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Abstract

This paper develops a conceptual model of vehicle trips in a region plagued by weather-dependent, mobile-

source air pollution, and numerically estimates optimal trips for one of the nation’s perennially worst air quality

regions in terms of short-term particulate matter. Based upon data-driven parameters and damage estimates,

our numerical model generates optimal values for region-wide vehicle trips and associated PM2.5 concentrations

along with their corresponding time paths. Our dataset includes a host of pertinent weather variables that deter-

mine PM2.5 concentrations both independently as well as interacted with vehicle trips. As a result, our empirical

model enables us to isolate the conditions under which vehicle travel most affects air pollution levels. Our results

suggest that maximizing net social welfare in the presence of mobile-source pollution requires substantial re-

ductions in traditional, emissions-generating vehicle usage on days experiencing critical weather conditions – in

the case of our study area, temperature inversions. Because they are socially optimal and targeted solely for days

with temperature inversions, the estimated reductions in vehicle usage are substantially larger than those pro-

posed by Moscardini and Caplan (2017) to attain the daily National Ambient Air Quality Standard (NAAQS) for

particulate matter on an average basis. We find that the optimal reduction in vehicle trips result in corresponding

particulate matter concentrations that are roughly six to 13 percent of the NAAQS.
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1 Introduction

Mobile-source air pollutants have proven themselves intractable problems for several of the world’s metropolitan

areas, particularly in Central and South America (Gallego et al., 2013a,b; Zhang et al., 2016), China (Chen et al.,

2013), and the US (ALA, 2017), although as pointed out by Karagulian et al. (2015) the problem is by no means

confined to these regions of the world. Ninety percent of the world’s population currently resides in locations

where local air pollution levels exceed the World Health Organization’s (WHO’s) ambient standards (WHO, 2017).

An estimated 6.5 million premature deaths occur annually due to elevated air pollution concentrations, roughly

half of which are attributable to elevated particulate matter (PM2.5) concentrations (Apte et al., 2015). The annual

mortality rate in the US alone due to elevated air pollution concentrations is estimated to be 200,000, a quarter of

which is attributable to vehicle emissions (Caiazzo et al., 2013).

Despite notable achievements made in the control of vehicular emissions during the past 50 years, PM2.5 and

ground-level ozone concentrations in several US metropolitan areas continue to exceed National Ambient Air Qual-

ity Standards (NAAQS) (Acharya and Caplan, 2018b). These exceedances are persistent, episodic, and in certain

instances dramatic (Bachmann, 2007; EPHCP, 2017; USEPA, 2017; ALA, 2017). An apparent dichotomy between

the pace of technological advancement in controlling mobile-source emissions and the prevalence of localized air

pollution problems suggests that in those locations currently contending with unhealthy air quality, technological

advancement, e.g., through conversion of a given location’s vehicle fleet to a substantial percentage of hybrid and

electric vehicles (EVs), is not occurring quickly enough (GAM, 2016; IEDC, 2013). As a result, public policies

providing a mixture of incentives are needed to (1) motivate behavioral changes in how households utilize their ve-

hicle fleets, and (2) generate the revenue necessary to fund public investments in technologies capable of hastening

more immediate mitigation of the pollution problem.

Recently, market- and non-market-based policies to indirectly control mobile-source emissions have been ex-

plored in the literature. Cropper et al. (2014) investigate the use of a permit scheme to control ground-level ozone

concentrations in Washington, DC, while Moscardini and Caplan (2017) assess the merits of a seasonal gas tax

to control PM2.5 concentrations in northern Utah – an area of the country persistently ranked among the worst for

short-term particulate concentrations (ALA, 2017).1 A host of studies have similarly investigated the effectiveness

of both voluntary and mandatory driving restrictions on controlling vehicle emissions. For example, Henry and

Gordon (2003), Cummings and Walker (2000), and Cutter and Neidell (2009) assess the impact of voluntary driv-

1Studies assessing the efficacy of congestion pricing, or tolls, are indirectly related to issue of controlling mobile-source pollution via a
market-based instrument (c.f., Button and Verhoef, 1998; Phang and Toh, 2004; Anas and Lindsey, 2011).
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ing restrictions in the US, while Zhang et al. (2016), Gallego et al. (2013a,b), and Osakwe (2010) investigate the

efficacy of mandatory restrictions in South America.

The question of which tax/subsidy policy mix most closely mimics what would otherwise be a first-best (Pigo-

vian) emissions tax on mobile-source emissions is addressed in a series of studies using national, household-level

data on vehicle choice and usage. In the case of homogeneous households (in terms of income and preferences

over different automobile characteristics), Fullerton and West (2002) find that a Pigovian tax on emissions by itself

would induce households to optimally choose vehicle miles traveled (VMT), engine size, fuel type, and pollution

control equipment (PCE).2 Alternatively, “complicated” gas and vehicle taxes can attain the same result – the com-

plication stemming from (1) the taxes needing to depend upon specific vehicle characteristics (which would have

to be determined at the pump in the case of a gas tax, e.g., via a “smart pump” that could conceivably adjust an

individual motorist’s gas tax according to the vehicle’s VMT, engine size, fuel type, or PCE), and (2) the house-

holds needing to be informed as to how their vehicle characteristics affect the tax rate(s), both of which carry heavy

informational burdens for the regulator and the households. A combination of separate fixed (i.e., uncomplicated)

tax rates also induces socially optimal household choices – a result similar to those reported in the earlier studies

of Eskeland (1994), Innes (1996), Harrington et al. (1998), and Sevigny (1998).

When households instead express heterogeneous preferences over vehicle characteristics, Fullerton and West

(2002) find that the uniform Pigouvian emissions tax rate determined in the case of homogeneous households

also works – a result driven by the uniformity of emissions in their model.3 However, all other types of taxes

must be household-specific as opposed to solely vehicle-characteristic specific. The authors further investigate

how far second-best uniform tax rates deviate from the first-best, individualized rates. They find that second-best

optimal tax rates on engine size and gasoline depend upon the elasticities of demand for these goods, as well as the

correlation between preferences for VMT and engine size.4

2Fullerton and West (2010) extend their 2002 model by including vehicle age as an additional characteristic upon which to levy a tax or
subsidy. The authors solve numerically for second-best, uniform tax rates and find that 71 percent of the gain from the emissions tax can
be achieved by a combination of uniform tax rates levied on gasoline, engine size, and vehicle age. A gasoline tax alone attains 62 percent
of the Pigovian gain. If the additional administrative costs of implementing an emissions tax are greater than 0.07 percent of the sum of all
affected individuals’incomes, then the three-part instrument may dominate the Pigovian tax. West and Williams III (2005) compare the costs
of a gasoline tax and corporate average fuel economy (CAFE) standards taking into account interactions with preexisting tax distortions.
The authors find that the interactions reduce the cost of the gasoline tax but increase the cost of CAFE standards, thus expanding the cost
advantage enjoyed by the gasoline tax.

3We thank an anonymous referee for pointing out that this type of result carries over to congestion pricing when the marginal cost of
congestion is likewise uniform across agents (Arnott and Kraus, 1998).

