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Behavioral/Cognitive

Catecholamine-Mediated Increases in Gain Enhance the
Precision of Cortical Representations
Christopher M. Warren,1,2 Eran Eldar,3 Ruud L. van den Brink,1,2 Klodiana-Daphne Tona,1,2 Nic J. van der Wee,2,4

X Eric J. Giltay,4 Martijn S. van Noorden,4 Jos A. Bosch,5,6 Robert C. Wilson,7 Jonathan D. Cohen,8,9

and Sander Nieuwenhuis1,2

1Department of Psychology, Leiden University, 2333 AK Leiden, The Netherlands, 2Leiden Institute for Brain and Cognition, Leiden University, Leiden,
2300 RC Leiden, The Netherlands, 3Welcome Trust Centre for Neuroimaging, University College London, London WC1N 3BG, United Kingdom,
4Department of Psychiatry, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands, 5Department of Clinical Psychology, University of
Amsterdam, 1018 XA Amsterdam, The Netherlands, 6Mannheim Institute of Public Health, Heidelberg University, 68167 Mannheim, Germany,
7Department of Psychology, University of Arizona, Tucson, Arizona 85721, and 8Department of Psychology and 9Princeton Neuroscience Institute,
Princeton University, Princeton, New Jersey 08540

Neurophysiological evidence suggests that neuromodulators, such as norepinephrine and dopamine, increase neural gain in target brain
areas. Computational models and prominent theoretical frameworks indicate that this should enhance the precision of neural represen-
tations, but direct empirical evidence for this hypothesis is lacking. In two functional MRI studies, we examine the effect of baseline
catecholamine levels (as indexed by pupil diameter and manipulated pharmacologically) on the precision of object representations in
the human ventral temporal cortex using angular dispersion, a powerful, multivariate metric of representational similarity (precision).
We first report the results of computational model simulations indicating that increasing catecholaminergic gain should reduce the
angular dispersion, and thus increase the precision, of object representations from the same category, as well as reduce the angular
dispersion of object representations from distinct categories when distinct-category representations overlap. In Study 1 (N � 24), we
show that angular dispersion covaries with pupil diameter, an index of baseline catecholamine levels. In Study 2 (N � 24), we manipulate
catecholamine levels and neural gain using the norepinephrine transporter blocker atomoxetine and demonstrate consistent, causal
effects on angular dispersion and brain-wide functional connectivity. Despite the use of very different methods of examining the
effect of baseline catecholamine levels, our results show a striking convergence and demonstrate that catecholamines increase the
precision of neural representations.

Key words: catecholamine; dopamine; fMRI; norepinephrine; perception; psychopharmacology

Introduction
In vivo and in vitro cell recordings indicate that the neuromodu-
lators norepinephrine and dopamine increase the responsivity of
neurons in target brain areas to both excitatory and inhibitory
inputs (Berridge and Waterhouse, 2003; Winterer and Wein-

berger, 2004). An influential theory of catecholamine function
proposes that this property of norepinephrine and dopamine
allows them to perform the key computational function of gain
regulation, thus tuning neural network dynamics to optimize
processing in a given context (Servan-Schreiber et al., 1990;
Aston-Jones and Cohen, 2005). Several theoretical analyses have
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Significance Statement

Norepinephrine and dopamine are among the most widely distributed and ubiquitous neuromodulators in the mammalian brain
and have a profound and pervasive impact on cognition. Baseline catecholamine levels tend to increase with increasing task
engagement in tasks involving perceptual decisions, yet there is currently no direct evidence of the specific impact of these
increases in catecholamine levels on perceptual encoding. Our results fill this void by showing that catecholamines enhance the
precision of encoding cortical object representations, and by suggesting that this effect is mediated by increases in neural gain,
thus offering a mechanistic account of our key finding.
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suggested that increases in catecholamine-mediated gain should
enhance the quality of neural representations. For example,
increasing the gain of all units in a neural network results in
improved signal-detection performance of the network (Servan-
Schreiber et al., 1990). Likewise, Bayesian theories of brain func-
tion indicate that increasing neural gain should narrow the
posterior distribution representing the brain’s perceptual inter-
pretation of incoming information (Knill and Pouget, 2004; Ma
et al., 2006; Friston, 2009). However, direct empirical evidence
for an effect of catecholamine-mediated gain on the precision
of neural representations in human subjects has never been
reported.

