to the west. Latitude, denoted

by φ, is divided in ±90◦ and measured from the equator with the positive direction to the north

and negative to the south.

With these definitions in place, the planetographic coordinate system, denoted with a super-

script g, is defined such that the 1g axis points north, the 3g axis points to the center of the planet,

and the 2g axis points east thereby completing the right-handed coordinate system. Note that if

the planet is approximated as a sphere (not a spheroid), the latitude previously defined becomes

the planetocentric latitude and the planetographic coordinate system is relabeled the planetocentric

coordinate system.2 At a specific point on the surface of the planet, with longitude λ and latitude φ,

the planet and planetographic coordinate systems, as depicted in Figure A.3, are related by three

2The planetocentric coordinate system is also referred to in the literature as the topocentric coordinate system,
topocentric equatorial coordinate system, and a whole host of other variations.
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Figure A.3: Coordinate systems relationships: (left) Inertial and planet coordinate systems. (right)
Planet and planetographic coordinate systems.

successive rotations (not shown). Thus, the planet-to-planetographic transformation matrix T g
p is

given by [57, pp. 72-73]

T g
p =





− sinφ cosλ − sinφ sinλ cosφ

− sinλ cosλ 0

− cosφ cosλ − cosφ sinλ − sinφ




. (A.3)
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Appendix B

Complex-Step Derivative

B.1 Customized Functions

The intrinsic MATLAB functions norm and atan2, both of which are employed by the

guidance algorithm, are not defined to handle complex variables. Since the functions are intrinsic

to MATLAB and cannot be edited, it became necessary to develop and create customized functions

that are able to handle both real and complex variables. The details of how the customized functions

were coded are given below.

B.1.1 norm

The MATLAB norm function computes several vector and matrix norms, e.g., 1-norm, 2-norm,

infinity norm, Frobenius norm, and Euclidean norm. For this research, only the Euclidean norm or

Euclidean ‘length’ of a vector x ∈ Ca is considered, which can be written as

‖x‖ =
√
xᵀx . (B.1)

In MATLAB, this can be written as follows:

1 function xmag = cnorm(x)

2 % CNORM(X) is the Euclidean norm (i.e., length or magnitude) of a vector X,

3 % where X is comprised of real or complex elements.

4 %

5 % See also CATAN2

6 %

7 % ASSUMPTIONS:

8 % 1. The MATLAB function sqrt() can properly handle complex values.

9

10 % Compute Euclidean norm

11 xmag = sqrt(x.'*x);
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where the sqrt function is able to handle complex values and the array transpose operator .’

denotes the nonconjugate transpose or the transpose that does not take the complex conjugate of

the variable on which it is operating.

B.1.2 atan2

The MATLAB atan2 function computes the four-quadrant inverse tangent over the interval

[−π,π], but is not able to handle complex variables. The MATLAB atan function, on the other

hand, is limited to the interval [−π/2,π/2] but able to handle complex variables. Hence, a four-

quadrant inverse tangent function catan2, that is able to handle complex variables, can be written

in terms of the atan function as follows:

1 function theta = catan2(y,x)

2 % CATAN2(Y,X) computes the four quadrant inverse tangent for real and

3 % complex values of Y and X.

4 %

5 % See also CNORM

6 %

7 % ASSUMPTIONS:

8 % 1. The MATLAB function atan() can properly handle complex values.

9 if real(x) > 0

10 theta = atan(y/x);

11 elseif real(x) < 0

12 if real(y) ≥ 0

13 theta = pi + atan(y/x);

14 else

15 theta = −pi + atan(y/x);

16 end

17 else

18 if real(y) > 0

19 theta = pi/2;

20 elseif real(y) < 0

21 theta = −pi/2;

22 else

23 theta = 0;

24 end
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25 end

B.2 Quaternions

Perhaps the best way to illustrate how to properly apply the complex-step derivative (CSD)

method to vector functions or algorithms with quaternions is through a series of examples. Let the

nonlinear vector function that we desire to linearize be given by

y = f(x) , (B.2)

where y ∈ Ra′ and f : Rb′ → Ra′ is a nonlinear function of x ∈ Rb′ . Moreover, the input and

output variables can be respectively written in terms of their scalar elements y = (y1, y2, . . . , ya′)

and x = (x1, x2, . . . , xb′). Following the linearization process outlined in § 4.2, the resulting linear

vector function is given by

δy = Fx δx , (B.3)

where the Jacobian Fx ∈ Ra′×b′ can be written as

Fx =
∂f(x)

