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Overview
●The present discussion will focus on deriving the 
classical variational entropy of a Black Hole using 
asymptotic exponents, e.g. monodromies:

●Why analyze Asymptotics?
●Characterizing asymptotics is often much simpler than 
determining exact solutions. Further, asymptotic analysis 
can provide insight into singularity/boundary features.

–In fact, it will be shown that the asymptotic exponent of our solution 
encodes the classical 2nd Law of Black Hole Thermodynamics:

–In particular, the asymptotic exponent is directly proportional 
the variational entropy:

𝑇𝑇𝑖𝑖δ𝑆𝑆 = δ𝐸𝐸𝑖𝑖 − Ω𝑖𝑖δ𝐽𝐽𝑖𝑖

δ𝑆𝑆𝑖𝑖 = 4πα𝑖𝑖



Local Field Equations
● Presently, we consider Flat and AdS-Kerr 
solutions within pure GR. These are uncharged, 
rotating, stationary Black Holes.

o We choose the massless scalar Klein-Gordon field as our 
Thermodynamic Probe because it is:

o a Lorentz-covariant, quantized scalar field with minimal spacetime 
coupling (it interacts through the scalar amplitude; i.e., the probe 
interacts via a single, Lorentz-covariant scalar parameter).

o Massless: Does not perturb the metric (spacetime remains fixed as 
we probe, i.e., the system remains in Equilibrium).

o Further, in these cases, its Euler-Lagrange equation is separable.

● Klein-Gordon Equation for mass-less scalar field:



Black Hole Spacetime Metrics

● Flat:

o Two trapped surfaces: r+ is the Event Horizon, r- is the Cauchy Horizon

● AdS:

o Similarly, r1 is the Event Horizon, ri=2,3,4 are the AdS-Cauchy Horizons[3].



Radial Ansatz
● It is straight-forward to expand our KG-field in temporal and 
azimuthal coupling constants:

● By regarding the polar function's dependence on ω as a (not necessarily 
small) perturbation, the discrete set of polar eigenvalues, Kl, have been 
found.[1]

● The Kerr Radial Ansatz[2]:

o Flat:
, ,

o AdS:

, ,



Thermodynamics

● The KG separation constants ω,m represent the 
time and azimuthal-rotation quasinormal modes.

o As such, they are the generators of the KG-field energy and 
angular momentum operators: , .

 Noting the 2nd Law of BH Thermodynamics:

o Ti is defined as the Hawking temperature at the ith horizon

o And, rewriting the αi in terms of physical parameters:

 αi is therefore directly proportional to the classical variation 
of the Black Hole Entropy!

4πα𝑖𝑖 =
ω − Ω𝑖𝑖𝑚𝑚

𝑇𝑇𝑖𝑖
=
δ𝐸𝐸𝑖𝑖 − Ω𝑖𝑖δ𝐽𝐽𝑖𝑖

𝑇𝑇𝑖𝑖
δ𝐸𝐸𝑖𝑖 = 𝑇𝑇𝑖𝑖 4πα𝑖𝑖 + Ω𝑖𝑖δ𝐽𝐽𝑖𝑖

𝑇𝑇𝑖𝑖δ𝑆𝑆𝑖𝑖 = δ𝐸𝐸𝑖𝑖 − Ω𝑖𝑖δ𝐽𝐽𝑖𝑖



Radial Ansatz
● It is straight-forward to expand our KG-field in temporal and 
azimuthal coupling constants:

● By regarding the polar function's dependence on ω as a (not necessarily 
small) perturbation, the discrete set of polar eigenvalues, Kl, have been 
found.[1]

● The Kerr Radial Ansatz[2]:

o Flat:
, ,

o AdS:

, ,



Fuch's Relation
● For any second order differential equation, the 
solutions local to any regular point z0 are[1]:

o Then the Monodromy, σ, solves the indicial equation for a 
second order ODE:

o If every pole is regular, Fuch's relation applies:

o Here, b indexes the multiplicity of the pole: for an nth order ODE, there are n 
linearly independent solutions (here, b=1,2); i indexes each of the r 
singularities. 

Note: KG-AdS is everywhere regular, KG-Kerr is not regular at spatial ∞.

𝑤𝑤 𝑧𝑧 = 𝑧𝑧 − 𝑧𝑧0 σ 1 + 𝑂𝑂 𝑧𝑧



Fuch's Relation

● Returning to our Ansatze:
 AdS:

 Kerr:

o Each finite horizon is regular:
 AdS:

 Kerr:

Indicial Equation



Monodromies
● The Monodromies at infinity can be found by the 
Frobenius Method, giving:

 AdS:

o Then, because n=2 and there are exactly r=4 regular singularites, Fuch’s
Relation applies:

 We note the sign pairings of {σib} yield this trivially.

 Kerr:
–Although infinity is not regular, if we consider the exponent of r to be the monodromy
parameter, then:

Indicial EquationFuch's Relation

These pair correlations 
beg for renormalization!



Monodromy Frame
● Making the following analytic coordinate change[4]:

o The Monodromies transform, accordingly, as:

 AdS:

 Kerr: By direct calculation:

Kerr is a smooth AdS-limit, and this looks Fuchs-like, so…

Fuch's Relation



Cauchy Horizons
● The flat-limit is variationally smooth, and in 
it the sum of the complex AdS-monodromies
auto-normalize to the variational Kerr 
entropy at infinity:

 Further, the complex horizons and corresponding monodromies, 
diverge conjugately to complex infinity:

o Together, these divergences create two poles of opposite direction and sign 
in the same neighborhood on the boundary: the entropy on the boundary is 
realized as a contour deformation about this point.     



Monodromy Frame Relation
●Intriguingly, we've found an additional constraint:

● AdS:
o The sum of the Horizon Entropies is a function independent of the 

Black Hole parameters (mass and angular momentum). 

 Further, in the flat limit the monodromy sums approach their counterparts:

,

and we conclude:

● Kerr:
 The result is derived directly from the Kerr geometry; indeed

o This holds even though Kerr is not completely regular (spatial infinity is 
an irregular singularity in d=4 asymptotically flat spacetime).



Monodromy Conservation
● We can arrive at the same constraint on the summed 
entropy using physical parameters alone:

o With the Hawking temperature, entropy, and angular velocity of each 
event horizon are given, respectively, by

and, indeed, the summed Bekenstein-Hawking entropy of the AdS-Kerr BH is 
independent of the physical parameters:

o In AdS, the sum of the coefficients of each quasinormal mode in the monodromies
independently cancel, and thus the sum of the monodromies is uniformly zero:  

4πα𝑖𝑖 =
ω− Ω𝑖𝑖𝑚𝑚

𝑇𝑇𝑖𝑖
=
δ𝐸𝐸𝑖𝑖 − Ω𝑖𝑖δ𝐽𝐽𝑖𝑖

𝑇𝑇𝑖𝑖



Further Results
● Results have been found in a wide array of 
cases[4]:

o These results were found by calculating the relevant parameters 
directly from the metric; the above results are thus completely
independent of the probe-field.  



Appendix A:
Further Analytic KG Results

 Extremal AdS (            ): Event Horizon Asymptotic:

 BTZ: Event Horizon Asymptotic:

 Extremal BTZ: Event Horizon Asymptotic:



Appendix B:
Monodromy Frame Radial Ansatze

● AdS:

● Kerr:



Thank You
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