We tested the relationship between pupil-linked and pharma-
cologically induced changes in catecholamine-mediated gain and
precision using a powerful, multivariate metric of representa-
tional similarity (Schurger et al., 2010, 2015) to quantify the pre-
cision of cortical object representations in human neuroimaging
data. In two studies we used functional MRI (fMRI) to measure
brain activity while participants categorized monochromatic,
isoluminant pictures of houses, faces, and scissors. For each stim-
ulus, we determined the spatial pattern of neural activity in the
ventral temporal cortex, where category-specific information is
represented (Haxby et al., 2001). Treating these patterns of acti-
vation as vectors projecting into representational space enabled
us to quantify the variability in neural representation across trials
as the angular dispersion of the vectors (the degree to which they
point in different directions). This measure (also referred to as
angular deviation) is optimal for characterizing the spread of
points in representational space (Fisher et al., 1987) and controls
for global activation differences (Schurger et al., 2010, 2015). We
focused on the effect of neural gain on within-category angular
dispersion, measuring the precision of patterns of neural activity
across different exemplars and instances of the same category.
However, we anticipated that catecholamine-mediated changes
in neural gain might also have an impact on the relationship
between patterns of activity across distinct categories of informa-
tion. In general, we hypothesized that increased gain would be
associated with lower angular dispersion, and thus enhanced pre-
cision, of object representations.

To formalize our hypothesis and generate clear-cut predic-
tions, we used a simple neural network model to determine how
same-category and distinct-category angular dispersion should
change with increasing gain. Below, we first report the model
simulation results. Then we present empirical results from 48
participants across two studies, demonstrating that the precision
of object representations in the ventral temporal cortex is directly
related to catecholamine-mediated changes in gain as assessed by
pupillometry (Aston-Jones and Cohen, 2005; Eldar et al., 2013;
Murphy et al., 2014; Varazzani et al., 2015; Joshi et al., 2016), and
as manipulated pharmacologically using the norepinephrine
transporter blocker atomoxetine (Bymaster et al., 2002; Swanson
et al., 2006; Koda et al., 2010; Kielbasa et al., 2015).

Pupil diameter and atomoxetine are typically associated with
noradrenergic activity. However, there is a wealth of evidence that
throughout the cortex noradrenergic terminals corelease dopamine,
which acts on dopamine receptors that are also spread throughout
the cortex (Devoto and Flore, 2006). Thus, pupil diameter may also
index dopaminergic activity. Furthermore, in cortical areas, the nor-
epinephrine transporter is responsible for the reuptake not only of
norepinephrine but also of dopamine (Devoto and Flore, 2006).
Thus, by blocking norepinephrine, norepinephrine transporter
blockers must increase both norepinephrine and dopamine levels

throughout the cortex, a prediction borne out by available data (By-
master et al., 2002; Devoto et al., 2004).

Materials and Methods
Simulation. To simulate the effect of neural gain on the representation of
stimuli that belong to different categories, we modeled a 100-unit neural
network, set up to represent two categories of stimuli, and examined its
response to individual exemplars from each category. Network units
were fully interconnected, and the activation of each unit was computed
as follows:

ai � tanh�gain�
j

wi, jaj � ��
where wi,j is the connection weight between unit i and unit j, � is Gaussian
noise with SD 5, tanh describes the sigmoidal-shaped activation function
relating the unit’s net input to its output, and the gain parameter influ-
ences the slope of the activation function. Network weights were set so as
to create two attractors m 1 and m 2, each representing a category of
stimuli, as follows:

wi, j �
mi

1mj
1 � mi

2mj
2

500000

Setting the weights thus, in a manner that resembles Hebbian learning
(Hebb, 1949), ensures that the energy function of the network is mini-
mized by the attractor states, and thus the network naturally tends to
return to these states (Hopfield, 1982, 1984). All self-connections (wi,j)
were set to 0. Both m 1 and m 2 were constructed by setting 50 units to 1
and 50 units to �1, and the similarity between m 1 and m 2 was manipu-
lated along the continuum between completely identical to completely
orthogonal.

Input represented individual exemplars of each category. Thus, 1000
input patterns were created for each category by taking either m 1 or m 2

and redrawing five randomly selected units. On each trial, unit activa-
tions were initialized to one of the input patterns and then all activations
were updated asynchronously in a random order for five iterations. We
then measured the angular dispersion of the end-state activations be-
tween pairs of trials in which inputs were of the same category (i.e., inputs
were variants of the same attractor), as well between pairs of trials in
which inputs were of distinct categories (i.e., inputs were variants of
different attractors), as a function of gain and the level of overlap between
categories (i.e., the similarity between the two attractors).

