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ABSTRACT

Eyes-Free Vision-Based Scanning of Aligned Barcodes and Information Extraction from

Aligned Nutrition Tables

by

Aliasgar Kutiyanawala, Doctor of Philosophy

Utah State University, 2012

Major Professor: Dr. Vladimir A. Kulyukin
Department: Computer Science

Visually impaired (VI) individuals struggle with grocery shopping and have to rely on

either friends, family or grocery store associates for shopping. ShopMobile 2 is a proof-of-

concept system that allows VI shoppers to shop independently in a grocery store using only

their smartphone. Unlike other assistive shopping systems that use dedicated hardware, this

system is a software only solution that relies on fast computer vision algorithms. It consists

of three modules - an eyes free barcode scanner, an optical character recognition (OCR)

module, and a tele-assistance module. The eyes-free barcode scanner allows VI shoppers to

locate and retrieve products by scanning barcodes on shelves and on products. The OCR

module allows shoppers to read nutrition facts on products and the tele-assistance module

allows them to obtain help from sighted individuals at remote locations. This dissertation

discusses, provides implementations of, and presents laboratory and real-world experiments

related to all three modules.

(148 pages)
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PUBLIC ABSTRACT

Aliasgar Kutiyanawala

Independent grocery shopping is one of the biggest challenges faced by visually impaired

(VI) individuals. VI individuals may be able to get to a store on their own by using public

transportation or by walking but are unable to shop there independently. Some of the

problems that they face after getting to the store include long wait times to get an employee

to assist them or getting a store employee who is not familiar with the store layout, gets

irritated with long searches, or does not possess the required English skills. These problems

ultimately result in VI shoppers having to abandon independent shopping altogether and

instead rely on friends and family for their shopping needs.

Assisitive shopping systems can help VI individuals shop independently by helping

them in areas such as store navigation, product retrieval, etc. Many assistive shopping

systems have been developed but they usually rely on dedicated hardware or instrumenting

the store with RFID tags, etc. Unlike these systems, ShopMobile 2 is a software-only

solution that only uses fast computer vision algorithms running on a smartphone.

ShopMobile 2 consists of three modules - an eyes free barcode scanner, an optical

character recognition (OCR) module, and a tele-assistance module. The eyes-free barcode

scanner allows VI shoppers to locate and retrieve products by scanning barcodes on shelves

and on products. The OCR module allows shoppers to read nutrition facts on products and

the tele-assistance module allows them to obtain help from sighted individuals at remote

locations. This dissertation discusses, provides implementations of, and presents laboratory

and real-world experiments related to all three modules.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

According to the National Federation for the Blind, there are approximately 1.3 million

legally blind individuals in the U.S. and this number is projected to grow to 2.4 million by

the year 2030 [1]. Independent grocery shopping is one of the biggest challenges faced by

visually impaired (VI) individuals. To understand why independent grocery shopping is

difficult, consider that a typical modern supermarket has a median area of 46000 square

feet and stocks an average of 38,718 products [2]. VI individuals may be able to get to

a store on their own by using public transportation or by walking but are unable to shop

there independently. Some of the problems that they face after getting to the store include

long wait times to get an employee to assist them or getting a store employee who is not

familiar with the store layout, gets irritated with long searches, or does not possess the

required English skills. These problems ultimately result in VI shoppers having to abandon

independent shopping altogether and instead rely on friends and family for their shopping

needs. Peapod [3] and other similar home shopping systems provide grocery shopping

alternatives but are not universally available and require shoppers to schedule and wait for

deliveries.

Assisitive shopping systems can help VI individuals shop independently by helping

them in areas such as store navigation, product retrieval, etc. Many such systems like

RoboCart [4–6] , ShopTalk [7–9], GroZi [10,11], etc. have been developed that aim to help

VI individuals shop independently. Chapter 2 presents a detailed description and analysis

of these systems. Most of these systems have demonstrated that VI shoppers can use

them to shop independently in a grocery store. However, these systems tend to introduce
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some problems of their own, chiefly the need for specialized hardware and instrumenting

the environment. Systems can employ specialized hardware to solve a problem easily and

efficiently. However, this also means that VI shoppers have to purchase, learn to use and

maintain this hardware. Most VI individuals already own and operate devices like note

takers, wayfinding devices, etc. and requiring them to purchase and maintain additional

hardware poses a financial as well as ergonomical burden on them. The second problem

is instrumenting the environment with devices such as RFID tags, special barcodes, etc.

Supermarkets are wary of installing hardware in their store and raise questions about the

responsibility of maintaining the hardware and whether this hardware would be disruptive

to normal shopper traffic. Thus, it is best if accessible shopping systems can work with

existing store infrastructure and do not make demands of installing additional hardware in

the store.

ShopMobile 2 aims to address these two issues with current accessible shopping sys-

tems. It aims to prove that computer vision is sufficient for independent blind shopping

thus eliminating the need for specialized hardware and instrumenting the environment. The

remainder of this chapter is organized as follows: Section 1.2 discusses some of the previous

assistive shopping systems developed at the Computer Science Assistive Technology Labo-

ratory (CSATL) of Utah State University and Section 1.3 discusses the insights from these

systems. Section 1.4 introduces the ShopMobile 2 system and Section 1.5 discusses a typical

use case for the ShopMobile 2 system. Finally, Section 1.6 states the research goals of this

dissertation.

1.2 CSATL Assistive Shopping Systems

Three assistive technology systems were developed at the Computer Science Assistive

Technology Laboratory (CSATL) of Utah State University. We will briefly describe these

systems here. The interested reader is referred to Chapter 2 for a detailed description of

these systems.

RoboCart [4–6] was the first assistive shopping system that was developed at CSATL.

This system was built using a Pioneer 2DX from ActivMedia Robotics robot as a base
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on which a polyvinyl chloride (PVC) structure carrying a shopping basket was securely

attached. The sensor suite of the robot included odometers, SONAR sensors, a SICK laser

range finder and a RFID reader along with its antenna. The robot also carried a laptop for

on-board computations and a numeric keypad for containing input from the user.

The robot used a combination of odometer and laser range finder readings to localize

the user in the store and for wayfinding. Passive RIFD tags were placed at various locations

in the store and these tags provided additional localization inputs and were used to correct

global Markov localizations errors.

In this system, shoppers would use the numeric keypad, which was designed to emulate

a cell phone keypad, to browse and choose products. They would then follow the robot by

grabbing its PVC handle to arrive in vicinity of the chosen products. After arriving in the

vicinity of products, shoppers would use a IT4600 SR wireless barcode scanner to retrieve

products from the shelves.

ShopTalk [7–9] was the second assistive shopping system developed at CSATL. ShopTalk

was based on the following conceptual formula: independent blind shopping = verbal route

instructions + shelf barcode scans. It did away with the robot used in RoboCart and instead

relied only on barcode scanning to localize the user in the store and to provide directions to

target products. Most stores place small Modified Plessey (MSI) type barcodes on shelves

beneath products for inventory control purposes. Each MSI barcode can be associated with

positional information (aisle number, side of aisle, shelf section number, shelf number and

relative position of product within each shelf) and with the product details (name and

UPC barcode number of the product). Thus, each MSI barcode now forms a topological

landmark in the store and a map of these barcodes can be used to create a data structure

known as the Barcode Connectivity Matrix (BCM).

In terms of hardware, this system utilized a wireless hand-held barcode scanner con-

nected to an ultraportable OQO computer, which the user carried in a small CamelBak

backpack. The system used a numeric keypad mounted on the user’s shoulder to receive

input and provided output through headphones.
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To use this system, the shopper selected products using the keypad and the system

provided verbal directions to the target products. If the shopper was lost, she simply

scanned any MSI barcode in the store and the system would retrieve her position using

the BCM. A new set of directions would then be issued to the user based on her current

position and this process would continue until she found the target product and scanned

its MSI barcode. She could now reach over and pick the target product and verify that she

had picked the correct product by scanning the UPC barcode on the product itself.

ShopMobile 1 [12] was the third assistive shopping system for VI shoppers developed

at CSATL. ShopMobile1 aimed to reduce the hardware complexity of ShopTalk by utilizing

only a Nokia smartphone and a portable pen-based Baracoda barcode reader. ShopMobile1

used the BCM concept of ShopTalk but users would scan barcodes using the Baracoda

wireless barcode reader and would interact with the system using the smartphone.

1.3 Insights from the CSATL Assistive Shopping Systems

In Chapter 2, we propose seven design requirements for assistive shopping systems.

These are: mobile product selection (DR1), store navigation (DR2), product search

(DR3), product identification (DR4), utilization of existing devices (DR5) and mini-

mal environmental adjustments (DR6). A good assistive shopping system must meet all of

these design requirements. Let us revisit the assistive shopping systems discussed previously

in light of these design requirements.

RoboCart met design requirements DR1 (mobile product selection), DR2 (store navi-

gation), DR3 (product search) and DR4 (product identification) either completely or par-

tially. However, it did not meet design requirements DR5 (utilization of existing devices)

and DR6 (minimal environmental adjustments). The biggest drawback with RoboCart was

the robot. Even though it was perfectly safe, it was seen as a potential risk to customers.

The robot was also expensive and suffered from reliability issues. The other problem with

RoboCart was instrumenting the store with RFID tags. Even though the tags were inex-

pensive and required no maintenance, they had to be placed at strategic locations within

the store in order for the robot to function.
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ShopTalk aimed to resolve the shortcomings of RoboCart by eliminating the robot

and instead relying entirely on barcode scanning. ShopTalk met design requirements DR2

(store navigation), DR3 (product search), DR4 (product identification) and DR6 (minimal

environmental adjustments) either completely or partially. However, it did not meet design

requirements DR1 (mobile product selection) and DR5 (utilization of existing devices).

ShopTalk improved on RoboCart by meeting DR6 (minimal environmental adjustments).

Not meeting DR1 was not a big issue as RoboCart’s method of browsing products using

the keypad could be easily incorporated into ShopTalk. However, the main issue with

ShopTalk was not meeting DR5 (utilization of existing devices). Requiring VI shoppers

to own, operate and maintain additional devices like the OQO computer and the hand-

held barcode scanner not only adds to the cost of ownership but has a significant negative

ergonomic impact on them.

ShopMobile 1 improved upon ShopTalk by reducing the hardware complexity of the

system to a cell phone and a pen barcode reader. A VI shopper typically uses a guide dog

or a cane with one hand and carries a shopping basket or pulls a cart with the other. Also,

some shoppers may have small children with them when they go shopping. Thus, shoppers

may find it difficult to operate the cell phone and the pen barcode scanner simultaneously

while also taking care of the cane, guide dog, cart and children. The other problem with

this system was that the Baracoda pen barcode scanner was difficult to use.

Experience with the previous systems have taught us that for a system to be usable

in the real world, it is not sufficient for the system to just satisfy requirements like store

navigation, product selection, etc. It must also be practical. VI individuals like to remain

inconspicuous and do not like to draw attention to themselves. Systems that require shop-

pers to use robots or wear additional hardware will not be welcomed by the users. Stores

do not like systems that disrupt shopper traffic or existing business practices. Systems that

require stores to undergo modifications will not be welcomed by supermarkets. The system

must also be handy and preferably use hardware that VI individuals already own and know

to operate.
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1.4 ShopMobile2

ShopMobile2 is the successor to ShopTalk and ShopMobile1. It is based on the premise

that computer vision is sufficient for accessible shopping. This system is designed to help

the VI shopper shop independently in a real-world grocery store using only a smartphone. It

has three major components - an eyes-free barcode scanner, an optical character recognition

(OCR) module and a tele-assistance module. The eyes-free barcode scanner allows the VI

shopper to scan UPC barcodes on products and MSI barcodes in an eyes-free manner. It will

be discussed in detail in Chapter 3. The OCR module allows the VI shopper to read barcode

labels and nutritional facts on products. This will be discussed in Chapter 6. The tele-

assistance module allows the VI shopper to obtain assistance from a caregiver at a remote

location by transmitting video from her cellphone. The tele-assistance module is called

TeleShop and will be discussed in Chapter 5. ShopMobile2 aims to prove that computer

vision algorithms running on a smartphone are sufficient for blind grocery shopping and the

smartphone can replace the hardware components needed in ShopTalk and ShopMobile 1.

1.5 A Use Case

Let us consider a typical use case, which describes how ShopMobile 2 can be used for

blind grocery shopping. Alice is completely blind. She has good orientation and mobility

(O&M) skills, travels independently and can get to a store on her own. She arrives at the

store and inputs the desired product on her cell phone.

The cell phone retrieves the location of the product using the BCM and gives her verbal

directions, for example, “You will find Thin and Crispy Saltines on Aisle 3, shelf section 4

on the left, shelf 2 and product location 1.” Alice finds her way to aisle 3 and enters it. She

now scans any MSI barcode on this aisle using the eyes-free barcode scanner and the phone

confirms that she is in the correct aisle.

She now finds shelf section 4 on her left by touch and scans a MSI barcode. The

system detects that she has scanned a barcode on shelf section 5 instead of shelf section

4 and gives her the following directions, “You have scanned a barcode on shelf section 5.

The product is on shelf section 4. Go back one shelf section.” She scans MSI barcodes to
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find the product and picks it from the shelf. She can now use the phone to scan the UPC

barcode on the product to confirm that she has picked the correct product. She can also

read the nutritional facts on the product using the OCR module.

Now, let us assume that she wants to shop for a product, which is not present in the

BCM. The system cannot give her directions to the product since it does not know the

location of the product. Instead of giving up, Alice calls a sighted friend and asks him

to help her. She uses the TeleShop module on the phone to transmit video to her friend.

She points her phone towards aisle signs and shelves and her friend guides her towards the

product. She picks up the product and her friend confirms that she has picked the correct

product. Alice can now use the OCR module to read the nutrition facts on the product or

her friend can read it out to her.

1.6 Research Goals

The goal of ShopMobile 2 is to allow VI individuals to shop independently using only a

smartphone. Both ShopTalk and ShopMobile 1 have demonstrated that VI users can shop

independently by scanning barcodes. ShopMobile 2 differs from these two systems by em-

ploying only a single smartphone instead of dedicated barcode readers, personal computer,

etc. In addition to those two systems, ShopMobile2 allows users to read nutritional facts

on products and obtain assistance from sighted caregivers at remote locations.

This dissertation states that computer vision is sufficient for blind grocery shopping

and is addressed by the following three systems:

1. A smartphone can be used as an eyes-free barcode scanner that can scan both UPC

and MSI barcodes. The performance of this system should be comparable to a dedi-

cated hardware barcode scanner

2. A smartphone can be used to read nutritional facts and barcode labels on products

using optical character recognition (OCR)

3. A smartphone can be used by VI individuals to obtain assistance from caregivers at

remote locations
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The eyes-free barcode scanner is the first component of the dissertation. It allows the

VI shopper to scan MSI barcodes on shelves and UPC barcodes on products using only

a smartphone. Scanning MSI barcodes is comparatively easier since these can be located

by touch. Scanning UPC barcodes, on the other hand, is much more difficult since the

barcode may be present anywhere on the product. The eyes-free barcode scanner must

allow the VI shopper to scan barcodes quickly and efficiently. Since it is meant to replace

dedicated barcode scanners, it must also be comparable to them in terms of the time and

effort required in scanning barcodes.

The OCR module is the second component of the dissertation. This component should

allow the VI shopper to read nutrition facts and barcode labels on the product. The ability

to read the nutrition facts gives the VI shopper more independence in terms of choosing

products as she is able to make informed decisions. This is also helpful in situations where

the VI shopper or any of her family members have allergies to certain ingredients.

The tele-assistance module is the final component of this dissertation. It allows the VI

shopper to obtain assistance from sighted caregivers at remote locations.
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CHAPTER 2

RELATED WORK

2.1 Introduction

In this chapter, we discuss the various tasks involved in independent blind shopping

and postulate a set of design requirements for accessible shopping systems based on these

tasks. We review some existing accessible shopping systems and discuss whether they meet

these design requirements.

2.2 Design Requirements

We conducted two focus group meetings to identify the accessibility barriers to inde-

pendent blind shopping. The first focus group consisted of five VI individuals from Logan,

UT. Their age ranged from 16 to 47. We met with each individual separately to minimize

peer pressure. The second focus group with different participants was conducted during

a monthly meeting of the Logan Chapter of the National federation of the Blind (NFB)

hosted by the USU Center for Persons with Disabilities (CPD). This group consisted of six

people, all of whom held part-time or full-time jobs, used public transportation and walked

independently around their neighborhoods. The age ranged between 19 to 51. This meeting

lasted three hours.

The written transcripts of both interviews were analyzed using ergonomics for one

(EFO), which is an occupational therapy framework proposed by McQuistion [13]. This

method fits tasks to individuals with disabilities who must repeatedly accomplish them in

specific environments. Interviews or field studies are used to identify task functions and to

match them with the individual’s abilities. Unmatched or partially matched task functions

are called performance gaps, which must be bridged with solutions called accommodation
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Table 2.1. Task Functions

Function Name Function Description

TF1 Shopping list preparation

TF2 Getting to supermarket

TF3 Finding products in store

TF4 Getting to cash registers

TF5 Paying

TF6 Getting to exit

TF7 Getting home

systems. These performance gaps are important because they become design requirements

for the accommodation systems.

We identified seven task functions that pertain to independent blind shopping [14].

These task functions are given in Table 2.1. The first task function TF1 is preparing the

shopping list. This task function is handled differently if the shopping is planned (a com-

plete shopping list is prepared before entering the store), spontaneous or opportunistic (no

shopping list is prepared) and mixed (the shopping list is incomplete or has to be modified

due to some information received in the store). Planned shopping does not introduce a per-

formance gap since it is assumed that the shopper has access to a PC with a screen reader.

Opportunistic and mixed shopping do introduce a performance gap as shoppers are likely to

use mobile devices to prepare or modify the shopping list. Eyes-free product selection and

browsing user interfaces (UIs) are presently difficult on mobile devices like smartphones.

This introduces a performance gap and consequently becomes a design requirement.

The second task function TF2 is getting to the supermarket. This task function, along

with TF7 (getting to home) pertains to outdoor navigation. This is a separate research

area and will not be addressed while formulating the design requirements. The third task

function TF3 is finding products in the store. This task function can be decomposed into

three sub-functions: TF3.1) store navigation, TF3.2) product search and TF3.3) product

identification (verifying that the correct product has been picked up). Store exploration

(product or store browsing) is implied by TF3.2 and TF3.3, but not vice versa. In other

words, shoppers cannot search for and retrieve products without browsing but are able to



11

just browse the store without retrieving products. These three task sub-functions introduce

performance gaps and result in three new design requirements - store navigation, product

search and product retrieval.

Task functions TF4 (getting to registers) and TF6 (getting to the exit) do not in-

troduce new performance gaps since they can be reduced to task function TF3.1 (store

navigation). The fifth task function TF5 relates to paying. Every participant in the inter-

view mentioned that they handle payments with credit cards and so TF5 does not introduce

any performance gaps. If, however, shoppers prefer to pay with cash, it may introduce new

performance gaps since individual bills must be recognized.

Two more design requirements were identified during the interviews. These are utiliza-

tion of existing devices and degree of environmental adjustment. VI individuals own and

operate many devices such as navigation tools, Braille note takers, white canes and guide

dogs. In addition to these devices some VI individuals may also have their children with

them when they go shopping. Requiring VI shoppers to use special devices for shopping

not only adds to the cost of ownership but has a significant negative ergonomic impact on

them. The other design requirement is the degree of environmental adjustment. If acces-

sible shopping systems are to work in real supermarkets, we have to take into account the

cost that businesses will have to bear to accommodating these systems. For example, dur-

ing experiments with RoboCart, the management at Lee’s marketplace (the store at which

these experiments were to be carried out) were concerned with the hardware that must be

installed in the store, who would maintain it, and whether it would be disruptive to the

shopper traffic. It is clear that if the introduction of the shopping system causes disruptions

in the existing business practices, supermarkets will resist or reject its adoption. Thus, it

is important that accessible shopping systems cause minimum environmental adjustment

with no adjustment being the ideal.

