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Abstract
Using a dataset consisting of daily vehicle trips, PM2.5 concentrations, and a host of climac-
tic control variables, we test the hypothesis that “yellow air day advisories” issued by the 
Utah Division of Air Quality resulted in subsequent reductions in vehicle trips taken dur-
ing northern Utah’s winter-inversion seasons in the early 2000 s. Winter inversions occur in 
northern Utah when PM2.5 concentrations (derived mainly from vehicle emissions) become 
trapped in the lower atmosphere, leading to unhealthy air quality over a span of time known 
colloquially as “red air day episodes”. When concentrations rise above 15 μg∕m3 toward the 
National Ambient Air Quality Standard average daily threshold of 35 μg∕m3 , residents are 
informed via different media sources and road signage that the region is experiencing a yel-
low air day, and are urged to reduce their vehicle usage during the day. Our results suggest 
that the advisories have provided at best weak, at worst perverse, incentives for reducing 
vehicle usage on yellow air days and ultimately for mitigating the occurrence of red air day 
episodes during northern Utah’s winter inversion seasons.

Keywords  Air pollution advisory · Vehicle usage · PM2.5 concentrations     · Soft 
environmental policy

JEL Classification  Q53 · Q58

1  Introduction

When it comes to protecting local environments, regulators and policymakers often find 
themselves in the unenviable position of having to choose between “hard” and “soft” poli-
cies aimed at altering their citizens’ externality-causing behaviors. Hard policies refer to 
taxation, rationing of threatened resources (e.g., via a cap-and-trade program or the setting 
of an environmental standard), or subsidization of abatement technolgies—policies that 
either mandate a new, environmentally benign behavior or alter the economic tradeoff asso-
ciated with the existing externality-causing behavior (e.g., via raising its relative price). To 
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the contrary, soft policies rely on educating the public about an existing externality, and 
encouraging its mitigation through voluntary adjustments in behavior without providing 
an economic incentive to do so. For example, eco-labeling is a soft policy that provides 
consumers with pertinent information about a product’s environmental impact at point of 
purchase (i.e., on the product’s label), with the tacit encouragement that consumers choose 
“greener” products (c.f., Potter et al. 2021; Rihn et al. 2019; Shumacher 2010)1 Informa-
tion dissemination via a clearinghouse to both firms and consumers, or specifically to firms 
via demonstration projects, technical assistance, newsletters, seminars, and field days, rep-
resents another soft policy approach (c.f., Ribaudo and Horan 1999; Hamilton 1995; Terry 
and Yandle 1997; de Marchi and Hamilton 2006).2

This paper investigates the efficacy of a third type of soft policy, whereby a regulatory 
authority issues an environmental advisory (a.k.a., alert or warning) with the short-term 
goal of protecting its citizens from an existing environmental harm, and, similar to ecola-
beling and information-dissemination, with the longer-term goal of mitigating the human 
behaviors causing the harm. As with ecolabeling and information-dissemination, empirical 
questions abound. To what extent might an advisory reduce citizens’ exposure to environ-
mental harm and, more importantly, trigger a reduction in externality-causing behaviors? 
In the case of water pollution, relevant questions are, what effect does a beach advisory 
have on a swimmer’s decision to take a plunge in contaminated water, and what effect does 
a fish consumption advisory have on an angler’s decision to cast a line into a contaminated 
lake or river? In terms of air pollution, what effect does an air quality advisory have on 
people’s decisions to use their motor vehicles?

The current paper adds to a relatively small set of previous empirical studies by inves-
tigating the effect of repeated air quality advisories issued during northern Utah’s winter 
inversion seasons in the early 2000 s, when elevated PM2.5 concentrations tied mainly to 
region-wide vehicle usage sporadically exceeded the EPA’s National Ambient Air Qual-
ity Standards (NAAQS). As elaborated on in Sect. 2, these exceedances (known as “red 
air day episodes”) were often dramatic in scope. Our study area and period of analysis 
therefore provide an opportune setting within which to measure the effectiveness of an 

1  In their systematic review of the ecolabeling literature, Potter et al. (2021) conclude that ecolabels help 
motivate consumers to choose greener products. Experimental evidence from Rihn et  al. (2019) suggests 
that ecolabel format (i.e., text vs. logo) influences consumers’ visual attention and, concomitantly, prod-
uct valuation. Logos capture relatively more visual attention than text ecolabels, which in turn increases 
respondents’ willingness to pay for ecolabeled products. Shumacher (2010) finds that demand for ecola-
beled goods is higher among environmentally conscious consumers than price-oriented consumers. Kaiser 
and Edwards-Jones (2006) caution that a myriad of issues bedevil the impact of ecolabeling in marine fish-
eries, issues pertaining to a general lack of consumer concern for marine fishes and sustainable fisheries, 
the absence of guaranteed, continued financial benefits to participating fishers, and difficulties associated 
with quality assurance (i.e., compliance of marine fisheries).
2  Hamilton (1995) was the first to show that firms self-reporting their toxic emissions via the U.S. Envi-
ronmental Protection Agency’s (EPA’s) Toxic Release Inventory (TRI) experienced abnormally negative 
returns on the day the information was first publicly released. With respect to actual firm-level emissions 
in response to the TRI, Terry and Yandle (1997) find that, all else equal, lower per-capita emissions lev-
els were recorded in more densely populated areas of the country. According to de Marchi and Hamilton 
(2006), subsequent decreases in self-reported emissions were not always matched by similar reductions 
measured via EPA monitors. With respect to the control of nonpoint source water pollution, Ribaudo 
and Horan (1999) find that favorable conditions for information dissemination exist when (1) actions that 
improve water quality also increase firm profitability, (2) firms have strong altruistic or stewardship motives 
to begin with, or (3) the on-farm costs of water quality impairments are sufficiently large. However, none of 
these three conditions guarantees an expected improvement in water quality.
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air quality alert program. Furthermore, because the red air day episodes are seasonal and 
sporadic, “alert fatigue” can be conveniently measured as it occurs across yellow air days 
within a given season (i.e., intra-seasonally), as well as its average occurrence, or trend, 
across years (i.e., inter-seasonally). Alert fatigue occurs when contemporaneous, or imme-
diate changes in human behavior—happening in response to the issuance of an air quality 
advisory—fade over time, i.e., when individuals eventually revert back to their original 
behavior patterns (Saberian et al. 2017).

Air quality advisory programs are a common form of soft policy for metropolitan areas 
that are in non-attainment of the NAAQS (Fujii et al. 2009; Moser and Bamberg 2008). 
The programs publicize local air quality conditions on a daily basis. The conditions are 
categorized as color-coded, ordinal rankings accompanied by descriptions of correspond-
ing health implications and desired public actions to mitigate the problem. In the case of 
northern Utah’s advisory program for PM2.5 concentrations in the early 2000 s, one of three 
color-coded alerts was provided daily to Utah citizens by the Utah Department of Envi-
ronmental Quality (UDEQ) reflecting localized (county-wide) air quality conditions. The 
alerts were disseminated through a variety of news outlets (newspapers, television, and 
radio news shows) on the day of rather than day before measured PM2.52013 concentra-
tions.3 The color green indicated good air quality, with no action required, yellow indi-
cated moderate air quality with voluntary reductions in the use of wood/coal stoves, vehicle 
travel, and industrial emissions recommended, and the color red indicated unhealthy air for 
sensitive groups with a mandatory ban on wood/coal stove use and voluntary reductions 
for vehicle travel and industrial emissions recommended (c.f., Hollenhorst 2021). Thus, 
during our study period, a yellow air day is clearly interpretable as an air quality advisory. 
It warns citizens of an impending red air day episode and recommends behavioral changes 
that can be taken on an individual basis, such as reducing vehicle trips or travel speeds, 
carpooling, or using alternative transportation modes—changes that help mitigate air pol-
lution region-wide.

Previous studies report small or no reductions in vehicle usage (and concomitantly 
small or no increases in the use of alternative transportation modes) in response to soft 
policies such as air quality advisories, which has led Bamberg et al. (2011); Noonan (2011) 
to interpret the literature on soft policies as being guardedly optimistic about their effec-
tiveness.4 For instance, Welch et  al. (2005) find no substantial increase in overall rider-
ship on Chicago Transit Authority (CTA) trains during ozone alert days, although they 

3  Similar to Tribby et al. (2013) and Cummings and Walker’s (2000), Utah’s advisories were disseminated 
“day of”, and hence were not as peremptory as “day-before” advisories would otherwise have been. We 
nevertheless test for the existence of potential day-before effects in Sect. 6, as their existence in our data 
would suggest that vehicle users base their decisions on expectations that an advisory will be issued, e.g., in 
response to an evening news report on the radio or television that predicts ensuing poor air quality, or infor-
mation on current PM

2.5
 concentrations available from various websites.

4  Noonan (2011) argues that air quality advisories can impact behavior, mostly among sensitive groups 
such as the elderly, and for high-exposure activities, such as outdoor exercise. In other words, advisory pro-
grams do not uniformly alter a given population’s behavior. Impacts vary across individuals, contexts, and 
activities. In fact, some of these behavioral impacts may be perverse, e.g., by inducing a greater reliance on 
automobiles on alert days in order to reduce one’s exposure to poor air quality. Hence, advisory programs 
can instigate tension between an individual’s altruistic impulses to mitigate his or her contribution to the 
air quality problem by reducing vehicle usage versus the perceived need to reduce the immediate health 
risks associated with the problem by increasing vehicle usage. As pointed out by an anonymous reviewer, 
the degree of this tension likely depends upon a pollutant’s concentration level, i.e., the extent to which the 
local environment is polluted.
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report increases during peak commuting periods and decreases during non-peak hours.5 
Using a quasi-experimental design, Cutter and Neidell (2009) find decreases in daily traffic 
counts, but no increase in public transportation ridership during alert days in the San Fran-
cisco Bay Area of California. Using a data-driven traffic forecasting model, Cummings and 
Walker (2000) find no significant traffic reductions in 13 non-attainment counties in the 
Atlanta, Georgia metropolitan area during ozone alert days.6 Nevertheless, meta-analyses 
conducted by Fujii et al. (2009) and Moser and Bamberg (2008) suggest statistically sig-
nificant reductions in vehicle usage in response to soft policies.7

More recently, Rivera (2021) has evaluated the effectiveness of a system of tempo-
rary driving bans triggered by air quality warnings in Santiago, Chile. Employing a fuzzy 
regression discontinuity design anchored to thresholds in the city’s air quality index, 
Rivera (2021) finds that the bans—triggered by a three-tiered system of alerts that fur-
ther tightens permanent driving restrictions on dirty vehicles, imposes new restrictions on 
clean vehicles, and is staggered according to the last digits of vehicles’ license plate num-
bers—reduces overall vehicle trips by 6–9% during peak hours, and 7–8% during off-peak 
hours. These reductions are consistent with increases in the use of Santiago’s mass-transit 
systems.8

As Noonan (2011) points out, by their very nature air quality advisories send conflict-
ing messages. One message persuades individuals to voluntarily reduce their vehicle usage 
in order to mitigate collective health and environmental damages associated with poor air 
quality (i.e., the message appeals to one’s altruistic tendencies), while another message 
prompts individuals to limit their exposure to outdoor air (i.e., the message appeals to one’s 
innate desire to reduce personal risk exposure). The first message therefore encourages less 
vehicle use, e.g., by switching from driving automobiles to walking, riding a bicycle, or 
taking mass transit, while the second encourages greater vehicle usage as a means to limit 
exposure (taking public transportation typically requires additional time outdoors walk-
ing to and from a transit station and waiting for a bus or train to arrive). To the extent 
that enough individuals heed the second message more than the first, we should therefore 
expect an air quality advisory to increase vehicle use region-wide—a perverse outcome we 
explore theoretically in Sect. 4.

In this paper, we analyze daily administrative data on region-wide traffic volumes and 
PM2.5 concentrations spanning northern Utah’s winter-inversion seasons from 2002–2012, 
a decade during which the region was in non-attainment the NAAQS for PM2.5 concentra-
tions. Based upon different empirical specifications that control for autocorrelation in the 
models’ error structures, we find mixed evidence regarding the relationship between yel-
low air day advisories and region-wide vehicle trips. Controlling for particular days of the 
week and holidays, as well as a host of weather conditions, we find that one-day lagged 

5  Cutter and Neidell (2009) point out that Welch et  al.’s. (2005) standard errors were not adjusted to 
account for observing multiple stations per hour per day, and are therefore likely under-estimated.
6  Cummings and Walker’s (2000) finding was later echoed by Henry and Gordon’s (2003) analysis of tel-
ephone survey responses from Atlanta residents.
7  Moser and Bamberg (2008) estimate an 11% reduction across 141 studies spanning workplace travel 
plans, school travel plans, and travel awareness campaigns.
8  As Rivera (2021) points out, by the time of her study the implementation of mandatory driving restric-
tions based upon license plate numbers had become a common regulatory strategy used worldwide to 
improve local air quality conditions and reduce traffic congestion. See Barahona et al. (2020) and Bonilla 
(2019) for recent studies on mandatory driving bans, and Caplan and Kim (2018), and references therein, 
for earlier studies.
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advisories have a small negative impact on vehicle trips during weekdays and Saturdays. 
This general result contrasts with Tribby et  al.’s (2013) finding of a perverse (i.e., posi-
tive) effect of advisories on vehicle trips in Utah’s Wasatch Front region during the same 
time horizon, but comports with Cutter and Neidell’s (2009) findings. We find no evidence 
that the yellow air day advisories are endogenously determined by weather conditions and 
lagged vehicle trips, and similarly no evidence of inter-seasonal alert fatigue (i.e., we do 
not find a trend in the average degree of alert fatigue across years). However, we do find 
mixed evidence regarding intra-seasonal alert fatigue (i.e., the occurrence of alert fatigue 
within a given season).