Participants. Twenty-seven healthy volunteers (19 females; mean �
SD: age, 22.1 � 2.4 years; range, 18 –28 years) were recruited for the
pupil study. Three participants were excluded because half or more of
the 14 blocks yielded insufficient artifact-free pupil data. Twenty-five
healthy volunteers (15 females; mean � SD: age, 22.0 � 1.7 years;
range, 19 –26 years) were recruited for the atomoxetine study. One
participant experienced nausea beginning �1 h and 15 min after drug
intake. The participant was able to complete the task, but the data
were nonetheless discarded because of concerns that the nausea had
influenced the results. Participants in the atomoxetine study were
screened by a medical doctor for physical health, drug contraindica-
tions, standard contraindications for MRI research, and other exclu-
sion criteria, including the following: current use of prescription
medication, a history of psychiatric illness, cardiovascular disease,
renal failure, hepatic insufficiency, glaucoma, head trauma, hyperten-
sion, and drug or alcohol abuse. Participants with learning disabili-
ties, poor eyesight (severe myopia of �6 diopters or worse), who
smoked �5 cigarettes a day, who were pregnant, or who were left-
handed were also excluded. Participants who took part in the pupil
study were paid €30. Participants who took part in the atomoxetine
study were paid €135. All participants gave informed consent.
Both studies were approved by the Leiden University medical ethics
committee.

Procedure. Participants categorized pictures of houses, faces, and scis-
sors, taken from the set used by Haxby and colleagues (2001). All stimuli
were monochromatic, 200 � 200 pixels in size, and presented on a gray
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background. Stimuli images, fixation cross, response screen, and feed-
back images were processed by a Matlab toolbox (Mathworks; Willen-
bockel et al., 2010) to make them isoluminant to each other. Stimuli were
presented with the lights off, at an average rate of one per 8 s and con-
sisted of five exemplars from each category, pulled randomly for each
participant from a larger group of 12 exemplars each. In Study 2, five new
exemplars of each category were randomly selected without replacement
for the second session so that no exemplar was repeated between sessions.
A trial began with a fixation cross presented for a duration that varied
between 4000 and 6000 ms, followed by the picture for 1500 ms, and then
a response screen for 1500 ms. If participants made an incorrect response
or failed to respond, feedback appeared for 500 ms to indicate the error.
When feedback was presented, fixation time was cut by 500 ms so as not
to disrupt the rate of stimulus presentation. Participants were told to
answer with their right hand using a button box strapped to their leg, and
to respond only during the response screen, not before or after. The
mapping of buttons to categories was shown on the response screen and
was consistent throughout the entire experiment, but counterbalanced
across participants. Each block consisted of 15 trials, with all stimuli
presented once in random order. There were two runs of seven blocks
each in the pupil study, and two runs of five blocks each in the atomox-
etine study. There was no break between blocks, but between runs there
was a short break, during which researchers briefly queried the partici-
pant on their well-being and task engagement.

The atomoxetine study followed a randomized, double-blind design.
Atomoxetine and placebo were administered in separate test sessions,
spaced 1 week apart, scheduled at approximately the same time of day.
Atomoxetine was administered orally as a single, encapsulated, 40 mg
pill, with a glass of water. A starting dose of 40 mg is used in clinical
practice, and is a dose associated with limited side effects (Heil et al.,
2002). Aside from its effect on catecholamine levels, atomoxetine can also
act as an NMDA receptor blocker (Ludolph et al., 2010). The placebo
consisted of 125 mg of lactose monohydrate with 1% magnesium stear-
ate, encapsulated, and identical in appearance to the drug. The pill was
administered �1 h and 40 min before the participants were put into the
scanner, and 1 h and 55 min before the first block of trials began.

Salivary cortisol is a reliable index of arousal/stress (Buchanan et al.,
1999; Bosch et al., 2009). Catecholaminergic drug effects are known to
interact with baseline levels of arousal (Coull, 2001; Sikström and Söder-
lund, 2007). With this in mind, we obtained saliva samples four times per
session, beginning immediately before taking the pill (t � 0), at t � 80, at
t � 140, and at t � 220 min after pill ingestion.

fMRI data acquisition and preprocessing. All fMRI scans were acquired
using a Philips Achieva 3 tesla scanner at the Leiden University Medical
Center in Leiden, The Netherlands. An EPI scan with 38 transverse slices
covering the whole brain was employed in descending order, with a TR of
2.2 s, TE of 30 ms, a flip angle of 80°, a 220 mm field of view, and a voxel
resolution of 2.75 � 2.75 � 2.75 mm (�10% slice gap). The first five
volumes were discarded to remove magnetic disequilibrium effects.
Structural images were acquired using a T1-weighted sequence with a TR
of 9.8 ms, a TE of 4.60 ms, a flip angle of 8°, a 224 mm field of view, and
a voxel resolution of 0.875 � 0.875 � 1.2 mm. All data were processed
using Matlab (Mathworks) and SPM8 (Wellcome Trust Centre for Neu-
roimaging, University College London). EPI images were realigned to the
first image of the session (no participant exhibited motion of �2 mm),
and slice time was corrected to the center slice. Brain images were coreg-
istered with the mean functional image, segmented into gray matter,
white matter, and CSF, and then normalized to Montreal Neurological
Institute (MNI) space. Functional images were then normalized using
the same parameters as the structural images. No spatial smoothing was
applied.