4Bento et al. (2009) extend Fullerton and West (2002) by investigating the extent to which increases in a gasoline tax motivate changes
in household-level vehicle fleet composition and VMT in a general-equilibrium model linking markets for new, used, and scrapped vehicles
and accounting for heterogeneity in household characteristics. The authors find that each cent-per-gallon increase in the price of gasoline
reduces equilibrium gasoline consumption by roughly 0.2 percent. Taking into account revenue recycling, the impact of a 25-cent gasoline
tax on the average household is estimated to be approximately $30 per year (2001 dollars). Distributional impacts depend importantly on
how additional revenues from the tax increase are recycled, e.g., in proportion to household-income or VMT, or via flat (equal-proportion)
revenue recycling.
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Absent from this literature is a dynamic framework within which to estimate optimal vehicle usage on a re-

gional basis – in particular the extent to which aggregate vehicle usage should be curtailed during weather-induced

episodes of elevated (and accumulated) mobile-source air pollution. Notwithstanding the issue of whether gaso-

line or vehicle taxes or permits are the instrument(s) of choice, the central question we seek to answer in this

study is how regional authorities might best establish targeted reduction levels in vehicle usage that are tailored to

episodic “outbreaks” of air pollution events (known in our study area as “red air day” episodes), particularly when

household- and vehicle-level data are unavailable. Instead, daily measures of region-wide vehicle usage, pertinent

weather conditions, and actual pollutant concentrations are readily obtainable for both empirical and numerical

estimation.

To demonstrate how this question can be answered we calibrate a simple model of accumulating pollutants with

a unique dataset consisting of daily, region-specific weather variables, vehicle trip counts, and PM2.5 concentration

readings from one of the nation’s perennially worst air quality regions, Northern Utah (the region’s short-term par-

ticulate matter problem is discussed at greater length in Section 3). Included in the calibration exercise are damage

estimates obtained from the US Environmental Protection Agency’s (USEPA’s) recently released Environmental

Benefits Mapping and Analysis Program (BenMAP) (USEPA, 2018) and benefit estimates (associated with vehicle

usage) based on data obtained from a host of relevant sources.

We find that dramatic reductions in emissions-generating vehicle trips should be targeted for temperature inver-

sions that occur sporadically in Northern Utah during the winter months, and that correlate closely with red air day

episodes. Because they are socially optimal and targeted solely for days with temperature inversions, the estimated

reductions in vehicle usage are markedly larger than those proposed for Northern Utah by Moscardini and Caplan

(2017) to attain the USEPA’s daily NAAQS of 35 µg/m3 on an average basis. Concomitantly, we find that optimal

reductions in vehicle trips result in PM2.5 concentrations that are roughly six to 13 percent of the NAAQS. As

expected, the time path for daily trip counts during temperature inversions exhibits a steep decline from its initial

level, thus reaching its optimal level rather quickly. The corresponding stock of PM2.5 decreases less abruptly,

reaching its optimal level in roughly double the amount of time.

The next section develops the conceptual model underpinning our subsequent empirical and numerical analyses

presented in Section 4. Section 3 briefly describes the study area for our empirical and numerical analyses. Section

5 concludes the paper.
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2 The Conceptual Model

Following Phaneuf and Requate (2017, Chapter 13), let period t’s instantaneous, or marginal, change in regional

PM2.5 concentrations be expressed as,

Ṡt = f (Et ,St ;Wt) (1)

where Et represents aggregate vehicle emissions during period t, St denotes the stock of PM2.5 concentrations at

the beginning of period t, and Wt indicates a vector of prevailing weather conditions.5 Assume f (·) is increasing

in Et , decreasing in St , and either increasing or decreasing in Wt depending upon the specific weather variable in

question. Vehicle emissions are in turn a function of aggregate vehicle usage, which in our case is represented by

region-wide vehicle trips, Tt , e.g., Et = g(Tt ;Wt), ∂Et
∂Tt

= g′ (Tt ;Wt)> 0,g(0;Wt) = 0.6 Thus, (1) can be re-expressed

as,

Ṡt = h(Tt ,St ;Wt) (2)

with h(·) increasing in Tt .

The region’s decision problem is expressed as,

max
Tt

∫
∞

t=0
(B(Tt)−D(St))e−rtdt

subject to Ṡt = h(Tt ,St ;Wt) ,S0 > 0

where benefit function B(Tt) is assumed increasing and strictly quasi-concave in Tt , damage function D(St) is

increasing and convex in St , r > 0 is a standard discount rate, and e denotes Euler’s number. Except where necessary,

we henceforth drop the subscript t designation.

Including a discount rate in the modeling context of what is effectively both a seasonal and episodic problem

accounts for the persistence of health costs through time associated with contemporaneous elevations in PM2.5

concentrations that occur during red air day episodes (c.f. Pope, 1989; Broome et al., 2015; USEPA, 2016).

Because the health costs associated with any given red air day episode are incurred throughout what can be a

lifetime for some victims, the need for discounting these future costs is evident.

5Note that an additional parameter could be added to function f (·) accounting for background emissions, e.g., from stationary sources.
However, in the context of our model stationary-source emissions are considered exogenous, either because regulations targeting these
emissions are already in force, mobile- and stationary-source emissions are determined independently from one-another, or mobile-source
emissions make the predominant contribution. Our model is therefore tailored to regions of the world where one or more of these exogeneity
conditions are met.

6In regions where vehicle usage is not the sole contributor, but is nevertheless the predominant anthropogenic source of pollution
concentrations, the latter condition can be expressed as g(0;Wt)≈ 0.
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We lose no generality in modeling the decision problem as occurring over an infinite time horizon, whether that

horizon covers (1) a predetermined series of finite-period winter seasons, (2) an undetermined series of temperature-

inversion periods within a given season, or (3) a given temperature-inversion period of undetermined length within

a given season (Chiang, 1992). For this study we adopt the latter of these three time-horizon perspectives. Specif-

ically, we assume the region is initially in a steady state facing neither a temperature inversion nor an elevation

in PM2.5 concentrations (i.e., concentrations are low and Ṡ = 0). The region then enters a temperature-inversion

period of undetermined length with concomitant rising concentrations (i.e., Ṡ > 0). The key question addressed in

this paper is, in the midst of a temperature inversion what is the optimal adjustment in vehicle trips, T , to return the

region to its initial steady state? We consider the temperature inversion as presenting the regional authority with a

continuum of incremental decision points stretching over a time horizon with an unknown terminal point that itself

stretches to infinity in the limit.7

The associated current-value (conditional) Hamiltonian function for the region’s problem is expressed as,

H (T,S,λ ;W ) = B(T )−D(S)−λ (h(T,S;W )) (3)

with λ serving as the problem’s Lagrange multiplier.8 In the context of our problem, λ represents the marginal

impact of an additional concentration unit of PM2.5 (measured in micrograms per cubic meter, µg/m3) on optimal

net benefit in a given period.

For consistency with our empirical model in Section 4.1, we re-express (2) in linear form,

Ṡt = β1T +β2S+β3 · (T ·W )+β4 · (S ·W ) , (4)

where β1 and β2 represent the coefficient estimates of region-wide vehicle trip’s and the stock of PM2.5’s effects on

marginal PM2.5 concentrations, respectively. Vectors β3 and β4 represent the respective sets of coefficient estimates

that measure the effects of interactions between pertinent weather variables and both vehicle trips and the stock

of PM2.5. Coalescing the β coefficients into βT = β1 +β3 ·W̄ > 0 and βS = β2 +β4 ·W̄ < 0, with W̄ representing

the weather variables measured at their respective central, or expected, values the problem’s (interior) optimality

conditions can be expressed as,

B′ (T )−λβT = 0 (5)

λ̇ + rλ = D′ (S)+λβS. (6)

7As Chiang (1992) points out, extending the time horizon to infinity creates a more comprehensive optimization framework.
8The Hamiltonian is conditional on weather conditions.
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Note that (5) implies λ > 0. In a steady state, where λ̇ = 0, equation (6) implies βS− r < 0.9,10

Lastly the problem’s transversality condition is expressed as,

lim
t→∞

λtSte−rt = 0. (7)

Consistent with the interpretations of βT and βS, we assume (7) is satisfied at W̄ .

In a steady state, optimality conditions (5) and (6) solve for,

B′ (T ∗) =−βT D′ (S∗)
βS− r

. (8)

where the ∗ superscript henceforth denotes optimal values. Along with (5), equation (8) can be used to determine

comparative static effects associated with the equilibrium, coalesced here in Proposition 1.

