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Abstract 

Low energy electron scattering (LEES) courses in 
solids are described by using a strict theory and direct 
simu lation method proposed in this paper: we have 
improved Pendry's method based on the partial wave 
expansion, which can be applied to calculate the 
elastic scattering between an electron and atom s. The 
contributions of shell electrons, conduct ive electrons 
and plasma excitations are considered in the calc ul a
tion of the inelastic scattering; electron scattering and 
cascade process of secondary electrons are simu lated 
by Monte Carlo method. The secondary electron yields, 
the energy spectra curve and the backscattering 
electron coefficients for Cu were evaluated at the 
various energies, the th eore tical results are in agree
ment with the Koshikawa's experiments. 

KEY WORDS: Low en ergy elec tron scattering, Monte 
Carlo simulation, Backscattering coefficient, Second
ary electron yield. 
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Introduction 

Recently, much interest has arisen in the theoret
ical research, the calculation method and the practical 
applications of low energy electron scattering, which 
has become an active research field. The interaction 
between electrons and solids is a physical foundation 
of modern surface ana lysis technology, such as scan
ning electron microscopy (SEM), electron probe micro
analysis (EPMA), and scann ing Auger microscopy 
(SAM). When the primary energy of incid ent electron 
is tens of keV, the elastic scattering in solid s can be 
described by Rutherford differential cross-section, and 
the Bethe equation based on the continuo us energy 
loss is suitable for calculating the inelastic scattering. 
The Monte Carlo simulation based on the two 
principles has been successfully used to so lve a series 
of difficult problems in the electron beam micro
ana lysis and the electron beam lithogr aphy (4,5,6,7,10, 
11) for many years. However, when the primary energy 
becomes several keV or low er, the Rutherford cross 
section and the Bethe equation derived from the Born 
approxi mation are not applicable (9). The lower the 
ene!"gy (or the higher the atom number), the worse is 
their accuracy. In addition, the experimenta l tech
niques related to LEES, such as the low energy 
scanning electron microscopy and low energy electron 
beam lithography hav e developed quickly and bring 
about the advancements of surface analysis of solids 
and new technology on large -sca le integration manu
facture . Therefore, it is necessary for us to establish a 
strict physical model and a practical calculation 
method to deal with low energy electron scattering 
processes. 

Kotera et al. calculated the electron scattering for 
Au below 10 keV using Mott elastic cross-section and 
the Kanaya energy loss equation (9), their results are 
more accordant with the experiments than those 
obtained by using the Rutherford-Bethe theories. 

Shimizu and Ichimura have propos ed a calculation 
method (14) to simulate the scattering processes of ke V 
electrons penetrating into aluminum. In th eir model 
elastic scattering cross-section is derived by the partial 
wave expansion method considering the relativistic 
effect; inelastic scat tering is divid ed into three differ
ent parts. 

In this paper we have presented a Monte Carlo 
simulation to describe the scattering processes of low 
energy electrons in copper: l)Pendry's calculation 
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method on elastic scattering has been improved, and 2) 
inelastic scattering is calculated by using the method 
in reference (14). 

Elastic Scattering 

Pendry's procedure (12) to calculate low energy 
electron elastic scattering based on the partial wave 
method of quantum mechanics is stricter, but there are 
several defects. We have made some improvements to 
Pendry's work and obtained a better calculation 
method , which will be published in another paper. 
Here is a summary of the calculations. 

The differential scattering cross-section is acquired 
by solving the non-relativistic Schrodinger equation: 

where k' = 2E, E is incident electron energy, pi(cos0) is 
Legendre function, bi represents the phase shift with 
angular momentum l , it is given by reference (1) 

(2) 

where ji(kr) and ni(kr) are spherical function and 
spherical Neumann function, respectively; i', (or n' i) is 
derivative tor, and R is Muffin-tin radius . In addition 

(3) 

in which, <I>l is the radial wave function of an incident 
electron. 

The total elastic scattering cross-section is charac
terized by a set of phase shifts: 

(4) 

We can see from equations (1) to (4), the 
calculations of the scattering cross-section O"et is, in 
the final analysis, to evaluate the radial wave 
functions of an incident electron. 