Heart and breathing rate. In Study 2, because of the known effect of
atomoxetine on heart rate, we monitored heart rate and breathing rate
using a pulse oximeter and a respiration belt provided as accessories with
the MRI scanner. Physiological data were exported to Matlab (Math-
works) and down-sampled from 500 to 100 Hz. The pulse oximetry time
series was smoothed using a finite impulse response bandpass filter (0.6 –
2.0 Hz), and the respiration time series was low-pass filtered using a 1 Hz
cutoff. Peaks in each time series, which correspond to maximal expan-

sions of the lungs in the respiration time series, and maximal local blood
oxygenation in the pulse time series were detected using the peakdet
function with a delta value of half the SD of the respective time series.
Breathing and heart rates were both quantified as peaks per minute.

Because the results do not directly address our key questions, we report
the results here. We ran ANOVAs of mean breathing rate and mean heart
rate recorded over the course of the two scan sessions. The breathing rate
(breaths per minute) for the atomoxetine group (M � 32.1) and placebo
group (M � 31.0) was nearly the same (F(1,22) � 0.46, p � 0.50). There
was no interaction between treatment and treatment order (F(1,22) �
3.04, p � 0.10). Heart rate (beats per minute) was somewhat higher in the
atomoxetine group (M � 66.1) than in the placebo group (M � 62.5),
but this effect was not robust (F(1,22) � 3.36, p � 0.08). There was no
interaction between treatment and treatment order ( p � 0.91).

Saliva sample collection and processing. Whole saliva was collected us-
ing the spitting method, which involves allowing participants to let saliva
collect passively on the floor of their mouth over a 3 min period, inter-
rupted by spitting the accumulated saliva into a polypropylene tube every
minute (Navazesh, 1993). Samples were frozen at �60°C until process-
ing. Samples were thawed and homogenized using a Vortex mixer, and
centrifuged at room temperature for 4 min at 4000 � g. The clear super-
natant was assayed using a competitive enzyme-linked immunosorbent,
according to the manufacturer’s instructions (IBL International), with a
sensitivity of 0.45 ng/ml, and an intra-assay variability of 2.2%. All sam-
ples of the same participant were run simultaneously.

Pupil diameter recording and preprocessing. Pupil diameter was re-
corded using an MRI-compatible Eyelink 1000 eye tracker (SR Research)
at a sampling rate of 500 Hz. Samples with artifacts were identified using
a slope criterion, whereby any sample-to-sample change of �150 pixels
was eliminated, as were periods where tracking of the pupil was briefly
lost (due to blinks or large eye movements). Pupil diameter was assessed
in pixels, during the 2 s window of time preceding stimulus onset (giving
�5 s for the phasic dilation from the previous trial to subside). Only trials
for which at least half the assessment epoch contained no artifacts were
included. A block was only included if at least half of the trials (�8 of 15)
yielded sufficient, artifact-free pupil data (Eldar et al., 2013). For in-
cluded participants, on average 1.1 of the 14 blocks were excluded from
analysis (8%; SD � 13%; range: 0% excluded for 14 of 24 participants;
0 –29% for 22 of 24 participants; 47% for 2 of 24 participants). For
included blocks, an average of 1.6 trials per block were excluded (10.1%;
SD � 0.3%; range: 2–9% excluded for 6 of 24 participants; 9 –12% for 12
of 24 participants; 12–17% for 6 of 24 participants).

Angular dispersion analysis. Patterns were taken from volumes at the
peak of the stimulus-driven hemodynamic response (�6 after stimulus
onset) and, using MNI masks included with the MarsBaR toolbox (Brett
et al., 2002), restricted to the ventral temporal cortex (Haxby et al., 2001).
Patterns representative of trial-baseline activity were taken from volumes
at stimulus onset. The masks employed included the left and right infe-
rior temporal cortex, the left and right middle temporal cortex, and the
left and right fusiform gyrus. This resulted in vectors with 6695 voxels.
The time series for each voxel within each run were z-scored separately.
To have masks that were the exact same in all conditions, across all
sessions and participants, no dimensionality reduction was done. The
drawback of this decision is that including uninformative voxels resulted
in mean angular dispersion values very close to perfect decorrelation.
Nonetheless, the metric was able to distinguish between same-category
and distinct-category comparisons, and was sensitive to gain in two stud-
ies. Furthermore, very similar effects were obtained using different meth-
ods of determining the mask (see Results).