Proposition 1. Optimal vehicle trips and the stock of PM2.5 both increase in r, and vehicle trips decrease in βT

and βS. The remaining comparative statics effects are indeterminate.

Proof. See Appendix A.

From Proposition 1 we see that the optimal levels of T , and thus S, respond positively to an increase in the

discount rate. An increased discount rate makes private vehicle travel in the current instant relatively more valuable.

This is due to the fact that health costs incurred in future periods – which are nevertheless associated with current

pollution levels – are discounted more heavily, thus providing greater incentive for households to travel in that

instant. To the contrary, increases in the effects of both vehicle travel and the stock of PM2.5 on marginal PM2.5

concentrations (i.e., respective increases in βT and βS) raise the social cost of vehicle travel, thus reducing T ∗

(recall that βS < 0, thus an increase represents a smaller negative effect). Ultimately, the ‘cross-partial’ effects of

βT on S∗ and βS on S∗ are indeterminate. The former effect depends upon the difference between the rate at which

the marginal benefit of vehicle trips diminishes, B′′ (T ∗), and the marginal damage associated with the stock of

PM2.5, D′ (S∗); the latter upon the difference between B′′ (T ∗) and the marginal benefit of vehicle trips, B′ (T ∗) (see

equations (A.4) and (A.6) in Appendix A).

9Note that r−βS > 0 can be interpreted as a risk-adjusted discount rate, where the adjustment accounts for environmental risk premium
−βS > 0

10As shown in Section 4.1, we adhere to the hierarchical ordering principle (c.f., Li et al., 2006 and Hamada and Wu, 1992) in empirically
estimating (4) by including the vector term β5 ·W , which controls for independent weather-related effects on marginal PM2.5 concentra-
tions, Ṡ, and ensures more precise measurement of the model’s key interaction terms. Because weather conditions affect marginal PM2.5
concentrations solely when interacted with vehicle trips and lagged stock of PM2.5, we do not account for the independent weather effects
in our numerical analysis of Section 4.3. Also, by conditioning our estimates of βT and βS on the weather variables’ respective expected
values, W̄ , we are per force deriving expected-value, or ex ante outcomes. An alternative approach would be to parameterize functions B(·)
and D(·) on W̄ directly. However, we have no evidence to suggest that this is in fact germane to the problem at hand.
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Referring to equation (4) and the corresponding expressions for βT and βS, the optimal time path for S is defined

as,

Ṡ = βT T +βSS. (9)

To find T ’s optimal time path we differentiate (5) with respect to time t and combine this result with (5) and (6),

resulting in,

Ṫ =
βT D′ (S)+B′ (T )(βS− r)

B′′ (T )
. (10)

Together, equations (9) and (10) determine how optimal vehicle trips and the stock of PM2.5 evolve jointly over

time, starting from any initial stock of PM2.5, S0. Whether the evolution converges to a steady-state equilibrium of

course depends upon the underlying dynamics of the system defined by these two equations.

Setting Ṡ = Ṫ = 0 in equations (9) and (10), we can derive the corresponding isoclines and depict the steady-

state equilibrium (conditioned on W̄ ) in a standard phase diagram. The diagram is presented in Figure 1 (the

derivation of which is provided in Appendix B).

[INSERT FIGURE 1 HERE]

The results in Appendix B also lead to Proposition 2 concerning the equilibrium’s local and global stability

properties.

Proposition 2. The conditional steady-state equilibrium is either locally stable or a convergent fluctuation. The

equilibrium is also asymptotically globally stable for strictly convex damages (i.e., D′′ (S) > 0) and small-enough

discount rate r.

Proof. See Appendix B.

Thus, S0 evolves to (T ∗,S∗) from any S0 located in a local neighborhood of the equilibrium, and from any

neighborhood – near or far – for a small-enough discount rate. In concert with joint evolution of T and S to the

steady-state equilibrium, the optimal feedback strategy for vehicle trips, denoted T = T (S), can be shown to solve

as the ordinary differential equation (see Appendix C),

T ′ (S) =
βT D′ (S)+B′ (T (S))(βS− r)

B′′ (T (S))(βT T (S)+βSS)
, (11)

which, given the nonlinearity of B(T (S)), is itself highly nonlinear and complicated. In the numerical analysis

to follow we therefore eschew deriving the closed-form solution for this equation, and instead rely on calculating

the joint evolution of (9) and (10) in order to derive the optimal time paths of T and S directly. Nevertheless, we
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can see from (11) that optimal vehicle trips respond negatively to the stock of PM2.5 for (1) large-enough marginal

impacts of vehicle trips on marginal PM2.5 concentrations (βT ), (2) large-enough marginal damages (D′ (S)), (3)

small-enough marginal benefits from vehicle trips (B′ (T (S))), and/or (4) a small-enough net impact of the stock of

PM2.5 on marginal PM2.5 concentrations (βS− r).

In transitioning to the numerical analysis in Section 4.3, we henceforth assume that D(S) = dS and B(T ) =

b
√

T , d > 0,b > 0. For comparison purposes we also conduct numerical analysis using an alternative form of the

social benefit function, B(T ) = b ln(T ) and report results in Appendix D. Using readily available data, we are able

to calibrate the value of b in the benefit function. As we discuss in Section 4.2, Moscardini and Caplan (2017) and

Acharya and Caplan (2018a) provide evidence for a linear damage function in our particular study area; evidence

that permits a specific estimate of constant d.11

From equations (5), (6), and (9), our numerical expressions for optimal vehicle trips, the stock of PM2.5, and

multiplier λ , respectively, are

T ∗ =
(

b(βS− r)
2βT d

)2

(12)

S∗ =−b2(βS− r)2

4d2βT βS
(13)

λ
∗ =− d

βS− r
, (14)

and from equation (10) we obtain,

Ṫ =−4dβT T
3
2 +2b(βS− r)T

b
. (15)

Equations (9) and (12)–(15) are used in Section 4.3 to derive our key numerical results.

3 The Study Area

Elevated PM2.5 concentrations are a persistent, episodic pollution problem in Northern Utah’s Cache County –

Cache County is the portion of the purple highlighted area in Figure 2 located beneath the state boundary with

Franklin County, Idaho.12 As elaborated on in Moscardini and Caplan (2017) and Acharya and Caplan (2018a),

the stock of PM2.5 frequently spikes well above the USEPA’s National Ambient Air Quality Standard (NAAQS)

11We note that under the assumption of linear damages Proposition 2 no longer holds for global stability, since the Brock and Scheinkman
(1976) positive definiteness test conducted in Appendix B no longer applies.

12The collection of highlighted areas in this map depict what is commonly known as Utah’s Wasatch Front. This region experiences
some of the nation’s highest PM2.5 concentrations during what is known as the winter inversion season. As a result, the region has been in
persistent nonattainment of the USEPA’s National Ambient Air Quality Standard.
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of 35 µg/m3 averaged over any 24-hour period during the winter months (primarily December - February).13 For

example, Figure 3 depicts annual distributions of PM2.5 concentrations in the region during the 2002 - 2007 period

(the period 2008 - 2012 depicts similar annual distributions). Clearly, the stock of PM2.5 frequently spikes above

the 24-hour NAAQS (horizontal red line) during the winter months (primarily December - February), creating red

air day episodes. The figure also reveals the variability in spikes from year to year. For instance, during the 2002,

2004, and 2005 inversion seasons spikes occurred more frequently, reaching markedly higher levels than those

experienced in the 2003, 2006, and 2007 inversion seasons.