The non-overlapping sphere, taken as ion core 
potential by Pendry, is called 'Muffin-tin approxima
tion'. Th en, function <I>, satisfies 

- _I . _A__(r' _j{'l) + 
2r 2 dr · ch 

L(L+I) A'> 
2 r• r, 

where V tt(r) is Hartree potential: 

(5) 

m which, Vs= - 3r( 
3
p(r) l 3

, p(r) is electron density, 
81t 

L L · L L represents the summation of all shell 
j 5 j sj sj 
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electrons,and d'r is the integration in space. 
Eq. (6) can not be calculated practically, using the 

quantum theory of atom structure we have derived the 
expression, which is convenient for digital computa
tion: 

r 

VH(r) = J...[rv5crJ-Z+2(<I.(2(+1J•lt,.<r'Jl~r
12dr 1 

r J l' L 

+Yr f (21,'+ l)•/'Y/Y' )(1-Y' cir') J , (7) 

r 

where is the electron radial wave function of an 
atom with trajectory quantum number l. 

V Ex(r,r') is called Hartree-Fock exchange potential. 
The calculated values may be too sma ll for computer to 
express near the beginning point ro in higher energy 
region . Lett"= fl,-L-'I, r.,,=111,rt", r:..=m,yl" ,then 

l•t.' 
<v<l1(r,r')~(Y')y' 1,fr 1 = LL ( (L ,l ', !,") 
J ex t t' L'' 

( tdr'J J\r:,""(y')p (r'Jr' 2 r' dt' 
r-r,,, t i m 

0 

+rm f/r> j-f <r')ipt (r') ;~ dr'], (8) 
0 

and 
(9) 

It will occur overflow in process of calculation 
when the electron energy E is larger than 1 keV, and /, 
l" are large enough. Thus, we introduce an exchange 
so that the calculation of function C(l,l',l") can be 
carried out smoothly. 

Let f, = r<I>i. f, 

written as follows 

l+l f h . ( . f.' - -- ,, t en equat10n 5) 1s 
r 

f ,' = f 2 + ~ f, 
f; = 2cvH-E)f, - Tt,+ 2v1-<o, 

in which 

Vo(r) : rf v<li (r Y') <P (y ')Y'
2dr' 

,, ex , t · 

The primary solution of functions f, and f, is 

(.i 2 ) :i 3 

f =Cr (r-(--r+olr-AT-+···1 
I O L+ I I: 

in which 

cl.= 
Z 2 

- ( L +I) ( E + Vo) 

(L+1)(2L+3) 

Z (Z 2 -(3L+4)(E+Vo)) 

3(L+l)(L+2)(2l+3) 

(11) 

In Eq. (11) Co is a constant, its value will affect the 
normalization factor of wave function <I>,. We can prove 
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that the value of Co does not influence the calculated 
results of phase shifts, therefore, the overflow may be 
avoide d by suitably adjusting C,. 

So far, a stricter method for calculating electron 
elastic scattering in a wide range of energy has been 
completed. 

Using the partial wave method, we calculated the 
scattering cross-sections for Be, C, Al, Si and 
Cu at the different energies, and the ratio Rp.r 

( ~~ )p.w.• / ( ~~ )R, between partial wave cross-section 
and Rutherford cross-section (Fig.1).The results show 
that the difference between both these cross-sections 
will increase with the decrease of the energy E or the 
increase of the atomic number. It is evident that 
Rutherford theory can not be applied to calculate low 
energy electron elastic scattering . 

In additio n, the contribution of Hartree-Fock 
exchange potential is studied in the paper. The elastic 
scattering cross-sections for Al and Cu with the 
energies from 0.5 to 5 keV are calculated by using 
Hartree and Hartee-Fock approximation respectively. 
We can see from the results for Cu shown in Table 1 
that the lower the energy E, the larger is the influence 
of Hartree-Fock potential; when the energy increases 
to 1 keV, the difference between calculated values 
using Hartree-Fock and Hartree potential is very 
sma ll. Therefore, we think Hartre e-Fock approximation 
should be applied below 1 keV, when E is higher than 
1 keV use of Hartr ee pot ential may also provide 
enough precision. Thus , we can save CPU time in 
computing . 