Table 2.2 enumerates all the design requirements of a good accessible shopping system.

We will now analyze some existing shopping systems based on these design requirements.

Our analysis will be based on the following conventions. We will say that a system S meets
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Table 2.2. Design Requirements

Requirement Name Requirement Description

DR1 Mobile product selection

DR2 Store navigation

DR3 Product search

DR4 Product identification

DR5 Utilization of existing devices

DR6 Minimal environmental adjustments

a design requirement R when S has a hardware or software module specifically designed to

meet R. If there is evidence that the designers of the system are aware of R but have not

yet implemented it, we will say that S partially meets R. If these is no such evidence, we

will say that S does not meet R.

2.3 RoboCart

RoboCart [4–6] was the first assistive shopping system developed at the Computer

Science Assistive Technology Laboratory (CSATL) at Utah State University. As shown in

Figure 2.1, RoboCart was built on top of a Pioneer 2DX robot to which a polyvinyl chloride

(PVC) structure was securely attached. The robot was equipped with a SICK laser range

finder, SONAR array, wheel encoders, and a RFID reader with an antenna. A laptop was

placed on the PVC structure and was used to control the robot. A shopping basket and a

numeric keypad were also attached to the PVC structure.

To shop with RoboCart, shoppers would select products using the numeric keypad,

which was modeled after a cell phone keypad. The robot would compute a path to the

product’s vicinity and shoppers would follow the robot by holding a handle on the PVC

structure. Earlier versions of RoboCart had a rope-like tether attached to the PVC structure

and shoppers would use this to follow the robot but it was found that this did not provide

adequate feedback and was later replaced with the rigid handle. Once shoppers arrived in

the vicinity of the product, they would use a hand-held wireless barcode scanner (IT4600

SR) to retrieve items from the shelf and the robot would take them back to the cash registers.
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The robot used Markov localization using readings from the laser range finder and

wheel encoders to localize in the store. It was found that this method was not very robust

to changes in the map (introduced by people and changing store displays) and so passive

RFID tags were used to correct errors in Markov localization. These tags were placed at

the beginning and end of each aisle and at three different locations within each aisle.

Three studies were carried out using RoboCart. The first study was conducted using

two VI participants. The feedback obtained from this study was used to make iterative

hardware and software changes to the robot’s navigation routines. The second study was a

single-subject study conducted over two months where the VI participant was asked to shop

in a real grocery store using this system. A total of seven trials were conducted on three

separate days for three different sets of products. The participant successfully completed

all trials and retrieved all products. The third study was executed with ten VI participants

from the Utah Federation of the Blind (NFB) chapter. This study lasted over four months

and each participant had to execute fifteen runs on two different days in a real supermarket.

All participants were able to complete all runs successfully.

RoboCart proved that VI individuals are able to shop independently in a real grocery

store. However, this system was not practical. The two main problems with this system were

the robot and RFID tags. The robot is very expensive to purchase and maintain. Also,

most stores would not be comfortable with a robot moving about and possibly causing

damage. The RFID tags are passive and require no maintenance once installed but there is

a initial cost to instrumenting the environment. In terms of design requirements, RoboCart

partially meets DR1 (mobile product selection) since its keypad is emulated as a phone’s

keypad. It meets DR2 (store navigation) through robot navigation and partially meets

DR3 (product search). It also meets DR4 (product identification) as shoppers can scan

UPC barcodes on products using the hand-held wireless scanner. It fails in DR5 (utilization

of existing devices) and DR6 (minimal environmental adjustments) since it requires a robot

and instrumenting the environment with RFID tags.
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Figure 2.1. RoboCart assistive shopping system.

2.4 ShopTalk

ShopTalk [7–9] was the second assistive shopping system developed at CSATL. It was a

wearable system designed to address two major shortcomings of RoboCart - using the robot

and instrumenting of the environment with RFID tags. Figure 2.2 shows the hardware used

in the system, which consists of a OQO ultraportable computer, a Belkin numeric keypad,

a hand-held wireless IT4600 SR barcode scanner with its base station and a USB hub

to connect all components. This hardware was carried by the user in a small CamelBak

backpack. The numeric keypad was attached to the left or right shoulder strap, depending

on whether the shopper was right-handed or left-handed. The shopper received instructions

through headphones.

ShopTalk was based on the following conceptual formula: independent blind shopping =
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verbal route instructions + shelf barcode scans. Most stores place small MSI type barcodes

on shelves beneath products for inventory control purposes. ShopTalk uses these barcodes as

topological cues for product search and store navigation. A key data structure in ShopTalk

is the barcode connectivity matrix (BCM). The BCM is a graph like data structure that

associates MSI barcodes with aisles, aisle sides, shelf sections (groups of shelves), specific

shelves in the shelf section and relative position on shelves. The BCM is used to generate

the store navigation and product search and retrieval instructions. Shoppers can scan any

shelf barcode in the store and receive information about their position in the store and

directions to products.

Two single subject studies were carried out at Lee’s marketplace and one single sub-

ject study was carried out at Sweet Peas, a smaller independent store. Later, a formal

longitudinal study with ten participants was carried out at Lee’s marketplace. The product

database included 4297 products. In this study, each participant was asked to retrieve the

same set of three randomly chosen products five times. It was found that all participants

were able to retrieve all the products successfully in each run.

Shoptalk was able to prove that it is possible for VI shoppers to shop independently

using barcode scans and verbal route directions. As an accessible system, ShopTalk does

not meet DR1 (mobile product selection) since it assumes that the shopping list has been

prepared and stored on the OQO computer. This system meets DR2 (store navigation)

and DR3 (product search) since it provides verbal route descriptions to the shopper. The

system partially meets DR4 (product identification) as shoppers can find the identity of the

product by scanning the UPC barcode on it. However, as observed during the experiments,

the scanner is difficult to use on softer packages like potato chips. The system does not

meet DR5 (utilization of existing devices) because it requires shoppers to purchase addi-

tional hardware, most of which cannot be utilized for other purposes. The system partially

meets DR6 (minimal environmental adjustment) because it does not require installing and

maintaining additional devices but it does assume access to the store’s inventory control

system. Some stores may not be willing to provide access to their database and in this case
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the BCM cannot be computed automatically.

Figure 2.2. Hardware components of ShopTalk.

2.5 GroZi

GroZi [10,11] is an assistive shopping system for the blind developed by researchers at

the University of California at San Diego. This system uses a custom hardware solution

called a MoZi box (see Figure 2.3) for object recognition. The MoZi box is equipped with

a camera and haptic interfaces. In GroZi, shoppers point the MoZi box at aisle signs.

The system captures images from the camera and decodes them using optical character

recognition (OCR) and reads out the text using text to speech. Shoppers enter the aisle and

point the MoZi box towards products on shelves and move forward. The system captures

images of products continuously and compares them with images stored in its database to

recognize products. Once products are located, shoppers are guided towards them using

voice or haptic interfaces.

GroZi requires two sets of images for each product - in vitro images taken under perfect
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conditions and in situ images taken in natural environments. The Grozi120 [15] database

contains an average of 5.6 in vitro images and 93.3 in situ images for 120 products. Im-

ages taken at run-time are compared with the in vitro and in situ images using different

techniques such as color histogramming, SIFT and boosted Haar-like features to recognize

products. It was found that SIFT resulted in the best performance (18% precision and a

72% recall rate).

Grozi does not meet DR1 (product selection) and it is assumed that the shopper has

already prepared the shopping list. It partially meets DR2 (store navigation). As of now,

the system assumes that the shopper is capable of navigating on her own but the designers

of this system are aware that store navigation is a design requirement and plan to address

it in future implementations. The system partially meets DR3 (product search) since the

shopper can point the MoZi box towards the shelves and receive instructions (up, down, left,

right, step back and camera blurry). The shopper can also point the MoZi box towards aisle

signs and have them read aloud. These instructions should be sufficient for the shopper

to retrieve products but this has not been verified in a real supermarket during regular

operating hours. This system partially meets DR4 (product identification). The system

uses vision algorithms (e.g., ShelfScanner) that can identify products at roughly two frames

per second. However, there is a huge ergonomic cost to this as the shopper has to carry a

power laptop on his or her back. This system does not meet DR5 (utilization of existing

devices) since the shopper has to use the MoZi box for shopping. Although, the designers

of this system have used off the shelf components to reduce cost and make maintenance

simple, these components have to be assembled by hardware professionals.

The two main issues with this system are the image database and the custom hardware.

The current database contains an average of 98.9 images per product. A typical grocery

store contains about 38,718 products and this would require taking millions of images.

Also, since the system requires images to be taken in their natural environments, the in situ

images would have to be taken separately for each store. It is also unclear if the current

performance would scale comparably for such a high number of images. The other problem
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with this system is that it relies on custom hardware, which is typically expensive and can

only be used for a particular task - shopping, in this case.

Figure 2.3. MoZi box.

2.6 iCare

The iCare shopping system [16] has been developed by researchers at Arizona State

University. Figure 2.4 shows the iCare framework. This system utilizes a RFID reader

embedded within a glove, a PDA with Bluetooth, Wi-Fi and screen reader. To use this

system, shoppers wear the RFID glove and pass their hand over items in the aisle. The RFID

reader reads RFID tags on products and transmits this information to the PDA through

Bluetooth. The PDA queries a relational database stored on the store’s server through WiFi

to access information about products and delivers messages like, “passing dairy section,”

“passing coffee section,” etc to the shopper. Shoppers can use this information to navigate to

the appropriate section in the store and retrieve products. Shoppers can also get information

about the product’s price, weight, ingredients and nutritional information when they pick

up the products.

As an accessible system iCare does not meet DR1 (mobile product selection) since

they do not seem to mention it in the paper or the references. The system partially meets

DR2 (store navigation) and DR3 (product search) because the shopper can browse prod-

ucts using the RFID tags on them. The system focuses on product browsing and so it is
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unclear if store navigation and product search have been implemented or evaluated in a

real supermarket. The system meets DR4 (product identification) since the shopper can

read tags on individual products and get their information from the server. It has been our

experience that RFID tags do not work well when placed on metal surfaces and it is unclear

if the designers of this system have taken this into consideration. The system partially

meets DR5 (utilization of existing devices) because most components are commercially-

off-the-shelf except the hand glove with the RFID reader. The system does not meet DR6

(minimal environmental adjustment) since it assumes that every item in the store is tagged

with a RFID tag. While this may be possible in the future, currently, most products are

not individually embedded with RFID tags. This system also requires access to the store’s

inventory control system and as mentioned previously, most stores will not be comfortable

in providing.

Figure 2.4. iCare framework.

2.7 Trinetra

Trinetra [17–19] is an assistive shopping system designed by Carnegie Mellon Univer-

sity. This system uses a Nokia 6620 smartphone, a Bluetooth wireless headset, Baracoda’s

IDBlue RFID scanning pen, Baracoda’s barcode scanning BaracodaPencil and generic high

frequency tags from Texas Instruments. To use this system, shoppers scan either the RFID

tag or the UPC barcode on the product using the Baracoda pens. The UPC code or the
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RFID tag number is then passed through Bluetooth to the smartphone. The system then

checks a local cache on the smartphone to retrieve the product description. In case of a

cache hit, the product description is returned to the user. In case of a cache miss, the

Trinetra module on the phone communicates with a desktop server over TCP to check for

the product entry in a larger cache. If a cache miss occurs at this stage, the system checks

either the store inventory control system or a public UPC database on the web to return

the product information. The local caches are updated if this information is found.

This system has been evaluated with one VI individual from the development team in

a small store. In this study the VI shopper was led to the vicinity of items in a small store

and he used the Trinetra system to find the product and pick it. It was reported that he

was able to find all products successfully.

This system partially meets DR1 (mobile product selection) since there is evidence of

the shopper using the phone to select products. It is unclear if the shopper selects products

from a prepared list or from a large database of products. The system does not meet DR2

(store navigation) since it assumes that the shopper is able to navigate to the product’s

location either independently or using someone’s assistance. While this assumption may

hold true for a small convenience store, it is unlikely to hold in a modern supermarket.

The system does not meet DR3 (product search) in that there does not seem to be any

guidance provided to the shopper at run time. The system partially meets DR4 (product

identification) as the shopper can identify the product by scanning the UPC barcode or

reading the RFID tag on it. However, more empirical evidence is needed to show that VI

shoppers can use the Baracoda pencil to scan barcodes easily as our own experience with

the Baracoda pencil indicates otherwise. The system partially meets DR5 (utilization of

existing devices) since this system is the first to advocate using mobile phones for accessible

blind shopping. This system does require the Barcoda pencil readers, which many VI

individuals do not own and may not be useful in applications other than shopping. If the

barcode version of the system is adopted, it partially meets DR6 (minimal environmental

adjustment) as the store has to agree to install and maintain the UPC server. If, on the
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Table 2.3. Comparison of Various Assistive Shopping Systems

System DR1 DR2 DR3 DR4 DR5 DR6 Field Evals

RoboCart ± + ± ± - - +

ShopTalk - + + ± - ± +

GroZi - ± ± ± - ? -

iCare - ± ± + + - -

Trinetra ± - - ± + ± -

other hand, the RFID version of the system is adopted, this system will fail to meet DR6

because item level RFID tagging does not exist yet and supermarkets will have to undergo

major environmental adjustments to accommodate it.

2.8 Summary

Table 2.3 shows a summary of how the various accessible shopping systems described

earlier meet the design requirements. In this table, a plus sign signifies that the system met

the particular design requirement, a minus sign signifies that the system did not meet the

design requirement, a plus/minus sign means that the system partially meets the design

requirement and a question mark means that it is unclear whether the system meets the

design requirement. The last column specifies whether a give system was evaluated in the

field with at least ten VI participants.
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CHAPTER 3

EYES-FREE BARCODE SCANNER

3.1 Introduction

Both ShopTalk and ShopMobile 1 proved that VI shoppers can shop independently by

scanning barcodes and following verbal directions. However, these systems used dedicated

barcode scanners (a wireless hand-held barcode scanner in ShopTalk and a Baracoda pen

barcode scanner in ShopMobile 1) to scan barcodes. These dedicated barcode scanners

work well but require shoppers to purchase and maintain additional hardware. The aim of

ShopMobile 2 is to reduce the hardware complexity of the system. To do this successfully,

it must be able to replace a dedicated barcode scanner by allowing the VI shopper to scan

UPC barcodes on products and MSI barcodes on shelves quickly and reliably using only

the smartphone.

Barcode scanners can be broadly classified into three types - laser-based barcode scan-

ners, pen barcode scanners and CCD barcode scanners. Most dedicated barcode scanners,

such as the ones used by supermarkets at checkout stands are laser-based. These barcode

scanners use a laser beam to illuminate the barcode and capture the reflected beam using a

photo diode. This reflected beam is processed using signal processing algorithms to decode

the barcode. Laser-based barcode scanners are fast and easy to use since they illuminate

the entire surface of a product. Most laser-based scanners employ a two dimensional beam

pattern so that the barcode can be read even if it is rotated. A pen barcode scanner uses

the same technique as a laser barcode scanner but employs a single LED for illuminating

the barcode. A pen barcode scanner cannot illuminate the entire surface of the barcode and

so it has to be dragged across the barcode along a straight line to read it. Using a pen based

barcode scanner is not as easy as using a laser based barcode scanner since it requires some
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practice to drag it across the barcode at proper speeds [12]. The CCD barcode scanner

employs an image sensor typically a charged-coupled device (CCD), to capture an image of

the barcode. This image is then decoded to read the barcode. The CCD barcode scanner

may employ LEDs or some other light source to illuminate the barcode. Mobile phones

also contain a CCD (or CMOS) camera and so applications that use mobile phones to scan

barcodes can be classified under CCD barcode scanners.

A lot of research has been performed in the area of decoding barcodes using CCD

cameras and mobile phones. Ohbuchi et al. [20] have demonstrated barcode scanning using

a camera, mobile application processor, digital signal processor (DSP), and a display device.

Many systems [21–24] and applications [25, 26] have been developed for scanning barcodes

using mobile phones. These solutions have been developed for sighted users and may not

be suitable for VI persons. For example, RedLaser [25] and ZXing [26] are two popular

barcode scanning applications for smartphones. These solutions require users to carefully

position the phone’s camera with respect to the barcode for scanning and cannot decode

MSI barcodes. The system described in [27] is developed specifically for VI individuals

but this system places colored fiducials next to barcodes for easy localization. This system

also uses a custom-made variation of the UPC standard for encoding barcodes. Gallo and

Manduchi [28] have proposed an algorithm for decoding barcodes for VI individuals but

have not demonstrated it on a cell phone.

In this chapter, we will describe the eyes-free barcode scanning solution, which allows

VI shoppers to quickly and reliably scan both MSI barcodes on shelves and UPC barcodes

on products using only a smartphone.

The eyes-free barcode scanning solution is comprised of four modules - interactive

camera alignment module, barcode detection module, barcode localization module and the

barcode decoding module. Let us consider a use case, which illustrates how these modules

work together. Alice is a completely blind shopper who wants to scan the UPC barcode on

a product. She places the phone on the product such that the camera faces the product

and aligns it with the product. UPC barcodes are usually located on the bottom side of
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boxes and on the sides of cans or bottles. If the product is a box, she finds the bottom side

of the box and aligns one edge of the phone with the corresponding edge of the box. If it

is a bottle, she aligns the bottom edge of the phone with the bottom edge of the bottle. If

the product is a can, she aligns either the top or the bottom edge of the phone with the

corresponding edge of the can. Once the phone is aligned, she slowly moves it away from

the product. The system automatically detects that she has started moving the phone away

from the product and starts a timer, which notifies her to stop moving the phone once it

reaches a preset threshold. It is assumed that the user moves the phone with a certain

speed. The timer preset value can be adjusted such that the phone is approximately six to

eight inches away from the product when it reaches its preset value.

The system now starts the barcode detection module, which takes images continuously

in video mode and analyzes each image to detect the presence of a barcode. She now uses

the phone like a flashlight - looking for a barcode on the product. If she does not find

a barcode, she switches over to a different side in case of a box and repeats the entire

procedure or rotates the can or bottle. If a barcode is found, the system starts beeping to

let the user know that a barcode has been detected. The system now starts the barcode

decoding module, which tries to decode the barcode in the image. If the barcode is decoded

successfully, it is read out to the user otherwise the system starts the barcode localization

module, which finds the precise location of the barcode in the image and segments it from

the image. The barcode decoding module now tries to decode the barcode in the localized

image. The system tries to decode the barcode in the original image as well as in the

localized image to improve the chances of decoding the barcode. If it is successful, the

barcode is read out to the user or else the system tries to decode the barcode in a 90-degree

rotated copy of the image (with and without localization) to take care of situations where

the barcode may be rotated by 90-degrees in the image. If the barcode is still not decoded,

the system checks whether the barcode is cropped along one of the sides and notifies the user

accordingly. It then starts the barcode detection module and a new image is captured and

analyzed. The interactive camera alignment mode runs during the entire time and helps the
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user keep the phone aligned with the product. Figure 3.1 shows the flow of control between

the different modules.

Interactive CameraAlignment

Barcode Detection Module
BarcodeDetected?

