Emergence of Classical Black Hole Thermodynamics using Monodromic Analysis

Alexandra Chanson* USU Graduate Student

My contributions to this research performed under the incredible mentorship of Dr. Maria Rodriguez[†], in collaboration with Jacob Ciafre, and was supported by the USU Department of Physics and, indirectly, under a Fellowship from the Utah NASA Space Grant Consortium.

UtahStateUniversity *a.chanson@aggiemail.usu.edu *

[†]maria.rodriguez@usu.edu

Overview

•The present discussion will focus on deriving the classical variational entropy of a Black Hole using asymptotic exponents, e.g. monodromies:

 $X(x \to x_i) \sim (x - x_i)^{\beta_i} \iff X(x) = C(x - x_i)^{\beta_i} (1 + O(x - x_i))$

.Why analyze Asymptotics?

•Characterizing asymptotics is often **much** simpler than determining exact solutions. Further, asymptotic analysis can provide insight into singularity/boundary features.

-In fact, it will be shown that the asymptotic exponent of our solution encodes the classical 2nd Law of Black Hole Thermodynamics:

$$T_i \delta S = \delta E_i - \Omega_i \delta J_i$$

-In particular, the asymptotic exponent is directly proportional the variational entropy: $\delta S_i = 4\pi \alpha_i$

Local Field Equations

 Presently, we consider Flat and AdS-Kerr solutions within pure GR. These are uncharged, rotating, stationary Black Holes.

- We choose the massless scalar Klein-Gordon field as our Thermodynamic Probe because it is:
 - a Lorentz-covariant, quantized scalar field with minimal spacetime coupling (it interacts through the scalar amplitude; i.e., the probe interacts via a single, Lorentz-covariant scalar parameter).
 - Massless: Does not perturb the metric (spacetime remains fixed as we probe, i.e., the system remains in Equilibrium).
 - ^o Further, in these cases, its Euler-Lagrange equation is separable.

• Klein-Gordon Equation for mass-less scalar field:

$$\frac{1}{\sqrt{-g}}\partial_{\mu}\left(\sqrt{-g}g^{\mu\nu}\partial_{\nu}\psi\right) = 0$$

Black Hole Spacetime Metrics

• Flat:

$$ds^{2} = \frac{\Sigma}{\overline{\Delta}}dr^{2} - \frac{\overline{\Delta}}{\Sigma}(dt - a\sin^{2}\theta d\phi)^{2} + \Sigma d\theta^{2} + \frac{\sin^{2}\theta}{\Sigma}\left((r^{2} + a^{2})d\phi - adt\right)^{2}$$
$$\overline{\Delta} = r^{2} + a^{2} - 2Mr = (r - r_{-})(r - r_{+}) \text{ and } \Sigma = r^{2} + a^{2}\cos^{2}\theta$$

Two trapped surfaces: r_{+} is the Event Horizon, r_{-} is the Cauchy Horizon

. AdS:

$$ds^{2} = \frac{\Sigma}{\Delta}dr^{2} - \frac{\Delta}{\Sigma}(dt - \frac{a}{\Xi}\sin^{2}\theta d\phi)^{2} + \frac{\Sigma}{\Delta\theta}d\theta^{2} + \frac{\Delta_{\theta}}{\Sigma}\sin^{2}\theta\left(\frac{(r^{2} + a^{2})}{\Xi}d\phi - adt\right)^{2}$$
$$\Delta_{\theta} = 1 - \frac{a^{2}}{l^{2}}\cos^{2}\theta, \qquad \Xi = 1 - \frac{a^{2}}{l^{2}}, \qquad \Sigma = r^{2} + a^{2}\cos^{2}\theta,$$
$$\Delta = (r^{2} + a^{2})(1 + \frac{r^{2}}{L^{2}}) - 2Mr = \frac{1}{L^{2}}\prod_{i=1}^{4}(r - r_{i})$$

Similarly, r_1 is the Event Horizon, $r_{i=2,3,4}$ are the AdS-Cauchy Horizons^[3].

