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Using Field-level Characteristics 
as Proxy Measures to Test for the 
Presence of Economies of Scale in 
Nonpoint Pollution Control
Arthur J. Caplan, John Gilbert, and Devalina Chatterjee

We use parametric and nonparametric methods to estimate correlations between 
average control cost and three ϐield-level characteristics—ϐield size and delivered 
phosphorous per ϐield and per acre—as proxies for economies of scale in 
controlling nonpoint pollution. We combine load and delivery-ratio estimates for 
more than 12,000 ϐields in the Bear River Basin, Utah, with estimates of control 
costs and effectiveness of management practices from the literature. Results 
suggest a negative relationship between control cost and delivered phosphorous 
per ϐield and per acre. Ranking ϐields by phosphorous load therefore prioritizes 
management-practice subsidies by economies of scale.
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Since passage of the 1972 and 1977 Federal Water Pollution Control Act 
Amendments (henceforth the Clean Water Act), approximately 34,000 of the 
nation’s water bodies have either remained out of compliance or fallen out 
of compliance with Clean Water Act standards for drinking water, contact 
recreation, or aquatic life support (Environmental Protection Agency (EPA) 
2003b). The main factor contributing to this widespread noncompliance is 
loading of nutrient- and pesticide-based pollutants from agricultural nonpoint 
sources (NPSs) such as crop and feedlot operations through natural run-
off and leaching processes (Freeman 2002). Regulation of NPSs has been 
stymied by the very nature of the loadings—they are diffuse and susceptible 
to environmental and informational uncertainties, factors that obviate the 
continuous monitoring needed to assign particular loadings to their sources 
within a watershed. Nevertheless, control of NPS loadings is a crucial 
determinant of whether predominantly agricultural watersheds can meet the 
provisions of the Clean Water Act. This study demonstrates two methods—
calculation of Pearson’s correlation coefϐicients via Monte Carlo simulation and 
panel data estimation—that may prove useful to watershed planners in their 
efforts to accommodate the uncertainty inherent to ϐield-level control costs and 
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the effectiveness of best management practices (BMPs) and thus help planners 
manage NPS control efforts in a more cost-effective manner.1

Both methods are premised on the normative assumption that cost-
effectiveness is the preferred criterion for design of a watershed-wide NPS 
control program. By cost-effective, we mean that control efforts that target 
farmers’ ϐields abide by the equimarginal principle whereby least-cost efforts 
(measured in this case as control cost per unit abated per ϐield or average 
control cost) are undertaken ϐirst, followed by progressively more costly ϐield-
by-ϐield control efforts. Because our average control cost measure is adjusted 
for the “potency” of a ϐield’s estimated load via estimation of the ϐield’s delivery 
ratio (explained in detail hereafter), the methods we propose provide a ranking 
mechanism based on what Babcock et al. (1997) called “optimal targeting.” 
Similar to Babcock et al. (1997), which examined conditions under which 
alternative targeting rules for enrollment of land in the U.S Department of 
Agriculture’s (USDA’s) Conservation Reserve Program (CRP) led to different 
rankings, our methods are probabilistic (they reϐlect uncertainties inherent 
to beneϐits and costs of NPS pollution control). Unlike Babcock et al. (1997), 
this study develops two methods that statistically test for correlations between 
economies of scale in the control of NPS pollution and various ϐield-level 
characteristics and thus demonstrates how a regulator might achieve optimal 
targeting of BMP subsidies.2

Both Pearson’s correlation coefϐicients and panel data estimation generate 
estimates of correlations between per-ϐield average control cost (ACC) and 
three ϐield-level characteristics: (i) ϐield size, (ii) delivered phosphorous load 
per ϐield, and (iii) delivered phosphorous load per acre. From the perspective 
of both a regulator and a nonpoint source, ACC is inherently uncertain for any 
given ϐield. It therefore must be estimated based on distributional assumptions 
deϐined over BMP effectiveness and ϐield-level control costs. Tests such as the 
ones undertaken in this study will help us surmise how well characteristics 
that are relatively easily measured, such as ϐield size and delivered pollutant 
load, might serve as a proxy for the control cost, which is relatively difϐicult 
to measure. As we will explain in greater detail, delivered loads can be 
estimated with greater accuracy than ever before thanks to more sophisticated 
hydrological models. Estimates of ϐield size also are more readily available 
via geographic-information-based land-use data sets. Where statistically 
signiϐicant negative correlations exist between average control cost (ACC) 
and these ϐield characteristics, the ϐield-level characteristics offer potentially 
valuable proxy measures for estimates of economies of scale in implementing 
control practices. Again, these types of correlation estimates are motivated by 
the fact that control costs are more uncertain (from the perspective of both 
regulators and the NPSs) than are ϐield-level characteristics. Thus, standard 
cost-function approaches to estimating economies of scale (e.g., Christensen 

1 The Pearson correlation coefϐicient is a widely used, unconditional measure of the strength of 
linear dependence between two (continuously measured) random variables that requires no prior 
restrictions on the variables’ joint distribution (Rodgers and Nicewander 1988). The structure 
of the data also lends itself nicely to panel-data estimation because the set contains repeated 
observations (multiple ϐield-level observations) per observational unit (i.e., farms).