The next section elaborates on the three previous studies most relevant to ours—(Cut-
ter and Neidell 2009; Saberian et al. 2017) Tribby et al. (2013)—with the goal of placing 
our study’s contribution in the context of the existing literature. Section 3 describes our 
study area, northern Utah. Section 4 discusses the theoretical underpinnings of our main 
hypothesis, in particular how and under what circumstances we should expect yellow air 
day advisories to instigate region-wide reductions in vehicle trips. This discussion is prem-
ised upon a conceptual model developed in the technical appendix. Section 5 describes and 
summarizes our data. Section 6 presents the results of our empirical analysis, and Sect. 7 
concludes.

2 � Literature Review

Cutter and Neidell (2009) provide an early analysis of the efficacy of air quality advisory 
programs, in particular San Francisco Bay metropolitan area’s Spare the Air (STA) pro-
gram implemented in the early 2000  s. Under the STA program, advisories were issued 
on days when ground-level ozone was predicted to exceed the NAAQS. The authors apply 
a regression discontinuity (RD) design to traffic and weather data from 2001 to –2004 
to identify the effect of the STA program on region-wide transportation choices across 
days and times of day. They estimate that the program reduced total daily traffic volume 
by 2.5–3.5%, with the largest effect occurring during and just after morning commuting 
hours.9 The STA program had no statistical effect on total daily public transit use, but bor-
derline statistically significant effects during peak commute times. Further, the authors find 
statistically significant decreases in traffic during and immediately after morning commute 
hours, statistically insignificant traffic responses throughout the middle of the day and into 
the evening rush hour, but then statistically significant decreases after 8 pm. Cutter and 
Neidell’s (2009) interpret this latter result as evidence that discretionary trips, as opposed 

9  This result is perhaps the most widely cited finding in the literature. More recently, Zoe (2021) finds 
that “pollution gaps”, which exist in areas of the US where pollution concentrations are measured intermit-
tently by regulatory authorities (in specific, once every six days of the week), are excerbated when adviso-
ries accompany relatively high concentrations on days during which the concentrations are measured, i.e., 
on “on-days”. Pollution gaps occur when, all else equal, concentrations are lower on on-days than “off-
days”, i.e., days when concentrations are not measured by regulatory authorities (but are measured by the 
researcher using satellite data). Zou’s empirical model detects 1.6% less particulate pollution during on-
days than off-days. Further, there is a 10% higher likelihood that an advisory is issued on on-days, and 
the advisories are associated with pollution gaps of 5–7% (as compared with the average 1.6% gap). This 
evidence leads Zou (2021) to conclude that gaming among regulatory authorities most likely reflects short-
term cutbacks of polluting activities during critical times, e.g., when a county’s noncompliance risk is high. 
Advisories are used strategically by the authorities, thus widening the pollution gap.
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to commuter trips, responded to the STA program’s advisories. All results are robust to 
alternative specifications of the RD design and the inclusion of traffic monitor and public 
transit station fixed effects.

As described in Sect. 5, our data for the current study is aggregated to a daily—rather 
than disaggregated to an hourly—time-step. As such, we do not assess advisory effects on 
an hourly basis. We take results such as Cutter and Neidell’s (2009)—in particular, that 
discretionary vehicle trips tend to be more responsive to advisories than commuting trips, 
as one would naturally expect—as underpinning an average daily effect, which is the effect 
we seek to measure in our study. For one thing, focusing on the average effect reflects the 
full extent of northern Utah’s reliance on yellow air day advisories as the sole means of 
regulating vehicle usage during its winter inversion seasons in the early 2000 s. The advi-
sory’s message was universal in this regard: regardless of whether you use your vehicle 
for commuting or discretionary purposes, drive it less often during yellow air days. Thus, 
measuring the advisory program’s average effect is consistent with, and the most relevant 
test of, the regulation’s main objective. Further, the nature of our data permits relatively 
robust estimation of an average effect. We utilize daily data for winter-inversion seasons 
spanning ten years, a period of time during which northern Utah residents experienced 
frequent yet intermittent issuance of advisories in response to significant variation in PM2.5 
concentrations.

With respect to the Bay area’s public transport system (Bay Area Rapid Transit, or 
BART), Cutter and Neidell’s (2009) find instances of decreases in BART use daily from 
2 to 4 pm, with the 3 pm estimate statistically significant in certain specifications. They 
postulate that since the STA program provided information about expected air quality at 
a level where health concerns may arise, people may have responded to alerts by reducing 
their BART trips in order to lower their exposure to pollution. Ozone levels peak around 
3 p.m., so the decrease in BART ridership during these hours coupled with no change in 
traffic volumes is demonstrative of avoidance behavior practiced by individuals having 
canceled public transit trips. Data limitations preclude us from measuring public transit 
responses to the yellow air day advisories in northern Utah. Although its bus service is 
free to the public, northern Utah’s transit system is for the most part limited to the region’s 
major city, Logan. The system’s (Cache Valley Transit Authority’s) limited service area 
and hours of operation and relatively slow travel speeds stands in stark contrast to the Bay 
area’s interurban rapid-transit system, which is currently ranked as the fifth busiest rapid 
transit system in the US (World Atlas 2021).

In addition to providing a benchmark for comparison with this study’s empirical results, 
Cutter and Neidell’s (2009) research design also offers useful methodological comparisons. 
As they point out, potential confounding factors are obviated under the RD design when 
unobservable factors either do not vary or evolve smoothly around the STA program’s trig-
ger rule in the same manner as observed covariates (in their case within bands of 0.01 
and 0.02 ppm of the STA program’s trigger concentration level).10 Hence, the RD design 
is suitable for causal inference. In our study, we instead test for potential endogeneity in 
the context of an instrumental variable (IV) model—which is a commonly used mitigation 
approach for data based upon voluntary behavior. Robust Durbin and Wu-Hausman tests 
suggest that endogeneity is not afflicting our original OLS estimates (Hausman 1978; Dur-
bin 1954; Wu 1973).

10  Cutter and Neidell’s (2009) evidence supports the former condition, i.e., that unobservable factors do not 
vary around the trigger concentration level. See Lee and Lemieux (2010) for a survey of the RD method.
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Although Saberian et al. (2017) estimate the effect of day-before, city-wide air quality 
advisories on bicycling rather than vehicle usage, several aspects of their econometric strat-
egy are applicable to our study. The authors find a relatively large, statistically significant 
reduction in cycling in response to advisories among riders in Sydney, Australia during a 
five-year period, 2008–2013. The reduction ranges between 14 and 35%, which is larger in 
magnitude on weekends than on weekdays (suggesting a larger impact on leisure cyclists as 
opposed to commuter cyclists), and diminishes to between zero and 2% as a consequence 
of intra-seasonal alert fatigue.11

Saberian et  al. (2017) estimate both OLS and IV models (their instrument for the IV 
model, the occurrence and proximity of bushfires, is shown to be a “strong” instrument, in 
that it negatively impacts Sydney’s air quality index (AQI) but has no direct influence on 
cycling behavior other than through its effect on the AQI, i.e., bushfire activity is orthog-
onal to other unobservable factors affecting cycling behavior.12 To account for potential 
intra-seasonal alert fatigue, they follow Zivin and Neidell’s (2009) approach of introducing 
an interaction term consisting of contemporaneous and one-day lag dummy variables that 
respectively equal one if an advisory was issued on that day, zero otherwise. As discussed 
further in Sect. 6, we also adopt this approach and find no evidence of alert fatigue within a 
given season in our models.

Similar to our study, Tribby et al. (2013) integrate a decade (2001–2011) of daily traf-
fic counter data for Salt Lake and Davis counties (located in the Wasatch Front region 
of Utah), with data on air quality advisory status and meteorological data to control for 
weather effects. The authors test for advisory effects on vehicle usage during both the 
winter months, when PM2.5 concentrations tend to be elevated, and the summer months, 
when ground level ozone levels are elevated.13 We henceforth discuss Tribby et al.’s results 
for wintertime PM2.5 concentrations, since these are most relevant to our study’s focus on 
northern Utah’s winter-inversion season.

Tribbey et al. (2013) find evidence suggesting that yellow air day advisories have per-
verse effects on vehicle usage—yellow air days are associated with higher traffic volume 
relative to green air days. Specifically, traffic volume is 12% and 10% higher on yellow 
air days occurring on Fridays and Saturdays, respectively, and almost 6% higher during 
Mondays-Thursdays. These results are robust to variation in weather and number of days 
since the last green air day. The number of days since the last green air day—Tribbey 
et  al. (2013) control variable for intra-seasonal alert fatigue—is found to be statistically 
insignificant.

Because of the relatively large number of automatic traffic recorders (ATRs) and their 
dispersed locations throughout Salt Lake and Davis Counties, the authors conduct a dis-
aggregated analysis of their data by ATR location. They find that increases in vehicle 
usage on yellow air days is evident throughout the region’s main metropolitan area, and is 

11  In a series of robustness checks, Saberian et al. (2017) find a roughly 40% reduction in the response of 
leisure cyclists due to alert fatigue, compared with only a 20% response reduction in commuter cycling. The 
authors caution that because the number of consecutive-day alerts in their data is minimal—occurring only 
seven times during the five-year study period—the precision of their alert-fatigue estimate is concomitantly 
diminished. As described in Sect. 6, the number of consecutive-day alerts in our data is markedly higher 
than Saberian et al.’s.
12  In other words, bushfire activity satisfies the exclusion restriction (c.f., Angrist et al. 1996).
13  Similar to Cache Valley (northern Utah’s main county), Salt Lake and Davis counties were in non-com-
pliance with the NAAQS for PM

2.5
 concentrations, as well as for ozone concentrations, during their study 

period.
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concentrated along the major commuting thoroughfares. Decreased traffic volume is evi-
dent in the center of the metropolitan area. Further, Tribbey et  al. (2013) find substan-
tial increases in vehicle trips near canyons providing access to the neighboring mountains, 
which the authors interpret as an increase in discretionary trips to the mountains (where the 
air is typically cleaner) on yellow air days.

The empirical results presented in Cutter and Neidell’s (2009) and Tribbey et al. (2013) 
delineate the extent to which vehicle usage responds to an air quality advisory in any given 
area. Cutter and Neidell’s (2009) find evidence supporting the efficacy of advisories, in 
particular that vehicle usage declined contemporaneously (albeit marginally) when air 
quality advisories were issued in the San Francisco Bay area during the early 2000 s. To 
the contrary, Tribbey et  al. (2013) find that vehicle usage responded positively to advi-
sories issued in the Wasatch Front region of Utah during the same time period, with no 
evidence of alert fatigue.14 We develop a theoretical framework in Sect. 5 that provides a 
basis for these disparate results, and in Sect. 6 we present empirical results for air quality 
advisories issued in northern Utah during the early 2000 s, a region at the time experienc-
ing sometimes dramatic surges in wintertime PM2.5 concentrations. These results add to the 
mixture of evidence uncovered by previous studies.

3 � Study Area

As Moscardini and Caplan (2017) point out, elevated PM2.5 concentrations were a per-
sistent, episodic pollution problem in northern Utah’s main county, Cache Valley, during 
the early 2000 s. Figure B1 shows the valley’s location in the northern region of the state 
(Cache Valley is shaded orange in the upper portion of the figure).15 Almost exclusively 
during the winter months of December through February each year, temperature inversions 
trap PM2.5 mostly in the form of dust and smoke particles for days or weeks at a time. 
These particles in turn pose an elevated risk to human health, as their small size enables 
them to lodge deep in human lung tissue. Figure  B2 depicts the seasonality of the val-
ley’s winter-inversion problem during our study period, with the mass of the distribution of 
monthly average PM2.5 concentrations occurring during the winter months.

As discussed in Acharya and Caplan (2020), short-term exposure to elevated PM2.5 
concentrations is linked to increased hospital admissions and emergency department visits 
for respiratory effects, such as asthma attacks, as well as increased respiratory symptoms, 

14  Although Rivera’s (2021) findings align with Cutter and Neidell’s (2009), recall that Santiago’s advisory 
system is linked with varying stages of mandatory vehicle restrictions. When deteriorating air quality is less 
severe (and thus an initial alert is issued), temporary driving restrictions prohibit the driving of light-duty 
cars between 7:30 am and 9 pm. These temporary restrictions (applied discriminantly based upon license 
plate numbers) affect both clean and dirty vehicles (which are distinguished via green stickers affixed to the 
bumpers of the former type of vehicle) on any day of the week. As air quality deteriorates further, to a “pre-
emergency” state, more dirty cars are banned permanently (until air quality improves) and more restrictions 
are placed upon the use of cleans cars. Under more adverse conditions, classified as “emergencies”, bans 
and restictions on both types of vehicles increase further. Santiago’s alert program does not rely upon vol-
untary self-restrictions, unlike the San Francisco Bay and Wasatch Front programs, as well as the program 
reported on here for northern Utah.
15  Logan is the region’s largest city, with a population in 2009 (the middle of our study period) of 46,000 
people residing in 16,000 households (Census Bureau, 2010). Cache Valley’s population is growing rap-
idly—it is expected to roughly double in size from 135,000 currently to 230,000 by 2050 (Perlich et  al. 
2017).
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such as coughing, wheezing and shortness of breath. Short-term exposure is also linked 
to reduced lung function in children and in people with asthma. Long-term exposure to 
elevated PM2.5 concentrations can cause premature death due to heart and cardiovascu-
lar disease associated with heart attacks and strokes. Some studies suggest that long-term 
exposure can cause cancer as well as harmful developmental and reproductive defects, such 

Fig. 1   Location of Cache Valley, Utah Source https://​onlin​elibr​ary.​utah.​gov/​utah/​count​ies/ and https://​www.​
freew​orldm​aps.​net/​united-​states/​utah/​locat​ion.​html
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as infant mortality and low birth weight (Utah 2016; Dockery et al. 1993; Pope 1989; Pope 
et al. 1995).16

Moscardini and Caplan (2017) also point out that residents of Cache Valley are vic-
tims of both their climatology and topography. Under certain meteorological conditions, 
cold air is trapped between the mountains close to the surface and is held in place by a 
layer of warm air above—the process creating an inversion. As elevation rises, temperature 
gradually decreases. Given conducive barometric-pressure, precipitation, and wind-speed 
conditions, descending warm air creates an inversion layer. Within this layer, temperature 
increases with increasing elevation, constituting the reverse of normal air patterns. The 
inversion layer traps PM2.5 concentrations between geologic barriers which, in the case of 
Cache Valley, are the Wellsville and Bear River Mountain Ranges.

