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Friction Stir Welding (FSW)
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. Advantages:
@ Joining method is largely defect free
@ No filler materials
e Environmentally friendly (no fumes)

@ Automatable and reproducible



Friction Stir Welding

There are many operational parameters in the FSW process.

Rotational Speed

Applied Axial Force

Tool Shoulder Radius

Rotational and Advancing Speeds

etc...

Problem:
Finding optimal parameters to avoid product defects in the joints is
time consuming. Fast Simulation is Required!



Fast Simulation Approach

@ FSW process
e Modeled by coupled system of 2D Navier Stokes and Heat
equations [1, 2].
@ Numerical modeling

o Extremely time consuming due to the complexity and
non-linearity of the equations.

@ Reduced order modeling (ROM)

e Proper Orthogonal Decomposition (POD) [3].
o Discrete Empirical Interpolation Method (DEIM) [4, 5].

@ Machine learning

e Predict solutions to FSW process when operating parameters
vary, etc...

The ROM techniques will now be used on a simple example.



2D Heat Equation Example

ou 0%u  0%u 5

u(0,y,t) = u(a,y, t) =0
u(x,0,t) = u(x,b,t) =0
50if y <1
Oify>1
Where 0 < a<2and 0 < b < 2.

u(x,y,0) =

Discretization of equation (1):

UK+t = AU + At(U*)? (2)

Ukt Uk € RN and A € RV



Numerical Results:

The dynamics are modeled up to time t = .25 on a 39x39 grid
with 500 time steps.
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Computationally expensive as each time step requires
N-dimensional computations.




POD Implementation:

Goal: Construct an optimal, low dimensional, basis matrix ®, to
approximate U as:

Uk ~ ¢,3
o, c RV F R, r<<N

Step 1) Start by constructing snapshot matrix X € RM<:

|
X=|0b 07 .. U
| |

With L < m. m is the number of time-steps.

Step 2) Compute the SVD of X:
X =oxVv’

. ® € RM™N is an orthogonal matrix that holds the spatial
dynamics of the problem.



Singular Values:

POD Singular Values
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. Step 3) Truncate ® to its first r columns. This gives ®, € RN




POD Implementation:

Applying the POD method to equation (1). This gives us:

Ukt = AUX + At(U*)?
®, 5 = Ad, 3 + At(d,5%)?
P =0 Ad, 3 + Atd] (¢,35)

( rxr)

Each € R’ can be converted back to n-dimensional space by
computing:

®,35 ¢ R”

&/ A®, can be computed once and re-used. Non-linear term still
high dimensional. This problem motivates DEIM.



DEIM and POD Implementation:

Approximate the non-linearity with the DEIM approximation:

N(U¥) ~

H(PTZ,) tPTN(UX)
H(PTZ,)IN(PT UX)

N(U¥) non-linear function.

=, € RV is the optimal low rank basis for the non-linearity.
P € RY*? is an interpolation matrix.
p<<N,p~r

Non-linear approximation applied to the POD method:

& N(,3) ~ ¢rT5p((PT)Ep)1’V((P(Td;r)5")



DEIM and POD Implementation:

To construct =, and P:
Step 1) Compute snapshot N € R of non-linearity:

with | < m.
Step 2) Compute the SVD of N:
N==sVT

. where = € RN



DEIM and POD Implementation:

Singular Values

DEIM Singular Values
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DEIM and POD Implementation:

Let p denote the number of dominant singular values and their
corresponding column vectors in =.

Step 3) Truncate = to its first p columns which provides
=p € RV,

Step 4) The interpolation matrix P is constructed through the
DEIM algorithm by using as input =.



DEIM and POD Implementation:

The DEIM/POD method applied to equation (2) is:

FH = O] AD, 3 + O] Z,(PT=,) H(PT,)5)

(rxr) (rxr) (rxr)

@ Every computation is low-dimensional resulting in massive
time savings.

@ POD and DEIM can be applied to a variety of problems to
reduce computational time while preserving accuracy.



Errors:

N
[|U — E|| = max AxAyZHjik— Eik]2, with 0 < k< m
i=1

ROM Dimensions Maximum Error
|lU - U_POD|| lU_POD - U_DEIM||
r=10,p=10 0.00199 4.07157E-06
r=20,p=20 0.00051 5.94124E-07
r=30,p=230 0.00021 2.61611E-07
r=40,p=40 5.54206E-05 1.90929E-07



Timing Study of Similar Problem:

Offline (s) Online (s)
Full Model — 85.060
POD Model 4.233 39.266
DEIM Model 11.506 0.306

@ Offline time is the time required to construct the basis and
interpolation matrices.

@ Online time is the time required to complete numerical
scheme.



@ Apply ROM techniques to heat transfer model for FSW.

o Conduct literature review of additional machine learning
approaches suitable for the FSW process.

@ Incorporate ROM techniques with machine learning
approaches to predict solutions in FSW process when
operating parameters vary.
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