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1.  Introduction  1 

Drought is a recurring and complex phenomena that substantially affects both human and 2 
natural systems.  On average, drought affects more people and causes more economic damage 3 
than any other natural disaster (Wilhite & Vanyarkho, 2000).  aRecent studies suggest that in 4 
many regions of the world the spatial extent, likelihood, and duration of droughts will increase in 5 
the future (Dai, 2013; Touma, Ashfaq, Nayak, Kao, & Diffenbaugh, 2015).  Drought arises from 6 

an interaction between reduced rainfall (meteorological drought), soil moisture stress 7 
(agricultural drought), reduced canal flows or reservoir storage (hydrological drought), and 8 
restricted water access caused by economic factors or political power (socioeconomic drought) 9 
(Heim, 2002).  Regions with similar infrastructural, institutional, and physical characteristics 10 
may manifest markedly different responses to similar drought events (Swain et al., 2014).   11 

Drought has particularly severe effects on agricultural systems (Laesk, Rowhani, & 12 

Ramankutty, 2016).  The complex social and ecological processes that interact to generate 13 
agricultural responses to drought include management paradigms and governance, cultivation 14 
patterns, decision-making processes, information availability and access, infrastructure, and 15 

environmental factors (Meinzen-Dick, 2007; Ostrom, 2009).  A system’s adaptive capacity, or 16 
the ability of a system to prepare for stresses and changes in advance or adjust and respond to the 17 
effects caused by the stresses, emerges from complex interactions between these processes at 18 

multiple scales and levels (Engle, 2011; Gibson, Ostrom, & Ahn, 2000; Smit & Wandel, 2006).  19 
Adaptive systems have high adaptive capacity and exhibit the potential for structural change 20 

(Cash et al., 2006), facilitate coordination and deliberation amongst stakeholders (Lebel et al. 21 
2005), foster social learning through critical self-reflection (Pahl-Wostl et al. 2007), and realign 22 
decision-making to natural scales (Moss and Newig, 2010).  A community’s adaptive capacity is 23 

a function of both local processes and the larger systems in which these processes are embedded 24 

(Cash et al., 2006; Smit & Wandel, 2006).   25 

To capture these cross-scale interactions, we combined remotely sensed and qualitative 26 
data to identify the structural and dynamic determinants of agricultural adaptation.  Structural 27 
variables are those that are slow to change such as jurisdictional boundaries, infrastructural 28 

capacity, relative location within the irrigation network, and physical environment.  Dynamic 29 
factors change quickly and at smaller scales.  These factors include community dynamics, 30 
political influence, resource control, market constraints, and perceptions of risk.  Larger, slowly 31 

changing, structural factors (i.e. institutions and infrastructure) set the conditions within which 32 
the smaller, dynamic processes (i.e. political influence, resource control, market fluctuations, and 33 
perceptions of risk) operate; conversely, an aggregation of smaller dynamic processes can 34 
generate changes in structural variables (Giddens, 1984; Gunderson, 2001).   35 

This paper focuses on the processes of agricultural adaptation that took place in rural Sri 36 
Lanka in response to a severe drought in 2014.  The 2014 drought is estimated to have affected 37 

the livelihoods of over one million Sri Lankans.  58 percent of the country had completely 38 
insufficient water to cultivate during the 2014 dry season (World Food Programme, 2014).  We 39 
analyzed satellite imagery to measure variations in agricultural responses to drought and identify 40 
a subset of agricultural communities with similar structural characteristics (i.e. agroecological 41 
region, storage capacity, command area, number of farming families, institutional jurisdiction) 42 
but different cultivated extents.  We conducted key informant interviews in eight of these 43 
communities to identify the factors, both structural and dynamic, that influenced variations in 44 
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cultivated extent during the drought.  By linking analyses of remotely sensed and qualitative 45 

data, we developed a rich, cross-scalar understanding of the factors that influenced agricultural 46 

adaptation to drought.   47 

2.  Background 48 

Sri Lanka is an island nation off of the southeastern coast of India.  The nation 49 
experiences two monsoon seasons annually.  The northeast monsoon lasts from October to 50 
December and brings nearly two-thirds of annual rainfall to Sri Lanka; the southwest monsoon 51 
lasts from May to October and brings rain primarily to the southwestern region of the island.  52 
This rainfall pattern divides the island into a wet and dry zone (Figure 1) and creates a distinct 53 

wet and dry cultivation season.   54 

For over 1,000 years, farmers living in the dry zone have constructed small reservoirs, 55 

locally known as tanks, to store wet season water for dry season cultivation.  Today, the dry zone 56 
is dotted with over 11,250 “minor” tank systems (Imbulana, Wijesekera, & Neupane, 2006).  57 
Due to low tank storage capacities, variations in rainfall, and growing population, farmers in 58 

these systems frequently experience water scarcity during the dry season (Shah, Samad, 59 
Ariyaratne, & Jinapala, 2013).  To address these challenges, in the 1960s the Sri Lankan 60 

government began construction of a network of massive irrigation systems that diverted the 61 
waters of nation’s largest river, the Mahaweli Ganga, through a system of centrally managed 62 
reservoirs, hydropower plants, and over 10,000 km of canals (Withananachchi, Kopke, 63 

