
Utah State University
DigitalCommons@USU

All Graduate Plan B and other Reports Graduate Studies

8-2018

A Comparison of R, SAS, and Python
Implementations of Random Forests
Breckell Soifua
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/gradreports

Part of the Statistical Methodology Commons

This Report is brought to you for free and open access by the Graduate
Studies at DigitalCommons@USU. It has been accepted for inclusion in All
Graduate Plan B and other Reports by an authorized administrator of
DigitalCommons@USU. For more information, please contact
dylan.burns@usu.edu.

Recommended Citation
Soifua, Breckell, "A Comparison of R, SAS, and Python Implementations of Random Forests" (2018). All Graduate Plan B and other
Reports. 1268.
https://digitalcommons.usu.edu/gradreports/1268

https://digitalcommons.usu.edu?utm_source=digitalcommons.usu.edu%2Fgradreports%2F1268&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/gradreports?utm_source=digitalcommons.usu.edu%2Fgradreports%2F1268&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/gradstudies?utm_source=digitalcommons.usu.edu%2Fgradreports%2F1268&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/gradreports?utm_source=digitalcommons.usu.edu%2Fgradreports%2F1268&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/213?utm_source=digitalcommons.usu.edu%2Fgradreports%2F1268&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/gradreports/1268?utm_source=digitalcommons.usu.edu%2Fgradreports%2F1268&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dylan.burns@usu.edu
http://library.usu.edu/?utm_source=digitalcommons.usu.edu%2Fgradreports%2F1268&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.usu.edu/?utm_source=digitalcommons.usu.edu%2Fgradreports%2F1268&utm_medium=PDF&utm_campaign=PDFCoverPages

1

A COMPARISON OF R, SAS, AND PYTHON IMPLEMENTATIONS OF

RANDOM FORESTS

by

Breckell Soifua

A report submitted in partial fulfillment

of the requirements for the degree

of

MASTER OF SCIENCE

in

Statistics

UTAH STATE UNIVERSITY

Logan, Utah

2018

2

Contents

Abstract ... 3

List of Figures ... 4

List of Tables .. 5

1 INTRODUCTION ... 6

1.1 IMPLEMENTATIONS .. 8

2 METHODOLOGY ...10

3 RESULTS...12

3.1 ACCURACY ...12

3.2 VARIABLE IMPORTANCE ...15

3.3 TIMING ..17

4 CONCLUSION ...20

APPENDIX A: CODE ..21

R Code: ...21

SAS Code: ...21

Python Code: ...22

APPENDIX B: WEIGHTED RANDOM FORESTS ...24

BIBLIOGRAPHY ...29

3

Abstract

A Comparison of R, SAS and Python Implementations of

Random Forests

by

Breckell Soifua

Utah State University, 2018

Major Professor: Adele Cutler

Department: Mathematics and Statistics

The Random Forest method is a useful machine learning tool developed by Leo

Breiman. There are many existing implementations across different programming

languages; the most popular of which exist in R, SAS, and Python. In this paper, we

conduct a comprehensive comparison of these implementations with regards to the

accuracy, variable importance measurements, and timing. This comparison was done on

a variety of real and simulated data with different classification difficulty levels, number of

predictors, and sample sizes. The comparison shows unexpectedly different results

between the three implementations.

4

List of Figures

Figure 1. Log of the out-of-bag error rate; Two-norm, 25 predictors.13

Figure 2. Log of the out-of-bag error rate; Ring-norm, 25 predictors.13

Figure 3. Log of the out-of-bag error rate; Two-norm, 100 predictors.14

Figure 4. Log of the out-of-bag error rate; Ring-norm, 100 predictors.14

Figure 5. Gini variable importance measures on breastcancer data; R and SAS.15

Figure 6. Gini variable importance measures on breastcancer data; R and Python16

Figure 7. Gini variable importance measures on breastcancer data; SAS and Python. ..16