Figure  B3 depicts the annual distributions of PM2.5 concentrations in the valley dur-
ing the first half our study period, 2003–2007 (the second half of the period, 2008–2012, 
depicts similar annual distributions). Note the variability in spikes above the Environ-
mental Protection Agency’s (EPA’s) national ambient air quality (primary and secondary) 
standard (NAAQS) of 35 μg∕m3 averaged over any 24-hour period (horizontal red line) 
from year to year. Once above the 35 μg∕m3 threshold, the concentrations trigger a red air 
day episode. Concentration levels rising above the 15 μg∕m3 threshold trigger a yellow air 
day advisory.

The extent to which yellow air day advisories may have induced a change in individu-
als’ behaviors is difficult to ascertain in Fig. B3. On the one hand, each season experienced 
a certain number of red air days, with the 2004–2005 season being particularly severe. It 
thus seems clear that yellow air day advisories were unsuccessful in eliminating any given 
season’s red air day episodes. On the other hand, who can say whether the severity of the 
red air day episodes would not have been worse in any given season had the advisories 
not been issued? The extent to which the advisories affected region-wide vehicle usage on 
yellow air days, which in turn determined PM2.5 concentrations, is explored at length in 
Sect. 6.

Fig. 2   Average monthly PM
2.5

 concentrations in Cache Valley, Utah Source Moscardini and Caplan (2017)

16  Moscardini and Caplan (2017), Caplan and Acharya (2019), Acharya and Caplan (2020), and references 
therein elaborate on the precursors, causes, and patterns of elevated PM

2.5
 concentrations in Cache valley 

during the winter inversion seasons of our study period.
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As pointed out by Caplan and Acharya (2019), a new PM2.5 standard for Cache Valley 
was set in Utah’s State Implementation Plan (SIP) at 40.7 μg∕m3 subsequent to our study 
period, calculated as an average of three running three-year averages of 98th percentile 
concentration levels surrounding the baseline year 2010 (known as the “baseline design 
value”). This new standard effectively raised the 24-hour standard by over five μg∕m3 rela-
tive to the long-standing threshold of 35 μg∕m3 . The UDEQ also revised its color-coded 
warning system. Currently, yellow air day advisories are triggered when PM2.5 concentra-
tions rise to “moderate” levels between 12.1 and 35.4 μg∕m3 . Unhealthy conditions prevail 
for sensitive groups between 35.5 and 55.4 μg∕m3 , unhealthy conditions for everyone occur 
between 55.5 and 150.4 μg∕m3 , very unhealthy between 150.5 and 250.4 μg∕m3 , and haz-
ardous at 250.5 μg∕m3 and above (see https://​air.​utah.​gov/).

Table 1 provides the relative frequencies of yellow air day advisories occurring during 
our study period in each year’s winter-inversion season, as well as the number of sepa-
rate “yellow air day episodes”, the average lengths of the episodes (with attendant standard 
deviations), and the percentage of yellow air day advisories that preceded a red air day 
episode. By yellow air day episode we mean any span of days in which (24-hour averaged) 
PM2.5 concentrations remained in the range of 15–34.99 μg∕m3 for consecutive days; days 
during which consecutive-day yellow air day advisories were issued. For example, if an 

Fig. 3   Annual distributions of PM
2.5

 concentrations in Cache Valley, Utah, 2003–2007  Source Moscardini 
and Caplan (2017)
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advisory was issued on a single day (followed by a green air day), then the span of that epi-
sode is a single day. If an advisory was issued on two consecutive days (and then followed 
by a green air day), the span of the episode is two days, and so on. A yellow air day episode 
that preceeds a red air day episode is one whose final day is consecutive with the first day 
of an ensuing red air day episode, i.e., when the 24-hour average concentration level rises 
above the 35 μg∕m3 threshold. For example, if yellow air day advisories are issued consec-
utively on Monday and Tuesday of a given week and then a red air day episode begins on 
Wednesday, the two-day yellow air day advisory preceeded a red air day episode. If instead 
that Wednesday is not a red air day, then the two-day yellow air day advisory did not pre-
ceed a red air day episode.17

From Table 1 we see several instances of variation in yellow air day advisories across 
the yearly inversion seasons. For example, the percentage of days in which an advisory 
was issued reached as high as 40% during the 2009–2010 season and as low as 20% in 
the 2003–2004 and 2010–2011 seasons. The number of yellow air day episodes reached 
as high as 13 during the 2004–2005 season and as low as 5 in the 2011–2012 season. 
The average episode length was 4.4 days long in 2011–2012 and only 1.8 days long in 
2003–2004. Lastly, the variability in the percentage of yellow air day episodes preceding 
red air day episodes (as high as 89% in the 2009–2010 season and as low as 0% in the 
2011–2012 season) is similarly pronounced. Across seasons, there does not appear to be a 
noticeable decline in the precedence of yellow air day advisories prior to red air day epi-
sodes, suggesting a lack of unconditional evidence in support of the hypothesis that vehicle 
usage in northern Utah evolved to be more responsive to the advisories over the course of 
our study period.

Table 1   Yellow air day advisories

Inversion season % Advisories
(# of days)

# Episodes Avg. episode lgth. (SD)
(# of days)

% Preceed 
red air 
episode
(# days)

2002–2003 38 9 3.8 (3.9) 33
2003–2004 20 10 1.8 (1.1) 60
2004–2005 30 13 2.1 (1.1) 62
2005–2006 30 10 2.7 (1.9) 40
2006–2007 34 10 3.1 (2.2) 40
2007–2008 27 11 2.2 (1.8) 18
2008–2009 24 9 2.4 (1.9) 33
2009–2010 40 9 4.0 (2.7) 89
2010–2011 20 7 2.6 (1.4) 29
2011–2012 24 5 4.4 (4.9) 0

17  There is only one instance in the dataset where a red air day episode occurred without having been pre-
ceeded by a yellow air day advisory.
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As Moscardini and Caplan (2017) point out, during a typical inversion period anywhere 
from 60% to 85% of all PM2.5 is created by secondary particulate formation. Secondary 
particulate formation occurs when precursor emissions of nitrogen oxides (NOx), sulfur 
oxides (SOx), and especially volatile organic compounds (VOCs) react and combine in the 
atmosphere to create concentrations of PM2.5 . VOCs are highly reactive. As they break 
apart, they combine with other gaseous chemicals to form nitrates. These nitrates then react 
with ammonia to form ammonium nitrate, the leading contributor to PM2.5 concentrations 
in Cache Valley. This led the UDEQ to conclude that reducing VOC emissions offered the 
best near-term approach to reducing the valley’s PM2.5 concentrations during winter inver-
sions. Approximately 50% of anthropogenic VOC emissions in Cache Valley were attribut-
able to industrial and commercial processes, 45% to motor vehicles, and 5% to consumer 
solvents (National 2014). Therefore, a policy aimed at reducing vehicle use represented 
a potentially effective way of advancing the UDEQ’s goal of reducing the valley’s VOC 
emissions.18

In an effort to reduce mobile-source emissions, Cache Valley’s policymakers adopted 
a mandatory vehicle emissions testing program (VETP) during the period under study—
the efficacy of which has since been hotly debated, primarily due to exemptions for die-
sel trucks, and subsequently later-model vehicles (Anderson 2013). In concert with yel-
low air day advisories issued by the UDEQ, the VETP was the sole mandatory initiative 
enacted by the state of Utah during our study period to control the valley’s winter inversion 
problem.

As mentioned in Sect.  2, northern Utah’s mass transit system is for the most part 
limited to the region’s major city, Logan. The transit authority operates 16 fixed routes 
consisting of ten local routes, five regional connector routes, and one commuter route. 
Ridership increased by 334% between the system’s inception in 1995 and 2012, but has 
declined each year since peaking in 2012. Passenger trips totaled roughly 1.9 million in 
2015, representing a decline of nearly 12% between 2012 and 2015 (LSC Transporta-
tion Consultants 2017). Relative to transit systems in larger US cities, northern Utah’s 
service area and hours of operation are limited. Future expansion of the system is ham-
strung by a relatively low transit-dependent percentage of the region’s population and 
constrained funding sources. According to LSC Transportation Consultants (2017), 
roughly 4% of the region’s population is without private vehicle access, 17% and 8% 
are young (ages 10–19) and old (ages 65 and older), respectively, 3% are ambulatory 
disabled, and 15% are low-income. Hence, transit-dependence is not currently a driving 
force behind demand for expansion of the transit system. Further, the system is expected 
to remain tax-supported and zero-fare for the foreseeable future. Sales tax and federal 
and state grants account for roughly 96% of the system’s revenue (the remainder com-
ing from advertising services and interest income from investments and fund balance) 
(LSC Transportation Consultants 2017). The bottom line is that the region’s mass transit 
system is not likely to be an alternative mode through which the region’s mobile-source 
emissions can be controlled in the near future.19

18  The positive link between vehicle usage and PM
2.5

 concentrations is certainly not unique to Cache Val-
ley, Utah. For example, see Chen et al. (2020).
19  In terms of commuting to work, slightly over 75% of northern Utah workers are estimated to drive alone 
to work, with another 11% carpooling and slightly less than 2% using public transport. The average one-
way commute time is approximately 17 min. Approximately 64% of northern Utah commuters commute 
within the region (LSC Transportation Consultants 2017).
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4 � A Theory

Human mobility often creates a tension between individual decision-making and col-
lective outcomes. The private automobile bestows clear benefits to individuals in terms 
of enabling access to utility-generating consumption, but generates harms to collective 
well-being, as in the case of noxious tailpipe emissions contributing to poor local air 
quality. The extent to which yellow air day advisories impact region-wide vehicle usage 
ultimately traces to individual- (or household-) level decision-making. If a large-enough 
number of individuals heed the advisory and reduce their vehicle trips on yellow air days 
by, for example, switching to alternative modes of transportation such as buses or walk-
ing, or more efficiently using their vehicles via “trip chaining”, carpooling, or telecom-
muting, then we would expect an advisory to correlate statistically with a region-wide 
reduction in vehicle trips. To the contrary, if too small a number of individuals respond 
to the advisory in these ways, then we would expect to find no correlation. It is also pos-
sible that a large-enough number of individuals will respond perversely to the advisory 
by increasing their vehicle usage on yellow air days e.g., to provide what they perceive 
as greater protection from poor air quality than walking or using mass transit, or simply 
to reduce their need for travel during an ensuing red air day episode Tribby et al. (2013).

To better understand these potential influences, we develop a simple conceptual frame-
work in Technical Appendix A that models three stylized types of individuals comprising 
a region and that (no pun intended) drive the region’s overall response to a given yellow air 
day advisory. Since individuals are in reality precluded from predicting the emergence of 
yellow air days and the days’ patterns of occurrence throughout a given winter inversion 
season, the model presumes individuals are myopic in their decision making, in particular 
that they are unable to identify an optimal path of future vehicle usage at the outset of the 
inversion season. As a result, individuals are assumed to make vehicle-use decisions con-
temporaneously without the aid of foreknowledge.20

As the appendix shows, one type of individual (Case 1) completely ignores the dam-
ages associated with region-wide vehicle trips in each period, despite the fact that a yel-
low air day advisory causes the individual’s perceived marginal damage associated with 
increases in region-wide vehicle trips to increase. A Case 1 individual is therefore prone 
to alter his vehicle usage in a manner consistent with avoidance, i.e., consistent with 
basing his vehicle-use choices solely upon the goal of reducing personal risk exposure. 
With only minimal assumptions placed on the structure of this individual’s preferences, 
we show that a Case 1 individual responds to the issuance of an advisory by increasing 
his vehicle trips (refer to Eqs. (A.5)–(A.8) in the appendix). A second type of individual 
(Case 2) accounts solely for the expected damages she personally incurs in any given 
period, i.e., a Case 2 individual partially internalizes the contribution her vehicle trips 
makes to region-wide environmental damages, but only as those damages affect her own 
welfare. As shown in the appendix, this type of individual responds to yellow air day 
advisories to a lesser (positive) extent than a Case 1 individual as a result of at least 
partially mitigating her contribution to damages, and may in fact respond by decreasing 
her vehicle trips in equilibrium when the change in her perceived marginal damage (from 

20  Because individuals are assumed mypoic, our model is precluded from explicitly accounting for behav-
ioral determinants of intra-seasonal alert fatigue among individuals. Nevertheless, if we assume that alert 
fatigue impacts equally each of the three types of individuals described below, then relatively speaking, the 
differences in individuals’ behaviors identified by the model would be unaltered in the presence of fatigue.
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vehicle trips) associated with the issuance of a yellow air day advisory exceeds the cor-
responding change in her marginal benefit (refer to Eqs. (A.10)–(A.14) in the appendix). 
In effect, a Case 2 individual exhibits a limited, selfish concern for the environmental 
consequences of her vehicle usage.