Inelastic Scattering 

We take the stricter theories to replace Bethe 
continuous energy loss approximation to deal with low 
energy electron inelastic scattering. The inelastic 
scatterings resulted from ion core and conductive 
electrons consists of two parts: single electron excita
tion and plasma excitation. Single electron excitation 
inc lud es shell electron excitation and conductive 
electron excitation . 

Shell Electron Excitation 
Th e equation of calculating shell electron excitation 
cross-section was derived by Gryzinski (3). When the 
electron energy loss is ~E, the differential scattering 
cross-section is: 

where E; and K; are the binding energy and the number 
of electrons of shell j, respectively. 

Th e scattering cross-section, 6"sj , of relative shell 
for Al and Cu at the different energies were calculated 
from Eq. (12) (Fig. 2). 

The calculated results show that the ratios 
between L shell and M shell excitation cross-sections 
for Cu at 0.5-5 keV vary from 0, 0.0000182 to 0.00268, 
i.e. the maximum value is not more than 0.3% ; and 
that is less than 0.4 % for Si. It is proved that shell 
electron excitation principally occurs in the outer 
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shell. 

Conductive electron Excitation 
Streitwolf formula (15) for calcu lating conductive 

electron excitat ion is: 

d0c(;!E) = 
d.oE 

dcr; (;iE) = 
d;iE 

tJ1re4 -~----c-
( bE- Ef)2 E 

0.34 N ,r-e4 I -E--·v, (13) 

where N is Avogadro number, and E,. is the Fermi 
energy. 

When energy loss ~E = E,-, the form of definite 
integral for eva lu ating the total cross-section is as 
follows: 

E 
+ } Ni;e.4. 

2.715EF 

Plasma Excitation 

--- 1-~ - dbE . ( ,if - E F) 2 
(14) 

Plasma excitation is a collective oscillation of 
conductive electrons related to ion cores, which 
resulted from incident electrons. The total cross
section is given by the equation (13) which is der ived 
by 'qua si - particle approach': 

(15) 

in which 1i.w, is the plasma energy, A is atomic weight, 
p is the density, and a, is the Bohr radius. 

Then, kinds of inelastic scattering cross-sections 
are obtained, and the total inelastic scattering cross
section 

(16) 

The inelastic scattering cross-sections and the 
total values of Al and Cu in the range of low energy 
are shown in Fig. 3. 

Monte Carlo Simulation 

According to the principle mentioned above, a 
Monte Carlo method to calculate low energy electron 
scattering in solids has been established. 

Scattering Free Length and Scattering Event 
When electron ene rgy is E, we calculate the 

elastic scattering and every inelastic scattering cross
-sections of electrons, the total cross-section 

The electron scattering free length 

:>-. = __,A-'--_ / n R , 
NPO-t 

(18) 

where R is a random number distrib uted homog eneous
ly from 0 to l. 
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The type of the next scattering event is determined 
by random sampling method when the free length }, is 

known. 
To a given random number R, if 

R < <ret / 0-t , 

then, elastic scattering occurs; 

shell electron excitation; 

conductive electron excitation; 

Plasma excitation . 

Electron Angular Scattering and Energy Loss 
The angle, 0, of electron elastic scattering 1s 

obtained by random sampling: 

R = 

19• ! s;n 9-d<r(6) 
0 

:,r 
J srn&d<r(6J 
0 

(19) 

Combine equation (1) with the above formula, we 

have 

R = 

&"' 

J If (2l41)Sind,llXp(idtlP,(toS9-))~s;n 29-d& 
o L=O L (20) 

Sinc e most inelastic scattering occurs in the excitation 
between incident electrons and conductive electrons or 

outer shell electrons, a free - electron model for binary 
collision is applicable to calculate inelastic scattering 
angle 0;0 

(21) 

The energy loss Ll.E of inelastic scattering 1s 
obtained from random sampling similarly: 

R = 

6E 

JE; dcr-(E) 

r· dcr(E) 
E; 

(22) 

where Eo is the primary energy of incident electrons. 