Radial Ansatz

 $rac{1}{\sqrt{-g}}\partial_{\mu}\left(\sqrt{-g}g^{\mu
u}\partial_{
u}\psi
ight)=0$

 It is straight-forward to expand our KG-field in temporal and azimuthal coupling constants:

$$\psi(t, r, \theta, \phi) = e^{-i\omega t + im\phi} R(r) S(\theta)$$

- By regarding the polar function's dependence on ω as a (not necessarily small) perturbation, the discrete set of polar eigenvalues, $K_{\rm l}$, have been found. $^{[1]}$
- The Kerr Radial Ansatz^[2]:

• Flat:
$$\begin{bmatrix} \partial_r^2 + \frac{\partial_r \bar{\Delta}}{\bar{\Delta}} \partial_r + \frac{r_+ - r_-}{\bar{\Delta}} \left(\frac{\tilde{\alpha}_+^2}{r_- - r_+} - \frac{\tilde{\alpha}_-^2}{r_- - r_-} \right) + \frac{\Delta^* - K_l}{\bar{\Delta}} \end{bmatrix} R(r) = 0$$
$$\bar{\Delta} = (r - r_+)(r - r_-), \quad \Delta^*(r) = r^2 + 2M(2M + r), \quad \alpha_{\pm} = \pm \frac{2Mr_{\pm}\omega - am}{r_+ - r_-}$$
$$\circ \text{AdS:} \begin{bmatrix} \partial_r^2 + \frac{\Delta_l'}{\Delta_l} \partial_r + \sum_i \frac{\alpha_i^2 \Delta_l'(r_i)}{\Delta_l(r - r_i)} + \frac{\Delta_l^* - K_l}{\Delta_l} \end{bmatrix} R(r) = 0$$
$$\Delta_l = \frac{1}{L^2} \prod_{i=1}^4 (r - r_i), \quad \Delta_l^* = -l^2 \Xi w^2 + \frac{a^2 m^2}{l^2}, \qquad \alpha_i = \frac{(r_i^2 + a^2)}{\Delta_r'(r_i)}(w - \Omega_i m)$$

Thermodynamics

- . The KG separation constants ω ,m represent the time and azimuthal-rotation quasinormal modes.
 - ^ As such, they are the generators of the KG-field energy and angular momentum operators: $\omega = \delta E$, $m = \delta J$.

* Noting the 2nd Law of BH Thermodynamics:

$$T_i \delta S_i = \delta E_i - \Omega_i \delta J_i$$

 T_i is defined as the Hawking temperature at the *i*th horizon

 $_{\circ}\,$ And, rewriting the α_{i} in terms of physical parameters:

 $4\pi\alpha_i = \frac{\omega - \Omega_i m}{T_i} = \frac{\delta E_i - \Omega_i \delta J_i}{T_i} \Rightarrow \delta E_i = T_i (4\pi\alpha_i) + \Omega_i \delta J_i$

* α_i is therefore directly proportional to the classical variation of the Black Hole Entropy!

$$\delta S_i = 4\pi \alpha_i$$

Radial Ansatz

$$rac{1}{\sqrt{-g}}\partial_{\mu}\left(\sqrt{-g}g^{\mu
u}\partial_{
u}\psi
ight)=0$$

 It is straight-forward to expand our KG-field in temporal and azimuthal coupling constants:

$$\psi(t, r, \theta, \phi) = e^{-i\omega t + im\phi} R(r) S(\theta)$$

- By regarding the polar function's dependence on ω as a (not necessarily small) perturbation, the discrete set of polar eigenvalues, K_I, have been found.[1]
- The Kerr Radial Ansatz^[2]:

• Flat:
$$\begin{bmatrix} \partial_r^2 + \frac{\partial_r \bar{\Delta}}{\bar{\Delta}} \partial_r + \frac{r_+ - r_-}{\bar{\Delta}} \left(\frac{\tilde{\alpha}_+^2}{r - r_+} - \frac{\tilde{\alpha}_-^2}{r - r_-} \right) + \frac{\Delta^* - K_l}{\bar{\Delta}} \end{bmatrix} R(r) = 0$$
$$\bar{\Delta} = (r - r_+)(r - r_-), \quad \Delta^*(r) = r^2 + 2M(2M + r), \quad \alpha_{\pm} = \pm \frac{2Mr_{\pm}\omega - am}{r_+ - r_-}$$
$$\circ \text{AdS:} \begin{bmatrix} \partial_r^2 + \frac{\Delta_l'}{\Delta_l} \partial_r + \sum_i \frac{\alpha_i^2 \Delta_l'(r_i)}{\Delta_l(r - r_i)} + \frac{\Delta_l^* - K_l}{\Delta_l} \end{bmatrix} R(r) = 0$$
$$\Delta_l = \frac{1}{L^2} \prod_{i=1}^4 (r - r_i), \quad \Delta_l^* = -l^2 \Xi w^2 + \frac{a^2 m^2}{l^2}, \qquad \alpha_i = \frac{(r_i^2 + a^2)}{\Delta_r'(r_i)}(w - \Omega_i m)$$

Fuch's Relation

• For any second order differential equation, the solutions local to any regular point z_0 are^[1]:

$$w(z) = (z - z_0)^{\sigma} (1 + O(z))$$

 $_{\circ}\,$ Then the **Monodromy**, σ , solves the indicial equation for a second order ODE:

$$\frac{\mathrm{d}^2 w}{\mathrm{d}z^2} + f(z)\frac{\mathrm{d}w}{\mathrm{d}z} + g(z)w = 0 \implies \sigma(\sigma-1) + f_0\sigma + g_0 = 0 \qquad \begin{array}{l} f_0 \coloneqq \lim_{z \to z_0} f(z)(z-z_0) \\ g_0 \coloneqq \lim_{z \to z_0} g(z)(z-z_0)^2 \end{array}$$

^o If every pole is regular, Fuch's relation applies:

$$\sum_{b,i}^{n,r} \sigma_{bi} + \sum_{b=1}^{n} \sigma_{b\infty} = \frac{n(n-1)(r-1)}{2}$$

 Here, b indexes the multiplicity of the pole: for an nth order ODE, there are n linearly independent solutions (here, b=1,2); i indexes each of the r singularities.

Note: KG-AdS is everywhere regular, KG-Kerr is **not** regular at spatial ∞.

$$rac{\mathrm{d}^2 w}{\mathrm{d}z^2} + f(z) rac{\mathrm{d}w}{\mathrm{d}z} + g(z)w = 0$$

Indicial Equation

$$\sigma(\sigma - 1) + f_i \sigma + g_i = 0$$

Fuch's Relation

- Returning to our Ansatze:
 - * **AdS:** $\Delta_l = \frac{1}{L^2} \prod_{i=1}^4 (r r_i)$ $\left[\partial_r^2 + \frac{\Delta_l'}{\Delta_l} \partial_r + \sum_i \frac{\alpha_i^2 \Delta_l'(r_i)}{\Delta_l(r - r_i)} + \frac{\Delta_l^* - K_l}{\Delta_l} \right] R(r) = 0$ $\Rightarrow f_i = 1 \quad g_i = \alpha_i$
 - * **Kerr:** $\Delta = (r r_{+})(r r_{-})$ $\left[\partial_{r}^{2} + \frac{\Delta'}{\Delta}\partial_{r} + \frac{(r_{+} r_{-})}{\Delta^{2}}\left(\alpha_{+}^{2}(r r_{-}) \alpha_{-}^{2}(r r_{+})\right) + \frac{1}{\Delta}\left(\Delta^{*}\omega^{2} K_{L}\right)\right]R(r) = 0$ $\implies f_{\pm} = 1 \quad g_{\pm} = \alpha_{\pm}$
 - Each finite horizon is regular: • AdS: $\sigma_{bi} = i\alpha_i(-1)^{b-1}$ • Kerr: $\sigma_{b\pm} = i\alpha_{\pm}(-1)^{b-1}$ $\Rightarrow R_{AdS}(r) = (r - r_i)^{\pm i\alpha_i} (1 + O(r - r_i))$ $\Rightarrow R(r) = (r - r_{\pm})^{\pm i\alpha_{\pm}} (1 + O(r - r_i))$