The third type of individual (Case 3) is altruistic, accounting not only for the 
expected damages that his vehicle trips imposes on himself and all other individuals in 
the region, but also the expected benefits that all other individuals in the region obtain 
as a result of increasing their vehicle trips in response to a yellow air day advisory (e.g., 
by limiting their exposure to outdoor air). In our particular context, this full accounting 
of expected benefits and costs represents what is commonly known as “pure altruism”, 
a concept developed in the broader theoretical frameworks of Simon (1993), Bergstrom 
(1999), Antweiler (2015), and Ottoni-Wilhelm et al. (2017).21 As the appendix demon-
strates, a sufficient condition for a Case 3 individual’s vehicle trip level to respond less 
positively to a yellow air day advisory than a Case 2 individual’s is that the change in 
the former’s perception of the added aggregate damages suffered by all other individuals 
in the region in response to the advisory exceeds his perception of the added aggregate 
benefits obtained by all other individuals. The corresponding sufficient condition com-
paring a Case 3 individual’s vehicle-trip response with a Case 1 individual’s is shown to 
be more likely to hold in general (refer to Eqs. (A.16)–(A.20) in the appendix). There-
fore, similar to previous theoretical and experimental findings concerning altruism and 
voluntary contributions to a public good (which in our case is represented by reduced 
vehicle usage), contributions from a Case 3 individual are expected to increase only 
under certain conditions (c.f., Smith et al. 1995; Ley 1997; Hahn and Ritz 2014; Croson 
2007).

Surely, a given region consists not only of these three stylized types of individuals, but 
also any convex combination of the three. The point is, to the extent that more Case 1 
individuals comprise a region than Case 2 and Case 3 individuals, we should expect to see 
less of a reduction in vehicle usage in response to any given yellow air day advisory. Or, 
alternatively stated, the more likely we will see an increase in vehicle usage in response to 
the advisory.22 Because the data we describe in Sect. 5 and analyze in Sect. 6 is region-, as 
opposed to household- or individual-level, we are precluded from directly testing whether 
Case 2 and Case 3 individuals in northern Utah have met their respective sufficiency 

21  The experimental literature is chockfull of studies where participants behave altruistically under certain 
conditions. For examples, see Fehr and Schmidt (1999), Bolton and Ockenfels (2000), Andreoni and Miller 
(2002), Andreoni and Rao (2011).
22  An alternative theory could instead base individuals’ vehicle-use decisions upon their subjective risk 
preferences concerning their own personal health. These differences could be modeled in a context of what 
the current model identifies as either a Case 1 or Case 2 individual, i.e., an individual who either com-
pletely ignores his own contribution to the region’s PM2.5 concentrations via his vehicle usage, or who 
ignores his contribution to everyone else’s damages. In other words, the risk-preference model would con-
sist of non-altruistic individuals who are distinguished instead by their subjective risk preferences. In this 
framework, individuals who perceive relatively high risk to their personal health associated with the issu-
ance of an advisory would be more likely to increase their vehicle usage in response to the advisory. In 
contrast, those who perceive relatively low risk associated with the issuance of an advisory would be more 
likely to decrease their vehicle usage. Hence, although there is a different interpretation of what motivates 
individual responses to an advisory – altruistic tendencies versus subjective risk preferences—there is a 
consistency in terms of what characterizes the response at a regional level. In the case of subjective risk 
preferences, the region-wide response depends upon the proportion of low-versus high-risk individuals in 
the population.
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conditions for responding less positively (and perhaps negatively) to yellow air day adviso-
ries. Rather, we test whether on average northern Utah residents’ vehicle usage responded 
positively or negatively (or not at all) to yellow air day advisories issued during the first 
decade of 2000.23

5 � Data and Summary Statistics

The data for our empirical analysis in Sect. 6 are compiled from several different sources. 
Each variable in our dataset consists of a daily time step for the years 2002–2012. Since 
the problem addressed in this study occurs seasonally (from December to February) we 
restrict the dataset to these three months each year. PM2.5 concentrations were recorded 
hourly for Cache County by the Utah Division of Air Quality (UDAQ) at EPA station code 
490050004 located in downtown Logan (Utah 2016a, b, c).24 The average concentration 
level recorded over a given day’s 24-hour period was selected as that day’s concentration 
level. Average daily readings of a host of weather variables—consisting of temperature gra-
dient, wind speed, humidity, atmospheric pressure, snow depth, and snowfall level—were 
obtained from the Weather Underground (2016) and Utah Climate Center (2016).25 Lastly, 
daily vehicle trip count data were obtained from the Utah Department of Transportation 
(UDOT 2014). The Automatic Traffic Recorder (ATR) stations for the trip count data in 
Cache Valley are #303, #363, #510, and #511, which cover the county’s main north–south 
transportation artery. Figure  B4 depicts the specific ATR locations. Stations other than 
#303, #363, #510, and #511 provided insufficient data for our study period, including sta-
tion #620 (demarcated in the color red), which was added during the second half of our 
study period.

Specific names of, and summary statistics for, the variables used in our study are pre-
sented in Table 2. We see that on average over 30,000 vehicle trips ( VehicleTripst ) were 
recorded each day in Cache Valley. On the one hand, this is likely an underestimate of 
actual trips taken due to the finite number and specific locations of the ATR stations in the 
valley. On the other, at least some trips are double-counted whenever a vehicle passes more 
than one station during a given trip. We have no reason to believe that instances of over- 
and under-counting are correlated with any specific day of the week or hour of the day. 
Hence, the imprecision of our vehicle trip measure does not systematically bias the results 
presented in Sect. 6 in any apparent way.

As indicated in Table 2, daily PM2.5 concentration levels averaged slightly more than 
19 μg∕m3 during our study period. This level rises to over 39 μg∕m3 per day in the pres-
ence of a temperature inversion, illustrating the positive relationship between northern 

23  We again acknowledge that the effect of the advisory on vehicle usage in northern Utah is also averaged 
over commuting and discretionary trips. As Cutter and Neidell’s (2009) point out, commuters generally 
have little flexibility when it comes to missing a work day, especially if telecommuting alternatives are lim-
ited. Hence, commuting trips have a significantly higher cost of cancellation and thus are much less likely 
to be delayed or substituted away from than are discretionary trips.
24  Station 490050004 was subsequently moved five miles north of downtown Logan to the town of Smith-
field shortly after the conclusion of our study period.
25  Average daily readings for atmospheric pressure were also obtained, however this variable was consist-
ently statistically insignificant in the regressions presented in Sect. 5.
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Utah’s wintertime temperature inversions and elevated PM2.5 concentrations.26 Yellow air 
day advisories ( YellowAdvisoryt ) were issued on roughly a third of the total number of 
days included in our study period, which suggests that if the advisories did in fact impact 
vehicle use in Cache Valley, vehicle owners may have been susceptible to intra-seasonal 
alert fatigue (as described in Sects. 2 and 3) given the advisories’ relatively high frequency 
of issuance. To test for the possiblity of foresight on the part of the region’s vehicle own-
ers in predicting the issuance of an advisory, we redefined YellowAdvisoryt to include 
the green air day preceding each yellow air day episode (a green air day occurs when 
its PM2.5 concentration averages less than 15 μg∕m3 over the 24-hour period). This vari-
able is labeled YellowAdvisoryPlus1t . For example, if during any given week of our study 

Fig. 4   Locations of automatic traffic recorder (ATR) stations in Cache Valley, Utah Source Moscardini and 
Caplan (2017)

26  The negative value for TempDifft indicates that the average day during our study period did not experi-
ence a temperature inversion.
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period a yellow air day episode began on a Wednesday with, say, a PM2.5 concentration of 
27.5 μg∕m3 , and the concentration on the preceding Tuesday was less than 15 μg∕m3 , then 
that Tuesday’s YellowAdvisoryt value would also be set equal to one (from what had been 
zero) in the formulation of YellowAdvisoryPlus1t . As expected, YellowAdvisoryPlus1t ’s 
mean value exceeds YellowAdvisoryt’s, in this case by a factor of over 1.75. Similarly, 
FatiguePlus1’s mean value exceeds Fatigue’s by a factor of over 2.7.

Lastly, in addition to the varied controls for weather conditions, e.g., Humidityt , Windt , 
Humwindt , SnowFallt , and SnowDeptht , we depart from Tribbey et al. (2013) by explicitly 
controlling for the potential effect of holidays on vehicle usage in the valley.27 As indicated 
by the variable Holidayt , we dummy for three-day windows surrounding the respective 
national holidays occurring during our study period. These holiday windows account for 
more than a tenth of total number of days in our sample.

Figure 1 provides a glimpse of the unconditional relationship between red air days and 
yellow air day advisories, on the one hand, and region-wide vehicle trips on the other, across 
each specific day of the week. Percentage of Vehicle Trips for a given day of the week is 
measured as the percentage of total vehicle trips taken during that day of the week across 
our sample. Similarly, Percentage of Red Air Days for a given day of the week is measured 
as the percentage of total red air days experienced during that day, and Percentage of Advi-
sories for a given day of the week is measured as the percentage of total yellow air day advi-
sories experienced during that day across our sample. We anchor these comparisons by day-
of-the-week due to the statistically significant, negative pairwise correlations that exist for 
vehicle trips across all days of the week, e.g., between trips taken on Mondays versus Tues-
days, Mondays versus Wednesdays, Tuesdays versus Wednesdays, etc.28 Further, Moscar-
dini and Caplan (2017), Caplan and Acharya (2019), and Acharya and Caplan (2020) found 
day-of-the-week to be strong instruments for vehicle trips in their PM2.5 regressions. 

The relatively tight unconditional relationship depicted in Fig. 1 between red air 
days and vehicle trips echoes that uncovered by the conditional analyses conducted 
by Moscardini and Caplan (2017); Caplan and Acharya (2019), and Acharya and 
Caplan (2020). To the contrary, we see that yellow air day advisories do not exhibit 
as tight a relationship with vehicle trips. Although it mimics that of red air days and 
vehicle trips on Sundays through Tuesdays of the average week, the relationship 
between advisories, on the one hand, and vehicle trips and red air days on the other, 
seems to break down across the remaining days of the week. This is an indication 
that if we are successful in uncovering a conditional relationship between advisories 
and vehicle trips in the next section, it is likely to be weak (Figs. 2, 3, 4 and 5).

6 � Empirical Results

In measuring the relationship between the issuance of yellow air day advisories and region-
wide vehicle trips in Cache Valley, we estimate a number of different specifications to probe 
the robustness of our results. In general, the functional relationship between YellowAdvisoryt 
and VehicleTripst can be expressed as,

27  Tribbey et al. (2013) removed holidays from their data, thus eliminating their possible influence on indi-
vidual’s vehicle usage. In contrast, we explicitly control for their possible effects.
28  Although relatively low in magnitude—the Pearson’s correlation coefficients hover in the neighborhood 
of − 0.15 for each pairwise comparison—they are each statistically different at the 5% level of significance.
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where matrix X contains a set of explanatory variables taken from Table  2 (each 
set including contemporary and/or lagged versions of either YellowAdvisoryt or 
YellowAdvisoryPlus1t ), Θ represents the corresponding vector of parameters to be esti-
mated, and �t is an idiosyncratic error term. We consider two different specifications of the 
variable VehicleTripst in the econometric model’s framework—levels and natural logarith-
mic—as well as separate specifications for YellowAdvisoryt and YellowAdvisoryPlus1t.29

6.1 � Identifying and Controlling for Autocorrelation

We report results in this subsection for both the levels and log-transformed specifications 
of VehicleTripst.30 To begin, we apply (Ljung and Box 1978; Cumby and Huizinga 1992) 
Portmanteau tests for white noise error terms in each specification. Results are presented 
in Table  3. We find that including the first three lags of VehicleTripst and first two lags 
of Ln(VehicleTrips)t , respectively, as regressors satisfies the null hypothesis of no second-
order autocorrelation in the residuals.31 This is evidenced by the statistically insignifi-
cant �2 values for the Portmanteau tests. Further, the statistically insignificant Durbin �2 

(1)VehicleTripst = f
(

X;Θ, �t
)

,

Fig. 5   Day-of-week percentages for vehicle trips, red air days, and yellow air day advisories

29  We also estimated the model using a three-day forward moving average of VehicleTripst and found the 
results to be qualitatively similar to those for levels. The results using this specification are available from 
the author upon request.
30  Stata/IC version 16.1 for Windows (64-bit x86-64) was used for all regression analyses reported in the 
paper.
31  In other words, second-order autocorrelation is controlled for once three lags of VehicleTripst and two 
lags of Ln(VehicleTrips)t are included as regressors in their respective models.
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statistics for both models indicate that the regression results are consistent with an absence 
of first-order autocorrelation in the residuals. Hence, all ensuing regression models explain-
ing variation in vehicle trips include the respective lagged terms as sets of controls for first- 
or second-order autocorrelation that would otherwise be present in the error structures.32

As the results in Table 3 indicate, contemporaneous vehicle trip counts are positively 
correlated with their first-lagged values and negatively correlated with their second-lagged 
values. For example, from column three of the table we see that for every one-percent 
increase in vehicle trips taken in the previous period (i.e., Ln(VehicleTrips)t−1 ), contem-
poraneous trips ( Ln(VehicleTrips)t ) are estimated to increase by 0.14 percent. Since these 
regressions serve the sole purpose of purging our subsequent regressions in Sect. 6.2 of 
potential first- and second-order autocorrelation, rather than explaining variation in vehicle 
trip counts per se, there is no need to estimate non-linear distributed-lag versions of the 
models presented in Table 3. We do, however, test for non-linearities in the distributed-lag 
effects of yellow air day advisories on vehicle trip counts in Sect. 6.2’s models. For these 
and all ensuing regressions, observations for January and February of 2002, December of 
2004, and all of 2005 and 2006 were dropped due to missing data—primarily missing val-
ues for the variable VehicleTripst.

