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(CD94 and Klrg1) markers was increased in the spleen of RAG1-86nt-homozygous hamsters compared
to that of WT animals (Figure 6). Based on these findings, we concluded that RAG1-86nt-homozygous
hamsters have atrophic lymphoid organs.Viruses 2018, 10, x  10 of 16 
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Figure 6. Quantitative RT-PCR analysis of lymphocyte-specific genes in the spleen. Lower levels of
mRNAs for T and B lymphocyte-specific genes were detected, while the relative amount of macrophage
and NK cell-specific transcripts is higher in the spleen of these animals. The amount of the indicated
transcripts in spleen homogenates was determined by quantitative RT-PCR using the ∆∆Ct method.
n = 3 for all groups. * p < 0.05, ** p < 0.01, *** p < 0.001.

3.6. RAG1-86nt Hamsters Develop a Partial Adaptive Immune Response after Intranasal Infection
with HAdV-C6

While human adenoviruses usually are not a great concern in healthy human populations, they
can lead to severe clinical manifestations in immunocompromised patients [18]. Therefore, we were
interested in investigating whether the RAG1-86nt hamsters would be more susceptible to human
adenovirus infection. To this end, we infected RAG1-86nt and WT hamsters intranasally with HAdV-C6
and observed the animals throughout a 15-day period. Interestingly, opposite to our expectations, the
RAG1-86nt hamsters survived better than WT hamsters following HAdV-C6 infection (Figure 7A);
the infectious virus recovery in the lungs of RAG1-86nt hamsters was marginally lower than in WT
hamsters (Figure 7B). We further investigated the functional mechanisms for this and found that the
less severe disease outcome in the RAG1-86nt hamsters was associated with relatively lower levels
of infiltration of CD4 and CD8 cells in the infected lung tissues in RAG1-86nt hamsters than in WT
hamsters (Figure 8A,B). Surprisingly, RAG1-86nt hamsters developed neutralizing antibodies against
HAdV-C6 (Figure 8C), though at lower levels than those in WT hamsters (Figure 8C), indicating that
the low level of humoral response may be sufficient to clear the infectious virus.
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Figure 7. Survival and lung virus loads post intranasal infection by HAdV-C6. (A) Comparison of
survivals among wild type (WT), RAG1-86nt heterozygous and RAG1-86nt homozygous hamsters
following intranasal HAdV-C6 infection. (B) TCID50 of viruses recovered from lungs. The virus burden
in the lungs of RAG1-86nt hamsters was marginally lower than that in the lungs of WT animals. For this
and subsequent similar figures, symbols represent data from individual animals, and the horizontal
bar indicates the geometric mean. NQ: not quantifiable; ND: not detectable.
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Figure 8. Adaptive immune response to intranasal HAdV-C6 infection. (A) infiltration of CD4+ and
(B) CD8+ cells into the infected lung tissues; (C) development of neutralizing antibodies against
HAdV-C6 infection. RAG1-86nt hamsters developed an imperfect adaptive immune response to
HAdV-C6. Veh: vehicle-treated.
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4. Discussion

Mutations in the RAG genes, depending on the types or the locations in the RAG genes, cause
SCID with a wide spectrum of disease manifestations. Both of the RAG1 and RAG2 proteins have
functional domain structures that can be divided into core and non-core domains, with the core
domains being the minimal region required for catalyzing V(D)J recombination and the non-core
domains exerting a variety of regulatory functions, including nuclear import, interaction with other
cellular proteins, and protein turnover [19]. Genetic mutations in the core domain tend to lead to more
severe SCID phenotypes, while mutations in the non-core domain may lead to relatively mild disease
presentations as seen in Omenn syndrome patients.

Mouse RAG1 KO models have provided significant knowledge advancement in understanding
the function of RAG1 proteins in B and T cell development and the consequences of a loss of the
RAG1 function in the immune system. RAG1 KO models in several other species have also been
produced with the understanding that, due to the difference in the immune systems between human
and animal species, a single animal model may not be able to recapitulate the entire aspect of immune
dysfunction caused by RAG1 mutations in human. It is most likely that each of these genetic animal
models will offer some unique insights into the biology of RAG1 and will collectively contribute to the
understanding of SCID caused by the loss of function of RAG1.

The Syrian hamster is an animal model of choice for several human diseases, especially for
infectious diseases [6,7], a fact that bears some relevance to infections in SCID patients. It has
been demonstrated by us and others that human cytokines, such as granulocyte–macrophage
colony-stimulating factor (GM-CSF) and interleukin-12 (IL-12), are functional in the hamster but
not in the mouse [20,21]. Other advantages in using the hamster to model certain infectious diseases
is that the disease manifestations in the hamster are highly representative of what is observed in
humans [7].