[INSERT FIGURES 2 AND 3 HERE]

Annually averaged PM2.5 concentrations for Northern Utah during our study period (2002–2012) are 26.69,

13.9, 35.63, 27.0, 13.77, 14.3, 16.84, 21.75, 21.78, 17.63, and 8.04, respectively, as compared with the USEPA’s

annual primary and secondary NAAQS for PM2.5 concentrations of 12 and 15 µg/m3. Further, we note that the re-

cent alternative standard set in Utah’s State Implementation Plan (SIP) for areas in non-attainment with the 24-hour

NAAQS of 35 µg/m3 – calculated as an average of three running three-year averages of 98th percentile concen-

tration levels surrounding the baseline year 2010 (known as the “baseline design value”) – is set at 40.7 µg/m3

for Cache County (UAQB, 2014). This new standard therefore effectively raises the 24-hour standard by over five

µg/m3 relative to the long-standing threshold of 35 µg/m3. By way of comparison, the World Health Organi-

zation’s (WHO’s) guidelines for annual and daily PM2.5 concentrations are set at 10 and 25 µg/m3, respectively

(WHO, 2006). Hence, applied on a seasonal basis (which is necessary in our study area given the seasonal nature of

the problem), annually averaged concentrations often exceed (sometimes considerably) both the WHO and USEPA

annual standards. Northern Utah’s concentrations also frequently exceed the WHO and USEPA daily standards.

Table 1 provides information on the extent of Northern Utah’s red air day problem during our study period, and

its coincidence with temperature inversions. Wintertime temperature inversions occur as the temperature at ground

level falls beneath the temperature at higher elevations, trapping pollutants at the surface (UDEQ, 2016b). As

elevation rises temperature gradually decreases. Given conducive barometric-pressure, snowfall, snow depth, and

wind-speed conditions, descending warm air creates an inversion layer. The inversion layer traps PM2.5 concentra-

tions between geologic barriers which, in the case of Northern Utah, are the Wellsville and Bear River Mountain

Ranges (see Wang et al (2015) and Malek et al (2006) for further discussion of the temperature-inversion phe-

nomenon).

13As shown in Section 4.1, the conditional mean value of daily PM2.5 concentrations during the winter months – conditional on the
existence of a temperature inversion – rises to just over 37 µg/m3 in northern Utah during our study period, illustrating the positive
relationship between temperature inversions and elevated PM2.5 concentrations.
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[INSERT TABLE 1 HERE]

As shown in Table 1, the number of red air day episodes (RADEs) and their average lengths vary randomly

over the years of our study, showing no clear upward or downward trends over time. The number of these episodes

range from zero in 2012 to eight in 2005, with an average of just over four episodes per year. The average lengths

of the episodes similarly range from zero to roughly eight days. A similar pattern unfolds for temperature inversion

events (TIEs), with the average number of inversion events per year reaching 5.5 and the average length reaching

3.5 days. The table’s final column provides a static assessment of the coincidence between increases in PM2.5

concentrations (Ṡ > 0) and the presence of a temperature inversion. The relative frequency with which the two

coincide on an annual basis ranges from just over nine percent in 2012 to over 40 percent in 2005, providing

unconditional evidence of the extent to which temperature inversions coincide with red air day episodes. Figure

4 depicts a specific coincidence between the formation of a red air day episode and a temperature inversion event

experienced in Northern Utah during the month of January 2004. The emergence, prolongation, and subsidence

of the red air day episode closely tracked a corresponding temperature inversion over the course of 23 consecutive

days.

[INSERT FIGURE 4 HERE]

Short-term exposure to elevated PM2.5 concentrations is linked to increased respiratory problems in humans,

such as asthma attacks, as well as increased respiratory symptoms, such as coughing, wheezing and shortness of

breath. Long-term exposure can cause premature death due to heart and cardiovascular disease associated with

heart attacks and strokes. Some studies suggest that long-term exposure can cause cancer as well as harmful

developmental and reproductive defects, such as infant mortality and low birth weight (USEPA, 2016; Dockery et.

al, 1993; Pope et. al, 1995; Pope, 1989).

Together with agricultural and industrial processes, vehicle emissions contribute a predominant share of PM2.5

concentrations in Northern Utah (UAQB, 2014). During a typical winter temperature inversion, anywhere from

60 to 85 percent of all PM2.5 is created by secondary particulate formation (UDEQ, 2016a; Moscardini and Ca-

plan, 2017). Secondary particulate formation occurs when precursor emissions of nitrogen oxides (NOx), sulfur

oxides (SOx), and especially volatile organic compounds (VOCs) from vehicle emissions react and combine in the

atmosphere to create stocks of PM2.5 (UDEQ, 2016a). According to the Utah Department of Environmental Qual-

ity (UDEQ), VOCs are highly reactive. As they break apart they combine with other gaseous chemicals to form

nitrates. These nitrates then react with ammonia to form ammonium nitrate, the leading contributor to PM2.5 con-

centrations in the region. The UDEQ has therefore concluded that reducing vehicle VOC emissions offers the best
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approach to reducing the regions PM2.5 concentrations during winter temperature inversions (UDEQ, 2016a). In

what follows, we empirically estimate the extent to which these weather conditions interact with Northern Utah’s

vehicle usage and accumulated PM2.5 concentrations in determining the rate at which the concentration levels

change over time.

4 Empirical and Numerical Results

4.1 Regression Analysis

We begin this section with a discussion of the regression model(s) used to estimate the set of beta coefficients

included in (4), presented in condensed form in (9) as βT and βS, as well as the corresponding empirical results.

The data for our regressions are compiled from several different sources; each variable in the dataset consisting

of a daily time step for the years 2002–2012. Since the problem addressed in this study occurs seasonally (from

December–February) we restrict the dataset to these three months each year. The stock of PM2.5 is recorded

hourly for Cache County by the Utah Division of Air Quality (UDAQ) at EPA station code 490050004 located

in downtown Logan (UDEQ 2016).14 The weather variables – consisting of temperature gradient, wind speed,

humidity, atmospheric pressure, snow depth, and snowfall level – were obtained from the Weather Underground

and the Utah Climate Center (Weather Underground, 2016; Utah Climate Center, 2016). Lastly, vehicle trip count

data was obtained from the Utah Department of Transportation (UDOT, 2014). The Automatic Traffic Recorder

(ATR) stations for the trip count data in Cache County are #303, #363, and #510, which cover the county’s main

north-south transportation artery (see Moscardini and Caplan (2017) for further background on the ATR stations).

Specific variable names and summary statistics are presented in Table 2. Of particular note are the mean

values for (unconditional) daily PM2.5 stock levels, daily PM2.5 concentrations conditional upon the existence of

a temperature inversion (T EMP > 0), trip counts, (unconditional) temperature gradient, and temperature gradient

conditional on the existence of a temperature inversion. On average, the daily stock of PM2.5 exceeded 18 µg/m3

during our study period. As expected, the conditional mean value of daily PM2.5 concentrations – conditional on

the existence of a temperature inversion – rises to just over 37 µg/m3, illustrating the positive relationship between

temperature inversions and elevated PM2.5 concentrations in our study area.15

[INSERT TABLE 2 HERE]
14Station 490050004 was moved five miles north of downtown Logan to the town of Smithfield shortly after the conclusion of our study

period. It is now identified as station 490050007.
15The correlation coefficient between S and T EMP is 0.71, which corroborates the close relationship between the two variables.
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The average aggregate trip count of roughly 45,000 trips per day is admittedly a lower-bound estimate of actual

trips since it represents the sum of trips recorded solely at the county’s three ATR stations. However, because the

ATR locations remain unchanged during the study period, they nevertheless provide an accurate relative measure of

vehicle trips, where in this case “relative” refers to the capturing of daily variation in trips. Daily variation in trips

is needed for our regression analyses. Lastly, we note that on average the temperature gradient is negative during

our study period, i.e., the average winter day does not experience a temperature inversion. However, on days when

a temperature inversion is experienced, the gradient is roughly 9◦F . As we now show, any public policy designed

to control PM2.5 concentrations in our study area should consider including a specific target for vehicle travel on

temperature-inversion days.