Figure 8. Computation time; Two-norm, 25 predictors ...18

Figure 9. Computation time; Two-norm, 100 predictors ...18

Figure 10. Computation time; Ring-norm, 25 predictors. ..19

Figure 11. Computation time; Ring-norm, 100 predictors ...19

5

List of Tables

Table 1. Description of Datasets ..11

Table 2. Out-of-bag error rates for RFA and RFB ..17

6

A Comparison of R, SAS, and Python Implementations of Random Forests

1 INTRODUCTION

The Random Forest method is a useful machine learning tool introduced by Leo

Breiman (2001). The method has the ability to perform both classification and regression

prediction. Random forests are an improved extension on classification and regression

trees (CART) (Liaw and Weiner, 2002) with respect to instability and accuracy.

Specifically, random forests remain relatively stable with changes in data due to the

combination of many trees. They inherit many advantages of CART. Random forests

handle categorical predictors naturally, are computationally simple to fit, there are no

formal distributional assumptions, can handle highly non-linear interactions and

classification boundaries, perform automatic variable selection, and have the ability to

handle missing values.

The Random Forest algorithm is as follows:

1. Grow a forest of ntree trees. For each tree from 1 to ntree, do the following:

a. Take a sample of size N from the dataset with replacement (bootstrap) to

grow a tree.

b. Select m variables, independently for each node, at random out of M

possible variables. The best split is chosen to split the node using the m

selected predictors.

c. Trees are grown until the nodes can no longer be split.

For classification, majority voting is used to get aggregated predictions of the ntree trees.

For example, to classify a new observation using a random forest with 500 trees, the

observation is passed down all 500 trees. Each tree predicts one of the classes and the

observation is classified as the class which gets the most votes. Due to the nature of the

bootstrapping in Step 1a, there will be approximately 30% of data points that are not

7

included in the training set. These are used as the “out-of-bag” (OOB) data to measure

the accuracy of the model. (Breiman, 2001). In particular, each of the observations will

be OOB in around 30% of the trees. The observation is passed down these trees and it

is classified as the class which gets the most votes, giving the OOB prediction for the

observation. The error rate of all the OOB predictions is the OOB error rate of the forest.

 Random forests compute the importance of variables in two different ways. For

classification problems, they use the Gini criterion to measure variable importance. For a

given tree, the Gini variable importance measure for a particular variable of interest is

the weighted average of the decrease in the Gini impurity criteria of the splits based on

this variable. This is averaged over the ntree trees in the forest to get the Gini

importance for the forest. Important variables yield high Gini variable importance

measures. The other variable importance calculation is called permutation importance.

Permutation importance is based on predictive accuracy. The out-of-bag error rate is

computed from both a data set obtained from permuting the values of a particular

variable of interest in the OOB data and the original OOB data. The difference between

these two OOB error rates gives the permutation variable importance. Important

variables yield high permutation variable importance measures. (Boulesteix et al. 2012)

R is a free, open-source software programming environment containing multiple

packages with the ability to run Random Forest programs. The ‘randomForest’ package

in R is most commonly used among all Random Forest implementations. Leo Breiman

and Adele Cutler authored the original randomForest code in Fortran. The R port based

on Breiman and Cutler’s code was authored by Andy Liaw and Matthew Weiner (Liaw

and Weiner, 2018). The ‘randomForest’ package in R is currently maintained by Liaw. All

other implementations of Random Forest refer Breiman and Cutler’s original code as a

standard source.