6.2 � Regression Results

Table  4 presents our main results for Eq.  (1) quantifying the relationship exhibited 
between our two yellow air day advisory measures on the one hand, and Ln(VehicleTrips)t 
on the other. The models based on VehicleTripst were qualitatively similar to those for 
Ln(VehicleTrips)t . Hence, we report results solely for the latter specification in this and the 
next subsection. In concert with the results in Table 4, Eq. (1) takes the specific form,

where Ln(VehicleTrips)t and Holidayt are as defined in Sect. 5, and we specify Advisoryt as a 
placeholder for YellowAdvisoryt and YellowAdvisoryPlus1t , both of which are also as defined 
in Sect. 5. The variable NotSundayt controls for potential effects on travel behavior associ-
ated with Cache Valley’s dominant faith, the Church of Jesus Christ of Latter Day Saints 
(LDS) (the valley’s population was estimated to be 83 percent LDS in 2010 Cannon 2015). 
LDS members have historically been encouraged to attend church for three-hour stints each 

(2)

Ln(VehicleTrips)t = �0 +

2
∑

i=1

�iAdvisoryt−i−1 + �3NotSundayt

+

5
∑

i=4

�i

(

Advisoryt−i−4xNotSundayt−i−4
)

+ �6Holidayt

+

8
∑

i=7

�i

(

Advisoryt−i−7xHolidayt−i−7
)

+

14
∑

i=9

�iYear200i−2

+ �15D.TempDifft + �16D.Humidityt + �17D.Windt

+ �18D.HumWindt + �19D.SnowFallt + �20D.SnowDeptht + �t,

32  Residual plots also indicate the existence of white-noise error terms at the respective lags. The plots are 
available upon request from the author.
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Sunday, which in turn reduces region-wide vehicle usage on Sundays each week.33 Variable 
Yeart controls for a potential annual trend in Ln(VehicleTrips)t . Following Caplan and Acha-
rya (2019), the weather variables are first-differenced versions of those defined in Table 2 
(denoted by the “D.” prefixes).34 To reduce unnecessary detail in Table 4, both D.Windt and 
HumWindt are excluded due to their statistical insignificance across both models.

We see from Table 4 that contemporaneous yellow air day advisories have no influence 
on the valley’s vehicle trip counts in either of the YellowAdvisoryt and YellowAdvisoryPlus1t 
models.35 However, one-day lagged advisories do. On average, a lagged yellow air day 

Table 3   Controlling potential 
autocorrelation in VehicleTripst 
and Ln(VehicleTrips)t

***Significant at 1% level, **Significant at 5% level, *Significant at 
10% level

Explanatory variables Dependent variable

VehicleTripst Ln(VehicleTrips)t

Constant 29,321.52*** 10.74***
(2,114.89) (0.554)

VehicleTripst−1 0.22*** –
(0.041)

VehicleTripst−2 − 0.22*** –
(0.041)

VehicleTripst−3 0.07* –
(0.042)

Ln(VehicleTrips)t−1 – 0.14***
(0.040)

Ln(VehicleTrips)t−2 – − 0.18***
(0.040)

F 15.91*** 14.18***
Adj.R2 0.07 0.04
Cumby-Huizinga �2 0.051 1.536
Modified Ljung-Box �2 0.005 0.129
Durbin �2 0.012 0.088
N 583 605

34  First-differencing also mitigates potential collinearity between the weather variables and one-day lags in 
our two advisory measures, as well as these measures each interacted with NotSundayt.

33  To test whether dummying for weekdays ( = 1 if a weekday, 0 otherwise) rather than NotSundayt is more 
appropriate, we conducted a series of means tests (assuming both paired and unpaired data). The results 
support what eyeballing the median and mean values of vehicle trip counts for each respective day of the 
week would suggest. The median and mean values reveal a starkly lower trip count for Sundays (20,030 
and 19,553, respectively) vis-a-vis every other day of the week than do Saturdays (32,432 and 31,498, 
respectively). The means tests reveal strongly negative, statistically significant differences (p-value = 0.000) 
between mean vehicle trip counts on Sunday versus each day of the week, including Saturday. Saturday’s 
mean trip count is not statistically different than Tuesday’s, Wednesday’s, and Thursday’s. It is statistically 
larger than Monday’s (p-value = 0.032) and statistically lower than Friday’s (p-value = 0.000). Thus, there 
is some statistical justification to report the results for models including the NotSunday dummy variable 
rather than a weekday dummy.

35  The coefficient estimates corresponding to the two lagged Ln(VehicleTrips)t variables included in these 
and all ensuing regressions to control for first- and second-order autocorrelation are not shown in order to 
eliminate unnecessary detail in the tables.
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Table 4   Regression results for 
Ln(VehicleTrips)t

Robust standard errors in parentheses (Huber 1967; White 1980, 1982)
***Significant at 1% level, **Significant at 5% level, *Significant at 
10% level

Explanatory variables Advisory model

YellowAdvisoryt YellowAdvisoryPlus1t

Constant 6.75*** 6.54***
(0.436) (0.441)

Advisoryt − 0.001 0.002
(0.022) (0.023)

Advisoryt−1 0.046* 0.057**
(0.025) (0.024)

NotSundayt 0.504*** 0.517***
(0.020) (0.019)

Advisoryt × NotSundayt 0.000 − 0.015
(0.021) (0.020)

Advisoryt−1 × NotSundayt−1 − 0.051** − 0.060**
(0.025) (0.025)

Holidayt − 0.116*** − 0.156***
(0.040) (0.053)

Advisoryt × Holidayt 0.100** 0.115**
(0.049) (0.055)

Advisoryt−1 × Holidayt−1 − 0.032 − 0.007
(0.036) (0.026)

D.TempDiff 0.001 0.001*
(0.001) (0.0008)

D.Humidity − 0.003*** − 0.003***
(0.001) (0.001)

D.SnowFall − 0.0002 − 0.0003*
(0.0001) (0.0002)

D.SnowDepth − 0.001*** − 0.001***
(0.0002) (0.0002)

Year2007 0.028* 0.023
(0.015) (0.015)

Year2008 − 0.025 − 0.021
(0.020) (0.018)

Year2009 0.018 0.010
(0.015) (0.014)

Year2010 0.053** 0.046**
(0.022) (0.020)

Year2011 0.067*** 0.065***
(0.015) (0.016)

Year2012 0.031** 0.029*
(0.014) (0.015)

F 176.46*** 180.70***
Adj.R2 0.82 0.83
AIC − 666.33 − 687.99
BIC − 578.13 − 599.46
N 342 347
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advisory induces a subsequent increase in the next day’s vehicle trips of 4.7 percent from 
the daily average in the case of the YellowAdvisoryt model and 5.9 percent in the case of 
the YellowAdvisoryPlus1t model. This positive effect seems to suggest that at least some 
individuals are substituting their driving inter-temporally in response to the advisories in 
order to avoid having to drive more on an impending red air day, and/or are self-protecting 
themselves from the effects of pollution (although this latter supposition would seem to 
better explain a positive contemporaneous effect of the advisory).

In contrast, the larger negative coefficient estimates (in magnitude) for the two lagged 
advisory variables interacted with NotSundayt−1 suggest that lagged advisories occurring 
on days of the week other than Sundays result in net decreases in vehicle trips of 0.5 and 
0.3 percent, respectively. The meagerness of these net negative effects is particularly nota-
ble given that, on average, roughly 66 percent more vehicle trips are taken in the valley on 
non-Sundays. Nevertheless, the net negative effects denote the existence of inertia on the 
part of at least some households, i.e., that these households delay reducing their vehicle use 
in response to an advisory.

Table  4 also shows that while vehicle trips taken during three-day windows around 
national holidays decrease by 12.3 percent from average in the case of the YellowAdvisoryt 
model and 16.9 percent in the case of the YellowAdvisoryPlus1t model, yellow air day advi-
sories issued during holidays have perverse contemporaneous effects, inducing estimated 
increases of 10.5 and 12.2 percent in vehical trips from average, respectively. Relative 
to the advisory’s negative lagged non-Sunday effect, this perverse holiday effect is quite 
large. Further, both models indicate that changes in humidity and snow-depth levels cor-
relate negatively with vehicle trips (we also find a statistically significant negative effect 
for change in snowfall level in the YellowAdvisoryPlus1t model, as well as a positive effect 
for the change in temperature difference). The dummy variables for years 2007—2012 
(the second half of our study period) indicate higher numbers of region-wide vehicle trips 
relative to the first half of the study period for years 2010 – 2012. Thus, the annual dum-
mies control for what appears to be an increasing trend in region-wide vehicle trips dur-
ing the final three years of the study period. The statistically significant F values indicate 
that the null hypothesis of jointly insignificant coefficient estimates is rejected for each 
model, and the sets of regressands in each model explain over 80 percent of total variation 
in Ln(VehicleTrips)t . Lastly, both the Akaike Information Criterion (AIC) and Bayesian 
Information Criterion (BIC) indicate that the YellowAdvisoryPlus1t model explains the data 
best (Wooldridge 2020).36

To test the robustness of the results in Table  4, particularly with respect to the con-
temporaneous and lagged effects of yellow air day advisories on vehicle trip counts, we 
ran alternative sets of regressions for the YellowAdvisoryt and YellowAdvisoryPlus1t mod-
els.37 For one set, we added additional lagged terms to each respective model linearly, i.e., 

36  We also ran the YellowAdvisoryt and YellowAdvisoryPlus1t models with NotSunday broken out by spe-
cific day-of-the-week in order to trace the non-Sunday effect to any specific days. As expected, both mod-
els report statistically significant positive coefficients for each day of the week relative to Sundays. Results 
for the year dummy variables and the set of weather variables are qualitatively similar to those reported 
in Table  4. Both models also report positive coefficients for contemporaneous advisories issued on holi-
days and lagged advisories generally, although the lagged coefficient for YellowAdvisoryPlus1t is statisti-
cally insignificant. Advisories interacted with specific (non-Sunday) days of the week are each negative but 
statistically insignificant in the YellowAdvisoryt model. The interaction term for Tuesday is significant in the 
YellowAdvisoryPlus1t model. Again, the AIC and BIC values indicate that the YellowAdvisoryPlus1t model 
better explains the data.
37  These full set of results is available from the author upon request.
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YellowAdvisoryt−2 (and its associated interaction terms) were added to the YellowAdvisoryt 
model, and YellowAdvisoryPlus1t−2 (and its associated interaction terms) were added to 
the YellowAdvisoryPlus1t model. In each case, the second-lagged terms were statistically 
insignificant, and the signs of the remaining variables (including the weather variables and 
annual dummy values) remained the same. The AIC and BIC goodness-of-fit measures for 
the YellowAdvisoryt model including the second-lagged terms increased by 3.6% and 6%, 
respectively, and the same measures for the YellowAdvisoryPlus1t model increased by 4.9% 
and 7.5%, respectively, indicating that the models with second-lagged terms performed 
worse overall than the models in Table 4.

Following (Burkhardt et  al. 2019), we also tested for non-linear (quadratic) lagged 
effects of YellowAdvisoryt and YellowAdvisoryPlus1t on vehicle trip counts. Similar to the 
models with second-lagged terms added linearly, the AIC and BIC measures for these mod-
els indicate a deterioration in goodness-of-fit. Regarding the YellowAdvisoryt model, the 
measures increased by 3.6% and 6.1%, respectively, for the quadratic model with two lags 
of YellowAdvisoryt , and by 6.2% and 8.9%, respectively, for the model with three lags.38 
For the YellowAdvisoryPlus1t model, the AIC and BIC measures for the two-lag model 
increased by 4.9% and 7.5%, respectively, and by 9.5% and 12.8% for the three-lag model, 
respectively, again indicating a deterioration in goodness-of-fit.39

Lastly, when we dropped the contemporaneous effects from the linear models (and thus 
estimated the models solely with YellowAdvisoryt−1 and YellowAdvisoryPlus1t−1 and their 
associated interaction terms, respectively), the coefficient estimates on these lagged terms 
remained the same and the AIC and BIC measures all decreased. Although the goodness-
of-fit measures indicated an improvement in overall fit in these models, we no longer cap-
ture the contemporaneous interaction effect between the advisory and the three-day holiday 
window, which is important given that these holiday windows encompass 13% of all days 
in our sample (see Table 2). Dropping the lagged effects from the linear models likewise 
reduced the AIC and BIC measures, but in this case we no longer capture the multiple 
lagged effects that help explain variation in vehicle trip counts. For these reasons, we 
believe the models presented in Table 4 best represent the gamut of the advisory’s contem-
poraneous and lagged effects on trip counts.

