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ABSTRACT

AN ANN-BASED SYSTEM FOR LATERAL MISALIGNMENT AND VERTICAL

CLEARANCE ESTIMATION OF AN ELECTRIC VEHICLE DURING DYNAMIC

WIRELESS CHARGING

by

Sanat Kumar Saha, Master of Science

Utah State University, 2019

Major Professor: Zeljko Pantic, PhD
Department: Electrical and Computer Engineering

Due to decaying fossil fuel reserves, oil price fluctuation and detrimental effects on

climate the use of fossil fuel has, people are getting more interested in other alternative

energy sources. In the past couple of decades, the Electric Vehicles have emerged as a robust

environment-friendly alternative to conventional gasoline-driven vehicles. Although EVs

have a problem with the limited energy storage, Stationary and Dynamic Wireless Power

Transfer (WPT) systems for the charging of EVs can be an effective solution. However, in

a WPT system, energy efficiency and energy transfer capability are significantly affected

by the level of Lateral Misalignment. The real-time estimation of LTM, followed by some

corrective actions, could result in better energy efficiency and the power transfer capability

of the system. This report describes the theory, design, and simulation of an Artificial

Neural Network based system for predicting LTM and Vertical Clearance of EVs, so that

the LTM can be corrected to optimize Wireless Power Transfer for EVs.

(49 pages)
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PUBLIC ABSTRACT

AN ANN-BASED SYSTEM FOR LATERAL MISALIGNMENT AND VERTICAL

CLEARANCE ESTIMATION OF AN ELECTRIC VEHICLE DURING DYNAMIC

WIRELESS CHARGING

Sanat Kumar Saha

Due to decaying fossil fuel reserves, oil price fluctuation and detrimental effects on cli-

mate the use of fossil fuel has, people are getting more interested in other alternative energy

sources. In the past couple of decades, Electric Vehicles (EV) have emerged as a robust

environment-friendly alternative to the conventional gasoline-driven vehicles. Although EVs

have a problem with the limited energy storage, Stationary and Dynamic Wireless Power

Transfer (WPT) systems for the charging of EVs can be an effective solution. To implement

wireless Power Transfer effectively, electric vehicles should be appropriately aligned over the

charging pad. This research investigates, how well Artificial Neural Network can predict

the lateral misalignment of the EV, comparing to the position of the primary charging pad

so that the misalignment can be fixed to optimize Wireless Power Transfer.
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CHAPTER 1

INTRODUCTION

Throughout the last century, fossil fuel, such as petroleum or diesel, has been domi-

nantly used for powering internal combustion engines in vehicles. However, due to public

awareness of detrimental effects, such as global warming or air pollution, and due to the

oil price fluctuation and the decaying fossil fuel reserves, people are getting more interested

in other alternative energy sources. In the past couple of decades, Electric Vehicles (EV)

have emerged as a robust environment-friendly alternative to conventional gasoline-driven

vehicles. It is estimated that, by 2020, each major automobile company will release at least

one EV model [1].

Stationary and Dynamic Wireless Power Transfer (WPT) systems for the charging of

EVs can be an effective solution to the limited energy storage problem. For an adequate im-

plementation of wireless charging, vehicles should be appropriately aligned over the charging

pad. Unfortunately, as parking alignment significantly depends on drivers, only 5 percent

of drivers park their vehicles within standard tolerances of inductive charging systems,

leading to weak coupling between charging pads and inefficient wireless charging [2]. The

problem gets even worse in dynamic charging systems due to continually changing position

between transmitter and receiver pads. Here comes the importance of vehicle detection and

correction before the vehicle reaches the charging pad.

The research report is part of Design, Development, and Testing of a Dynamic Wire-

less Power Transfer (DWPT) System for Electric Vehicles project at UPEL (Utah Power

Electronics Lab). The project is divided into 3 phases. The objective of the first phase

is to design, develop and demonstrate the operation of a down-scaled indoor DWPT test

rig, where the power transmission is around 3.7 kW and the EV speed is limited to 3 m/s.

The second phase will provide an outdoor system demonstration on a RAV4 Toyota vehicle

where the power transfer is around 3.7 kW and the EV speed will be up to 50 km/h. During
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the third and the final phase, the designed system for 30 kW DWPT system will be tested

outdoor using the vehicle as the receiver. This project report describes one segment of the

1st phase of the entire project. The objective of this project segment is to use simulation

data collected from the pad model to find the position and orientation of magnetic sensors

that would result in minimum prediction error of the ANN algorithm. The sensor will be

positioned at those optimum spots to provide the information about magnetic field to the

ANN algorithm later. The research consists of three steps. During the first step, an ANSYS

FEM model was built and simulated, and the magnetic field at each position surrounding

the pad and for different vertical clearances was calculated. Second, the data was processed

to create sets for training and verification of an Artificial Neural Network (ANN). In the

third step, the ANN was trained to determine the sensor position and orientation that

would predict LaTeral Misalignment (LTM) with a minimum estimation error. The very

next step is to build a hardware platform to collect the data measured on the real hardware

setup to repeat the training procedure, followed by ANN implementation and testing on

experimental platform.

This research provides a tool that will be able to estimate the vehicle misalignment

from the longitudinal axis of the charging pad, which will help the driver to correct the

vehicle position comparing to the charging pad. Besides, it will help the charging controller

to determine if the current flowing through the transmitter coil should be corrected, to

provide expected power not only to well-aligned vehicles but to a misaligned vehicle, too.