8

SAS is a commercial software suite developed to perform analytics which is

known for its ability to be used in a variety of disciplines. SAS is often preferred for

regulatory work and has long been the standard for government work. SAS is optimized

for big data using binning which reduces computation time and expense. While SAS is

neither free nor open-source, it is still widely used commercially because of its

robustness. SAS updates are rare but thorough which is seen as an advantage over the

free, open-source programming media. The SAS procedure ‘HPFOREST’ is used when

implementing the Random Forest algorithm. (SAS Institute, 2016)

 Python is a free, open-source software programming environment commonly

used in web and internet development, scientific and numeric computing, and software

and game development. The ‘scikit-learn’ package is a machine learning package in

Python with an implementation of random forests. (Pedregosa et al., 2011)

 Boulesteix et al gave a brief overview of some implementations of random forests

and their applications in computational biology and bioinformatics. Short descriptions

and main features of each implementation are given but limited code is provided for only

the standard R implementation. This overview is catered mainly to random forests in

bioinformatics and omits other popular implementations, namely those in the SAS and

Python languages. (Boulesteix et al., 2012)

1.1 IMPLEMENTATIONS

 Among the many implementations of random forests, the most popular is the

original R version. However, the SAS and Python versions are used often enough to

motivate some form of comparison in performance. Assuming R’s randomForest is used

as a benchmark source, the performances should ideally be similar among

implementations.

9

 R’s randomForest is well-documented and built to handle different problems

naturally. This package has the ability to perform regression and classification

automatically depending on if the specified response variable is of the class ‘factor’ or

otherwise. One advantage of randomForest is the ability to handle character variables

automatically as factor variables. This is useful as doing this conversion by hand is time

consuming. This package outputs, by default, a confusion matrix for classification

problems and out-of-bag error rates for each forest that is grown. The default output

from this package is concise and useful while more detailed results are easily accessible

if needed. These detailed are well-documented in the randomForest package

documentation. (Liaw and Weiner, 2018)

 SAS’s HPFOREST is well-documented on the SAS website. The documentation

for this package, and most other SAS packages, includes descriptions of parameters

and options within the procedure. Examples of common uses for the procedure are

given. Options for procedure output are extremely thorough with many options to reduce

output as well. Many fit statistics offered such as: average squared error (regression)

and OOB misclassification rates (classification) which was of particular interest.

 Python’s scikit-learn package is the most poorly-documented of the three

implementations being compared. The vernacular used in the official documentation

appears to be inconsistent with traditional statistical vernacular which lead to lack of

clarity when comparing the three implementations. However, variable importance

measures, misclassification rates, and other useful attributes of the forest are easily

accessible.

As mentioned before, R’s randomForest has the ability to take any character

variable and convert it to a factor variable automatically. Additionally, R has a useful

function as.factor that allows the user to convert a variable from a non-factor class to the

factor class manually. In contrast, Python’s scikit-learn does not have the automated

10

character-to-factor conversion nor the native ability to perform that conversion manually.

This created problems in data sets used that have qualitative variables that need to be

converted to factors to use in the RF algorithm. Python’s scikit-learn package needs

dummy variables to handle factor variables. We used R to create k dummy variables for

a k+1 level factor variable. New datasets with dummy variables included were created

and used among the different implementations for consistency. Table 1 in the next

section shows the original number of predictors and the number of predictors in the new

datasets where levels of qualitative variables were converted to dummy variables. While

this issue was resolved easily in R, this has the potential to be computationally

expensive for users with different backgrounds/abilities.

 Additionally, it should be noted that there is a learning curve present for users

unfamiliar with Python programming. Assuming readers are familiar with the more

common statistical languages (R and SAS), Python is different from both and is not

designed for statistical analyses. Python does not have native support for data frames,

but data frame manipulation can be done through the pandas package.

2 METHODOLOGY

Three measures were taken to compare the three implementations of random

forests: accuracy, variable importance, and timing. These measures were taken on real

and simulated datasets of varying sizes. Eight datasets were chosen from the UC-Irvine

Repository to perform classification tasks using random forests. Additionally, twenty-two

simulated datasets were created and used to perform classification using random

forests. The R package, mlbench, was used to create these simulated data. They are

named according to the distribution used to create them. They vary by sample size and

number of predictors. Datasets named TNSimX were created using the

mlbench.twonorm function. Datasets named RNSimX were created using the

11

mlbench.ringnorm function. Three implementations of random forests were used on

these thirty datasets in order to compare performance: randomForest (R), PROC

HPFOREST (SAS), and scikit-learn (Python). The datasets are described in the table

below.

