Novel approach for sex identification in equine forensic samples using PCR amplification

Jessica Felts, Miriam Laker, and Dr. Lee Rickords

Department of Animal, Dairy, and Veterinary Science, Utah State University, Logan, UT 84322

Introduction & Background

- Importance of sex determination
 - Determine sex of preimplantation stage embryo biopsies in IVF/embryo transfer
 - Prenatal sex identification and fetal tissue biopsies of the developing fetus¹
 - Study developmental differences between individual embryos²
 - "Correct allocation of export refunds"³ and slaughter of correct gender for religious beliefs³
 - Population ecological studies, lab sample controls, archeology, and various forensic uses⁴
- DDX3 mammalian gene
 - ATP-dependent RNA helicase: involved in altering structure of RNA⁵, functions as transcriptional regulator⁵, involved in nuclear export of retroviral RNA⁵
 - Ubiquitous in all mammalian species, found on X- and Y-chromosomes
 - Y-chromosome homolog contains unique deletion and insertion regions

Purpose, Objectives, and Process

- Purpose: design a primer pair with build in PCR control, verify with equine DNA samples and PCR assay
- Objectives:
 - Create alternative means of detecting sex in equine embryos and forensic samples
 - Design a primer pair that contains a built-in control for PCR amplification
 - Contribute to genetic understanding of X- and Y-chromosomes
- Involved process:
 - 1. Design primer pair
 - 2. Collect equine blood samples and extract DNA
 - 3. Conduct PCR assay
 - 4. Conduct gel electrophoresis for qualitative evaluation

Human-Equine Alignment

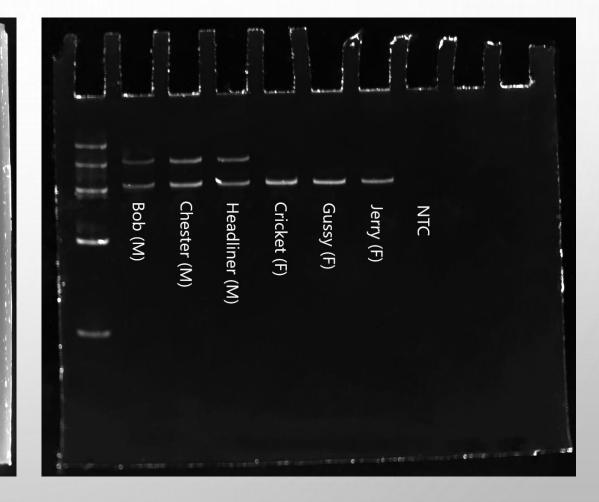
CLUSTAL 2.1 multiple sequence alignment

ref NC 000024.10 12914495-129 H-Y	TCAAGGGCATTTAGAACCCTTTGTCATCTGTTAATATTCAGAAATGATAA
gb KP686224.1 1598-1996 E-DDX	3Y
ref NC 000023.T1 41343690-413H-X	TCTGTTTAAAAGTAATGAGCAGGATTTG
ref NC_009175.3 34841590-3484 E-X	GTAGATTTTTCTGTGGTTGAGTAAATATG

GCCAGTGTTTTGTTTTCAGGATCTGGGAAAACTGCAGCATTTCTTTT	1CC
AAAACTGCGGCATTTCTTTT	SCC
TTTGTTTGTTTTTGAACAGGGTCTGGAAAAACTGCAGCATTTCTGTT	SCC
CTTTCTCTTAAAACAGGGTCTGGAAAAACTGCAGCATTTCTCTT	SCC
****** *********	**

CATACTGAGTCAGATATATACAGATGGTCCAGGAGAAGCTTTGAAGGCTG CATCTTGAGTCAGATTTATACAGATGGTCCAGGCGAGGCTTTGAAGGCTG CATCTTGAGTCAGATTTATTCAGATGGTCCAGGCGAGGCTTTGAGGGGCCA CATCTTGAGTCAGATTTATTCAGATGGTCCAGGCGAGGCTTTGAGGGGCCA

TGAAGGTAAAGGTTTTGTTATAAAATCAGACATTTTTGTTTTAAAAAGCT TGAAGGTAAAGATTTCTTTATAAAATAAGT--TTTTCCTTTGAAAAAGTT TGAAGGTAGATGTTTCTTTATAAAATGGGAAATT--GT----AGAACT TGAAGGTAAATATTTCTTTAAAAAGTGGGAAATTATTGT----AGAGCT *******


ref|NC_000024.10| 12914495-129 gb|KP686224.1| 1598-1996 ref|NC_000023.11| 41343690-413 ref|NC_009175.3| 34841590-3484

ref|NC_000024.10| 12914495-129 gb|KP686224.1| 1598-1996 ref|NC_000023.11| 41343690-413 ref|NC_009175.3| 34841590-3484

ref|NC_000024.10| 12914495-129 gb|KP686224.1| 1598-1996 ref|NC_000023.T1| 41343690-413 ref|NC_009175.3| 34841590-3484

Results & Discussion

 Non Nomen (M) Mary (F) Macey (F) Mable (F) Justine (F) Justine (F) Jurry (F) IB (F) Hummer (F) Gussy (F) Gussy (F) Cricket (F) Chester (M) Buck (M) Blue (M) Blue (M) Cric (F) Blue (M) Cric (F) Blue (M) Cric (F) Cric (F) Cric (F) Chester (F) Chest	l .																				
												He									
Trigge Tomm Tomm Spoor Sunr Sunr Sunr Sang Prest Phoen Phoen C		-	fer t			120			0	0	((<u> </u>		60		57. 		
er (M) sss (F) 27 (F) 28 (F) 27 (F) 2	111	Otie (F)	Pepper (F)	Phoenix (F)	Pixie (F)	Preston (F)	Riley (F)	Roxanne (F)	Ruby (F)	Sangria (F)	Special (F)	Spoonin (F)	SUe (F)	Sunny (M)	SV 127 (F)	SV 980 (F)	Tally (F)	Tess (F)	Tommy (M)	Trigger (M)	

