

Modular AC-DC Converters for Medium Voltage Applications

Mahmoud A. Mansour

ECE Department, Utah State University, Logan, UT, USA

ASPIRE ERC

4/12/2021

Major Professor: Dr. Regan Zane

This work was supported in part by the Department of Energy through the Utah State University Power Electronics Lab (UPEL)

Need for High Power AC-DC Converters

- A significant amount of electrical energy is generated by three-phase AC machines
- Most of electrical power is transmitted and distributed using existing three-phase AC systems
- Most modern and emerging loads are DC
- DC loads are increasing in power levels e.g., EV charging

MV AC to DC Converter for EV Charging Stations:

EV Charging Station: Grid Connection through LF Transformer

EV Charging Station: Grid Connection through MV SST

Medium Voltage AC to 800 V DC converter

- 4.16 kV three-phase input, 560 kW, 750 V 900 V DC output
- Soft DC-link based front-end with 6.5 kV IGBT implementation

SP

NSF Engineering Research Cente

UtahState

RF

- Seven DC-DC series stacked modules each rated at 80 kW
- Each DC-DC module is an isolated three-port converter

4

Triple Active Bridge Series Resonant Converter

- Two H-bridges on primary, one per port
- Series connected secondary windings
- Low variation in the resultant primary voltage
- One LC tank and secondary bridge required
- Seven Modules are to be implemented in the final design
- Design Steps:
 - Topology validation
 - Control Validation
 - High-power module Validation
 - Series stacking Validation
 - Full system validation

Proposed DC-DC Topology for ISOP Modules

Proposed Topology: Modulation

S P RE

Proposed Topology: Modulation

Bridge Voltage Definitions

Proposed Converter

Proposed Topology: 2 kW Hardware Prototype

Proposed Topology: Control Approach

Proposed Control Variables:

Output control:

 i_{out} is regulated

 ϕ_{edge} is control variable

$$\begin{split} \langle I_{\text{out}} \rangle &= \frac{8}{\pi^2 X_s} [V_{g1} \sin \phi_{\text{edge}} + V_{g2} \sin(\frac{\alpha_2}{2}) \cos(\phi_{\text{edge}} - \frac{\alpha_2}{2})] \\ \langle I_{\text{out}} \rangle &= \frac{8}{\pi^2 X_s} v_{p,q}. \end{split}$$

Feed-Forward Calculations:

$$\phi_{edge} = \sin^{-1}(\frac{V_{p-q}}{\sqrt{K_1^2 + K_2^2}}) - \sin^{-1}(\frac{K_2}{\sqrt{K_1^2 + K_2^2}}),$$

Parameter	$d_{p/n} < 1$	$d_{p/n} > 1$
α_1	$\pi d_{p/n}$	π
α_2	π	$\pi/d_{p/n}$
K_1	$\frac{V_{g1}\frac{1-\cos(\alpha_1)}{2}+V_{g2}}{}$	$V_{g1} + V_{g2} \frac{1 - \cos(\alpha_2)}{2}$
K_2	$V_{g1}\sin(\frac{\alpha_1}{2})$	$V_{g2}\sin(\frac{\alpha_2}{2})$

PFC control:

 α_1, α_2 are the control variables.

 $d_{p/n}$ is the new intermediate control variable

Proposed Topology: Control Approach

- Small signal analysis validation for decoupled control
- Simulations and hardware validation
- Future work: series stacking control testing

Block Diagram of Control Loops

Proposed Topology: High Power Implementation

80 kW DC-DC Module Design

TAB CLLLC 80 kW Design Circuit Parameters

Circuit parameter	Value
Series inductance per winding, ${\cal L}_s$	10.4 µH
Series capacitance per winding, \mathcal{C}_s	1.5 μF
Magnetizing inductance per transformer, L_m	105.7 µH
Switching frequency, f_s	50 kHz

Equivalent Circuit for Analysis

TAB with Low Magnetizing Inductance

80 kW DC-DC Module Fabrication

80 kW H-Bridge

80 kW, 15 kV Isolated Transformer

80 kW DC-DC Module Setup

Features

- 15 kV Isolated Transformers
- No External Tank Inductors
- High Power H-Bridge Design
- Optical Isolation for Sensing and Gate-Drive Circuits
- Air Cooling
- 97.5% 98% efficiency at full load, different AC operating points

80 kW TAB Converter Experimental Setup

80 kW DC-DC Module Setup

Recirculating Power Test Setup for Efficiency Measurements

80 kW TAB Converter Experimental Setup

Experimental Efficiency Results

Conclusion and Future Work

- 2 kW prototype designs for topology and control validation
- Control analysis and validation for an unfolding based AC-DC converter
- 80 kW high-power hardware validation
- Future work:
 - Control validation for a series stacked 2 kW modules
 - Hardware validation for a full 560 kW system