Withanachchi, Pathiranage, & Ploeger, 2014).  In the 1970s, the government created the 64 
Mahaweli Authority of Sri Lanka (MASL) and charged the institution with the implementation 65 

and management of these new “major” irrigation systems (Zubair, 2005).  The MASL offered 66 
perpetual leases to government-owned plots of land in the MASL systems.  Farmers who 67 

resettled the land received 2.5 acres of paddy land and 0.5 acres of homestead (Takesada, 68 
Manatunge, & Herath, 2008).  By the end of 2012, the MASL had resettled over 166,000 69 

families onto 250,000 acres of irrigated land (Withananachchi et al., 2014).  Today, these 70 
irrigation systems contribute significantly to the Sri Lankan economy, producing over 800,000 71 
metric tons of paddy annually (MASL, 2014) and generating enough power to meet 40 % of Sri 72 

Lanka’s energy demand (Manthrithilake and Liyanagama, 2012).   73 

Over 40 institutions and legislative acts govern water use in Sri Lanka (Manthrithilake 74 

and Liyanagama, 2012).  Minor irrigation systems fall under the jurisdiction of the Department 75 
of Agrarian Development and are primarily managed by the farmers themselves. The MASL and 76 
Irrigation Department (ID) share the management of major irrigation systems.  Prior to each 77 
season, a group of national officials from the Ceylon Electricity Board, the Department of 78 
Agriculture, the ID, and the MASL meet to determine seasonal inflows to each major system 79 

reservoir.   The group produces a Seasonal Operating Plan (SOP) that specifies the first and last 80 
date of water issues for each system, proposed cultivated extents, expected energy generation, 81 

and monthly diversion volumes for each major irrigation system.  Within each major irrigation 82 
system, water release from reservoirs along main canals is managed by system-level MASL or 83 
ID officials.  Farmers are grouped by field canal into farmer organizations (10-15 farmers) that 84 
are responsible for field-level water rotations and canal maintenance.   85 

Figure 1:  Water management regimes and agroecological zones of Sri Lanka 86 
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 87 

3.  Methods  88 

3.1. Remote sensing analysis 89 

Many studies have used remotely sensed metrics of vegetation health to monitor 90 
agricultural responses to drought (Brown, Reed, Hayes, Wilhite, & Hubbard, 2002; Peters et al., 91 

2002; Thenkabail, Gamage, & Smakhtin, 2004).  We use the Enhanced Vegetation Index (EVI) 92 
to measure regional variations in the effects of drought on agricultural vegetation health.  The 93 

EVI is a strong proxy for rice growth and is highly correlated with both leaf area and vegetation 94 
fraction estimates (Gumma, 2011; Huete et al., 2002; SAKAMOTO et al., 2005; Small & Milesi, 95 

2013; Xiao et al., 2006).  The EVI is measured as:  96 

𝐸𝑉𝐼 = 𝐺
𝜌𝑁𝐼𝑅 − 𝜌𝑅𝐸𝐷

𝜌𝑁𝐼𝑅 + 𝐶1 𝑥 𝜌𝑅𝐸𝐷 − 𝐶2 𝑥 𝜌𝐵𝐿𝑈𝐸 + 𝐿
 97 

where ρ is atmospherically corrected surface reflectance, L is the canopy background adjustment, 98 

and C1  and C2 are the coefficients of the aerosol resistance term, which uses the blue band to 99 
correct for aerosols in the red band (Huete et al., 2002).  EVI values approaching one indicate 100 
higher levels of photosynthetic activity.   101 

To first identify double-cropping agricultural communities, 16-day 250 meter MODIS 102 

Terra MOD13Q1.005 EVI imagery were compiled from January 2004 to June 2015 into a single 103 
spatiotemporal datacube.  The EVI time series for each pixel contains information about seasonal 104 

changes in vegetation health, land cover, cropping patterns, and a stochastic component.  In 105 
tropical countries like Sri Lanka, this stochastic component is strongly influenced by cloud 106 
cover.  Data reduction techniques such as principal component analysis (PCA) can be used to 107 
extract phenological information from noisy datasets by separating deterministic processes in 108 
lower components and location-specific or stochastic dimensions in higher components 109 

(Eastman, 1993; Lasaponara, 2006; Small, 2012).  To extract the dominant phenological signals 110 
from the noisy dataset, we applied standardized PCA to the unmasked EVI dataset, dropping data 111 
from 2014 and 2015 to remove the effects of the drought.  The use of standardized PCA ensures 112 
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that each temporal observation is given an equal weight in the analysis (Eklundh & Singh, 1993).  113 