2 The alternative rules examined in Babcock et al. (1997) were based (i) solely on estimated 
cost, (ii) solely on estimated beneϐit, or (iii) on the estimated ratio of beneϐit to cost. The authors 
refer to the former two rules as being “suboptimal” and the latter rule as being “optimal.” Wu, 
Zilberman, and Babcock (2001) extended the basic results in Babcock et al. (1997) to a general 
equilibrium setting.
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and Greene 1976, MacDonald and Ollinger 2000) are precluded in the case of 
NPS pollution control.3

Our data set consists of estimates of loading and of delivery ratios for more 
than 12,000 ϐields within approximately 5,900 farms located in the Bear River 
Basin in Utah. The estimates of loading and of delivery ratios are derived 
from a newly developed hydrologic model of the basin that accounts for 
seasonal variability in nonpoint loadings and thus accommodates the inherent 
environmental uncertainties associated with attributes such as weather and 
ϐield-speciϐic topography. The estimates are then combined with estimates 
of the cost of control measures and effectiveness of BMPs that are based on 
a range of values reported in the literature. Two common density functions—
normal and uniform—are assumed as separate cases to deϐine distributions of 
phosphorus (P) loadings across farmers’ ϐields. Using this framework, we ϐind 
statistical evidence of a negative relationship between ACC and delivered P load 
per ϐield and per acre. This suggests that one could rank ϐields according to 
delivered P load per ϐield and per acre to prioritize which BMPs to subsidize 
according to economies of scale in BMP implementation. Evidence is mixed 
regarding the statistical relationship between ACC and ϐield size.

The methods used in this study may be relevant for the Natural Resources 
Conservation Service’s (NRCS’s) Environmental Quality Incentives Program 
(EQIP) by demonstrating how the program’s current ranking criteria (in terms 
of which BMPs to subsidize on which ϐields ϐirst) might be adjusted so that 
subsidies go to control efforts that are the most cost-effective for the watershed 
as a whole.4 Although the NRCS generally obtains self-reported cost estimates 
(total cost per acre) from the NPSs when prioritizing EQIP funding applications, 
a host of other environmental attributes can be used to rank NPS ϐields 
according to their potential to control pollution; that is, cost-effectiveness on a 
watershed-wide basis is not explicitly the NRCS’s top priority (NRCS 2009a). To 
the extent that cost-effectiveness should be its top priority in ranking control 
potential at the ϐield level, our analysis and results provide a framework that 
NRCS could adopt to meet that objective.5

Parametric tests for the presence of economies of scale (and their scope) have 
been the focus of numerous previous studies. The majority of the studies found 
evidence of scale economies in various industries when estimating ϐlexible cost 
functions with either plant-level or industry-level data.6 A notable exception 
is Gyimah-Brempong (1987), which found diseconomies of scale and scope 
for municipal police departments. Hammond, Melander, and Shilling (1971) 
found scale economies with respect to operating expenses but diseconomies 

3 See Nelson (1988) and Moschini (1990) for approaches to estimating economies and returns 
to scale that are similar to ours.

4 EQIP is a voluntary program offering ϐinancial assistance (in the form of cost-share subsidies 
of up to 90 percent) to farmers and ranchers for installation of BMPs on eligible ϐields. The goal 
of the program is to reduce NPS pollution, reduce soil erosion and sedimentation, and promote 
conservation of habitat for at-risk species (NRCS 2009b, 2009c).

5 The aforementioned CRP may also beneϐit from using the proposed framework to allocate its 
subsidies and annual rental payments in a more cost-effective manner. As with EQIP, this voluntary 
program induces farmers and ranchers to plant resource-conserving vegetative cover crops to 
reduce nonpoint pollution and expand species habitat (Farm Service Agency (FSA) 2009b). The 
ranking criteria include cost but only as one of several other physical factors (FSA 2009a). See Taff 
and Runge (1987) and Reichelderfer and Boggess (1988) for further discussion of the deϐiciencies 
of CRP decision rules historically.

6 See, for instance, Sung and Gort’s (2000) study of the U.S. local telephone industry and Paul’s 
(2001) study of the U.S. beef packing industry.
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with respect to loss costs in the property and liability insurance industry. To 
our knowledge, no study has yet tested for scale economies in the control 
of NPS pollution.7 As mentioned previously, such tests are complicated by 
uncertainty associated with control effectiveness and cost at the ϐield level and 
a lack of input and input-cost information at the ϐield or farm level. These issues 
preclude speciϐication of any given cost function as a guiding empirical model. 
The parametric and nonparametric approaches explored here demonstrate 
possible ways to accommodate these uncertainties and data limitations.

The following section brieϐly describes our study area, the Bear River Basin 
of Utah. The next section provides a synopsis of the basin’s environmental 
and economic proϐiles. The hydrologic model and loading and delivery-ratio 
estimates thus obtained are discussed ϐirst, followed by information on the 
economic data (estimates of control costs and BMP effectiveness). We then 
present a section on the methodologies of and results from our parametric and 
nonparametric tests for the existence of economies of scale in NPS pollution 
control. The ϐinal section summarizes our ϐindings and offers concluding 
thoughts.

Bear River Basin

The Bear River Basin comprises 19,000 square kilometers of mountain 
and valley land located in northeastern Utah (44 percent of the watershed), 
southeastern Idaho (36 percent), and southwestern Wyoming (20 percent). See 
Figure 1 for a map of the area and its major rivers. The basin ranges in elevation 
from 1,283 meters to more than 3,962 meters and is enclosed entirely by 
mountains. Both agricultural land and urban areas are located in valleys along 
the main stem of the Bear River and its tributaries. Currently, several water 
bodies in the basin are on the Clean Water Act 303(d) list of impaired waters in 
each of the three states. Two of the 303(d)-listed water bodies, the Cub River 
and Cutler Reservoir, form the focus area for this study. Figure 1 identiϐies the 
speciϐic location of the basin’s receptor point at the northern end of Cutler 
Reservoir. The water bodies are listed because of depletion of dissolved oxygen 
during summer months that stems primarily from excessive P loadings from 
both point and nonpoint sources.