CHAPTER 2

OBJECTIVE

Usually, a vehicle is detected by using road-embedded inductive loops [3], [4], but this

method is costly, and it may have an impact on traffic flow. There are other methods for

detecting/classifying vehicles where magnetic sensor measurements [5] are combined with

Artificial Neural Network algorithms [6]. The efficiency of wireless power transfer of an EV

depends not only on EV detection but also on the LTM comparing to the primary charging

pad. [7] Shows how the transferred energy to the secondary/ receiving coil can be affected by

LTM of the EV. The author demonstrated that the transferred energy reduces drastically if

the normalized LTM of the EV becomes 0.5 (considering the width of the primary charging

pad as reference). When the normalized LTM is 0.5, the transfered energy becomes almost

half comparing to the energy transferred when there is zero LTM. To meet this low energy-

transfer issue, it was proposed to increase the primary charging coil current depending on

the size of LTM to maintain the same energy transfer. Although increment of the primary

charging coil current helps the power-transferring system to maintain the same amount of

energy transfer up to 0.5 normalized LTM, the efficiency of the power-transferring system

decreases significantly due to the increment of primary charging coil current. Because of

this, the detection of LTM is necessary before the EV reaches the primary charging coil and

the correction of LTM is needed to minimize the system loss and optimize the efficiency of

the wireless power transfer system.

At the top of it, the vertical clearance (height between EV-bottom pad and the primary

charging coil) varies from vehicle to vehicle, which can affect the wireless power transfer,

too. The idea is to train an Artificial Neural Network to identify the magnetic field pattern

for lateral positions of different vehicle and different vertical clearances so that the pro-

posed design can be used for various vehicles as the distance between the transmitting coil

(charging pad) and receiving coil may vary depending on the size of the vehicle.
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To summarize, the main objective of this project is to use simulation (with a high

number of neurons to train Artificial Neural Network) data to find out the best suitable

position and orientation for the magnetic sensors, so that the sensor structure can be im-

plemented into hardware to accurately predict the LTM during dynamic wireless power

transfer. Also, using the magnetic field pattern, EV would be detected before it reaches

the primary charging coil. Since different EV has different vertical clearances, simulation

data has been used to train ANN so that the trained network can detect different vertical

clearances from the magnitude of the simulated magnetic field.
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CHAPTER 3

LITERATURE REIVEW

3.1 Wireless Power Transfer (WPT)

Generally, the electrical wire is used to transfer electric power to electric- equipment.

However, the use of wire is inconvenient for some cases, as the electrical equipment cannot

move during powering and charging operation. Despite providing a mobile solution, the use

of a battery has some limitations, such as the limited battery capacity, inconvenient charging

process, high weight, and size. To avoid these issues, throughout the past few decades, WPT

has been being developed, allowing power to be delivered without any contact between two

objects by means of coupling magnetic field.

Inductive WPT can utilize magnetic material (typically ferrite) to enhance the coupling

between pads, or it can be core-less. Both approaches have their advantages and deficiencies.

For example, high power transfer capacity is one of the merits of using magnetic cores; on the

other hand, the approach is expensive; it adds some additional weight and causes additional

core losses. Therefore, magnetic cores are used where high-power transmission is required,

while a core-less design is usually applied for low-power wireless transmission [8].

In general, a WPT system consists of a power-transmitting and power-receiving sub-

systems. Usually, the power-transmission part consists of a transmitter coil and an inverter,

where the inverter energizes the transmitter coil. Magnetic flux, generated by the transmit-

ter coil, transfers power to the receiver circuit. The power-receiving portion is comprised of

a pick-up module and a regulator. The magnetic flux is received by the pickup module, and

it produces power; on the other hand, the regulator controls the voltage and current of the

pick-up module to stabilize the output power. Some power variation may occur due to the

misalignment between the power transmission-part and the power-receiving part. In that

case, the inverter can vary the current through the transmitter coil to regulate the output
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power. On the power-receiving-side, the regulator may alter the effective quality factor of

the resonant circuit at the receiver and that way allow power to be delivered [9].

3.2 LaTeral Misalignment (LTM)

In a Wireless Power Transfer system, LaTeral Misalignment (LTM) plays a significant

role as the capability of energy transfer and energy efficiency depends on it. In order to

improve energy transfer capability and achieve higher energy efficiency, real-time estimation

and detection of LTM and remedial actions are needed. Drivers driving habits and road

conditions may affect the amount of vehicle LTM; usually, for an average driver, the standard

deviation of LTM is around 46 cm. Due to LTM, the expected received wireless power of

an averaged sized vehicle may drop 46 percent compared to the power transfer of a vehicle

with zero LTM [10]. Besides, the LTM is responsible for detuning of transmitter and

receiver impedance matching networks, which may cause an additional drop in wireless

power transfer.

Integration of complex tuning networks into compensation networks can sometimes

mitigate the problem. Other possible options are increasing the current of the transmitter

coil and changing loaded quality factor QL. However, changing QL comes with some nega-

tive consequences, e.g. the increase of the loss at the receiver due to high reactive current

passing through the receiver compensation network; if the receiver reactance is not changed

with the same scale as QL, the receiver side can cause detuning effect to the transmitter

side; as VA requirement of the receiver compensation network elements is proportional to

QL, it will also change [11]. For these reasons, real-time detection and correction of LTM

are vital for the operation of a dynamic wireless power transfer system. Even if the driver

action fails to reduce the misalignment, real-time control of the current of the transmitter

coil can extend the nominal energy transfer zone for laterally misaligned vehicle [10].