Indicial Equation

$$\sigma(\sigma - 1) + f_i \sigma + g_i = 0$$

 The Monodromies at infinity can be found by the Frobenius Method, giving:

* AdS:
$$\tilde{R}(r) = \begin{cases} 1 + O(\frac{1}{r}) \\ r^3(1 + O(\frac{1}{r})) \end{cases}$$
 $\sigma_{b\infty} = 0, 3$

Then, because n=2 and there are exactly r=4 regular singularites, Fuch's Relation applies: $4 \ 2 \ 4 \ 2$

$$0 = \sum_{i=1}^{1} \sum_{b=1}^{2} \sigma_{bi} = i \sum_{i=1}^{1} \sum_{b=1}^{2} (-1)^{b} \alpha_{i}$$

- * We note the sign pairings of $\{\sigma_{ib}\}$ yield this trivially.
- **Kerr:** $R(r) = e^{\pm i\omega r} r^{\sigma_{\infty\pm}} (1 + O(r^{-1}))$ $\sigma_{\infty\pm} = \pm 2iM\omega$

-Although infinity is **not** regular, if we consider the exponent of r to be the monodromy parameter, then: 4 2 2

$$\sum_{i=1}^{4} \sum_{b=1}^{2} \sigma_{bi} + \sum_{b=1}^{2} \sigma_{b\infty} = 0$$

These pair correlations beg for renormalization!

Monodromy Frame

Making the following analytic coordinate change^[4]:

$$R(r) = \prod_{i} (r - r_i)^{-i\alpha_i} \tilde{R}(r) \Longrightarrow \tilde{R}_i(r) = \begin{cases} 1 + O(r - r_i) \\ (r - r_i)^{2i\alpha_i} (1 + O(r - r_i)) \end{cases}$$

• The Monodromies transform, accordingly, as:

* Kerr: $\tilde{\sigma}_{ib} = 0, 2i\sigma_i$ $\tilde{\sigma}_{b\infty} = 0, 4iM\omega$

By direct calculation: $\sum_{b,\pm} \tilde{\sigma}_{b\pm} = 2i(\alpha_+ - \alpha_-) = 4iM\omega = \tilde{\sigma}_{\infty+}$ Kerr is a smooth AdS-limit, and this looks Fuchs-like, so...

Cauchy Horizons

. The flat-limit is variationally smooth, and in it the sum of the complex AdS-monodromies auto-normalize to the variational Kerr entropy at infinity: $\lim_{L\to\infty} (\alpha_3 + \alpha_4) = -4\pi\delta S_{\infty}$

 Further, the complex horizons and corresponding monodromies, diverge conjugately to complex infinity:

$$\lim_{L \to \infty} r_{n=3,4} = -r_0 - (-1)^n i \lim_{L \to \infty} L$$
$$\lim_{L \to \infty} \alpha_{n=3,4} = -M\omega - (-1)^n \lim_{L \to \infty} \frac{iL\omega}{2}$$

Together, these divergences create two poles of opposite direction and sign in the same neighborhood on the boundary: the entropy on the boundary is realized as a contour deformation about this point.

Monodromy Frame Relation

Intriguingly, we've found an additional constraint:

• **AdS:**
$$\delta \sum_{i=1}^{1} S_i = 0$$

The sum of the Horizon Entropies is a function **independent** of the Black Hole parameters (mass and angular momentum).

* Further, in the flat limit the monodromy **sums** approach their counterparts:

$$\lim_{L \to \infty} (\alpha_1 + \alpha_2) = \alpha_+ + \alpha_- , \quad \lim_{L \to \infty} (\alpha_3 + \alpha_4) = \frac{\iota}{2} \tilde{\sigma}_{\infty +}$$

and we conclude: $0 = \lim_{L \to \infty} \delta \sum_{i=1}^4 S_i = \delta(S_+ + S_-) + 2i\pi \tilde{\sigma}_{\infty +}$

- Kerr: $0 = \delta(S_+ + S_-) + 2i\pi\tilde{\sigma}_{\infty+}$
 - The result is derived directly from the Kerr geometry; indeed

$$\delta S_{\infty} = -2i\pi\tilde{\sigma}_{\infty+} = 8\pi M\omega = \delta(4\pi M^2)$$
$$\implies \delta(S_+ + S_-) = \delta S_{\infty} = \delta(4\pi M^2)$$

This holds even though Kerr is **not** completely regular (spatial infinity is an irregular singularity in d=4 asymptotically flat spacetime).