Currently, total maximum daily load (TMDL) limits under the Clean Water Act 
are being updated or developed for the Cub River and Cutler Reservoir. Cutler 
Reservoir impounds the waters of the Bear, Logan, and Little Bear rivers and 
other small drainages. The reservoir provides water for agricultural use and 
power generation (Utah Department of Environmental Quality (DEQ) 2008).8 
Crops commonly grown in the basin include dryland and irrigated pasture, 
hay, alfalfa, and corn, all used locally to feed cattle and dairy cows. From its 
point of entry in Utah, the Bear River and most of its tributaries ϐlow through 
agricultural lands. As a result, the primary anthropogenic sources of P loads 
are NPSs (comprised of approximately 12,500 agricultural ϐields within 
approximately 5,900 farms) and ϐive city-owned wastewater treatment plants. 

7 Pittman (1981) tested for the existence of economies of scale in pollution control solely among 
industrial point sources (PSs) and found evidence of scale economies.

8 The Utah Department of Environmental Quality (2008) provides a detailed description of the 
study area’s physical, biological, and socio-economic characteristics. Total population in the study 
area is roughly 100,000 (U.S. Census Bureau 2009).
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Aggregate annual delivered loads from these two source groups are estimated 
to be roughly the same as loads for the Cutler Reservoir receptor point.9

Basin Proϐile

Hydrologic Model and Environmental Data

As previously mentioned, key information regarding both NPS loadings and 
the amount of loading that ultimately reaches a given receptor point (via 
delivery ratios) is necessary to establish whether there are economies of scale 
in nonpoint control. However, delivery ratios primarily depend on in-stream 
processes and withdrawals and can be particularly difϐicult to estimate. To 
quantify loadings and delivery ratios associated with individual owners’ ϐields, 
Caplan, Neilson, and Baker (2009) developed a hydrologic modeling framework 
consisting of a combination of models, modeling approaches, and analysis 

9 Aggregate annual delivered loads to Cutler Reservoir are roughly 2,400 kilograms from point 
sources and 2,600 kilograms from nonpoint sources. As in Caplan, Neilson, and Baker (2009), this 
study assumes that loadings from animal feeding operations (both conϐined and unconϐined) are 
already or are in the process of being completely controlled through a variety of state and federally 
funded programs (Utah Department of Environmental Quality 2008).

Figure 1. The Bear River Basin, Utah
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techniques to assess the feasibility of water quality trading. We use that same 
framework here.10

As described in Neilson et al. (2009), the framework utilizes (i) the TOPNET 
hydrology model (Bandaragoda, Tarboton, and Woods 2004), (ii) variable 
source area (VSA) calculations to resolve spatial areas that are contributing 
surface run-off (Lyon et al. 2004), (iii) a model component for sub-basin 
loading that is based on the VSA calculations, event mean concentrations, and 
spatially distributed land-use information, and (iv) a component for water 
body response that incorporates the QUAL2E model (Brown and Barnwell 
1987) to determine delivery ratios. This combination of models provides 
a representation of the physical hydrology at the watershed scale and the 
associated in-stream response at a daily time step. The approach also results in 
representation of the spatial variability of daily loadings at the ϐield scale and 
daily delivery ratios for receptor points of interest.

Figure 2 shows the generic ϐlow of information between the modeling 
components. In the Bear River application of the model, TOPNET was populated 
using (i) SSURGO soils data (NRCS 2007), (ii) the 30-meter National Elevation 
Dataset digital elevation model (U.S. Geological Survey (USGS) 2009), (iii) land 
cover data from the National Land Cover Dataset (EPA 2001), (iv) Utah water-
related land-use data (Utah Department of Natural Resources 2009), and 
(v) data on local weather, water diversions, and reservoir discharges (USGS 
2009) for a simulation period spanning October 1, 1989, through September 
30, 2004. TOPNET was calibrated using streamϐlow measurements at multiple 
locations throughout the six-year period of 1989 through 1995. Model 
validation occurred from 1995 through 2004.

Uncertainty associated with each of the modeling components is a concern 
that must be addressed when incorporating modeling results into an economic 
analysis. In this study, we accommodated the daily values resulting from 
variable conditions within a season by averaging the daily loads and the 
delivery ratios over each season (winter, spring, summer, and fall). These 
seasonal values, which differed over the range of annual hydrologic conditions, 
were then averaged again over the simulation period (October 1, 1989, through 
September 30, 2004), providing an average seasonal ϐield load and an average 
seasonal delivery ratio for each sub-basin.11 As a result, we effectively treated 
the loading and delivery-ratio estimates as known with certainty by the 
regulator so that we could focus on persisting uncertainty concerning control 
costs and BMP effectiveness at the ϐield level.12 Figure 3 shows the resulting 

10 See Neilson et al. (2009) for a full description of the hydrologic modeling framework used in 
support of our study. To our knowledge, only a handful of previous studies have used watershed 
or in-stream hydrologic models in support of water quality trading (WQT). Each aggregated the 
results to the watershed level so the results were not “operational” in the sense of providing 
regulators with the tools necessary to assess the potential of programs like WQT on a per-farm or 
per-ϐield basis. For example, to estimate mean-event NPS loadings in the preliminary assessment 
of WQT opportunities in the Great Miami River Basin in Ohio, Keiser, Fang, and Hall (2004) 
used the Soil and Water Assessment Tool (SWAT) model in conjunction with EPA’s geographic 
information system (GIS) modeling platform known as BASINS (Better Assessment Science 
Integrating Point and Nonpoint Sources). Estimated PS and NPS abatement costs were taken from 
the literature, and ad hoc, exogenously determined trading ratios were used to account for the 
spatial nonuniformities that exist between (downstream) PSs and (upstream) NPSs.

11 In practice, annual maximum values can be substituted for the average seasonal values used 
in this study if the regulatory authority determines that an extra “margin of safety” is required for 
risk-reduction purposes.

