- Rafsan Rabbi
- PhD Candidate
- Mechanical & Aerospace Engineering Department
	- Utah State University, Logan, UT

Splash Lab[®]

How to survive a cliff jump: throw something!

Why did he throw the knife?

Does throwing something beforehand actually help cushion the impact?

Questions, questions!

YES! (if you time it right of-course!)

The short answer: (Drumroll please!)

-
-

Glasheen, J. W., & McMahon, T. A. (1996). A hydrodynamic model of locomotion in the basilisk lizard. *Nature*, *380*(6572), 340-342. \bullet

Why is impact force important?

 \bullet

 $\bigoplus_{i=1}^{\infty}$

Image taken from NASA archive **Conditionedity C. M., & Moatamedi, M. (2006).** Review of water entry with applications to aerospace structures. *Int. J. of Impact Engineering*, 32(7)

Basiliscus basiliscus

Can be fatal for water landing aero-structures, off-shore and ocean rigs etc.

Basilisk lizards use impact impulse to walk on water!

Apollo-15 splashdown

63

Acceleration data from embedded accelerometer

Quiescent case

Hydrodynamic Force acting on Sphere

$$
F_z = -M\frac{dU}{dt} = \frac{U_o^2}{R}\frac{1}{(1+\frac{m}{M})^3}\frac{dm}{db}
$$

$$
C_d = \frac{2}{\rho \pi R^3} \frac{1}{(1 + \frac{m}{M})^3} \frac{dm}{db}
$$

Shiffman et. al. (1945) reports $C_d\approx$ 1 at $b = s/R \approx$ 0.1-0.2, later experimentally **validated by Moghishi (1981)**

m **being the added fluid mass**

Hydrodynamic Force acting on Sphere

$C_d \sim 1$ contributes to the high **peak impact force**

We learn two things:

$$
F_z \sim \frac{dm}{db}
$$

Dependence on $\frac{1}{\sqrt{2}}$ **gives us an opportunity to reduce** F **, !!** *dm db Fz*

Throwing something before might help!

We can use cavity characteristics to predict consecutive sphere entry modes!

Ideal candidate would be the pinch-off time, predictable through the Eq.

We propose a new non-dimensional parameter: The 'Matryoshka' number (Mt)

$$
t_p = \beta \sqrt{\frac{d_1}{2g}}
$$

Duclaux, V., Caillé, F., Duez, C., Ybert, C., Bocquet, L., & Clanet, C. (2007). Dynamics of transient cavities. Journal of Fluid Mechanics, 591, 1-19.

Mt < 1: Cavity cases lead to significant reduction!

Mt > 1: Reduction in on jet case, bowl cases see surprising increment!

Acceleration plot

On cavity | Inside cavity | On bowl | Inside bowl | On jet

 $Mt = 0.82$ 0.35 1.05 1.26 2.20

Reduction over the range 0 < *Mt* < 6

Transitions Mt:

Inside cavity to inside bowl ~ 0.67

On cavity to on bowl \sim 1

Bowl to Worthington jet \sim 1.43

5 different two-sphere entry modes

Reduction modes: inside cavity, on cavity, on jet

Increment modes: inside bowl, on bowl

Summary

Highest reduction observed: 78%

Highest increment observed: 427%

We acknowledge funding from the Office of Naval Research, Navy Undersea Research Program (grant N000141812334), monitored by Ms. Maria Medeiros.

T*ank you!*

How to survive a cliff jump: throw something!