BarcodeDecoded?

No
YesBarcode Decoding Module

No
Barcode Localization Module

Yes
Read Barcode to User

Barcode Decoding Module
BarcodeDecoded?No

Barcode Localization Module
Barcode Decoding Module

Yes
Rotate Image by 90 Degrees
Barcode Decoding Module

BarcodeDecoded?No Yes

Check if Barcode is CroppedAnd Notify User
BarcodeDecoded?No Yes

Figure 3.1. Flow of control between the different modules of the eyes-free barcode scanner.

The rest of the chapter is organized as follows. In section 3.3, we describe the inter-

active camera alignment module. In section 3.4, we describe the barcode detection module

and in section 3.5, we describe the barcode localization module. Finally, we describe the

barcode decoding module in section 3.6.

3.2 Hardware - Choosing a Smartphone

In ShopMobile 2, a smartphone completely replaces the hardware barcode scanner as

well as other components used in ShopTalk and ShopMobile 1. Thus, its choice was very
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important and specific hardware and software requirements had to be taken into consider-

ation while making this choice. We identified the following hardware requirements for the

phone: a) possess a camera capable of capturing images at a distance of few inches, b) has

a led flash, c) has sufficient computing power to run image processing algorithms, and d)

has a physical keyboard to allow VI individuals to operate the phone. In terms of software,

the requirements were that the phone’s operating system must have the requisite API’s for

camera control, internal sensors, etc.

Image processing algorithms tend to be computationally expensive and so we wanted

a high-end smartphone capable of running our software smoothly. At that time, most high-

end smartphones were touch screen devices and we were skeptical whether VI individuals

would be able to use a touch screen phone since it has few hardware buttons. We contacted

three VI people telephonically and asked them if they would be comfortable using touch

screen phones for shopping. All the three participants said that they had either used a

touch screen phone or knew VI people who were using touch screen phones without any

problems. All participants said that they would be comfortable in using the touch screen

phone as long as we employed suitable touch interfaces. This caused us to drop the physical

keyboard requirement for the phone.

We identified the Google Nexus One and the iPhone as two potential candidates. Both

phones had autofocus cameras, sufficiently fast processors and internal sensors. The Google

Nexus One phone was available unlocked from Google without any contract whereas the

iPhone could only be purchased with a two-year wireless contract from AT&T. The iPhone

required developers to purchase a developer license and could only be programmed using

a Mac whereas the Nexus One could be programmed for free on either Windows, Mac OS

or Linux. In terms of programming language, the Nexus One could be programmed using

Java, which we preferred, whereas the iPhone could be programmed using Objective-C.

These considerations led us to choose the Nexus One as the smartphone for this project.

The Google Nexus One phone is shown in Figure 3.2. Initially, it ran Android 2.1 but

has since been upgraded to Android 2.3. All our software is compatible with Android 2.2+.



27

This phone can be programmed in Java and can also run native C code using the Java

Native Interface (JNI). In terms of hardware, it has a 1 Ghz processor, 512 MB of RAM

and a 4 GB SD card. It contains a 5 Megapixel camera with autofocus and led flash for

taking pictures. It has the following sensors - GPS, an orientation sensor, an accelerometer

and a light sensor. The phone has a 3.7 inch multi-touch screen and small joystick like

trackball beneath the screen and both of these can be used for obtaining input from users.

Figure 3.2. Google Nexus One phone.

3.3 Interactive Camera Alignment Module

As described in the use case, the VI shopper starts the barcode scanning process by

aligning the phone with respect to the product and the interactive camera alignment module

then helps her keep the phone aligned with the product at all times. Let us consider why

it is so important to do this. As shown in Figure 3.3, any rigid body can be rotated along

three axes - pitch, yaw and roll. Rotating the phone along any one of these axes will cause
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the phone (and hence the camera) to be misaligned with the product and introduce skew

distortions in the image. Figure 3.4 shows an example of an image and its skew distorted

equivalent. Skew distortions are undesirable because they reduce the barcode decoding

rate. We first observed this during a pilot experiment where we asked one VI and three

blindfolded sighted participants to decode UPC barcodes on ten products. Participants

were instructed to align the camera with the product and then slowly move it away from

the product. Since there was no interactive camera alignment module to help them keep the

phone aligned with the product, participants would inadvertently rotate the phone while

moving it away from the product. This introduced skew distortions in the image, which in

turn, reduced the barcode decoding rate.

Yaw

Pitch

Figure 3.3. Aligning the camera in the pitch and yaw planes.

To increase the barcode decoding rate, we can either make the barcode decoding algo-

rithm robust to skew distortions or minimize skew distortions in the image. Many methods

have been proposed to detect and correct skew distortions in images. One such method [29]

uses Radon transforms to detect and correct skew distortions. Another method [30] uses the

Hough transform to do the same. Incorporating skew detection and correction algorithms

in the barcode scanning process would increase its complexity and run time. On the other

hand, minimizing skew distortions is simpler, more efficient and is easily implemented by
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Figure 3.4. Examples of image (left) and its skew distorted equivalent (right).

the interactive camera alignment module.

The interactive camera alignment module starts automatically as soon as the shopper

places the phone on the product. When the phone is in contact with the product, the

camera is blocked by the product and so its output is a completely dark image. This

is easily detected (average luminance of the image is approximately equal to zero) and

the phone’s orientation along the pitch, yaw and roll axes are captured using the phone’s

internal orientation sensor. These readings are averaged to define the absolute pitch, yaw

and roll planes. The completely dark image causes the automatic exposure control of the

camera to set the sensor gain to a very high value. As soon as the shopper moves the

phone away from the product, the camera is no longer blocked and the output is a very

bright image due to the high sensor gain. This bright image is also easily detected (average

luminance of the image is approximately equal to 255) and a timer is started. The shopper

is instructed to stop moving the phone away from the product once the timer reaches a

preset value. This preset value can be set depending on how quickly the shopper moved

the phone. Once the timer starts, the phone’s orientation along the pitch, yaw and roll

axes are read continuously. If the phone is misaligned along any plane, specific instructions

like “pitch up” or “roll left” are issued to the shopper to help her realign the phone. The

interactive camera alignment module runs continuously and stops automatically only when

a barcode is decoded or if the user turns it off manually.
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3.4 Barcode Detection

The barcode detection algorithm is responsible for detecting the presence of a barcode

in an image and notifying the user. Earlier versions of the barcode scanner did not include

this module. We realized the necessity of the barcode detection module after performing

an experiment in which two VI participants were asked to decode UPC barcodes on ten

products. The participants took an average of 83.6 and 93.4 seconds, respectively, to scan

a barcode. These scanning times are very high as compared to dedicated hardware based

barcode scanners and are therefore unacceptable for our application. Upon analyzing the

video of the experiment, we found that participants spent most of their time trying to

scan barcodes on surfaces that did not contain a barcode. For example, a box contains

six surfaces out of which only one contains a barcode. Since users had no way of quickly

determining which surface contained a barcode, they spent equal time on all surfaces until

they finally scanned the barcode. The barcode scanning times could be reduced drastically

if we could quickly determine the presence of a barcode on a surface. Thus, shoppers could

scan a surface and quickly determine if it contained a barcode or else move to a different

surface.

Figure 3.5 shows an overview of the barcode detection algorithm. The algorithm works

by obtaining an image from the camera and binarizing it into a bi-level image. The binarized

image is then divided into subimages and x and y gradients are computed for each subimage.

These gradient regions are then classified by a support vector machine (SVM) as barcode or

non-barcode regions. Finally, the algorithm looks at the number of barcode and non-barcode

regions to decide if the image contains a barcode or not.

3.4.1 Binarizing Images

Typically, the camera produces a color image where each color pixel pc can be repre-

sented by a triad pC = (R,G,B) corresponding to the colors - red (R), green (G) and blue

(B), respectively. Each color is defined by a 8-bit value so 0 ≤ R ≤ 255, 0 ≤ G ≤ 255

and 0 ≤ B ≤ 255. However, all algorithms in our application use either grayscale image Y ,

where each pixel 0 ≤ pY ≤ 255 or a bi-level image B, where each pixel pB = {0, 255}. We
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Get Image from Camera

Binarize Image using
Modified Niblack Filter

Compute Image
Gradients along the x 

and y axes

Classify Image 
Gradients using SVMs

Determine if a Barcode
Exists in the Image

Figure 3.5. Overview of the barcode detection algorithm.

can use the formula pY = 0.3×R+ 0.59×G+ 0.11×B to obtain pY from pC . The Nexus

One phone used in our experiments has the ability to capture a grayscale image directly.

Thus, for simplicity and efficiency we use pY = G to obtain pY from pC .

The grayscale image Y can be converted to the bi-level image B by binarization. To

binarize an image, a threshold T is chosen and every pixel pB in B is set to 255 (white)

if its corresponding pixel pY in Y is greater than or equal to T or 0 (black) otherwise.

Binarization methods can be classified as global methods or local methods depending on

the value of the threshold T . In a global binarization method, the value of the threshold T

remains the same for each pixel in the image. Conversely, in a local binarization method the

value of the threshold T can vary for each pixel in the image. Global binarization methods

like [31–33] are simpler but may not be able to handle large variations in illumination

over the entire image. Local binarization methods like [34, 35] are able to handle such

variations but require computing the value of T for every pixel in the image, which may be
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computationally expensive.

We have developed a new binarization method which is loosely based on Niblack’s

original method. Equation 3.1 shows the method to determine the local threshold T (x, y)

for each pixel located at coordinates (x, y) in Y using Niblack’s original method. In this

equation, m(x, y) and s(x, y) denote the mean and standard deviation values for a n × n

window centered on (x, y) and k is a user defined parameter, which is usually negative.

T (x, y) = m(x, y) + k × s(x, y) (3.1)

It is expensive to compute the threshold T (x, y) for each pixel and hence in our modified

Niblack method, we divide the image Y in to n× n pixel subimages and compute a single

threshold T (i, j) for each subimage Yi,j ∈ Y . Equation 3.2 shows the method for determining

T (i, j). In this equation, m(i, j) and s(i, j) denote the mean and standard deviation values

for all the pixels in the subimage Yi,j and k, S & T c are user defined parameters. For our

application, we used n = 15, k = 0, S = 12.7 and T c = 127.

T (i, j) =

 m(i, j) + k × s(i, j) if s(i, j) ≥ S

T c otherwise
(3.2)

It can be noted that since we set k = 0, the above equation reduces to T (i, j) = m(i, j)

when s(i, j) ≥ S. The choice of k influences whether the resulting binarized image will

be light or dark. Choosing a negative value of k makes the resulting binarized image

lighter whereas choosing a positive value of k makes the resulting image darker. For this

application, we choose k = 0 since we do not want the resulting image to be lighter or

darker. However, as will be discussed in Chapter 6, while performing optical character

recognition, we choose k = −0.5. This results in a lighter binarized image, which makes

segmentation easier.

Global methods produce less noise in the binarized image whereas local methods pre-

serve details in the image that would have otherwise been lost due to small variations in

illumination. The modified Niblack method combines the best of both methods. It employs
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a fixed threshold T c on subimages that exhibit low standard deviation in the grayscale

values of their pixels and an adaptive threshold on subimages that exhibit high standard

deviation in the grayscale values of their pixels. A barcode region consists of a large number

of alternating black and white lines and hence a subimage containing a barcode will exhibit

high standard deviation. This subimage will be thresholded with the adaptive threshold. A

subimage containing a constant background will exhibit a low value of standard deviation

and will be thresholded with the constant threshold T c.

Our modified Niblack method is very efficient compared to the original Niblack method.

Computing a single threshold takes O(n2) time. The original method computes a threshold

for each pixel in the image and so its running time is O(whn2), where w and h denote the

height and the width of the image, respectively. Our method computes a single threshold

for each n×n subimage. Since there are w×h
n2 such subimages, the run time of our algorithm

is O(wh). Figure 3.6a shows a grayscale image and Figures 3.6b to 3.6d show the corre-

sponding bi-level images obtained using a global threshold, original Niblack method and our

modified Niblack method. It can be observed that a lot of detail is lost when binarizing the

image using a global threshold. Binarizing the image using Niblack’s original method intro-

duces a lot of noise into the image where as our method provides a good balance between

noise reduction and detail in the image.

3.4.2 Image Gradients

The next step in the barcode detection process is to compute the image gradients

along the x and y axes. A gradient of a continuous function is defined as its derivate

along a particular direction. Since an image comprises of discrete pixels, we can compute

its gradient using convolution. We can compute the image gradients Bx and By for the

binarized image B along the x and y axes as follows:

Bx = B ∗Gx (3.3)

By = B ∗Gy (3.4)
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(a) Original grayscale image (b) Binarized image obtained using a global
threshold

(c) Binarized image obtained using original
Niblack method

(d) Binarized image obtained using our mod-
ified Niblack method

Figure 3.6. Binarization results using various methods

To obtain gradients along both the positive and negative directions along each axes, we

define Gx = [−1, 2,−1] and Gy = [−1, 2,−1]T . Figure 3.7 shows the image gradients along

the x and y axes for an image containing a barcode. As shown in Figure 3.7, a product

package typically consists of four distinct image regions - background, text, graphics and

barcode. We are interested in identifying the barcode region and so we must identify some of

its properties that will help us in distinguishing it from the other image regions. A barcode

consists of a large number of parallel alternating black and white lines in a small region. A

barcode with vertical lines exhibits a large gradient along the x axis and a small gradient

along the y axis. We can observe that the background region exhibits a small gradient along

both the axes and text and graphics exhibit large gradients along both the axes. Thus, we
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can characterize a barcode region as a region that exhibits a large gradient along one axis

and a small gradient along the other.

Graphics

Text
Barcode

Constant 
Background

(a) Original binarized image

Graphics

Text
Barcode

Constant 
Background

(b) Image gradient along x axis

Graphics

Text
Barcode

Constant 
Background

(c) Image gradient along y axis

Figure 3.7. Image gradients along the x and y axes.

To implement this algorithm, the binary image is divided into n × n pixel subimages

Bi,j . Let the top left and bottom right points for each subimage Bi,j be denoted by PTL =

(xTL, yTL) and PBR = (xBR, yBR), respectively. We can now compute the gradients along
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the x and y axes, Bx
i,j and By

i,j , respectively for each subimage as follows:

Bx
i,j = ΣyBR

y=yTL
ΣxBR
x=xTL

|2×B(x, y)−B(x− 1, y)−B(x+ 1, y)| (3.5)

By
i,j = ΣyBR

y=yTL
ΣxBR
x=xTL

|2×B(x, y)−B(x, y − 1)−B(x, y + 1)| (3.6)

As described earlier, the values of Bx
i,j and By

i,j vary depending on the type of image

in Bi,j . If the subimage Bi,j contains a constant background, the values of both Bx
i,j and

By
i,j will be low. If the subimage contains text or graphics the values of both Bx

i,j and By
i,j

will be high. However, if the subimage contains a barcode, the values of only one of Bx
i,j

and By
i,j will be high and the value of the other will be low depending on the orientation of

the barcode lines.

3.4.3 Classification using Support Vector Machines

A Support Vector Machine (SVM) [36,37] is a linear classifier, which is used to classify

linearly separable data. Figure 3.8 shows linearly separable data points belonging to two

classes P (positive) and N (negative). We can construct a line L (a hyperplane in n-

dimensional space) that separates the positive examples from the negative ones. Let the

equation of this line be wx + b = 0, where w is normal to the hyperplane, |b|/||w|| is the

perpendicular distance from the hyperplane to the origin and ||w|| is the Euclidean norm

of w. Let d+ and d− be the shortest distances from the hyperplane to the closest positive

and negative examples. The margin of the hyperplane is defined to be d = d+ + d− and

a maximum margin hyperplane is defined as one that maximizes this margin. Points lying

above this hyperplane can be classified as positive examples and points lying below this

hyperplane can be classified as negative examples.

In our case, the data points {xi, yi}, xi ∈ Bx, yi ∈ By belong to two classes P (barcode

regions) and N (non-barcode regions) and we can use SVMs to classify them. To construct

the SVMs, we collected over a hundred images and manually classified them into the two

classes P and N . We then divided each image into n × n pixel subimages (n = 50) and

computed the values of Bx
i,j and By

i,j for each subimage. Consider the graph of points
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{xi, yi}, xi ∈ Bx, yi ∈ By for all the subimages Bi,j within each image, which is shown in

Figure 3.9. Green colored points belong to P and red colored points belong to N .

Figure 3.8. Example of a SVM.

It can be observed from the figure that these points are not linearly separable and so in

theory, we should not be able to use SVMs to classify them. However, we can observe two

regions on the bottom right and top left of the figure that contain only green colored points.

These regions represents subimages that contain a barcode and we can construct two SVMs

- SVM1 and SVM2 (shown by black colored dashed lines in the figure) to classify them.

These SVMs can be constructed using the maximum margin hyperplane described earlier.

A data point (corresponding to a subimage) is said to contain a barcode if it lies above

SVM1 or below SVM2. Points lying between the two SVMs are classified as subimages

that do not contain a barcode. We can conclude that an image contains a barcode if it has

sufficient number of points (Np ≥ TN ) that lie either above SVM1 or below SVM2, where

TN is some threshold.

Let us represent SVM1 with the equation y = mx + c. From the symmetry between

SVM1 and SVM2, we can obtain the equation of SVM2 as y = (x− c)/m. We found that

the values m = 0.5, c = −15 and TN = 5 yielded the maximum values of precision equal to
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98% and recall equal to 98% for our data set.

Figure 3.9. Barcode detection SVM.

3.4.4 Detecting if a Barcode is Cropped

It is possible that a barcode is detected by the barcode detection module but cannot

be decoded by the barcode decoding module because it is cropped from one of the sides.

A barcode can usually be decoded if it is cropped from the top or the bottom since it is

redundant along those directions but it cannot be decoded at all if it is cropped from the

left or the right. It is important that the user knows that the barcode is cropped and

the side along which it is cropped, so that she can position the camera properly. The

barcode detection module is responsible for determining this and providing the user with

this information.

Let the top left and bottom right points of the subimage Bi,j be represented by

(xTL, yTL) and (xBR, yBR), respectively. Let NL, NR, NT and NB denote four counters

that keep track of the location of the barcode. These counters will help us in determining if

the barcode is cropped from the left, right, top or the bottom of the image. These counters
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are all set to zero initially and if subimage Bi,j contains a barcode, they are incremented

as follows:

NL = NL + 1 if xTL ≤ XL (3.7)

NR = NR + 1 if xBR ≥ XR (3.8)

NT = NT + 1 if yTL ≤ YT (3.9)

NB = NB + 1 if yBR ≥ YB (3.10)

(3.11)

where XL and XR denote the x-coordinates of two imaginary vertical lines drawn

somewhere on the left half and right half of the image, respectively. Similarly, YT and YB

denote the y-coordinates of two imaginary horizontal lines drawn somewhere on the top

half and bottom half of the image, respectively. Figure 3.10 shows these lines. A barcode is

assumed to be cropped if any of the counters NL, NR, NT and NB are greater than or equal

to some threshold NC .

For our application, we use NC = 1, XL = 0.1 × w, XR = 0.9 × w, YT = 0.1 × h

and YB = 0.9 × h, where w and h denote the width and the height of the input image,

respectively.

X
L

X
R

Y
B

Y
T

Figure 3.10. Imaginary boundaries on a barcode to detect if it is cropped.