Table 1. Datasets used in the comparison. “Extended Predictors” gives the number of predictors after

converting factors to dummy variables.

Dataset Observations Predictors
Extended
Predictors

Adult 32561 14 100

CreditCard 30000 23 23

Seizure 11500 178 178

Vegas 504 20 111

BreastCancer 699 10 80

Glass 214 9 9

DNA 3186 180 180

Satellite 6435 36 36

TNSim1 50 25 25

TNSim2 100 25 25

TNSim3 500 25 25

TNSim4 1000 25 25

TNSim5 50 100 100

TNSim6 100 100 100

TNSim7 500 100 100

TNSim8 1000 100 100

TNSim9 5000 25 25

TNSim10 5000 100 100

TNSim11 10000 25 25

RNSim1 50 25 25

RNSim2 100 25 25

RNSim3 500 25 25

RNSim4 1000 25 25

RNSim5 50 100 100

RNSim6 100 100 100

RNSim7 500 100 100

RNSim8 1000 100 100

RNSim9 5000 25 25

RNSim10 5000 100 100

RNSim11 10000 25 25

12

3 RESULTS

 We present results in terms of accuracy, variable importance, and timing. All

timing results are performed on the same machine.

3.1 ACCURACY

The out-of-bag error rate was recorded and used to compare the accuracy of the

implementations. To ensure robustness, each dataset was run twenty times and an

average of the out-of-bag misclassification rates was taken. Figures 1 through 4 show a

comparison of the average out-of-bag error rate for the simulated data. The simulated

data were used because the level of difficulty of the classification problem is comparable

between the datasets of different sizes, whereas the real datasets yield classification

problems with incomparable difficulty levels. Figure 1 shows the out-of-bag error rates

for two-norm simulated datasets with 25 predictors and varying sample sizes.

In general, we observe that the error rates on the two-norm and ring-norm

datasets are comparable, with the R implementation doing somewhat better than the

others for two-norm and somewhat worse than the others for ring-norm.

13

Figure 1. Log of the out-of-bag error rate by observation size for all implementations. Two-norm simulation

datasets with 25 predictors were used.

Figure 2. Log of the out-of-bag error rate by observation size for all implementations. Ring-norm simulation
datasets with 25 predictors were used.

14

Figure 3. Log of the out-of-bag error rate by observation size for all implementations. Two-norm simulation

datasets with 100 predictors were used.

Figure 4. Log of the out-of-bag error rate by observation size for all implementations. Ring-norm simulation
datasets with 100 predictors were used.

15

3.2 VARIABLE IMPORTANCE

Variable importance was found using the Gini criterion and the fifteen most

important variables were investigated for each implementation. R’s top fifteen variables

were used as the standard to compare to. It was expected that variables considered

important in R would have the same degree of importance in SAS and Python. Variable

importance between the three implementations was visualized on the breastcancer data

set from the UCI Data Repository. A real-data example was chosen because all

variables are identically distributed in the simulated datasets, so the variable importance

measures are unstable. All results are the median of 20 repetitions. In the figures below,

it is apparent that all three methods agree for most of the variables and R disagrees with

both SAS and Python for four variables.

Figure 5. Gini variable importance measures on the breastcancer dataset for R and SAS implementations.
Each point represents the average Gini measure over 20 runs of random forests.

16

Figure 6. Gini variable importance measures on the breastcancer dataset for R and Python implementations.

Each point represents the average Gini measure over 20 runs of random forests.

Figure 7. Gini variable importance measures on the breastcancer dataset for SAS and Python
implementations. Each point represents the average Gini measure over 20 runs of random forests.