Cascade Process 
According to the principle mentioned above, the 

cascade process of low energy electron scattering in 

solids is simulated by Monte Carlo method. In the 

process, we trace every incident electron and the 

excited secondary electrons to calculate the next 

scattering and excitation until the electron leaves the 

surface of solids or stops in solids owing to its energy 

being dissipated. When E< E.+ w,. (work function), the 

electron is not tracked further. While the electron 
escapes from the surface, it must overcome the surface 

potential barrier. The electrons are roughly divided 

into the backscattering electrons (energy greater than 

50 eV) and the secondary electrons (energy less than 50 
eV) 
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The space transport process of electron scattering 
is calculated by the method in Ref.(2). 

According to the principle of free electron approx
imation, the new coordinates of the excited conductive 
electrons, shell electrons and incident electrons after 
scattering can be determined by solving the momentum 

conservation equation of binary collision. 
The electrons that escape from the surface should 

satisfy : 
(23) 

where y is the angle between scattering direction of 

electrons and the normal of surface. It is obvious that 

the larger the energy, the greater is the possibility to 

escape the surface. 

Calculation Results and Discussion 

Using th e th eory and calculation method in this 

paper, the backscattering coefficient IJ, the secondary 
electron yield b and its energy distribution are 

evaluated for Cu at the energy range of 100-3000 eV, 

and with varying the incident angle from 0° to 60°. 
The calculated results are in agreement with the 

experimental values of Koshikawa and Shimizu (8). 

The calculated backscattering coefficient 1J for Cu is 
shown in Fig . 4. 11- Eo curve with normal incidence 
and the different incident angles are in accordance 
with K-S experiments (Fig. 4a, 4b) except that the 

calculated values are a little high. 
We hav e calculated the secondary electron yield 

for Cu, when the energy E, is 100, 200, 300, 400, 500, 

1000, 2000 and 3000 eV, respectively. The results show 
that the value of b reduces as the energy decreases, 
and the maximum of b occurs at 500 eV (Fig . 5a). It is 

an important characteristic on the secondary electron 
emission, and has been proved by K -S experiments. 

The secondary electron energy spectra for Cu at 500 eV 
is shown in Fig. 5b. The calculated spectra curve is 
shifted to the side of low energy about 1 eV as 

compared with the experimental curve, however, the 

distribution of the two curves is accordant. when E, is 

1, 2, and 3 keV respectively, and the incident angle 0, 
varies from 0° to 60°, the calculated curves show the 

same distribution regularity. This is also an important 
characteristic on secondary electron emission. 

It is possible to extend both our theory and 

calculation method to simulate low energy electron 
scattering in polybasic alloy, and to calculate the 

scattering processes in multi-layer medium. We are 

applying the method to the calculation of low energy 

electron beam lithography, in order to carry out some 

necessary theoretical analysis for the studies in this 

important technology field. It will be a very complex 
problem on low energy electron scattering in polybasic 

and multi-layer medium. 
The Monte Carlo calculation was carried out on 

II3M 4381 computer, the simulated electron number is 

5000. 
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Fig. 1. The ratio Rr.r between P.W.M cross-section and 
Rutherford cross-section at the different energies. (a), (b) and 
(c) are the calculated results for C, Al and Cu, respectively . 

0.5 1.0 2.0 3.0 4.0 

0.1473 X 10- 15 0.1081 X 10 - IS 0.8067 X 10 - lb 0.6440 X 10-16 0.5427 X 10 - lb 

0.1540 X 10- IS 0.1100 X 10-15 0.8101 X 10-16 0.6457 X 10- 16 0.5438 X 10- 16 

0.9562 

10-14 

10 - 15 

10-16 

10-17 

0.9843 0.9957 0.9973 0 .9977 

Table 1. The scattering cross-sections for Cu calculated by 
Hartree ( O'T.H) and Hartree-Fock ( O'T.HF) approximat ion , 
respectively . 

