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Abstract 

Anthropogenic activity has led to eutrophication in water bodies across the world. This 

eutrophication promotes blooms, cyanobacteria being among the most notorious bloom 

organisms. Cyanobacterial blooms (more commonly referred to as harmful algal blooms 

(HABs)) can devastate an ecosystem. Cyanobacteria are resilient microorganisms that have 

adapted to survive under a variety of conditions, often outcompeting other phytoplankton. Some 

species of cyanobacteria produce toxins that ward off predators. These toxins can negatively 

affect the health of the aquatic life, but also can impact animals and humans that drink or come 

in contact with these noxious waters. Although cyanotoxin’s effects on humans are not as well 

researched as the growth, behavior, and ecological niche of cyanobacteria, their health impacts 

are of large concern. It is important that research to mitigate and understand cyanobacterial 

blooms and cyanotoxin production continues. This project supports continued research by 

addressing an approach to collect and summarize published articles that focus on techniques and 

models to predict cyanobacterial blooms with the goal of understanding what research has been 

done to promote future work. The following report summarizes 34 articles from 2003 to 2020 

that each describe a mechanistic or data driven model developed to predict the occurrence of 

cyanobacterial blooms or the presence of cyanotoxins in lakes or reservoirs with similar climates 

to Utah. These articles showed a shift from more mechanistic approaches to more data driven 

approaches with time. This resulted in a more individualistic approach to modeling, meaning that 

models are often produced for a single lake or reservoir and are not easily comparable to other 

models for different systems. 
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Introduction 

Lakes and reservoirs in Utah are negatively impacted by algal blooms every summer. Utah Lake 

is the most notorious for its large blooms that impact the community’s ability to use its water for 

recreation or irrigation. Algal blooms produce many odor, taste, and aesthetic problems in lakes 

with both recreational and drinking water beneficial uses. Reservoirs used for drinking water are 

of special concern because many cyanobacteria, one of the main microorganism groups 

responsible for blooms, produce toxins. These toxins can cause a host of different harmful health 

effects in humans and animals. Water treatment facilities may need to change their operational 

procedures with noxious waters to ensure toxins do not enter the distribution system. Whether a 

bloom produces toxins or not, it can upset an ecosystem, negatively impacting life forms from 

other phytoplankton to humans. It is important that progress is made to understand and mitigate 

the effects of these harmful algal blooms. 

 

Many mathematical models have been produced that use environmental parameter inputs to 

understand which factors influence blooms and to predict when blooms will occur. The purpose 

of this report is to aggregate recent literature on bloom prediction methods. This review will be 

beneficial to further research as it will stand as a baseline for what has been done in the past so 

that research is progressed and not repeated. Advancing research in this field will help facilitate 

predicting and mitigating the formation of algal blooms. 

 

Background 

Cyanobacteria are the most notorious microorganisms that contribute to harmful algal blooms in 

bodies of fresh water (CDC 2020). This section describes cyanobacteria and discusses their 
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effects on the environment, the toxins they produce with related health effects, and their growth 

rates. 

 

Cyanobacteria 

Cyanobacteria (historically called blue-green algae) are prokaryotic phytoplankton that form the 

base of the aquatic food chain alongside algae, diatoms, and dinoflagellates. Cyanobacteria were 

originally classified as algae due to their aquatic presence and ability to utilize light, carbon 

dioxide (CO2), and other inorganic and organic nutrients to photosynthetically produce oxygen 

(Paerl et al. 2001). Most literature uses both the terms cyanobacteria and blue-green algae 

synonymously. It was not until the 1950s and the invention of the electron microscope that clear 

differences between eukaryotic and prokaryotic cells were found and cyanobacteria were 

properly classified as bacteria (Brock 1979).  

 

Although recently reclassified, these ancient phototrophic microorganisms have been producing 

oxygen for about 2.5 billion years (Paerl et al. 2001). Cyanobacteria have evolved and adapted to 

thrive in various conditions of light, temperature, depth, and nutrient levels. According to the 

Redfield ratio (Redfield 1934), a balanced aquatic system has an N:P atomic ratio of 16:1. If a 

given body of water has a ratio less than 16 then nitrogen is limiting growth and if it is larger 

than 16 phosphorus is limiting growth (Rhee 1982). However, Rhee (1982) notes that the N:P 

ratio is a general value created for oceanic environments as a whole, and variation in species and 

environment may operate optimally under different ratios. In conditions where nitrogen is 

limited, most species of cyanobacteria can fix nitrogen (N2) from the atmosphere. In conditions 

where phosphorous input is intermittent or limited, they can take up excess phosphorus and store 
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it. Thus, cyanobacteria can flourish in both depleted or excessive levels of nutrients. While some 

species of cyanobacteria float on the surface of a water body and some reside inches to feet 

below the surface, some species of cyanobacteria have gas vacuoles to regulate buoyancy in 

order to absorb the optimum amount of light for growth. Adjusting buoyancy allows 

cyanobacteria to survive when waters become turbid and also allows nutrients to be used from 

different layers of the water column. Many species of cyanobacteria produce toxins that 

negatively affect predators and competitors, allowing them to grow without predatory or 

competitive control. Cyanobacteria can also survive in low levels of CO2 and high pH conditions 

because they can synthesize carbonic anhydrase, an enzyme that can produce CO2 from 

bicarbonate (HCO3
-) (Paerl 1982). All of these adaptations allow cyanobacteria to dominate 

other phytoplankton in many situations.  

 

Although they are able to survive in various conditions, cyanobacteria thrive with rapid growth 

rates in conditions with low grazing rates, little to no mixing, long residence times, and high 

nutrient loading. Human-influenced eutrophication and climate change have aided in providing 

nutrient rich environments for cyanobacteria to exploit. In the United States, 21% of lakes and 

reservoirs are considered to be hypereutrophic (EPA 2017). Rapidly reproducing cyanobacteria 

lead to cyanobacterial blooms, one type of the phenomena that have come to be commonly 

referred to as harmful algal blooms (HABs), which are a global occurrence, negatively affecting 

waterbodies from rivers to reservoirs to oceans. HABs can result from over production of other 

phytoplankton, but blooms caused by cyanobacteria are the most notorious and problematic.  
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When HABs occur, they negatively affect the ecosystem and have adverse effects on any 

beneficial use of the water source. HABs create unsightly aesthetic, odor, taste, and toxicity 

problems. Blooms can deplete the water body of important nutrients other organisms need, 

causing a sudden increase in cyanobacterial biomass and a simultaneous sharp decline in all 

other forms of biomass due to the toxins that inhibit their growth. The decay of this biomass 

results in depletion of oxygen in the underlying water leading to biological and chemical changes 

like hypoxia, anoxia, toxic hydrogen sulfide release, mobilization of some heavy metals, and 

even release of sediment nutrients facilitating further eutrophication (Paerl et al. 2001). When 

noxious species of cyanobacteria are present in blooms, they can release toxins harmful to other 

phytoplankton, zooplankton, fish, animals, and even humans if the source is being used for 

recreation or drinking water. A well-known example of the severe problems HABs can cause is 

when Toledo, Ohio had to issue a “do not drink” advisory to more than 400,000 residents for 

Lake Erie’s water, plagued annually with blooms (Steffen 2017). Cyanobacterial toxins from 

Lake Erie had overwhelmed the city’s water treatment facility and concentrations greater than 

the World Health Organization’s (WHO) drinking water guidelines of 1 µg/L of microcystins 

were found in their finished water (Steffen 2017). This toxin production is the main cause of 

concern for human use of water containing cyanobacteria. 

 

Cyanotoxins 

Toxicity from cyanobacteria comes in many different forms and from many different species. 

About 40 species have been found to be toxic (Carmichael 2001). The most prominent and well 

researched genera include Aphanizomenon, Dolichospermum (Anabaena), Cylindrospermopsis, 

Gloeotrichia, Nodularia, Microcystis, Oscillatoria (Planktothrix), and Lyngbya. The three main 
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genera found in Utah fresh waters are Aphanizomenon, Dolichospermum (Anabaena), and 

Microcystis (UDEQ 2019). Each cyanobacterial taxon has different qualities in terms of toxicity, 

N2 fixation, and buoyancy (Table 1). Toxins produced by cyanobacteria or cyanotoxins include 

neurotoxins, hepatotoxins, and dermatoxins. 

 

Table 1. Cyanobacterial Qualities and Toxin Production (Paerl et al. 2001, Carmichael 2001, EPA 2020, UDEQ 2020) 

 
Able to 

fix N2? 

Have 

buoyancy 

control? 

Neurotoxins Hepatotoxins Dermatoxins 

Anatoxins Saxitoxins 
Cylindrosp-

ermopsins 
Microcystins Nodularins Lyngbyatoxin 

Aphanizomenon Yes Yes X X X X*   

Dolichospermum 

(Anabaena) 
Yes Yes X X X** X   

Cylindrospermospsis Yes No X** X* X    

Gleotrichia Yes Yes    X*   

Nodularia Yes Yes    X* X*  

Microcystis No Yes X*   X   

Oscillatoria 

(Planktothrix) 
No Yes X X**  X   

Lygbya No No  X X**   X* 

*Only confirmed by one of three sources 

**Only confirmed by two of three sources 

 

Neurotoxins affect the nervous system, hepatotoxins damage the liver, and dermatoxins damage 

skin and mucous membranes. These toxins affect other phytoplankton, zooplankton, and fish that 

live in the same water, but can additionally bioaccumulate in the aquatic food chain. Cyanotoxins 

have been known to cause illness or death in wild and domesticated animals that bathed in, 

consumed, or breathed in the toxins (Carmichael 2001). In humans, testing and research is more 

limited, but many health-related symptoms have been attributed to cyanotoxins. Certain 

cyanotoxins are believed to cause liver cancer and promote tumors, and there have been 

confirmed deaths in Brazil where cyanotoxins were introduced through medical dialysis 

(Carmichael 2001). 
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Little is definitive about the effect of cyanotoxins on humans, but because the risks associated 

with exposure are so high, regulations are being set across the world to protect the public. In 

Utah, the Department of Environmental Quality (DEQ) (2020) has put a monitoring system in 

place to issue warning and danger advisories to the public. Three toxins, common in Utah lakes 

and reservoirs, are monitored at a warning and danger level as shown in Table 2. 

 

Table 2. Cyanotoxin Exposure Warning and Danger Levels (UDEQ 2020) 

Toxin Warning Advisory Danger Advisory 

Microcystins (g/L) 8 2,000 

Cylindrospermopsin (g/L) 15 

Anatoxin-a (g/L) 15 90 

 

The DEQ notes that the public could be exposed to cyanotoxins by ingestion, skin contact, and 

inhalation. At the warning advisory level, DEQ cautions that there is potential for long-term 

illness as well as short-term effects such as skin and eye irritation, nausea, vomiting, and 

diarrhea. At the danger advisory level, they caution that there is potential for acute poisoning, 

long-term illness, and the same short-term effects (UDEQ 2020). Data for differentiation 

breakpoints between a warning and danger advisory is less available for cylindrospermopsin, 

therefore, 15 mg/L has been set as the overall cyanotoxin advisory threshold. 

 

Utah has not yet established maximum contaminant levels for cyanotoxins in drinking water, so 

the state encourages municipalities to remain within compliance of the Health Advisory Levels 

(HALs) established by the EPA (2020). At the levels shown in Table 3, utilities are encouraged 

to increase monitoring, change treatment strategies, and issue a notification of “do not drink/do 

not boil” advisories (UDEQ 2018). The EPA created this chart for two population groups, 
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children under 6 years old and adults/children 6 years and older, establishing that no adverse 

effect to humans should happen at these levels for up to 10 days. Building from these suggested 

safety limits, the DEQ additionally suggests that these limits should be applied to more 

susceptible adults and other adults as Table 3 shows. 