17

It seems more reasonable to conclude that SAS and Python chose the correct

“important” variables and R does not choose the correct “important” variables, than SAS

and Python both choosing the incorrect “important” variables and R choosing correctly.

The four variables disagreed upon by R were investigated further by running random

forests after excluding R’s four “least important” variables then again excluding SAS and

Python’s four “least important” variables. We will refer to the former data as RFA and the

latter as RFB. Table 2 shows the average OOB error rate for RFA and RFB.

Table 2. Out-of-bag error rates for Breast Cancer data after removing the least important variables according
to Python/SAS (RFA) and after removing the least important variables according to R (RFB). Each model has
76 predictors out of the original 80.

Data Out-of-bag error rate

RFA 4.056%

RFB 4.263%

These results agree with the results in the graphs above and suggest that Python

and SAS are measuring variable importance in a better way. We cautiously conclude

that there may be an issue with R’s Gini variable importance calculations in the

randomForest code.

3.3 TIMING

 The computation time for each implementation was measured on the two-norm

and ring-norm simulated data of different sizes. The following graphs show the

computation times for datasets with 25 and 100 predictors and multiple observation

sizes. These times were averaged over 20 repetitions.

 SAS was consistently the slowest implementation. Note that SAS Studio via SAS

OnDemand was used and is likely to be slower than another version of SAS like SAS

Enterprise Miner. Additionally, all implementations would have been faster on a faster

18

machine. R and Python were both faster than SAS, with R being faster than Python in

three of the four simulation studies.

Figure 8 (above). Computation time in seconds for two-norm simulated data with 25 predictors. Figure 9
(below). Computation time in seconds for two-norm simulated data with 100 predictors. Notice the difference

in the horizontal axes.

Figure 9

19

Figure 10 (above). Computation time in seconds for ring-norm simulated data with 25 predictors. Figure 11
(below). Computation time in seconds for ring-norm simulated data with 100 predictors. Notice the difference
in the horizontal axes.

Figure 11

20

 4 CONCLUSION

 Random forests are a useful tool that can be used on many programming

platforms. Implementations are not limited to R, arguably the most common statistical

programming language. In terms of predictive accuracy, SAS and Python’s

implementations of random forests are satisfactory in comparison to R’s randomForest.

We discovered a discrepancy between the Gini importance of SAS/Python and that of R.

While all three implementations agree on most of the variables studied, R gave a larger

variable importance than Python and SAS for four variables. A closer inspection

revealed that R’s Gini importance may not be performing as well as that of the other two.

 R’s randomForest is fast, user-friendly, and has high accuracy. In general, this

implementation recommends important variables correctly but use of caution is advised

as mentioned previously. SAS’s PROC HPFOREST is the most time consuming but has

moderate accuracy. This implementation recommends important variables correctly and

has detailed, useful output options. Finally, Python’s scikit-learn random forest

implementation is always computationally quick and chooses correct important variables.

21

APPENDIX A: CODE

R Code:

random forest on breast cancer data

load packages needed

library(randomForest)

BC <- read.csv("breastcancer.csv")

start <- Sys.time() # start time

RF1 <- randomForest(formula = y ~ ., data = BC, importance = TRUE)

end <- Sys.time() # end time

end - start # print calculation time

view variables in decreasing order of importance

imp <- as.data.frame(importance(RF1))

imp[order(imp$MeanDecreaseGini, decreasing = TRUE),]

SAS Code:

FILENAME REFFILE '/filepath/breastcancer.csv';

PROC IMPORT DATAFILE=REFFILE

 DBMS=CSV

 OUT=WORK.BC;

 GETNAMES=YES;

RUN;

PROC HPFOREST DATA = BC MAXTREES = 500 SEED = 14561;

TARGET Y / LEVEL = BINARY;

INPUT B: M: C: E: N:;

ODS OUTPUT FITSTATISTICS = BCFITSTATS(RENAME = (NTREES = TREES));

RUN;

