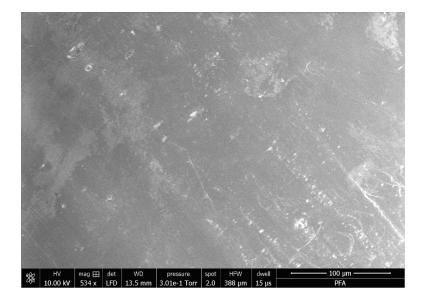
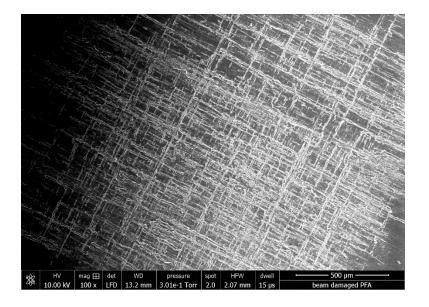

Conductivity Measurements for Lunar Orbital Platform-Gateway (LOP-G) Materials

Crystal Tingle, Jordan Lee, JR Dennison Physics Department Utah State University Logan, UT USA

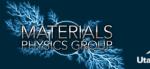
Gateway and Electrostatic Breakdown

- Lunar Orbital Platform-Gateway (LOP-G)
 - Small space station intended to orbit the moon
 - Susceptible to great amounts of solar radiation
- Electrostatic Breakdown (ESD)
 - Material damage caused by a buildup of charge
 - Can occur for materials that are unable to disperse charge easily (low conductivity)
 - May result in an unintended electrical path within materials or between components (arcing)
 - ESD can lead to circuitry or structural damage, possibly resulting in mission failure

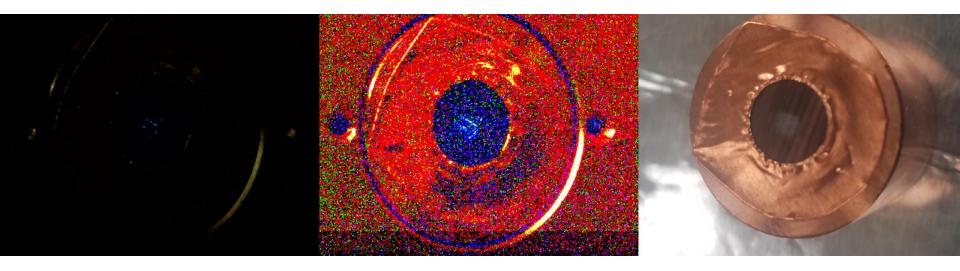

• Docking Issue


- Occurs when two spacecraft of different potentials meet each other
- This may result in electric discharge between the two bodies

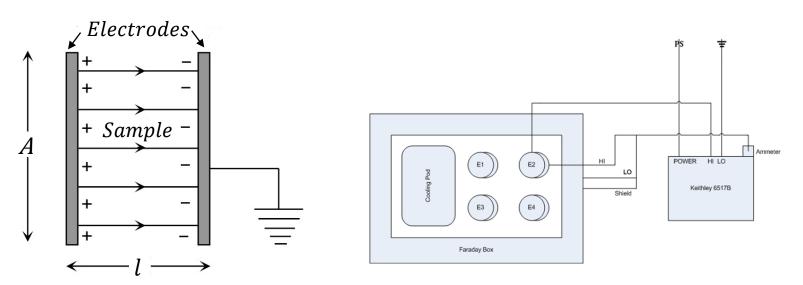
Example of ESD – PFA undamaged vs beam damaged PFA