Angular dispersion was calculated between fMRI volumes in the man-
ner described by Schurger and colleagues (2010, 2015). This method
allows comparisons of the quality of neural representations, independent
of differences in the strength of activation. Angular dispersion reflects
trial-to-trial variability in neural representation by treating each pattern
as a vector projecting into a multidimensional state space defined by the
number of voxels in the patterns: each voxel activation gives the location
in the state space along that dimension. The length (norm) of the vector
projecting to the point defined by all voxel coordinates corresponds to
the strength of activation across all voxels, and the angle between two
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activation vectors reflects the difference be-
tween the two patterns of representation. An-
gular dispersion is calculated as the length of
the normalized vector sum, divided by the
number of vectors summed. Following
Schurger and colleagues (2015), we present an-
gular dispersion as the inverse of this value so
that lower values indicate lower angular disper-
sion, and greater precision. We calculated an-
gular dispersion for both same-category and
distinct-category comparisons, one pair of vec-
tors at a time, and then took the mean of all
possible same-category comparisons, and the
mean of all possible distinct-category compar-
isons. Outlier values further than 2.5 SDs from
the mean were not included in the calculation
of each mean, leading to the exclusion of 1.54%
of data in Study 1, and 1.49% of data in Study 2.
Calculating angular dispersion one pair of vec-
tors at a time has two benefits. First, the inverse
of angular dispersion between two vectors
yields values that can be interpreted in terms of
the relative direction of the two vectors. That is, a value of 1 indicates two
vectors pointing in the same direction, a value of infinity indicates two
vectors pointing in opposite directions, and a value of 1.4142 (square
root of 2) indicates two vectors perpendicular to each other. Second,
angular dispersion increases as the number of vectors in the calculation
increases, such that angular dispersion calculated for all same-category
trials at once could not be validly compared with angular dispersion for
the mean of all distinct-category comparisons, which must be calculated
one pair of vectors at a time. Based on our clear a priori predictions,
one-tailed t tests were employed in testing for effects of pupil size and
drug on angular dispersion.

Functional connectivity analysis. The functional connectivity analysis
was implemented as described by Eldar and colleagues (2013). A voxel-
to-voxel correlation matrix was computed across the time series for all
gray matter voxels (ranging from 32,810 to 40,190 voxels across partici-
pants). Functional connectivity was calculated as the mean of all absolute
(i.e., unsigned) correlations in the matrix. To minimize spurious corre-
lations, movement parameters from the realignment, as well as mean
activation from the normalized gray, white, and CSF matter masks, were
regressed out of the functional data, and low-frequency drifts were re-
moved using a high-pass filter with a 0.0078 Hz cutoff. The normalized
gray matter mask was used to restrict analysis of functional connectivity
to gray matter. The calculations were done across the entire 28 min of
scan time for each session, and the mean absolute correlation across the
time series was compared between sessions. The clustering coefficient
(the degree to which functional connections were clustered) was calcu-
lated using graph-theoretic analysis (Eguíluzet al., 2005) for the same
time periods as described for the functional connectivity analysis. Voxels
were defined as connected if the absolute correlation between them was
in the top 1% of all unsigned correlations calculated in the correlation
matrix. A triplet of connected voxels was defined as any three voxels
connected in such a way that one voxel was connected to the other two
(�2 connections). A closed triplet was defined as a triplet in which each
voxel was connected to both the other voxels in the triplet (three connec-
tions). The clustering coefficient was defined as the number of closed
triplets divided by the number of total triplets (Luce and Perry, 1949).
The statistical test of a difference in clustering coefficients between drug
and placebo in Study 2 was corrected for unequal variances.

Results
Simulation: increased gain lowers angular dispersion for both
same-category and distinct-category comparisons
Model simulations allowed us to formally test our prediction that
increased gain should enhance same-category representational
similarity (i.e., precision) and that angular dispersion captures

this effect. In addition, the simulations allowed us to examine the
effect of gain on distinct-category angular dispersion.