12 We acknowledge this simpliϐication for the purposes of the ensuing analysis. Theoretical 
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average seasonal loads for the ϐields in the Utah portion of the Bear River Basin 
(shaded).

Economic Data

Our estimates of NPS control costs and BMP effectiveness come from the 
existing literature. Beginning with the BMPs that are most relevant for the 
Bear River Basin, we considered two cultural practices: conservation tillage 
and nutrient management. Based on estimates contained in Haith and Loehr 
(1979), Beasley et al. (1985), Hamlett and Epp (1994), Johnes and Heathwaite 
(1997), Mostaghimi et al. (1997), Walter et al. (2001), Sharpley et al. (2002), and 
EPA (2003a), conservation tillage was assumed to range between 60 percent 
and 80 percent effectiveness and nutrient management was assumed to range 
between 40 percent and 50 percent. The per-acre cost of the BMPs was assumed 
to range from approximately $3 for conservation tillage to approximately $15 
for nutrient management.13

The ACC for ϐield i = 1, . . . , I owned by NPS j = 1, . . . , J is deϐined as

(1) 

papers incorporating both types of uncertainty include Malik, Letson, and Crutchϐield (1993), 
Shortle and Abler (1997), Shortle and Horan (2001), and Wu and Babcock (2001). Empirical 
papers that account for uncertainty in a fashion similar to ours include Horan et al. (2002), Horan, 
Shortle, and Abler (2002), Feng, Easter, and Brezonik (2005), and Keiser, Fang, and Hall (2004).

13 To our knowledge, the literature to date has reported only constant per-acre control costs.

Figure 2. Detailed Outline of Information Flow for Hydrological Modeling 
Framework
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where cij represents the per-acre cost of the BMP in dollars, bij represents the 
effectiveness of the BMP in reducing delivered load in percent, Sij represents 
ϐield size in acres, and Lij represents delivered load per ϐield in grams per year 
in the absence of any explicit abatement. Lij is further deϐined as

(2) Lij = tijPij

Figure 3. Field-level Seasonal Total Phosphorus Loadings in the Study 
Area
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where tij and Pij are ϐield i’s delivery ratio and P load, respectively, as estimated 
from the hydrology model described in the previous subsection. Thus, ACC is 
deϐined as the total cost of implementing a BMP divided by the delivered load 
abated per ϐield. In the textbook case, economies of scale are driven by cases in 
which the total cost of production increases in output but at a slower rate than 
output itself. Similarly, economies of scale in nonpoint pollution control arise 
when the total cost of abating P increases more slowly than the amount of P 
abated. In the case of nonpoint pollution, however, uncertainty concerning the 
per-acre cost and effectiveness of the BMP (cij and bij) requires an assumption 
by the regulator of probability distributions for these two facets of BMPs across 
all ϐields i = 1, . . . , I and for NPSs j = 1, . . . , J. Further, as mentioned previously, 
we test three potential correlates with ACC for which data are more likely to 
be available to the regulator than quantities of P abated are. These correlates 
are ϐield size, delivered phosphorous load per ϐield, and delivered phosphorous 
load per acre. Increases in ϐield size increase the numerator of (1) directly and 
the denominator indirectly (all else being equal, larger ϐields are associated 
with larger delivered loads of P). These direct and indirect effects on economies 
of scale for P loads are the opposite of the textbook case in which increases 
in output increase the denominator directly and the numerator indirectly via 
the total cost function. However, increases in delivered P load per ϐield and 
per acre follow the textbook case (again, all else being equal, larger ϐields are 
associated with larger delivered loads). We discuss these relationships further 
in subsequent sections.

Tests for Economies of Scale in Nonpoint Pollution Control

Nonparametric Analysis

Table 1 contains summary statistics for bij, cij, Sij, and Lij.14 As indicated, the 
average ϐield size in our data set was approximately seven acres and the 
average delivered load per ϐield was approximately 200 grams of P per year. 
The standard deviations associated with these average values indicate 
relatively large amounts of variation across ϐields. As discussed in more detail 
later, the statistics listed for bij and cij are the moments used to create empirical 

14 The sample size for calculation of these statistics is 12,318, which equals the number of ϐields 
in our data set.

Table 1. Summary Statistics

Variable 

Uniform Distribution Normal Distribution

(low, high) (mean, std. dev.) mean (std. dev.) (min., max.)

bij (0.6, 0.9) (0.75, 0.075) — —

cij (3, 15) (9, 3) — —

Sij — — 6.67 (15.74) (0.22, 501.93)

Lij — — 201.60 (689.54) (0, 28,967.93)
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distributions (uniform and normal) from 5,000 draws (with replacement) 
taken from actual corresponding distributions for each. We assumed that 
both empirical probability distributions for bij and cij were calculable by the 
regulator. In other words, we adopted the standard assumption for incomplete-
information problems where the regulator cannot accurately determine bij and 
cij for any particular ϐield i due to unobservable NPS behavior and unpredictable 
behavior by nature. However, the regulator knows (or assumes) with certainty 
the probability distributions for bij and cij across all i and two of the most likely 
candidates for the nature of those distributions are normal and uniform.