Undamaged pfa vs beam damaged pfa

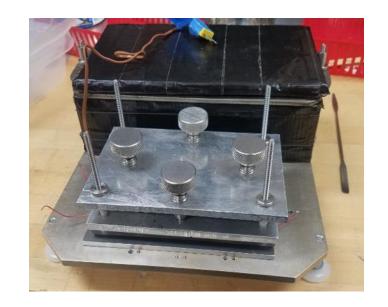


Examples of ESD – Arc and Spark PFA



Conductivity

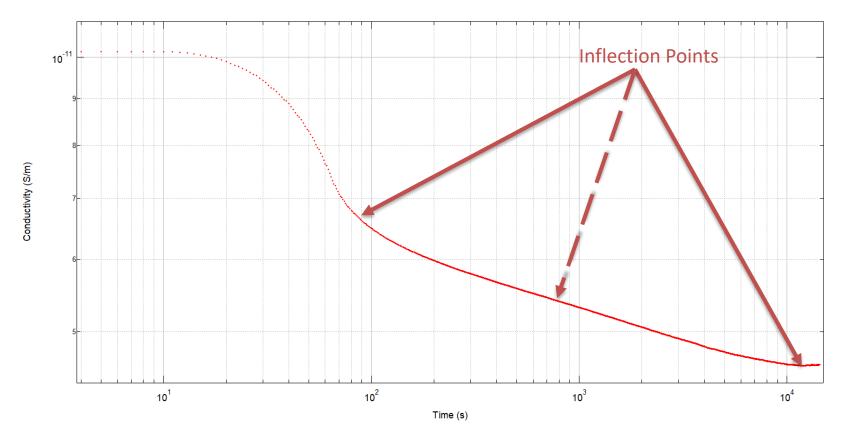
$$V = IR$$
 $\sigma = \frac{I}{RA}$ $J = \sigma E$


- **Conductivity** is a measurement of how easily an electric charge can pass through a material
 - Low conductivity materials make it difficult for charge to move through, resulting in a buildup of charge

3 Methods

- Setup 1: voltage supplied by Keithley 6517b
 - Low conductivity materials; $\sigma < 10^{-16} \ (\Omega \cdot cm)^{-1}$
 - Method uses increasing voltage steps from lower bound to upper bound
- Setup 2: voltage supplied by 192 V battery pack
 - Battery reduces noise
- Setup 3: voltage supplied by Keithley 199
 - High conductivity materials; $\sigma < 10^{-2} (\Omega \cdot cm)^{-1}$

Gateway Sample Candidates


MATERIALS PHYSICS GROUP UtahStateUniversit

- Samples we will look at:
 - Polymers
 - Silicon Rubber (PVMQ– Phenyl-Vinyl-Methyl-Polysiloxane)
 - PFA (perfluoroalkyox polymer)
 - Composites
 - PTFE (polytetrafluoroethylene or Teflon) on aluminum
 - Braycote 815z on AISI 9310 steel
 - Perfluorinated polyether-based polymer grease

- Labview was used to collect data
- Analysis was done in Igor Pro

Results

- PVMQ
 - $\sigma = 2.4631 \times 10^{-12} \, \text{S/cm}$
 - Standard deviation = $2.1978 \ 10^{-11} \text{ S/cm}$
- PFA
 - $\sigma = 2.8409 \times 10^{-18} \, \text{S/cm}$
 - Standard deviation = 2.1186×10^{-17} S/cm
- PTFE 736
 - $\sigma = 5.4645 \times 10^{-15}$ S/cm
 - Standard deviation = 8.2645×10^{-15} S/cm
- Braycote 815z (954)
 - $\sigma = 4.6729 \times 10^{-6} \, \text{S/cm}$
 - Standard deviation = 1.3755×10^{-5} S/cm

Conclusion

• Low conductivity:

- PVMQ
- PFA
- PTFE

• High Conductivity:

- Braycote (Teflon)
- Low conductivity materials should be used inside the station
 - Limits exposure to radiation, making it less susceptible to spacecraft charging
 - Most likely to become damaged as it dissipates charge less effectively
- Higher conductivity materials can possibly be used outside the station

Future Work

- More gateway samples
 - Different testing of materials (CVC)
 - Constant Voltage Chamber
 - ESD
 - Tests for electrostatic breakdown of material
- Electron Yield of materials

- Research supported by NASA Marshall
- Images taken in microscopy lab
- Docking image from European Space Agency https://www.esa.int/ESA_Multimedia/Images/2019/05/Gateway_with_Or_ion_docking_transparent_background