We modeled the effect of gain and of category overlap on
angular dispersion using a standard neural network model de-
signed to accept variable input and settle into a network state with
a pattern of activation that could be compared with other end
states using the angular dispersion metric. The network weights
were set to simulate two category attractors with varying levels of
pattern overlap (categories with many shared features vs catego-
ries with few shared features; see Materials and Methods). Simu-
lations revealed that increasing gain lowered same-category
angular dispersion, consistent with other computational models
that predict that increasing gain should increase precision
(Servan-Schreiber et al., 1990; Knill and Pouget, 2004; Fig. 1a).
We also computed the average angular dispersion associated with
all possible comparisons of the activation patterns of exemplars
from distinct categories. Object category representations are dis-
tributed and overlapping within the ventral temporal cortex
(Haxby et al., 2001). To the extent that there is overlap between
neural representations of distinct categories, a general increase in
the precision of representations should also manifest in increased
representational similarity between distinct categories. Indeed,
this was confirmed by our simulations: distinct-category angular
dispersion decreased with increasing gain for all levels of repre-
sentational overlap between the categories except when the two
attractors were fully decorrelated (Fig. 1b). Thus, the simulations
suggest that increases in catecholamine-mediated gain should
result in lower angular dispersion for both same-category and
distinct-category comparisons.

Study 1: pupil diameter covaried with the precision of
cortical representations
In Study 1 (n � 24 participants) we measured baseline pupil
size, which is correlated with tonic levels of norepinephrine
activity (Aston-Jones and Cohen, 2005; Nieuwenhuis et al.,
2011; Murphy et al., 2014; Varazzani et al., 2015; Joshi et al.,
2016), and therefore has been hypothesized to track neural
gain (Aston-Jones and Cohen, 2005; Gilzenrat et al., 2010;
Nassar et al., 2012; Eldar et al., 2013; Cheadle et al., 2014;
McGinley et al., 2015). We examined whether precision of
neural representations differed between miniblocks of trials
associated with relatively small and large baseline pupil sizes.
As predicted by our model, angular dispersion was lower for

Figure 1. Simulation results. a, For all levels of representational overlap, same-category angular dispersion decreases (i.e.,
becomes more precise) with increasing gain. b, In contrast, decreases in distinct-category angular dispersion due to increasing gain
depend upon the level of representational overlap. In both panels, hotter colors indicate decreased angular dispersion.
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large-pupil blocks, which is consistent with the hypothesis
that higher gain was associated with increased precision of
category representations (F(1,23) � 6.29, p � 0.020; Fig. 2b,c).
There was no evidence that this effect was different for same-
category versus distinct-category comparisons (F(1,23) � 0.55,
p � 0.47; Fig. 2c). Indeed, paired t tests revealed that large-
pupil blocks were characterized by significantly lower angular
dispersion for both same-category (t(23) � 2.20, p � 0.019)
and distinct-category comparisons (t(23) � 2.14, p � 0.022).

According to our simulations, this suggests that the stimu-
lus categories had some degree of representational overlap in
the temporal cortex, and that overlapping portions, or fea-
tures shared between categories, were represented more pre-
cisely in the large-pupil blocks. The notion that the effects on
same-category and distinct-category angular dispersion re-
flect the same influence of catecholamine-mediated gain is
corroborated by our finding that participants with a larger
decrease in same-category angular dispersion also showed a
larger decrease in distinct-category angular dispersion (r �
0.49, p � 0.015).

Additional analyses showed that the effects of pupil-linked
gain on angular dispersion were specific for the time period
associated with stimulus processing (peak of the hemody-
namic response); similar effects were not observed at stimulus
onset (i.e., trial baseline), before the stimulus-elicited hemo-
dynamic response had a chance to develop (F(1,23) � 0.15, p �
0.70). Furthermore, condition-averaged angular dispersion
was lower during the hemodynamic response peak than dur-
ing trial baseline (Mpeak � 1.402, Mbaseline � 1.413, t(23) � 6.38,
p 	 0.001), indicating that patterns of activity across ventral
temporal cortex became more consistent during stimulus pro-
cessing than at rest between trials (Schurger et al., 2015). Fi-
nally, same-category comparisons were associated with lower
angular dispersion than distinct-category comparisons
(Msame � 1.399, Mdistinct � 1.405, F(1,23) � 24.98, p 	 0.001;
Fig. 2b), as expected given that same-category exemplars
should be coded as more similar to each other than exemplars
of other categories, and consistent with seminal work on the
subject (Haxby et al., 2001).

