
Weyl gravity [1,2] is a theory of gravity 
based on the conformally invariant action 
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quadratic in the Weyl tensor, with metric 
variation leading to the fourth-order Bach 
equation,
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Vacuum solutions to the Einstein equation 
(Figure 1) are also solutions to the Bach 
equation. However, counterexamples to the 
converse are known. While specific solutions 
give some insights, we take a different 
approach to the relations between general 
relativity and conformal gravity, 
linearization. 
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The linearization of general relativity around 
flat space, 𝑔'( = 𝜂'( + ℎ'(, is well-
established [3].

𝐺'( =
1
2
(5ℎ(& − 5ℎ(,'&

' − 5ℎ&,'(
' + 𝜂(& 5ℎ,'(

'(

The infinitesimal coordinate freedom of the 
metric yields the much simpler equation

□5ℎ'( = 𝜎𝑇'(
where 5ℎ'( is the trace-reversed metric 
perturbation. Using Green’s functions, we can 
determine solutions to the linearized Einstein 
equation with source (Figure 3). On the other 
hand, linearization of the Bach equation for 
conformal gravity is less understood. By 
linearizing both general relativity and Weyl 
gravity, we can compare large classes of 
solutions, both with and without sources. 

Outside of specific examples, the differing 
boundary conditions on the solutions in Figure 
3 make it difficult to characterize the 
relationship between solutions to the 
linearized Einstein equation and the linearized 
Bach equation. However, by restricting to 
only the source term and suitably restricting 
the class of perturbations we consider, we 
have gained some interesting insights which 
are the subject of current investigations. 
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Conclusions

In addition to coordinate covariance, 
Weyl gravity allows conformal 
transformations. By changing the metric 
by a conformal factor near unity, 
performing an infinitesimal coordinate 
transformation, and constructing a 
transverse, traceless gauge choice for 
arbitrary Weyl metric perturbations, the 
linearized expression for the Bach tensor 
becomes
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By imposing certain initial conditions and 
boundary conditions, we find general 
solutions to the linearized Bach equation 
using Green’s functions (Figure 3).
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Figure 3. Solutions to the linearized Einstein equation 
(top) and the linearized Bach equation (bottom) using a 
Green function G.

Figure 2. Linearization of general 
relativity around flat space provides a 
description of phenomenon such as 
gravitational waves. We see above an 
artist’s depiction of a gravitation wave.

Figure 1. The Einstein equation, where 𝐺!", 
𝑇!" , and 𝜎 are the Einstein tensor, the stress 
energy tensor, and the curvature, respectively. 
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