As indicated in Table 1, in the case where bij (effectiveness of the BMP) was 
drawn from a (continuous) normal distribution, the distribution’s mean was 
assumed to be 0.75 with a standard deviation of 0.075. In the case where bij 
was drawn from a (continuous) uniform distribution, the supports of the 
distribution were assumed to be 0.6 and 0.9. The corresponding distribution 
parameter values for cij are a mean of 9.0 and a standard deviation of 3.0 for the 
normal distribution and supports (3, 15) for the uniform distribution.15 These 
mean values and associated standard deviations, along with the minimum and 
maximum values for Sij and Lij, indicate that the distributions for these two 
measures are skewed strongly to the right. Histograms for those values and for 
Lij /Sij bear this out (see Figures 4 through 6). In addition, the (simple linear) 
correlation coefϐicients for Sij and Lij and for Sij and Lij /Sij are 0.61 and –0.02, 
respectively (Figure 7 presents a scatter plot with a trend line for an ocular 
assessment of the relationship between Lij /Sij and Sij).16

As mentioned previously, we calculated Pearson correlation coefϐicients 
based on random draws of bij and cij from the probability distributions to 
test nonparametrically for correlation between ACCij and (i) ϐield size (Sij), 
(ii) estimated delivered P load per ϐield (Lij), and (iii) estimated delivered P load 
per acre (Lij /Sij).17 The Pearson coefϐicient (henceforth denoted ρk for k = Sij, Lij, 
and Lij /Sij, respectively) was deϐined (as in Myers and Well (2003)) as

(3) 

where n is the total number of ϐields i located in the basin, xi is the rank-order 
value of ACCij (from highest to lowest across all i irrespective of farms j), and 

 is the corresponding rank-order value of k = Sij, Lij, and Lij /Sij, respectively 
(across all i irrespective of farms j).

15 We acknowledge that the parameter values for bij for both the normal and the uniform 
distribution align more closely with the conservation-tillage percentages than with the nutrient-
management percentages. The same is true for cij’s parameters for the normal distribution. This 
alignment reϐlects the preeminence of conservation tillage as a BMP in the Bear River Basin.

16 Because of the large size of our data set, it was not feasible to include all observations in the 
scatter plot. We therefore took a random sample of 5 percent of the multi-ϐield farms (roughly 500 
observations) for the graph.

17 As discussed at the end of the preceding section, since Sij is in the numerator of (1), the 
test for economies of scale with respect to ϐield size is, per force, a test of whether a (positive) 
correlation between Sij and Lij in the denominator is large enough to offset the direct effect of Sij in 
the numerator. Similarly, the test for economies of scale with respect to delivered P load is a test 
of whether the correlation between Sij and Lij in the numerator is large enough to offset the direct 
effect of Lij in the denominator.
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Five-thousand random draws were taken from both of the aforementioned 
distributions for bij and cij. For each draw, ACCij was calculated according to (1). 
The corresponding ρk value was subsequently calculated according to (3) for 
k = Sij, Lij, and Lij /Sij, respectively, across all i. Because the ranges of the normal 
distributions span possible negative values for both bij and cij, we truncated 
the distributions at zero.18 The resulting mean values for ρk are presented in 
Table 2.

As Table 2 indicates, the negative relationship between ACCij and Sij is 
statistically insigniϐicant under the assumption of uniform distributions for bij 
and cij and weakly signiϐicant under the assumption of normal distributions 
for these two random variables. The relationships between ACCij and Lij and 
between ACCij and Lij /Sij, on the other hand, are statistically signiϐicant at the 
1 percent level, which suggests, given our distributional assumptions, that 
the average control cost decreases, all else being equal, as both delivered load 

18 There was no need for truncation of the uniform distributions since the supports for bij and cij 
are positive.

Table 2. Pearson Coefϐicients
 Uniform Standard Normal Standard
Coefϐicient Distribution Error Distribution ErrorρS –0.0066 (0.0054) –0.0071* (0.0048)ρL –0.3512*** (0.0051) –0.3640*** (0.0046)ρL / S –0.1483*** (0.0003) –0.1486*** (0.0009)

Notes: *** indicates signiϐicance of ρk at the 1 percent level and * indicates signiϐicance at the 10 percent 
level. Given the large size of the sample for this test (n = 5,000), ρk is assumed to follow the Student 
t-distribution. The calculated t-statistics, therefore, are the respective mean values divided by their 
corresponding standard deviations.

Figure 7. Scatter Plot with Trend Line for Lij /Sij versus Sij
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per ϐield and delivered load per acre increase. Bear River Basin regulatory 
authorities such as the NRCS that have access to reliable estimates of delivered 
loads per ϐield or per acre but not ϐield-speciϐic estimates of control costs or 
BMP effectiveness could potentially leverage that information to prioritize 
individual ϐields for BMP subsidies in a probabilistically cost-effective manner. 
By ranking ϐields from highest to lowest by delivered load—or, better yet, from 
highest to lowest delivered load per acre—as a proxy measure for economies of 
scale, the regulator could reduce the expected total cost of its subsidy program 
while also reaching the target level of NPS load reduction in the basin. This 
result is robust to the assumed probability distributions deϐined over per-acre 
estimates of the average control cost and BMP effectiveness.

Bear in mind that these nonparametric results are unconditional in the sense 
that they do not separately control for other factors at the farm or ϐield level 
that might also inϐluence the relationship between ACCij and Sij, Lij, and Lij /Sij. To 
investigate how controlling for farm- and ϐield-level heterogeneity might affect 
the results explicitly, we turn to a parametric analysis of the data.

Parametric Analysis

For our parametric analysis of the statistical relationship between ACCij and Sij, 
Lij, and Lij /Sij, we begin with a standard panel data model for multi-ϐield farms 
(Greene 2003):19

(4) 

where 
 

is a vector of ϐield-variant explanatory variables and βk is a 
corresponding coefϐicient vector. For this study, the explanatory variables 
include bij, cij, and k equals Sij, Lij, or Lij /Sij. The expression for  depends on 
whether pooled OLS, ϐixed, or random effects are assumed. For pooled ordinary 
least squares (OLS),  where αk is a common intercept term across 
all farms and ϐields and ε  is an independently and identically distributed error 
term with constant variance. For ϐixed effects,  where α  is a farm-
speciϐic intercept term. For random effects,  where  is a farm-
speciϐic random element that is similar to ε  except that a single draw for each 
farm enters the regression identically for each ϐield.