 

Table 3. Cyanotoxin Health Advisories (EPA 2020, UDEQ 2020) 

10-Day Health Advisories Levels (g/L) 

Microcystins 

Children under 6 years old as well as pregnant women, 

nursing mothers, elderly, immune-compromised, and 

dialysis patients 

0.3 

Children 6 years and older and other adults 1.6 

Cylindrospermopsin 

Children under 6 years old as well as pregnant women, 

nursing mothers, elderly, immune-compromised, and 

dialysis patients 

0.7 

Children 6 years and older and other adults 3.0 

 

Predicting HABs 

The health effects associated with being exposed to cyanotoxins are being taken seriously around 

the world. It is becoming increasingly important to develop better models and monitoring 

systems to predict when HABs are likely to occur in order to mitigate the blooms and better warn 

utilities and the public. There have been modeling approaches that use environmental conditions 

to predict cyanotoxin concentrations (Alonso Fernández et al. 2013, García Nieto et al. 2011), 

but most modeling approaches are based on or are used to predict cyanobacterial growth rates 

and concentrations. 
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Mechanistic Models versus Data-Driven Models 

Existing models used to predict HABs fall into two main categories: mechanistic or data-driven. 

Guven and Howard (2006) reviewed cyanobacteria models for both lake and river systems 

published between 1974 and 2003. The review covered mechanistic models for growth and 

movement of cyanobacteria in lakes and rivers and data-driven models (specifically artificial 

neural networks) for rivers. The current review builds on the 2006 review and focuses on 

cyanobacteria prediction models produced for lake or reservoir systems. 

 

Mechanistic Models 

Mechanistic models are based on fundamental laws of physical, biological, and chemical 

processes in nature, and use sets of algebraic and differential equations to describe these 

processes. In cyanobacteria prediction models, kinetic growth equations have been developed to 

understand how cyanobacteria grow quickly and take over bodies of water. Many of the kinetic 

growth equations use input parameters such as pH, light intensity, ionic conditions, temperature, 

nutrients, and other environmental factors, and produce a relationship to a specific growth rate. 

These kinetic equations can be used to understand growth of cyanobacteria but cannot 

necessarily be used to understand how harmful or toxic a bloom will be. 

 

Growth rate equations have often been created by simply multiplying functions of limiting 

factors that growth is dependent upon: 

 

µ = 𝑓(𝑁) ∗ 𝑓(𝐼) ∗ 𝑓(𝑇) (1) 
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where µ (time-1) is the cyanobacterial specific growth rate and 𝑓(𝑁), 𝑓(𝐼), 𝑓(𝑇) are functions 

representing the effects of nutrients, irradiance, and temperature on the growth rate (Giannuzzi 

2019).  

 

Although growth is dependent on several factors, often (and increasingly) growth equations are 

formulated based on a single limiting or dependent parameter.  Liebig’s Law of Minimum posits 

that growth is not controlled by each parameter needed for growth but is controlled by the one 

parameter that is deficient relative to all other requirements (ACG 2020), as illustrated in Figure 

1. If the other growth factors are in abundance, growth is often regulated by the limiting growth 

parameter.  

 

Figure.1 Illustration of Liebig's Law of the Minimum (Adapted from ACG 2020) 

 

Rhee (1982) argues that limitation is not often as simple as Liebig’s principle. He states that 

multiple simultaneous limitations are a more accurate representation because systems, inputs, 

and conditions are constantly changing. Guven and Howard (2006) outline several growth rate 

equations that use both Giannuzzi’s equation and the idea of a limiting growth factor to create 
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kinetic equations more specific to certain parameters or conditions. The studies they summarize 

focus on growth rates in areas where there is high or low irradiance, nutrient saturation or 

depletion, and turbidity or very still waters. In different conditions, kinetic growth equations 

become more specific using parameters such as buoyancy, density, velocity, respiration rate, 

birth rate, and death rate to produce accurate growth rates (Guven and Howard 2006).  

 

Data Driven Models 

Data-driven models determine relationships based on input data rather than on theoretical 

principles. These models predict cyanobacteria through specified empirical relationships or by 

machine learning techniques. Data-driven models require larger amounts of data to be collected 

and are often designed for a specific system and, unlike mechanistic models, are not likely to be 

universally applicable. Specific data-driven models are discussed in the results sections. Guven 

and Howard’s (2006) review only looked at the machine learning approach known as artificial 

neural networks in river systems, while this review focuses on data-driven prediction models 

specifically in lake and reservoir systems.  

 

Mechanistic modeling and understanding growth rates support a better understanding of 

cyanobacteria to forecast when HABs are likely to occur. Data-driven modeling uses data from a 

specific system to understand parameters that lead to HABs in the past to predict HABs in the 

future, with no intention of understanding the underlying science. Research on predicting and 

monitoring HABs is plentiful and has been done for decades. However, it is important that 

research is continually advanced as blooms are still a large environmental problem today. 
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Objectives 

The overall objective of this project was to collect qualitative ideas, methods, and models about 

cyanobacterial blooms and cyanotoxin predictions from various recent (> 2003) studies and 

combine that work into a summarized report to facilitate further studies, experiments, and 

models. This report provides a consolidated review of cyanobacteria models published since the 

review by Guven and Howard (2006) (~2003 to present) to facilitate research that can provide 

accurate predictions of cyanobacteria and the production of cyanotoxins to help reduce the 

human and environmental health risks. 

 

This objective was met by achieving smaller sequential goals including: compiling key words 

from selected previous studies, using those key words to search for related studies, organizing 

the studies based on relevance to the project, reading each relevant study to accumulate valuable 

information, and combining the knowledge from those studies into one report. A key emphasis 

for this report was to focus on mathematical models produced for lake and reservoir systems 

with ecological and environmental conditions similar to Utah. 

 

This study is important to further research and development of cyanobacteria mitigation 

strategies and tactics and ultimately minimize the growth of cyanobacteria in Utah lakes. Utah 

lakes are highly susceptible to cyanobacterial blooms due to the state’s phosphorous rich 

geology, agricultural practices, temperate climate, weather conditions, and plentiful slow-moving 

reservoirs (UDEQ 2020, Randall et al. 2019). More needs to be done to protect Utah’s 

waterbodies. 
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Materials and Methods 

To create a comprehensive review, referenced journal articles related to the topic of modeling 

and predicting cyanobacterial blooms and toxin production were collected from the 1950s to the 

most recent studies published in 2020. Papers were collected using scientific databases of peer 

reviewed articles. Sixty-four papers published prior to 2016 had been previously identified that 

consider cyanobacterial growth and modeling, and these papers were used to gather a set of 

relevant keywords so that a thorough search of the database could be performed. The keywords 

taken from each of the 64 papers were organized and categorized into low, moderate, or high 

relevance; for example, specific lake names were given a low rating, specific model names were 

given a moderate rating, and a term such as “prediction models” was given a high rating.  

 

The keywords were then combined and input into the widely used scientific literature database 

search engine, Scopus (Elsevier 2020), to locate articles that support this review. Each search 

included different combinations or synonyms of the following keywords: cyanobacteria, blue-

green algae, cyanotoxins, cyanobacterial blooms, harmful algal blooms, modeling, kinetic 

growth equations, mathematical models, prediction, forecasting, freshwater, etc.  To produce a 

balanced and attainable literature search, a value of about 1,200 articles was arbitrarily chosen as 

the threshold. It was important to be specific with key words so that the search did not include 

hundreds of thousands of articles. However, the search was not so specific that it limited the 

results (e.g., <10 articles), excluding possibly beneficial articles. Several trial searches were 

completed using combinations of the key words given a high ranking. A comprehensive list of 

these search keywords, that were used in several combinations to compile articles, is provided in 

Appendix A. 
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While performing the literature search, articles were, to the extent possible, limited to areas with 

ecosystems and climates similar to Utah. This meant removing any articles related to marine or 

tropical freshwater cyanobacteria. Utah has more of a problem with cyanobacteria in lakes and 

reservoirs, so articles on rivers and wetlands were also removed from the search. The focus was 

on articles having to do with modeling, but articles relating to cyanobacterial gene, DNA, or 

RNA manipulation were additionally removed as they were out of the scope of this project. After 

several cycles of refining keywords, and removing duplicate articles that surfaced, there were 

1,150 articles (Appendix B) that were reviewed for inclusion. 

 

With such a large number of articles to manage, the reference management software Mendeley 

(Elsevier 2020) was used to provide a searchable database and direct access to articles’ abstracts 

and, often, the papers themselves. The title, author, and year of each article was recorded in an 

Excel database, and then abstracts were read and a topic, relevance rating, and a short summary 

were additionally included in the document. The relevance rating was used to further sort and 

organize the documents and the highly relevant articles were further classified.  

 

The rating of all 1,150 articles was not completed by two individuals, so to ensure the process 

was repeatable and to estimate scoring uncertainty, 20 articles were randomly chosen for quality 

assurance and scored by each individual, and the result classifications were statistically 

compared. Twenty articles were chosen as an arbitrary value to estimate rating variability 

without becoming overly time consuming.  From the process, eight out of the combined 40 were 

given a different rating than the initial rating (e.g., rated “highly relevant” first and then being 

rated “moderately relevant” during the second rating). This repeat rating gave insight into 
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whether the articles were being rated consistently throughout the process, and in hindsight, this 

process should have been done immediately after the first rating as well as at the end. Several 

rating checks would have been beneficial because the repeated rating was completed after the 

articles were read and reduced to the final number, and this impacted the results, showing seven 

of the eight articles being given a lower rank based on hindsight ranking knowledge. This 

process found that there was a lot of subjectivity introduced through the ranking processes. All in 

all, the repeated ranking showed that 80% of the articles were given the same rank as the initial 

rank. 

 

 The first round of ranking was highly inclusive leaving 439 articles rated as highly relevant. The 

abstracts of those articles were again read and only articles that discussed modeling were ranked 

as highly relevant. Articles that discussed types of cyanobacteria, cyanobacteria grown in the 

laboratory, or various methods to suppress cyanobacteria are examples of articles that were 

removed at this level. Sixty-four articles remained and were read in full, and articles were 

removed at this level based on earlier established criteria that were not listed in the abstract, for 

example models created for an estuary or a river, or if they had been previously covered in the 

Guven and Howard (2006) review. Ultimately this process condensed the database down to 34 

highly relevant articles that would benefit and help build this report. 

 

In accordance with the objective of this study, the relevant papers were examined in detail, and 

the models to predict HABs were summarized in this report (Appendix B). 
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Results  

This report reviews a range of existing models produced to predict cyanobacterial bloom 

occurrences in lake and reservoir systems. The review contains the cyanobacterial prediction 

models published in peer reviewed articles from 2003 to 2020 selected by the methods described 

above. The models are grouped by (1) model methodologies, (2) prediction target, and (3) model 

specification, as shown in Table 4. The first category is based model methodology: mechanistic 

models or data driven models. Then they are separated based on upon what the models are used 

to predict: cyanobacterial biomass or cyanotoxins. The data-driven models are then broken into 

two further categories to describe the modeling approach: empirical and machine learning, the 

second of which further includes the categories: artificial neural network (ANN), support vector 

machine (SVM), boosted regression tree (BRT), hybrid evolutionary algorithm (HEA), 

multivariate adaptive regression spline (MARS), and other machine learning methods.  

