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Abstract 

A Comparison of R, SAS and Python Implementations of  

Random Forests 

 

by  

 

Breckell Soifua 

 

Utah State University, 2018 

 

 

Major Professor: Adele Cutler 

Department: Mathematics and Statistics 

 

The Random Forest method is a useful machine learning tool developed by Leo 

Breiman. There are many existing implementations across different programming 

languages; the most popular of which exist in R, SAS, and Python. In this paper, we 

conduct a comprehensive comparison of these implementations with regards to the 

accuracy, variable importance measurements, and timing. This comparison was done on 

a variety of real and simulated data with different classification difficulty levels, number of 

predictors, and sample sizes. The comparison shows unexpectedly different results 

between the three implementations. 
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A Comparison of R, SAS, and Python Implementations of Random Forests 

1  INTRODUCTION 

The Random Forest method is a useful machine learning tool introduced by Leo 

Breiman (2001). The method has the ability to perform both classification and regression 

prediction. Random forests are an improved extension on classification and regression 

trees (CART) (Liaw and Weiner, 2002) with respect to instability and accuracy. 

Specifically, random forests remain relatively stable with changes in data due to the 

combination of many trees. They inherit many advantages of CART. Random forests 

handle categorical predictors naturally, are computationally simple to fit, there are no 

formal distributional assumptions, can handle highly non-linear interactions and 

classification boundaries, perform automatic variable selection, and have the ability to 

handle missing values. 

The Random Forest algorithm is as follows: 

1. Grow a forest of ntree trees. For each tree from 1 to ntree, do the following: 

a. Take a sample of size N from the dataset with replacement (bootstrap) to 

grow a tree. 

b. Select m variables, independently for each node, at random out of M 

possible variables. The best split is chosen to split the node using the m 

selected predictors.  

c. Trees are grown until the nodes can no longer be split.  

For classification, majority voting is used to get aggregated predictions of the ntree trees. 

For example, to classify a new observation using a random forest with 500 trees, the 

observation is passed down all 500 trees. Each tree predicts one of the classes and the 

observation is classified as the class which gets the most votes. Due to the nature of the 

bootstrapping in Step 1a, there will be approximately 30% of data points that are not 
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included in the training set. These are used as the “out-of-bag” (OOB) data to measure 

the accuracy of the model. (Breiman, 2001). In particular, each of the observations will 

be OOB in around 30% of the trees. The observation is passed down these trees and it 

is classified as the class which gets the most votes, giving the OOB prediction for the 

observation. The error rate of all the OOB predictions is the OOB error rate of the forest. 

 Random forests compute the importance of variables in two different ways. For 

classification problems, they use the Gini criterion to measure variable importance. For a 

given tree, the Gini variable importance measure for a particular variable of interest is 

the weighted average of the decrease in the Gini impurity criteria of the splits based on 

this variable. This is averaged over the ntree trees in the forest to get the Gini 

importance for the forest. Important variables yield high Gini variable importance 

measures. The other variable importance calculation is called permutation importance. 

Permutation importance is based on predictive accuracy. The out-of-bag error rate is 

computed from both a data set obtained from permuting the values of a particular 

variable of interest in the OOB data and the original OOB data. The difference between 

these two OOB error rates gives the permutation variable importance. Important 

variables yield high permutation variable importance measures. (Boulesteix et al. 2012) 

R is a free, open-source software programming environment containing multiple 

packages with the ability to run Random Forest programs. The ‘randomForest’ package 

in R is most commonly used among all Random Forest implementations. Leo Breiman 

and Adele Cutler authored the original randomForest code in Fortran. The R port based 

on Breiman and Cutler’s code was authored by Andy Liaw and Matthew Weiner (Liaw 

and Weiner, 2018). The ‘randomForest’ package in R is currently maintained by Liaw. All 

other implementations of Random Forest refer Breiman and Cutler’s original code as a 

standard source.   
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SAS is a commercial software suite developed to perform analytics which is 

known for its ability to be used in a variety of disciplines. SAS is often preferred for 

regulatory work and has long been the standard for government work. SAS is optimized 

for big data using binning which reduces computation time and expense. While SAS is 

neither free nor open-source, it is still widely used commercially because of its 

robustness. SAS updates are rare but thorough which is seen as an advantage over the 

free, open-source programming media. The SAS procedure ‘HPFOREST’ is used when 

implementing the Random Forest algorithm. (SAS Institute, 2016) 

 Python is a free, open-source software programming environment commonly 

used in web and internet development, scientific and numeric computing, and software 

and game development. The ‘scikit-learn’ package is a machine learning package in 