Due to identiϐication of speciϐic farms in the panel analysis, we used discrete 
approximations to the continuous normal distributions for bij and cij to increase 
the likelihood that any given farm would be assigned equal per-ϐield control cost 
and BMP-effectiveness values across its ϐields.20 The discrete distributions for 

19 Estimation of the random-effects model relies on at least two ϐields per farm. For this analysis, 
we therefore dropped all farms composed of a single ϐield from the data set, reducing our sample 
size from 12,318 to 9,920 ϐields and from approximately 5,900 farms down to approximately 2,600. 
A corresponding ordinary least square analysis of single-ϐield farms was performed separately 
and is reported later.

20 For this analysis, draws were taken solely from the (approximately) normal distribution for 
three additional reasons. First, as mentioned previously, our analysis is meant to be primarily 
illustrative. Thus, the added value of reporting results based on the uniform distribution was 
negligible. Second, as the nonparametric analysis in the previous section indicates, the statistical 
differences between results based on the two distributions are likely negligible. Third, since 
hypothesis testing requires that randomness in the data be normally distributed (and, thus, the 
standard errors must be based on normally distributed residuals), restricting our analysis to 
normally distributed bij and cij variables helps to ensure the normality of our residuals.
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bij and cij are presented in Table 3. Note the closeness of these approximations to 
the continuous normal distributions for the two variables presented in Table 1.

Results from the estimation of (4) are presented in Table 4.21 Based on 
reported signiϐicance levels for the Breusch and Pagan (1980) and Hausman 
(1978) χ2 speciϐication tests for each model, respectively, we focus on results 
for the ϐixed-effects models.22 

Beginning with model 1, which regresses Sij on ACCij while controlling for bij 
and cij, we ϐind a statistically signiϐicant positive relationship between Sij and 
ACCij, which is inconsistent with the ϐinding in the previous section of a (weak) 
negative relationship and our theoretical expectations. The null hypothesis for 
each model tested was “absence of scale economies.” This result suggests that, 
when controlling for per-acre control cost and BMP effectiveness, larger ϐields 
are associated with a larger average control cost. Alternatively stated, this 
result suggests that per-acre control cost and BMP effectiveness are the factors 
driving the nonparametric ϐinding of a weak negative relationship between 
ϐield size and average control cost in the previous section rather than ϐield size. 
The coefϐicient signs for bij and cij are nevertheless as expected—negative for 
the former and positive for the latter. In other words, the average control cost 
per ϐield is expected to decrease (increase) with increases in per-acre BMP 
effectiveness (control cost).

For model 2, which regresses Lij on ACCij while controlling for bij, cij, and Sij, 
we obtain results that support the ϐindings from the nonparametric model in 
the previous section. In particular, we ϐind a statistically signiϐicant negative 
relationship between per-ϐield delivered load and average control cost. The 
magnitude of the relationship is admittedly small; a one-gram increase in 
delivered load per ϐield corresponds to a $0.001 decrease in the per-ϐield 
average control cost. Nevertheless, it is the direction of the relationship that 
matters because that is the cost-effectiveness criterion upon which the subsidy 
ranking ultimately is based. 

Similarly, for model 3, which regresses Lij /Sij on ACCij, we ϐind a statistically 
signiϐicant negative relationship between per-acre delivered load and per-ϐield 
average control cost. In this case, a one-gram increase in delivered load per acre 
corresponds to a $0.005 decrease in the per-ϐield average control cost. Again, 
the magnitude of the relationship is small, but its direction indicates that a BMP 
subsidy ranking based on delivered load per acre may be cost-effective.

21 We tested each model for heteroskedasticity and within-panel (AR1) autocorrelation using 
feasible generalized least squares (Greene 2003). The results of these corrections for possible 
error structures were qualitatively similar to those without the corrections, which we report.

22 For each model, respective Lagrange Multiplier (LM) tests reject pooled OLS in favor of random 
effects, and the Hausman χ2 tests reject random effects in favor of ϐixed effects.

Table 3. Probability Distributions for bij and cij Used in Panel-Data Analysis
 Variable Distribution Value Probability

 bij 0.60 0.20
  0.75 0.60
  0.90 0.20

 cij 3.00 0.20
  9.00 0.60
  15.00 0.20
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The results from models 2 and 3 are similar to those of the preceding section 
in that negative relationships are found between ACCij and Lij and between 
ACCij and Lij /Sij. However, these two parametric models explicitly control for 
any effects that may be generated by the random assignment of values for 
BMP effectiveness and control cost at the ϐield level and for NPS ϐixed and 
random effects. Of course, it is important to recognize that our results are more 
demonstrative than deϐinitive in a statistical sense because the randomly (and 
independently) assigned values for bij and cij are based on single draws from 
the given probability distributions shown in Table 3. Different draws from 
these same distributions or from alternatively deϐined distributions might 
produce different results. Fortunately, given our relatively large sample size 
(approximately 10,000 ϐields and 2,600 farms), the Central Limit Theorem 
suggests that, on average, our results will hold in the case of different draws 
from the same distributions.

It is also important to note that these regression results (i.e., the positive 
relationship between Sij and ACCij and respective negative relationships between 
Lij and Lij /Sij on one hand and Lij and ACCij on the other) are not predetermined by 
the deϐinition of ACCij in (1). In general, coefϐicient estimates reϐlect covariance 
between the respective dependent and independent variables that exists in the 
data at hand, not partial derivatives of the deϐinition of the dependent variable 
per se.23 Likewise, all else being equal, the larger the sample size, the smaller 
the estimated standard errors of the coefϐicients (McCloskey and Ziliac 1996). 
Since our sample size is so large, we expect relatively small standard errors, 
which in turn implies relatively high signiϐicance levels for our coefϐicient 
estimates regardless of how much variation they ultimately explain in ACCij as 
a group.