Table 3 presents our regression results for two models. Model 1 includes the entire set of weather variables and

two- and three-way interaction terms, while Model 2 excludes (un-interacted) PRESS and three-way interaction

term T ∗HUMWIND∗T EMP as a result of its (1) high correlation with other included variables, and (2) persistent

statistical insignificance in explaining variation in dependent variable Ṡ.16 Applying Cumby and Huizinga’s (1992)

Portmanteau test for white noise error structure, we find that including first and second lags of Ṡ as regressors

(denoted Ṡt−1 and Ṡt−2, respectively) for the years 2004, 2011, and 2012 satisfies the null hypothesis of no auto-

correlation in the residuals. Only a single lag is necessary for the years 2003 and 2006-2010.17 As the Durbin χ2

statistics for both models indicate, the overall regressions with these two lagged terms included as regressors are

consistent with an absence of second-order autocorrelation in the residuals.18

[INSERT TABLE 3 HERE]

As indicated in Table 3, the marginal effect of the (lagged) stock of PM2.5 on marginal concentrations is neg-

ative, as expected, but statistically insignificant.19 The marginal effect of PM2.5 concentration level is, however,

negative and statistically significant when interacted with HUMWIND and SNOWF . Vehicle trips exhibits an

expected positive effect on marginal concentrations and is statistically significant in Model 2. Trip count is also

16To save space in the table, statistically insignificant two- and three-way interaction terms are unreported for both models. As in Moscar-
dini and Caplan (2017), the variable WIND is also excluded from both models given its persistent statistical insignificance. The variable
T EMP was likewise dropped from both models due to its persistent statistical insignificance when not interacted with other variables.
Following Moscardini and Caplan (2017), we also tested for potential endogeneity in the trip-count variable using a standard Durbin-
Wu-Hausman test (Davidson and MacKinnon, 1993). We could not reject the null hypothesis of exogeneity. Results for our alternative
specifications and the Durbin-Wu-Hausman test are available from the author upon request.

17Data for 2002 was dropped from the analysis due to a preponderance of missing values. Data was also dropped for 2005 since
introducing an inordinate number of lags of Ṡ was necessary to control for potential autocorrelation in that year.

18Stata/IC version 14.2 for windows (64-bitx86-64) was used for the regression analysis. Because of inherent gaps in our data – due to
our analyzing solely the winter-month data – we were accordingly restricted to applying the Cumby and Huizinga (1992) test year-by-year.

19We use St−1 as the regressor rather than St in order to account for the PM2.5 concentration level measured at the end of the previous
day (which proxies as the stock at the beginning of the current day). As pointed out by Moscardini and Caplan (2017, footnote 8), PM2.5
in our study area is indeed a cumulative problem, which in turn provides a pretext for including St−1 as a control variable in our regression
analysis.
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positive and significant when interacted with T EMP and HUMWIND and when included in three-way interactions

with HUMWIND and T EMP, SNOWF and T EMP, and SNOWD and T EMP. Vehicle trips have a negative effect

on marginal concentrations when interacted with PRESS and included in a three-way interaction with PRESS and

T EMP. These results therefore suggest that the positive marginal impact of vehicle trips on marginal PM2.5 con-

centrations is enhanced on days experiencing temperature inversions. This impact is enhanced at higher SNOWD

and HUMWIND levels. To the contrary, the marginal impact of vehicle trips during temperature inversions is

attenuated under higher snowfall and air pressure levels. Together, these results suggest that if policy is able to be

“fine-tuned”, it should target vehicle trips made on days with temperature inversions, particularly when snow depth

and HUMWIND levels are also higher.

Lastly, the negative coefficient on Y EAR indicates that, all else equal, marginal PM2.5 concentrations in the

study area have been falling year by year. Further, similar to Moscardini and Caplan (2017) and Acharya and

Caplan (2018a), we find that HUMWIND has a negative effect on marginal concentrations. As in Acharya and

Caplan (2018a) the effect of snowfall(snow depth) is negative(positive). Summary statistics for our regressions

indicate that roughly 65 percent of the variation in marginal PM2.5 concentrations is explained by the models, and

the null hypothesis that the estimated coefficients are jointly equal to zero is rejected.

Using the results from Table 3, we are now able to calculate coefficient values for βT and βS in equation

(9). These estimates are provided in Table 4. Recall from equation (4) that the weather-variable interaction terms

incorporated in the calculations of βT (i.e., β1 and β3) and βS (i.e., β2 and β4) are evaluated at their respective mean

values (reported in Table 2).20

[INSERT TABLE 4 HERE]

4.2 Calculation of Marginal-Benefit and Marginal-Damage Parameters

The two remaining parameters to be estimated for our numerical analysis are the marginal-benefit parameter, b, and

marginal-damage parameter, d. To calculate b we first obtained a national estimate of the annual cost of vehicle

ownership and operation, which for 2017 is estimated to be roughly $9,000 (AAA, 2017). This value is most

likely a lower-bound estimate of the most-recent annual benefit associated with owning and operating a vehicle,

particularly in our case, where our ultimate goal is to derive a measure of the benefit per vehicle trip taken during

the winter months (when the value of traveling in warmth is presumably higher). We then utilize the Bureau of

Labor Statistic’s (BLS’s) CPI Inflation Calculator to obtain corresponding values for each of the years represented

20For example, the calculation for βT from Model 1 equals (roughly) (0.0003 x 8.74) + (2.8e-07 x 249.41) + (3.0e-08 x 249.41 x 8.74) -
(1.1e-07 x 14.22 x 8.74) + (3.9e-08 x 123.65 x 8.74) - (9.1e-06 x 30.18 x 8.74). We say “roughly” because the values contained in Table 3
are based on the unrounded coefficient values obtained from the regression analyses, rather than the rounded values presented in Table 3.
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in our dataset, resulting in a mean estimate of the annual benefit of owning and operating a vehicle in our study area

during our study period of $7,504.56 (BLS, 2018). Next, we obtained the Utah State Tax Commission estimates

of the number of passenger vehicles registered in our study area for each of the years represented in our dataset,

resulting in a mean value of 50,288 (USTC, 2018). Multiplying these two values together results in our mean

estimate of the aggregate annual benefit of vehicle travel in our study area of $377,389,090.

To convert this aggregate benefit value into a corresponding measure of benefit per vehicle trip, we calculate the

aggregate number of vehicle trips taken annually in our study area. From our dataset we are able to calculate the

average number of trips taken per day of the week (Sunday-Saturday), which are then each multiplied by 52 days.

Summing these day-of-the-week averages results in an annual average of 16,359,044 vehicle trips, which, when

divided into our mean estimate of the aggregate annual value of vehicle trips results in an estimated benefit-per-trip

of $23.07. Next, we multiply our benefit-per-trip estimate by our average number of vehicle trips per day of 45,000

(from Table 2) to obtain our estimated benefit per day of $1,038,150.21 Lastly, appealing to our assumed functional

relationship B(T ) = b
√

T , we obtain our calibrated estimate of b = 4,894.

To derive an estimate of d we utilize the relevant health damage estimates for our study area presented in

Acharya and Caplan (2018a). As reported in Acharya and Caplan (2018a), The EPA’s Environmental Benefits

Mapping and Analysis Program (BenMAP) is used to derive these estimates (USEPA, 2018).22

Figure 5 depicts the reverse of Acharya and Caplan’s (2018a) benefit estimates associated with progressively

more reductions in PM2.5 concentrations, and thus charts out the corresponding damage function, i.e., the relation-

ship between increasing concentrations (effectively starting from an initial stock level) and the associated damages.