Python with an implementation of random forests. (Pedregosa et al., 2011)  

 Boulesteix et al gave a brief overview of some implementations of random forests 

and their applications in computational biology and bioinformatics. Short descriptions 

and main features of each implementation are given but limited code is provided for only 

the standard R implementation. This overview is catered mainly to random forests in 

bioinformatics and omits other popular implementations, namely those in the SAS and 

Python languages. (Boulesteix et al., 2012)  

1.1  IMPLEMENTATIONS 

 Among the many implementations of random forests, the most popular is the 

original R version. However, the SAS and Python versions are used often enough to 

motivate some form of comparison in performance. Assuming R’s randomForest is used 

as a benchmark source, the performances should ideally be similar among 

implementations. 
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 R’s randomForest is well-documented and built to handle different problems 

naturally. This package has the ability to perform regression and classification 

automatically depending on if the specified response variable is of the class ‘factor’ or 

otherwise. One advantage of randomForest is the ability to handle character variables 

automatically as factor variables. This is useful as doing this conversion by hand is time 

consuming. This package outputs, by default, a confusion matrix for classification 

problems and out-of-bag error rates for each forest that is grown. The default output 

from this package is concise and useful while more detailed results are easily accessible 

if needed. These detailed are well-documented in the randomForest package 

documentation. (Liaw and Weiner, 2018) 

 SAS’s HPFOREST is well-documented on the SAS website. The documentation 

for this package, and most other SAS packages, includes descriptions of parameters 

and options within the procedure. Examples of common uses for the procedure are 

given. Options for procedure output are extremely thorough with many options to reduce 

output as well. Many fit statistics offered such as: average squared error (regression) 

and OOB misclassification rates (classification) which was of particular interest. 

 Python’s scikit-learn package is the most poorly-documented of the three 

implementations being compared. The vernacular used in the official documentation 

appears to be inconsistent with traditional statistical vernacular which lead to lack of 

clarity when comparing the three implementations. However, variable importance 

measures, misclassification rates, and other useful attributes of the forest are easily 

accessible. 

As mentioned before, R’s randomForest has the ability to take any character 

variable and convert it to a factor variable automatically. Additionally, R has a useful 

function as.factor that allows the user to convert a variable from a non-factor class to the 

factor class manually. In contrast, Python’s scikit-learn does not have the automated 
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character-to-factor conversion nor the native ability to perform that conversion manually. 

This created problems in data sets used that have qualitative variables that need to be 

converted to factors to use in the RF algorithm. Python’s scikit-learn package needs 

dummy variables to handle factor variables. We used R to create k dummy variables for 

a k+1 level factor variable. New datasets with dummy variables included were created 

and used among the different implementations for consistency. Table 1 in the next 

section shows the original number of predictors and the number of predictors in the new 

datasets where levels of qualitative variables were converted to dummy variables. While 

this issue was resolved easily in R, this has the potential to be computationally 

expensive for users with different backgrounds/abilities.  

 Additionally, it should be noted that there is a learning curve present for users 

unfamiliar with Python programming. Assuming readers are familiar with the more 

common statistical languages (R and SAS), Python is different from both and is not 

designed for statistical analyses. Python does not have native support for data frames, 

but data frame manipulation can be done through the pandas package. 

2  METHODOLOGY 

Three measures were taken to compare the three implementations of random 

forests: accuracy, variable importance, and timing.  These measures were taken on real 

and simulated datasets of varying sizes. Eight datasets were chosen from the UC-Irvine 

Repository to perform classification tasks using random forests. Additionally, twenty-two 

simulated datasets were created and used to perform classification using random 

forests. The R package, mlbench, was used to create these simulated data. They are 

named according to the distribution used to create them. They vary by sample size and 

number of predictors. Datasets named TNSimX were created using the 

mlbench.twonorm function. Datasets named RNSimX were created using the 
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mlbench.ringnorm function. Three implementations of random forests were used on 

these thirty datasets in order to compare performance: randomForest (R), PROC 

HPFOREST (SAS), and scikit-learn (Python). The datasets are described in the table 

below.  

Table 1. Datasets used in the comparison. “Extended Predictors” gives the number of predictors after 

converting factors to dummy variables. 

