

Modular AC-DC Converters for Medium Voltage Applications

Mahmoud A. Mansour

ECE Department, Utah State University, Logan, UT, USA ASPIRE ERC

4/12/2021

Major Professor: Dr. Regan Zane

This work was supported in part by the Department of Energy through the Utah State University Power Electronics Lab (UPEL)

Need for High Power AC-DC Converters

- A significant amount of electrical energy is generated by three-phase AC machines $\left|\int_{-\infty}^{\infty}\right|$ AC Power
- **Most of electrical power is transmitted and** distributed using existing three-phase AC systems
-
- DC loads are increasing in power levels e.g., EV charging

MV AC to DC Converter for EV Charging Stations:

EV Charging Station: Grid Connection through LF Transformer

EV Charging Station: Grid Connection through MV SST

Medium Voltage AC to 800 V DC converter **1.16 kV three-phase input, 560 kW, 750 V – 900 V DC cONVerter**
 4.16 kV three-phase input, 560 kW, 750 V – 900 V DC output
 5.16 DC-link based front-end with 6.5 kV IGBT

Soft DC-link based front-end with 6.5 kV IGBT

-
- implementation

 ς D

NSF Engineering Research Center

UtahState University, R F

- Seven DC-DC series stacked modules each rated at 80 kW
- Each DC-DC module is an isolated three-port converter

4

Triple Active Bridge Series Resonant Converter

- Two H-bridges on primary, one per port
- Series connected secondary windings
- Low variation in the resultant primary voltage
- One LC tank and secondary bridge required
- Seven Modules are to be implemented in the final design
- Design Steps:
	-
	-
	- High-power module Validation
	-
	-

Proposed DC-DC Topology for ISOP Modules

Proposed Topology: Modulation

 \triangle S D **RE** NSF Engineering Research Center

Proposed Topology: Modulation

Bridge Voltage Definitions **Proposed Converter**

Proposed Topology: 2 kW Hardware Prototype

Proposed Topology: Control Approach

Proposed Control Variables:

Output control:

 i_{out} is regulated

 ϕ_{edge} is control variable

$$
\langle I_{\text{out}} \rangle = \frac{8}{\pi^2 X_s} [V_{g1} \sin \phi_{\text{edge}} + V_{g2} \sin(\frac{\alpha_2}{2}) \cos(\phi_{\text{edge}} - \frac{\alpha_2}{2})]
$$

$$
\langle I_{\text{out}} \rangle = \frac{8}{\pi^2 X_s} v_{p,q}.
$$

Feed-Forward Calculations:

$$
\phi_{edge} = \sin^{-1}\left(\frac{V_{p-q}}{\sqrt{K_1^2 + K_2^2}}\right) - \sin^{-1}\left(\frac{K_2}{\sqrt{K_1^2 + K_2^2}}\right),\,
$$

PFC control:

 α_1, α_2 are the control variables.

 $d_{p/n}$ is the new intermediate control variable

Proposed Topology: Control Approach

- Small signal analysis validation for decoupled control
- Simulations and hardware validation
- Future work: series stacking control testing

Block Diagram of Control Loops

Proposed Topology: High Power Implementation

80 kW DC-DC Module Design

TAB CLLLC 80 kW Design Circuit Parameters TAB with Low Magnetizing Inductance

Equivalent Circuit for Analysis

80 kW DC-DC Module Fabrication

80 kW DC-DC Module Setup

Features

- 15 kV Isolated Transformers
- No External Tank Inductors
- **High Power H-Bridge Design**
- Optical Isolation for Sensing and Gate-Drive Circuits
- Air Cooling
- full load, different AC operating points

80 kW TAB Converter Experimental Setup

80 kW DC-DC Module Setup

Recirculating Power Test Setup for Efficiency Measurements

80 kW TAB Converter Experimental Setup

Experimental Efficiency Results

Conclusion and Future Work

- 2 kW prototype designs for topology and control validation
- **Control analysis and Future Work**
 Control analysis and validation for an unfolding based AC-DC converter
 Control analysis and validation for an unfolding based AC-DC converter
 Control analysis and validation
 Co 80 kW high-power hardware validation
-
- Future work:
	-
	-