To summarize, the input image is binarized and divided into n×n pixel subimages. For
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each subimage, we compute the values Bx and By and increment Np if the point (Bx, By)

lies below SVM1 or above SVM2. These support vector machines are denoted by the lines

y = 0.5x− 15 and y = 2x+ 30, respectively. We declare that the image contains a barcode

if Np ≥ 5. Finally, if the barcode cannot be decoded, we declare that it is cropped on the

left if NL ≥ 1, on the right if NR ≥ 1, on the top if NT ≥ 1 and on the bottom if NB ≥ 1

and instruct the user to adjust the camera accordingly.

3.5 Barcode Localization

The barcode localization algorithm is responsible for finding the precise location of the

barcode in the image and segmenting it from the image. It is different from the barcode

detection algorithm, which just provides an indication of the presence of a barcode in the

image. While both algorithms look for barcode regions in the image, the barcode detection

algorithm is designed to be very fast, where as the barcode localization algorithm is designed

to be precise.

Initially, we used ZXing [26] - an open source barcode scanning application for decoding

barcodes. We found that ZXing performed better on images that contained only the barcode

as compared to images that contained the barcode alongside other image elements like text

and graphics. Thus, we found that the overall barcode scanning rate increased if we localized

and segmented the barcode from images before decoding it with ZXing. We also observed a

similar increase in performance when we used the barcode localization algorithm with our

own barcode decoder. As showing in Figure 3.1, we decode the barcode on the entire image

as well on the localized image. This results in a much better scanning performance, which

is demonstrated by the experiment described in Section 4.3.

Barcode localization is a well known problem and many methods have been developed

for it. Barcode localization methods can be roughly classified into two categories: spatial-

domain based methods and frequency-domain based methods. Spatial-domain based meth-

ods [24,38–43] use features extracted directly from the image to locate the barcode where as

frequency-domain based methods [44–46] use features extracted from the frequency domain

(Fourier, Gabor, or Discrete Cosine Transforms) to localize the barcode.
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Among the spatial-domain methods, Normand and Viard-Gaudin [38, 39] have devel-

oped a method that extracts regions exhibiting high densities of mono-oriented gradients

to locate the barcode. Another method described in [40] uses contour analysis to detect

lines of the barcode and uses this information to compute a bounding box that encloses the

barcode. Neural networks can also be employed to detect barcodes in unconstrained images

and the algorithm described in [41] describes such a system. Another method proposed

in [24] uses a block-based approach where the image is divided into non-overlapping blocks,

which are then binarized and skeletonized. Connected components are extracted from each

block and analyzed to localize the barcode. Among the frequency domain methods, the

image is processed using a Discrete Cosine Transform (DCT) in [44] to extract features,

which are then classified to extract the barcode region. Jain and Chen [45] use Gabor filters

and neural networks to localize the barcode. The system described in [46] uses morpholog-

ical operators like erosion and dilation to extract key regions of interest from the image to

localize the barcode. Fiducials can also be used to locate the barcode easily. An example

of such a system can be found in [27].

3.5.1 Alternating Frequency and Vertical Continuity

As mentioned earlier, an image typically contains elements like graphics, text, and

background alongside a barcode. To localize the barcode in the image, we have to differen-

tiate it from these image elements. In Section 3.4, while discussing barcode detection, we

used the image gradients Gx and Gy to differentiate the barcode from these elements. How-

ever, this method, though accurate in detecting the presence of a barcode, is not accurate

enough to give the precise location of the barcode in the image.

Let us consider two properties of a barcode - alternating frequency and vertical conti-

nuity, which will help us in characterizing it. Alternating frequency is defined as number of

zero-to-one and one-to-zero transitions in a one pixel wide binarized bit string representa-

tion of an image. In a bit string representation, black pixels are denoted by 0 and a white

pixels are denoted by 1. Vertical continuity is defined as the continuity of black and white

lines along the y-axis. Consider two one-pixel wide lines A and B placed over the barcode as
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shown in Figure 3.11. The alternating frequency of a line can be found out by counting the

number of zero-to one and one-to-zero transitions in the bit strings. The vertical continuity

can be estimated as the length of the longest common subsequence between the two bit

strings.

Both the UPC as well as MSI barcodes contain a large number of alternating black and

white parallel lines. If we assume the barcode lines to be vertically oriented, we can observe

that this region will exhibit large alternating frequency (due to the alternating black and

white lines) and large vertical continuity (due to the lines being vertical and parallel to each

other). We can thus define the barcode as a region that exhibits high alternating frequency

and high vertical continuity.

Figure 3.11. One pixel wide lines on barcode.

3.5.2 Barcode Localization Algorithm

Figure 3.12 shows an overview of the barcode localization algorithm. The first step is

to downscale the image to a manageable size (say 320 pixels by 240 pixels). The second step

(passing the image through a line filter) runs in O(wh) time, where w is the width of the

image and h is the height of the image. Thus, downscaling the image prior to processing it

with a line filter makes the algorithm run faster without a big loss of precision.

The second step of the process is to pass the image through a line filter. The line

filter is designed to let vertical lines in the image pass through and filter out everything

else. Figure 3.13 shows an example of an image and its line filtered output. Since we

assume that the barcode lines are always vertically oriented, they will pass through the

filter along with other vertical lines in the image and everything else will be filtered out. In

reality, the interactive camera alignment mode ensures that the barcode lines are oriented



43

Downscale image Apply line detection filter
Rasterized search

Extract barcode from original image

a b c
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Figure 3.12. Overview of the barcode localization algorithm.

either vertically or horizontally but not along any other angle. To keep the assumption

about barcode lines always being oriented vertically valid, the original image as well as a

90 degree rotated copy of the image are processed through the barcode localization and

decoding algorithms.

Earlier, we used a Gabor filter as the line filter. A Gabor filter is a band pass filter for

unidimension signals. It is a type of linear filter that is defined as a product of a Gaussian

signal with a complex sinusoid. It us defined as:

g(x, y, λ, θ, ψ, σ, γ) = exp(
−x′2 + γ2y′2

2σ2
)cos(2π

x′

γ
+ ψ)) (3.12)

where x′ = xcosθ + ysinθ and y′ = −xsinθ + ycosθ.

Here, λ represents the wavelength of the cosine factor, θ represents the orientation of

the normal to the parallel stripes of a Gabor function, ψ is the phase offset, σ is the sigma

of the Gaussian envelope and γ us the spatial aspect ratio and specifies the ellipcity of the

support of the Gabor function. For our application, we used σ = 5, γ = 1, ψ = 0 and

λ = 42.25. Since we assume the barcode lines to be vertical, θ = 0.
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(a) Original Image

(b) Line Filtered Image

Figure 3.13. Line filter output of an image

To obtain the Gabor filtered image, we first apply a Canny edge detector to the original

image and then apply the Gabor filter on the output of the Canny edge detector. The output

of the Gabor filter is then converted to a binary image by applying a simple thresholding

approach. We use 0.9 as a threshold and so any Gabor filtered responses whose values are

bigger than 0.9 will be set as 255’s (white). The other smaller responses will be set as 0’s

(black).

Figure 3.15 shows an example of an image and its Gabor filtered output. It can

be observed that the Gabor filter only passes vertical lines in the image and filters out

everything else. The Gabor filter approach produces good quality line filtered outputs but

it is computationally expensive and so we use another method to produce a line filtered
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Figure 3.14. Line filter kernel.

image. Our line filter is derived from [47]. This filter is obtained by convolution of a 13× 3

kernel shown in Figure 3.14 through the entire image. A generalized m× n version of this

kernel [48] is described below:

f [i][j] =

 (m+1
2 − |i|)× n2−1

4 if j = 0

−(m+1
2 − |i|)× (n+1

2 − |j|) if j 6= 0,

where −m/2 ≤ i ≤ m/2 and −n/2 ≤ j ≤ n/2.

Cell phone processors are optimized for integer arithmetic and since our kernel uses

only integers as opposed to floating point values used in the Gabor filter, it runs much

faster.

The third step in the barcode localization process is to identify regions exhibiting high

alternating frequency and high vertical continuity in the line filtered image. To perform

this step two parallel horizontal lines A and B of width lw are placed on the line filtered

image at positions pa = (x, y) and pb = (x, y + yo), where yo is the vertical offset between

the two lines. The values of alternating frequency a(x, y) and vertical continuity v(x, y) are

computed for the two lines and stored. The x and y values of pa and pb are incremented
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(a) Original Image

(b) Gabor Filtered Image

Figure 3.15. Gabor filter output of an image

and the entire image is scanned in a rasterized fashion. A 2-D histograms H is created

to represent areas having alternating frequency and vertical continuity. For each position

p(x, y) of the lines, the histogram is updated as follows:

m = x/w ×M (3.13)

n = y/w ×N (3.14)

H(m,n) = H(m,n) + 1 if a(x, y) ≥ AT and v(x, y) ≥ VT (3.15)
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where, M & N are the number of bins in H along the x & y axes, respectively, w & h are

the height and the width of the line filtered image and AT & VT are two thresholds.

Once the histogram is updated, it is thresholded to create a new histogram HT as

follows:

Ht(m,n) =

 1 if H(m,n) ≥ T

0 if H(m,n) < T

where, T is some threshold.

This step is performed to reduce noise in the histogram. This thresholded histogram is

now scanned to identify connected components of ones. These components represent areas

having high alternating frequency and vertical continuity, which most likely represents a

barcode.

The final step of the localization process is to segment the barcode region from the

original image. Let pTL = (xTL, yTL) and pBR = (xBR, yBR) represent the top-left and

bottom-right corners of the connected component in the histogram. Let N be the scale

factor by which the original image was scaled down in the first step. The top-left corner

pBTL = (xbTL, y
b
TL) and bottom-right corner pBBR = (xbBR, y

b
BR) of the barcode region in the

original image can be computed as follows:

xbTL = xTL/M × w ×N (3.16)

ybTL = yTL/M × h×N (3.17)

xbBR = xBR/M × w ×N (3.18)

ybBR = yBR/M × h×N (3.19)

where, w and h represent the height and the width of the line-filtered image.



48

3.6 Barcode Decoding

The barcode decoding module is responsible for converting the barcode image to a string

of characters, which represent the barcode. Barcode decoding is a well known problem and

many solutions are developed for it. Most barcode decoding algorithms, including our own,

are scanline based [28, 49] but other solutions based on Hough transform [50] and neural

networks [51] exist. A scanline represents a one pixel wide slice of the image. It is analogous

to drawing a one pixel wide line on the image and extracting the pixels that lie on that line.

We employ two scanlines SI and SB, which are obtained from the original image I and

the binarized image B, respectively. Since most linear barcodes are encoded by alternating

black and white lines of varying widths, we introduce two new notations line widths (LW)

and line colors (LC), which will help us in decoding the barcode. LW is used to denote the

width of each line in the barcode and LC is used to denote the colors (black or white) of

those lines. Before decoding, both SI and SB are converted to their respective line widths

and line colors notations.

3.6.1 Line Widths and Line Colors Notations

Let us define two notations - Line Widths (LW ) and Line Colors (LC), which can

be used to represent linear barcodes. Line widths represent the widths of each line in

the barcode and line colors represent their respective colors (0 for black and 1 for white).

Each barcode can now be represented using the pair (LW,LC). Consider a scanline S on

a part of a linear barcode shown in Figure 3.16. For simplicity, this figure assumes that

the scanline starts and ends on the barcode. In reality, the scanline will also contain other

parts of the image like graphics and text. If we assume the width of the thinnest line

to be one, we can represent this barcode as (LW,LC), where LW = 1111221113211 and

LC = 1010101010101.

To improve our chances of decoding the barcode, we employ two scanlines SI and SB

obtained from the grayscale and binarized images, respectively. Both these scanlines have

to be converted to their respective line widths and line colors notations for decoding the

barcode.
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S
Barcode

Graphical Representation of the Scanline
Figure 3.16. Line widths and line colors representation for a linear barcode.

Let us first look at how SI is converted to its equivalent line widths LW I and line colors

LCI notations. Consider Figure 3.17, which shows a graphical representation of the scanline.

The scanline SI can be represented as a collection of points {s0, s1, . . . , sn−1}, where sj =

(j, ij) is the jth point on the curve corresponding to the jth pixel in the scanline and ij is

its intensity or grayscale value. Let m = mean(i0, i1 . . . , in−1) represent the mean intensity

of the scanline and let the line M having the equation y = m represent the mean intensity

graphically. We have to compute the values of the line widths LW I = {lw0, lw1, . . . , lwk−1}

and line colors LCI = {lc0, lc1, . . . , lck−1}, where lwj and lcj are the width and the color of

the jth barcode line, respectively.

Let us consider an example where we will derive the value of lw0 and lc0. Let P =

{p0, p1, . . . , pk}, where pj = (xj , yj), denote the set of all the intersection points of SI with

M . As shown in Figure 3.17, the value of lw0 can be computed as lw0 = x1 − x0. It would

be difficult to compute the exact locations of p0 and p1 (this is true for all the intersection

points). However, as shown in Figure 3.17, we can approximate the location of p0 with the
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intersection of line L0 and M and the location of p1 with the intersection of L1 and M .

Here, line L0 is a line that connects a pair of two points (s1 and s2) that lie on the scanline

and are on either side of M . Similarly, line L1 connects the next pair of such points (s9 and

s10). Since s2 lies above s1 (i2 > i1), we can set lc0 = 1.

In general, we first have to find a pair of points, sj = (j, ij) and sj+1 = (j + 1, ij+1),

such that they lie on either side of M . This can be performed by sequentially going through

SI and finding a pair of points such that ij < m & ij+1 > m or ij > m & ij+1 < m. The

equation of the line L can now be computed as follows:

y = (ij+1 − ij)(x− j) + ij (3.20)

The equation of line M is y = m. The intersection point pk = (xk, yk) of L and M can

be computed as follows:

xk =
m− ij
ij+1 − ij

+ j (3.21)

yk = m (3.22)

The width lwk of the kth barcode line can be computed as follows:

wk = xk+1 − xk (3.23)

The value of lcj is obtained as follows:

lcj = 1 if ij+1 > ij and 0 otherwise (3.24)

To obtain LWB, groups of black and white pixels in SB are replaced with their run

lengths. LCB represents the corresponding colors (black or white) of elements in LWB.

For example, if SB = {1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0}, LWB = {5, 4, 4, 3} and LCB =

{1, 0, 1, 0}.
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Figure 3.17. Intensity curve and mean intensity.

In practice, LW I and LCI are generated and decoded first. If a valid barcode is not

found, LW I and LCI are reversed and decoded. This step ensures that a barcode will be

decoded even if it is rotated by 180 degrees. If we are still unable to find a barcode, LWB

and LCB are generated and decoded, both originally and after reversal. As will be discussed

later in section 4.3.1, LW I and LCI have a greater probability of decoding a barcode as

compared to LWB and LCB and so are given preference over LWB and LCB.

The above procedure shows how a single scanline is decoded in the image. In practice,

multiple scanlines horizontal and vertical are generated until a valid barcode is obtained.

The barcode decoding process uses only the line widths and line colors format and

henceforth all discussion will assume that the scanlines are converted to this format.
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3.6.2 Decoding UPC Barcodes

UPC (Universal Product Code) is the most widely barcode format for labeling products

in North America. There are several versions of UPC barcodes - UPC-A, UPC-B, UPC-C,

UPC-D, UPC-5 and Zero Compressed UPC [52]. UPC-A is the most common version of

the UPC barcode and henceforth all discussion will be related only to this version of the

UPC barcode.

A UPC barcode is a type of linear or 1-D barcode, which is encoded by alternating black

and white lines of varying widths. The UPC barcode consists of the following components

- a start pattern (S), two groups of six digits (D) separated by a middle pattern (M) and

an end pattern (E). These components are arranged as: SDDDDDDMDDDDDDE. Let

the width of the thinnest line in the barcode be w and let the thinnest black and white lines

be represented by B and W , respectively. The start and end patterns are encoded as BWB.

Each digit is encoded by four lines, whose combined width is 7w. The middle pattern is

encoded as WBWBW . Thus, each UPC barcode contains a total of 3 (start pattern) +

4 (per digit) × 12 (digits) + 5 (middle pattern) + 3 (end pattern) = 59 lines and has a

combined width of 3w (start pattern) + 7w (per digit) × 12 (digits) + 5w (middle pattern)

+ 3w (end pattern) = 95w. Table 3.1 shows the encodings for the three patterns and for

the digits 0− 9 in the line widths and line colors format.

As shown in Figure 3.18, the scanline may contain image elements like text, graphics

and background along with the barcode. This is true even if the barcode is localized since

the scanline will at least contain some background region along with the barcode. The first

step of the decoding process is to identify the start and the end of the UPC barcode within

the scanline. Every UPC barcode contains a start pattern and an end pattern. We can

locate the start and the end of the barcode by locating these patterns. Let the start and

end pattern indices be denoted by s and e, respectively. These can be computed as follows:
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Figure 3.18. Scanline on a product.

s = argmax(lwi−1 − std(lwi, lwi+1, lwi+2)) and ci = 0 (3.25)

e = argmax(lwi+3 − std(lwi, lwi+1, lwi+2)) and ci = 0 (3.26)

The start pattern is encoded as three alternating black and white lines having unity

width. Thus, if s represents the start pattern index, then lws, lws+1 and lws+2,will be

approximately equal and the value of std(lws, lws+1, lws+2)) will be low. Also, the value of

lws−1 will be high because it represents white space to the left of the barcode. The value

of (lws−1 − std(lws, lws+1, lws+2)), will be maximum in LW and this can be used to locate

the start pattern index. A similar analysis can be applied to derive the value of the end

pattern index.

Since e represents the index of the end pattern, there are a total of 59 − 3 = 56

(subtracting 3 for the end pattern) lines between s and e. Thus, further decoding of the
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Table 3.1. UPC Barcode Symbology

Digit/Pattern Template of line widths

Start Pattern 111
End Pattern 111

Middle Pattern 11111
Digit 0 3211
Digit 1 2221
Digit 2 2122
Digit 3 1411
Digit 4 1132
Digit 5 1231
Digit 6 1114
Digit 7 1312
Digit 8 1213
Digit 9 3112

barcode is proceeded only if e − s = 56. If we assume each line to be one pixel wide, the

sum of the widths for all the lines in the UPC code is 3 (start pattern) + 3 (end pattern)

+ 5 (middle pattern) + 7 (per digit) × 12 (digits) = 95. The set of line widths LW can

now be normalized by dividing it by 95. The index i of the jth digit dj in the line widths

can be calculated as follows:

i =

 s+ (j − 1)× 4, if j ≤ 6 and

s+ (j − 1)× 4 + 5, if j > 6 (add 5 lines for the middle pattern)
(3.27)

Since each digit is encoded by four lines, the value of the dj can now be found out as:

dj = argmin
√

(Σ(lwi+j − T ki+m)2) (3.28)

where, 0 ≤ m < 4 and T k represents the template of line widths for the jth digit as

described in Table 3.1. The twelfth digit of the barcode represents the checksum of the

preceding eleven digits and can be used to verify if the barcode was correctly decoded or

not.
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Table 3.2. MSI Barcode Symbology

Digit/Pattern Template of line widths

Start Pattern 21
End Pattern 121

Digit 0 12121212
Digit 1 12121221
Digit 2 12122112
Digit 3 12122121
Digit 4 12211212
Digit 5 12211221
Digit 6 12212112
Digit 7 12212121
Digit 8 21121212
Digit 9 21121221

3.6.3 Decoding MSI Barcodes

A MSI barcode [53] is a variable length barcode that is arranged as follows: SDD...DE,

where S represents the start pattern, D represents a digit and E represents the end pattern.

Table 3.2 shows the encoding of the start and end patterns as well as of digits 0 to 9 in the

line widths format. The total number of lines in the barcode is equal to 2 (start pattern)

+ 3 (end pattern) + 8 (per digit) ×n digits = 8n+ 5.