[INSERT FIGURE 5 HERE]

As shown, this relationship is linear. The associated (dotted) trend line’s intercept is statistically indistinguish-

able from zero (p−value = 0.33), it’s slope is $4.4 million (p−value = 0.00), and adjusted-R2 = 0.99.23 Dividing

$4.4 million by 90 winter days/year results in d = $49,324.24

21This value is slightly larger than the value of $1,033,743 obtained by simply dividing $377,389,090 by 365 days.
22Acharya and Caplan (2018a) utilized version 1.1 of the Community Edition of BenMAP to derive their health damage estimates. Ben-

MAP is a Windows-based program using Geographical Information Systems (GIS) to estimate the health benefits and associated economic
benefits of changes at a regional scale. To obtain their estimates Acharya and Caplan (2018a) inputted the following parameters for PM2.5
concentrations in Cache County, Utah to obtain a “pooled valuation result”: (1) monitor rollback (percentage basis) and rollback grid type
with monitor library year 2008, (2) percentage rollback of 25 percent, (3) fixed radius of 10 km, (4) US Census – county level for population
dataset, 2008, and (5) Pope et al. (2002) health impact functions.

23Linear damage functions for mobile-source emissions are also assumed by Fullerton and West (2010) and the earlier studies of Small
and Kazimi (1995), Burtraw et al. (1998), McCubbin and Delucchi (1999), and USFHWA (2000), and Parry and Small (2005). Linearity
was also assumed in Liu and Yu’s (1976) early estimations of generalized average damage functions.

24Recall that in our study area elevated PM2.5 concentrations present a health risk solely during the three winter months of December-
February.

15



4.3 Numerical Results

Table 5 contains our estimates of the optimal values T ∗, S∗, and λ ∗ for regression models 1 and 2 and assumed social

discount rates, r = {0.01,0.03,0.05,0.07}.25 These estimates are derived using equations (12) – (14) from Section

2, estimates of parameters βT and βS from Section 4.1, and estimates of b and d from Section 4.2. Numerical

results for the alternative specification of the social benefit function, B(T ) = b ln(T ), are contained in Appendix D.

[INSERT TABLE 5 HERE]

As shown in Table 5, Model 1, optimal daily vehicle trip counts during temperature inversions range between

3,100 at the lowest assumed social discount rate of one percent to 5,000 at the highest rate of seven percent (rep-

resenting dramatic reductions relative to the daily average of 45,000 trips during our study period). These optimal

counts fall further to between 1,700 and 2,800 for Model 2, reflecting Model 2’s higher estimated values for βT

and βS. Concomitant with the benefits of vehicle travel being a likely lower-bound estimate, we consider our cor-

responding optimal daily trip counts to be lower-bound estimates as well. Achieving trip counts at this low of a

level during days with temperature inversions (recall the average daily trip count in our study area is 45,000) would

require aggressive action on the part of the region’s drivers on those particular days, likely achieved through a vari-

ety of means, e.g., voluntary or mandatory driving restrictions, greater use of public mass transit and zero-emission

and Tier 3 vehicles, etc.26

Results for the corresponding optimal stock of PM2.5 on days with temperature inversions are similarly dra-

matic. The concentrations never exceed five µg/m3, even at the higher discount rates (relative to our study period’s

average PM2.5 concentration level during temperature inversions of 37 µg/m3). Optimal concentration levels do

not exceed 3.5 µg/m3 at lower discount rates. The main driver behind the sizable reductions in vehicle trip counts

and concentration levels is obviously BenMAP’s estimates of the health damages associated with elevated PM2.5

concentrations in the study area (as shown in Figure 5). As mentioned in Section 1, our estimates of the socially

optimal PM2.5 concentration levels are roughly six to 13 percent of the NAAQS for our study period of 35 µg/m3).

As shown in Table 6 in Appendix D, optimal reductions in vehicle trips and the attendant stock of PM2.5 are slightly

more dramatic for social benefit function B(T ) = b ln(T ). Further, because the divergence in optimal vehicle trips

25These rates are consistent with those surveyed in Greenstone, et al. (2013) and historically used by OMB (2003) in their benefit-cost
analyses.

26Relying on the use of zero-emission vehicles would require a transformation far more ambitious than that envisioned by California’s
recent Zero-Emissions Vehicle (ZEV) Action Plan for that state (CGO, 2016). Recall that while California’s plan effectively calls for the
replacement of approximately four percent of its statewide vehicle fleet by 2025 (CGO, 2016), if Cache County were to rely solely on the
transformation of its fleet to ZEVs the corresponding replacement rate would range from 89 percent to 93 percent using Model 1’s results
(associated with 3,100 and 5,000 trip counts, respectively) and an even larger replacement rate using Model 2’s results.
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across Models 1 and 2 is not as pronounced for each discount rate, optimal PM2.5 concentration levels are larger

for Model 2 than Model 1, unlike the results for social benefit function B(T ) = b
√

T .

Figures 6 and 7 present the optimal time paths for vehicle trips and the associated stocks of PM2.5, respectively,

at the onset of a temperature inversion, assuming an initial state of 25,000 daily vehicle trips and a PM2.5 concen-

tration of 10 µg/m3 (shown here assuming Model 1’s parameter values and a discount rate of three percent).27

[INSERT FIGURES 6 AND 7 HERE]

Most notably, the time path for optimal daily trip counts during temperature inversions exhibits a steep decline

from its initial level and reaches its steady-state level of approximately 3,700 trips after roughly seven periods.28

This makes sense because once in a temperature inversion aggregate vehicle trips elevate the stock of PM2.5 toward

a red air day episode. The most effective and therefore socially optimal way for the region to adjust to the inversion

is via a rapid reduction in vehicle trips, especially given the PM2.5 stock’s attenuated response to these reductions.

In practice, enactment of public policies such as mandatory or voluntary driving restrictions and more widespread

use of mass transit could conceivably lead to the attainment of the steady-state level of vehicle usage at a faster

pace.

The time path for optimal PM2.5 concentrations during temperature inversions is smoother. The decline from

its initial level is not nearly as steep, reaching the steady state roughly 14 periods later. This lingering response is a

consequence of the weather-dependency of vehicle trip’s effects on the marginal concentration levels, and the fact

that, although statistically significant, the estimated effects are relatively small in magnitude (recall the interaction

coefficient estimates for variable T reported in Table 3 and the corresponding βT values derived in Table 4). Results

for social benefit function B(T ) = b ln(T ) follow the same pattern – see Figures 8 and 9 in Appendix D.

5 Conclusions

This paper has developed a dynamic framework within which to estimate optimal, steady-state vehicle usage on

a regional basis – in particular the extent to which aggregate vehicle usage should be curtailed during weather-

induced episodes of elevated (and accumulated) mobile-source air pollution. In this context, we have sought to

27The vehicle trip path begins to overshoot the optimal trip count at roughly 30,000 daily trips, reflecting the fact that this model simulates
optimal rather than current trip counts. Because optimal trip counts are markedly lower than what is currently recorded in our study area,
we are not surprised that our numerical model demonstrates this type of volatility when the initial trip count is effectively so distant from
what we know is its optimal steady-state value. To avoid introducing this volatility into our model, we therefore assume an initial state
that represents more than half of the daily vehicle-trip average of 45,000 and associated PM2.5 concentration level during our study period.
Results are similar using Model 2’s parameter estimates and for each of the remaining discount rates assumed for this study.

28For our numerical analysis we delineate the passage of time as a generic “period” rather than “day” in order to maintain consistency
with the instantaneous nature of our coneptual model. Thinking of periods as days in no way alters the qualitative character of our results.
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answer the question of how regional authorities might best establish target reduction levels in steady-state vehicle

usage that are tailored to episodic “outbreaks” of air pollution events, particularly when household- and vehicle-

level data are unavailable. Instead, daily measures of regionwide vehicle usage, pertinent weather conditions, and

actual pollutant concentrations are readily obtainable for both empirical and numerical estimation.