Technical Appendix B contains coefficient plots of the advisory variables for these dif-
ferent specifications of the model. Figures 6 and 7 display the coefficients corresponding 

38  With respect to the non-linear two-lag model’s specific coefficients, estimates of the advisory’s con-
temporaneous and second-lag effects on vehicle trips remain statistically insignificant, while the estimate 
for the first-lag effect remains positive but now marginally insignificant. The first-lag interaction effect 
YellowAdvisoryt−1 × NotSundayt−1 remains negative and statistically significant, while the contemporaneous 
interaction effect YellowAdvisoryt × Holidayt remains positive but marginally insignificant. Results for the 
non-linear three-lag model are similar. Estimates of the advisory’s contemporaneous and second-lag effects 
on vehicle trips remain statistically insignificant, while the estimate for the first-lag effect is positive but 
marginally insignificant. Interestingly, the estimate of the third-lag effect is negative and statistically sig-
nificant. The first-lag interaction effect YellowAdvisoryt−1 × NotSundayt−1 remains negative and statistically 
significant, while the third-lag effect is positive and significant. Lastly, none of the contemporaneous and 
lagged estimates for the YellowAdvisoryt × Holidayt interaction term are statistically significant.
39  Results for two- and three-lag models’ coefficients closely mimic those for both the two-lag and three-lag 
YellowAdvisoryt models, respectively, with a few exceptions. In the two-lag model, the positive contempora-
neous effect of YellowAdvisoryPlus1t × Holidayt is now statistically significant. In the three-lag model, both 
the first- and second-lag advisory effects are positive and significant, while the third-lag effect is negative 
and significant. Both YellowAdvisoryPlus1t−1 x NotSundayt−1 and YellowAdvisoryPlus1t−2 x NotSundayt−2 
are negative and significant, and while YellowAdvisoryPlus1t × Holidayt remains positive and significant, 
YellowAdvisoryPlus1t−2 × Holidayt−2 in now negative and significant.
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to the contemporaneous effects of YellowAdisoryt and YellowAdvisoryPlus1t on vehicle trip 
counts. We see that the contemporaneous effects of both advisory variables themselves, and 
their interactions with NotSundayt are all statistically insignificant ( YellowAdvisoryPlus1t × 
NotSundayt is marginally significant in Model 5, the quadratic model with three-day lag 
effects). To the contrary, both advisory variables are statistically significant at the five-per-
cent level when interacted with Holidayt in Models 1 and 2 (Model 2 being the model pre-
sented in Table 4). The interaction term is statistically significant at the ten-percent level 
for each of the remaining models, except for YellowAdvisoryt × Holidayt in Model 5.

Table 5   Regression results for 
alert fatigue (dependent variable 
is Ln(VehicleTrips)t)

Robust standard errors in parentheses (Huber 1967; White 1980, 1982)
***Significant at 1% level, **Significant at 5% level, *Significant at 
10% level

Explanatory variables Advisory model

YellowAdvisoryt YellowAdvisoryPlus1t

Constant 6.75*** 6.56***
(0.439) (0.441)

Fatiguet − 0.017 –
(0.029)

Fatiguet × NotSundayt 0.047 –
(0.029)

FatiguePlus1t – 0.058**
(0.029)

FatiguePlus1t × NotSundayt – − 0.001
(0.027)

Advisoryt 0.014 − 0.023
(0.023) (0.022)

Advisoryt−1 0.062* 0.026
(0.033) (0.032)

NotSundayt 0.504*** 0.520***
(0.020) (0.019)

Advisoryt × NotSundayt − 0.026 − 0.020
(0.024) (0.026)

Advisoryt−1 × NotSundayt−1 − 0.077** − 0.059**
(0.031) (0.028)

Holidayt − 0.115*** − 0.156***
(0.040) (0.053)

Advisoryt × Holidayt 0.102** 0.112**
(0.050) (0.055)

Advisoryt−1 × Holidayt−1 − 0.035 − 0.002
(0.036) (0.025)

F 162.19*** 170.48***
Adj.R2 0.82 0.83
AIC − 664.42 − 688.64
BIC − 568.55 − 592.41
N 342 347
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Figures  8 and 9 in Technical Appendix B similarly display the coefficients cor-
responding to the one-day lag effects of YellowAdisoryt and YellowAdvisoryPlus1t on 
vehicle trip counts. Here, we see that the coefficients for YellowAdvisoryPlus1t−1 and 
YellowAdvisoryPlus1t−1 × NotSundayt−1 are each statistically significant at the five-per-
cent level across all model specifications. The coefficients for YellowAdvisoryPlus1t−1 × 
Holidayt−1 are each statistically insignificant across all specifications. The only coefficient 
for the YellowAdvisoryt−1 model that is statistically significant at the five-percent level is 
the coefficient associated with YellowAdvisory1t−1 × NotSundayt−1 in Model 2. This coef-
ficient is statistically significant at the ten-percent level in each of the remaining model 
specifications. The coefficient for YellowAdvisoryt−1 is likewise statistically significant at 
the ten-percent level in Models 1, 2, and 5, and the interaction term YellowAdvisoryt−1 × 
Holidayt−1 is not statistically significant in any of the model specifications.

Following (Zivin and Neidell’s 2009; Saberian et  al. 2017), we also tested for the 
effects of possible intra-seasonal alert fatigue in our models (again, by “intra-seasonal alert 
fatique” we mean the occurrence of fatigue across yellow air days within a given season). 
Results are presented in Table 5. Since the coefficient estimates for the differenced weather 
variables and yearly dummies are qualitatively similar to those reported in Table  4, we 
exclude them from the table. As Table 5 indicates, we find no evidence of intra-seasonal 
fatigue in the YelloAdvisoryt model. Although both are larger in magnitude, the negative 
coefficient for YellowAdvisoryt−1 × NotSundayt−1 continues to offset the positive coef-
ficient for YelloAdvisoryt−1 in this model. In contrast, we do find potential intra-seasonal 
alert fatigue in the YelloAdvisoryPlus1t model at a high enough level to almost completely 
offset the negative advisory effect on non-Sundays (note that the coefficient estimate for 
YelloAdvisoryPlus1t−1 del).

It is important to note that multicollinearity is likely affecting these results. Correla-
tion coefficients for Fatiguet , on the one hand, and YellowAdvisoryt and YellowAdvisoryt−1 
on the other, exceed 0.7. They exceed 0.87 in the case of FatiguePlus1t versus 
YellowAdvisoryPlus1t and YellowAdvisoryPlus1t−1 . Further, Variance Inflation Factors 
(VIFs) for Fatiguet and Fatiguet × NotSunday in Table 5 are 8.82 and 6.97, well above the 
next highest value of 2.56 for SnowDepth. The VIFs for FatiguePlus1t and FatiguePlus1t × 
NotSunday are 18.16 and 16.88, likewise well above the next highest value of 2.76 for Not-
Sunday. Hence, our results for intra-seasonal alert fatigue should be interpreted with cau-
tion. We tested both models for inter-seasonal fatigue in more disaggregated specifications 
by interacting YellowAdvisoryt−1 and YellowAdvisoryPlus1t−1 , respectively, with annual 
dummy variables. Coefficient estimates for these interaction terms were consistently statis-
tically insignificant, indicating no evidence of this type of fatigue.

To summarize our findings in this section, regression results presented in Table 4 sug-
gest, on average, that one-day lagged advisories have an overall small positive impact on 
vehicle trips. We are not necessarily surprised by this result, since Tribbey et  al. (2013) 
likewise found a perverse advisory effect for Utah’s Wasatch Front region. Further, as 
pointed out in Sect. 4 (and explored further in Appendix A), when a large-enough number 
of individuals respond perversely to the advisory by increasing their vehicle usage on yel-
low air days e.g., to provide what they perceive as greater protection from poor air qual-
ity than walking or using mass transit, or simply to reduce their need for travel during an 
ensuing red air day episode, we should expect to see a perverse advisory effect. Never-
theless, we find that this positive impact is outweighed by the negative impact advisories 
have when they are issued on weekdays and Saturdays, resulting in small negative impacts 
on vehicle trips of between 0.3 and 0.5 percent. We find questionable evidence for intra-
seasonal alert fatigue and no evidence of inter-seasonal fatigue.
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6.3 � Potential Endogeneity

Because of their exogeneity with respect to error term disturbances in our models and 
likely correlation with our two yellow air day advisory measures, we investigated the extent 
to which our weather variables may be confounding the relationship between the advisories 
and region-wide vehicle trips found in Sect. 6.2. Ultimately, based upon Durbin �2 , Wu-
Hausman F, and Wooldridge robust �2 tests, we were unable to reject the null hypotheses 
that our Advisory measures—YellowAdvisoryt−1 and YellowAdvisoryPlus1t−1 (along with 
YellowAdvisoryt−1 × NotSundayt−1 and YellowAdvisoryPlus1t−1 × NotSundayt−1)—behave as 
exogenous explanatory variables in the models presented in Tables 4 and 5 (Durbin 1954; 

Table 6   Explaining variation in YellowAdvisoryt and YellowAdvisoryPlus1t

***Significant at 1% level, **Significant at 5% level, *Significant at 10% level

Explanatory variables Dependent variable

YellowAdvisoryt YellowAdvisoryPlus1t

Constant 0.189*** 0.118***
(0.025) (0.030)

D.Ln(VehicleTrips)t 0.018 − 0.066
(0.083) (0.068)

D.TempDiff 0.004 0.004
(0.003) (0.003)

D.Humidity 0.008** 0.005*
(0.004) (0.003)

D.Wind 0.089* 0.018
(0.047) (0.041)

D.HumWind − 0.001** − 0.0004
(0.0005) (0.0005)

D.SnowFall 0.000 − 0.002***
(0.001) (0.0006)

D.SnowDepth − 0.002*** 0.001*
(0.0007) (0.0007)

F(8, 369) 13.77*** 85.35***
Adj.R2 0.20 0.58
AIC 390.58 199.59
BIC 425.53 241.58
Durbin �2 2.13 1.17
Wu-Hausman F 2.07 1.13
Wooldridge robust �2 (endogeneity) 1.58 0.98
Montiel and Wang robust F 4.37 1.80
Wooldridge robust �2 (validity) 7.03 5.14
Sargan �2 9.60* 8.33
Basmann �2 9.40* 8.13
N 359 336
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41  The coefficient estimates are obtained from a model of the form,

where again Advisoryt serves as a placeholder for YellowAdvisoryt and YellowAdvisoryPlus1t . Also included 
as regressors in these respective models (but not shown) are the first lag of YellowAdvisoryt and first three 
lags of YellowAdvisoryPlus1t , which were sufficient to satisfy the null hypotheses of no autocorrelation in 
the residuals.

Advisoryt = �
0
+ �

1
D.VehicleTripst + �

2
D.TempDifft + �

3
D.Humidityt + �

4
D.Windt

+ �
5
D.HumWindt + �

6
D.SnowFallt + �

7
D.SnowDeptht + �t.

Wu 1973; Hausman 1978; Wooldridge 1995).40 Consistent with these results, Pflueger 
and Wang (2015) robust F tests indicate that the set of first-differenced weather variables 
are weak instruments (IVs). Results concerning the validity of the weather variables as 
instruments are mixed. While each of Wooldridge’s, Sargan’s and Basmann’s respective �2 
tests indicate that the weather variables are valid IVs in the YellowAdvisoryPlus1t model, 
i.e., that they are not over-identified, the Sargan and Basmann tests marginally indicate 
invalidity in the YellowAdvisoryt model (Wooldridge 1995; Sargan 1958; Basmann 1960). 
These results are compiled in Table 6, where we also include coefficient estimates for the 
first-differenced weather variables from first-stage, ordinary least squares (OLS) regres-
sions explaining variation in YellowAdvisoryt and YellowAdvisoryPlus1t , respectively (coef-
ficient estimates and statistics testing for endogeneity, IV weakness, and IV validity from 
regressions explaining variation in YellowAdvisoryt and YellowAdvisoryPlus1t each inter-
acted with NotSundayt are qualitatively similar).41 Although not an instrument itself, first-
differenced vehicle trips are also included in these regressions due the variable’s theoretical 
correlation with PM12.5 concentrations, which in turn drive the issuance of an advisory.42

We see that, on average, the issuance of a yellow air day advisory is positively cor-
related with a change in D.Humidity across both models. This result is similar to that 
reported in Caplan and Acharya (2019) for the relationship between PM2.5 concen-
trations and D.Humidity. In the YellowAdvisoryt model, the estimates for D.Humwind 
and D.SnowDepth are negative, and the estimate for D.Wind is positive, while the 
estimate for D.SnowFall is negative and that for D.SnowDepth is positive in the 
YellowAdvisoryPlus1t model. These results for the YellowAdvisoryPlus1t model comport 
with the atmospheric science described in Moscardini and Caplan (2017) Interestingly, 
the coefficient estimates for D.Ln(VehicleTrips)t are statistically insignificant in each 
model. Similar to results in Tables  4 and 5, the AIC and BIC measures point to the 
YellowAdvisoryPlus1t model as explaining the data better. We also notice an adjusted 
R2 value for the YellowAdvisoryPlus1t model that is more than twice the value for the 
YellowAdvisoryt model.