To decode the barcode from the line widths LW , we have to find the start pattern

index (s) and the end pattern index (e) within LW . The start pattern index and the end

pattern index can be found as follows:

s = argmax(lwi−1 −
√

(Σ(lwi+j − TSj )2)), where ci = 0 and 0 ≤ j < 2 (3.29)

e = argmax(lwi+3 −
√

(Σ(lwi+j − TEj )2)), where ci = 0 and 0 ≤ j < 3 (3.30)

In the above equation, TS and TE represent the templates of line widths for the start

and end patterns as described in Table 3.2.

Since e represents the index of the end pattern, there are a total of 8n + 5 − 3 (

subtracting 3 for the end pattern) lines between s and e. Thus, further decoding of the

barcode is proceeded only if e−s = 8n+2. If we assume that each line in the barcode is one
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pixel wide, the total width of each digit is 12 pixels. Thus, the total width of the barcode is

3 (start pattern) + 4 (end pattern) + 12 ×n (for n digits in the barcode) = 12n+ 7 pixels..

The set of line widths W can now be normalized by dividing it by 12n + 7 (assuming we

know the value of n). The index i of the jth digit dj in the width string can be calculated

as: i = s+ (i− 1)× 8.

The value of the jth digit dj can now be found out as follows:

dj = argmin(
√

Σ(wi+k − Tmk )2) (3.31)

where, 0 ≤ k < 8 (each digit is represented by eight lines), 0 < m <≤ 9 (for digits 0 to 9)

and Tm represents the template of line widths for the mth digit as described in Table 3.2.

The last digit of the barcode represents the checksum of the preceding eleven digits and

can be used to verify if the barcode was correctly decoded or not. A modulo 10 checksum

is most commonly used and it can be computed by the Luhn algorithm [54].
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CHAPTER 4

EYES-FREE BARCODE SCANNER EXPERIMENTS

4.1 Introduction

The aim of ShopMobile 2 is to provide a hand-held eyes-free replacement for a tradi-

tional barcode scanner. We performed several experiments to evaluate the performance of

our barcode scanner both as a whole and in terms of its component parts. This chapter de-

scribes all such experiments and discusses their results. There is an inherent risk associated

with retrieving products from shelves as they may slip and cause injury to the participant.

ShopMobile 2 currently does not have a system in place that can warn shoppers of poten-

tially dangerous products like large and heavy items. We try to minimize the risk of injury

by excluding certain types of products or handing them to participants whenever possible.

The remainder of this chapter is organized as follows: Section 4.2 describes the ex-

periment performed to evaluate the barcode detection module. Section 4.3 describes the

experiments performed to evaluate the barcode localization module and finally, Section 4.4

describes the experiments performed to evaluate the barcode scanner as a whole.

4.2 Barcode Detection Experiments

The barcode detection module detects the presence of a barcode in an image. The mo-

tivation for this module was an experiment (see Section 4.6 for details) that was performed

at the Smith Kettlewell Eye Research Institute. In this experiment, two VI individuals were

asked to scan barcodes on ten products. We found that the participants spent a lot of time

trying to scan barcodes on surfaces that did not contain a barcode. This motivated us to

develop the barcode detection module, which allows a VI user to quickly scan a surface and

determine if it contains a barcode or not. The interested reader is directed to Section 3.4
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Table 4.1. Results of Software Experiments on the Barcode Detection Module

Images with a barcode Images without a barcode

Barcode detected 50 1

Barcode not detected 1 72

for more information on this module.

We performed two experiments to evaluate the performance of the barcode detection

module. The first experiment a simulation and the second experiment was a real-world

test performed with three blindfolded sighted people. In the first experiment, a total of 124

images of products were taken in a grocery store out of which 51 images contained a barcode

and 73 did not. These images were manually classified into two sets - images containing

a barcode and images without a barcode and the barcode detection algorithm was run on

both the sets. The results of this test are shown in 4.1.

The values of precision and recall can be computed as follows:

precision =
tp

tp+ fp
(4.1)

recall =
tp

tp+ fn
(4.2)

where, tp, fp and fn denote the number of true positive, false positive and false negative

results, respectively. Since we have tp = 50, fp = 1, fn = 1, we can compute precision =

50/(50 + 1) = 98% and recall = 50/(50 + 1) = 98%.

The second experiment was designed to measure the amount of time it took a person

to find (detect and not decode) a barcode on an actual product. Three blindfolded sighted

participants were asked to find the UPC barcode on ten products (eight boxes, one can

and one bottle) using the phone. All three participants were graduate students from the

Computer Science Department at Utah State University.

Each participant was explained that they had to find UPC barcodes on the products

using the phone. They were then blindfolded and trained on using the system. Specifically,

they were taught to align the phone with the product and then keep the phone aligned with
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the product at all times using the camera alignment module. They were then taught how to

move the phone away from the product such that the phone was approximately six to eight

inches from the product and how to move the phone parallel to the product for finding the

UPC barcode. They were asked to stop if they found a barcode (phone beeped) or switch

to a different side if the current side did not contain a barcode (the phone did not beep)

and repeat the procedure. Each participant was given a set of products (different from the

test set) to practice. During this time, we observed how they were using the system and

corrected them if they made mistakes. There was no time limit on how long each participant

could practice. Once they were comfortable with the system, they were asked to perform

the experiment using the test products. The entire experiment was recorded using a video

camera and the results were analyzed later using the recordings. After the experiment, each

participant was asked some open ended questions and their responses were noted.

Table 4.2 shows the amount of time each participant (Alice, Bob, and Carl - names

changed to protect privacy) took to find the barcode on the ten products. It can be observed

that 28 out of 30 barcodes were detected correctly. Alice was not able to detect a barcode

on the bottle and there was one false positive in case of Bob. The mean values for detecting

a barcode for Alice, Bob, and Carl are 31, 32.11, and 26.1 seconds, respectively and the

median values for the three are 20 seconds, 33 seconds, and 13 seconds, respectively. It can

be observed that all three participants spent a lot of time detecting the barcode on product

9 (Saltine Crackers). The barcode on this product was located on the side instead of the

bottom and so the participants took some time in scanning the other surfaces that did not

contain the barcode.

To scan a barcode, the participant had to align the phone with one of the sides of the

product and move it approximately six to eight inches away from the product. The final

distance between the phone and the product is extremely important. If the phone is too

close to the product, the camera will not be able to focus on the product and the barcode

will not be detected. Similarly if the phone is too far from the product, the barcode will

occupy a small area in the image and will not be detected. We observed that Alice was not
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Table 4.2. Times Taken to Find a Barcode Using the Barcode Detection Module

Alice Bob Carl

Product 1 14 32 13

Product 2 16 13 34

Product 3 29 45 10

Product 4 - 39 33

Product 5 37 FP 9

Product 6 61 49 18

Product 7 20 13 13

Product 8 15 12 6

Product 9 78 53 115

Product 10 9 33 10

able to position the phone properly with respect to the product and that caused her to take

additional time in detecting the barcode. Training and practice plays a very important part

in this and we believe that participants get better at positioning the phone with practice.

4.3 Barcode Localization Experiments

Our experience with the barcode scanner led us to believe that the performance of

the barcode detection module improves if it is presented with a localized barcode image in

addition to the entire image. This experiment was designed to evaluate the contribution of

the barcode localization module.

We scanned UPC barcodes on 68 randomly chosen products (boxes, cans and bottles)

in a real store. The barcode scanning algorithm shown in Figure 3.1 was modified such

that for all images, the barcode decoding module ran on the original image as well as the

localized image irrespective of whether the barcode was decoded on the original image or

not. Figure 4.1 shows the results of this experiment. It can be observed that the barcode

decoding stage was able to decode barcodes on 32 out of 68 products using the original

image. It was able to decode 36 out of 68 images using just the localized image from

the barcode localization module and 22 out of 64 images using both the methods. It can

be observed that the addition of the barcode localization module increased the barcode

decoding rate by 25.92%.
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Without localization

14 (20.6%)22 (32.4%)32 (47.1%)

With localization

Figure 4.1. Contribution of the barcode localization module to barcode scanning.

4.3.1 Barcode Decoding Experiments

The barcode decoding module is designed to work with grayscale SI as well as two-

level binary SB scanlines. The motivation behind this is to take advantage of the extra

information present in grayscale scanlines and the reduced overall luminosity difference

in the two-level binary scanlines (see Section 3.6.1 for details). Our assumption is that

employing these two different types of scanlines would increase the barcode detection rate as

compared to employing just one type of scanline. To test this assumption, we decoded UPC

barcodes on 67 products in a real grocery store. For each barcode, the phone automatically

logged whether the barcode was decoded using SI , SB or both.

Figure 4.2 shows the results of this experiment. It can be observed that SI was re-

sponsible for decoding 53 barcodes out of 67 (79%) and SB was responsible for decoding 26

barcodes out of 67 (38%). Both SI and SB were responsible for decoding 12 barcodes out of

67 (18%). Thus, it can be observed that employing two different types of scanlines increases

the barcode decoding performance by at least 21%. We can also observe that SI is able

to decode more barcodes than SB. This could be because the extra grayscale information

present in SI allows us to estimate the line widths with sub-pixel accuracy, which is not

possible with SB. The sub-pixel accuracy results in better precision and thus SI is more

robust to errors introduced by JPEG artifacts in the image.
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SISB

14 (20.9%)12 (17.9%)41 (61.2%)

Figure 4.2. Number of barcodes decoded by SI and SB.

4.4 Barcode Scanning Experiments

Previous experiments were responsible for evaluating the contributions of specific mod-

ules and techniques in the barcode scanner. This section describes four experiments that

test the barcode scanner as a whole.

4.5 Barcode Scanning Experiment - I

In this experiment, we assembled and stocked three plastic shelves with twelve empty

boxes of real-world products to simulate a grocery aisle. The assembled shelf can be viewed

in Figure 4.3. We placed MSI barcodes on shelves beneath products and entered their infor-

mation into the Barcode Connectivity Matrix (BCM). This experiment was performed with

an early version of the barcode scanner which operated in manual mode, where users had to

press a button on the screen to capture the image, which was localized and decoded. The

barcode scanner did not contain the interactive camera alignment module or the barcode

detection module and used ZXing for barcode decoding.

Participants were given a 10-minute training session in which they were shown how

to use the system. Specifically, they were shown how to align the phone with the product

and then move it away before taking a picture. In case of MSI barcodes, participants were

shown how to locate barcodes haptically, align the phone with the barcode and then move

it away before taking a picture. Participants were also shown how to retrieve products
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Figure 4.3. Simulating a grocery aisle using plastic shelves stocked with empty boxes of
real products.

using the system and verify that they had picked the correct products. Each participant

was then asked to retrieve and verify ten randomly selected products. For each participant,

the system logged the image associated with each scan and the result of the scan.

All participants were able to retrieve and verify all products successfully. Figure 4.4

shows the mean number of scans taken by each participant to retrieve and verify products

and Figure 4.5 shows the median number of scans taken by each participant to retrieve

and verify products. Since participants had to push a button on the screen each time they

wanted to scan a barcode, the results are shown in terms of the number of scans and not in

terms of the actual time taken. In general, the median values for product retrieval are lower

than the median values for product verification. It can be observed that for participant
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5, the median value for product retrieval is zero. For every product, the system would

announce its name and location on the shelf, for example, “Now looking for Chamomile

Tea on Shelf Two, Position Three.” Participants had the option of using the BCM to find

products or just locating them haptically. After a few tries, participant 5 chose to just

locate products haptically instead of using the BCM. Thus, his median number of scans for

retrieving products is zero.

Participant 1 Participant 2 Participant 3 Participant 4 Participant 50

0.5

1

1.5

2

2.5
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3.5
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Figure 4.4. Mean number of scans required to retrieve and verify products.
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Figure 4.5. Median number of scans required to retrieve and verify products.

In our informal post-experiment interviews, we found that participants found our in-

terface simple but too basic to use. The interface consisted of a single button encompassing

the entire touch screen of the Google Nexus One phone. The barcode decoding procedure
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was initiated either by finger tapping on any part of the screen or by tapping on the phones

trackball, a small joystick-like hardware component below the touch screen. All participants

preferred tapping the screen to tapping the trackball, which resulted in many accidental

images with no barcodes present in them, which negatively affected the barcode localization

and decoding performance. The VI participant found it difficult to keep the phone aligned

with the product while moving it away from the product and suggested that we incorporate

some automatic alignment scheme. The feedback obtained from this study caused us to

abolish the manual scanning mode and develop the video mode for scanning, where images

are captured, localized and decoded automatically. The VI participant said that he found

it difficult to keep the phone aligned with product while moving it away from the product.

This caused us to develop the interactive camera alignment module, which helps the user

in keeping the phone aligned with the product at all times.

4.6 Barcode Scanning Experiment - II

The second barcode scanning experiment was carried out with two participants at the

Smith Kettlewell Eye Research Institute in San Fransisco, CA. Both the participants were

completely blind staff electrical engineers. One had a cellphone and the other never owned

or used one. This version of the barcode scanner operated in video mode, contained the

interactive camera alignment module but did not contain the barcode detection module.

Both the participants were trained on using the system using two sample products (a

plastic bottle, and a juice box). The training session lasted for approximately ten minutes for

the first participant and eight minutes for the second. Once participants were comfortable

in using the system, they were asked to scan UPC barcodes on ten products (a cereal box,

a small tea box, two small juice bottles, a small milk carton, a Pringles tube, a toothpaste

box, a larger juice bottle, a small water bottle, and a yogurt cup). The detection time

for each product was recorded on the phone. When the participant could not detect the

barcode for over five minutes, the detection was considered a failure and the participant was

given the next product. The order of the products was randomized for each participant.
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Table 4.3. Results of Barcode Scanning Experiment II

Product
Participant 1 Participant 2

Time Taken False Positives Time Taken False Positives

Cereal box 33 0 40 0

Tea box 140 0 100 1

Small juice bottle 1 15 0 Fail 0

Small juice bottle 2 142 0 151 0

Milk carton 56 0 51 1

Pringles 37 0 111 0

Toothpaste 184 0 Fail 0

Large juice bottle 125 0 140 0

Water bottle 87 0 121 0

Yogurt cup 17 0 41 0

Table 4.3 shows the times taken by each participant to scan barcodes on all the prod-

ucts. It can be observed that participant 1 was able to scan all barcodes successfully and

participant 2 was not able to scan two barcodes and had two false positives. The average

barcode scanning times are 83.6 seconds and 93.4 seconds for participant 1 and 2, respec-

tively.

Our aim is to provide the user with a barcode scanner that is comparable to a hardware

barcode scanner but the barcode scanning times mentioned earlier are too large and the

failure rate is too high. Upon analyzing the video, we found that the participants spent

most of their time trying to scan barcodes on surfaces that did not contain a barcode. We

conducted informal post-experiment interviews and participants mentioned that it would

be beneficial to know which surface of the product contained a barcode so that they would

not waste time on other surfaces. This caused us to develop the barcode detection mod-

ule, which can quickly analyze a given image to determine the presence of a barcode and

alert the user. In this experiment, the system would grab images continuously in video

mode and try to localize and decode the barcode in each image. Both these processes are

computationally expensive and this slowed down the system considerably. After the bar-

code detection module was developed, each image frame had to be processed only by the

barcode detection module and the barcode localization and decoding modules ran only if a
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barcode was detected. This caused the performance of the system to increase considerably.

The other problem with the system was that the interactive camera alignment mode was

manual, that is users had to manually turn it on to use it. The participants would just

forget about turning it on and so they were not able to benefit from this module. Thus,

in the final version of the barcode scanner, the interactive camera alignment module starts

automatically when the user moves the phone away from the product. Thus, they are able

to benefit from this module and make fewer alignment errors.

4.7 Barcode Scanning Experiment - III

This experiment was performed with the final version of the barcode scanning software,

which included grabbing images in video mode, automatically starting the interactive cam-

era alignment module, the barcode detection module as well as the barcode localization and

decoding modules. This experiment was performed with one completely blind participant

in our lab. The participant was explained the purpose of the experiment and trained on

using the system. Once the participant was confident in using the system, he was asked to

scan UPC barcodes on ten products. The entire experiment was recorded and the video

was analyzed later on to determine the times taken to scan barcodes for each product.

Table 4.4 shows the times taken to scan UPC barcodes on ten products. It can be

observed that the participant was able to scan UPC barcodes on all the products successfully.

The mean and median times for scanning were 51.7 seconds and 28.5 seconds, respectively.

It can be observed that the participant took a long time to scan product 3, which was a

can. One probable reason for this is that since the barcode was placed on a curved surface,

the barcode image had skew distortions and this made it difficult to decode the barcode.

In situations like this, it is recommended that the shopper uses the teleassistance module.

4.8 Barcode Scanning Experiment - IV

The aim of this experiment was to investigate the times taken by a VI individual

to scan UPC barcodes on actual products in a real-world supermarket. This experiment

was performed at Fresh Market Supermarket in Logan, UT during regular business hours
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Table 4.4. Results of Barcode Scanning Experiment III

Products Scanning Times

Product 1 20

Product 2 29

Product 3 239

Product 4 15

Product 5 31

Product 6 75

Product 7 35

Product 8 21

Product 9 24

Product 10 28

and the subject chosen for this experiment was a completely blind employee of Utah State

University. The subject was briefly trained on using the system and then asked to scan

UPC barcodes on fifty products.

All products were selected prior to the experiment (five products per aisle across ten

aisles) by a sighted individual who was not involved with this project. A product was

selected if it had a twelve digit UPC barcode and if it was possible to hold it in hand while

scanning. Thus, certain items like produce (no barcode), gum sticks (that contained only

a six digit barcode) and sugar sacks (too heavy) were excluded from this experiment. The

UPC barcodes on these products were not scanned during the selection process and thus

we had no a-priori knowledge of how long it would take to scan a barcode on a particular

product. Three types of products were included in this experiment - boxes, cans and bottles

and the selection process was performed in a way so the number of boxes, cans and bottles

would be approximately the same.

The subject was taken to an aisle and was given a product from this aisle. He would

then align the phone with the product and scan the barcode. The subject continued to scan

the barcode on the product until it was read out aloud by the system or he felt that he

would not able to scan the barcode and wanted to switch to a different product. We recorded

this experiment on video and analyzed the barcode scanning times for each product. We

measured the barcode detection time, which was computed as the time between placing the
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phone on the product and the first beep and the total scanning time, which was computed as

the time between placing the phone on the product and the start of the barcode utterance.

The participant was able to scan barcodes on 46 out of 50 products. The subsequent

analysis discusses the times required to detect and scan barcodes only on the 46 products

that were successfully scanned. Figures 4.6 and 4.7 show the time required to detect and

scan barcodes, respectively. It can be observed that the participant took an average of 45

seconds to detect the barcode and 54 seconds to scan it on the product. The median times

for both detecting barcodes and scanning them are lower at 26 seconds and 40 seconds,

respectively. The maximum time to scan a barcode was 3 minutes and 24 seconds. The

product in question was a box and the participant was not able to locate the barcode on it.

We eventually gave him a hint of the side that contained the barcode and he was able to

scan it successfully. We would like to take this opportunity to reiterate that such situations

are possible and the shopper is better off in relying on the tele-assistance module in such

cases.