∂x

∣∣∣∣
x̄

=

[
∂f(x)

∂x1

∣∣∣∣
x̄

∂f(x)

∂x2

∣∣∣∣
x̄

· · · ∂f(x)

∂xb′

∣∣∣∣
x̄

]
. (B.4)

To evaluate the first partial derivative ∂f(x)
∂x1

∣∣∣
x̄
in the above Jacobian using the CSD method, the

vector function f is evaluated with the complex-valued input variable given by

x =





x̄1 + ih

x̄2 + i0
...

x̄b′ + i0





, (B.5)

where the perturbation step h has been added to the imaginary part of the first scalar element and

the horizontal bar ¯ denotes the nominal value of the states xk (k = 1, 2, . . . , b′). The resulting
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complex-valued output variable is therefore given by

y =





ȳ1 + i∆y1

ȳ2 + i∆y2
...

ȳa′ + i∆ya′





, (B.6)

where the derivative information, ∆yl (l = 1, 2, . . . , a′), is captured in the imaginary part. Hence,

it follows that the first partial derivative in Eq. (B.4) is given by

∂f(x)

∂x1

∣∣∣∣
x̄

=
1

h





∆y1

∆y2
...

∆ya′





. (B.7)

This process is then repeated for the remaining partial derivatives.

B.2.1 Input Quaternion Case

Consider now the case where the input variable contains a quaternion. Therefore, let the

first four elements of input variable x be the attitude quaternion q = (q1, q2, q3, q4), such that x =

(q1, q2, q3, q4, . . . , xb′). Recall that due to state covariance matrix singularity issues associated with

the quaternion, the attitude quaternion q ∈ R4 is replaced with the Euler rotation vector θ ∈ R3,

resulting in a modified input variable xm ∈ Rb (where b = b′−1), such that xm = (θ1, θ2, θ3, . . . , xb).

As a result, Eq. (B.3) is now derived using the modified input variable xm and the dimensions of

the Jacobian in Eq. (B.4) have changed, such that Fx ∈ Ra′×b is given by

Fx =
∂f(x)

∂xm

∣∣∣∣
x̄

=

[
∂f(x)

∂θ1

∣∣∣∣
x̄

∂f(x)

∂θ2

∣∣∣∣
x̄

∂f(x)

∂θ3

∣∣∣∣
x̄

· · · ∂f(x)

∂xb

∣∣∣∣
x̄

]
. (B.8)

In order to evaluate the first partial derivative ∂f(x)
∂θ1

∣∣∣
x̄
in the above Jacobian using the CSD method,

the perturbation step h must be added to the input attitude quaternion. However, the perturbation

step cannot be added to a quaternion in the same manner as a vector. This is due to the fact that

the quaternion must always be unitary, i.e., have a norm of 1. Hence, the perturbation step h is
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added in the following manner: First, a complex-valued perturbation quaternion δq ∈ C4 is formed

as follows

δq =




−δθ/2

1 + i0



 , (B.9)

where the pertubation step h has been added to imaginary part of the first scalar element of

δθ ∈ C3,

δθ =





0 + ih

0 + i0

0 + i0




. (B.10)

Next, the perturbed input attitude quaternion q ∈ C4 is formed as follows

q = δq ⊗
[
q̄
]−1

, (B.11)

where ⊗ denotes quaternion multiplication and q̄ ∈ C4 is simply the nominal input attitude quater-

nion given by

q̄ =





q̄1 + i0

q̄2 + i0

q̄3 + i0

q̄4 + i0





. (B.12)

Note that the real part of the perturbation quaternion δq is the identity quaternion. This is

important because the real part of the perturbed input attitude quaternion q in Eq. (B.11) needs

to be equal to the real part of the nominal attitude quaternion q̄ defined in Eq. (B.12). The

only way for this to happen is to have the real part of the perturbation quaternion δq equal to the

identity quaternion. Now the vector function f is evaluated with the complex-valued input variable

given by

x =





q

x̄5 + i0
...

x̄b′ + i0





, (B.13)

where q is the perturbed input attitude quaternion from Eq. (B.11). The resulting complex-valued

output variable y is therefore given by Eq. (B.6), where the derivative information is captured in
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the imaginary part. It follows then that the first partial derivative in Eq. (B.8) is given by

∂f(x)

∂θ1

∣∣∣∣
x̄

=
1

h





∆y1

∆y2
...