As mentioned previously, the Durbin, Wu-Hausman, and Wooldridge tests do not 
reject the null hypothesis that the weather variables are exogenous, and thus the coeffi-
cient estimates presented in Table 4 are unbiased and consistent. The Montiel and Wang 
F values of 4.37 and 1.80 are well-below their respective critical value of 24.42 and 
22.23, indicating that the weather variables are weak instruments in the YellowAdvisoryt 
and YellowAdvisoryPlus1t models, respectively (Pflueger & Wang 2015). Statistical 

42  We also ran a logistic regression for this model, which assumes that the probability of an advisory being 
issued is a non-linear combination of the regressors. The results, which are available from the author upon 
request, were qualitatively similar to those from the linear probability model. This similarity between mod-
els was anticipated (c.f., Hellevik 2007; Long 1997). We therefore report the estimates from the linear prob-
ability model due to their ease of interpretation.

40  The Wooldridge (1995) test tolerates heteroskedastic and autocorrelated errors, while Durbin’s and Wu-
Hausman’s do not (Baum et al. 2007; Wooldridge 1995).
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insignificance of the Wooldridge’s, Sargan’s and Basmann’s �2 each indicate that the set 
of weather variables serve as valid instruments. Note that the Sargan and Basmann val-
ues for the YellowAdvisoryt indicate invalidity, but only at marginal significance levels.

7 � Summary and Conclusions

We have tested the hypothesis that yellow air day advisories issued by Utah’s Depart-
ment of Environmental Quality resulted in subsequent reductions in vehicle trips 
taken during northern Utah’s winter-inversion seasons in the early 2000 s. During this 
period, when PM2.5 concentrations (derived mainly from vehicle emissions) rose above 
15 μg∕m3 , on their way to the 35 μg∕m3 national-standard threshold for red air days, the 
study area’s residents were informed via several different media sources that the region 
was experiencing a yellow air day, and urged to reduce their vehicle usage during the 
day. Our results suggest that yellow air day advisories provided at best weak, at worst 
perverse, incentives for reducing vehicle usage on yellow air days and ultimately for 
mitigating the occurrence of red air day episodes during northern Utah’s winter inver-
sion season. Because these episodes were often dramatic in their scope, our study area 
and period of analysis have provided an opportune setting within which to measure the 
effectiveness of an air quality alert program.

In specific, we have found weak evidence of an overall positive relationship between 
yellow air day advisories and region-wide vehicle trips. However, this perverse impact 
is outweighed by a larger negative impact in magnitude when the advisories are issued 
on weekdays and Saturdays, i.e., non-Sundays. As a result, advisories issued on non-
Sundays (i.e., days of the week during which members of the study area’s dominant 
religious faith are not observing their faith in local churches) induce a small negative 
impact on vehicle trips on average. Further, we have found mixed evidence regarding 
intra-seasonal alert fatigue (i.e., fatique within any given season) and no evidence of 
inter-seasonal fatigue (i.e., the trend in the average intra-seasonal fatigue over time). All 
else equal, humidity and snowdepth exhibit negative effects on vehicle trips. Tests for 
endogeneity of yellow air day advisories in explaining variation in vehicle trips suggest 
that from a statistical standpoint the advisories can be considered exogenous, issued 
by the regulatory authorities independently of the weather conditions and region-wide 
vehicle usage that contribute to elevated PM2.5 concentration levels.

As mentioned in the Introduction section, yellow air day advisories are an example 
of a “soft” environmental policy, which relies on educating the public about an existing 
externality and encouraging its mitigation through voluntary adjustments in behavior, 
without providing an economic incentive to do so. Our findings echo those of previous 
studies in that these types of policies typically provide relatively weak incentives for 
indviduals to adjust their behaviors in ways that improve social welfare. In some cases 
the incentives may provoke perverse behaviors that instead diminish welfare. This said, 
scope still remains to better understand how different types of individuals respond to 
the issuance of air quality alerts, which in turn requires more granualar data than has 
heretofore been available to aid this understanding. The analysis conducted in this paper 
serves as a case in point. Its main limitations center on the constraints of the data—the 
lack of both air quality and traffic monitors in the existing dataset, and the general una-
vailability of individual-level data with which to directly test the conditions identified 
in our theoretical model. As importantly, granular data would enable an investigation 
of the role that behavioral determinants such as inertia play in governing individuals’ 
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responses to air quality advisories, as well as the extent to which strategic considera-
tions such as inter-temporal substitution and self-protection impact these behaviors.

Technical Appendix

Mathematical Derivations for the Theoretical Model in Sect. 4

Consider myopic individual (or household) i in a given time period t, who derives benefit 
from making vehicle trips (e.g., commuting to work, shopping, traveling to recreation 
sites, etc.), but also incurs costs associated with the aggregate amount of trips taken in i’s 
community or region during time t (to which individual i contributes atomistically), e.g., 
in the form of elevated PM2.5 concentrations.43 We specify i’s benefit function in period 
t, uit , as,

where zit represents the amount of a composite good obtained as a function of vehicle 
usage, denoted as qit , and xit denotes the composite amount of all other goods not obtained 
via vehicle usage, i.e., household-produced goods. Information-conditioned parameters 
0 < 𝛽

z

i
(𝜃t) < 1 and 0 < 𝛽x

i
(𝜃t) < 1 , respectively, parameterize zit and xit in function uit such 

that �x
i
(�t) ≡ 1 − �

z

i
(�t) , and �t is an information parameter representing issuance of a yel-

low air day advisory when PM2.5 concentrations rise above the 15 μ∕m3 threshold.44 For 
ease of exposition and without loss of generality, we assume all variables zit , qit , and xit , 
and parameters �z

i
(�t) , �xi (�t) , and �t are measured continuously. In particular, increases in 

�t imply that the region’s individuals are being supplied with more information (via an 
advisory) about the onset of a yellow air day.

In addition to standard curvature conditions specified for function uit , i.e., 𝜕uit∕𝜕zit > 0 , 
�2uit∕�z

2
it
≤ 0 , 𝜕uit∕𝜕xit > 0 , �2uit∕�x2it ≤ 0 , and 𝜕2uit∕𝜕zit𝜕xit = 𝜕2uit∕𝜕xit𝜕zit > 0 , and for 

function zit , i.e., 𝜕zit∕𝜕qit > 0 and �2zit∕�q2it ≤ 0 , we specify a key curvature condition for 
the ensuing analysis: 𝜕𝛽z

i
∕𝜕𝜃t > 0 . This condition indicates that, all else equal, the marginal 

value of zit (relative to that of xit ) increases with the issuance of a yellow air day advisory, 
i.e., 

(

𝜕2uit∕𝜕zit𝜕𝛽
z

i

)(

𝜕𝛽
z

i
∕𝜕𝜃t

)

> 0 . Note that identity �x
i
(�t) ≡ 1 − �

z

i
(�t) in turn implies 

(

𝜕2uit∕𝜕xit𝜕𝛽
z

i

)(

𝜕𝛽
z

i
∕𝜕𝜃t

)

< 0 . These conditions underlie the intuition expressed in Sect. 4 
that, given the issuance of a yellow air day advisory, an individual derives added bene-
fit from any given vehicle trip, since making the trip using the next-best alternative, e.g., 
walking or riding a bus, involves greater exposure to the yellow air. Furthermore, given 
that a yellow air day advisory signals the onset of a subsequent red air day episode, individ-
uals could perceive added benefit associated with intertemporally substituting vehicle trips 
forward in time to reduce the need for making future vehicle trips during the episode itself.

Individual i forms an expectation over the health and environmental damages s/he suf-
fers with respect to aggregate PM2.5 concentrations accumulated in the atmosphere during 
period t. We represent these expected damages with function E

[

dit
]

,

(A.1)uit = uit
(

zit
(

qit
)

, xit;�
z

i

(

�t

)

, �x
i

(

�t

))

, i = 1,… , I, t = 1,… , T,

(A.2)E
[

dit
]

= d̄it
(

Qt;𝛼i
(

𝜃t

))

, i = 1,… , I, t = 1,… , T,

44  Assuming �x
i
(�t) ≡ 1 − �

z

i
(�t) is a convenient way to embed the assumption that an increase in �z

i
 in 

response to an increase in �t increases the value of an additional unit of zit relative to xit.

43  As we will see below, assuming myopic decision-making among individuals simplifies our model with-
out compromising its relevance to the problem at hand.
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where region-wide vehicle trips Qt =
∑

i qit , �i
(

�t

)

 is an information-conditioned parameter 
distinct from �z

i
 , and standard curvature conditions are specified for expected damage func-

tion E
[

dit
]

 , i.e., 𝜕d̄it∕𝜕Qt > 0 , 𝜕2d̄it∕𝜕Q2
t
≥ 0 , and 𝜕d̄it∕𝜕𝛼i > 0 . Similar to the relationship 

between �z
i
 and �t we assume 𝜕𝛼i∕𝜕𝜃t > 0 , which in turn indicates that, all else equal, per-

ceived marginal damages suffered by each individual i in period t increase in response to 
the issuance of a yellow air day advisory, i.e., 

(

𝜕2d̄it∕𝜕Qt𝜕𝛼i

)(

𝜕𝛼i∕𝜕𝜃t
)

> 0 . This condition 
accounts for an overall increase in expected marginal damages to an individual’s health due 
to the issuance of a yellow air day advisory.

The individual’s budget constraint in any given period t is given by,

where wit represents individual i’s given wealth level in period t, and per-unit prices pz
t
 and 

p
q

t  are taken as given for good zit and vehicle trips qit , respectively (the price of xit is nor-
malized to one).45

Next, we consider three cases reflecting three stylized types of individuals comprising 
the region.46 Case 1 pertains to individuals who completely ignore the expected damages 
associated with region-wide vehicle trips in each period t, Qt , even though ��i∕��t ≠ 0 , 
i.e., even though they are informed about elevated PM2.5 concentrations via yellow air 
day advisories. Case 2 pertains to individuals who account solely for the expected dam-
ages that they personally incur in period t, i.e., individual i dissects function d̄it as 
d̄it
(

qit + Q−it;𝛼i
(

𝜃t

))

 , where Q−it represents the aggregate trip count across all individu-
als in the region except individual i, and thereby accounts soley for the qit in d̄it(⋅) in his 
decision problem. Case 3 pertains to altruistic individuals who account not only for the 
expected damages that their vehicle trips impose on themselves and all other individuals 
in the region, but also the expected benefits that all other individuals obtain as a result of 
increasing their vehicle trips in response to a yellow air day advisory, i.e., these individuals 
are “pure altruists” (c.f., Antweiler 2015; Ottoni-Wilhelm et al. 2017).

Case 1

An individual i who fits the description of Case 1 myopically chooses qit and xit to solve the 
following Lagrangian in each period t,

where 𝜆it > 0 represents i’s period t Lagrangian multiplier. First-order conditions for this 
problem result in,

The left-hand side of (A.4) represents the marginal benefit of an additional vehicle trip 
and the right-hand side represents the corresponding marginal cost. Together with (A.3) 

(A.3)wit = pz
t
zit(qit) + p

q

t qit + xit, i = 1,… , I, t = 1,… , T,

uit
(

zit
(

qit
)

, xit;𝛽
z

i

(

𝜃t

)

, 𝛽x
i

(

𝜃t

))

− d̄it
(

Qt;𝛼i
(

𝜃t

))

+ 𝜆it

(

wit − pz
t
zit(qit) − p

q

t qit − xit
)

(A.4)
�uit

�zit

�zit

�qit
=

�uit

�xit

(

pz
t

�zit

�qit
+ p

q

t

)

, i = 1,… , I, t = 1,… , T.

46  Again, we acknowledge that in reality the set of individuals in any given region are likely a convex com-
bination of these three types.

45  Because individuals are assumed myopic in their decision-making, we could just as well aggre-
gate the individual’s budget constraint over all periods t, i.e., express the constraint instead as 
∑

t wit =
∑

t

�

pz
t
zit(qit) + p

q

t qit + xit
�

.
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47  Solving for the relative change in q∗
it
 is sufficient for the analysis at hand. Deriving the absolute change in 

q∗
it
 in response to a change in �t requires simultaneous differentiation of (A.3) and (A.4).

and function zit
(

qit
)

 , Eq.  (A.4) solves for q∗
it
= qit

(

wit, p
z
t
, p

q

t , �i
(

�t

)

, �z
i

(

�t

)

, �x
i

(

�t

))

 , 
z∗
it
= zit

(

wit, p
z
t
, p

q

t , �i
(

�t

)

, �z
i

(

�t

)

, �x
i

(

�t

))

 , and x∗
it
= xit

(

wit, p
z
t
, p

q

t , �i
(

�t

)

, �z
i

(

�t

)

, �x
i

(

�t

))

.
Substituting q∗

it
 , z∗

it
 , and x∗

it
 into (A.4) and differentiating allows us to solve for the mar-

ginal effect of a change in �t on q∗
it
 relative to x∗

it
.47 The expression for this marginal effect 

is,

where

and

Note that Ψ1 > 0 in (A.6) follows directly from the curvature conditions specified above for 
uit(⋅) . To see why Ω1 < 0 in (A.7), first rewrite (A.4) as,

Now note from (A.7) that Ω1 < 0 when

which coincides with the result in (A.8). Thus, Ω1 < 0.
Clearly, the result in (A.5) is driven by the assumptions underlying our problem, in par-

ticular the separability of uit and d̄it in individual i’s Lagrangian function. In a more general 
specification of i’s welfare, e.g., uit

(

zit
(

qit
)

, xit;Qt, �
z

i

(

�t

)

, �x
i

(

�t

)

, �
Q

i

(

�t

)

)

 , where 
𝛽
Q

i

(

𝜃t

)

< 0 parameterizes Qt in uit , we cannot definitively sign �q∗
it
∕��t without specifying 

additional assumptions governing the tradeoff between zit and xit in response to an increase 
in �t . As is, our result for Case 1 depicts the predilection of certain types of individuals 
who weight the private benefit associated with their vehicle trips during yellow air days 
more than the correlative public damages to which their trips contribute (which, according 
to our particular welfare specification, are completely ignored in this case).