Conclusion & Future Research

- Gel electrophoresis showed confirmation of hypothesis – novel primers can accurately be used to identify sex in equine samples
- Future research:
 - qRT-PCR assay and quantitative melting curve analysis of novel primers
 - Compare and align DNA sequences of multiple species – study conservation of gene sequence

Pongo abelii isolate Susie chromosome X, Susie_PABv2, whole genome shotgun sequence Sequence ID: <u>NC 036926.1</u> Length: 151242693 Number of Matches: 2

Range 1	1: 12381442 (0 123818	398 GenBank Gr	raphics		Next Matc	h A Previous	Match
Score 244 bit	s(132)	Expect 2e-64	Identities 362/471(77%)	Ga) 24	^{ps} /471(5%)	Strand Plus/Minus		
Query	162719539	ggctgc	ggctgcggctgcg	gactgcgact	cctgctgcggt	ggctcctcctgct	ctggctcc	162719598
Sbjct	12381898	GGCTCC	Geetecoccocc	TCCTGCGGCT	CCGGCT-CC	Gereccedec	CCGGCTGC	12381842
Query	162719599	AGGGGC	CCGGACTGTGGT-	-CCTTTCT	TCTTCTACTGG	GTGAACTGCGCCT	CTCACGAC	162719655
Sbjct	12381841	GGTC	CCTG-CTGCGGT	CCCTATTTCT	TCCTCTGCTTC	GTGAATTGTGCCT	CTCCCGAC	12381785
Query	162719656	TCTT-C	AT-TCCATATCTC	GTGAGATTTC	TTCACCCTGTG	PCTGCTACTGCTC	TTCCTGTC	162719713
Sbjct	12381784	TCTTTG	ATGTGCGT-T-TC	GTGAGATTTC	TTCCCCCTGTG	ACTACTCCTT	TTCCTCTC	12381730
Query	162719714	AGACTC	GCCATTTCTCTT	GTAG-AAG	TCGGGACTCGG	Getectecte	ctcctTGA	162719770
Sbjct	12381729	GGATTC	CCCATTTCTTTT	GTAGGAGTGG	TCTGGACTAGG	GTTTCTCCTTCCC	C-GC-AG-	12381673
Query	162719771	CCTGCC	ATAGTATTCATC	ATAGTGACTG	GCCCTTTCCCT	CCTCTCTGAATTC	TTACCGAA	162719830
Sbjct	12381672	CCTGCT	GTAGTAGTCGTC	GTGGTGGCCC.	ATCCTCTCCCT	CCTTTCGGAGTTC	TTCCCAAA	12381613
Query	162719831	GGAGGA	GCTAGTCCAATC	TGGAGACGGG	TAGAGGTCTCT	ATTAGCGTCCCTA	TATTCATT	162719890
Sbjct	12381612	GGAGGA	GCCAGTCCGATC	TGGAGACAAG	TAGATGTCTCT	ATTAGCTTCCCAG.	AATTCATT	12381553
Query	162719891	GTTGGG	ATTTCTGAACACO	GTGAAGAAAG	TTGCAGTGCTT	FCCTCTTGGACAC	TGCTGGAC	162719950
Sbjct	12381552	ATTGGG	ATTTCTGAACAC	ATGAAGAAAG	TTGCAGTGCTT	TCCTCTTGGACAT	TGTTGTAT	12381493
Query	162719951	TTCAAA	TAAGCCTGTAAGC	GGCA-AGTGA	-GAGGCAGCAA	TTACCACTGTAT	162719999	Э
Sbjct	12381492	TTCAAA	TAAACCTGCAAT	GGCACAGTGA	TGAAATAGCAC	TTATCACTGCAT	12381442	

Example pairwise alignment: ZRSR2 gene, X-chromosome; Pongo abelii (Sumatran orangutan) and *Mus musculus* (common house mouse)

References

- Da cruz, A., Silva, D., Costa, E., De m-jr., P., Da silva, C., Silva, D., & Da cruz, A. (2012). Cattle fetal sex determination by polymerase chain reaction using DNA isolated from maternal plasma. *Animal Reproduction Science*, 131, 49-53. doi:https://doi.Org/10.1016/j.Anireprosci.2012.02.004
- Pomp, D., Good, B. A., Geisert, R. D., Corbin, C. J., & Conley, A. J. (1995). Sex identification in mammals with polymerase chain reaction and its use to examine sex effects on diameter of day-10 or -11 pig embryos. *Journal* of Animal Science, 73(5), 1408–1415. https://doi.Org/10.2527/1995.7351408x
- Gokulakrishnan, P., Kumar, R. R., Sharma, B. D., Mendiratta, S. K., & Sharma, D. (2012). Sex Determination of Cattle Meat by Polymerase Chain Reaction Amplification of the DEAD Box Protein (DDX3X/DDX3Y) Gene. Asian-Australasian Journal of Animal Sciences, 25(5), 733–737. https://doi.Org/10.5713/ajas.2012.12003
- Peterson, E. K. (2020). Novel polymorphisms of ZRSR2 and GPM6B gene homologs and their use in sex identification of bovine and porcine species (Master's thesis, Utah State University, 2020) (pp. 1-103). Logan, UT: Utah State University.
- 5. DHX9 DExH-box HELICASE 9 [Homo Sapiens (human)] gene NCBI. (2021, February 7). Retrieved February 11, 2021, from https://www.Ncbi.Nlm.Nih.Gov/gene?Db=gene&cmd=showdetailview&termtosearch=1660