Energy storage can increase the value and flexibility of a nuclear power plant but makes the plant economics more subject to uncertainty in electricity price.

Jacob Bryan, Hailei Wang

Utah State University, Department of Mechanical and Aerospace Engineering, Logan, UT

Contact: jacob.bryan@usu.edu

College of Engineering UtahStateUniversity

- Nuclear power plant with integrated thermal energy storage
- Uncertainties in capital expenses, fixed annual costs, variable costs, and electricity price are considered
- Net present value (NPV) is most sensitive to capital expenses, price uncertainty
- Sensitivity to price uncertainty varies by region

System Model

Uncertainties in Model Inputs

Uncertainty in reference prices for **component costs**

Up-Front Costs Storage \$0.8B Fixed Annual Costs Storage Turbines Nuclea ariable Operating Costs (per MWh)

Capital costs are the greatest source of uncertainty for both regions

Studied Regional Markets

Long-Term Goal: Can flexible nuclear replace coal and natural gas generation?

Uncertainty in **time series** of historical price data

"Synthetic histories" are sampled from statistical models fit to the time series data

Results – Model Sensitivities

consistent between regions

100%

Annual Electricity Generation by Fuel, 2021

Coal

CAISO has larger differences, higher

Sobol indices are used to quantify **sensitivity** of net present value (NPV) to these uncertainties

> Variance in NPV due to variance in input X_i

 $Var(E[NPV|X_i])$ $S_i = r$ Var(NPV) Total variance in NPV

Large **difference** in sensitivity to electricity **price** is due to **reduced** storage utilization