 

Many of the models, optimization techniques, and statistics are referred to by acronyms, and so a 

list of every acronym used in this report is found in the appendix (Appendix C). The author(s) of 

each article is (are) listed and then the developed model and results are summarized below each 

listed author(s). Each summarized section remains true to the article’s layout and terminology in 

terms of name of model, reported errors, reported variance, etc.  
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Table 4. Classification of Cyanobacterial Models 

Mechanistic 

Models 

Cyanobacterial 

Biomass 
    

Ibelings, et al. 2003 

Wang, et al. 2012 

Wang, et al. 2016 

Fadel, et al. 2017 

Vinçon-Leite, et al. 2017 

Wang, et al. 2020 

Data-

Driven 

Models 

Cyanobacterial 

Biomass 

Empirical   

Onderka 2007 

Beaulieu, et al. 2014 

Zhao, et al. 2019 

Xu, et al. 2020 

Machine 

Learning 

Artificial Neural 

Network 

Teles and Vasconcelos 2006 

Wang, et al. 2010 

Ahn, et al. 2011 

Millie, et al. 2014 

Lou, et al. 2016 

Luo, et al. 2017 

Xiao, et al. 2017 

Support Vector 

Machine 
Xie, et al. 2012 

Boosted Regression 

Tree 
Liu, et al. 2020 

Hybrid Evolutionary 

Algorithm 

Zhang, et al. 2015 

Ostfeld, et al. 2015 

Swanepoel, et al. 2016 

Other 
Harris and Graham 2017 

Mellios, et al. 2020 

Cyanotoxins 

Empirical   
Tao, et al. 2012 

Hayes and Vanni 2018 

Machine 

Learning 

Support Vector 

Machine 

Alonso Fernández, et al. 2013 

García Nieto, et al. 2015 

García Nieto, et al. 2015 

García Nieto, et al. 2017 

Boosted Regression 

Tree 
Taranu, et al. 2017 

Multivariate Adaptive 

Regression Spline 

García Nieto, et al. 2011 

García Nieto, et al. 2012 

García Nieto, et al. 2014 

 

Mechanistic Models 

A mechanistic model is based on the fundamental laws of physical, biological, and chemical 

processes in nature. Though more data is always better than less, this type of model requires a 

fraction of the experimental data compared with data-driven models (below) to estimate 

parameters and build scenarios. The parameters that are estimated (e.g., rate constants, partition 
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coefficients, diffusivities) have actual scientific meaning, rather than a simple fit to experimental 

data. 

 

Biomass 

(Ibelings, et al. 2003) 

Ibelings et al. (2003) began their model for cyanobacterial biomass with the analytical approach 

of a mechanistic model, but then used that framework to develop a fuzzy model (Von Altrock 

1995). They chose to deviate from a fully mechanistic model because they require information 

that is often not available and is more prone to error propagation. Fuzzy logic is a system that 

does not use quantities but rather uses qualifications such as “high,” “intermediate,” or “low” to 

weight variables, which allows for working with uncertainties in quantitative inputs. All of the 

model inputs are translated to qualitative terms through a process called fuzzification to 

determine a qualitative prediction of the appearance of an algal bloom. Then, through a process 

classed defuzzification, the qualitative prediction is transformed into a relative numerical 

representation of the degree of surface bloom appearance.   

 

This model was used to predict surface algal blooms on Lake IJsselmeer, a large lake in the 

Netherlands. The first (of three) component of the model was mechanistic and used differential 

growth rate equations based on grazing rates, sediment phosphorus release, and dispersive 

transport rates as well as hydrodynamics of the lake to calculate the cyanobacterial biomass in 

the lake. The second was to model the buoyancy and water column stability using fuzzy logic 

and inputting algal biomass and the other meteorological data variables into the model through 

fuzzification. Within the model, a series of “IF” and “THEN” rules were then applied to reach 



 23 

qualitative conclusions that then go through defuzzification to be converted to quantitative but 

relative values. The model-produced values predicted the appearance or disappearance of a 

bloom on an hour by hour basis. This model was extended with a third component to include a 

simple particle-tracking model, that uses transport differential rate equations, to be better applied 

in a spatial context, and the model was validated using satellite data from Lake IJsselmeer. Time 

lag is often a problem for both remote sensing and in-situ monitoring, so long-term weather 

forecasts were used to predict blooms to circumvent this issue. 

 

The mechanistic model produced concentrations for cyanobacterial biomass that correlated well 

with field measurements. The model-predicted surface blooms overall matched well against 

satellite images of cyanobacterial blooms for the year tested. When applied to several years of 

data, the model predicted 270 of 290 cases correctly with 93% accuracy, but it failed to predict 

four surface blooms and then predicted 20 extra blooms that had no satellite image verification. 

Using a 95 percent confidence interval, it was found that the model was producing results that 

were more accurate than “by chance” predictions. The paper also emphasizes that the model 

often forecasts additional blooms that did not occur but rarely missed a bloom that did.  

 

(Wang, et al. 2012) 

Wang et al. (2012) developed a purely mechanistic model to predict blooms. A mechanistic 

model was chosen due to its simplicity and reliability. The model is a niche model (a form of 

species distribution models from ecology) based on taxonomy that calculates two phytoplankton 

community decisive variables (niche breadth and niche overlap) in space and time. 
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Understanding community structure, the theory of community succession, and resource 

competition leads to the prediction of growth and decline of cyanobacterial blooms. 

 

This model was used to forecast cyanobacterial blooms in Chaohu Lake, a lake in China with 

serious eutrophication problems and yearly occurrences of cyanobacterial blooms. Eight sample 

points were chosen at which eight physiochemical factors were collected as well as a sample 

used to identify the most common species of cyanobacteria. Calculations were made based on 

the most common phytoplankton species. Niche breadth and depth were calculated and then a 

redundancy analysis (a variant of principal components analysis) software was used to determine 

correlations between environmental factors and cyanobacterial species. Microcystis was the 

dominant taxon that had the highest niche breadth in July, then other species such as Anabaena 

increased slightly in August, and finally other algae species increased in September. Then, every 

taxon started to decrease in October. Calculations for niche overlap and resource availability 

were performed to find a species growth rate and explain increasing and decreasing growth of 

each species. 

 

The redundancy analysis revealed that water temperature, dissolved oxygen, and total dissolved 

phosphorus were the most significant environmental factors that affect the dominant Microcystis.  

The model could forecast species potential growth rates. The model-predicted growth rate and 

actual biomass had a correlation coefficient of 0.988, and thus the model successfully predicted 

the growth and decline of cyanobacterial blooms.  
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(Wang, et al. 2016) 

Wang et al. (2016) developed a mechanistic integrated hydro-environmental model. The model 

was developed to provide a Microcystis bloom warning for Jinshan Lake, a lake in China that has 

been experiencing Microcystis blooms since infrastructure was implemented to control water 

exchange processes. Microcystis blooms are influenced by the combined effects of 

environmental factors and nutritional factors, so a bloom driving function was derived. The 

function includes three subfunctions: the first directly discriminates the area where a bloom does 

not occur through an environmental restriction function, the second and third are used to 

determine where a bloom may easily occur through an exponential function of water nutritional 

status and an integral contribution function of environmental factors’ effects on Microcystis 

bloom activation energy, respectively.  

 

The bloom driving function is the basis for the model. The model is composed of five modules: 

input, simulation, solution, discrimination, and output. In the input module physical, chemical, 

and biological boundary conditions are established. In the numerical simulation module, six 

processes (light intensity, nutrient concentration, temperature, biological inhibition, water 

current, and Chl-a concentration) are simulated using differential mass and energy balances, and 

kinetic equations. The function solution module is where the function described above is applied, 

followed by a discrimination module that produces detailed bloom warning grades and then an 

output module that relays what the level of risk of HABs would be given certain conditions. The 

lake was split into five regions and then the model was run to indicate what conditions would 

cause a bloom in each region. One region, based on its characteristics, was identified as the 

location with the highest bloom risk or where blooms would occur first. 
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(Fadel, et al. 2017) 

Fadel et al. (2017) developed a simple one-dimensional ecosystem model, coupled with a 

hydrodynamic model to simulate the succession of cyanobacterial biomass with correct 

magnitude and timing. The model is referred to as a dynamic reservoir simulation model – 

computational aquatic ecosystem dynamics model (DYRESM-CAEDYM) (Imberger and 

Patterson 1981). The DYRESM part of the model is able to simulate the vertical distribution of 

temperature, salinity, and density in a water column, while the CAEDYM part of the model can 

simulate nutrient cycles and zooplankton and phytoplankton dynamics. This model was created 

to describe conditions in Karaoun Reservoir, a waterbody used for hydropower and irrigation in 

Lebanon. Data collected for this reservoir included hydrologic, meteorological, and physical, 

chemical, and biological field measurement data. 

 

The DYRESM-CAEDYM was configured to simulate changes in water level, temperature, and 

cyanobacterial biomass through hydrodynamic and kinetic equations. The model was calibrated 

using 1 year of measurements and then verified using 2 years of measurements for water level 

and a separate year of measurements for water temperature. The simulated and observed data 

were very comparable. The root mean square error for each model verification was less than 1 m 

or less than 1 °C.  

 

Two species were predicted in the model: Microcystis and Aphanizomenon. According to the 

model, the Aphanizomenon was quickly increasing in May and June, not limited by temperature 

and moderately limited by light. After a peak in mid-June it began to decrease, being limited by 

temperature and occasionally limited by light. The Microcystis started increasing the beginning 
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of June and increased until it peaked the end of August, not being limited by temperature and 

moderately limited by light. The model was better able to predict Microcystis biomass with 

coefficients of determination greater than 0.85 for 2012 data, but was less successful in 

predicting Aphanizomenon with the greatest coefficient of determination being 0.66. 

 

(Vinçon-Leite, et al. 2017) 

Vinçon-Leite et al. (2017) developed a one-dimensional vertical, physical-ecological model for 

cyanobacterial growth and provide an early bloom warning system. This model uses a 

mechanistic approach to simulate cyanobacteria growth and nutrient dynamics. The study site for 

this model was the Yuqiao Reservoir, an important drinking water source in China. A historical 

data set of physiochemical and biological data was used for model calibration. 

 

The model calibration consisted of using 7 days of values for calibration and the next 

consecutive 11 days for validation. The model was calibrated by adjusting parameter values to 

minimize the root-mean square error between simulated and observed results. Calibration was 

performed with each of the parameters used to produce the output of predicted temperature and 

cyanobacterial biomass represented as mg/L Chl-a. The calibration results showed correlation 

coefficients of 0.91 and 0.62 for temperature and cyanobacterial biomass, respectively. The 

validation results showed correlation coefficients of 0.62 and 0.48 for temperature and 

cyanobacterial biomass, respectively. In the end, the model used inputs of cyanobacterial 

biomass and temperature for initial conditions and used meteorological forecasts to predict 

cyanobacterial biomass for the next five days. 
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(Wang, et al. 2020) 

Wang et al. (2020) developed a nonlinear mathematical model of cyanobacteria growth to 

forecast bloom outbreaks. This model is the combination of a mechanism-driven model and a 

data-driven model to overcome the shortcomings (data-driven models only carrying out simple 

data analysis because of the lack of theoretical support, and mechanistic models being very 

complex, and involving many parameters that can introduce uncertainty) of each model type. 