The empirical orthogonal functions (EOF) from this analysis represent the data as uncorrelated 114 

temporal patterns and the principal components (PCs) represent the spatial distribution of these 115 
patterns (Anyamba & Eastman, 1996; Eastman, 1993).  In our analysis, the third PC captured the 116 
contribution of surface water irrigation to variations in vegetation health and showed a strong 117 
double-cropping signal through time.  To identify double-cropped pixels, we compared the third 118 
PC to a land use map created by the Sri Lankan Survey Department in 2011.  Various thresholds 119 

were applied to the third PC to classify pixels as double-cropped or not and compared this 120 
classification to the land use map.  A receiver operating characteristic (ROC) curve was 121 
constructed to assess the overall performance of the threshold approach and to determine the 122 
appropriate threshold (Hanley & McNeil, 1982).  The total area under the ROC provides a metric 123 
for classification performance.  Increasing area indicates increasing performance, with an area of 124 

one corresponding to perfect predictions.  Our approach preforms well, with a value of 0.80.  125 

Using the Youden Index, we found the threshold of the third PC at which the ROC curve is 126 
furthest from the line of equity (Fluss, Faraggi, & Reiser, 2005).  We masked pixels with 127 

loadings on the third PC above this value to identify regions in which farmers double-crop, i.e. 128 

they regularly cultivate their fields during both the wet and dry seasons.  129 

Two criteria were used to identify the subset of these double-cropped pixels in which 130 
cultivation occurred during the 2014 dry season drought:  total seasonal vegetation production 131 
and maximum seasonal EVI.  Total seasonal vegetation production is measured as the integral of 132 

the smoothed seasonal EVI curve and is a proxy of the amount of biomass produced on a pixel 133 
(Jönsson & Eklundh, 2004; Lupo, Linderman, Bartholome, & Lambin, 2007; Rasmussem, 1992).  134 

The inclusion of a maximum seasonal EVI threshold ensures that selected pixels exhibited a 135 
greening up during the dry season.  Because agricultural fields tend to have peak EVI values 136 

great than 0.5, this value was used as the maximum seasonal EVI threshold (Huete et al., 2002; 137 
Sakamoto et al., 2005). 138 

Prior to the extraction of total seasonal vegetative production and maximum seasonal 139 

EVI, we applied the MODIS quality mask to the dataset to remove observations contaminated by 140 
cloud cover and dropped pixels missing more than 50 % of their observations from the analysis.  141 

Because rapid changes in EVI are often caused by cloud contamination, observations with values 142 
exceeding a 0.15 change in EVI from the value at the previous time step were masked.  Missing 143 
data were linearly interpolated and smoothed using the Savitzky-Golay filter, a low-pass filter 144 
particularly well-suited to noisy data (Chen et al., 2004; Savitzky & Golay, 1964).  For each 145 
double-cropped pixel, we computed the average dry season total vegetation production from 146 

2004 to 2013 and compared it to the 2014 value.  Pixels with total seasonal vegetation 147 
production greater than one standard deviation below the 10-year pixel average and a maximum 148 

seasonal EVI above 0.5 were flagged as those in which farmers were able to cultivate during the 149 
drought. 150 

3.2. GIS and key informant interviews 151 

The remotely sensed analysis identified large-scale patterns of agricultural cultivation and 152 
served as the foundation for a more detailed analysis of the dynamic factors that affected 153 
agricultural adaptation to the 2014 drought.  To identify the structural determinants of 154 
agricultural adaptation, we linked the results from our remote sensing analysis to a geographic 155 
information system (GIS) containing information about the characteristics of agricultural 156 
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communities, such as agroecological region, storage capacity, command area, number of farming 157 

families, institutional jurisdiction, and relative location within the irrigation network.  Using this 158 

information, we selected four pairs of communities with similar structural characteristics that 159 
exhibited different cultivated extents during the 2014 drought.  Randomly selected locations in 160 
which our larger research project had already established institutional relationships with key 161 
government officials were prioritized in the community selection process.  In August 2015, we 162 
conducted key informant interviews with local officials, system-level officials, and farmers in 163 

each community.  Officials included national water managers in Colombo, system-level 164 
engineers and water managers, farmer organization officials, and agricultural extension officers.  165 
A total of 38 interviews and 4 farmer focus groups were conducted.  When interviews could not 166 
be conducted in English, they were conducted through a translator.  In each interview, we 167 
discussed the factors that the interviewee perceived as influencing cultivation during the 2014 168 

drought. 169 

4. Results  170 

4.1. Remote sensing results 171 

The results of the PCA analysis reveal the spatiotemporal patterns that explain most of 172 

the variance in vegetation health in Sri Lanka from 2004 to 2013 (Figure 2).  The first PC (41 % 173 
of the total variance) captures the contribution of land cover to variations in vegetation health.  174 
Bodies of water and coastal regions have low loadings while areas of dense vegetation such as 175 

forests show high loadings.  The second PC (4.4 % of total variance) isolates the seasonal and 176 
spatial variations in vegetation health caused by the monsoon, with higher loadings in the wet 177 

zone and lower loadings in the dry zone.  The third PC (3.1 % of total variance) has very low 178 
loadings within the institutional boundaries of the MASL systems and the eigenvector of this PC 179 

shows a strong double-cropping signal.  This PC captures the contribution of surface water 180 
irrigation systems to variations in vegetation health.  To identify double-cropped pixels, we 181 

applied a threshold to the third PC using the methods described in Section 3.1.   182 