Dataset Observations Predictors 
Extended 
Predictors 

Adult 32561 14 100 

CreditCard 30000 23 23 

Seizure 11500 178 178 

Vegas 504 20 111 

BreastCancer 699 10 80 

Glass 214 9 9 

DNA 3186 180 180 

Satellite 6435 36 36 

TNSim1 50 25 25 

TNSim2 100 25 25 

TNSim3 500 25 25 

TNSim4 1000 25 25 

TNSim5 50 100 100 

TNSim6 100 100 100 

TNSim7 500 100 100 

TNSim8 1000 100 100 

TNSim9 5000 25 25 

TNSim10 5000 100 100 

TNSim11 10000 25 25 

RNSim1 50 25 25 

RNSim2 100 25 25 

RNSim3 500 25 25 

RNSim4 1000 25 25 

RNSim5 50 100 100 

RNSim6 100 100 100 

RNSim7 500 100 100 

RNSim8 1000 100 100 

RNSim9 5000 25 25 

RNSim10 5000 100 100 

RNSim11 10000 25 25 
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3  RESULTS 

 We present results in terms of accuracy, variable importance, and timing. All 

timing results are performed on the same machine.  

3.1  ACCURACY 

The out-of-bag error rate was recorded and used to compare the accuracy of the 

implementations. To ensure robustness, each dataset was run twenty times and an 

average of the out-of-bag misclassification rates was taken. Figures 1 through 4 show a 

comparison of the average out-of-bag error rate for the simulated data. The simulated 

data were used because the level of difficulty of the classification problem is comparable 

between the datasets of different sizes, whereas the real datasets yield classification 

problems with incomparable difficulty levels. Figure 1 shows the out-of-bag error rates 

for two-norm simulated datasets with 25 predictors and varying sample sizes.  

In general, we observe that the error rates on the two-norm and ring-norm 

datasets are comparable, with the R implementation doing somewhat better than the 

others for two-norm and somewhat worse than the others for ring-norm. 
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Figure 1. Log of the out-of-bag error rate by observation size for all implementations. Two-norm simulation 

datasets with 25 predictors were used. 

 

Figure 2. Log of the out-of-bag error rate by observation size for all implementations. Ring-norm simulation 
datasets with 25 predictors were used. 
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Figure 3. Log of the out-of-bag error rate by observation size for all implementations. Two-norm simulation 

datasets with 100 predictors were used. 

 

Figure 4. Log of the out-of-bag error rate by observation size for all implementations. Ring-norm simulation 
datasets with 100 predictors were used. 
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3.2  VARIABLE IMPORTANCE 

Variable importance was found using the Gini criterion and the fifteen most 

important variables were investigated for each implementation. R’s top fifteen variables 

were used as the standard to compare to. It was expected that variables considered 

important in R would have the same degree of importance in SAS and Python. Variable 

importance between the three implementations was visualized on the breastcancer data 

set from the UCI Data Repository. A real-data example was chosen because all 

variables are identically distributed in the simulated datasets, so the variable importance 

measures are unstable. All results are the median of 20 repetitions. In the figures below, 

it is apparent that all three methods agree for most of the variables and R disagrees with 

both SAS and Python for four variables.  

 

Figure 5. Gini variable importance measures on the breastcancer dataset for R and SAS implementations. 
Each point represents the average Gini measure over 20 runs of random forests.  
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Figure 6. Gini variable importance measures on the breastcancer dataset for R and Python implementations. 

Each point represents the average Gini measure over 20 runs of random forests. 

 

Figure 7. Gini variable importance measures on the breastcancer dataset for SAS and Python 
implementations. Each point represents the average Gini measure over 20 runs of random forests. 
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It seems more reasonable to conclude that SAS and Python chose the correct 

“important” variables and R does not choose the correct “important” variables, than SAS 

and Python both choosing the incorrect “important” variables and R choosing correctly. 

The four variables disagreed upon by R were investigated further by running random 

forests after excluding R’s four “least important” variables then again excluding SAS and 

Python’s four “least important” variables. We will refer to the former data as RFA and the 

latter as RFB. Table 2 shows the average OOB error rate for RFA and RFB. 

Table 2. Out-of-bag error rates for Breast Cancer data after removing the least important variables according 
to Python/SAS (RFA) and after removing the least important variables according to R (RFB). Each model has 
76 predictors out of the original 80. 

Data Out-of-bag error rate 

RFA 4.056% 

RFB 4.263% 

 

These results agree with the results in the graphs above and suggest that Python 

and SAS are measuring variable importance in a better way. We cautiously conclude 

that there may be an issue with R’s Gini variable importance calculations in the 

randomForest code. 

3.3  TIMING 

 The computation time for each implementation was measured on the two-norm 

and ring-norm simulated data of different sizes. The following graphs show the 

computation times for datasets with 25 and 100 predictors and multiple observation 

sizes. These times were averaged over 20 repetitions. 