First, the cyanobacteria’s demand for phosphorus and nitrogen was calculated using growth 

stoichiometry. Then the mathematical model was developed to simulate cyanobacterial growth 

using differential growth kinetics equations and four main factors (Chl-a concentration, 

temperature, nitrogen concentration, and phosphorus concentration). 

 

The data-driven part of the model was developed to estimate and optimize parameters for the 

non-linear dynamic growth model. Historical environmental data were used to calibrate the 

model using the Cuckoo algorithm (Yang and Deb 2010), which is an iterative optimization 

algorithm based on the behavior of the nest stealing cuckoo bird. A bifurcation set of equations, 

using the established parameters and based on the cusp catastrophe theory (Zeeman 1976), was 

then used to determine the critical point of a cyanobacterial bloom outbreak. If the final 

calculated value of the bifurcation set within the nonlinear model is approximately zero, it 

indicates that the established environmental parameters have reached a critical point for 

cyanobacterial bloom outbreak, thus forecasting or creating a cyanobacterial warning system. 
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Data-Driven Models 

Data-driven models often take years of experimental data to build. Two forms of data-driven 

models are discussed in this section: traditional empirical models and machine learning models. 

Empirical model building tries to find the simplest mathematical explanation for the features of 

the data set without resorting to scientific mechanisms. The fit they create to the existing data is 

used to provide future estimates. Machine learning models use large amounts of data for training 

information to discover relationships between inputs and outputs that improve the model’s 

mathematical algorithms as more input data is added to predict future values. 

 

Empirical Models 

Empirical data-driven models are based on evidence or observation rather than theory. Equations 

are fitted to a proposed curve or line to predict future values in an empirical model. Empirical 

models can also include general linear models that compare how several variables effect a 

response variable, generalized linear models, which is an extension of the general linear model 

but allows for non-normal response variables, and generalized additive models (GAMs). A GAM 

(Hastie and Tibshirani 1990) is an extension of a generalized linear model, meaning that it is a 

non-parametric generalization of multiple linear regression. A GAM is more advanced (using 

additive regression) than simple linear regression models but is not as sophisticated as many 

machine learning models.  A GAM is useful for modeling many complex environmental systems 

because it does not require normally distributed data and can incorporate non-linear relationships 

between environmental factors and responses, similar to ANN models. The additive functions 

within a GAM allow for partial effects or contributions of each independent variable to be 

realistically obtained. 
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Biomass 

(Onderka 2007) 

Onderka (2007) developed a simple regression predictive model to predict bloom risk. This 

model uses six years of data for phosphorus, nitrogen, and water temperature levels in Liptovska 

Mara Reservoir, a eutrophic reservoir in Slovakia used for recreation and to produce 

hydropower. The data values of total nitrogen, phosphorous measured as phosphate, and 

temperature were graphed against cyanobacterial cell counts measured as chlorophyll a (Chl-a). 

 

Three regression models were computed to develop three empirical equations that describe the 

data. The three equations used phosphate, phosphate and temperature, and phosphate and total 

nitrogen. The phosphate and total nitrogen relationship showed the best results to predict 

cyanobacterial blooms although no model accurately predicted the magnitude of the peaks. 

Ultimately the model revealed that blooms developed during periods of increasing N:P ratio, and 

the model could be used as a simple way to predict future bloom occurrences by measuring three 

parameters.  

 

(Beaulieu, et al. 2014) 

Beaulieu et al. (2014) applied linear and nonlinear models to 149 lakes to determine whether 

empirical cyanobacterial prediction models vary regionally. The models were constructed to 

assess the relative importance of nutrients, water column stability, and water temperature in 

driving cyanobacterial biomass. Data were collected from waterbodies across three provinces of 

Canada, and a year of data was used and condensed to the growing season. 
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The paper considered general linear models and nonlinear GAMs to predict cyanobacterial 

biomass. A mixed-effects model was additionally produced to introduce the different provinces 

as a random effect. Model selection was determined by an analysis of variance and Bayesian 

information criterion (BIC). Across all the lakes, nutrient concentrations were found to be strong 

predictors of cyanobacterial biomass, and total phosphorus or total nitrogen performed equally 

well through linear modeling. pH was also determined to be a significant factor in prediction, but 

N:P ratio was determined to be insignificant. The linear models outperformed the nonlinear 

GAMs based on the BIC. The mixed-effects model also showed that there were no significant 

regional differences in cyanobacterial biomass response models. Overall, the paper concludes 

that the models they produced can be used to estimate cyanobacterial biomass from any 

Canadian region.  

 

(Zhao, et al. 2019) 

Zhao et al. (2019) developed a probability prediction model based on cyanobacteria species and 

cyanobacteria driving factors to predict the occurrence of cyanobacterial blooms. Physical, 

chemical, and biological data collected for this model were from 13 reservoirs and lakes in Jinan 

City, China. First, dominant cyanobacterial species were identified using a dominance model 

(Zhao, et al. 2014) and the mutation point method (Zhao, et al 2015), and then determination of 

principal cyanobacterial driving factors was completed using a canonical correspondence 

analysis (CCA). A CCA determined relationships between biological groups of species and 

water quality factors through a multivariate gradient analysis. 
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The probability model included six species of cyanobacteria that were determined to be 

dominant as well as two physical water quality factors (water temperature and pH) and four 

chemical water quality factors (total phosphorus, ammonia nitrogen, chemical oxygen demand, 

and dissolved oxygen) that were determined to be principal cyanobacteria bloom driving factors. 

The model calculated a probability of the occurrence of cyanobacterial blooms at each 

monitoring station and established that if the probability was greater than 0.75, all of the driving 

factors were within their optimal range, and the risk of a bloom was high. 

 

(Xu, et al. 2020) 

Xu et al. (2020) developed a GAM to identify the effects of nutrients on algal biomass to predict 

HABs. A GAM was used because a nonlinear framework is needed for modeling complicated 

nutrient and algal biomass relationships. This GAM incorporates external nutrient loading to the 

lake and a cumulative loading term with different time scales to account for nutrient recycling 

from lake sediments, which can often fuel blooms even when external loading is decreased. The 

model uses data from Lake Okeechobee, a lake in Florida that is seasonally dominated by HABs. 

Chl-a is used as the response variable to identify algal biomass and nutrient concentrations are 

used as inputs. 

 

This study identifies the relative importance of each variable by excluding it from the GAM and 

then focusing on the model’s goodness of fit when the variable is dropped. It was found that 

better results were determined when the cumulative loading term was added and not just external 

loading inputs. The paper determined that there was an inhibiting effect at high total phosphorus 

levels and that the lake was nitrogen-limited. It concluded that reducing phosphorus levels at 
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certain times would actually increase Chl-a concentration. The best model explained 52.8 to 

72.8% of Chl-a concentration. The paper concludes that both nitrogen and phosphorus are 

important in modeling blooms and that spatial heterogeneity should also be considered. 

 

Cyanotoxins 

(Tao, et al. 2012) 

Tao et al. (2012) developed a GAM that uses abiotic and biotic factors to predict toxic 

cyanobacterial blooms. A GAM was chosen due to its ability to incorporate non-linear 

relationships between input variables and responses as well as its ability to handle non-normally 

distributed variables. The model was developed based on one year of data collected from Lake 

Taihu in China, a drinking water supply for millions of people that is seasonally dominated by 

toxic blooms that are mainly composed of Microcystis. 

 

After data collection, a statistical regression analysis was performed in the GAM to assess the 

effect of the environmental factors on microcystin production during growth of a bloom. The 

model found that microcystin concentration was best explained using the factors conductivity, 

dissolved inorganic carbon (DIC), water temperature, and pH, but additionally found that neither 

nitrogen nor phosphorus had significant correlation with microcystin production. The model 

found that Microcystis abundance did not always correlate with microcystin concentration. 

Ultimately the model found that conductivity, DIC, water temperature, and pH could, 

respectively, explain 21, 12, 11, and 10 percent of the variance related to microcystin 

concentrations. The study concludes that this model could be used to predict toxic blooms and 

microcystin concentrations using the correlation of four important parameters. 



 34 

(Hayes and Vanni 2018) 

Hayes and Vanni (2018) developed several regression models for predicting microcystins 

(hepatotoxins associated mainly with Microcystis). The purpose of each model was to use 

watershed characteristics, lake morphometry, nutrient concentrations, and biological 

characteristic to predict microcystin concentrations. Models were produced using data from 136 

lakes and reservoirs in Ohio to determine the ability for parameters such as lake morphometry, 

nutrient concentrations, biological characteristics, and watershed characteristics to predict 

microcystin concentrations. The data were collected in 2006, 2007, and 2009. An analysis was 

performed on the full data set, and then on only the 2009 data.  

 

Before inputting data into the model, many of the inputs were transformed to reduce skewness 

and a censored regression analysis was performed to account for the large number of microcystin 

observations that were below detection limits. Corrected Akaike information criteria (AICc), that 

estimates out-of-sample prediction error, was used to select the best-fit model.  

 

The models identified that microcystins were positively correlated with Chl-a, TN, TN:TP, and 

percent agriculture in the watershed and were negatively correlated with the ratio of watershed 

area to lake surface area (WA:SA). The equation selected for the inclusive data that was the most 

parsimonious with the lowest AICc value included both WA:SA and Chl-a predictor variables. 

For the 2009 data, two equivalent equations were chosen, one including biomass of potentially 

toxin producing cyanobacteria and the other including Chl-a. The study concluded that elevated 

microcystin levels were likely to be found in lakes with smaller WA:SA and higher biomass 

concentrations. 



 35 

Machine Learning 

Machine learning models use computer algorithms to learn and improve from input data. These 

models include Artificial Neural Networks (the most common), Support Vector Machines, 

Multivariate Adaptive Regression Splines, Hybrid Evolutionary Algorithms, and others. The 

language used to describe each model, including error reporting, accuracy reporting, terminology 

of model inputs, etc., is true to the language from each paper. 

  

Artificial Neural Network (ANN) 

ANN models are machine learning models that can be supervised, meaning they learn from data 

known to be correct, or unsupervised models that work on their own to discover connections. 

Most of the models discussed in this section are supervised models, in that they are provided 

with environmental conditions and their related result on cyanobacteria.  

 

Supervised ANN models consist of a so-called multilayer perceptron (MLP) design that includes 

an input layer and an output layer created by the data provided, and between these two layers are 

hidden layers that use an error convergence technique to determine weighted connections 

between inputs and outputs. The hidden layers consist of nonlinear functions (generally sigmoid 

or hyperbolic tangent functions) that create interconnections between neurons and adjust to 

decrease the output error. These models often use back propagation that allow errors to be 

reduced when an error function is propagated back to the hidden layer to update the weights of 

each connection.  
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A self-organizing map (SOM) is an unsupervised learning machine that consists of two layers, an 

input and output layer of neurons. It produces a map or two-dimensional grid through 

competitive learning rather than error reduction in supervised learning. The learning algorithms 

produce different results in response to input patterns. 

 

Biomass 

(Teles and Vasconcelos 2006) 

Teles and Vasconcelos (2006) produced an ANN model that uses nonparametric, data-driven, 

self-adaptive methods and requires very few theoretical assumptions. An ANN model was used 

because the prediction of population growth of cyanobacteria was more important to the study 

than the identification of underlying environmental processes or kinetics affecting the growth. 

The specific type of ANN they used was a generalized regression neural network (GRNN) 

(Specht 1991) and was used to predict cyanobacteria abundance in Crestuma Reservoir (Douro 

River, Portugal), a reservoir periodically dominated by toxic Microcystis and Aphanizomenon 

taxa, and used for recreation, drinking water, and power production. 