Figure 2. Trial procedure and empirical results in Study 1. a, Participants categorized three categories of stimuli with a jittered interstimulus interval of 7–9 s. b, Representative sample
of data points (colored spheres) with coordinates defined by voxel-activation patterns, scaled down to three dimensions using nonmetric multidimensional scaling. Units on each axis are
arbitrary: the three axes define a three-dimensional, representational space. Distance “into” the page is represented with smaller spheres. Angular dispersion characterizes the degree
to which points are tightly clustered together (more precise) or loosely spread out (less precise) in the representational space. For both house and face stimuli, the points are closer
together in the large-pupil blocks, and across categories large-pupil points are closer together than small-pupil points. These data points were chosen to best illustrate the overall pattern
of results. The smaller plots on the left show two-dimensional views of the same data. c, Larger baseline pupil size was associated with lower angular dispersion (higher precision) for
both same-category and distinct-category comparisons. Error bars reflect SEM. The glass-brain inset shows the mask of ventral temporal cortex that was employed for all
analyses.
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Study 1: exclusion of alternative interpretations; small-pupil
and large-pupil blocks did not differ in gaze position, head
movements, time on task, signal intensity, and task
performance
It is possible that small-pupil blocks were associated with less
precise category representations because participants looked
away from the stimulus more often than in large-pupil blocks. To
exclude this possibility, we calculated the variance in gaze posi-
tion for the 1500 ms epoch of samples after stimulus onset, when
gaze position/movement could affect the quality of visual input.
Paired-samples t tests comparing the natural log of the variance
in gaze position (distributions were skewed toward high values)
along both the vertical and (separately) the horizontal axis
yielded no significant differences between small-pupil and large-
pupil blocks [horizontal: Msmall � 5.42 (SD � 1.03), Mlarge � 5.46
(SD � 0.88), t(23) � 0.52, p � 0.61; vertical: Msmall � 5.69 (SD �
1.16), Mlarge � 5.61 (SD � 0.98), t(23) � 0.80, p � 0.43]. An
analysis of absolute deviation from fixation on each trial yielded
similar results. Furthermore, small-pupil and large-pupil blocks
did not differ in the amount of head movement [Msmall � 0.025
(SD � 0.001), Mlarge � 0.025 (SD � 0.001), F(1,23) � 0.03,
p � 0.85].

We also considered the possibility that our comparison of
small-pupil and large-pupil blocks was confounded with time on
task. More specifically, small-pupil blocks may, on average, have
occurred later in the experiment, when participants were perhaps
less engaged in the task, resulting in impaired stimulus encoding
and higher angular dispersion. To test for this potential con-
found, we quantified the timing of small-pupil and large-pupil
blocks in terms of block number (1–14; i.e., the time since the
start of the session), and compared the distributions across par-
ticipants. This analysis did not support a time-on-task explana-
tion: large-pupil blocks (mean block number, 7.13; SD � 2.06)
did not differ from the small-pupil blocks (mean, 7.88; SD �
2.08; t(23) � 0.89, p � 0.38).

The vector lengths associated with each stimulus-elicited pat-
tern of hemodynamic activation reflect the intensity of brain ac-
tivation: the responsivity of voxels to stimulus presentation
relative to mean activation (Schurger et al., 2010, 2015). In the
case of relatively short vector norms—when some vector coordi-
nates are very close to zero—small perturbations due to noise can
have large effects on the direction of the vector, increasing angu-
lar dispersion. Thus, it is important to test whether the small-
pupil and large-pupil blocks differed in vector norm. A 2 � 3
ANOVA with pupil size and stimulus category (houses, faces,
scissors) as repeated-measures factors revealed no effect of pupil
size [Msmall � 78.4 (SD � 3.2), Mlarge � 78.8 (SD � 3.2), F(1,23) �
1.58, p � 0.22], and stimulus category (F(2,46) � 0.57, p � 0.57),
nor an interaction of pupil size with stimulus category (F(2,46) �
0.55, p � 0.58). This indicates that the effect of pupil size on
precision was not due to an increased susceptibility to noise in the
small-pupil blocks.

Finally, small-pupil and large-pupil blocks did not differ in
task performance—an anticipated result due to ceiling effects
for accuracy and only slight time pressure to respond within
1500 ms: mean categorization accuracy was 98% (SD � 3%)
for small-pupil blocks, and also 98% (SD � 4%) for large-
pupil blocks (t(23) � 1.02, p � 0.32). Likewise, mean response
time did not differ with pupil size [Msmall � 607 ms (SD � 122
ms), Mlarge � 603 ms (SD � 123 ms), t(23) � 0.38, p � 0.71].
This indicates that the enhanced precision of category repre-
sentations in the large-pupil blocks cannot be explained in
terms of differences in task performance. The absence of sys-

tematic performance differences is important; if the task had
been more difficult and had required perceptual learning, gain
effects on perceptual learning (which would have manifested
in performance differences) could have confounded gain ef-
fects on the precision of category representations.