 SAS was consistently the slowest implementation. Note that SAS Studio via SAS 

OnDemand was used and is likely to be slower than another version of SAS like SAS 

Enterprise Miner. Additionally, all implementations would have been faster on a faster 
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machine. R and Python were both faster than SAS, with R being faster than Python in 

three of the four simulation studies. 

 

Figure 8 (above). Computation time in seconds for two-norm simulated data with 25 predictors. Figure 9 
(below). Computation time in seconds for two-norm simulated data with 100 predictors. Notice the difference 

in the horizontal axes. 

 

Figure 9 



19 
 

 

Figure 10 (above). Computation time in seconds for ring-norm simulated data with 25 predictors. Figure 11 
(below). Computation time in seconds for ring-norm simulated data with 100 predictors. Notice the difference 
in the horizontal axes.  

 

Figure 11 
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 4  CONCLUSION 

 Random forests are a useful tool that can be used on many programming 

platforms. Implementations are not limited to R, arguably the most common statistical 

programming language. In terms of predictive accuracy, SAS and Python’s 

implementations of random forests are satisfactory in comparison to R’s randomForest. 

We discovered a discrepancy between the Gini importance of SAS/Python and that of R. 

While all three implementations agree on most of the variables studied, R gave a larger 

variable importance than Python and SAS for four variables. A closer inspection 

revealed that R’s Gini importance may not be performing as well as that of the other two.  

 R’s randomForest is fast, user-friendly, and has high accuracy. In general, this 

implementation recommends important variables correctly but use of caution is advised 

as mentioned previously. SAS’s PROC HPFOREST is the most time consuming but has 

moderate accuracy. This implementation recommends important variables correctly and 

has detailed, useful output options. Finally, Python’s scikit-learn random forest 

implementation is always computationally quick and chooses correct important variables.  
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APPENDIX A: CODE 

R Code: 

# random forest on breast cancer data 

# load packages needed 

library(randomForest) 

BC <- read.csv("breastcancer.csv") 

start <- Sys.time() # start time 

RF1 <- randomForest(formula = y ~ ., data = BC, importance = TRUE) 

end <- Sys.time() # end time 

end - start # print calculation time 

 

# view variables in decreasing order of importance 

imp <- as.data.frame(importance(RF1)) 

imp[order(imp$MeanDecreaseGini, decreasing = TRUE),] 

 

SAS Code: 

FILENAME REFFILE '/filepath/breastcancer.csv'; 

PROC IMPORT DATAFILE=REFFILE 

 DBMS=CSV 

 OUT=WORK.BC; 

 GETNAMES=YES; 

RUN; 

PROC HPFOREST DATA = BC MAXTREES = 500 SEED = 14561; 

TARGET Y / LEVEL = BINARY; 

INPUT B: M: C: E: N:; 

ODS OUTPUT FITSTATISTICS = BCFITSTATS(RENAME = (NTREES = TREES)); 

RUN; 
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/* Timing information can be found in the log as ‘real time’ listed after the PROC HPFOREST 

code */ 

 

DATA BCFITSTATS;  

 SET BCFITSTATS; 

 LABEL TREES = 'NUMBER OF TREES'; 

 LABEL MISCALL = 'FULL DATA'; 

 LABEL MISCOOB = 'OOB'; 

RUN; 

 

Python Code: 

# import packages 

 

import pandas as pd 

import time 

from sklearn.ensemble import RandomForestClassifier 

# read in data 

bc = pd.read_csv('breastcancer.csv') 

# tell Python what the response variable is 

bc_Y = bc.pop("y") 

rnd_clf = RandomForestClassifier(n_estimators=500,oob_score=True,criterion='gini') 

# calculate computation time 

start = time.time() # start time 

bc_rf = rnd_clf.fit(bc, bc_Y) 

print(f'Out-of-bag score estimate:{1-rnd_clf.oob_score_:.3}') 

end = time.time() # end time 

print(end - start) # print calculation time 
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# variable importance measures 

bc_varimp = rnd_clf.feature_importances_  

headers = ["name", "score"] 

values = sorted(zip(bc.columns, rnd_clf.feature_importances_), key=lambda x: x[1] * -1) 

# view variables in decreasing order of importance 

print(values, headers)  
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APPENDIX B: WEIGHTED RANDOM FORESTS 

The research in this report is the second topic we looked at. The first topic, which 

took almost nine months, was to try to improve random forests by weighting the trees.  