0 ( cm2 ) 10-15 
.(cm 2 ) SJ rr-

Cu s 

10-16 

3d 3s 

10-17 

10-18 

(c) 

5.0 

0.4715 Xl0 -16 

0.4725 X 10-16 

0.9979 

Al 

~ (> 
E(e V) 

10 -19 10-18 E(e V 
10 102 103 104 10 102 103 

( b ) ( a ) 

Fig. 2. Shell excitation cross-sections for Al and Cu in the 
range of low energy. 
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10-15 Al 

10- 16 

Cu 

10- 15 

10- 16 

10-17 
l 10 100 1000 E(e V) 

( b ) 

Fig . 3. Inelastic scattering cross-section and the total 
values of Al(a) and Cu(b), 
-- a,t, -·-•- ere.. ---- - as .-·· -· ·-ap 

0 . 5 
7 

0 .4 

E0(keV) 
0.3 ~--- --- ~---~ 

0 . 6 

0 . 5 

0.4 

0 

7 

1.0 2.0 3 .0 

Fig. 4. Comparison of the calculated values and th e 
experimental res ult s of backscattering coefficient IJ for 
Cu. 
---- Calculated values, 
··· ··· ··· ··· K-S experimental results . 
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6 
l. 5 Cu 

~ -- [) --- =0 ---------
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E
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C E0 =500eV 
:::J 

>- 0-. =0 
'-
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'-
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.D 
'-
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Fig . 5. The calcul ated secondary electron yield and 
energy spectra curve compared with the experimental 
results . 
--- Calculated valu es, 
··· ··· ··· ···e xperimental results. 
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Discussion with Reviewers 

K. Murata: Please explain briefly on how you obtain 
the Muffin-tin radius . 
Authors : We take the largest possible non-overlapping 
spheres drawn about each nucleus, the potential inside 
will be spherically symmetric, and the potential outside 
will be constant . A radius of the non-overlapping 
spheres is taken as the Muffin-tin radius. 

K. Murata: Your calculations of the elastic scattering 
cross-section are based on the non-relativistic theory. 
Could you comment on how accurate your theory is, 
compared with the relativistic theory? 
Authors: The calculated results of elastic scattering 
cross-section using the non-relativistic theory are less 
than those using the relativistic theory, and the 
difference between both these results will increase with 
the increase of the atomic number . Both calculated 
values are given in Tab. A. 

Element Relativistic Non-relative Deviation 

Al 1 keV 0.95 X 10-IG 0.83 X 10--<6 12.6% 
3 keV 4.24 X 10-i, 3.98 X 1047 6.1 % 

Cu 1 keV 1.48 X 10-16 1.09 X 104 6 26.4% 

Tab . A Comparison between our non-relativistic 
results and the relativistic values calculated by 
Shimizu et al. (Surface Science, 1981, 112, 386-408). 
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D. E. Newbury: The agreement between th e experimen
tal results of Koshikawa and Shimizu and your Monte 
Carlo calculations shown in Figure 4 is quite impress
ive . Most Monte Carlo simulations have at least one 
parameter which must be adjusted to give close 
agreement with selected experimental data such as 
backscatter coefficients as a function of atomic 
number. After adjustment, further comparisons are 
made to other types of experimental data, such as 
transmission through thin foils, etc. Does your simula
tion require any such adjustment, or do the mathemat
ical expressions for elastic and inelastic scattering 
directly produce such a good agreement? 
Authors: This is a very interesting and essential 
question. There are always some deviations in Monte 
Carlo simulation of a physical process, which are 
resulted from the selection of a physical model and the 
random calculation. So Monte Carlo simulation usu
ally have at least one parameter, which must be 
adjusted to obtain close agreement with experimental 
data. In our simulation of low energy electron 
scattering, the factor of inelastic scattering angle is set 
up to obtain good agreement with the experimental 
data of backscattering coefficient 1'/ and secondary 
electron yield b. From equation (21), 
O,n = arcsin(i'1E/E) 112• In simulation we let 
O;n =P& arcsin(i'1E/E) 11

'.l. P& is adjusted according to 
the experimental values of 1'/ and b. 
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