Figure 4.6. Barcode detection times.
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Figure 4.7. Barcode scanning times.
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CHAPTER 5

TELESHOP

5.1 Introduction

TeleShop is the teleassistance module of the ShopMobile2 project. It allows VI individ-

uals to transmit audio and video of their surrounding environment to sighted caregivers at

remote locations. While shopping, the VI shopper may encounter situations where both the

barcode scanner and the OCR engine fail or malfunction. TeleShop provides a backup in

such cases by allowing the VI shopper to obtain help from their sighted caregivers. TeleShop

is not limited to shopping alone. It can be used in navigation, in hotels and at any other

places where the VI individual would benefit from sighted guidance.

TeleShop is the teleassistance module of the ShopMobile2 project. TeleShop allows VI

users to obtain assistance from remote sighted caregivers by transmitting images and voice

from their smartphones to the guides’ computers or phones. TeleShop provides a backup in

situations when the barcode scanner and OCR engine fail or malfunction. There is research

evidence that having sighted guidance reduces the psychological stress on VI individuals [55].

TeleShop can provide the equivalence of sighted guidance without requiring the guide to be

physically present.

Human navigation can be classified in to two categories - micro-navigation and macro-

navigation [56]. Micro-navigation involves tasks in immediate vicinity of the traveler like

obstacle avoidance where as macro-navigation involves tasks outside of the immediate per-

ceptible environment. Some examples of macro-navigation tasks include planning a path

between two points and looking for landmarks & waypoints. VI travelers perform both

tasks continuously.

VI travelers typically use long canes or guide dogs to handle micro-navigation tasks.
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However, sophisticated devices such as sonar canes and optical systems such as the Tom

Pouce [57] or the TeleTact [57] system may also be used. Long canes can detect obstacles in

front of the traveler from the ground up to waist height but are unable to detect overhanging

obstacles or obstacles at head height. Sonar based systems cannot detect small obstacles

while optical based systems do not perform well in areas glass surfaces.

GPS based systems [58,59] are broadly used to assist VI travelers with macro-navigation.

However, since GPS solutions do not work well indoors, some researchers resort to other

methods, such as RFID [60] for indoor navigation. Vision based systems can also be used

for indoor navigation. The system described in [27] places fiducials next to barcodes, which

can be decoded with a cell phone camera. Another vision based system is Google Gog-

gles [61]. Using this system, the VI traveler can capture an image using her cell phone and

Google Goggles can automatically decode text from it or match it with other images in its

database. While this approach may be the right way to go in the long term, the system is

currently not too reliable.

The term teleassistance covers a wide range of technologies to enable VI individuals to

transmit video and voice to remote locations to obtain assistance which is typically given

through voice. The systems developed by Bujacz et al. [62] and by Garaj et al. [63] are but

two examples of such systems. The system developed by Bujacz et al. uses two notebook

computers - one is carried by the VI traveler in a backpack and the other used by the

sighted guide. The VI traveler transmits video through a USB camera mounted on the

chest and connected to the computer. A earphone and microphone headset are used for

communicating with the guide. The authors conducted indoor navigation trials and found

that VI travelers walked faster, at a steadier pace, and were able to navigate easily when

assisted by remote guides. The system developed by Garaj et. al. uses a GPS receiver in

addition to the camera and notebook computer. Communication is established by using

two GSM cell phones - one for voice and one for transmitting GPS data and a UHF link

for transmitting video. The sighted guide can view the VI traveler’s position on a map

obtained from a GIS database in addition to the images from the camera. They conducted
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an outdoor trial and tested both the micro-navigation and macro-navigation functionality

of the system. They found that mobility levels for VI travelers increased when they were

aided by sighted guides as compared to traveling unguided.

5.2 TeleShop

The TeleShop module of ShopMobile 2 consists of a server running on the VI shopper’s

smartphone and a client running on the caregiver’s computer. As shown in Figure 5.2,

images from the phone’s camera are continuously transmitted by the server to the client

and subsequently displayed on the GUI shown in Figure 5.1. The client allows the user

to start, stop, and pause the incoming image stream and to change image parameters like

resolution and quality. The pause option allows the caregiver to hold the current image on

the screen when she wants to read something in the image. Changing the image parameters

allows the caregiver to choose between the level of detail in the image and the smoothness

of the incoming image stream. Images of high resolution and quality provide very good

detail but may cause the resulting video stream to be choppy. On the other hand, images

of lower resolution and quality result in a smoother video stream but do not provide much

detail. The remote guide is given the option to choose the settings that suit her best.

All communication occurs over UDP. The VI shopper inputs the IP address and port

number of the client to the server, which uses it to transmit images to the client. The client

can retrieve the IP address and port number of the server from the incoming packets and

uses it to transmit image parameters to the server. The client’s information was input on

the server because the client’s IP address stays the same whereas the server’s IP address

can change if it is on a 3G network. TeleShop can operate with WiFi or 3G.

5.3 Laboratory Study

Two laboratory studies TeleShop were conducted. The first study was done with two

sighted students, Alice and Bob. The second study was done with a married couple: a

completely blind person (Carl) and his wife (Diana). All names have been changed to

protect privacy. For both studies, we stocked four plastic shelves with empty boxes, cans,
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Figure 5.1. Screenshot of the client.
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Figure 5.2. Overview of communication between the server and the client.

and bottles to simulate an aisle in a grocery store. In both studies, a Google Nexus One

smartphone ran the TeleShop server and transmitted images and voice over WiFi to the

remote guide’s laptop with the client software in a different room.

In the first study, we blindfolded Bob so that he could assume the role of a VI shopper,

and Alice assumed the role of the sighted guide. Alice was trained to use the client GUI,
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and Bob was trained to use the cell phone. A voice link was established between the two

by making a regular call. Once both of them were comfortable with the system, Alice was

given a list of nine products (three sets containing three products each), which she had to

help Bob shop for. Bob used the smartphone to transmit images of the shelf and Alice

helped him pick the target products. When a target product was found, Alice would help

Bob align the product with the camera so that she could read the nutrition facts from the

product’s package. She would then read out the nutritional facts on the product to Bob

before moving on to the next product on the list. The second laboratory with Diana and

Carl used the same training and settings.

Figure 5.3. Times taken to retrieve products.

Both teams were able to retrieve and read nutrition facts from all the nine products

successfully. Figure 5.3 shows the times taken to retrieve products and Figure 5.4 shows the

times taken to read the nutrition facts of each product for both teams. It must be noted

that product six did not have any nutrition facts on it and so the times taken to read its

nutrition facts are zeros. Alice and Bob took an average of 57.22 and 86.5 seconds to retrieve

a product from the shelf and to read its nutrition facts, respectively. The corresponding

times for Carl and Diana were 19.33 and 74.8 seconds, respectively [64]. The times taken to

read the nutrition facts are greater than the times taken to retrieve products. To read the
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Figure 5.4. Times taken to read nutrition facts on products.

nutrition facts, the VI shopper had to align the product so that its nutrition table faced the

camera, which took considerable time for both teams. It was observed that communication

between the VI shopper and the sighted guide were key for quick retrieval and alignment

of products. This may be the reason why Carl and Diana, being a married couple, were

able to retrieve products and read nutrition facts faster than Alice and Bob. It was also

observed that Alice did not change the resolution and quality settings at all whereas Diana

changed it several times.

During the post-experiment informal interviews, Alice said that she was comfortable

with the default resolution and size settings and did not need to change them. Both teams

also said that they were comfortable with the system and did not have any problems with

it. Diana suggested that allowing her to rotate the paused image would help with reading

the nutrition facts. When asked about using this system in real-life, Carl said that he would

find this system very helpful. He mentioned that when he travels, he uses Skype from his

laptop to video call his wife to get information about the layout of his hotel rooms. The

TeleShop module would allow him to get the same assistance more easily.
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CHAPTER 6

OPTICAL CHARACTER RECOGNITION

6.1 Introduction

Optical Character Recognition (OCR) can be defined as the process of converting

images of printed or handwritten text into machine encoded text. This process allows books

and documents to be read digitally and finds many applications in the fields of information

retrieval, text mining, etc. It also allows visually impaired (VI) people to read text that

would otherwise be inaccessible to them.

The history of OCR can be traced as far back as the Nipkow disk [65], which was

invented by P. Nipkow of Poland in the early part of the twentieth century. This machine

used a system of holes drilled on a rotating disk to scan images, which could then be trans-

mitted across distances. The first OCR systems were developed by Emmanuel Goldberg

and Edmund Fournier D’Albe between the years of 1912 and 1914. Goldberg developed and

patented a machine in 1912 that was able to read characters and convert them into standard

telegraphic code. This machine laid the foundations of OCR by proving that printed char-

acters could be converted to an encoded format. Fournier D’Albe is credited for developing

a device known as the Optophone, which was specifically targeted towards the blind. This

hand-held device produced a series of audible tones when moved across a printed page. The

Optophone matched each character with a specific tone and VI people were able to read

the page by moving the device across it and mentally mapping the audio output to the

characters. This system was not practical since it required a lot of concentration and skill

but it laid the basis for a working OCR system for the blind. Two engineers at the Radio

Corporation of America (RCA) improved this system by developing a much smaller ‘electric

pencil’ similar to the Optophone.
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OCR technology is now very mature and many reliable systems have been developed for

desktop machines. However, its implementation on cell phones is relatively new. Modern

cell phones possess all the technologies required for creating a hand-held OCR system but

lack in processing power and the quality of the scanned image. The built-in camera is great

for capturing images on the go but the quality of the image is not comparable with the

quality of dedicated scanning equipment. Many researchers have focused on porting existing

OCR technologies and even developing new technologies for cell phone use. Examples of

traditional OCR readers include [66,67] and examples of technologies that are better suited

for cell phones include business card readers [68,69] and language translators [70,71]. Many

systems have also been developed specifically for VI people. Examples of such systems

include signage readers [72], systems that can recognize banknotes [73], etc.

The ability to carry a truly hand-held OCR system opens up many exciting possibilities

for VI people. We aim to venture in one such area - using OCR technology to help VI

individuals read nutrition facts on grocery products. The format of the nutrition table is

fairly standard in the United States. It consists of categories like ‘Calories’, ‘Calories from

Fat’, ‘Carbohydrates’, etc. Each of these categories have a numerical value associated with

them. Our aim is to develop a proof-of-concept prototype relating to many key areas in

OCR technology that can help VI individuals read nutrition facts on grocery products. As

per our research, this specific application has not be explored previously and will allow VI

individuals to compare between different products and choose the one that bests suits their

needs. This system can also be used to warn VI shoppers about specific products that pose

a health risk (due to peanut allergies, for example) by reading the ingredient list.

The OCR process can be broken down into three main subprocesses - Preprocessing,

Segmentation and Classification. Preprocessing is concerned with improving the overall

quality of the image. The next subprocess is called Segmentation and is concerned with

segmenting (or removing) relevant portions of the image from the whole image. The nutri-

tion facts table is the relevant portion of the image in our case but it cannot be processed

directly. Thus, the segmentation process is further broken down to nutrition table seg-
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mentation, line segmentation, word segmentation and finally, character segmentation. The

output of segmentation is fed to the Feature Extraction and Classification subprocess, which

is responsible for converting the individual word and letter images to machine encoded text.

Finally, a fourth (optional) subprocess called ‘Error Detection and Correction’ may also be

employed, which as its name implies, detects and corrects spelling and other mistakes from

the classification stage.

Figure 6.1 shows an overview of the entire process. It also indicates if each subprocess

was implemented in MATLAB, Android or both. In general, the entire development was

done in MATLAB to save time and some subprocesses were then ported on the Android

phone for verification. The nutrition facts table segmentation is the most important (and

the most difficult) subprocess of all the segmentation subprocesses and so it was ported on

Android for verification. Similarly, the neural network used for character recognition is the

most important and difficult subprocess of the two Classification subprocesses and so it was

also implemented on Android. MATLAB provides a plethora of ‘out-of-the-box’ libraries

for image processing but we have been very careful to avoid using something that cannot

be replicated on an Android device.

Trans Fat 0g

Nutrition
Facts

Segmentation
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Segmentation

Word
Segmentation

Character
Segmentation
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Recognition

Character
Recognition
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MATLAB  
Android

Figure 6.1. Overview of the OCR process.

This remainder of this chapter will be organized as follows. Section 6.2 discusses some
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pre-processing techniques used in the OCR process. Section 6.3 discusses the process of

segmenting the nutrition table from the image and then segmenting individual lines and

words from it. Finally, Section 6.4 addresses the feature extraction and classification part

of the OCR process.

6.2 Preprocessing

“Garbage In, Garbage Out” is a very popular phrase in computing. If the input to an

computer system is absolute “garbage”, one cannot expect anything more than garbage in

return. However, in the field of OCR, it is quite possible that data which can be easily read

by humans appears as garbage to the computer. This is due to the fact that almost all input

images are degraded by noise, shadows, highlights or skew errors. Humans are very adept

at detecting such noise and removing it from consideration but unfortunately, the same

cannot be said for OCR systems. Thus, the first step in the OCR process is to pre-process

the image and clean it. The preprocessing step is responsible for binarizing the image and

removing noise from it. This stage is also responsible for ensuring that the characters in

the image are vertically aligned and are minimally distorted. Let us now examine some of

the common pre-processing steps. We will also indicate if these steps are being used in our

application and the specific techniques used to implement them.

6.2.1 Binarizing Images

The image from the camera is a grayscale image Y , where each pixel in the image

has a value from 0 to 255. This image has to be converted to a two-level binary image

B where each pixel has a value of either 0 or 255. Binarization is defined as the process

that converts a grayscale image to a two-level binary image. Binarization is performed

using a very simple concept known as thresholding, where every pixel p from the input

image Y is compared against a threshold τ and the corresponding output pixel is set to

0 if p < τ or 255 otherwise. Binarization techniques can be broadly classified as global

threshold methods and local threshold methods depending on how the obtain the value of

τ . Global thresholding methods assume a single threshold for the entire image whereas local



81

thresholding methods compute thresholds for each pixel in the image or a block of pixels in

the image. We will now discuss both these methods briefly.

6.2.1.1 Global Threshold

Using a global threshold is the easiest way to binarize an image. In this method,

we use a global threshold τ and for every pixel Yp in the input image Y , we obtain the

corresponding pixel Bp in the two-level binary image B as follows:

Bp =

 0 if Yp < τ

255 otherwise
(6.1)

The threshold τ can be fixed for all images (e.g. τ = 127) or it may be computed for

each individual image (e.g. τ = mean(Y )).

Otsu’s binarization method [33] is a global thresholding method that is very popular

for binarizing images with well-defined foreground and background regions. This method

searches for a threshold that maximizes inter-class variance and minimizes intra-class vari-

ance between the two classes (foreground and background).

The advantage of the global thresholding methods is that they are very simple and

inexpensive. However, for images where the difference in foreground and background in-

tensities is less or where foreground and background intensities overlap each other, these

methods do not achieve good results.

6.2.1.2 Local Threshold

Instead of using a single threshold for the entire image, local thresholding methods

compute local thresholds τx,y for each pixel p = Yx,y or a group of pixels in the image.

Niblack’s binarization method [34] is an example of a local thresholding method. However,

as shown in Section 3.4.1, this method produces noisy images and so we use a modified

version of Niblack’s original method for binarizing the input image. In this method, the

image is divided into n × n pixel subimages and a threshold τi,j is computed for every

subimage Yi,j in Y . This threshold is computed using the following equation:
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τi,j =

 mi,j + k × si,j if si,j ≥ S

τ c otherwise
(6.2)

where, mi,j and si,j are the mean and standard deviation values for the subimage Yi,j . S is

the standard deviation threshold that decides if the threshold value τi,j is computed using

the mean and standard deviation values or is assigned the fixed threshold τ c and k is a user-

defined parameter that controls the brightness of the resulting image. In our application,

we set S = 12.7, k = 0.5 and τ c = 127, respectively.

6.2.2 Noise Filtering

The authors in [74] define noise as undesired random degradations in images, which

may occur during capture, transmission, and processing. These degradations manifest them-

selves as either additive noise or subtractive noise. Figure 6.2 shows an example of an image

(top) and its noisy counterpart (bottom). It can be observed that additive noise takes the

form of foreground pixels and subtractive noise takes the form of background pixels. Noise

is undesirable because it can cause segmentation as well as classification errors. Additive

noise can join adjoining characters together whereas subtractive noise can cause a single

character to appear as two (or more) distinct characters.

Additive NoiseSubtractive Noise

Figure 6.2. Additive and subtractive noise.
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Jain [75] classifies image noise as Gaussian noise, Rayleigh noise, Gamma noise, Expo-

nential noise, Salt and Pepper noise, Uniform noise, and Sinusoidal noise. Gaussian noise

and Salt and Pepper noise are the two most commonly encountered forms of noise encoun-

tered in images. In the case of Gaussian noise, the noisy pixel has a grayscale value that is

a function of the Gaussian distribution whereas in the case of Salt and Pepper noise, the

noisy pixel takes on one of two values (‘salt’, which is lighter or ‘pepper’, which is darker).

Median filters [76–78] and kFill algorithms [79, 80] are two very common techniques used

to remove salt and pepper noise from images. A study [81] comparing different types of

filtering algorithms for removing Gaussian noise in images found that the Wiener filter [82]

performed the best.

We did not find the need to use noise filtering algorithms as they would increase com-

putational load. Also our use of a blurring filter in the word segmentation process (see

Section 6.3.4.1) and template matching for the classification process (see Section 6.4.3)

eliminate the need for noise filtering in both the segmentation and classification stages.

6.2.3 Thinning

Thinning is defined as the process by which characters are reduced to skeletons - a

set of thin lines (one pixel thick), attached one to another in a few connection points that

preserve the topological and geometric properties of its originating object [83]. The challenge

in this process is to retain the original shape of the character. Apart from OCR, thinning

algorithms are employed in various other applications from medicine [84] to fingerprint

analysis [85]. In case of OCR, thinning algorithms enable us to analyze characters from a

topographical perspective where each character can be represented in terms of features like

end points, junction points and connections among components [86].

Thinning algorithms work by examining foreground pixels in the image and then delet-

ing them until only a skeleton remains. This process is done in multiple passes and each

pass peels away a boundary layer of the image. We can classify thinning algorithms as

either sequential or parallel depending on the way pixels are deleted. In sequential thin-

ning algorithms [87,88], a boundary pixel is marked for deletion depending on the result of
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the preceding pixel whereas in parallel thinning algorithms [89, 90], each pixel is examined

independently of other pixels.

We use template matching techniques for the classification stage, which uses pre-defined

templates of each character/word to classify images. This process does not require images

to be thinned and so we do not use thinning in the pre-processing stage.

6.2.4 Normalization

An image can suffer from four basic forms of distortion: translation, rotation, scaling

and skew [91]. The image normalization process is responsible for transforming an image to

its normal form that is invariant to these distortions. The need for normalization is most

evident for systems that use template matching for the classification stage. Normalization

techniques are able to transform the input image so that both the input image and the

template can be compared in a meaningful way. Techniques such as moment invariants [92]

can easily rectify translation, rotation and scaling distortions. Skew detection and correction

is a more complex problem but many algorithms have been developed for it [93,94].

The camera alignment module 3.3 ensures that the camera is always aligned with the

product. This in turn, ensures that the input image will not suffer from rotation and skew

distortions. The input image can still suffer from translation and scaling distortions and so

we normalize the segmented character/word image to remove these distortions. This is a two

step process. First, we remove whitespace from around the character/word image to ensure

that the character/word fully occupies the image. This process removes all translation

distortions from the image. We then scale the image to match the size of the template and

this process gets rid of the scaling distortion. Figure 6.3 shows an example of removing

these distortions.