Following McCloskey and Ziliac (1996), we tested the statistical power 
of the results presented in Table 4 by randomly drawing samples of various 
sizes (20 percent, 40 percent, 60 percent, and 80 percent of the overall sample 
of roughly 10,000 observations) and re-estimating each model based on the 
smaller sample sizes. For each of the smaller samples, the results for models 2 
and 3 remained qualitatively the same as the ones shown in Table 4 with the 
exception of the 20 percent sample. In that case, the Hausman χ2 test favored 
random effects over ϐixed. For model 1, the results were more varied. For 
the 20 percent sample, the Hausman χ2 test favored random effects and the 
coefϐicient estimate for Sij was positive and signiϐicant only at the 10 percent 
level. The Hausman χ2 test again favored random effects with the 40 percent 
sample but the coefϐicient estimate for Sij was statistically insigniϐicant. Under 
the 60 percent sample, ϐixed effects were favored over random effects but the 
Sij coefϐicient estimate was again positive and signiϐicant only at the 10 percent 
level. Only with the 80 percent sample did the results for model 1 fully mimic 

23 As proof of this point, consider the simplest of examples. Suppose our data set consists of the 
following two observations:

 bij cij Sij Lij ACCij

 0.5 3 4 5 4.8
 0.1 1 1 1 10

where ACCij is determined according to (1). In this case, the OLS coefϐicient estimates for Sij, Lij, 
and Lij/Sij, respectively, are –1.73, –1.30, and –20.73. In particular, the estimate for Sij is negative, 
not positive. In general, any conϐiguration of coefϐicient estimates should be possible for Sij, Lij, and 
Lij/Sij depending on the data at hand.
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those obtained using the full sample. Therefore, we concluded that the statistical 
power of models 2 and 3 is relatively high while the power of model 1 is not.24

To decompose the effects of ϐield size on the relationship between ACCij and 
Lij and between ACCij and Lij /Sij, we created sets of corresponding interaction 
terms deϐined as (Acrem × Lij) and (Acrem × Lij /Sij), m = 1, 2, 3, 4, 5. Acre1 denotes 
ϐield sizes included in the 20th percentile, Acre2 denotes ϐield sizes between 
the 21st and 40th percentile, Acre3 represents ϐield sizes between the 41st and 
60th percentile, Acre4 is ϐield sizes between the 61st and 80th percentile, and 
Acre5 denotes ϐield sizes that exceed the 80th percentile. We ran regressions 
that included solely those interaction terms (along with constant terms). The 
results are presented in Table 5.

For model 2 we ϐind that, relative to the group of largest ϐields (corresponding 
to Acre5 × Lij, the excluded interaction term), delivered loads from smaller ϐields 
have progressively stronger negative effects on average control cost; that is, 
scale economies associated with per-ϐield delivered loads are decreasing in ϐield 
size. For example (referring to the ϐixed-effects results), we ϐind that a one-gram 

24 The Stata output for these results is available from the authors upon request.

Table 5. Piece-wise Regression Analyses for Models 2 and 3 
(Multi-ϐield Farms)

Interaction 
Term

Model 2 Model 3

OLS
Fixed

Effects
Random 
Effects OLS

Fixed 
Effects

Random 
Effects

Acre1 × Lij  –0.005*** –0.002** –0.003*** – – –
 (0.00100) (0.00080) (0.00090) – – –

Acre2 × Lij  –0.001*** –0.0006*** –0.0009*** – – –
 (0.00020) (0.00020) (0.00020) – – –

Acre3 × Lij  –0.0006*** –0.0002*** –0.0004*** – – –
 (0.00010) (0.00008) (0.00008) – – –

Acre4 × Lij –0.0002*** –0.00009*** –0.0001*** – – –
 (0.00003) (0.00003) (0.00003) – – –

Acre1 × Lij /Sij  – – – –0.001*** –0.0003 –0.0006**
 – – – (0.00020) (0.00020) (0.00020)

Acre2 × Lij /Sij  – – – –0.002*** –0.0007*** –0.001***
 – – – (0.00030) (0.00020) (0.00030)

Acre3 × Lij /Sij  – – – –0.003*** –0.001*** –0.002***
 – – – (0.00040) (0.00040) (0.00040)

Acre4 × Lij /Sij  – – – –0.005*** –0.002*** –0.003***

 – – – (0.00060) (0.00050) (0.00060)

Notes: Standard errors are shown in parentheses. The ϐixed-effects standard errors are corrected using 
Cornwell, Schmidt, and Wyhowski’s (1992) method. Number of observations: 9,884 for each regression. 
*** denotes signiϐicant at the 1 percent level, ** denotes signiϐicant at the 5 percent level, and * denotes 
signiϐicant at the 10 percent level.
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Table 7. Piece-wise Regression Analyses for Models 2 and 3 
(Single-ϐield Farms)
 Interaction Term Model 2 Model 3

 Acre1 × Lij –0.020*** —
  (0.00200) 

 Acre2 × Lij  –0.006*** —
  (0.00100) 

 Acre3 × Lij  –0.003*** —
  (0.00040) 

 Acre4 × Lij  –0.0003*** —
  (0.00004) 

 Acre1 × Lij /Sij  — 0.008***
   (0.00070)

 Acre2 × Lij /Sij  — –0.006***
   (0.00080)

 Acre3 × Lij /Sij  — –0.008***
   (0.00080)

 Acre4 × Lij /Sij  — –0.005***
   (0.00060)

Notes: Number of observations: 2,388 for each regression. *** denotes signiϐicant at the 1 percent level, 
** denotes signiϐicant at the 5 percent level, and * denotes signiϐicant at the 10 percent level.