∆ya′





. (B.14)

Since only the first three partial derivatives correspond to the input attitude quaternion, this process

is then repeated for the next two partial derivatives, but with the perturbation step h being added

respectively to the imaginary parts of the second and third scalar elements of δθ. The remaining

partial derivatives are then computed using the process outlined previously for the vector input

variable.

B.2.2 Output Quaternion Case

Lastly, consider the case where the output variable also contains a quaternion. Therefore,

let the first four elements of the output variable y be the attitude quaternion * = (31, 32, 33, 34),

such that y = (31, 32, 33, 34, . . . , ya′). Recall that due to state covariance matrix singularity issues

associated with the quaternion, the output attitude quaternion * ∈ R4 is replaced with the Euler

rotation vector ϑ ∈ R3, resulting in a modified output variable ym ∈ Ra (where a = a′ − 1), such

that ym = (ϑ1,ϑ2,ϑ3, . . . , ya). As a result, the linearized vector function in Eq. (B.3) is now derived

using the modified input and output variables ym and xm, and the dimensions of the Jacobian Fx

have changed, such that Fx ∈ Ra×b as given by

Fx =
∂f(x)

∂xm

∣∣∣∣
x̄

=

[
∂f(x)

∂θ1

∣∣∣∣
x̄

∂f(x)

∂θ2

∣∣∣∣
x̄

∂f(x)

∂θ3

∣∣∣∣
x̄

· · · ∂f(x)

∂xb

∣∣∣∣
x̄

]
. (B.15)

To evaluate the first partial derivative ∂f(x)
∂θ1

∣∣∣
x̄
in the above Jacobian using the CSD method, the

perturbation step h is added to the complex-valued input variable x using the process outlined

above for the input attitude quaternion. The resulting complex-valued output variable is therefore
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given by

y =





3̄1 + i∆31

3̄2 + i∆32

3̄3 + i∆33

3̄4 + i∆34
...

ȳa′ + i∆ya′





, (B.16)

where the derivative information is captured in the imaginary part. From this expression it is

observed that the perturbed output attitude quaternion * ∈ C4 is given by

* =





3̄1 + i∆31

3̄2 + i∆32

3̄3 + i∆33

3̄4 + i∆34





. (B.17)

It is important to point out, however, that the desired partial derivative ∂f(x)
∂θ1

∣∣∣
x̄
actually contains

the partial derivative of the output rotation vector ϑ, not the output attitude quaternion *. In

other words, the desired partial derivative can be written as

∂f(x)

∂θ1

∣∣∣∣
x̄

=





∂ϑ
∂θ1
...

∂ya
∂θ1




. (B.18)

Hence, the derivative information in the imaginary part of the output attitude quaternion * needs

to be manipulated so as to yield a perturbed output rotation vector δϑ. This is done by first

forming the nominal output attitude quaternion *̄ ∈ C4 as follows

*̄ =





3̄1 + i0

3̄2 + i0

3̄3 + i0

3̄4 + i0





. (B.19)
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Next, the output perturbation quaternion δ* ∈ C4 is computed as follows

δ* = *⊗
[
*̄
]−1

=




−δϑ/2

1 + i0



 , (B.20)

where the resulting perturbed output rotation vector δϑ ∈ C3 is given by

δϑ =





0 + i∆ϑ1

0 + i∆ϑ2

0 + i∆ϑ3




. (B.21)

Note that the real part of the output perturbation quaternion δ* needs to be the identity quaternion

so that the derivative information is contained in only the first three elements of the imaginary

part. It follows then that the first partial derivative in Eq. (B.15) is given by

∂f(x)

∂θ1

∣∣∣∣
x̄

=
1

h





∆ϑ1

∆ϑ2

∆ϑ3

...

∆ya′





, (B.22)

where the first four elements in the imaginary part of the perturbed output variable y, given in

Eq. (B.16), have been replaced with the imaginary part of the perturbed output rotation vector

δϑ given in Eq. (B.21). This process is then repeated for the remaining partial derivatives in the

Jacobian Fx, defined in Eq. (B.15).
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