 

Physical, chemical, and biological data collected from the reservoir over a three-year time period 

were split and one portion was used for training while the other was used for verification. Input 

parameters for the model were carefully selected, using a cluster analysis and model sensitivity 

analysis, to prevent overfitting, which is beneficial for model training but not particularly useful 

for forecasting. An appropriate time lag was carefully selected by running the GRNN and 

selecting the time lag that provided the best correlation between input and output values. A 
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GRNN was selected by using combinations of variables in a forward and backward stepwise 

manner until the best correlation was observed.  

 

Ultimately, after creating and training the models, the remaining data were used to verify each 

model’s ability to predict cyanobacterial biomass in units of cells/mL. Models were run with the 

selected 15-day time lag, and were run using physical and chemical inputs, phytoplankton taxa 

inputs, and all variable inputs. After verifying the models, independent observations from 1999 

were used for final validation. The highest correlation coefficient for the verification test (r = 

0.878) was found with the model using only physical and chemical input parameters, and the 

highest correlation coefficient for the validation test (r = 0.773) was found using all input 

variables. 

 

(Wang, et al. 2010) 

Wang et al. (2010) developed a model that uses a back-propagation neural network (BP-ANN) 

and rough set decision method (Greco et al. 2001) to predict cyanobacterial blooms. An ANN 

model was selected because it could combine complex physical, chemical, and biological inputs 

and simulates cyanobacterial growth using nonlinear, machine learning processes with high 

prediction accuracy. The ANN was paired with a rough set decision theory because it is a useful 

tool for data mining that removes irrelevant parameters without losing useful information. A 

ChiMerge algorithm was used in the rough set decision theory to convert continuous values into 

interval values to determine which factors would remain in the model and to generate decision 

rules. The rough decision rules were incorporated into the model to form a hybrid (BPANNRD) 
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and the original BP-ANN model was run in parallel to determine if incorporation rough decision 

rules improved the model.  

 

The model used five years of data (April to October) from Dianchi Lake, a lake affected by toxic 

Microcystis taxa and used for recreation and agricultural activities. Daily weather data were 

collected including average, highest, and lowest temperatures, precipitation, sunshine duration, 

average and highest wind velocity, and wind direction. They also used cyanobacteria remote 

sensing data and paired the two data groups day by day. The data were separated into two parts 

to train and then verify the model. 

 

The results confirmed that combining the BP-ANN with a rough set decision theory increased its 

testing accuracy by 3 percent in training and 3.6 percent in verification when compared to the 

BP-ANN run in parallel. Ultimately, the BPANNRD had an 84.3 percent accuracy at predicting 

the occurrence of a bloom using only weather and remote sensing data. It was concluded that the 

rough set decision allowed for useful parameter selection and improved the model, which could 

be used to forecast algal blooms. 

 

(Ahn, et al. 2011) 

Ahn et al. (2011) developed two ANN predictive models to predict cyanobacterial density. ANN 

models were chosen because they do not demand that there must be linear relationships between 

input variables and are efficient at dealing with systems that have complex nonlinear 

relationships. The ANN models in this study were a SOM, that efficiently visualized 

relationships between cyanobacteria and environmental factors and traced temporal change 
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patterns in environmental conditions, and an MLP, that used the environmental factors to provide 

good predictive power.   

 

The models were created using five years of chemical and biological data (spring to autumn) 

from Daechung Reservoir. Fourteen independent environmental variables were compared to the 

dependent variable of cyanobacteria density using a cross-correlation function. Using this 

process, a time lag with the highest associated correlation was chosen for the models. The SOM 

consists of two layers, an input and output layer of neurons. The input layers of environmental 

factors and cyanobacteria density formed an output layer array of 54 outputs in a hexagonal 

lattice. A connection intensity or weight between the input and output layers is created by the 

SOM algorithm and then the weight is consistently updated by SOM learning rules until the 

model is optimized and an output is chosen that has a weight with the least distance from the 

input.  

 

The MLP uses a backpropagation algorithm designed to minimize the mean square error between 

computed and desired outputs. For the MLP they used all the samples except one to train the 

model and then used one sample to verify the model. The training process was performed until 

the sum of squares error was less than 0.001 in predicting cyanobacterial biomass (cells/mL) to 

avoid overfitting.  

 

Cross-correlation found that water temperature was the most correlated with future 

cyanobacterial density, and the highest correlation happened at 2-4 weeks lag time, and linear 

regression estimated that cyanobacterial density was best predicted with a 3-week lag.  The SOM 
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model provided connection intensities in the form of a lookup table where the cyanobacterial 

density could be found by matching a cell with the most similar environmental conditions. The 

results showed relatively low predictability, with a low coefficient of determination, especially 

for bloom peaks. The SOM could be useful for monitoring changes in environmental conditions 

but was not recommended for prediction. The MLP model, on the other hand, showed a very 

high coefficient of determination when comparing the predicted and observed data. Using a 

sensitivity analysis within the MLP, it was confirmed that water temperature was the most 

contributing variable and that dissolved nitrogen compounds also played a large role, whereas 

phosphorus did not. The MLP was recommended to predict a cyanobacterial bloom 3 weeks in 

advance.  

 

(Millie, et al. 2014) 

Millie et al. (2014) developed an ANN to model total phytoplankton and Microcystis biomass. 

An ANN model was chosen because environmental conditions are often chaotic and the model 

allows nonlinear patterns to be identified and reproduced and provides impartial predictions so 

that patterns between environmental conditions and biomass can be discovered. The ANN model 

was created using 3 years of data from western Lake Erie (USA and Canada), a lake plagued 

with toxic populations of Microcystis seasonally. Data collected consisted of abiotic, 

meteorological, and biotic variables. 

 

Before the model, a coefficient of variation was calculated to assess the uncertainty in the abiotic 

and metrological variables, while an analysis of variance was performed on the biotic variables 

to assess annual and monthly difference of Chl-a concentrations. A connected weight and global 
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sensitivity analysis was used to identify the relative importance of each input variable. The 

analysis identified water temperature and wind speed as the two most influential parameters. The 

model is an MLP design using a backpropagation algorithm that has three layers including an 

input layer of significant variables, a hidden layer that uses hyperbolic tangent transfer functions 

and a momentum learning algorithm, and an output layer that provides information for future 

predictions. 

 

The model was run to identify phytoplankton biomass via Chl-a concentrations and then to 

identify Microcystis biomass. A subset of the data was used to train the model, and then provide 

cross-validation before the final test. For the phytoplankton biomass, the model identified total 

phosphorus as a variable that has the greatest predictive influence. However, for the Microcystis 

biomass, all variables were equally predictive and no single variable greatly influenced the 

prediction. The models had correspondences (a discrete form of correlation, based on 

classification) of 0.87 to 0.97 and 0.70 to 0.94 for phytoplankton and Microcystis biovolumes, 

respectively.  

 

(Lou, et al. 2016) 

Lou et al. (2016) used the data from the Macau Reservoir SVM model (Xie, et al. 2012) to build 

an extreme learning machine (ELM). An ELM model (Guang-Bin, et al. 2006) is a single-

hidden-layer, feed-forward neural network that can solve nonlinear and complex problems. This 

study produced both a prediction and forecast model and found better results than Xie’s (Xie et 

al. 2012) SVM study, with coefficients of determination of 0.83 and 0.90 for the prediction and 

forecast models, respectively. 
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(Luo, et al. 2017) 

Luo et al. (2017) developed a combination prediction model of a back-propagation ANN 

(BPANN) and an adaptive grey model (AGM). An ANN model was chosen because of the 

complexity of the system and the nonlinearity between variables. The data collected for this 

study was collected using remote sensing as it can offer unattended, continuous, and long-term 

observations over a large area. Multi-source heterogeneous water environment sensors were used 

to gather continuous and precise data that was applied to the model. 

 

The data for this model were retrieved from Dianchi Lake, a Chinese lake with large 

environmental and aesthetic importance. To allow for enough physical, chemical, and biological 

indicators to provide accurate predictions without over-fitting the data with too many input 

variables, the researchers selected 13 parameters they deemed as highly related to eutrophication. 

The model used these indicators to forecast the Chl-a concentration within the next 24 to 72 

hours.  

 

The AGM part of the model, used to fill in data gaps in the model, evolves from a first-order 

differential equation and is based on an exponential time series function. It is able to take 

random, incomplete, and uncertain data and describe future tendencies of water quality data 

based on previous or incorrect information. The outputs for the AGM model were used to train 

the BPANN model. The BPANN is a model that can solve high-dimensional, nonlinear problems 

and can transform data into something that is definite and reliable. The model has an MLP 

design, uses forward propagation, and the hidden layer consists of sigmoid or hyperbolic tangent 

functions. 
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The AGM model showed good water quality indicator prediction performance with coefficients 

of determination ranging from 0.81 to 0.88 for the parameters. The BPANN model was 

successful in predicting Chl-a concentrations with a coefficient of determination of 0.93. The 

paper concludes that the model is a successful 1-day in advance early warning system for 

cyanobacterial outbreaks. 

 

(Xiao et al. 2017) 

Xiao et al. (2017) developed a combination model of a wavelet analysis with an artificial neural 

network (WNN). An ANN model was chosen because of the complex physical, chemical, and 

biological parameters that are involved in the system, and is able to handle environmental non-

linearities. ANN models often have difficulty dealing with non-stationary data and so a wavelet 

analysis (Lee and Yamamoto 1994) was used in combination as an effective tool for revealing 

both spectral and temporal information simultaneously. This combination model uses a single 

parameter (cyanobacterial biomass as Chl-a concentration or cell density) as the key input, 

predicting future cyanobacterial biomass from previous biomass. 

 

This model was tested in two water bodies. The first set of data to build this model was collected 

from the Siling Reservoir in China, that provides drinking water, irrigation, recreation, and 

power generation, yet consistently suffers from HABs. Real-time biological data of 

cyanobacterial density and Chl-a concentration were collected from a buoy monitoring station, 

using a HACH Hydrolab DS5 with multiple probes, as daily average values. The second data set 

came from Lake Winnebago, a large calcareous lake in Wisconsin that provides both recreation 
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and drinking water beneficial uses. Chl-a concentrations were collected from a buoy in the form 

of daily averages. 

 

The hybrid model was created by, first, transforming the original time series into time-frequency 

domains by a discrete wavelet transformation process. Then each wavelet decomposition series 

was used as an input to each back propagation artificial neural network. This ANN model is an 

MLP design and uses back propagation. The input data were split 60% for training the model, 

20% for validation of the model, and 20% for testing the successfulness of the model. 

 

The models produced wavelet decomposed forecasting series which were summed to forecast an 

algal cell density series. For forecasting cyanobacterial density in Siling Reservoir the model had 

good results with the best model having a correlation coefficient of 0.986 for 1 day early 

cyanobacterial cell density predictions. For forecasting Chl-a concentrations in Siling Reservoir, 

there was good predictive power with a correlation coefficient of 0.900 and for Lake Winnebago 

a correlation coefficient of 0.872. Both model results indicated that the WNN could be used to 

reliably predict cyanobacterial blooms. 

 

Support Vector Machine (SVM) 

An SVM model is a machine learning technology that is based on statistical theory and can solve 

complex nonlinear problems (Vapnik 1995). SVM is derived from instruction risk minimization, 

which allows it to minimize generalization error (Xie, et al. 2012). The model has an input layer 

of environmental parameters, hidden layers that use quadratic programming and kernel 

functions, and an output layer that provides information for predictions. SVMs were originally 
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developed for classification but were later generalized to solve regression problems through a 

method called support vector regression (SVR) (Alonso Fernández, et al. 2013). 