Toward this end, we have calibrated a simple model of accumulating pollutants using a unique dataset for one

of the nation’s perennially worst air quality regions, Northern Utah. Included in the calibration exercise are damage

estimates obtained from the USEPA’s recently released BenMAP (USEPA, 2018) and benefit estimates (associated

with vehicle usage) based on data obtained from a host of relevant sources. We find that dramatic reductions in

emissions-generating vehicle trips should be targeted for temperature inversion episodes that occur sporadically in

Northern Utah during the winter months; episodes leading to elevated PM2.5 concentration levels. Because they

are socially optimal and targeted solely for days with temperature inversions, the estimated reductions in vehicle

usage are markedly larger than those proposed for Northern Utah by Moscardini and Caplan (2017), which are

calibrated to attain the daily NAAQS for PM2.5 concentrations on an average basis. Corresponding reductions in

PM2.5 concentration levels are similarly dramatic, ultimately resulting in concentrations that are roughly six to

13 percent of the NAAQS for our study period. Further, we find that the time path for optimal daily trip counts

during temperature inversions exhibits a steep decline from its initial level, thus reaching its steady-state level rather

quickly. The corresponding stock of PM2.5 decreases less abruptly, reaching its steady-state level in roughly double

the amount of time due to the weather-dependent and relatively small effects of reduced vehicle trips on marginal

concentration levels.

Irrespective of whether the mobile-source pollution problem is weather-dependent (and thus episodic in nature),

the approach developed in this paper demonstrates how to jointly estimate socially optimal target, or benchmark,

levels for the pollutant and its primary contributing source. In our specific case – elevated PM2.5 concentration

levels during “red air day” episodes in Northern Utah – the benchmarks are estimated to be starkly below current

environmental standards, suggesting that future policies tailored to control these episodes will need to be more

aggressive than the vehicle emissions testing and public education programs implemented to date (see Moscardini

and Caplan (2017) for further details on these programs). As we have shown in this paper, optimal values for a

pollutant and its primary contributing source (along with their associated time paths) are relatively straightforward

to estimate, even when the problem is weather-dependent.

Data permitting, the procedures developed in this study are replicable in other regions of the world currently

contending with mobile-source pollution problems. This is obviously not to say that household-specific longitudinal

data on vehicle usage (e.g., vehicle miles traveled, idling times, etc.) would not greatly improve our ability to
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measure the marginal impacts of vehicle usage on PM2.5 concentrations in study areas such as northern Utah.

Rather, we show that coarser measures of vehicle usage can nevertheless be leveraged effectively. With a socially

optimal estimate of vehicle usage in hand, regional authorities will then be able to better target their policies, e.g.,

vehicle emissions or more complicated gas and vehicle-differentiated taxes, such as those previously explored by

Fullerton and West (2002) and Bento et al. (2009). Lastly, it is important to bear in mind the pace with which the

composition of a given region’s vehicle fleet is changing, e.g., away from traditional combustion-engine to electric

vehicles, which all else equal portends reduced effects of vehicle usage on pollutant concentrations over time. The

rate at which vehicle trips would then need to be curtailed in an optimal framework – which we have shown to be

otherwise quite dramatic – would be concomitantly ameliorated.
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Appendices

A Steady-State Comparative Statics Effects

From equations (5) and (8) we obtain
∂T ∗

∂ r
=
−βSB′ (T ∗)
|H|

> 0 (A.1)

∂S∗

∂ r
=

βT B′ (T ∗)
|H|

> 0 (A.2)

∂T ∗

∂βS
=

βSB′ (T ∗)−βT D′′ (S∗)S∗

|H|
< 0 (A.3)

∂S∗

∂βS
=

B′′ (T ∗)(βS− r)S∗−βT B′ (T ∗)
|H|

R 0 (A.4)

∂T ∗

∂βT
=

βSD′ (S∗)−βT D′′ (S∗)T ∗

|H|
< 0 (A.5)

∂S∗

∂βT
=

B′′ (T ∗)(βS− r)T ∗−βT D′ (S∗)
|H|

R 0 (A.6)

where |H| = βT
2D′′ (S∗)−B′′ (T ∗)(βS− r)βS > 0. Applying the assumed curvature conditions on functions D(·)

and B(·), βS < 0, βS− r < 0, and βT > 0, equations (A.1) – (A.6) result in Proposition 1.
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B Stability of the Steady State

Setting Ṡ = Ṫ = 0 in equations (9) and (10) results in isoclines denoted as,

TT (S) = B′−1
(
−βT D′ (S)

βS− r

)
(B.1)

TS (S) =−
βSS
βT

(B.2)

where TT (S) represents the isocline for Ṫ = 0 and TS (S) similarly represents the isocline for Ṡ = 0. Further, B′−1 (·)

is the inverse function of B′ (·); specifically B′−1
(
−βT D′(S)

βS−r

)
is the inverse of B′

(
−βT D′(S)

βS−r

)
. Note that this implies

B′−1 (·)> 0, and that B′−1 (·) is itself decreasing in S.

The easiest way to see these two results is via example. Let B(T ) =
√

T . Then B′ (T ) = 1
2
√

T
=⇒ B′−1 (B′ (·)) =

T = 1
4B′(·)2 . Thus, B′−1 (B′ (·)) > 0 and B′−1 (B′ (·)) is decreasing in B′ (·) (i.e., B′−1′ (B′ (·)) < 0). In our case,

B′−1 (B′ (·))=B′−1
(
−βT D′(S)

βS−r

)
> 0, since−βT D′(S)

βS−r > 0. Further, given that we assume B′′ (T )< 0, B′−1
(
−βT D′(S)

βS−r

)
is decreasing in S, since, as shown in our example, B′−1 (·) evaluates at the reciprocal of its input value.

Equations (B.2) and (B.1) therefore imply,

∂TT (S)
∂S

< 0 (B.3)

∂TS (S)
∂S

> 0 (B.4)

which depicts the isoclines in Figure 1. The corresponding arrows of motion follow directly from (B.1) and (B.2).

Mathematically, the test for local stability stems from the linearized system,

λ̇

Ṡ

= A

λ

S

+B

where, using (5), (6), and (9),

A =

 (βS− r) D′′ (S∗)

βT
2B′−1′ (T ∗) βS

 .
Noting |A| > 0 and tr (A) = 2βS− r < 0 and appealing to Chiang and Wainwright (2005), the system is either a

stable node or focus, depending upon (tr (A))2 ≷ 4|A| =⇒ r ≷
√
−4βT

2B′−1′ (T )D′′ (S∗). To check whether the

system’s path fluctuates on convergence to the steady state, we need to specify specific functional forms for B(T )

and D(S) and check the system’s eigenvalues. As mentioned at the end of Section 2, we assume D(S) = dS and
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B(T ) = b
√

T , d > 0,b > 0 for the ensuing numerical analysis in Section 3. Using these specifications, equations

(5) and (6) can be re-expressed as,

T =

(
b

2λβT

)2

(B.5)

λ̇ = dS+λ (βS− r) . (B.6)

Substituting (B.5) to (9) results in,

Ṡ =
b2

4λ 2βT
+βSS. (B.7)

Thus, λ̇

Ṡ

= A

λ

S

+B

where,

A =

(βS− r) 0

− b2

2λ 3βT
βS

 ,
and

B =

0

0

 .
Letting I represent the 2x2 identity matrix, and µ the values for which determinant |A− µI| = 0, we are able to

derive matrix A’s associated eigenvalues µ1 and µ2, denoted succinctly as µ1,2,

µ1,2 =
(βS− r)±

√
(βS− r)2−4βS (βS− r)

2
. (B.8)

Equation (B.8) indicates that µ1 < 0 and µ2 < 0 (since 4βS (βS− r) > 0), confirming the local stability result

obtained above. However, we can also see from (B.8) that if 4βS (βS− r)> (βS− r)2, then µ1,2 solves as conjugate

complex roots, each with negative real parts (βS− r < 0), which in turn indicates a convergent fluctuation.