We recently succeeded in establishing genetic engineering technologies in the hamster and
have produced several genetically engineered hamster models [12]. These hamster models have
been successfully used to model several human diseases for which the other rodent models are
not adequate [15,22,23]. In this study, we report the preliminary characterization of a genetically
engineered hamster strain carrying an 86-nt frameshift mutation in the RAG1 gene encoding part of the
N-terminal non-core domain of RAG1. We demonstrated that RAG1-86nt hamsters have splenic and
thymic atrophy, with significantly impaired development of both B and T lymphocytes. However, to
our surprise, the RAG1-86nt hamsters are capable of mounting humoral responses against HAdV-C6.
These results suggest alternative Met site(s) may be used in the translation of hamster RAG1 and that
the 86-nt deletion mutation, while should abolish the expression of the full length RAG1 by introducing
multiple premature stop codons in the RAG1 gene, may only partially reduce the expression of the
N-terminal truncated isoform (which contains the entire the core domain). What is worth noting is
that our Western blotting experiments demonstrated that, while the two RAG1 isoforms are readily
detectable in WT hamsters, none of them was detectable in the RAG1-86nt hamsters. We concluded
that the 86-nt deletion also affects the expression of the 95 kD truncated isoform of RAG1. Several
possible mechanisms could be responsible for the undetectable expression of the truncated RAG1
protein. It was shown in humans that a truncated RAG1 expressed from a nonstandard ATG is unstable
when expressed alone without the presence of the full length RAG1 [16]; therefore, it is possible that
the expression of the truncated RAG1 isoform in the 86-nt deletion hamsters is not stable enough to be
detected by Western blotting. Alternatively, a lower level expression of the 95 kD isoform could also
be the result from less stable RAG1 mRNA by the 86-nt deletion. Nevertheless, leaky expression of the
truncated isoform which contains the entire core domain of RAG1 would be capable of catalyzing V(D)J
recombination, even though maybe much less efficiently. Furthermore, other possible mechanisms of
development of anti-adenovirus humoural immunity may be present in RAG1-86nt hamsters, such as
production of oligoclonal B cell clones; the mutant RAG1 in this non-core region may exert different
effect on V(D)J recombination, with inefficient cleavage activity, like other mutant RAG1 mutant
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reported previously [24]. These warrant further investigations into characterization of this unique
model that replicates a specific subset of RAG1 mutations.

Another interesting finding from our current study is that infectious virus recovery in the lungs of
RAG1-86nt hamsters was marginally lower than in WT hamsters (Figure 7B) and that the RAG1-86nt
hamsters survived slightly better than WT hamsters upon HAdV-C6 infection (Figure 7A). Our
RT-qPCR showed that the RAG1-86nt hamsters expressed lower levels of CD4 and CD8 (Figure 8A,B;
vehicle animals) and that the levels of these genes either did not increase at all (CD8) or increased to a
lower extent than in WT hamsters (CD4) over the time course of HAdV-C6 infection (Figure 8A,B),
indicating a decreased infiltration of CD4+ and CD8+ cells. While CD8β expression is restricted to
cytotoxic T lymphocytes, CD4 is expressed by helper T lymphocytes and monocytes at some stages
of development, thus the infiltrating CD4+ cells may represent either population. The increased
infiltration of immune cells in the lungs of WT hamsters compared to the RAG1-86nt ones may
explain the worse survival of WT hamsters observed in Figure 7A. We previously showed that
immune-mediated pathogenesis is an important factor in lung pathology for this model [14,25]; thus,
the increased infiltration with T and B lymphocytes in the WT hamsters may exacerbate the pathology
of adenovirus infection.

In summary, the RAG1-86nt hamster generated in this study could be used potentially as a model
to study human immunodeficiency caused by mutations in the coding sequences for the non-core
domain of RAG1, such as those identified in Omenn syndrome patients. Two murine models of Omenn
Syndrome were reported previously and both of them recapitulated a subset of Omenn Syndrome,
showing oligoclonal T cells and autoimmune-like manifestations [26,27]. The mouse model presented
by Khiong et al. is a Rag2 knockin mouse model carrying a Rag2R229Q mutation in the core region
of, whereas Marrella’s model is a spontaneous mutation in the core region of Rag1 in C57BL/10 mice.
In the RAG1-86nt hamster reported herein, we genetically disrupted the N-term non-core domain
of RAG1 of the Syrian hamster to represent another subset of genetic causes for Omenn Syndrome.
Compared to what observed in the mouse models, the RAG1-86nt hamster model does not show
significant autoimmune-like manifestations. It is possible that the different pathogenesis presentations
observed in the mouse models and our hamster model may reflect the different genetic mutations
introduced into these models. Considering the fact that detailed pathogenesis caused by mutations in
the N-terminal non-core domain of RAG1 gene (occurred in 19% Omenn Syndrome patients) has not
yet been well characterized due to the lack of a suitable model, the RAG1-86nt hamster developed in
this study may provide such a model. This novel hamster model, along with the STAT2 KO model
that we developed [12], may be useful for dissecting the contributions of adaptive immunity and
innate immunity to the control of adenovirus infections and possibly for other pathogens in humans.
Furthermore, this model also may be useful for the development of new gene therapies for treating
patients carrying this specific subset of RAG1 mutations.
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