 

Biomass 

(Xie, et al. 2012) 

Xie et al. (2012) developed an SVM model to predict dynamic change of algae and 

cyanobacteria populations in water. An SVM model was chosen because it has been shown to 

solve complex nonlinear environmental problems with high prediction accuracy over long 

prediction periods while only requiring a small number of samples. Two models were created in 

this study: a prediction model that does not consider time series effects, and a forecasting model 

that does consider time series effects. 

 

The models were created using data from Macau Storage Reservoir, a reservoir in China that 

provides drinking water and suffers from HABs. Eight years of physical, chemical, and 

meteorological data were used to train the model and three years were used to test the model. A 

correlation analysis was performed to determine which parameters were significantly correlated 

with biomass. The SVM model was built using a radial basis function (kernel function) and was 

built to have internal cross-validation to avoid overfitting. The prediction model had nine 

parameter inputs and the forecast model had 23 time-lagged parameter inputs. Ultimately, both 

models performed well with square of correlation coefficients of 0.760 and 0.863 for the 

prediction model and forecast model, respectively. The paper recommends the SVM model as an 

effective approach for predicting blooms. 
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Cyanotoxins 

(Alonso Fernández, et al. 2013) 

Alonso Fernández et al. (2013) developed an SVM model to predict cyanotoxin presence. The 

SVR method was chosen within the SVM model because it is a non-linear generalized regression 

method that has a flexible procedure to model complex variable relationships without strong 

assumptions. The SVR also requires a shorter training time when compared to other machine 

learning techniques. The model was created using five years of biological and physicochemical 

data from the Trasona Reservoir, a reservoir in Spain used for recreation and industrial water 

supply. The goal of the model was to identity the dependence relationships between the 

cyanotoxins and collected input variables. 

 

This SVR model uses kernel parameters to map nonlinearly separable data into a feature space 

where it is linearly separable. The model was run using linear, polynomial, radial basis, and 

sigmoidal kernel functions. The sigmoidal kernel functions produced the best model with 

correlation coefficient of 0.93 when comparing predicted toxin concentrations to observations. 

To guarantee predictability a cross-validation algorithm was used to split training data into three 

groups: a training dataset (80%), a validation dataset (10%), and a testing dataset (10%). 

 

 (García Nieto, et al. 2015, García Nieto, et al. 2015, and García Nieto, et al. 2017) 

The following three articles used the same data for the Trasona Reservoir and base SVM model 

(Alonso Fernández, et al. 2013) but used different optimization techniques to find input variables 

that lead to the best prediction results or use different kernel function in the model. García Nieto 

et al. (2015) used the SVM model in combination with a particle swarm optimization (PSO) 
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technique (Olsson 2011) to forecast the presence of cyanotoxins. An SVM model was chosen 

due its well-known ability to predict values from very different fields and approximate any 

multivariate function to any desired degree of accuracy. The PSO technique is an evolutionary 

computation, swarm intelligence-based algorithm used to optimize parameter selection for the 

SVM model.  

 

The PSO uses bio-inspired algorithms (Kennedy and Eberhard 1995) to iterate proposed 

solutions (or parameters), evolving with each iteration based on individual and neighboring 

trajectories, toward an optimal solution. The PSO optimizes SVM parameter inputs by 

comparing the forecasting error in every iteration. A radial basis kernel function was chosen for 

the SVM model due to the function’s effective approach to nonlinearities present in the 

regression problem.  The input data set was split into 10 parts where nine parts were used for 

training and then one part was used for testing. To guarantee prediction ability, this process was 

performed 10 times using a 10-fold cross-validation algorithm. The model had a very good fit 

between the model and the observations with a correlation coefficient of 0.95. Overall, the 

addition of the PSO technique produced better results that the preceding model, and the 

improved model is recommended as an accurate predictor of cyanotoxin concentrations in this 

reservoir. 

 

García Nieto and others (2015) used the SVM model in combination with an artificial bee colony 

(ABC) technique to predict cyanotoxins. An ABC is an evolutionary computation algorithm 

(Simon 2013) similar to PSO that optimized input parameters to the SVM model inspired by the 

intelligent foraging behavior of honeybee swarms. 
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The ABC technique shares information between individuals in the population to find an optimum 

strategy. The ABC has three phases that are repeated until a maximum number of iterations 

occur or the algorithm converges. A radial basis kernel function was chosen for the SVM model 

and the 10-fold cross-validation described above was used to ensure predictability, and the best 

combination of parameters was chosen. The model had a very good fit between model and 

observed data with a correlation coefficient of 0.95. The model was run again, ranking variables, 

and adding variables until the highest correspondence was found. Using fewer input parameters 

gave a correlation coefficient of 0.96, overall having better results that the SVM model alone, 

and slightly higher, but very similar results to the PSO combination model that used all of the 

parameters. 

 

García Nieto and others (2017) modified the model to a wavelet kernel SVM model in 

combination with the ABC technique to identify and predict cyanotoxins. The SVM model and 

ABC technique were developed using the same data and approaches described above (Alonso 

Fernández, et al. 2013 & García Nieto, et al. 2015). This model introduced wavelet analysis in 

which a wavelet is a mathematical tool that can be used to extract information from different 

kinds of data by correlating data that contains information of similar frequencies. A wavelet 

kernel function was derived, specifically called the Mexican hat wavelet kernel, and was 

combined with the SVM model. 

 

The model was run and validated using the 10-fold cross-validation describe above to ensure 

predictability. The Mexican hat kernel function created a more predictive model and was a better 

approach to the nonlinearities present in the regression problem than the other kernels tested, 
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showing a correlation coefficient of 0.954 versus the previously described radial basis kernel 

approach with a correlation coefficient of 0.95. 

 

Boosted Regression Tree (BRT) 

A BRT model (Elith, et al. 2008) fits and combines many models for prediction using two 

algorithms: decision trees, which use sets of rules in a tree-like model and boosting, which 

constructs and combines a collection of models. BRT models build and merge results from 

multiple models using a stage-wise forward selection procedure that combines numerous simple 

regression trees to create an optimized predictive model (Taranu, et al. 2017). 

 

Biomass 

(Liu, et al. 2020) 

Liu et al. (2020) developed a BRT model to predict cyanobacteria biomass. A BRT model was 

chosen because it can model nonlinear responses and interaction of variables and can model 

different effects of covariates.  This model used diatom-inferred total phosphorus (DI-TP) to 

predict cyanobacterial biomass using data from around 1000 U.S. lakes. Before modeling, a 

general lake type classification including: deep, shallow, natural, and manmade was determined 

as well as a classification on cyanobacteria functional groups including: potential N2-fixing, 

heterocyst-producing, potential toxigenic, and bloom-forming.  

 

The National Lake Assessment (NLA) (EPA, 2009) provided data sets including water chemistry 

condition estimates, green algae and diatom count data, and sampled lake information. DI-TP 

concentration was calculated using relative abundances of diatom taxa in the surficial sediments 
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of lakes and a weighted average model. DI-TP was used because it can more accurately assess 

bioavailable phosphorus than total phosphorus can. DI-TP along with eight other predictor 

variables were used in the model to predict cyanobacteria biomass. A function was applied to the 

model to select for the most influential predicator variables and then the model was run several 

times with different variable combinations.  

 

Modeling results found that DI-TP was a good predictor variable across different lakes and 

different cyanobacterial function groups but was not as important as water column total 

phosphorus. DI-TP performed better as a prediction variable when modeling N2-fixing 

cyanobacteria over other functional groups and also performed better in deep man-made lakes 

over other shallow or natural lakes.  

 

Cyanotoxins 

(Taranu, et al. 2017) 

Taranu et al. (2017) developed a BRT model paired with a hierarchical zero-altered model to 

predict when and where cyanotoxins will be produced. The hierarchical model was used to 

determine the importance of environmental multi-scale interactions. It was used to separate out 

and remove non-detect microcystin concentrations and understand the environmental interactions 

driving microcystins above non-detect limits. The BRT model was used to identify what 

environmental thresholds are associated with microcystins causing severe impairment to a 

waterbody. The environmental parameters that were considered included physiochemical 

variables measured in the water column, site and catchment characteristics, and land-cover 

variables.  
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The models were created using a continental-scale data set of 1127 lakes, ponds, and reservoirs 

randomly selected across the United States. A large number of these waterbodies (68%) had 

microcystin concentrations below the detection limit, creating a largely right-skewed data 

distribution. Ignoring these below detection results could result in exaggerated estimates of 

variance and biased estimates of parameters and standard errors, so a hierarchical two-state 

model was designed. It was important that this model was a zero-altered hurdle model (Zuur and 

Ieno 2016) instead of a zero-inflated mixture model (Phang and Loh 2013) because the interest 

was in determining the probability of not measuring detectable microcystins versus measuring 

any quantity of microcystins. This model had a binomial generalized linear mixed model 

(GLMM) to determine the presence or absence of microcystins in the waterbodies, and a 

detection limit-truncated log-link Gamma model that removed all non-detect data and modelled 

the remaining data as a function of selected environmental variables to identify drivers after 

microcystin presence is detected.  

 

To further identify predictors of when cyanotoxin concentrations would be above or below toxic 

level guidelines, a BRT model was developed using all of the data sets. The model is able to 

identify optimal parameters through its stage-wise process, and then to simplify results, 

explanatory variables are dropped until the predictive deviance exceeds the original standard 

error as a function of the number of variables removed.  

 

The binomial GLMM explained 55% of variance for the presence-absence of microcystins, and 

occurrence was best explained by local and regional features of nitrogen enrichment, 

cyanobacterial biomass or Chl-a concentration, dissolved organic carbon, depth, latitude, 
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longitude, and effect of ecoregion agriculture. The second part of the hierarchical model, that 

was restricted to sites where microcystins were detected, explained 26% of the variance and 

showed that only local features were identified as predictors including, total nitrogen, 

cyanobacterial biomass, and turbidity. It also showed that microcystins were more abundant in 

natural lakes than in reservoirs. The BRT model showed that cyanobacterial biomass and 

elevated nitrogen concentrations were associated with microcystin concentrations and little to no 

interaction was identified among environmental drivers. 

 

Multivariate Adaptive Regression Spline (MARS) 

MARS is a non-parametric regression technique that is able to automatically model complex, 

nonlinear problems and interactions between input factors (García Nieto, et al. 2011). A MARS 

model does not require theoretical assumptions about relationships between the independent and 

dependent variables. Instead the relationship is discovered by functions driven by regression 

data.  

 

(García Nieto, et al. 2011) 

García Nieto et al. (2011) developed a MARS model to identify cyanotoxin presence. A MARS 

model was chosen because it has a structure able to handle complex, nonlinear environmental 

problems. The data used to build this model was five years of biological data from Trasona 

reservoir, a recreation and industrial use source in Spain.  

 

The MARS model uses a nonparametric regression technique to predict a dependent variable 

(cyanotoxins in mg/L) from a set of input explanatory independent variables. Eight prediction 
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variables were used as inputs to the model. Predictability of the model was insured by using a 

cross-validation algorithm that created a model for each observation and used the remaining data 

to train the model. The model successfully produced prediction results with a correlation 

coefficient of 0.91 with the observations. 

