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Friction Stir Welding (FSW)

. Advantages:

Joining method is largely defect free

No filler materials

Environmentally friendly (no fumes)

Automatable and reproducible



Friction Stir Welding

There are many operational parameters in the FSW process.

Rotational Speed

Applied Axial Force

Tool Shoulder Radius

Rotational and Advancing Speeds

etc...

Problem:
Finding optimal parameters to avoid product defects in the joints is
time consuming. Fast Simulation is Required!



Fast Simulation Approach

FSW process

Modeled by coupled system of 2D Navier Stokes and Heat
equations [1, 2].

Numerical modeling

Extremely time consuming due to the complexity and
non-linearity of the equations.

Reduced order modeling (ROM)

Proper Orthogonal Decomposition (POD) [3].
Discrete Empirical Interpolation Method (DEIM) [4, 5].

Machine learning

Predict solutions to FSW process when operating parameters
vary, etc...

The ROM techniques will now be used on a simple example.



2D Heat Equation Example

∂u

∂t
= D

(∂2u

∂x2
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∂2u

∂y2

)
+ u2 (1)

u(0, y , t) = u(a, y , t) = 0

u(x , 0, t) = u(x , b, t) = 0

u(x , y , 0) =

{
50 if y < 1

0 if y ≥ 1

Where 0 ≤ a ≤ 2 and 0 ≤ b ≤ 2.

Discretization of equation (1):

U⃗k+1 = AU⃗k +∆t(U⃗k)2 (2)

U⃗k+1, U⃗k ∈ RN and A ∈ RNxN

.



Numerical Results:

The dynamics are modeled up to time t = .25 on a 39x39 grid
with 500 time steps.

Computationally expensive as each time step requires
N-dimensional computations.



POD Implementation:

Goal: Construct an optimal, low dimensional, basis matrix Φr to
approximate U⃗k as:

U⃗k ≈ Φr a⃗
k

Φr ∈ RNxr , a⃗k ∈ Rr , r << N

Step 1) Start by constructing snapshot matrix X ∈ RNxL:

X =

U⃗1 U⃗2 ... U⃗L


With L < m. m is the number of time-steps.

Step 2) Compute the SVD of X :

X = ΦΣV T

. Φ ∈ RNxN is an orthogonal matrix that holds the spatial
dynamics of the problem.



Singular Values:

. Step 3) Truncate Φ to its first r columns. This gives Φr ∈ RNxr .



POD Implementation:

Applying the POD method to equation (1). This gives us:

U⃗k+1 = AU⃗k +∆t(U⃗k)2

Φr a⃗
k+1 = AΦr a⃗

k +∆t(Φr a⃗
k)2

a⃗k+1 = ΦT
r AΦr
(rxr)

a⃗k +∆tΦT
r (Φr a⃗

k)2

.
Each a⃗k ∈ Rr can be converted back to n-dimensional space by
computing:

Φr a⃗
k ∈ Rn

ΦT
r AΦr can be computed once and re-used. Non-linear term still

high dimensional. This problem motivates DEIM.



DEIM and POD Implementation:

Approximate the non-linearity with the DEIM approximation:

N(U⃗k) ≈ Ξp(P
TΞp)

−1PTN(U⃗k)

= Ξp(P
TΞp)

−1N(PT U⃗k)

N(U⃗k) non-linear function.

Ξp ∈ RNxp is the optimal low rank basis for the non-linearity.

P ∈ RNxp is an interpolation matrix.

p << N , p ∼ r

Non-linear approximation applied to the POD method:

ΦT
r N(Φr a⃗

k) ≈ ΦT
r Ξp(P

TΞp)
−1

(rxr)

N((PTΦr
(rxr)

)a⃗k)



DEIM and POD Implementation:

To construct Ξp and P:
Step 1) Compute snapshot N ∈ RNxl of non-linearity:

N =

N(U⃗1) N(U⃗2) ... N(U⃗ l)


with l < m.

Step 2) Compute the SVD of N:

N = ΞΣ̂V̂ T

. where Ξ ∈ RNxN .



DEIM and POD Implementation:



DEIM and POD Implementation:

Let p denote the number of dominant singular values and their
corresponding column vectors in Ξ.

Step 3) Truncate Ξ to its first p columns which provides
Ξp ∈ RNxp.

Step 4) The interpolation matrix P is constructed through the
DEIM algorithm by using as input Ξp.



DEIM and POD Implementation:

The DEIM/POD method applied to equation (2) is:

a⃗k+1 = ΦT
r AΦr
(rxr)

a⃗k +ΦT
r Ξp(P

TΞp)
−1

(rxr)

((PTΦr
(rxr)

)a⃗k)2

Every computation is low-dimensional resulting in massive
time savings.

POD and DEIM can be applied to a variety of problems to
reduce computational time while preserving accuracy.



Errors:

||U − E || = maxk

√√√√∆x∆y
N∑
i=1

|U⃗k
i − E⃗ k

i |2, with 0 ≤ k ≤ m

.

.



Timing Study of Similar Problem:

Offline time is the time required to construct the basis and
interpolation matrices.

Online time is the time required to complete numerical
scheme.



Future Work:

Apply ROM techniques to heat transfer model for FSW.

Conduct literature review of additional machine learning
approaches suitable for the FSW process.

Incorporate ROM techniques with machine learning
approaches to predict solutions in FSW process when
operating parameters vary.
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