To characterize the system’s global stability conditions we appeal to Brock and Scheinkman’s (1976) positive

definiteness test, where

|Q|=

∣∣∣∣∣∣∣
− ∂ 2H

∂S2
r
2

r
2

∂ 2H
∂λ 2

∣∣∣∣∣∣∣> 0 (B.9)
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implies global stability. Appealing to (3) we see that,

∂ 2H

∂S2 =−D′′ (S)< 0. (B.10)

Further, totally differentiating (5) with respect to T and λ results in dT
dλ

= βT
B′′(T ) < 0. Appealing to the envelop

theorem we therefore have,
∂ 2H

∂λ 2 =−βT
dT
dλ

> 0. (B.11)

Hence, (B.9)–(B.11) imply global stability for small-enough r.
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C Optimal Feedback Strategy for Vehicle Trips

Differentiating (5) with respect to t results in,

λ̇ =
B′′ (T )T ′ (S) Ṡ

βT
. (C.1)

Using (9) to eliminate Ṡ in (C.1) we obtain,

λ̇ =
B′′ (T )T ′ (S)(βT T +βSS)

βT
, (C.2)

and similarly using (5) and (C.2) to eliminate λ̇ and λ from (6) results in,

B′′ (T )T ′ (S)(βT T +βSS)
βT

= D′ (S)+
B′ (T )(βS− r)

βT
, (C.3)

which can be rewritten as equation (11).
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D Numerical Results for Social Benefit Function B(T ) = b ln(T )

[INSERT TABLE 6 AND FIGURES 8 AND 9 HERE]
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Figure 1: Phase diagram for steady-state equilibrium.
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Figure 2: Northern Utah, Cache County.
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Figure 3: Annual PM2.5 concentrations in Cache Valley, Utah, 2002 2007.
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Figure 4: Coincidence of PM2.5 concentrations and temperature inversion, January 2004.
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Figure 5: Damage function.
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Figure 6: Optimal time path for vehicle trip counts.
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Figure 7: Optimal time path for PM2.5 concentration levels.
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Figure 8: Optimal time path for vehicle trip counts (B(T ) = b ln(T )).
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Figure 9: Optimal time path for PM2.5 concentration levels (B(T ) = b ln(T )).
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Table 1: Red air day episodes (RADEs) and temperature inversion events (TIEs), Cache County, Utah.

Year #RADE RADE Length (Days) #TIE TIE Length (Days) Rel. Freq (%)
2003 2 5.33 2 2.50 16.67
2004 7 7.71 3 8.00 36.54
2005 8 6.50 6 4.83 40.38
2006 4 4.50 4 2.25 24.53
2007 3 5.67 3 3.67 17.78
2008 4 4.50 5 2.60 17.78
2009 6 6.00 6 3.33 36.96
2010 7 4.71 5 2.40 23.68
2011 2 7.50 4 3.25 18.75
2012 0 0 3 2.00 9.09
Average 4.3 5.24 5.5 3.48 24.23

Table 2: Variable definitions and summary statistics.

Variable Description Mean (SD)*
Ṡ Change in (mean) daily PM2.5 concentration

level (µg/m3), i.e., St −St−1.
-0.06 (10.42)

S Daily (mean) PM2.5 concentration (µg/m3),
i.e., St .

18.22 (18.52)

T Daily trip count (# vehicle trips). 44,997 (14,922)
T EMP Temperature gradient between Logan Peak

and valley floor (◦F).
-8.15 (9.70)

T EMP|T EMP>0 Temperature gradient given gradient is larger
than zero (◦F).

8.74 (7.90)

S|T EMP>0 Daily PM2.5 concentration given gradient is
larger than zero (µg/m3).

37.03 (28.69)

HUM Daily humidity level (%). 81.90 (8.82)
WIND Daily wind speed (miles/hour). 3.12 (2.68)
HUMWIND HUM*WIND. 249.41 (203.99)
SNOWF Daily snowfall level (mm). 14.22 (36.14)
SNOWD Daily snow depth (mm). 123.65 (110.76)
PRESS Daily atmospheric pressure (p.s.i.). 30.18 (0.27)

* Overall mean (Mean) and associated standard deviation (SD). Sample sizes for respec-
tive variables range between 131 for T EMP|T EMP>0 and 810 for HUM and WIND.
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Table 3: Regression results (dependent variable Ṡ).a

Explanatory Variables Model 1 Model 2
CONSTANT 132.00 -9.33

(232.41) (10.04)
Ṡt−1 0.22*** 0.22***

(0.05) (0.05)
Ṡt−2 -0.05 -0.06

(0.04) (0.04)
St−1 -6.14 -5.99

(7.90) (6.49)
T 0.0008 0.004**

(0.003) (0.002)
Y EAR -0.28* -0.26*

(0.15) (0.16)
HUM 0.20** 0.23*

(0.13) (0.13)
HUMWIND -0.01 -0.009**

(0.007) (0.004)
SNOWF -0.04 -0.03

(0.03) (0.03)
SNOWD 0.02* 0.02*

(0.01) (0.01)
PRESS -4.67 —

(7.63)
St−1 ∗HUMWIND -0.0006** -0.0006**

(0.0003) (0.0003)
St−1 ∗SNOWF -0.004*** -0.004***

(0.001) (0.001)
T ∗T EMP 0.0003* 0.0003***

(0.0001) (0.0001)
T ∗HUMWIND 2.8e-07* 1.3e-07

(1.7e-07) (8.6e-08)
T ∗PRESS -0.00002 -0.0001*

(0.0001) (0.00007)
T ∗HUMWIND∗T EMP 3.0e-08* —

(1.6e-08)
T ∗SNOWF ∗T EMP -1.1e-07*** -9.6e-08***

(3.2e-08) (3.0e-08)
T ∗SNOWD∗T EMP 3.9e-08*** 3.8e-08***

(1.3e-08) (1.3e-08)
T ∗PRESS∗T EMP -9.1e-06** -0.00001***

(4.6e-06) (3.5e-06)
F(27,378) 28.33*** 31.32***
R2 0.65 0.64
Durbinχ2 0.04 0.03
N 406 406

a Robust standard errors in parentheses (Cameron and Trivedi,

2005). *** Significant at 1% level, ** Significant at 5% level, *

Significant at 10% level.
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Table 4: Estimates of βT and βS.

Coefficients Model 1 Model 2
βT 0.0001989 0.0002545
βS -0.2146 -0.2004

Table 5: Estimates of T ∗ (#trips), S∗ (µg/m3), and λ ∗ ($1,000).

Variables Model 1 Model 2
r = 0.01
T ∗ 3,138 1,682
S∗ 2.91 2.14
λ ∗ $220 $234
r = 0.03
T ∗ 3,722 2,017
S∗ 3.45 2.56
λ ∗ $202 $214
r = 0.05
T ∗ 4,356 2,383
S∗ 4.04 3.03
λ ∗ $186 $197
r = 0.07
T ∗ 5,039 2,778
S∗ 4.67 3.53
λ ∗ $202 $214
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Table 6: Estimates of T ∗ (#trips), S∗ (µg/m3), and λ ∗ ($1,000) (B(T ) = b ln(T )).

Variables Model 1 Model 2
r = 0.01
T ∗ 2,218 1,624
S∗ 2.06 2.06
λ ∗ $220 $234
r = 0.03
T ∗ 2,416 1,778
S∗ 2.24 2.26
λ ∗ $202 $214
r = 0.05
T ∗ 2,613 1,933
S∗ 2.42 2.45
λ ∗ $186 $197
r = 0.07
T ∗ 2,811 2,087
S∗ 2.61 2.65
λ ∗ $202 $214
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