Figure 2: Principal components analysis results 183 



 

6 
 

 184 

Pixels in which cultivation occurred during the drought (i.e. satisfying the total vegetation 185 

production and maximum seasonal EVI criteria) are shown in Figure 3.  45 % of these pixels are 186 
located within major system boundaries.  Only 25 % of cultivated pixels are located within minor 187 

system boundaries, and 65% of these pixels are located in the wet zone.  The Survey 188 
Department’s land use map classified 73% of the identified cultivated pixels as agricultural 189 
(slash and burn agriculture known as chena, gardens, plantations, or paddy).  Of the remaining 190 

non-agricultural classified pixels, 16% were classified as roads, forest, or bodies of water located 191 
in close proximity to agricultural areas. 192 

Figure 3: Cultivation during the 2014 drought 193 
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 194 

4.2. Qualitative Results 195 

The remote sensing analysis reduced agricultural adaptation to a matrix of agricultural 196 
responses to drought.  To uncover the dynamic, local processes that affected agricultural 197 

adaptation, we visited eight dry zone communities (Figure 4) to discuss the 2014 drought with 198 
local water managers and farmers.  In the following section, we compare these systems to 199 
articulate processes described by community members as significantly contributing to 200 

agricultural (mal)adaptation during the 2014 drought. 201 

Figure 4:  Interview site locations 202 

 203 

 204 
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4.2.1. The D1 systems:  Negotiation and reallocation 205 

The reservoirs that store water for the northern D1 systems are located at the tail-end of 206 
the MASL irrigation network.  These reservoirs only receive wet zone water when upstream 207 
reservoirs are sufficiently full to generate pressure required to send water north.  Even with 208 
adequate pressure, transferring water to these systems creates conveyance losses.  At the 209 
beginning of the 2014 dry season, the MASL determined that upstream reservoirs were too low 210 

to send irrigation water to the D1 systems.  Officials warned against cultivation, urging system 211 
managers to save limited water in the D1 reservoirs for domestic use.  Farmers in both systems 212 
staged multiple protests at local ID offices and MASL headquarters in Colombo demanding that 213 
officials release irrigation water for paddy cultivation.  Farmers argued that they could cultivate 214 
paddy and meet domestic water demand if they practiced bethma, a traditional drought 215 

mitigation technique native to the dry zone.  Under bethma, permanent field boundaries are 216 

temporarily abolished and land is redistributed amongst all farmers who cultivate in the 217 

command area.  This redistribution process is complex and varies from system to system, but in 218 
general, each family receives equal-sized parcels of land regardless of land ownership (de Jong, 219 
1989; Spiertz & de Jong, 1992; Thiruchelvam, 2010).  The total amount of land cultivated by 220 
each farmer is temporarily reduced to ensure all farmers in the community have access to limited 221 
water supplies.  Bethma is a remarkable and relatively widespread adaptive practice; during the 222 
2014 drought, five of the eight communities in which interviews were conducted practiced 223 
bethma.   224 

In the D1 systems, farmers proposed a bethma in which head-end farmers would divide 225 
their original 2.5 acre fields into half-acre parcels.  Each farmer cultivating at the tail-end of the 226 
command area would temporarily move to the head-end of the system to cultivate one of the 227 

remaining four parcels on each head-end farmer’s land.  In both D1 systems, this proposed 228 

reallocation of land would force tail-end farmers, many of whom belong to the Tamil ethnicity 229 
and speak Tamil, to travel over 40 km to cultivate head-end plots which in large part belong to 230 
Sinhalese families who speak Sinhalese.  Despite these cultural, infrastructural, and physical 231 

challenges, farmers still preferred bethma to no cultivation.  In both systems, lengthy 232 
negotiations between farmers and water managers took place, delaying cultivation by over a 233 

month.  Local water managers ultimately conceded to farmers’ requests to cultivate a small 234 
subset of the command area, making it clear that the farmers would bear all risks associated with 235 
cultivation.  At the end of the season, 19% and 25% of the total command area was cultivated 236 
with paddy in Systems D1N and D1S respectively.  Farmers attributed this success to increased 237 
involvement by local water managers and their own increased water use efficiency.  In water 238 

abundant seasons, water managers rarely monitor field-level water inflows.  During the 2014 dry 239 
season, officials monitored fields day and night, checking for water losses and water poaching.  240 