Monodromy Conservation $\sum_{i=0}^{i} \alpha_i = 0$

 We can arrive at the same constraint on the summed entropy using physical parameters alone:

• With the Hawking temperature, entropy, and angular velocity of each event horizon are given, respectively, by

$$T_i = \frac{\Delta'(r_i)}{4\pi(r_i^2 + a^2)}, \qquad S_i = \frac{\pi(r_i^2 + a^2)}{\Xi}, \qquad \Omega_i = \frac{a(1 + r_i^2/L^2)}{r_i^2 + a^2}$$

and, indeed, the **summed** Bekenstein-Hawking entropy of the AdS-Kerr BH is independent of the physical parameters:

$$\sum_{i=1}^{4} S_i = -2\pi L^2, \implies \delta \sum_{i=1}^{4} S_i = 0 \implies \sum_i \alpha_i = 0$$

In AdS, the **sum** of the coefficients of each quasinormal mode in the monodromies independently cancel, and thus the **sum** of the monodromies is uniformly zero:

$$4\pi\alpha_i = \frac{\omega - \Omega_i m}{T_i} = \frac{\delta E_i - \Omega_i \delta J_i}{T_i} \qquad \qquad \sum_{i=1}^4 \frac{\Omega_i}{T_i} = 0, \qquad \sum_{i=1}^4 \frac{1}{T_i} = 0,$$

Further Results

. Results have been found in a wide array of

F 4 7

Cases ^[4]	Black Hole	$\sum \delta S = \delta S$	$\sum T^{-1} - 0$	$\sum \Omega^a / T_i = 0$	$\sum \Phi^a/T = 0$
	Diack Hole	$\sum_i o D_i = o D_\infty$	$\sum_{i} I_i = 0$	$\sum_i s_i / r_i = 0$	$\sum_i \Psi_i / I_i = 0$
	Schwarzschild	\checkmark	×	-	-
	Kerr [13]	\checkmark	×	\checkmark	-
	Reissner-Nordstrom (RN)	\checkmark	×	-	×
$\delta E = \Omega_i \delta_i I$	Kerr-Newman (KN) [12]	\checkmark	×	\checkmark	×
$4\pi\alpha_i = \frac{\sigma E}{2\pi}$	Schwarzschild $d > 4$ [14]	\checkmark	✓	-	-
T_i	Myers-Perry [6]	\checkmark	✓	✓	-
	BTZ [7]	\checkmark	✓	\checkmark	-
$\sum \alpha = 0$	Schw-(A)dS	\checkmark	\checkmark	-	-
$\sum \alpha_i = 0$	Kerr-(A)dS $[8]$	\checkmark	✓	\checkmark	-
i	$Schw-(A)dS_d$	\checkmark	\checkmark	-	-
	$\operatorname{Kerr}(\mathbf{A})\mathrm{dS}_d\ [9,\ 15]$	\checkmark	✓	\checkmark	-
4	$\operatorname{RN}_d[11]$	\checkmark	\checkmark	-	\checkmark
$\delta \sum S_i = 0$	RN-(A)dS	\checkmark	\checkmark	-	\checkmark
	$RN-(A)dS_d$	\checkmark	✓	-	\checkmark
i=1	KN-(A)dS [11]	\checkmark	✓	\checkmark	√
	5d gauged SUGRA [16]	✓	✓	\checkmark	✓
	6d gauged SUGRA [17]	\checkmark	\checkmark	\checkmark	√

 These results were found by calculating the relevant parameters directly from the metric; the above results are thus **completely** independent of the probe-field.