6.3 Segmentation

Segmentation is defined as a process by which an image is decomposed into one or more

subimages each of them containing regions of interest. The regions of interest in a typical

OCR situation are subimages that contain individual characters, which are then classified
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Image TemplateTranslation and
Scaling Distortions

Remove
Whitespace

Scale
Image

No Distortions

Figure 6.3. Removing translation and scaling distortions from an image.

into machine encoded characters. In our application, the image may contain text within

the nutrition table as well as outside of it. Since we are primarily interested in the contents

of the nutrition table, the first step is to segment the nutrition table from the image and

then segment characters and words within the nutrition table. Let us first discuss a couple

of key concepts that will help us in segmentation.

6.3.1 Horizontal and Vertical Projections

The horizontal projection HP of an image is defined as the running count of foreground

pixels for each row of the image [95]. Similarly, the vertical projection V P of the image

is defined as the running count of foreground pixels for each column of the image [95].

Foreground pixels, as opposed to background pixels, are defined as pixels that contain

information of interest. These pixels are usually black-colored pixels but there are certain

cases in which they may be white-colored. We will assume that foreground pixels are

black unless specifically mentioned otherwise. Figure 6.4 shows the horizontal and vertical

projections for an image. Equation 6.6 shows the equation by which these projections can

be obtained for a m× n pixel image I (assuming black-colored foreground pixels):
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f = HP (I) (6.3)

fy = Σn
x=0(255− I(x, y)) (6.4)

g = V P (I) (6.5)

gx = Σm
y=0(255− I(x, y)) (6.6)

where, I(x, y) = 0, for a black pixel and I(x, y) = 255 for a white pixel. The above equation

can be modified for white-colored foreground pixels as follows:

f = HP (I) (6.7)

fy = Σn
x=0I(x, y) (6.8)

g = V P (I) (6.9)

gx = Σm
y=0I(x, y) (6.10)

Figure 6.4. Horizontal and vertical projections.

6.3.2 Nutrition Table Segmentation

Figure 6.5 shows an image containing a complete nutrition table that has its sides
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aligned with the sides of the image. In reality, it is possible that the image does not contain

a nutrition table, contains a nutrition table that is cropped along one or more sides, or

contains a nutrition table that is rotated. However, in this chapter, we will assume that the

nutrition table exists in the image, is complete (not cropped along any side) and that its

sides are aligned with the sides of the image. We will also assume that the nutrition table

is is not warped (like on a can). The layout of the nutrition table is somewhat standardized

and it contains items like, “Serving Size,” “Amount Per Serving,” “Calories,” etc. Let these

items be referred to as nutritional categories. We can observe that these items are separated

by horizontal lines and the nutrition table is usually bounded by a rectangular box.

Figure 6.5. Nutrition tables.
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The nutrition table segmentation process is comprised of three stages. The first stage

will determine the approximate location of the nutrition table along the horizontal axis. The

second stage will determine the exact location of the nutrition table along the horizontal

axis and finally, the third stage will determine the exact location of the nutrition table along

the vertical axis.

The first stage uses the horizontal lines within the nutrition table to determine the

approximate location (x′start, x
′
end) of the nutrition table along the x (or horizontal) axis.

Consider a horizontal line detection kernel HLDK having dimensions 3 ×m as shown in

Equation 6.11. Here, m is a user-defined parameter, which is used to determine the length

of horizontal lines in the image and its value is set to 50 for our application. This kernel is

used to detect large horizontal lines in the image. Figure 6.6 shows the result when a two-

level binary version of the image shown in Figure 6.5 is convoluted with the line detection

kernel. Let this resulting horizontal line image be denoted by HLI. We can observe that

HLI has a high response for areas containing large horizontal lines and a low response for

other areas. We can also observe that the area containing the nutrition table has a high

response in HLI since it contains a lot of large horizontal lines that separate the various

nutritional categories.

HLDK(i, j) =

 1 if i = 1

−m otherwise
(6.11)

The projection in Figure 6.7 assumes that the foreground pixels are white-colored.

Consider a threshold τH , which will be used to find the approximate location of the nutrition

table. This threshold is set to the mean value of V P (HLI) and shown using the red colored

line in Figure 6.7. We can observe in Figure 6.7 that the area containing the nutrition table

exhibits values of V P (HLI) that are higher than the threshold and other areas exhibit

values of V P (HLI) that are lower than the threshold. We can use this observation to

determine the approximate location of the nutrition table as follows:
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Figure 6.6. Horizontal line filtered image.

f = V P (HLI) (6.12)

x′start = maximize i|f(i) >= τH (6.13)

x′end = minimize i|f(i) >= τH and (6.14)

x′start < x′end (6.15)

The horizontal lines separating the nutritional categories do not extend fully to the

sides of the nutrition table and there is a small gap between these lines and the vertical
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Figure 6.7. Vertical projection of horizontal line filtered image.

lines that enclose the nutrition table. If we segment the nutrition table based solely on the

horizontal lines, the nutrition table will be cropped along the sides. Thus, it is essential to

add the second stage in the nutrition table segmentation process, which closely examines the

area around the approximate location (x′start, x
′
end) to obtain the exact location (xstart, xend)

of the nutrition table.

Consider another line detection kernel (V LDK) that detects large vertical lines in the

image. This kernel is of size m × 3, where m is a user-defined parameter, which is set to

50 in our application. This kernel is shown in Equation 6.16. Figure 6.8 shows the result

when a two-level binary version of the image shown in Figure 6.5 is convoluted with the line
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detection kernel. Let this resulting image be denoted by V LI. We can observe that V LI

has a high response for areas containing large vertical lines and a low response for other

areas.

V LDK(i, j) =

 1 if j = 1

−m otherwise
(6.16)

Figure 6.8. Vertical line filtered image.

Consider the vertical projection of the vertical line filtered image, which is shown in

Figure 6.9. Let it be denoted by V P (V LI). As shown in Figure 6.5, the nutrition table

is bounded by a box. The vertical lines of this box show up as large spikes in V P (V LI).

Consider a threshold τV , which is the mean of all positive values of V P (V LI). The exact
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location of the nutrition table is obtained as follows:

Figure 6.9. Vertical projection of vertical line filtered image.

f = V P (V LI) (6.17)

xstart = minimize (x′start − i)|f(i) >= τV and i ≤ x′start (6.18)

xend = minimize (i− x′end)|f(i) >= τV and i ≥ x′end (6.19)

The third stage of the nutrition table segmentation process determines the exact loca-

tion of the nutrition table along the y (or vertical) axis. Consider the horizontal projection

of the horizontal line filtered image HP (HLI) as shown in Figure 6.10. This projection
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is obtained differently when compared to the previous two projections. In this case, we

consider only the areas between xstart and xend in HLI while computing HP (HLI). Since

we know the exact location of the nutrition table along the horizontal axis there is no rea-

son to consider the other areas while computing HP (HLI). We compute the value of the

threshold τV as follows:

f = HP (HLI) (6.20)

τV = mean f(i)|f(i) > 0 (6.21)

Figure 6.10. Horizontal projection of horizontal line filtered image.
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The threshold τV is shown by a red colored vertical line in Figure 6.10. The exact

location of the nutrition table along the vertical axis (ystart, yend) can be determined as

follows:

f = HP (HLI) (6.22)

ystart = minimize i|f(i) >= τV (6.23)

yend = maximize i|f(i) >= τV (6.24)

The exact location of the nutrition table is now determined and it can be cropped from

the original image for further processing.

6.3.2.1 Nutrition Table Segmentation Experiments

This section discusses an experiment performed to evaluate the performance of the

nutrition facts segmentation process. We captured images of nutrition facts on 45 products

using the Nexus One cell phone. All images were captured in the University store to

simulate actual conditions. The pictures were captured after viewing them on the screen,

which means the nutrition table exists in the image, is not rotated and is not cropped along

any of the sides. These images were then processed using the nutrition facts segmentation

process to obtain the segmented images. We also manually marked the four corners of the

nutrition table and stored their coordinates as ground truth for comparison.

We then compared the location of the segmented nutrition table with the ground truth

to evaluate the performance of the segmentation process. Figures 6.11 through 6.14 show

the resulting error histograms for the starting and ending positions of the nutrition table

along the X and Y axes, respectively. A positive error denotes that the segmented image

contains some part of the background image and a negative error denotes that the resulting

segmented image has lost some areas of interest. In general, it is better to have a positive

error than a negative one because a negative error implies that some information is lost

that may result in classification errors.
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Figure 6.11. Histogram of errors in the starting position of the nutrition table along the X
axis.

It can be observed that the performance of the system is very good along the X axis

with mean errors of approximately 1%. The notable exception is the case where the error

for the starting and ending positions was 12.5% and 14%, respectively. Figure 6.15 shows

the image that caused this error. It can be observed that this image lacks a black colored

bounding box that is usually present in the nutrition table. Thus, the system would have

obtained a good coarse location of the nutrition table but was not able to obtain the exact

location along the X axis due to the absence of the vertical lines of the bounding box.

We can also observe that the performance of the system is not as good along the vertical

axis with average errors of 5% and 7% for the starting and ending positions, respectively.

Since most errors are positive errors, this is not a problem as the line segmentation process

will get rid of areas extraneous to the nutrition table. Most of these errors occur because

the segmentation process picks up the top edge of the box (see Figure 6.15) as the start of

the nutrition table. However, each segmented nutrition table contained the area between

the two thick black colored lines, which is the main body of the nutrition table.
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Figure 6.12. Histogram of errors in the ending position of the nutrition table along the X
axis.

6.3.3 Line Segmentation

Let us refer to the part of the image containing each nutritional category as a ‘line’

within the nutrition table. Each of these lines must be segmented from the nutrition table

before the words in them can be recognized. We can observe in Figure 6.5 that each of these

lines are separated by black colored horizontal lines. In order to reduce confusion, these

lines shall always be referred to as ‘black colored lines’ and the part of the image containing

the nutritional categories shall be referred to only as ‘lines’.

The first step in the line segmentation process is to detect the black colored lines within

the table. Let N denote the binarized segmented nutrition table image and let Ni denote the

ith row within this image. To detect the black colored lines, we shall define a function BL

such that BL(i) denotes the probability of Ni containing a black colored line. Let lj denote

the length of the jth black colored line segment within Ni that has a length greater than

some threshold τL and let mi denote the total number of such black colored line segments.

The following equation shows how this function is defined:
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Figure 6.13. Histogram of errors in the starting position of the nutrition table along the Y
axis.

BL(i) = geometric mean (l0, l1, . . . , lm) (6.25)

We chose to use the geometric mean instead of the arithmetic mean because the ge-

ometric mean is more indicative of the central tendency of a set of numbers as compared

to the arithmetic mean. Consider Figure 6.16, which shows two lines - A and B each con-

taining black colored line segments. Both these lines contain 50% black colored pixels and

hence the arithmetic mean of both these lines is equal to 0.5. The geometric mean of line

A can be computed as GM(A) = 8
√

(0.0625)8 = 0.0625 and similarly the geometric mean

of line B can be computed as GM(B) = 2
√

(0.25)2 = 0.25. It can be observed that the

geometric mean of line B is much higher than that of line A and is indicative of the length

of line segments present in it. Since we are interested in detecting large black colored lines

in the nutrition table, we use geometric mean to compute the function BL.

The next step in the line segmentation process is to normalize the values of BL by

dividing the value of BL for each row by the maximum value of BL for the entire image.

This step ensures that every value of BL is between zero and one. We now compute a
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Figure 6.14. Histogram of errors in the ending position of the nutrition table along the Y
axis.

threshold τ as the mean of all positive values of BL. Using this threshold we can identify

the starting (s) and ending (e) coordinates of every line along the y axis as follows:

s = i|BL(i− 1) >= τ and BL(i) < τ (6.26)

e = j|BL(j + 1) >= τ and BL(j) < τ (6.27)

We can use the threshold T to identify black colored lines. The ith row Ni is assumed

to be a black colored line if Ni >= τ . Since each line is enclosed by a black colored line

above and below it, the starting coordinate s is defined as the coordinate i that is just below

a black colored line and the ending coordinate e is defined as the coordinate j that is just

above a black colored line. Once these coordinates are identified, the line can be segmented

from either the binarized or the grayscale nutrition table image.

6.3.4 Word and Character Segmentation

The segmentation process has a very significant impact on the overall result of OCR
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of Nutriton Tableof Nutriton Table

Figure 6.15. Cause of error in segmentation.

and many errors can be directly attributed to it [96]. The authors in [97] define character

segmentation as an operation that seeks to decompose an image of a sequence of characters

into subimages of individual symbols. This process can also be extended to include word

segmentation where entire words are segmented instead of characters. Character segmen-

tation is much more popular than word segmentation because it allows virtually unlimited

words to be recognized.



100

Line ALine B0.0625

0.25
Figure 6.16. Differences between arithmetic and geometric mean.

Word segmentation, on the other hand, is relatively simpler but places a restriction

on the number of words that can be recognized since the system needs a way to classify

them. This approach is better suited in cases with a limited lexicon. We use both word and

character segmentation in our application. Word segmentation is used to segment words

like ‘Calories’, ’Fat’, etc and character segmentation is used to segment the numerical values

of those categories.

6.3.4.1 Word Segmentation

The word segmentation process is responsible for identifying and segmenting words

from the line segmented in the previous step. The line segment may contain some noise due

to the remnants of black colored lines from the nutrition table. The presence of these lines

may cause segmentation errors and so it is important to eliminate them. One approach is to

identify regions that belong to the characters and then segment words based on information

from those regions. Let us first identify a region called middle zone, which belongs to the

torso of characters.

We can define four imaginary lines - topline, midline, baseline and beardline for every

letter in the Latin alphabet [98]. The baseline is defined as the line on which the letters

rest. The midline is defined as the line connecting the top of letters like ‘a’, ‘c’, ‘e’, etc. and

the top of the torso of letters like ‘b’, ‘d’, etc. The topline is defined as the line connecting

the ascenders of the letters like ‘b’, ‘d’, etc. and finally, the beardline is defined as the line

connecting the descenders of letters like ’g’, ’j’, etc. Figure 6.17 shows the topline, midline,
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baseline and beardline for letters in a word.

The topline and the beardline touch only a few letters in the alphabet while the midline

and the baseline touch most of the letters in the alphabet. We can now extract the middle

zone, which is the area between the midline and the baseline to detect words in a line.

Consider Figure 6.18, which shows a horizontal projection (HP (word)) of the black colored

pixels in a word. Let δ
δyHP (word) denote the gradient along the y axis. Figure 6.19 shows

this gradient. It can be observed that the gradient has minimum value at the baseline and

maximum value at the midline. The baseline connects the bottom of the letters and so

it connects a lot of black colored pixels that have white colored pixels below them. This

causes the gradient δ
δyHP (word) to be minimum at that point. A similar justification can

be used for the midline as it connects the top of letters (black colored pixels that have white

colored pixels above them). We can derive the locations of the midline and the baseline as

follows:

Polyunsaturated
Topline

Midline

Baseline

BeardLine

Figure 6.17. Topline, midline, and baseline for letters in a word.

Figure 6.18. Horizontal projection of letters in a word.
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Figure 6.19. Vertical gradient of horizontal projection of letters in a word.

f =
δ

δy
HP (word) (6.28)

baseline = i|f(i) is minimum (6.29)

midline = i|f(i− 1) is maximum (6.30)

Figure 6.20. Part of word between baseline and midline.

Inter-word gapsIntra-word gaps

Figure 6.21. Vertical projection of a line image.

Let Lmiddle define the portion of the line image that lies between the baseline and the

midline. As shown in Figure 6.20, this portion of the image will contain black pixels that

belong to words within the line and exclude pixels belonging to noise. Let V P (Lmiddle)

denote the vertical projection of this portion of the image, which is shown in Figure 6.21.

It can be observed that the value of the vertical projection is zero for spaces between

letters (intra-word gap) and words (inter-word gap). To segment words from the image, we

have to segment the line using the inter-word gaps and thus it is important to distinguish

between the two types of gaps. The authors in [99] discuss and evaluate eight different
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algorithms and metrics to separate words based on these gaps. We chose to go with a

simpler solution of applying a smoothening (or blurring) filter to the entire line image. A

similar approach is used in [100] for line segmentation. This filter is defined as follows:

SF =


1 1 1

1 1 1

1 1 1

 (6.31)

Let SL define the result of convolution of SF and the inverted image (black pixels are

replaced by white and vice versa) of Lmiddle. The reason we invert the image is because

SF has a higher response for white colored pixels as compared to black colored pixels.

Figure 6.22 shows an example of SL as well as its vertical line projection V P (SL). It can

be observed that SL contains no intra-word gaps and thus our problem is greatly simplified.

The words can now be segmented from the line image using the intra-word gaps. To do

this, we examine the values of V P (SL) and segment areas where the value of V P (SL) is

above a certain threshold (equal to 3 in our case). This threshold is usually very small and

is selected so as to minimize the number of false positives.

Figure 6.22. Smoothened line image and its vertical projection.

6.3.4.2 Experiments to Evaluate the Midline and Baseline Detection Algo-

rithm

We performed two experiments to verify the performance of the midline and baseline

detection algorithm. In the first experiment, we took fifty line images from segmented

nutrition table images. The nutrition table images as well as line images were segmented

automatically from images of real-world products using algorithms discussed previously. We

discarded line images that contained either no text, multiple lines of text or curved text.

We zoomed each line for better viewing and manually marked the midline and baseline in
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the first fifty line images. We then compared these manually marked midlines and baselines

against the midlines and baselines detected by our algorithm. Figures 6.23 and 6.24 show

the error in computing the midline and baseline for these images. It can be observed that

the error in midline and baseline for most images is within one pixel but there are some

exceptions where the error is as high as three pixels. Figure 6.25 shows an example of an

image where the error in computing the midline was three pixels. The blue colored line

shows the midline detected by the algorithm and the green colored lines show the actual

midline and baseline. In this case, our algorithm mistook the topline for the midline. This

happens only in the case when line containing many letters with ascenders. We would like

to point out that mistaking the topline for a midline will not affect the word segmentation

process.

Figure 6.23. Error in detecting the midline.

We wanted to know the performance of our algorithm in a more general case (like a

book) and so we segmented lines from a page of Shakespeare’s Comedy of Errors. These

lines were segmented automatically and no lines were excluded from the experiment. We

manually identified midlines and the baselines for each line and compared them with mid-
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Figure 6.24. Error in detecting the baseline.

Figure 6.25. Example of topline being mistaken for the midline.

lines and baselines detected by the algorithm. Figures 6.26 and 6.27 show the error in

computing the midline and baseline for these images. It can be observed that the error for

all the lines is within one pixel and this proves that our algorithm works even better for the

general case.

6.3.4.3 Character Segmentation

This section deals with segmenting the characters from the line image and is useful

for recognizing the values associated with items like ‘Calories’, ‘Carbohydrates’, etc. The

previous step should have isolated the actual numerical value as a ‘word’. This step will
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Figure 6.26. Error in detecting the midline.

break the numerical value into individual components. For example, the value 35 will be

broken down into the numbers 3 and 5. These numbers can then be recognized using the

technique discussed later in Section 6.4.2.

The character segmentation method works similar to the word segmentation method

discussed in the previous section. We compute the vertical projection V P of the number

N in each line. Figure 6.28 shows a number and its vertical projection. We can use a small

threshold τ (again set to 3 for our application) to segment parts of the image that exhibit

values of V P greater than τ to obtain the digits.

The observant reader may have noticed a problem with our segmentation system,

namely how do we know that a particular subimage is a ‘number’ and needs to be fur-

ther segmented? The solution to this question is to segment and classify words from each

line and then use a rule-based method to determine if the next segmented subimage is a

word or a number. For example, if the line is found to have words ‘Calories’, ‘from’ and

‘Fat’ in succession, the probability that the next subimage is a number is very high.
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Figure 6.27. Error in detecting the baseline.