Farmers visited fields daily to monitor actual water demand and to close bunds and gates at the 241 
appropriate time.  Despite their efforts, several farmers conceded that paddy cultivation would 242 
likely have failed if not for a chance rain at the end of the season.   243 

Despite the serious physical and infrastructural constraints faced by D1 farmers, farmers 244 
successfully negotiated with officials to cultivate a reduced command area during the drought.  245 
Many farmers attributed this success to their political influence as potential voters in the buildup 246 
to a national election.  After the negotiations were complete, farmers and water managers 247 
understood that they alone bore the risk associated with cultivation because the MASL was 248 
physically unable to send additional water north.  Several farmers and officials said that the high 249 
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risk increased cooperation in land and water reallocation as well as overall water use efficiency 250 

in both systems.  251 

4.2.2. System B:  Control and experience 252 

System B is the largest of the MASL systems.  At the beginning of the dry season, 253 

System B’s main reservoir, Maduru Oya, was filled to half-capacity and the MASL stated that 254 
the system would not receive additional inflows for the remainder of the season.  To ensure 255 
adequate drinking water supplies for this large system, the MASL recommended a 50 % bethma 256 
in which tail-end farmers would move to the head-end of the system to cultivate.  The MASL 257 
also advised farmers to grow other field crops such as soy and maize that are less water intensive 258 

than paddy.  We visited a community along the left bank of System B in which the cultivated 259 
area was reduced during the drought.  Farmers in this community agreed to the 50 % bethma, 260 
though few cultivated the recommended alternative crops, stating that they lacked a local market 261 

and necessary agricultural inputs to do so.  At the end of the season, these farmers cultivated 59 262 
% of the command area, only 1 % of which was cultivated with other field crops.  Farmers 263 
generally felt that given reduced water levels in Maduru Oya, 2014 cultivation was successful.  264 

We also visited a community in System B in which, according to the remotely sensed 265 

results, 100 % of the command area was cultivated during the drought.   This community, while 266 
technically located in System B, stores irrigation water in a smaller tank (Pimburuttewa tank) 267 
downstream of Maduru Oya.  Most of these farmers live relatively close to the tank, making it 268 

easy for them to monitor their water supply.  A group of older farmers inspected the tank’s water 269 
levels at the beginning of the season and claimed that in the past they had successfully cultivated 270 

the entire command area with similar amounts of water.  These farmers convinced the other 271 
farmers cultivating in the tank’s command area to ignore MASL recommendations and cultivate 272 

100 % of the fields with available water.  These farmers, like the D1 farmers, took a significant 273 
risk and responded by managing water with extreme efficiency.  They checked fields daily, 274 

monitored water levels, and patrolled for illegal siphons.  One farmer proudly stated that by the 275 
end of the season the drainage canals were too dry for fish to survive.  The experience of a few 276 
farmers and the community’s control of its water supply facilitated agricultural adaptation to the 277 

2014 drought.  Had the farmers listened to MASL recommendations, they would have cultivated 278 
only 50 % of their command area.   279 

4.2.3. IH and MH:  Institutions and culture 280 

Much of the water delivered to System MH from the wet zone travels through a 73 km 281 
feeder canal that transfers water from an upstream reservoir in System H.  Local water managers 282 
with the ID, the institution responsible for managing water in System MH, claimed that the 283 

system’s main reservoir rarely received water inflows promised by the MASL because of water 284 
poaching along this feeder canal.  In response to the structural water scarcity this has caused in 285 

System MH, many farmers have installed agrowells and now pump groundwater to irrigate 286 
crops.  Agrowell irrigation cannot generate sufficient water to cultivate paddy, so many farmers 287 
have started cultivating other field crops such as soy, maize, and onions.  During the 2014 288 
drought, the MASL recommended that local water managers avoid releasing irrigation water 289 
from the main reservoir in System MH to ensure domestic water demands could be met.  290 

Because of this restriction, only farmers with access to an agrowell were able to cultivate during 291 
the drought, which explains the patchy appearance of cultivation in the system detected by the 292 
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remote sensing analysis.  Most of the farmers interviewed had not invested in agrowells and were 293 

forced to find employment outside of the agricultural sector. 294 

System IH, a system similar to System MH in terms of command area, storage capacity, 295 
and distance from MASL headwaters, showed strong signs of cultivation during the drought.  296 
Interviews revealed that farmers in this system received 5,000 acre feet of water from the MASL 297 
during the 2014 dry season.  The farmers used this water to successfully practice a 50 % bethma, 298 