Winham et al. (2013) introduced the Weighted Random Forest, which used the 

idea of weighting the trees in a random forest using their OOB error rate. The trees were 

grown as usual, and after growing all the trees, a weight was assigned to each tree. The 

idea was that by increasing the weights of the trees with low OOB error rates, and 

decreasing the weights of the trees with high OOB error rates, the Weighted Random 

Forest could perform better in terms of prediction. They compared different weighting 

schemes and found that the best weighting they tried was to weight the jth tree by 

rank(1/OOBj) where OOBj is the out-of-bag error rate for tree j. Unfortunately in their 

simulations this weighting gave an improvement of only 0.5% and Winham et al. (2013) 

concluded that the improvements were too modest to be worthwhile in their context 

(looking for interactions in very high-dimensional genetic data).  

 

Weighted Random Forests (Winham et al. 2013). 

1. Fit a random forest to the data in the usual way and record the OOB error rate of 

the tree, OOBj, for the jth tree. 

2. Assign weights wj = rank(1/OOBj). 

3. The Weighted Random Forest predicts by combining the trees in the random 

forest from Step 1, using weighted voting (classification) and weighted averaging 

(regression) with votes wj. 

 

When considering why such a commonsense weighting scheme was not successful, we 

reasoned that the weights penalized trees with high OOB error. This does not 
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necessarily mean a tree fits badly, it may just mean that the OOB data for that tree are 

unusually difficult to predict. So we designed a new weighting method. 

Fairly Weighted Random Forests (Soifua and Cutler 2018). 

1. Divide the data into 10 random subsets (folds) as in 10-fold cross validation. For 

each fold k: 

a. Fit a random forest in the usual way to the other 9 folds and record the 

error rate of the jth tree on fold k. Call this error rate kCVj. 

b. Assign weights kwj = rank(1/kCVj). 

2. Compute the prediction on a test set by passing the test set down all 10 random 

forests from Step 1a and by voting (classification) or averaging (regression) using 

the weights kwj for each k and j. 

 

Note that the Fairly Weighted Random Forest method computes the weights for the 

trees on a common test set (the fold of the data not used to fit the random forest) so that 

the weights are not confounded with the difficulty of the OOB data. Our initial 

experiments with the method were not promising, so we moved to the topic presented in 

the main body of this report. As a public service, we recently completed a more 

comprehensive set of simulations, which showed a lot more promise, so we include 

them here. 

Simulations were performed using R (R Core Team, 2013). R’s randomForest 

package was used for the simulations (Liaw and Weiner, 2002). Simulations were 

performed using 6 data sets from the R package mlbench (Leisch and Dimitriadou 2010, 

Newman et al. 1998). The datasets are ringnorm, twonorm, threenorm (each in 20 

dimensions), Spirals, 2dnormals and circle (each in 2 dimensions). All of these problems 

are 2-class problems. Descriptions can be found in the UCI Repository (Newman et al. 

1998). Sample sizes of 200, 400 and 600 were used, with a test set of 5000. Default 
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parameters were used for randomForest. To add more challenge, we flipped the signs of 

the two classes randomly with probabilities 0, 0.1, and 0.2 in both the training and test 

sets. All results were averaged over 20 runs. The results are summarized in Figures A1, 

A2 and A3. In these figures we refer to the Weighted Random Forest method (Winham 

et al. 2013) as “Weighted” and the Fairly Weighted Random Forest method as “New”. 

The “original” method is unmodified random forest. 

The results show that for the 20-dimensional problems (ring-norm, two-norm and 

three-norm) Fairly Weighted Random Forests do the best for all sample sizes and all 

levels of flipping. For the circle problem, Fairly Weighted Random Forests either do the 

best, or are very close to the best (flip = 0). For the other 2-dimensional problems 

(spirals, 2dnormals) the patterns are unstable. In fact, these problems do not always 

exhibit a monotonic nonincreasing pattern as the sample sizes increase, which is 

somewhat alarming. We probably should have done more repetitions but the simulations 

took more than 48 hours on a 3.6 GHz Intel Core i7-4790. In fact, Fairly Weighted 

Random Forests show as much as a 6.5% improvement over random forests (no 

weighting) for ring-norm, 5.2% for two-norm and 3.7% for three-norm. These results are 

considerably better than Weighted Random Forests and we plan to explore this new 

algorithm more thoroughly. One severe disadvantage of the current algorithm is that it 

fits 10 times as many trees as the other two methods. On the other hand, it is still 

lightning-fast compared to neural networks.
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