Table 6. Results for Ordinary Least Square Analysis of Single-ϐield Farms
Explanatory Variable Model 1 Model 2 Model 3

CONSTANT 0.790*** 0.837*** 1.040***
 (0.10700) (0.10500) (0.10100)

bij –1.032*** –1.096*** –1.104***
 (0.13900) (0.13700) (0.13000)

cij 0.073*** 0.073*** 0 . 0 7 3 * * *
 (0.00300) (0.00300) (0.00300)

Sij 0.004*** 0.012*** 0 . 0 0 5 * * *
 (0.00100) (0.00100) (0.00100)

Lij — –0.0002*** —
 — (0.00002) —

Lij /Sij — — –0.007 ***

 — — (0.00040)

F(k, n – k) 234.25*** 206.18*** 284.31***

Adjusted R2  0.227 0.256 0.322

Notes: Standard errors are shown in parentheses. Number of observations: 2,388 for each regression. 
*** denotes signiϐicant at the 1 percent level, ** denotes signiϐicant at the 5 percent level, and * denotes 
signiϐicant at the 10 percent level.
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increase in delivered load from the ϐields in the Acre1 group corresponds to 
a $0.002 decrease in per-ϐield average control cost compared to a one-gram 
increase in delivered load from the ϐields in the Acre5 group. Similarly, a one-
gram increase in delivered load from the ϐields in the Acre2 group corresponds 
to a $0.0006 decrease in per-ϐield average control cost relative to a one-gram 
increase in delivered load from the ϐields in the Acre5 group.25

Model 3 tells a different story. Per-acre delivered loads from smaller ϐields 
have progressively weaker negative effects on average control cost up to the 
largest ϐield-size group. In other words, scale economies associated with per-
acre delivered loads are increasing in ϐield size up to group Acre5. Speciϐically, a 
one-gram increase in delivered load per acre from the ϐields in the Acre1 group 
fails to produce a decrease in per-ϐield average control cost that is statistically 
different from a one-gram increase in per-acre delivered load from the ϐields in 
the Acre5 group. However, one-gram increases in per-acre delivered loads from 
ϐields in groups Acre2, Acre3, and Acre4 have progressively stronger negative 
effects on average control cost than do increases in per-acre delivered loads 
from ϐields in the Acre5 group. In other words, scale economies associated with 
per-acre delivered loads occur in the middle range of ϐield sizes, not at the 
extremes.

The results for single-ϐield farms are, for the most part, similar to the 
panel data results for multi-ϐield farms. As shown in Table 6, ϐield size has a 
statistically signiϐicant positive effect on average control cost (model 1) while 
per-ϐield and per-acre delivered loads have a negative effect (models 2 and 3). 
Like the results for multi-ϐield farms in Table 5, the results in Table 7 show that 
scale economies associated with per-ϐield delivered loads are decreasing in 
ϐield size (model 2). Unlike the results for multi-ϐield farms, however, there is 
no evidence for scale economies associated with per-acre delivered loads in the 
middle range of ϐield sizes. Nor do we ϐind evidence for diseconomies of scale 
in this range (model 3).

Summary and Conclusions

This work has demonstrated both parametric and nonparametric methods that 
use ϐield-level characteristics as proxy measures to test for economies of scale in 
the control of nonpoint pollution. Given the standard assumption that the cost 
and effectiveness of ϐield-level controls are inherently uncertain, we tested for 
the presence of economies of scale in correlations between control cost per unit 
abated (i.e., average control cost) and three characteristics: ϐield size, estimated 
delivered phosphorous load per ϐield, and estimated delivered phosphorous 
load per acre. Correlation estimation is necessary because control costs 
involve greater uncertainty than ϐield-level characteristics do. Our data set is 
large, consisting of estimates of loads and delivery-ratios for more than 12,000 
ϐields within approximately 5,900 farms in the Bear River Basin in Utah. These 
estimates, derived from a newly developed hydrologic model of the basin, were 
combined with estimates of control costs and effectiveness of BMPs taken from 
the extant literature and standard distributional assumptions concerning costs 
and effectiveness at the ϐield level to create a joint environmental-economic 
proϐile of the basin.

25 This decreasing scale economy is similar to that found in Sung and Gort (2000) for the U.S. 
local telephone industry.
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In both parametric and nonparametric tests, we ϐind statistical evidence of a 
negative relationship between average control cost and delivered phosphorus 
load per ϐield and per acre—larger phosphorus loads per ϐield and per acre 
are associated with lower average control costs. This suggests that ranking 
ϐields according to the phosphorus load delivered per ϐield and per acre can, 
all else being equal, be used to prioritize subsidies for implementation of 
BMPs to generate more cost-effective results (a greater reduction in pollutant 
load per dollar of subsidy). The evidence regarding the statistical relationship 
between average control cost and ϐield size is mixed. Of course, regulators 
must have accurate estimates of ϐield size and delivered load per ϐield on hand 
to formulate the rankings and that, in turn, requires access to output from a 
hydrologic model similar to the one used for this study. Even then, the rankings 
are probabilistic in nature due to the persistence of asymmetric information 
between the regulator and nonpoint sources concerning ϐield-level control 
costs and BMP effectiveness.

The path for future research in this area is clear. Where possible, data sets 
similar to the one used for this study should be compiled for other basins to 
test for the same relationships between delivered loads and control costs. 
Alternative distributional assumptions could also be tested to assess the 
robustness of the relationships. Additional controls for ϐield-level heterogeneity 
are also necessary to increase the total percentage of explained variation in 
control cost.
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