40 % of which included other field crops.  Like System MH, System IH receives water from a 299 
feeder canal leaving System H.  Unlike MH, farmers here do not experience structural water 300 
scarcity.  When asked to explain the difference in water availability in the two systems, IH 301 
officials cited two reasons.  The first was institutional fragmentation.  Both System MH and IH 302 
are managed by the ID, though the MH feeder canal is managed by the MASL while the IH 303 

feeder canal is managed by the ID.  Officials said that the MASL had little incentive to monitor 304 

water overuse along the feeder canal that sent water to a system outside of its jurisdiction.  Along 305 

the IH canal, however, ID officials actively monitor water poaching and water flow.  The second 306 
reason cited by officials was the cultural importance of the IH area.  System IH also surrounds 307 
the city of Anuradhapura, home to some of the most sacred Buddhist sites in Sri Lanka.  During 308 
the drought “diversions were made … to address [the] cultural requirement” of the thousands of 309 
thirsty pilgrims that temporarily call Anuradhapura home during religious festivals (MASL, 310 
2014).  Despite similar infrastructural and institutional characteristics, variations in upstream 311 
water management, the cultural significance of sites located within the system, and domestic 312 

water demand generated radically different outcomes in Systems MH and IH.   313 

4.2.4. Wahalkada and Padaviya:  History and expansion 314 

The remotely sensed analysis revealed radically different cultivated extents in two 315 

northeastern minor systems that share similar command areas and storage capacities: Padaviya 316 
and Wahalkada.  In Wahalkada, farmers surprisingly cultivated 100 % paddy during one of the 317 

most severe droughts in recent history.  Local farmers attributed their cultivation to the system’s 318 
history.  Like most of the irrigated communities in the dry zone, farmers were resettled from 319 
overpopulated southern cities during the 1960s and 1970s.  Today, in most of the dry zone 320 

irrigation systems, second and third generation descendants of the original settlers face land 321 
fragmentation, growing population, and increased demand for water (Azmi, 2007).  Wahalkada’s 322 
resettlement began relatively late in 1973.  At the onset of the civil war in the 1980s, resettlement 323 

stopped.  After the war ended in 2009, families moved back to the area, but today relatively few 324 
families cultivate in the Wahalkada command area.  Low water demand allows farmers in the 325 
area to cultivate the entire command area even during periods of extreme drought. 326 

Several kilometers down the road in Padaviya, only 19 % of the command area was 327 

cultivated during the drought.  Padaviya resettlement started in 1954, nearly 20 years earlier than 328 
in Wahalkada.  Though many farmers left during the war, long-established ties to the region 329 

brought them back in the mid-2000s.  While Wahalkada’s 810 hectare command area supports 330 
only 1,185 farming families, Padaviya’s 970 hectare acre command area supports over 9,000 331 
families.  Overpopulation in Padaviya contributed to water shortages during the 2013 dry season 332 
and the 2012 and 2013 wet seasons.  These systematic water shortages have pushed many 333 
farmers to seek alternative employment.  When water managers proposed a 25 % bethma during 334 
the 2014 drought, many remaining farmers sold their bethma plots and abandoned agriculture for 335 
the season.  The remaining farmers cultivated 19 % of the command area, 100 % of which with 336 
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crops other than paddy.  Despite water managers’ efforts to manage water efficiently, at the end 337 

of the season water was so scarce that drinking water had to be delivered by truck.  Several 338 

farmers cited crop damage at the end of the season due to insufficient water. 339 

5. Discussion  340 

5.1. Infrastructural access 341 

The most important driver of cultivation during the 2014 drought was access to MASL 342 
irrigation infrastructure.  This access facilitated a spatiotemporal transfer of water from the wet 343 

season and wet zone to their fields.  Without access to this infrastructure, there was generally 344 
insufficient rainfall to cultivate during the drought.  Despite widespread access to this 345 
infrastructure, many MASL farmers questioned whether exiting storage capacities were 346 
sufficient to support future population growth in the dry zone.  The MASL response to these 347 

concerns is the construction of the largest reservoir in Sri Lanka, Moragahakanda, which could 348 
bring an additional 3500 acres under cultivation (SMEC Ltd., 2013).  Over a thousand families 349 
will be displaced to construct this reservoir and thousands more will be resettled into the newly 350 

irrigated regions of the dry zone (Ranasinghe, 2013).   351 

Though infrastructural development is an essential response to changing climate, the 352 
expansion of water-intensive agriculture in the dry zone should be executed with extreme 353 
caution.  Systems which are located far downstream from MASL headwaters such as the D1 354 
systems already experience severe water scarcity during periods of drought.  The overexpansion 355 
of agricultural production in the dry zone may push the region past its carrying capacity and 356 

gradually erode the adaptive capacity of agrohydrological systems (Holling & Meffe, 1996). 357 

5.2. Cross-scale interactions  358 

More flexible, democratic, and participatory institutions have been shown to increase 359 

adaptive capacity (Cash et al., 2006; Engle & Lemos, 2010; Gupta et al., 2010).  In most MASL 360 
and Irrigation Department systems, water allocation management is already fairly decentralized.  361 