3.3 Artificial Neural Network (ANN)

Fig 3.1 shows basic diagram of an Artificial Neural Network. An Artificial Neural

Network is a data-processing pattern which is inspired by the way human nervous systems,
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Fig. 3.1: Diagram of an Artificial Neural Network

processes information. The most significant part of this pattern is the structure of the

information processing system which is a collection of many highly interconnected processing

elements (neurons). They work together to solve specific problems by learning through

examples. The problem-solving approach of conventional computers is different from the

ANN approach. Computers use an algorithmic approach where it follows a set of instructions

to solve a problem. If the specific steps that the machine needs to follow are unknown, the

computer cannot solve the problem. This limits the problem-solving ability of computers

to the problems that we already understand and know how to solve.

ANN is getting popularity for its Adaptive learning or capability to learn how to

perform tasks based on the information given for training or initial experience and Self-

Organization or capability of creating its organization or representation of the information

it receives during the learning process. Since ANN computations may be carried out in par-

allel, specific hardware devices are being modeled and manufactured which take advantage

of this capability. Another great feature of ANN is that the partial destruction of a network

leads to the corresponding degradation of performance, but some network capabilities may
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be retained even with a significant network damage [12].

A typical ANN consists of many artificial neurons (called units) arranged in a series

of layers, where each layer connects to the layers on either side. Neurons from the first

layer are known as input units which are designed to accept different forms of information

that the ANN will try to learn or, recognize. The units situated on the other end of the

network are known as output units, and their signal depends on how ANN responds to the

information as it has learned. There are one or more layers of hidden units between the

input units and output units, which, altogether, form most of the network. Most neural

networks are entirely connected, which means that each hidden unit and each output unit

is connected to every unit in the layers in both sides. The connection between each unit

is represented by a number called weight, which can be either positive (if one unit excites

another) or negative (if one unit suppresses or inhibits another). If the weight value of one

unit goes higher, it has more influence has on another unit.
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CHAPTER 4

METHODOLOGY

This chapter describes all design aspects of the project, starting from the visualization

of the LTM detection system, ANSYS simulations, selection of the magnetic field, the

collection of the data sequence for the ANN training purposes for the estimation of the LTM

and vertical clearances. The objective of this section is to describe the complete procedure

that was followed to obtain the optimum position for the sensors for the detection of the

LTM. Here, simulations were used to figure out the best position of the sensors using ANN

so that the detection system can be implemented.

Fig. 4.1: Side view of an EV equipped with an LTM detection system.

Fig 4.1 shows side view of an EV where proposed LTM detection system has been

implemented. The black horizontal line symbolizes the bottom of the car. The power

transferring pad is embedded on the road, and multiple power transferring pad are situated

next to each other along the length of the road. In the front part of the car-bottom side,
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the main detection system is implemented. Three sensors are situated side by side to detect

the magnetic field created by the primary charging coil. The car bottom is separated by

aluminum shield so that the magnetic field created by the charging coil does not interfere

with the car-bottom plane. When the detection system of EV enters a primary charging

coil it is considered as EV detection pad, since the magnetic field generated by the charging

pad is being only used for detection of the LTM.

The wireless power transfer system is situated between the two wheels of the EV and

connected to the car chassis from the bottom. The power receiving coil is separated by

Aluminum shield, and Ferrite is used to increase the magnetic coupling between the coils.

The Primary charging coil is embedded on the road accompanied by Ferrite. The operating

frequency is around 85 kHz for the wireless power transfer system. The total distance

between the car-bottom plane and power transferring pad is called Vertical Clearance. The

distance between the sensor and the car-bottom plane is called Vehicle-Sensor distance.

Lastly, the distance between the sensor and the primary charging coil is called the Air-gap.

4.1 ANSYS-Simulation and Selection of the Magnetic Field

Fig. 4.2: ANSYS FEM model of the charging pad
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Element X-size (cm) Y-size (cm) Z-size (cm)

Aluminum Shield 350 202.4 0.5

Copper Charging Coil 175 50.6 0.632

Ferrite 175 61 0.25

Table 4.1: Measurements for ANSYS-simulation Model

The whole design for simulating the charging coil and calculation of the magnetic field

was prepared in ANSYS. ANSYS is a simulation software that tests a models durability,

temperature distribution, fluid movements, and electromagnetic properties, etc. Fig 4.2,

top view of the model, shows the structure of the simulation model and position of the

solid elements. Dark ash colored solid parts symbolize Ferrite which is in between of the

Aluminum Shield and orange colored copper charging coil. There were total eight turns of

the copper charging coil where each turn is separated by 0.76 cm along the length of the

charging pad and by 2 cm along the width of the charging pad. As the current flowing

through each coil was 5 Ampere, the total magnetomotive force of the charging pad was 40

Ampere-turns.

