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Machine Learning
Supervised (Labeled Data) Unsupervised (Unlabeled)



Dimensionality Reduction (Unsupervised)

 Decrease data complexity

 Preprocessing and Visualization

 Three major types [5]:

 Principal Components (linear)[8, 10, 16, 21]

 Matrix Factorization (linear) [9, 11] 

 Manifold Learning (non-linear) [6, 13, 14, 

15, 18, 19]

3D Swiss Roll 2D Embedding

How can we incorporate extra information (e.g. class labels)

into dimensionality reduction?



Manifold Learning

Starting Local: 

 Calculate Pairwise Distances

 Keep only k nearest points

 Small distances to keep from “exiting” 

the manifold

Moving Global: 

 “Walking”  the edges (Diffusion [6, 15])



Manifold Learning (PHATE [14], 2019)

Artificial Tree Data (60 dimensions)

PCA

t-SNE

PHATE



Decision Tree Classification (Supervised) 

[4]
 Binary Variable Splits

 Majority-Vote Classification

 Terms:

 Root Node

 Splitting Node

 Leaf Node



Random Forests (Supervised) [2]

 Ensemble of Decision Trees

 Two-Part Randomization

 Bootstrap Sampling

 Random Variable-Splitting 

Selection



Random Forest Proximities [2, 3]

Proximity (Affinity) Matrix

• Adaptive similarities [12]

• Proximities capture variable importance [2, 12]

• Idea: Use proximities as kernel for PHATE [14]

The proximity between two observations is the proportion

of trees in which they reside in the same terminal node.



Example: Titanic [7]

 2 class labels (died or survived)

 891 observations

 12 variables



Example: Fashion MNIST [20]

 10 class labels

 60,000 images

 28 x 28 pixels (784 variables)



Iris [1] with 1000 Noise Variables

[21]

[3] [17] [19] [13]



Quantitative Evaluation – Capturing 

Variable Importance

 Low-dimensional embedding should 

capture variable importance

 Assess variable importance on 

original and low-dimensional data

 Compute the correlation between 

importance measures

 Standardize across datasets (lower 

is better)



Future:

 New proximity definition to better 

capture data geometry

 Use as regularization in neural 

network (autoencoder)

 Incorporate unlabeled version
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