Local water controllers, often farmers themselves, are responsible for opening sluice gates and 362 
monitoring water flows at the field-canal level.  These water controllers are familiar with canal 363 
layouts, canal maintenance needs, and variations in field characteristics (primarily soil type and 364 

elevation).  This expertise allows them to tailor allocations determined in system offices to local 365 
contexts.  Farmers organization leaders liaise with water management officials regularly to 366 
discuss issues with water access and cultivation.  Leveraging this existing organizational 367 

structure to increase farmer participation in system-level allocation decisions would integrate 368 
farmers’ unique knowledge of field and canal dynamics into seasonal allocation plans.  By 369 

increasing cross-scale communication between system-level officials and farmers, officials could 370 
more easily identify infrastructural and agricultural interventions to water use efficiency, such as 371 
regular canal maintenance, support for crop diversification, and monitoring of illegal water use.  372 
Similarly, by limiting institutional fragmentation, water scarcity emerging from coordination 373 
problems such as those seen in System MH could be avoided in the future.   374 

5.3. Decentralized resource control  375 

In System B, local control of water supply allowed farmers to apply their expertise to 376 
water release decisions.  This autonomy ultimately allowed farmers to achieve 100% cultivation 377 
during the drought.  Though not always feasible, increasing a community’s control of its water 378 
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supply could be one way of increasing local adaptive capacity.  In MASL and ID systems, this 379 

may mean creating local tanks to store water as is moves through the system.  It would require a 380 

reorganization of farmers around these smaller tanks rather than the current organization along 381 
field-canals.  Though tank-based communities have existed in the dry zone for over a thousand 382 
years, this massive restructuring of the MASL infrastructure is not likely.  An alternative is to 383 
provide farmers with additional information about water availability to increase their ability to 384 
negotiate with system-level and national officials.     385 

5.4. Radical reallocation 386 

Bethma is one of the most impressive responses to drought observed in the dry zone.  387 

Bethma temporarily disrupts the status quo to buffer against inequalities in drought exposure 388 
within a community.  Despite the prevalence of bethma, many farmers doubted that the practice 389 
would survive in the future.  Land fragmentation has reduced farmers’ field size so significantly 390 

that many fields can no longer be divided under bethma.  In addition, the introduction of 391 
agrowells has individualized water access, which has encouraged agrowell-owning farmers to 392 
opt out of bethma and cultivate their entire field using groundwater (Burchfield & Gilligan, 393 

2016).  At present, system-level officials are mandating that these farmers share their land.  As 394 
the prevalence of agrowells increases, this mandate is becoming more and more difficult to 395 
enforce.   396 

5.5. Diversification  397 

Farmers at the majority of the study sites practice paddy monoculture.  Though paddy is 398 

heavily subsidized, easy to store, and ideal for home consumption, its cultivation is extremely 399 
water intensive (Prasanna, Bulakulama, & Kuruppuge, 2011).  At present, farmers have little 400 

incentive to cultivate less water intensive field crops such as soy, onions or chilies.  There are no 401 
subsidy programs and other field crops are much more difficult to store, transport, and sell 402 

(Chandrasiri & Bamunuarachchi, 2015).  The main market for vegetables is located in the center 403 
of the island in Dambulla, a significant distance from many dry zone communities.  At the end of 404 

each season, the Dambula market is often flooded with a single crop, such as onions or chilies, 405 
and farmers are forced to accept extremely low prices.   In addition to these market constraints, 406 
farmers face infrastructural constraints when cultivating other field crops.  In surface water 407 
irrigation systems, farmers along the same field canals frequently follow the same water rotation 408 

schedule, making it difficult for a single farmer to diverge from the dominant crop planted on 409 
that field canal.  Increasing support at the national level for agricultural diversification broadens 410 
the portfolio of options available to farmers during a drought (Ellis, 1998; Lin, 2011) and 411 
increases an agricultural system’s potential to positively respond to a water supply shock 412 
(Holling, 2001; Liu et al., 2007).   413 

5.6. Monitoring agrowell use 414 

In the past, farmers used groundwater predominantly for domestic use.  Today, 415 
groundwater is increasingly used as a compliment to surface water for irrigation (Villholth and 416 

Rajasooriyar 2009).  The total number of agrowells in Sri Lanka has increased in the last two 417 
decades from zero to more than 50,000 and an estimated 55 percent of farmers in the dry zone 418 
now use groundwater to irrigate agricultural fields (Kikuchi et al., 2001).  The long-term 419 
sustainability of agrowell use is questionable, especially given the fact that in Sri Lanka many of 420 
these agrowells are only deep enough to collect surface water drainage (Shah, Roy, Qureshi, & 421 
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Wang, 2003).  This the gradual individualization of water access disincentives farmer 422 

participation in community adaptive processes such as bethma that increase community adaptive 423 

capacity (Burchfield & Gilligan, 2016; de Jong, 1989).  The government should carefully 424 
monitor agrowell use in the dry zone and study the long-term implications of increased 425 
groundwater pumping.   426 