Table 4.1 shows appropriate measures of all solids (Aluminum Shield, Copper Charging

Coil, and Ferrite) along the X, Y and Z axis. The Aluminum Shield was two times bigger in

length and four times bigger in width comparing to the charging coil, which was designed

to shield other components for hardware implementation from the magnetic field created by

the charging coil. The distance between the Aluminum Shield and Copper Charging Coil

varied due to different vehicle vertical clearance, which will be discussed later. The distance

between two Ferrite bars from the charging pad was 0.5 cm which was situated along the

length of the charging coil on both sides. The Ferrite bar was edging in from the innermost

turn of the charging coil by 5.2 cm along the X-axis and edging out of the outermost turn

of the charging coil by 5.2 cm along the Y-axis. The length of the Ferrite bars was the same

as the length of the charging pad. The purpose of using the Ferrite bars was to attract the

magnetic field lines around it to pass through it so that the intensity of the magnetic field

gets higher for the ANSYS simulation.
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4.1.1 Magnetic Field Along the Length of Charging Pad (Bx)

Fig. 4.3: 3-D plot of the Magnetic field (Bx) along the half-length of the charging pad.

Fig 4.3 demonstrates the magnetic field along the half-length of the charging pad (Bx).

Here, central point of the charging pad is considered as the origin, and the edge of the

charging pad is 87.5 cm as the total length of the charging pad is 175 cm. Due to the location

of the coil at the beginning of the charging pad, significant Bx values can be observed only

at the beginning. This is why there is a lump at the beginning of Fig 4.3. It was more

evident when the contour of Bx was plotted in Fig 4.4, which illustrates the magnitude

of Bx along with the half-length of the charging pad. Since except at the beginning of

the charging pad, the magnitude of Bx of most of the simulation region was negligible,

for simulation purpose, only the lump region was considered. Fig 4.5 shows the considered

simulation region of the charging pad, where the magnitude of Bx is higher comparing to

the rest of the charging pad. Another great advantage of considering this region is that,

the while sensing the magnetic field, the magnetic sensors would be able to detect the big

influx of Bx at the very beginning of the charging pad compared to the middle portion of

the charging pad. This would help to detect the EV when it is entering the charging pad
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Fig. 4.4: Magnetic field (Bx) contour plot along the half-length of the charging pad.

Fig. 4.5: 3-D plot of the selected Magnetic field (Bx) for ANN training.
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area.

4.1.2 Magnetic Field Along the Width of Charging Pad (By)

Fig. 4.6: 3-D plot of the Magnetic field (By) along the half-length of the charging pad.

The magnetic field along the Y-axis of the charging pad (By) throughout the half-

length of the charging pad is illustrated in Fig 4.6. Since the charging coils are at the edge

along the X-axis, the intensity of the magnetic field was higher compared to the middle of

the charging pad. At the edge of the charging pad of the Y-axis, By is low since charging

coil is aligned parallel to the Y-axis of the charging pad. Gradually the magnitude of By

increases as the charging coil starts to align itself along the perpendicular of the Y-axis of

the charging pad. Throughout the middle of the charging pad, it continues with almost a

steady magnitude, making it difficult to detect the EV position on the charging pad. Fig 4.7
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Fig. 4.7: Magnetic field (By) contour plot along the half-length of the charging pad.

is the contour plot for By, which shows that the magnitude of By is highest at those places

above the charging coils.

4.1.3 Magnetic Field Along the Length of Charging Pad (Bz)

Fig 4.8 shows the magnitude of the simulated magnetic field along the Z-axis (per-

pendicular to the charging coil). As Aluminum Shield was used, it creates eddy current

throughout the whole Aluminum pad. As a result, it interferes with the magnetic field cre-

ated along the Z-axis causing fluctuation in the magnitude of the magnetic field throughout

the entire charging pad. It is comprehensible from this figure that the magnetic field along

the Z-axis (Bz) does not have any specific pattern. Since ANN cannot predict well when

input data is incoherent, any calculation regarding Bz was avoided throughout the ANN

training.

4.2 Training Artificial Neural Network

Fig 4.10 shows the complete flowchart of the ANN training and estimation procedure.

The first step is to collect the magnetic field data points and store appropriately for MAT-
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Fig. 4.8: Magnetic field (Bz) along the charging pad for simulation.

Fig. 4.9: Top view of the simulation region with measurements
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Fig. 4.10: Flowchart of training ANN and estimation of LTM and VC
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LAB simulation. The received magnetic field curves throughout the simulation region were

not smooth. Since ANN cannot predict well when the data is incoherent, the magnetic field

curves were smoothed out by smoothing and interpolation. Using MATLAB curve fitting

app, curves were fitted to the closest match for their quadratic equation for the best result.

As it has been already discussed that Bz value is incoherent and unpredictable, it was

omitted for ANN training. Therefore, for training ANN, only Bx or By was considered.

Later, results of detection of LTM when sensors have specific angles with respect to the X-

axis, was also determined. Results of detection of LTM for different Vehicle-Sensor Distance

(distance between Vehicle bottom and Sensor) and different lateral positions of the sensors

were also covered.