 

(García Nieto, et al. 2012 and García Nieto, et al. 2014) 

The following two articles use the same base MARS model and improve model inputs to 

generate better output predictions. García Nieto et al. (2012) developed a MARS to improve the 

prediction accuracy of previous work (García Nieto, et al. 2011). The model improved the inputs 

by using six years of not only biological data, from Trasona reservoir, but physiochemical data 

as well. The same model building and validation procedures were followed. Adding 

physiochemical information improved the prediction results; the final MARS model had a 

correlation coefficient between the predictions and observations equal to 0.97. 

 

García Nieto and others (2014) used the MARS model in combination with a genetic algorithm 

(GA) to forecast cyanotoxin presence. The GA was used to reduce the number of input predictor 

variables based on their importance to the system. The model was developed using six years of 

biological and physiochemical data from the Trasona reservoir, and then six years of samples 

were used from 15 reservoirs in the same area to determine the model’s ability to accurately 

predict cyanotoxin risk within the entire study area.  

 

GAs have proven to be a powerful and reliable optimization technique. The algorithms are based 

on an interpretation of the evolutionary process, and input variables are chosen based on a fitness 



 54 

value, only allowing the strongest to survive. The GA process optimized input parameters, 

reducing the input from 24 to 6, and created a more successful model than previous MARS 

models with a coefficient of determination of 0.96 and a correlation coefficient of 0.98. When 

the same input parameters from the 15 other sampled reservoirs were input into the model, a low, 

moderate, or high risk of cyanotoxins was determined for each reservoir. 

 

Hybrid Evolutionary Algorithm (HEA) 

An HEA model (Grosan and Abraham 2007) uses evolutionary algorithms that apply predictive 

rules to limnological population dynamics. HEAs are adaptive and mimic processes of natural 

selection or biological evolution. They use evolutionary algorithms to recognize patterns and 

apply a principle of “survival of the fittest” through rules with an IF-THEN-ELSE structure 

when determining input parameters (Cao, et al. 2006). 

 

(Zhang, et al. 2015) 

Zhang et al. (2015) developed HEA models for 2-day-ahead cyanobacteria forecasting. An HEA 

model is able to represent complex relationships between multiple variables, does not require a 

priori knowledge, and uses evolutionary computations for prediction. In this paper, eight site 

specific, spatially-explicit models were created and one generic model using all the data was 

created to understand the most significant prediction variables. These models were developed 

using five years of data from Lake Taihu, a highly eutrophic system in China that is a water 

supply for millions. 
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The HEA is designed to improve fitness between model results and observations by evolving 

over time. The HEA model combines both genetic programming (GP), which is an evolutionary 

algorithm that optimizes model structure, and differential evolution (DE), which is an 

evolutionary algorithm that optimizes parameter selection. The model creates “IF,” “THEN,” 

“ELSE” statements of empirical equations with input parameters that are important to the 

prediction. Population and depth were estimated through model interaction and a sensitivity 

analysis was performed by changing one variable and keeping the rest constant to understand 

each parameter’s effect on model outputs. Additionally, a wavelet coherency analysis (the 

correlation between two signals at a given frequency) was performed to determine a time lag 

between input environmental factors and cyanobacteria response. This time lag was determined 

to be two days.  

 

The spatially-explicit models of each site produced good fit to the data with an average 

coefficient of determination of 0.74 with a high of 0.83 and a low of 0.62 at specific sites. The 

generic model was tested on each site and had an average coefficient of determination of 0.57 

with a high of 0.77 and a low of 0.36 at specific sites. For both types of model, phosphorus and 

pH were determined to be positively correlated with cyanobacteria biomass while nitrogen was 

determined to be negatively correlated. 

 

(Swanepoel, et al. 2016) 

Swanepoel et al. (2016) developed an HEA model to forecast future events of high 

cyanobacterial cell concentrations. HEAs can take highly complex ecological time-series data 

and successfully develop prediction rule sets. To develop the model, 10 years of physical, 
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chemical, and biological water quality data was taken from Vaal Dam, a reservoir for drinking 

water in South Africa that has problems with Microcystis.  

 

A principal component analysis was performed to characterize the relationships and significance 

of each collected variable. The HEAs then apply genetic algorithms to optimize the rule 

structures, using “IF,” “THEN,” “ELSE” statements and genetic algorithms for optimization of 

input parameters. For model training, 75% of the data were selected by bootstrapping, with the 

remaining 25% used for testing. The data were split so that subsets of data selected for training 

and testing were modeled in 50 different iterations. The best model iteration was chosen based 

on root mean square error and coefficient of determination.  

 

When running the model an initial population and maximum number of repetitive runs were 

chosen. The HEA rule sets were discovered and then a parameter sensitivity analysis was 

performed by changing one variable and keeping the rest constant. The real time prediction from 

the model had a square correlation coefficient of 0.95 when tested with the 25% of data and a 

coefficient of determination of 0.97 when tested on three years of data not used in the training. 

The seven day in advance model produced better results than the 14 and 21 day in advance 

models, producing a coefficient of determination of 0.90 for the test data and 0.53 for the three 

years of data. 

 

(Ostfeld, et al. 2015) 

Ostfeld et al.s (2015) developed a data-driven evolutionary algorithm for cyanobacteria 

prediction. The model is a combination of model trees and genetic algorithms (GA) that result in 
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a simple set of empirical linear rules. Model trees are decision trees that represent classifiers in a 

tree structure flow chart, and each leaf node holds a piecewise linear function. Numerical 

decision attributes are predicted through the linear functions and an if-then set of rules is formed. 

GAs are algorithms that use natural selection principles to select decision variables that are the 

most “fit,” or the most appropriate, for good modeling results. The model trees are used to solve 

classification problems, while the GAs ensure that the model is optimized.  

 

The model was produced using physical, chemical, and biological data from Lake Kinneret in 

Israel. A sensitivity analysis was done by changing different input variables, the lag time, and 

number of generations to see which components had the highest significance on outputs and 

resulted in the highest correlation coefficients. Several models were created and the model of 

2002-2004 had the best cross-validation correlation coefficient of 0.96. 

 

Other 

(Harris and Graham 2017) 

Harris and Graham (2017) developed a paper to compare 12 unique linear and nonlinear 

regression modeling techniques to predict cyanobacterial abundance. Fourteen years of 

physiochemical water quality data from Cheney Reservoir, a reservoir used for recreation and 

drinking water supply, was used to build and compare models. The data were normalized and 

then compared using an analysis of variance, and then a data partition program was used to select 

a random 75% of the data to train each of the 12 predictive models. The models included, 

ordinary linear regression, partial least squares, elastic net, ANN, MARS, SVM, single trees, 

bagged trees, booted trees, conditional inference trees, random forest, and cubist models.  
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The SVM, random forest, and boosted trees had the lowest root mean square errors. On 

cyanobacterial abundances less than 60,000 cells/mL the SVM performed the best, and on 

concentrations greater than 60,000 cells/mL the random forest and boosted trees models were 

slightly better than SVM. All three models identified reservoir elevation and Chl-a as relatively 

important prediction variables. The cubist model (Quinlan 1993) had low performance for lower 

concentrations but had the overall best performance at predicting cyanobacterial abundances 

greater than 60,000 cells/mL. This model identified elevation and specific conductance as 

important prediction variables. The machine learning models were considered better 

cyanobacterial abundance predictors. However, no models were able to predict the highest 3% of 

cyanobacterial abundance. 

 

(Mellios, et al. 2020) 

Mellios and others (2020) developed and compared a stepwise multiple linear regression model 

and four different machine learning methods to predict cyanobacteria biomass and associated 

risk levels. Each model used data from 822 Northern European lakes and modeled cyanobacterial 

dynamics as a whole. Machine learning models were used because of their ability to learn from 

the data and apply associated patterns to new, unlabeled data. The model goals were to link 

environmental conditions to cyanobacterial concentrations and then assign an associated risk 

level. 

 

Prior to modeling, a correlation matrix was produced to investigate what explanatory variables 

(physiochemical, meteorological, and geomorphological) were correlated with cyanobacterial 
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biomass. Chl-a, total nitrogen, and total phosphorus were determined to be the most correlated 

variables. Then a stepwise multiple linear regression was performed to iteratively add and 

remove variables until an optimized subset was determined. The best linear model produced 

through this process showed low reliability in predicting cyanobacteria concentrations with a 

coefficient of determination of 0.44. A path analysis, which is a technique used to evaluate 

variable relationships, was additionally performed to decompose correlations to interpret the 

effects of each piece and to determine whether the variables had significant relationships with 

each other. 

 

The data for each model were divided into a training (80%) and testing (20%) subset. The four 

machine learning models used included a Decision Tree model, a K-Nearest Neighbors model, a 

Support-vector Machine, and a Random Forest model. The models produced predicted values of 

cyanobacterial biomass. Then the predicted cyanobacterial biomass concentrations were 

converted to biomass cell counts so that an established high, medium, and low risk category 

could be applied using guidelines from the WHO (WHO 2003). Kappa statistics, which are 

correlation coefficients for rating determined through a confusion matrix, along with accuracy, 

determined by percent correct determination of high, medium, and low concentrations were used 

to compare models. The Random Forest model was selected as the best model, and the most 

optimized version of this model had accuracy as high as 95.81%. 

 

Discussion 

This review summarized 34 papers that produced mechanistic or data driven models for harmful 

algal bloom and cyanotoxin predictions in lakes and reservoirs. Of the 34 papers, about 70% of 
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them were trying to predict blooms through cyanobacterial biomass and the other 30% were 

trying to predict cyanobacterial blooms or risk of blooms through predicted cyanotoxin 

concentrations. The majority of the papers (82%) developed data-driven models and no 

mechanistic models were found to predict cyanotoxin concentrations. This unbalance reflects a 

general trend of research away from mechanistic models toward machine learning approaches, in 

part, due to the advent of efficient machine learning algorithms and the advancement of coding, 

but also, it is believed, that there may be an impression that mechanistic modeling has gone as 

far as it can, and that HAB prediction has been a mixed success at best. Of the data-driven 

models, 39% of the models for cyanobacteria biomass prediction were ANN models and the 

SVM and MARS models were the most common models for cyanotoxin predictions (70%).  

 

The selection process for this paper was focused on models that predicted cyanobacterial blooms 

in lakes and reservoirs, rather than those that focused on improving specific mechanisms (e.g., 

growth kinetics). Many of the mechanistic models in this literature search, derived from 

scientific first principles, are produced in laboratory settings for implementation in more 

complete transport and fate models and are not focused on bloom prediction. Thus, these papers 

were removed from consideration through the relevance rating process described in the methods 

section. Compared to the Guven and Howard (2016) review, data-driven models are becoming 

more frequent, likely as a consequence of the growing interest in data science approaches. The 

only data driven models that were reviewed in the Guven and Howard (2006) review were earlier 

generation ANN models in river systems.  
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Mechanistic models are based around differential transport, kinetic, stoichiometric, or other 

equations that are derived through physical, scientific theories. One of the benefits of a 

mechanistic model is that, because it is established on scientific principles, the model can often 

be applied to systems other than that for which the model was calibrated and tested, with success. 

They also produce output parameters, such as rate constants or dispersion coefficients, with 

scientific meaning in relation to the system being modeled. However, often parameters within 

the established equations are hard to measure or obtain independently, which can introduce 

uncertainties into the model itself. In many cases in this review the mechanistic models were 

coupled with other techniques to deal with these uncertainties. Ibelings and others (2003), for 

example, dealt with uncertainties produced by coupling their mechanistic model with fuzzy set 

theory that allowed them to establish high, moderate, and low cyanobacterial bloom risk 

categories. 