Figure 6.28. A number and its vertical projection.

6.4 Feature Extraction and Classification

The classification problem can be defined as that of matching patterns with classes.

In most OCR applications, the pattern is a feature vector that describe the segmented

character image and the classes are letters in the target language. Since the input to the

classifier is a feature vector, the classification step is preceded by a feature extraction step.

Let us look at some common feature extraction techniques.
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6.4.1 Common Feature Extraction Techniques

At the very basic level, each color (red, green, blue) of each pixel in the input image can

be viewed as a point in the feature space. Thus, an image containing m×n pixels, will have

a total of 3mn points in the feature space. It is apparent that such a large feature vector

contains a lot of useless information that will be impossible to manage and only make the

classification harder. Devijver and Kittler [101] defined feature extraction as the problem

of “extracting from the raw data the information which is most relevant for classification

purposes, in the sense of minimizing the within-class pattern variability while enhancing

the between-class pattern variability.”

6.4.1.1 Zoning

Zoning is one of the simplest feature extraction methods. In this method, a m×n grid

is superimposed on the input image and the resulting feature is a m × n vector. The ith

feature point in the vector is given a value of 1 if the number of foreground pixels in the

ith zone is greater than some threshold (τ) or 0 otherwise. Figure 6.29 shows an example

of zoning. The feature vector in this case is: 0110011011111111. Bosker [102] describes a

commercial OCR application using zoning.

1 2 3 4

5 6 7 8

9

10 11

12

13 14 15 16

Figure 6.29. An example of zoning.
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6.4.1.2 Horizontal and Vertical Projections

In this method, an input image is represented by its horizontal and vertical projections

(refer to Section 6.3.1 for an explanation on horizontal and vertical projections). These

continuous projections along the X and Y axes are discretized into two vectors by using

two bins of size m and n, respectively. The resultant feature vector is of size m + n and

represents the input image. This method has the advantage of being simple but is not able

to uniquely represent distinct images. For example, consider Figure 6.30 where two distinct

input images A and B have the same projections along the X and Y axes.

A B

Figure 6.30. Two distinct images with the same projections.

A variant of this technique has been successfully applied in [103] for recognizing De-

vanagari characters. Horizontal and vertical projections are also used as part of the feature

set in for font recognition [104].

6.4.1.3 Crossings and Distances

In these methods, a set of vectors along various directions are superimposed over the

input image. To obtain the feature vector using the crossings methods, we compute the

number of times the character image crosses each vector. Figure 6.31 shows an example

of a feature vector obtained using the crossing method. To obtain the feature vector using

the distances method, we compute the distance of the intersection of the image with each
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vector. If the image crosses the vector multiple times we consider only the distance of

the first intersection between the image and the vector. This technique is used in [105] to

obtain ‘transition vectors’, which represent characters using the number of foreground to

background pixel transition along certain predefined lines.

C 0

111

1

1

1 1

Figure 6.31. Feature vector using the crossings method.

6.4.2 Recognizing Digits using a Probabilistic Neural Network

We use a probabilistic neural network (PNN) [106, 107] to classify digits, which were

segmented in the previous step. A PNN is based on a Bayesian classifier and is used to

solve a diverse group of classification problems like cancer classification [108], radar/target

identification [109], stock trends [110], etc. A PNN offers significant advantages over a

backpropagation algorithm such as rapid training, guarantee of convergence to a Bayesian

classifier, addition and deletion of data from the training set and an output indicating the

amount of evidence on which it bases its decision.

To understand how a PNN works, let us first look at how a Bayesian classifier works.

Consider a box that contains plastic P and wooden W balls. Given a ball at random, we

have to determine if it is a plastic ball or a wooden ball by measuring its mass m. Let

hP and hW determine the fraction (a priori probabilities) of plastic and wooden balls,
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respectively. Let fP (m) and fW (m) denote the probabilities that a given ball of mass m is

made of plastic and wood, respectively. Given a ball of mass m, we can now compute the

probability that it is made of plastic pP (m) and wood pW (m) as:

pP (m) = hP × fP (m) (6.32)

pW (m) = hW × fW (m) (6.33)

We can now classify the ball as plastic if pP > pW or wood if pP > pW .

The previous example works if we know the values of hP , hW , fP and fW . It is easy to

determine the values of hP and hW since these can be computed as the fractions of plastic

and wooden balls in the box. Computing the values of fP and fW is a little trickier. The

values of fP and fW can be estimated by maintaining a history of the mass of plastic and

wooden balls. Let B = {b0 . . . bn} represent n bins representing mass {m0 . . .mn}. Let

BP and BW denote the bins for plastic and wooden balls, respectively. These bins can be

populated over time by measuring the mass of each ball and placing them in the appropriate

bins. If the number of bins is sufficiently large (tending to infinity in the ideal case) and

given enough samples (again tending to infinity in the ideal case), the histogram of these

bins will represent the probability density function or pdf of the mass. Figure 6.32 shows

an example of the probability density function. The probability that a plastic (or wooden)

ball has mass between a and b can now be calculated by finding the area under the curve

between the points a and b through integration.

The previous example assumes that we have an infinite amount of data to calculate the

probability density functions. However, in reality, there is a limited amount of data available

to us and the pdf has to be approximated. Parzen windows is a technique developed by

Parzen that allows us to approximate the pdf with a relatively small amount of data.

In essence, for each n-dimensional training vector, we compute n-dimensional Gaussians

centered on that sample. The sum of the Gaussians for all samples will then approximate

the pdf of the set. One advantage of using Parzen windows is that we do not need to
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a b

Figure 6.32. Probability density function.

calculate the full pdf and instead the value of the pdf for some class A at point X can be

computed as:

fa(X) =

 1/(2 ∗ π)(p/2)σp

1/naΣ
na
i=1(−(X − Yai)t(X − Yai)/2σ2)

 (6.34)

where, fa(X) is the value of the pdf of class A at point X, i is the training vector number,

p is the number of components in the training vector, σ is the smoothing variable, na is

the number of training vectors in class A, X is the test vector to be classified, Yai is the ith

training vector from class A and t is the vector transpose.

This technique provides us with a simple and effective way to compute the value of pdf

at any point X. As the number of training samples increases, the estimated pdf approaches

the true value. The value of σ determines the size (or spread) of the Gaussian. A small

value of σ will cause the Gaussian to be peaked and the classifier converges to a nearest

neighbor classifier. On the other hand, a large value of σ will cause the Gaussian to be flat

and the classifier converges to a linearly separable classifier. We have set σ = 25 for our

application.

A probabilistic neural network (PNN) uses this technique to quickly classify a test

sample using a limited amount of test data. Figure 6.33 shows a high-level view of the

PNN, which contains four layers - a distribution layer, a pattern layer, a summation layer

and a decision later. The distribution layer serves merely as a connection point and does
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not perform any computation. It connects the n-dimensional input vector X to the nodes

in the pattern layer. Each node in the pattern layer corresponds to a sample in the training

data set. Figure 6.34 shows one such neuron in the pattern layer. The input weights for

this neuron represent the value of the training sample. Specifically, the jth input weight wj

is equal to the value of the training sample along the jth dimension. The neuron sums up

the weighted inputs and applies the non-linear function f(•) described in equation 6.34 to

produce the output Z. Each node in the pattern layer thus produces an output Zci, where

c represents the class of the associated training vector and i represents the pattern layer

neuron computing that class.
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Figure 6.33. Probabilistic neural network.

The summation layer is responsible for summing up the outputs of neurons for each

class c and contains a node for each class in the training sample. In other words, if our

training sample contains two classes with ten samples in the first class and twenty samples in

the other, the summation layer will have two nodes - one with ten inputs and the other with
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Figure 6.34. Pattern layer neuron.

twenty. The number of inputs to the summation layer are equal to the number of training

samples. It is preferable that the training sample is of a small size for PNNs running on

mobile devices. The summation layer passes the results of the summation to the decision

layer, which contains a single node. This node has one input for each summation node (or

each class c) and only one output. The output of the decision layer is the classification of

the input sample. It chooses this classification by looking at the outputs of the summation

nodes for each class and picking the one with the maximum value.

6.4.2.1 Experiments on Classifying Digits using the PNN

We collected images of barcodes on products sold in our campus store and manually

segmented digits from them. These digits were then manually classified into ten bins num-

bered zero through nine. The digits were then binarized and cropped programatically. The

entire sample contained a total of 308 digits. We randomly split the entire sample into

a training sample (approximately 60%) and a testing sample (approximately 40%). The

training sample was used to train the neural network and the testing sample was used to

test the accuracy of the neural network. We ran the experiment ten times, with different

randomly generated training and testing set each time. The following table summarizes the

results of that experiment.

The overall accuracy was 97.66% for the entire experiment.
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Table 6.1. Results of Classifying Digits using the PNN

Experiment
Number

Images Classi-
fied Correctly

Images Classi-
fied Incorrectly

Accuracy

1 117 2 98.32
2 119 4 96.75
3 112 2 98.25
4 120 2 98.36
5 117 4 96.69
6 119 3 97.54
7 115 3 97.46
8 117 2 98.32
9 116 2 98.31
10 115 4 96.64

6.4.3 Recognizing Words in the Image

As mentioned previously, this technique is not as popular as character recognition

methods chiefly because word recognition assumes a predefined and finite lexicon of words.

The number of characters in a language are few when compared to the total number of

words. For example, the English language contains 26 (52 - if we include both uppercase

and lowercase) letters and 10 digits but well over 200,000 words [111]. It would be highly

improbable, if not impossible, to generate a library containing feature vectors for all the

words in a particular language.

We classify the word images segmented in the previous step but there are systems

that can recognize words without segmentation [112, 113]. These systems typically match

templates of words across the entire image. The first part of this section discusses feature

extraction and the second part discusses classification.

6.4.3.1 Feature Extraction

We use a hybrid feature vector consisting of two simple feature vectors to represent

the word image. This vector is represented as F = [R, I], where R represents the height-

to-width ratio of the image and I represents the grayscale image pixels. Each image in the

training sample is scaled down so that the height of each image is ten pixels. We chose to
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keep the height of every image the same because the width of the image can vary greatly

depending on the number of characters in the word but the height of each character remains

the same. This scaling is performed using a bilinear interpolation method, where the output

pixel value is a weighted average of the neighboring 2× 2 pixels.

6.4.3.2 Classification

We use template matching to classify words in the image. This is a popular technique

and is used in many OCR systems [114, 115]. Let Fw = [Rw, Iw] denote the feature vector

that represents the word image that has to be classified. Let C = {C1, C2, . . . , Cm} represent

the m different classes that the word image can be classified into. These classes represent

the different words found in the nutrition table like ‘Calories’, ‘Fat’, etc. Table 6.2 shows

the 24 different classes (or words) that we have identified for our application. For template

matching, we also assume a library of precomputed feature vectors F = {F1, F2 . . . ,n}, which

are generated from images that are representative of the different classes in C. In general,

n� m. Table 6.2 also shows the average height and width (in pixels) and total number of

feature vectors for word images belonging to each of the 24 classes in our application.

We use a two-stage process to classify Fw. In the first stage, we compare the image

ratio of Fw with the image ratios of all the features vectors from the library F . If Rw and Ri

are comparable, we compute the error ei between Iw and Ii. In our application, we conclude

that Rw is comparable to Ri if either Rw is 70% of Rw or Rw is 70% of Ri. The error ei

is computed as the root mean squared error of Iw and Ii if the two ratios are comparable

and is set to ∞ otherwise. It should be noted that Iw is scaled using bilinear interpolation

to match the dimensions of Ii for each image in the library. Let Fc represent the vector for

which the error ec is minimum. We then classify the word image by assiging it to the same

class as Fc.

6.4.3.3 Experiments on Word Classification

We took pictures of nutrition tables on real products and then segmented words using

the segmentation method described previously. We then hand picked 465 images belonging
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Table 6.2. Word Templates

Name Average Height Average Width Number of Samples

Amount 10 32.7143 7
Calcium 10 31 6
Calories 10 30.875 24

Carbohydrate 10 45.3846 13
Cholesterol 10 44.8571 14

Daily 10 19 7
Dietary 10 21.4615 13

Fat 10 11.6944 72
Fiber 10 18.875 16
From 10 16.8182 11

Insoluble 10 39 1
Monounsaturated 10 60.1111 9

Per 10 13.3333 3
Polyunsaturated 10 48.3333 9

Potassium 10 41.7143 7
Protein 10 29.6364 11

Saturated 10 34 12
Serving 10 26.1667 6
Sodium 10 30.7692 13
Soluble 10 30 1
Sugars 10 22.1538 13
Total 10 20.4167 24
Trans 10 18.5714 7

Vitamin 10 27.4706 17

to 22 classes (or words) from these segmented images. The images were hand picked to

ensure that the results of classification were not affected by the quality of segmentation.

The selection process was not rigid. Only images that contained no words, partial words

or more than one words were discarded. This set of images was then split randomly into a

training set for generating the library F and a testing set. The training set contained 280

images and the testing set contained 185 images. We ran the word classification method on

the testing set and found that 169 images out of 185 were correctly classified by the system

and only 16 images were incorrectly classified.
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CHAPTER 7

FUTURE WORK

This dissertation comprises of three components - the eyes-free barcode scanner, the

tele-assistance module and the optical character recognition module. This chapter dis-

cusses the future work and improvements that can be applied towards each of these three

components.

7.1 Eyes-Free Barcode Scanner

The eyes-free barcode scanner is explained in detail in Chapter 3. It is a software-only

solution that uses the phone’s camera and internal sensors to allow VI individuals to scan

UPC barcodes on products and MSI barcodes on shelves. This module has been through

various iterations that paint a picture of how it has evolved over time. The first version of the

barcode scanner required shoppers to press a button on the screen to scan a barcode and did

not include help the user in keeping the camera aligned with the product. The next version

incorporated automatic image capture using video mode and this was later improved by

adding the automatic camera alignment module. The final version incorporated the barcode

detection module that allowed shoppers to quickly determine if a barcode was within the

camera’s field of view.

Even though the current version of the barcode scanner is a tremendous improvement

over the first, there are still areas of improvement. One of the biggest challenges is to

determine the correct distance between the camera and the product. If the camera is too

close to the product, the barcode is not fully contained within the camera’s field of view and

cannot be decoded. If the camera is too far away, the barcode occupies only a small portion

of the image and cannot be decoded. currently, we train the user in moving the camera so

that it is only 6-8 inches away from the product but it would be nice if this process can
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be automated. This will allow the barcode scanner to detect if the camera is positioned at

the correct distance and let the user know when to stop moving the camera away from the

product.

The second biggest improvement is to make the barcode detection and decoding process

independent of the camera’s orientation to the barcode. Currently, the system can detect

and decode barcodes that are either vertically or horizontally aligned with the image. Al-

lowing the system to detect and decode barcodes that are rotated arbitrarily will reduce

the burden of keeping the camera aligned in the yaw plane.

The final improvement would be to improve the performance of the system. Most

current smartphones have dual-core and even quad-core processors. The system should

take advantage of these extra cores by parallelizing the barcode detection and decoding

processes. This will result in an increase in the throughput of the system in terms of

number of frames decoded per second.

7.2 TeleShop

The TeleShop system is a tele-assistance module, which is described in Chapter 5. This

system allows the VI shopper to get help from sighted individuals by transmitting a video

of her current surroundings. This system is intended as a fail-safe system, which can be

used when the eyes-free barcode system or the OCR system fail. This system is not limited

to shopping and can be used for other purposes too.

The current implementation uses a series of images to create the video feed. This

system should be replaced by a real-time streaming protocol like RTSP. This will reduce

the bandwidth requirement and increase performance.

The second improvement to the system can be made by removing the need for a client

on the PC. In this case, the VI user’s cell phone acts as a server, transmitting a true video

feed, which can be accessed anywhere by anyone on the web. This would enable sighted

individuals to access the video using a cell phone, tablets or PC. This method would need

to implement security policies to restrict the video feed to only a select group of users.
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7.3 Optical Character Recognition System

The OCR system, which is described in detail in Chapter 6, is used to read nutrition

fact labels on products. This system is presented as a proof-of-concept prototype and thus

has the most room for improvement among all the three components of this dissertation.

The biggest area of improvement is to implement all the different components in Android

and integrate them. The current implementation is implemented in MATLAB and only

some components are implemented in Android. Even though we have been very careful not

to use MATLAB libraries that do not have an Android counterpart, it would be best to

implement all the components in Android and integrate them.

The current system assumes that the nutrition table is present in the image, is not

rotated and is not cropped. The next area of improvement is to detect if the nutrition table

is present in the image, if it is cropped and then provide instructions the VI shopper so

that she can capture the nutrition table in its entirety. This will allow VI shoppers to use

the system easily without having to spend a lot of time running the process on images that

do not contain the nutrition table. This will also allow them to use the system without

worrying about aligning the camera with the product.

The current system also assumes that the nutrition table contains black colored char-

acters on a light colored background but this may not be true for all products. The system

should be modified so that it can correctly read light-colored characters on a dark back-

ground.

Currently, all experiments are performed in software using images of real products.

The system has to be validated by performing experiments with a VI individual in a real

grocery store. This will expose problems in the user interface and user experience along

with other problems relating to lighting, etc.
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CHAPTER 8

CONCLUSION

Independent grocery shopping ranks amongst the highest in the list of prerequisites

for visually impaired (VI) people to achieve true independence. It is something that can

greatly improve the quality of life of VI individuals. Many systems have been proposed

and developed to solve this problem. We have developed three such systems - RoboCart,

ShopTalk and ShopMobile 1 in our laboratory to solve this problem. Each of these three

systems have been successful but at the expense of instrumenting the environment or using

specialized hardware. ShopMobile 2 combines the best of all three systems and removes the

need of instrumenting the environment and using specialized hardware. It is a software only

system that relies on a smartphone, something that has become ubiquitous in our current

lifestyle.

The first component of this dissertation is an eyes-free barcode scanner that can be

used to replace the dedicated barcode scanners used in RoboCart, ShopTalk and ShopMo-

bile 1. We have developed an eyes-free barcode scanner that uses the smartphone’s camera

to detect and decode both UPC barcodes on products and MSI barcodes on shelves. This is

a software-only solution that uses fast computer vision algorithms to quickly scan barcodes.

These algorithms are modularized and can easily be used to extend the scanning function-

ality to other types of barcodes. We have verified the viability of our scanning solution as

a replacement for dedicated hardware barcode scanners by performing several experiments

in a laboratory setting as well as in a real grocery store.

The second component of this dissertation is a tele-assistance system that can be used

by VI individuals to get help from sighted individuals. We admit that there are shortcomings

in our system and that there are cases where the best solution is to just ask someone else

for help. The tele-assistance module allows the VI individual to get help from a sighted
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individual by sharing a video of her surroundings. The sighted individual can view the

video using an application that allows her to change the resolution and quality of the

incoming stream as well as to freeze a frame for viewing. These controls provide additional

functionalities that are missing in current video sharing applications like Skype.

The final component of this dissertation is an optical character recognition (OCR)

module which is a proof-of-concept prototype that allows VI individuals to read the contents

of the nutrition facts table. Existing assistive shopping systems allow VI individuals to

browse and select products but do not provide any indication of the product’s ingredients

or other nutritional information. Thus, VI shoppers have no way to distinguish between

products based on their nutritional information and are restricted in their choices between

different brands of the same type of product. This information, or the lack thereof, becomes

even more important in case of dietary restrictions or allergies. Our system describes and

implements all the necessary components that allow a VI shopper to read nutrition facts

on a product.
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