Fig 4.9 shows the initial setup of sensor position for training of ANN, where the 2nd

sensor was in the middle and both 1st and 3rd sensor were 15 cm away from the 2nd sensor,

and the 2nd sensor is in the middle of the charging pad. The magnetic flux density points

were collected for the three sensors, along the X-axis for a specific position where the Air-

gap was 11 cm, and Vehicle-Sensor Distance was 2 cm. The magnetic field points along the

length of the charging pad for this combination of three sensors were considered as zero-

misalignment. Then the whole setup was moved every half cm in both lateral directions

(right and left along the Y-axis) where the distance between the sensors remained the

same. The magnetic field data points for the corresponding lateral movement to the right

of the charging pad was assigned to the corresponding misalignment value and considered

as positively misaligned. For example, when the whole structure of sensors was moved 1

cm to the right side from the middle of the charging pad laterally (along with the Y axis),

the magnetic field data points collected for three sensors were considered as magnetic flux

density data points for +1cm positive misalignment. In a similar way, when the setup was

moved to the left side from the middle of the charging pad along the Y-axis, it was considered

as negative misalignment, and the specific magnetic flux density setup was assigned to their

corresponding movement from the middle of the charging pad. The complete structure was

capable of measuring 17 cm misalignment in both right and left side laterally from the
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middle of the charging pad where the middle line of the charging pad along the X-axis is

considered as the reference point. Since the complete setup was moved every half cm in

both right and left side along the Y-axis, there were total 69 misalignment points, where one

misalignment structure was for zero-misalignment (the reference), 34 misalignment points

composition for positive misalignment and rest of them were for negative misalignments.

After collection of the magnetic flux density data, the next step was to train the ANN

using MATLAB Neural Network Fitting app. The goal of using MATLAB Neural Network

Fitting app was to create a neural network to map between a data set of numeric inputs and

a set of numeric targets. A two-layer feed-forward network with sigmoid hidden neurons

and linear output neurons can fit multi-dimensional mapping problems arbitrarily well,

given consistent data and enough neurons in its hidden layer. The ANN was trained with

Levenberg-Marquardt back-propagation algorithm, even though it needs more data points

to predict the set of numeric targets. The network was trained with a different number

of neurons, and also a different number of delays were introduced to observe how much

the prediction results were affected by the different number of neurons and delays. The

input for the ANN training was the set of magnetic sensor values concatenated for all the

different misalignment points, and the ANN-target was the corresponding misalignments

(in cm) concatenated corresponding to their magnetic flux density values.
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CHAPTER 5

ANALYSIS OF THE RESULTS

The purpose of this project was to design and develop an ANN-based algorithm for

estimating LTM and Vertical Clearance in order to implement the algorithm into hardware.

This Section discusses the results for LTM estimation, Vertical Clearance prediction, and

how the estimation of LTM is effected by speed, sensor position, angle of the sensor and

Vehicle-Sensor Distance.

5.1 Testing Artificial Neural Network

After training the network, the code for manual training was extracted and imple-

mented in a MATLAB code. In order to observe how the trained network performs, testing

ANN code was developed. The whole procedure was similar to the Training code, except

the fact that the complete sensor structure was moved every 0.1 cm instead of 0.5 cm. As a

result, the total number of testing misalignment points for LTM prediction was 341, com-

paring to the number of training misalignment points of 69. For testing the trained network,

one misalignment structure was for corresponds to zero-misalignment (the reference), 170

misalignment points composition for positive misalignment and the rest of them were for

negative misalignment.

A total number of 60 misalignment points were selected covering the range of -17

Number of Delay: 1

Number of Neurons 1 2 3 4 5 6 7 8 9 10

Mean of RMS LTM Prediction Error (cm) 2.29 1.43 0.87 0.76 0.67 0.56 0.51 0.45 0.42 0.35

Number of Delay: 5

Number of Neurons 1 2 3 4 5 6 7 8 9 10

Mean of RMS LTM Prediction Error (cm) 2.27 1.21 0.81 0.73 0.66 0.56 0.50 0.44 0.39 0.33

Number of Delay: 10

Number of Neurons 1 2 3 4 5 6 7 8 9 10

Mean of RMS LTM Prediction Error (cm) 2.26 1.41 0.79 0.68 0.62 0.49 0.47 0.39 0.36 0.31

Table 5.1: Effect of Number of Delays and Number on Neurons on average of RMS LTM
estimation error
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cm to +17 cm misalignment, and the average of the LTM prediction error was calculated

for the chosen sixty misalignment points. The misalignment points were chosen up to

one decimal point (for example -14.3 cm misalignment, -5.7 cm misalignment, +11.6 cm

misalignment) covering the range of -17 cm to +17 cm. The sixty misalignment points

that were selected from the ANN testing code were not included in the training ANN

code to observe how accurately the ANN can predict different misalignment points where

the data were not included in the training code. In order to calculate the average of

the RMS LTM prediction error, estimation results for different points (along the X-axis),

for one specific misalignment point were collected. Then RMS of LTM estimation were

calculated for that particular misalignment point. After that, the RMS LTM estimation

was deducted from that specific misalignment point to calculate the RMS LTM estimation

error for that particular misalignment point. The same procedure was followed for the

selected sixty misalignment points to calculate the RMS LTM estimation error for all the

sixty misalignment points. Finally, the sum of all the RMS LTM prediction error was

averaged to calculate the average of the LTM prediction error.