Case 2

An individual i who fits the description of Case 2 myopically chooses qit and xit to solve the 
following Lagrangian in each period t,

(A.5)
𝜕q∗

it

𝜕𝜃t

= −
Ψ1

Ω1

> 0, i = 1,… , I, t = 1,… , T,

(A.6)Ψ1 =
𝜕2uit

𝜕z∗
it
𝜕𝛽

z

i

𝜕𝛽
z

i

𝜕𝜃t

𝜕z∗
it

𝜕q∗
it

−
𝜕2uit

𝜕x∗
it
𝜕𝛽

z

i

𝜕𝛽
z

i

𝜕𝜃t

(

pz
t

𝜕z∗
it

𝜕q∗
it

+ p
q

t

)

> 0

(A.7)

Ω1 =
𝜕2uit

𝜕z∗2
it

(

𝜕z∗
it

𝜕q∗
it

)2

+
𝜕uit

𝜕z∗
it

𝜕2z∗
it

𝜕q∗2
it

−
𝜕2uit

𝜕x∗
it
𝜕z∗

it

𝜕z∗
it

𝜕q∗
it

(

pz
t

𝜕z∗
it

𝜕q∗
it

+ p
q

t

)

−
𝜕uit

𝜕x∗
it

pz
t

𝜕2uit

𝜕z∗2
it

< 0.

(A.8)
𝜕uit

𝜕zit
−

𝜕uit

𝜕xit
pz
t
=

p
q

t

𝜕zit

𝜕qit

> 0, i = 1,… , I, t = 1,… , T.

(

𝜕uit

𝜕z∗
it

−
𝜕uit

𝜕x∗
it

pz
t

)

𝜕2z∗
it

𝜕q∗2
it

< 0 ⟹
𝜕uit

𝜕z∗
it

−
𝜕uit

𝜕x∗
it

pz
t
> 0,
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where 𝛾it > 0 represents i’s period t Lagrangian multiplier. First-order conditions for this 
problem result in,

As with Case 1, the left-hand side of (A.9) represents the marginal benefit of an additional 
vehicle trip and the right-hand side represents the corresponding marginal cost, which in 
this case now accounts for the individual’s expected marginal damage associated with an 
additional vehicle trip, 𝜕d̄it∕𝜕Qt . Similar to Case 1, Eq. (A.3), function zit

(

qit
)

 , and opti-
mality condition (A.9) solve for q∗∗

it
 , z∗∗

it
 , and x∗∗

it
 , which when substituted back into (A.9) 

and differentiated allows us to solve for the marginal effect of a change in �t on q∗∗
it

 relative 
to x∗∗

it
 . The expression for this marginal effect is,

where

and

Comparing (A.10)–(A.12) with (A.5)–(A.7) we see that,

Further, we find that,

where the term 𝜕2d̄it

𝜕Q∗∗
t 𝜕𝛼i

 represents the change in individual i’s perceived marginal damage 
(from vehicle trips) associated with the change in information-conditioned parameter �i as 
a result of the issuance of a yellow air day advisory (i.e., change in �t ). The term 
�2uit

�z∗∗
it
��

z

i

��
z

i

��t

�z∗∗
it

�q∗∗
it

−
�2uit

�x∗∗
it
��

z

i

��
z

i

��t

(

pz
t

�z∗∗
it

�q∗∗
it

+ p
q

t

)

 represents the corresponding change in individual 
i’s marginal benefit associated with the change in information-conditioned parameter �z

i
 . 

Our result for Case 2 therefore depicts a different type of individual than Case 1. In this 
case, the individual explicitly accounts for the (private effect of) the public damage to 
which his trips contribute, which leads to a lower increase in vehicle usage in response to a 
yellow air day advisory than for Case 1 individuals, all else equal. As Eqs.  (A.13) and 
(A.14) demonstrate, Case 2 individuals may choose to decrease the number of their vehicle 
trips in response to a yellow air day advisory.

uit
(

zit
(

qit
)

, xit;𝛽
z

i

(

𝜃t

)

, 𝛽x
i

(

𝜃t

))

− d̄it
(

qit + Q−it;𝛼i
(

𝜃t

))

+ 𝛾it

(

wit − pz
t
zit(qit) − p

q

t qit − xit
)

(A.9)
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=
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, i = 1,… , I, t = 1,… , T.

(A.10)
�q∗∗
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��t

= −
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Ω2

, i = 1,… , I, t = 1,… , T,

(A.11)Ψ2 = Ψ1 −
𝜕2d̄it
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(A.13)
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Case 3

An individual i who fits the description of Case 3 myopically chooses qit and xit to solve the 
following Lagrangian in each period t,

where 𝜙it > 0 represents i’s period t Lagrangian multiplier. An altruistic individual i there-
fore fully accounts for the effect of a yellow air day advisory on the expected benefits that 
all other individuals j, j ≠ i, i, j = 1,… , I obtain from their vehicle usage, represented by 
inclusion of the term 

∑

j≠i ūjt

�

zjt
�

qjt
�

, xjt;𝛽
z

j

�

𝜃t

�

, 𝛽x
j

�

𝜃t

�

�

 in i’s own utility function uit . 
Altruistic individual i also fully accounts for the effects of both the yellow air day advisory 
and her vehicle usage on the expected damages incurred by all other individuals, repre-
sented by inclusion of the separate term 

∑

j≠i d̄jt
�

qit + Q−it;𝛼j
�

𝜃t

��

 in her Lagrangian func-
tion. First-order conditions for this problem result in,

where 𝜕d̄jt∕𝜕Qt > 0∀j ≠ i , i.e., individual i perceives all other members of the region as 
suffering positive marginal damages from additional vehicle trips made within the region.

As with Cases 1 and 2, the left-hand side of (A.15) represents the marginal benefit of an 
additional vehicle trip and the right-hand side represents the corresponding marginal cost, 
which in this case now accounts for i’s expected private marginal damage associated with tak-
ing an additional vehicle trip as well as i’s expectation of the impact that that additional vehi-
cle trip has on the damages incurred by all other individuals in the region, represented by the 
term 

∑

j≠i

𝜕d̄jt

𝜕Qt

 . Similar to Cases 1 and 2, Eq. (A.3), function zit
(

qit
)

 , and optimality condition 
(A.15) solve for q∗∗∗

it
 , z∗∗∗

it
 , and x∗∗∗

it
 , which when substituted back into (A.15) and differenti-

ated allows us to solve for the marginal effect of a change in �t on q∗∗∗
it

 relative to x∗∗∗
it

 . The 
expression for this marginal effect is,

where

uit

(

zit
(

qit
)

, xit,
∑

j≠i

ūjt

(

zjt
(

qjt
)

, xjt;𝛽
z

j

(

𝜃t

)

, 𝛽x
j

(

𝜃t

)

)

;𝛽z
i

(

𝜃t

)

, 𝛽x
i

(

𝜃t

)

)

− d̄it
(

qit + Q−it;𝛼i
(

𝜃t

))

−
∑

j≠i

d̄jt
(

qit + Q−it;𝛼j
(

𝜃t

))

+ 𝜙it

(

wit − pz
t
zit(qit) − p

q

t qit − xit
)

(A.15)

𝜕uit

𝜕zit

𝜕zit

𝜕qit
=

𝜕uit

𝜕xit

(

pz
t

𝜕zit

𝜕qit
+ p

q

t

)

+
𝜕d̄it

𝜕Qt

+
∑

j≠i

𝜕d̄jt

𝜕Qt

, i, j = 1,… , I, t = 1,… , T.

(A.16)
�q∗∗∗

it

��t

= −
Ψ3

Ω3

, i = 1,… , I, t = 1,… , T,

(A.17)

Ψ3 =Ψ2 +
∑

j≠i

(

𝜕2uit

𝜕z∗∗∗
it

𝜕ūjt

𝜕ūjt

𝜕𝛽
z

j

𝜕𝛽
z

j

𝜕𝜃t

𝜕z∗∗∗
it

𝜕q∗∗∗
it

−
𝜕2uit
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z

j

𝜕𝛽
z

j
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(

pz
t

𝜕z∗∗∗
it

𝜕q∗∗∗
it

+ p
q

t

)

−
𝜕2d̄jt

𝜕Q∗∗∗
t 𝜕𝛼j

𝜕𝛼j

𝜕𝜃t

)
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and

We note that 𝜕2uit

𝜕z∗∗∗
it

𝜕ūjt
> 0 and 𝜕2uit

𝜕x∗∗∗
it

𝜕ūjt
> 0 across all individuals j as a reflection of individual 

i’s altruism, and 𝜕ūjt
𝜕𝛽

z

j

𝜕𝛽
z

j

𝜕𝜃t

≤ 0 , which reflects the fact that before any given yellow air day 

advisory individuals j are assumed to have optimally set their respective �z
j

(

�t

)

 parameter 
values.

Comparing (A.10)–(A.12) with (A.16)–(A.18) leads to a sufficient condition governing 
the relationship between �q∗∗∗

it
∕��t and �q∗∗

it
∕��t across all i, j = 1,… , I , and t = 1,… , T ,48

The left-hand side of the second inequality in (A.19) represents the change in individual 
i’s perceived marginal damage associated with the added aggregate damage suffered by 
individuals j ≠ i (from their vehicle trips) brought about by the respective changes in their 
information-conditioned parameters �j as a result of the issuance of a yellow air day advi-
sory (i.e., change in �t ). The right-hand side of the second inequality represents the cor-
responding change in i’s perceived marginal benefit associated with the added aggregate 
benefit obtained by individuals j ≠ i brought about by the respective changes in their infor-
mation-conditioned parameters �z

j
.

Similarly, comparing (A.5)–(A.7) with (A.16)–(A.18) leads to a sufficient condition 
governing the relationship between �q∗∗∗

it
∕��t and �q∗

it
∕��t across all i, j = 1,… , I , and 

t = 1,… , T ,

(A.18)Ω3 = Ω2 −
∑

j≠i

𝜕2d̄jt

𝜕Q∗∗∗2
t

< 0.

(A.19)
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𝜕ūjt

𝜕𝛽
z

j

𝜕𝛽
z

j

𝜕𝜃t

𝜕z∗∗∗
it

𝜕q∗∗∗
it

)

−
∑

j≠i

(

𝜕2uit

𝜕x∗∗∗
it

𝜕ūjt
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(A.20)
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,

48  The corresponding necessary condition for this result is less strict due to the inclusion of the term 
∑

j≠i

𝜕2 d̄jt

𝜕Q∗∗∗2
t

 in the denominator of the expression for �q∗∗∗
it

∕��t in (A.16), i.e., in Ω
3
.
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where the left-hand and right-hand sides of the second inequality in (A.20) have the same 
interpretations as those in the second inequality in Eq.  (A.19). However, in this case the 
sufficient condition is now more likely to hold because of the addition of the 𝜕2d̄it

𝜕Q∗∗∗
t 𝜕𝛼i

𝜕𝛼j

𝜕𝜃t

> 0 
term on the left-hand side of the second inequality.

Coefficient Plots for the Empirical Analysis in Sect. 6.2

Fig. 6   Coefficient plots for YellowAdvisoryPlus1t
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Fig. 7   Coefficient plots for YellowAdvisoryt−1



Missing the Warning Signs? The Case of “Yellow Air Day” Advisories…

1 3

Fig. 8   Coefficient plots for YellowAdvisoryPlus1t−1
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Fig. 9   Location of Cache Valley, Utah Source https://​onlin​elibr​ary.​utah.​gov/​utah/​count​ies/ and https://​www.​
freew​orldm​aps.​net/​united-​states/​utah/​locat​ion.​html

Model 1 includes only contemporaneous effects associated with YellowAdvisoryt.
Model 2 includes both contemporaneous and single-day lag effects associated with 

YellowAdvisoryt.
Model 3 adds a second-day lag effect to Model 2.
Model 4 is the quadratic model with two-day lag effects.
Model 5 is the quadratic model with three-day lag effects.
Model 1 includes only contemporaneous effects associated with YellowAdvisoryPlus1t.
Model 2 includes both contemporaneous and single-day lag effects associated with 

YellowAdvisoryPlus1t.
Model 3 adds a second-day lag effect to Model 2.
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Model 4 is the quadratic model with two-day lag effects.
Model 5 is the quadratic model with three-day lag effects.
Model 1 includes only single-day lag effects associated with YellowAdvisoryt−1.
Model 2 includes both contemporaneous and single-day lag effects associated with 

YellowAdvisoryt.
Model 3 adds a second-day lag effect to Model 2.
Model 4 is the quadratic model with two-day lag effects.
Model 5 is the quadratic model with three-day lag effects.
Model 1 includes only single-day lag effects associated with YellowAdvisoryPlus1t−1.
Model 2 includes both contemporaneous and single-day lag effects associated with 

YellowAdvisoryPlus1t.
Model 3 adds a second-day lag effect to Model 2.
Model 4 is the quadratic model with two-day lag effects.
Model 5 is the quadratic model with three-day lag effects.
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