Appendix A: Further Analytic KG Results

* Extremal AdS ($r_+ \rightarrow r_-$):

$$\alpha_i = \frac{(r_i^2 + a^2)}{\Delta'_r(r_i)} (w - \Omega_i m)$$

Event Horizon Asymptotic:

$$\tilde{R}_{1}(r) = 1 + O(r - r_{0})$$

$$\tilde{R}_{2}(r) = e^{\frac{i\epsilon \sum_{l} (-1)^{l} \tilde{\alpha}_{l}}{r - r_{0}}} (r - r_{0})^{2i \sum_{l} \tilde{\alpha}_{l}} (1 + O(r - r_{0}))$$

* BTZ:

•••

$$\alpha_{\pm i} = \pm \frac{L^2 r_i (\omega - \frac{Jm}{2r_i^2})}{2(r_i^2 - r_j^2)}$$

Extremal BTZ:

Event Horizon Asymptotic:

$$\tilde{R}_{r \to r_i}^{(1)} = 1 + O(r - r_i) \tilde{R}_{r \to r_i}^{(2)} = (r - r_i)^{2i\alpha_i} (1 + O(r - r_i))$$

Event Horizon Asymptotic:

$$\tilde{R}_{1}(r) = (r - r_{0})^{i \sum_{l} \alpha_{l}} \left(1 + O(r)\right)$$

$$\tilde{R}_{2}(r) = e^{\frac{2i\epsilon \sum_{l} (-1)^{l} \alpha_{l}}{r - r_{0}}} (r - r_{0})^{i \sum_{l} \alpha_{l} - 1} \left(1 + O(r)\right)$$

Appendix B: Monodromy Frame Radial Ansatze

$$\textbf{AdS:} \qquad \left[\partial_r^2 + \left(\sum_{i=1}^4 \frac{1-2i\,\tilde{\alpha}_i}{r-r_i} \right) \partial_r - \sum_i^4 \sum_{j\neq i}^4 \frac{\tilde{\alpha}_i(i+\tilde{\alpha}_j)}{(r-r_i)(r-r_j)} \right. \\ \left. + \left. \sum_{i=1}^4 \frac{\tilde{\alpha}_i^2}{(r-r_i)^2} \left(\frac{L^2 \Delta'(r_i)}{\prod_{j\neq i} (r-r_j)} - 1 \right) + \frac{\Delta^*}{\Delta} \right] \tilde{R}(r) = 0$$

• Kerr:
$$\begin{bmatrix} \partial_r^2 + \left(\sum_{i=1}^2 \frac{1-2i\tilde{\alpha}_i}{r-r_i}\right)\partial_r - \frac{2\tilde{\alpha}_+\tilde{\alpha}_- + i(\tilde{\alpha}_+ + \tilde{\alpha}_-)}{\bar{\Delta}} + \sum_{i=1, j\neq i}^2 \frac{\tilde{\alpha}_i^2}{(r-r_i)^2} \left(\frac{r_i - r_j}{r-r_j} - 1\right) + \frac{\bar{\Delta}^*}{\bar{\Delta}} \end{bmatrix} \bar{R}(r) = 0$$

Thank You

References

- [1] Castro, Alejandra, Joshua M. Lapan, Alexander Maloney, and Maria J. Rodriguez.
 "Black hole scattering from monodromy." Classical and Quantum Gravity 30, no. 16 (2013): 165005.
- [2] Castro, Alejandra, Joshua M. Lapan, Alexander Maloney, and Maria J. Rodriguez.
 "Black hole monodromy and conformal field theory." Physical Review D 88, no. 4 (2013): 044003.
- [3] Cvetič, M., G. W. Gibbons, H. Lü, and C. N. Pope. "Killing horizons: Negative temperatures and entropy super-additivity." Physical Review D 98, no. 10 (2018): 106015.
- [4] Chanson, Alex, Jacob Ciafre, and Maria J. Rodriguez. "Emergent Black Hole Thermodynamics from Monodromy." arXiv preprint arXiv:2004.14405 (2020) [accepted, Physical Review D].
- [5] López-Ortega, Alfredo, and Daniel Mata-Pacheco. "BTZ quasinormal frequencies as poles of Green's function." *arXiv preprint arXiv:1806.06547* (2018).