Also, the effect of different number of delays and neurons were calculated on ANN

prediction. Table 5.1 demonstrates the effect of the number of neurons and delays on the

precision of the estimation of LTM. If the number of neurons is increased, the average of

RMS LTM prediction error reduces significantly, but it takes more time to train because

of the increased number of coefficients needed for LTM estimation. The number of delays

represents the number of consecutive magnetic flux density points were introduced to the

training. Here, delay-1 is assigned as the number of delay elements, that means only one

data point is provided for training. Since ANN can predict more precisely when the input

is coherent, the increased number of delay provides better results for the estimation of

LTM. However, results for the different number of delays were not significantly affecting

the average of RMS LTM estimation error comparing to the results for the different number

of neurons.
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5.2 Orientation of the Optimum Position of the Sensing Devices

For first Training ANN and LTM estimation, only Bx was used, and the Vehicle-Sensor

Distance (Fig 5.8) was selected to be 2 cm. The 2nd sensor was in the middle of the charging

coil and both 1st and 3rd sensor was 15 cm apart from the 2nd sensor. Fig 4.9 shows the

top view of the simulation region including sensor positions and proper measurements. In

this section, three topics are discussed; Selection of Lateral Position of the Sensors, Sensor

Positions with Different Angles with X-axis, and Selection of the Vehicle-Sensor Distance

(distance between the EV bottom pad and the sensor).

5.2.1 Selection of Lateral Position of the Sensors

Fig. 5.1: Average of the RMS LTM prediction error when the 1st and the 3rd sensors are
moving equidistantly from the 2nd sensor

For the selection of the appropriate Lateral Position of the Sensors, the 2nd sensor was

kept in the middle of the charging pad facing the length of the charging pad. Both the

1st sensor and the 3rd sensor were moved every half cm equidistantly from the 2nd sensor
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Fig. 5.2: Average of the RMS LTM prediction error when only the 3rd sensor is moving
from the 2nd sensor and the 1st sensor is fixed (15 cm away from the 2nd sensor); number
of neurons used for training is ten/hidden layer

to create a symmetrical sensor position. To assign the magnetic field to its corresponding

misalignment values, the whole set of 3 sensors were shifted to the right in order to assign

positive misalignment, and to the left to assign negative misalignment. The structure could

estimate up to 17 cm misalignment in both directions. Fig 5.1 shows that results of the

average of the LTM prediction error when both the 1st sensor and the 3rd sensor is moving

equidistantly from the middle sensor. It can be clearly shown that the of the average of

RMS LTM prediction error does not change much due to the change of the sensor positions.

This indicates an important supposition that the estimation of LTM provides an optimum

result when sensor positions are symmetrical and do not depend on how far the 1st and

the 3rd sensors are located from the 2nd sensor if they are balanced. Since symmetrical

sensor position does not make any impact on the LTM estimation, 15 cm was chosen for

the distance from the 2nd sensor to both the 1st sensor and the 3rd sensor.

Then, the position of the 1st and the 2nd sensor was kept stationary, and only the

3rd sensor was moved every half cm. Then, the average of the LTM estimation error was



24

Fig. 5.3: Average of the RMS LTM prediction error when only the 3rd sensor is moving
from the 2nd sensor and the 1st sensor is fixed (15 cm away from the 2nd sensor); number
of neurons used for training is four/hidden layer

Fig. 5.4: Average of the RMS LTM prediction error when only the 3rd sensor is moving
from the 2nd sensor and the 1st sensor is fixed (15 cm away from the 2nd sensor); number
of neurons used for training is two/hidden layer
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calculated for this structure by moving the structure in both directions. The same process

was continued to calculate the average of the RMS LTM estimation error where only the 3rd

sensor was being moved every half cm up to 17 cm (downwards along the Y-axis). Fig 5.2

demonstrates that the overall average of the RMS LTM estimation error has increased when

only the 3rd sensor is moving compared to the structure when both the 1st and the 3rd

sensors were moving symmetrically. It also shows the average of the RMS LTM prediction

error is lowest when the 3rd sensor is 15 cm away from the 2nd sensor, evidencing that the

estimation of LTM works best when the sensor position is symmetrical. For this reason, this

symmetrical structure for the sensors was used for ANN training where both the 1st sensor

and the 3rd sensor was chosen 15 cm apart from the 2nd sensor, which was positioned in the

middle of the cart. For the training and testing of the ANN algorithm, ANSYS magnetic

field data were smoothed and curve fitted to eliminate the impact of final accuracy of

the ANSYS simulation. As a result, the difference between the average of the RMS LTM

prediction error for different sensor positions is relatively low.

It has been already discussed how the number of ANN neurons affects the estimation

of LTM. For the calculation presented in Fig 5.2, the number of delays is selected to be

ten, as well as the number of neurons. Fig 5.3 represents how the estimation error changes

for different positions of the 3rd sensor when the number of neurons is reduced to four. As

one can see, the averages of the RMS LTM prediction errors have increased for all positions

of the 3rd sensor. Fig 5.4 shows the average of the RMS LTM estimation error when the

number of delays is ten and the number of neurons is two. It is evident from the graph that

the overall estimation error has increased further for every 3rd sensor position. However,

from all three bar graphs, it is evident that the average of RMS LTM prediction error is

lowest when the 3rd sensor is 15 cm away from the 2nd sensor, or in other words, when the

overall sensor structure is symmetrical.

5.2.2 Sensor Positions with Different Angles

After the selection of the lateral position of the sensors, the angle between the sensor

and X-axis was varied to measure the average of the LTM prediction error to evaluate the
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Fig. 5.5: Magnetic field along the charging pad for simulation when angle between X axis
and sensor is 30 degree.