22

/* Timing information can be found in the log as ‘real time’ listed after the PROC HPFOREST

code */

DATA BCFITSTATS;

 SET BCFITSTATS;

 LABEL TREES = 'NUMBER OF TREES';

 LABEL MISCALL = 'FULL DATA';

 LABEL MISCOOB = 'OOB';

RUN;

Python Code:

import packages

import pandas as pd

import time

from sklearn.ensemble import RandomForestClassifier

read in data

bc = pd.read_csv('breastcancer.csv')

tell Python what the response variable is

bc_Y = bc.pop("y")

rnd_clf = RandomForestClassifier(n_estimators=500,oob_score=True,criterion='gini')

calculate computation time

start = time.time() # start time

bc_rf = rnd_clf.fit(bc, bc_Y)

print(f'Out-of-bag score estimate:{1-rnd_clf.oob_score_:.3}')

end = time.time() # end time

print(end - start) # print calculation time

23

variable importance measures

bc_varimp = rnd_clf.feature_importances_

headers = ["name", "score"]

values = sorted(zip(bc.columns, rnd_clf.feature_importances_), key=lambda x: x[1] * -1)

view variables in decreasing order of importance

print(values, headers)

24

APPENDIX B: WEIGHTED RANDOM FORESTS

The research in this report is the second topic we looked at. The first topic, which

took almost nine months, was to try to improve random forests by weighting the trees.

Winham et al. (2013) introduced the Weighted Random Forest, which used the

idea of weighting the trees in a random forest using their OOB error rate. The trees were

grown as usual, and after growing all the trees, a weight was assigned to each tree. The

idea was that by increasing the weights of the trees with low OOB error rates, and

decreasing the weights of the trees with high OOB error rates, the Weighted Random

Forest could perform better in terms of prediction. They compared different weighting

schemes and found that the best weighting they tried was to weight the jth tree by

rank(1/OOBj) where OOBj is the out-of-bag error rate for tree j. Unfortunately in their

simulations this weighting gave an improvement of only 0.5% and Winham et al. (2013)

concluded that the improvements were too modest to be worthwhile in their context

(looking for interactions in very high-dimensional genetic data).

Weighted Random Forests (Winham et al. 2013).

1. Fit a random forest to the data in the usual way and record the OOB error rate of

the tree, OOBj, for the jth tree.

2. Assign weights wj = rank(1/OOBj).

3. The Weighted Random Forest predicts by combining the trees in the random

forest from Step 1, using weighted voting (classification) and weighted averaging

(regression) with votes wj.

When considering why such a commonsense weighting scheme was not successful, we

reasoned that the weights penalized trees with high OOB error. This does not

25

necessarily mean a tree fits badly, it may just mean that the OOB data for that tree are

unusually difficult to predict. So we designed a new weighting method.

Fairly Weighted Random Forests (Soifua and Cutler 2018).

1. Divide the data into 10 random subsets (folds) as in 10-fold cross validation. For

each fold k:

a. Fit a random forest in the usual way to the other 9 folds and record the

error rate of the jth tree on fold k. Call this error rate kCVj.

b. Assign weights kwj = rank(1/kCVj).

2. Compute the prediction on a test set by passing the test set down all 10 random

forests from Step 1a and by voting (classification) or averaging (regression) using

the weights kwj for each k and j.

Note that the Fairly Weighted Random Forest method computes the weights for the

trees on a common test set (the fold of the data not used to fit the random forest) so that

the weights are not confounded with the difficulty of the OOB data. Our initial

experiments with the method were not promising, so we moved to the topic presented in

the main body of this report. As a public service, we recently completed a more

comprehensive set of simulations, which showed a lot more promise, so we include

them here.