5.8. Farmer perception 427 

In systems where farmers bore the risks associated with cultivation beyond command 428 
areas proposed by the MASL, farmers engaged in extremely efficient water management 429 
practices.  Farmers agreed that during normal dry seasons, they rarely monitored fields or water 430 

releases because they knew there was sufficient water.  During the drought, these farmers applied 431 
existing knowledge of efficient water management techniques with rigor.  This suggests that 432 
though farmers are aware and capable of engaging in efficient water management practices, they 433 

lack incentives to manage water efficiently during normal seasons.  System-level officials could 434 
establish norms and incentives for the farmers to manage water efficiently and to report misuse 435 
during normal seasons.   436 

6. Conclusion 437 

Despite massive infrastructural and institutional investments in the dry zone over the past 438 
50 years, water scarcity remains a serious problem.  Droughts of a serious nature occur every 439 
three to four years, while severe droughts occur every ten years (Imbulana et al., 2006).  440 
Growing population has increased demand for land and water, causing land fragmentation, 441 

landlessness, encroachment, and water scarcity (Azmi, 2007).   The Sri Lankan population is 442 
expected to increase by 15% in the next 30 years, further straining limited water supplies (UN, 443 

2006).  Climate scientists predict that farmers will face a decrease in wet season rainfall and an 444 
increase in dry season drought in the future (De Silva, Weatherhead, Knox, & Rodriguez-Diaz, 445 

2007; Jayawardene, Sonnadara, & Jayewardene, 2005; Malmgren, Hulugalla, Hayashi, & 446 
Mikami, 2003). The demographic, economic, and environmental changes facing Sri Lanka 447 

challenge agrohydrological systems around the world.  Research exploring how these complex 448 
resource management systems respond to water stress is of paramount importance if we are to 449 
meet growing demands in an increasingly stressed physical environment.   450 

Our findings suggest that though structural factors such as water management regime 451 
boundaries, infrastructural capacity, relative location within the irrigation network, and physical 452 
environment significantly shape agricultural adaptation, a number of dynamic factors such as 453 
local autonomy, effective monitoring, perceived risk, diversification potential, and community 454 
cohesion, and farmer experience explained much of the variation in cultivated extent observed 455 

across communities.  Unlike the structural factors, these dynamic factors are relatively easy to 456 
influence and control.  In Sri Lanka, increasing institutional support for the cultivation of other 457 

field crops could reduce water use in MASL systems and diversify the portfolio of options 458 
available to farmers during drought, though this support must be balanced with increased access 459 
to markets, market information, storage facilities, and agricultural inputs required to successfully 460 
cultivate these crops.  Leveraging existing institutional structures to increase cross-scale 461 
communication between national and system-level water managers and farmers could increase 462 

information flow through the system and support system-wide adaptive capacity.  Carefully 463 
planning infrastructural expansion to consider future population growth and shifting water 464 
demand could decrease the probability of future generations experiencing structural water 465 
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scarcity.  Officials should carefully monitor groundwater use to prevent overexploitation and to 466 

increase participation in collective cultivation activities.  Finally, programs that support farmer 467 

responsibility and local resource control could be used to change farmer perceptions of risk and 468 
to increase water use efficiency.   469 
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 660 

Captions 661 

Figure 1 Caption:  The jurisdictional boundaries of minor irrigation systems are shown in 662 
purple below.  These systems cover most of the island.  Major irrigation systems managed by the 663 
MASL and ID are shown in orange.  These systems are named using letters (i.e. System H, 664 
System B, System MH), which are displayed on each system in the figure.  The majority of the 665 

major irrigation systems fall in the dry region of the country.   666 

Figure 2 Caption: (a) The first PC captures the variations in land cover that explain most of the 667 
variance in vegetation health in Sri Lanka. (b) The second PC detects variations in vegetation 668 

health attributable to the wet, intermediate, and dry agroecological zones on the island. (c) The 669 
third PC shows strong negative loadings within the boundaries of the MASL and ID irrigation 670 

systems.  This PC captures the contribution of surface water irrigation to the vegetation health 671 
variations.   672 

Figure 3 Caption: Green pixels are the regions in which farmers typically double-crop, i.e. 673 

cultivate during both the wet and dry seasons.  Purple pixels are those in which cultivation 674 
occurred during the 2014 dry season drought.  Most of these cultivated pixels are located within 675 
the southeastern wet zone or are within the jurisdictional boundaries of MASL and ID systems. 676 

Figure 4 Caption:  All sites in which interviews were conducted were located within MASL or 677 

ID jurisdiction.  Padaviya and Wahalkada fall under the jurisdiction of the ID, but do not receive 678 
water from MASL irrigation infrastructure and are considered to be medium-sized rain-fed 679 

systems. 680 
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