Fig. 5.6: Magnetic field along the charging pad for simulation when angle between X axis
and sensor is 45 degree.
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Fig. 5.7: Magnetic field along the charging pad for simulation when angle between X axis
and sensor is 60 degree.

Angle between X axis and sensor (degree) Average of the RMS LTM prediction error (cm)

0 0.3234
30 0.4239
45 0.6138
60 0.3932
90 0.3187

Table 5.2: List of Average of the RMS LTM prediction error for different angle between X
axis and sensor
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Vehicle-Sensor Distance (cm) Average of RMS LTM Prediction Error (cm)

2 0.3237

3 0.4112

4 0.3962

5 0.3632

Table 5.3: List of the Average of RMS LTM Prediction Error for different Vehicle-Sensor
Distances

effect on ANN LTM estimation. The simple formula was used to calculate the magnetic

field, B=Bx*Cos(θ)+By*Sin(θ), where θ = angle (in degree) between X-axis and the

sensor. From the equation, it is clear that when θ = 0◦, magnetic field (B) is equal to Bx.

In a similar way magnetic field (B) is equal to By, when θ = 90◦. If the angle increases up

to θ = 45◦, Bx has more influence than By on the total magnetic field. When the angle is

increased from 45◦ to 90◦ impact of By is more prevalent than Bx. Fig 5.5, Fig 5.6, Fig 5.7,

illustrates the influence of Bx and By on total magnetic field throughout the charging pad

when angle is 30◦, 45◦ and 60◦ respectively. Table 5.2 shows average of the RMS LTM

prediction error for different angles from 0◦ to 90◦. From this table, it is clear that error

is lowest when only By is considered for the average of the RMS LTM prediction error

calculation. But using only Bx provides the sense of EV position as the sensor can detect

the big hump of the magnetic field (Fig 4.3) and has the 2nd least average of RMS LTM

prediction error. It is also noticeable that error starts to increase when the theta increases

and the mean of RMS LTM estimation error is highest when theta is 45◦. The error starts

to decline when the angle is further increased and become lowest when the sensor is parallel

to the Y-axis. When the angle is between 0◦ and 90◦, the magnetic field has the effect of

both Bx and By. This effects the structure of the magnetic field curves and curve fitting

becomes difficult for every region as the pattern is different for the different region compared

to the curves for By and Bx. Since the use of only Bx has the advantage of EV position

sensing and the average LTM prediction error is comparatively low, only Bx was used for

the final ANN algorithm.

5.2.3 Selection of the Vehicle-Sensor Distance



29

Fig. 5.8: Visualization of Vehicle-Sensor Distance and vertical clearance
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After the selection of sensor lateral position and angle with the X-axis, Vehicle-Sensor

Distance was selected. (Fig 5.8) shows the relationship of the Vehicle-Sensor Distance,

Air-gap, and Vertical Clearance. Vehicle-Sensor Distance is the distance between the car

bottom (from the surface of the Aluminum Shield) and the center of the sensor. The

Air-gap is the distance between the middle of the sensor and charging coil, where vertical

clearance is equal to the summation of Vehicle-Sensor Distance and Air-gap. For Different

EVs, the vertical clearance would be different, but the distance between sensor and EV

bottom would be fixed. To calculate the best Vehicle-Sensor Distance position, the magnetic

field was taken for different Air-gaps where the Vehicle-Sensor Distance was maintained

the same. Then the mean of RMS LTM estimation error was calculated for that specific

Vehicle-Sensor Distance including different Air-gap positions and the whole procedure was

repeated for a few other Vehicle-Sensor Distances. Fig 5.8 illustrates different combinations

of Vehicle-Sensor Distance and Air-Gap that were used to evaluate the best Vehicle-Sensor

Distance for ANN implementation. Table 5.3 shows average of RMS LTM prediction error

for corresponding Vehicle-Sensor Distance.

5.3 Effects of Speed on Estimation of LTM

In this section, the effect of speed on the estimation of LTM is discussed. In the previous

analysis, the sampling rate was constant at 250 µs. Since the sampling rate is constant, if

the speed increases, the number of the data point for ANN estimation will decrease. If the

speed becomes double, then the number of data points will be reduced to half, comparing

to the data points for the previous speed. Fewer data points mean ANN prediction error

would also increase. Total of twelve combinations of speed was considered to examine how

much speed affects ANN LTM estimation where the speed range was 0.25 m/s to 3 m/s.

Fig 5.9 shows how the average of the RMS LTM estimation error has changed for different

speeds. It is evident from the figure that the average of RMS LTM prediction error is lowest

for 0.25 m/s since it has the highest number of data points and ANN could predict more

accurately. For the same reason, the average of the RMS LTM estimation error is highest

when the speed is 3 m/s. But the overall average of the RMS LTM estimation error was
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Fig. 5.9: Average of the RMS LTM prediction error for different speeds.

less than 0.35 cm.

In this project, to predict LTM for different speeds, ten neurons/layer and ten delays

had been used. One concerning factor to be considered here to predict the LTM when EV

has higher speed since the average of the RMS LTM prediction error slightly increases due

to less number of data input. It has been already demonstrated in Table 5.1 that decrements

in the number of neurons to train ANN, causes an increment in error in the estimation of

LTM. On the other hand, error in the estimation of LTM increases very slightly when the

number of delays is lessened. Since both, the number of neurons and the number of delays

generate the same number of coefficients in the training process, reducing the number of

delays and increasing the number of neurons can produce more accurate results for the

estimation of LTM with higher speed.