Simulations were performed using R (R Core Team, 2013). R’s randomForest

package was used for the simulations (Liaw and Weiner, 2002). Simulations were

performed using 6 data sets from the R package mlbench (Leisch and Dimitriadou 2010,

Newman et al. 1998). The datasets are ringnorm, twonorm, threenorm (each in 20

dimensions), Spirals, 2dnormals and circle (each in 2 dimensions). All of these problems

are 2-class problems. Descriptions can be found in the UCI Repository (Newman et al.

1998). Sample sizes of 200, 400 and 600 were used, with a test set of 5000. Default

26

parameters were used for randomForest. To add more challenge, we flipped the signs of

the two classes randomly with probabilities 0, 0.1, and 0.2 in both the training and test

sets. All results were averaged over 20 runs. The results are summarized in Figures A1,

A2 and A3. In these figures we refer to the Weighted Random Forest method (Winham

et al. 2013) as “Weighted” and the Fairly Weighted Random Forest method as “New”.

The “original” method is unmodified random forest.

The results show that for the 20-dimensional problems (ring-norm, two-norm and

three-norm) Fairly Weighted Random Forests do the best for all sample sizes and all

levels of flipping. For the circle problem, Fairly Weighted Random Forests either do the

best, or are very close to the best (flip = 0). For the other 2-dimensional problems

(spirals, 2dnormals) the patterns are unstable. In fact, these problems do not always

exhibit a monotonic nonincreasing pattern as the sample sizes increase, which is

somewhat alarming. We probably should have done more repetitions but the simulations

took more than 48 hours on a 3.6 GHz Intel Core i7-4790. In fact, Fairly Weighted

Random Forests show as much as a 6.5% improvement over random forests (no

weighting) for ring-norm, 5.2% for two-norm and 3.7% for three-norm. These results are

considerably better than Weighted Random Forests and we plan to explore this new

algorithm more thoroughly. One severe disadvantage of the current algorithm is that it

fits 10 times as many trees as the other two methods. On the other hand, it is still

lightning-fast compared to neural networks.

27

28

29

BIBLIOGRAPHY

Boulesteix, Anne‐Laure, et al. (2012). "Overview of random forest methodology and

practical guidance with emphasis on computational biology and bioinformatics." Wiley

Interdisciplinary Reviews: Data Mining and Knowledge Discovery 2.6. 493-507.

Breiman, Leo. "Random forests." Machine learning 45.1 (2001): minig5-32.

Leisch, F. & Dimitriadou, E. (2010). mlbench: Machine Learning Benchmark Problems. R

package version 2.1-1.

Liaw, Andy and Matthew Weiner. (2018). “Breiman and Cutler’s Random Forests for

Classification and Regression”. 1-29.

Liaw, Andy, and Matthew Wiener. (2002). "Classification and regression by

randomForest." R news 2.3. 18-22.

Newman, D.J. & Hettich, S. & Blake, C.L. & Merz, C.J. (1998). UCI Repository of

machine learning databases [http://www.ics.uci.edu/~mlearn/MLRepository.html]. Irvine,

CA: University of California, Department of Information and Computer Science.

Pedregosa et al. (2011). “Scikit-learn: Machine Learning in Python”, JMLR 12. 2825-

2830.

R Core Team (2013). R: A language and environment for statistical computing. R

Foundation for Statistical Computing. Vienna, Austria. URL http://www.R-project.org/.

SAS Institute Inc. (2016). SAS® Enterprise Miner™ 14.2: High-Performance

Procedures. Cary, NC: SAS Institute Inc.

Strobl, Carolin, et al. (2007). "Bias in random forest variable importance measures:

Illustrations, sources and a solution." BMC bioinformatics 8.1. 25.

30

Winham, S. J., Freimuth, R. R., Biernacka, J.M. (2013) A Weighted Random Forest

Approach to Improve Predictive Performance, Statistical Analysis and Data Mining, 6(6).

	Utah State University
	DigitalCommons@USU
	8-2018

	A Comparison of R, SAS, and Python Implementations of Random Forests
	Breckell Soifua
	Recommended Citation

	tmp.1526948297.pdf.Kjhee

