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Fig. 3 Time course of VEGF expression measured in cell culture (panel a) and predicted by the model (panel b); Error bars show one SD).
a Experimental results, b Simulated results

the model predicted about a 2-fold lower response to
added VEGF in the medium relative to the experimental
observations. A possible explanation for this discrepancy
is that the values for VEGF binding affinity β and half sat-
uration k, two key parameters that control negative feed-
back for VEGF production (see Eq. 2), are estimated from
a computational study [30]. Slight discrepancies between
the estimated and actual, but unknown, values of β and k
could easily lead to the mismatch between experimental
and simulated values.
In both the cell culture investigation and the simu-

lation, the VEGF levels per cell obtained from smaller
patch sizes (100, 200, 300 μm) decreased after the VEGF
was added. This result supports the hypothesis that cells
within these smaller patches reduce VEGF expression lev-
els because of the increased levels of VEGF within their
local environment. Cells in patches of larger sizes (400
μm) already encountered higher levels of VEGF. There-
fore, they showed smaller changes in VEGF expression
levels after VEGF addition.

Using the Model to Extend Experimental Observations -
VEGF Distributions
Having established the utility of themodel, we applied it to
extend experimental observations of VEGF distributions

that are important in shaping tissue responses to VEGF
but cannot be studied using current experimental meth-
ods. Figure 5 shows the predicted VEGF distribution
profiles over the course of model runs with different
patch sizes. These distributions are due purely to VEGF
diffusion and metabolism and do not account for any
circulation of VEGF. The results are striking in at least
two ways. First, they show that the predicted VEGF dis-
tribution is much more uniform across the simulation
domain for small patches than for large patches. Next,
they support the idea that cells in small patches expe-
rience a much lower average VEGF concentration than
cells in larger patches, particularly at earlier times. This
observation supports the negative-feedback hypothesis
for why cells in smaller patches are expected to express
more VEGF per cell than cells in larger patches. Take as
a whole, these predictions of VEGF distributions in dif-
ferent cellular configurations highlight the importance of
the geometry and dimensions of damaged and undamaged
tissue in AMD and other disorders that involve necrosis.

Using the Model to Study the Effect of New Cellular
Configurations
Current micropatterning technologies allow printing uni-
form circular domains for cell growth on a tissue culture

Fig. 4 Effect of VEGF addition on the VEGF production [1]. The VEGF agonist (Va), not detectable in the VEGF assays, was added 20 h after the plating
the cells. a Experimental results, b Simulated results
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Fig. 5 Distributions of VEGF over the course of model runs. Rows are different patch sizes, columns are time points. All figures are colored using the
same scale and so may be compared directly

plate but do not easily allow printing the inverse pattern
of open circular spaces within a field of cells. Unfortu-
nately, this latter arrangement is a more realistic model
of the necrotic retinal lesions seen in AMD. The benefit
of a model is its ability to rapidly test cell configurations
that are difficult or impossible to explore experimentally.
We did this by modeling the inverse pattern of the pat-
tern studied by Vargis et al. [1]. This inverted pattern is
illustrated in Fig. 6a.
The predicted VEGF expression per cell in these

inverted patterns of cell-free circles of different sizes are
shown in Fig. 6b. The notable findings are that the dif-
ferences between patch sizes are virtually eliminated and
that the amount of VEGF expressed per cell is reduced to
roughly half of that seen in the standard pattern of cell-
filled circles. Both results are likely due to the larger cell-
filled area in the inverted configuration (20% cell-filled
area in each standard configuration and 80% cell-filled

area in each inverted configuration). This pattern reduces
edge effects, is predicted to result in higher local VEGF
levels. In turn, this is predicted to reduce VEGF expression
through negative feedback.

Discussion
The model was used to provide insights into molecular
events that are not accessible using current experimental
techniques. Here, the model predicted that VEGF would
be present at lower levels and be more evenly distributed
when cells were configured in many small patches than in
fewer large patches. These predicted VEGF distributions
are consistent with both the experimentally determined
and model-based results that VEGF expression per cell
is strongest in cells distributed in small patches. These
results are significant in understanding how different pat-
terns of retinal necrosis may affect neovascularization
in AMD.

Fig. 6 Prediction of VEGF produced by an inverted pattern of cell-containing and cell-free zones. a The inverse pattern illustrated for one cell-free
region of diameter 400 μm. b VEGF expression per cell in inverted cell configurations. In these cases, the numbers refer to the diameters of cell-free
circles arranged in the same pattern as in Fig. 1
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The model was applied to predict how a cellular con-
figuration that cannot be easily designed in the laboratory
will influence VEGF expression. In this configuration, a
regular grid of open circles without cells is embedded in a
surface with full cell coverage. This pattern represents an
inversion of the standard tissue-print model of AMD and
more closely resembles necrotic lesions within the retinal
epithelium. The model predicted that VEGF production is
nearly invariant with respect to the size of the open circles.
Importantly, this result demonstrates that without signif-
icant empty space bordering the fields of cells, negative
feedback predominates, leading to low, constant VEGF
production independent of the size of cell-free zones.
A next step will be to extend these studies to different

tissue configurations, including those that more closely
match the diseased retina in AMD, and to consideration
of additional parameters, such as oxidative stress [31] and
the effects of inflammatory cytokines [32], that are impor-
tant in the development and progression of AMD. Under-
standing how different patterns of necrosis can disrupt
VEGF signaling will be important for developing ratio-
nal therapies of neovascular AMD. Pairing cell culture
studies that use micropatterning and precise measures of
VEGF expression with model-based approaches offers a
promising route toward accomplishing this goal.

Conclusions
Cell culture provides a model for replicating disease states
associated with the deterioration of retinal tissue during
AMD, the stimuli leading to enhanced VEGF secretion
from RPE cells and the subsequent neovascularization of
the choroid are still not fully understood [22, 23], and
little is known about howVEGF production is regulated in
the eye [9].
This study presents a hybrid agent-based model to

support and extend cell culture models of AMD. The
modeling framework was validated using experimentally
gathered data on VEGF expression by RPE cells micropat-
terned in tissue culture dishes [1]. Simulated results were
in excellent agreement with the qualitative findings of
Vargis et al. [1] and overall were in good quantitative
agreement regarding the amount of VEGF expressed per
cell in different patterning configurations.
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