5.4 Results for Vertical Clearance Detection

Estimation of Vertical Clearance is necessary since the magnitude of the magnetic field

will vary for different heights for the same position of the charging pad, which will result in
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Vertical Clearance (cm) speed (m/s)

11 0.5 1 1.5 2 2.5 3

12 0.5 1 1.5 2 2.5 3

13 0.5 1 1.5 2 2.5 3

14 0.5 1 1.5 2 2.5 3

15 0.5 1 1.5 2 2.5 3

Table 5.4: Speeds and Combination of Vertical Clearances used for ANN Training to cal-
culate the mean of RMS LTM estimation error

Vertical Clearance (cm) speed (m/s) Average VC Prediction Error (cm)

11.5 0.75 1.25 1.75 2.25 2.75 .180
12.5 0.75 1.25 1.75 2.25 2.75 .176
13.5 0.75 1.25 1.75 2.25 2.75 .129
14.5 0.75 1.25 1.75 2.25 2.75 .154

Table 5.5: Speeds and Combination of Vertical Clearances used for ANN Estimation Pur-
poses

the poor estimation of LTM. Since different EVs might have different Vertical Clearances,

it is important for ANN to predict Vertical Clearance so that it can predict LTM more

precisely. For training purposes, ANN was trained for five different Vertical Clearances

between 11 cm to 15 cm in incremental steps of 1 cm. For each Vertical Clearance position,

ANN was trained for six different speeds between 0.5 m/s to 3 m/s in incremental steps

of 0.5 m/s. Table 5.4 illustrates different combinations of different Vertical Clearances and

speeds for training ANN to estimate Vertical Clearances.

For estimation of Vertical Clearances, the magnetic field of different Vertical Clear-

ances was chosen. For testing ANN, the network was tested with four different Vertical

Clearances between 11.5 cm to 14.5 cm in incremental steps of 1 cm. For each Vertical

Clearance position, ANN was tested for five different speeds between 0.75 m/s to 2.75 m/s

in incremental steps of 0.5 m/s. That five different speeds were used in testing ANN, were

not included in the training ANN phase. For testing of the prediction algorithm, the average

of Vertical Clearance prediction error was calculated for each speed. Average of Vertical

Clearance prediction error for a specific speed was calculated in the same way the average of

RMS LTM prediction error was calculated. Then each estimated error for the five different
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speeds was averaged to calculate the ultimate average of the Vertical Clearance prediction

error for that corresponding Vertical Clearance. Table 5.5 shows mean of Vertical Clearance

prediction error for different Vertical Clearances. In each case, the average error was very

low, less than 2 mm, which proves that ANN can successfully predict the VC with a very

good accuracy.
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CHAPTER 6

FUTURE WORKS

As this project is part of a larger design (Toyota Dynamic Wireless Wireless Power

Transfer System), there is much work that must be completed for this project to be consid-

ered complete. This project is only the first stage of the three phases. The very next step

will be to design the hardware of the simulation design for the first stage.

Fig. 6.1: Block diagram of the complete hardware system.

Fig 6.1 demonstrates the block diagram of the hardware implementation part for the

simulation of EV-based LTM detection system. The block diagram starts with three sensors

connected on a cart which will be attached to the front of a car model. Fig 6.2 shows a

proper sensor structure on the cart. The model of the cylindrical shaped sensor is MC90R.

Each sensor is 15 cm apart from each other where the second sensor is situated in the middle

of the cart (along the Y-axis). The sensors can move laterally, providing flexibility on the

selection of a specific lateral position. The cart has four wheels on it so that it can be

smoothly pushed by the car model. The car will push forward the cart, and the sensors on

the cart will measure the magnitude of the magnetic flux density along the EV detection
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charging pad.

Fig 6.3 illustrates the PCB design for the hardware controller system. The sensors

will generate ac voltage signals depending on the intensity of the magnetic field. Then the

rectifier diodes will be introduced to convert the AC signal to a DC signal with the help of

the RMS calculator. Then the DC signal will be amplified using an op-amp to a 3.3-level

signal to be used in the micro-controller. The sampling rate for the micro-controller is 250

µs. Then raspberry pi will be used for the computation needed to predict the LTM and

Vertical Clearance. Xbee will be used for communication between the controller and the

model car, and uploading the data online. Here, the detection system frequency will be

used as 4 KHz, and the power transfer frequency will be around 85 KHz.

Fig. 6.2: Sensor positions on cart.
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Fig. 6.3: PCB design for the controller.
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CHAPTER 7

CONCLUSION

Object detection using magnetic field is continuously being experimented and modi-

fied for different implementations. This research concept is implemented to improve the

efficiency of wireless charging as the efficiency heavily depends on the proper alignment

of the vehicle with respect to the transmitter coil. This result will help to overcome the

reduction of the wireless power transfer due to lateral misalignment. The proposed solution

can be integrated into autonomous vehicles, Driver Information Systems (DIS), Intelligent

Transportation Systems (ITS), etc., by modifying it for different heights and speeds of a

dynamically charged vehicle. In addition, this concept can be implemented in traffic con-

trolling systems by using it for vehicle lane detection. Another significant feature of the

proposed solution is that the installation of the sensors is easy and can be implemented

at low cost. The hardware implementation will confirm the effectiveness of the simulated

results.
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