 

Machine learning models often use years of observation data for training. The models learn from 

the input data and tune their black box equations automatically to produce optimal prediction 

results. The machine learning methods in this study, that rely on large amounts of data, often 

incorporated many measured parameters as inputs into their models. However, many of the 

articles showed optimization techniques used to select, up to more than 30 input parameters that 

would produce the best output results, while one paper, Xiao and others (2017), showed that 

cyanobacterial blooms could be predicted with a single input parameter. Many of the articles, 

especially those produced by García Nieto and others from 2011-2017, experimented with 

different optimization techniques to produce optimal prediction results, using the same base 

model.  
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The input parameters for the machine learning methods from different authors were very 

different. Some included more than 30 input parameters, some optimized their model by 

removing several redundant parameters, while one model only included a single input parameter. 

It is difficult to compare and contrast the input parameters because they are not synonymous or 

compatible in a way that would make them easy to compare. For example, Teles and 

Vasconcelos (2006) have a set of input parameters, but then split the data by years based on 

availability, split the input parameters to include only physical and chemical, only biological, and 

then all parameters, which ends up being six different models, with different input parameters. 

Many of the models are specific to waterbody conditions, available data, or use a wide array of 

optimization techniques. This makes it nearly impossible to know if the selection of data and 

input parameters for one machine learning method, produced using methods specific to a certain 

lake with certain data, is better or worse than a different model produced under a completely 

different set of conditions. More structure among model training methods may make models 

more comparable and would be beneficial to the field of cyanobacterial prediction models.  

 

Machine learning methods are often beneficial because they are flexible and can incorporate 

whatever data are available into the model for prediction. They are also designed specifically for 

a particular system and can produce very accurate results for that system. A machine learning 

method may be able to produce better results for a specific lake than a mechanistic approach 

because of the individualistic design approach. However, being designed for one specific system 

is also a disadvantage as it makes the model of less value to systems other than that for which the 

model is trained, unlike a mechanistic model. These models also require large amounts of data to 
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be successful and often produce results that are less expressive than mechanistic models because 

they are just producing a fit to observational data and may be less reliable for forecasting. Many 

of the papers that produced machine learning models concluded that bloom occurrence in each 

lake or reservoir is governed by different environmental factors and creating a universal model is 

nearly impossible (Ahn, et al. 2011).  

 

Ultimately, biomass response in different water bodies can be highly variable, and each 

waterbody may need to have its own prediction model developed (Xu, et al. 2020). However, 

even though tailored machine learning models are useful for the system they are trained on 

during a specific time period, systems can change over time and render that model obsolete for 

future times under different climate and loading conditions, changes that could be captured in a 

mechanistic model. One option that in increasingly used in climate and weather prediction is one 

where a mechanistic model is used for setting up a structure for downscaling a data driven 

modification for a system. This hybrid approach was not specifically addressed in the articles 

reviewed here. However, one article (Ibelings, et al. 2003) hinted at a hybrid model combining 

mechanistic models with fuzzy logic to fill the gaps. 

 

Summary and Conclusion 

Cyanobacteria are organisms capable of thriving in various environmental conditions in lakes 

and reservoirs. They are versatile, adaptable, and can flourish under the right conditions, 

producing harmful algal blooms (HABs) that negatively affect aquatic life and water quality in 

ecosystems. These cyanobacterial blooms can deplete the waterbody of oxygen, outcompete 

other phytoplankton species, and produce toxins that have negative health effects on competitors 
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and predators in the waterbody, as well as other life, including animals and humans, that use the 

waterbody for irrigation, recreation, or public water supply. 

 

Decades of research to better understand cyanobacteria and their effects on aquatic ecosystems 

has resulted in a number of models that can accurately predict the timing of blooms and numbers 

or biomass of cyanobacteria, though models of cyanotoxin production have not been as well 

researched or successful. This paper represents a comprehensive literature review of existing 

models that have been developed to predict harmful algal blooms in lakes and reservoirs since 

about 2003. After an initial literature search seeded with keywords from previous research, 1150 

articles were reviewed for inclusion in a preliminary database based on relevance to prediction of 

cyanobacteria or cyanotoxins under Utah lake and reservoir conditions. After several reading and 

relevance rating cycles, 34 articles with methods and models that were used to predict 

cyanobacteria and cyanotoxins were included in this review. The models discussed were 

developed to either predict cyanobacterial biomass or cyanotoxin concentrations in actual lakes 

and reservoirs. Most of the models (28) discussed in this review were data driven while only a 

small number (six) were mechanism-based, reflecting a change in research emphasis from prior 

to 2003. In addition, a majority of the model articles found were concerned with predicting 

cyanobacteria abundance or dominance, while only a small number were for predicting 

cyanotoxin production. 

 

The data driven models require large amounts of data and are usually produced to be specific to 

one waterbody or relatively homogeneous group of waterbodies. The mechanistic models are 

developed with a scientific approach that allows them to be used for other systems with the 



 65 

advantage that the process of calibration may reveal the importance of the various input variables 

and give scientific meaning to parameter estimates. The best of these models, generally ANN or 

SVM, were able to explain up to 96% of the variance of cyanobacteria concentrations, though 

cyanotoxin prediction accuracy was significantly lower. 

It is important to review past work so that future work can be optimized, and mitigation and 

prediction can be improved. Research must be advanced in this area so that our water resources 

can be protected from the harmful effects that cyanobacterial blooms create. This review updates 

the state of the practice of HAB modeling, based on previous work by Guven and Howard 

(2006), and will hopefully provide a basis for the next generation of models for mitigating the 

negative effects of excess HABs. 

Recommendations 

On the basis of this work, guidelines used to select articles should be more systematically created 

to filter articles earlier in the process. As it was, more than 50% of the initial set of over 1200 

articles from the on-line search survived the second round of review, while the final group had 

only 34 articles. A clearer end goal in terms of the information incorporated into the final report 

would be beneficial when creating guidelines, allowing more specific factors or keywords (not 

only inclusive but exclusive, the second of which could have been better developed) to be 

identified to better sort and optimize article selection. Having a clear end goal would allow for 

articles that were not beneficial to be removed from the stack earlier in the process. This would 

help in circumventing the time-consuming aspect of reading abstracts and articles multiple times. 

It is also recommended that multiple search engines be used to ensure a more comprehensive 

aggregation of articles are found and analyzed. It would also be beneficial to include articles not 



 66 

written in English, as possibly beneficial articles were not included because there was no 

available copy of them in English. 

 

Future work could delve into mechanistic pieces of models (e.g., kinetics, growth, toxin 

production, etc.) developed in laboratory settings and determine beneficial applications to lake 

and reservoir modeling as laboratory modeling was not included in this work. It would be 

beneficial for future work to focus on models that could be applicable across a wide range of 

waterbodies instead of overly specific to a single site. It would be useful if standard procedures 

or techniques were created in cyanobacterial modeling to make the process more cohesive 

between models and between ecosystems as well as comparable from model to model. Currently, 

the way the models are produced with different parameter optimization techniques, using the 

available data rather than the most useful data, removing or adding parameters based on arbitrary 

parameter limits or best exiting correlations, etc. leaves confusion about which parameters were 

the most beneficial to the model and if that has any scientific comparison. Another 

recommendation would be that future studies focus to better compare model input parameter 

between models and then determine how often different parameters were of interest (e.g., N, P,  

water temperature, etc. were good predictor parameters in a certain percentage of models 

produced) and determining if those parameters were different among waterbodies differing in 

depth, tropic status, elevation, etc. 

 

Engineering Significance 

This review was undertaken for two purposes. Foremost was to update the last comprehensive 

review of cyanobacterial bloom modeling efforts over the past two decades and provide a 
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compilation that engineering practitioners can use to learn about up-to-date modeling efforts and 

easily find the references for those efforts. Second, it is hoped that future modeling efforts can 

start with this report and build on those models reported on here. This will hopefully prevent 

others from repeating previous work or “reinventing the wheel” and will advance the goal of 

predicting, mitigating, and understanding HABs.  
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Appendices  

Appendix A – Important Key Words 

Important Keywords 

Cyanotoxins Growth Modelling Freshwater 

Cyanobacteria Growth Limitation Modeling Toxins 

Cyanobacterium Growth Relationship Mathematical Models Toxicity 

Cyanobacterial Bloom Growth Rates Monitoring Toxin Production 

Bloom Growth Kinetics Lakes Harmful Algal Bloom 

Predicting Blooms Growth Inhibition Reservoirs Microalgae 

Causes of Bloom Algae Phytoplankton Green algae 

Epilithic Cyanobacteria Algal Bloom Zooplankton Blue Green Algae 

Benthic Cyanobacteria Algae Blooms Photosynthesis Cylindrospermopsin 

Cyanobacterial Growth Algal Concentration Water Quality Anabaena 

Cyanobacterium Growth Nuisance Algae Water Quality Management Aphanizomenon 

Toxic Benthic Cyanobacteria Harmful Algae Microcystins Dolichospermum 

Cyanobacteria Monitoring Epiphytic Algae Microcystis Heterocysts 

Limnology Nutrients Water Temperature Nodularin 

CyanoHABs Nitrogen Temperature Prediction 

Cyanophytes Nitrates Chlorophyll Predictive Power 

Eutrophication Phosphorus Forecasting Predictive Success 

Freshwater Eutrophication Model Lake Eutrophication  

 

  



 75 

 

  

Appendix B – Article Database and Selected Articles 

The following link is associated with a google sheet with the entire article data base (Sheet 1 – 

All Articles) and the 34 articles found summarized in this report (Sheet 2 – Selected Articles). 

 

https://docs.google.com/spreadsheets/d/1fuHx9smoJsb7Bj12FFabsV9yROlmt8i_yJaaYUCNLao/

edit#gid=0 

 

  

https://docs.google.com/spreadsheets/d/1fuHx9smoJsb7Bj12FFabsV9yROlmt8i_yJaaYUCNLao/edit#gid=0
https://docs.google.com/spreadsheets/d/1fuHx9smoJsb7Bj12FFabsV9yROlmt8i_yJaaYUCNLao/edit#gid=0
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Appendix C – Acronyms and Abbreviations 

ABC Artificial Bee Colony 

AGM Adaptive Grey Model 

AICc Corrected Akaike Information Criteria 

ANN Artificial Neural Network 

BIC Bayesian Information Criterion 

BP-ANN Back-Propagation Neural Network 

BRT Boosted Regression Tree 

CCA Canonical Correspondence Analysis 

Chl-a Chlorophyll a 

DE Differential Evolution 

DEQ Department of Environmental Quality 

DIC Dissolved Inorganic Carbon 

DYRESM- 

CAEDYM 

Dynamic Reservoir Simulation Model-  

Computational Aquatic Ecosystem Dynamics Model 

ELM Extreme Learning Machine 

GA Genetic Algorithm 

GAM Generalized Additive Model 

GLMM Generalized Linear Mired Model 

GP Genetic Programming 

GRNN Generalized Regression Neural Network 

HABs Harmful Algal Blooms 

HALs Health Advisory Levels 

HEA Hybrid Evolutionary Algorithm 

MARS Multivariate Adaptive Regression Spline 

MLP Multilayer Perceptron 

NLA National Lake Assessment 

PSO Particle Swarm Optimization 

RD Rough Decision 

SOM Self-Organizing Map 

SVM Support Vector Machine 

SVR Support Vector Regression 

TI-TP Diatom-Inferred Total Phosphorus 

UDEQ Utah Department of Environmental Quality 

WA:SA Watershed Area to Lake Surface Area 

WHO World Health Organization 

WNN Wavelet Analysis Artificial Neural Network 
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