Study 1: relationship between pupil diameter and network
gain, as indicated by whole-brain functional connectivity
A global increase in gain increases the activity of neuron popula-
tions receiving excitatory input and decreases the activity of neu-
ron populations receiving inhibitory input. This type of signal
amplification yields a system-wide facilitation of signal transmis-
sion (Aston-Jones and Cohen, 2005). Recent computational
work (Eldar et al., 2013) suggests that pupil-linked increases in
neuromodulatory gain boost all temporal correlations between
the activities of local neuron populations, regardless of whether
these are positive or negative—that is, higher gain increases (ab-
solute) functional connectivity throughout the network. Note
that although both functional connectivity and angular disper-
sion are measures of similarity, these measures are, in an impor-
tant way, orthogonal to each other: functional connectivity
involves correlating time series (or time vectors) across voxels,
whereas angular dispersion is akin to correlating voxel vectors
across time points. Another effect of increased gain, confirmed by
model simulations and empirical data, is that network connectiv-
ity becomes more tightly clustered (Eldar et al., 2013).

We computed these two network measures of neural gain to
examine whether they would provide converging evidence for the
assumption that large-pupil and small-pupil blocks differed in
the level of gain. In line with Eldar and colleagues (2013), we
found that both functional connectivity (Mlarge � 0.132 vs
Msmall � 0.130) and clustering coefficient (Mlarge � 0.118 vs
Msmall � 0.110) were greater in large-pupil blocks than in small-
pupil blocks. A multivariate ANOVA (MANOVA) with func-
tional connectivity and clustering coefficient as dependent
variables and pupil size as a repeated-measures factor revealed a
marginally significant effect of pupil size (Wilk’s � � 0.79, F(2,23)

� 3.14, p � 0.06). The mean variance across the time series for all
voxels was not significantly different between atomoxetine and
placebo (t(23) � 0.70, p � 0.49), which rules out the possibility
that the difference in functional connectivity was due to a differ-
ence in variance. Thus, although the difference between large-
pupil and small-pupil blocks just failed to reach significance at
the 0.05 level, the results of these functional-connectivity analyses
are broadly consistent with the findings reported by Eldar and
colleagues (2013), and with our hypothesis that the observed
enhancement in precision of cortical representations was pro-
duced by an increase in catecholamine-mediated network gain.

Study 2: atomoxetine administration enhanced the precision
of cortical representations in Session 1 but not in Session 2
In Study 2 (n � 24 participants) we sought to test the causal
influence of catecholamine-mediated gain on representational
precision. We did so by administering a single dose of 40 mg of
atomoxetine, a norepinephrine transporter blocker that increases
extracellular levels of norepinephrine (Bymaster et al., 2002;
Swanson et al., 2006; Koda et al., 2010; Kielbasa et al., 2015) and
(probably) dopamine (Bymaster et al., 2002; Devoto et al., 2004;
Devoto and Flore, 2006), and examined the effect on precision in
a double-blind, placebo-controlled, cross-over design. Aside
from the treatment, the only difference between the two sessions
was that five new exemplars of each category were randomly
selected as stimuli in the categorization task.
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To test the prediction that an atomoxetine-induced increase
in neural gain would produce an increase in precision, we ana-
lyzed the angular dispersion data from both sessions with a 2 �
2 � 2 mixed ANOVA with treatment (drug vs placebo) and same-
category versus distinct-category comparisons as repeated-
measures factors, and treatment order (drug in first session vs
drug in second session) as between-subjects factor. There was no
effect of treatment (Mdrug � 1.407, Mplacebo � 1.409, F(1,22) �
0.68, p � 0.42). However, there was a significant interaction of
treatment with treatment order (F(1,22) � 6.22, p � 0.021), indi-
cating that atomoxetine had very different effects on angular
dispersion in Session 1 and Session 2. This type of treatment-by-
treatment order interaction is not uncommon in studies using
noradrenergic agents (for review, see Coull et al., 2004), and is
thought to reflect the complex interplay between baseline arousal
and noradrenergic actions (Coull, 2001). In line with this view,
salivary cortisol measures from our participants (reported below)
suggested that stress and/or arousal levels differed between the
two sessions (Buchanan et al., 1999; Bosch et al., 2009). In accor-
dance with our treatment-by-treatment order interaction, we
analyzed each session separately with treatment as a between-
subjects factor.

In Session 1, as predicted by our model, atomoxetine was
associated with lower angular dispersion, and hence higher pre-
cision, than placebo (F(1,22) � 4.36, p � 0.048). There was no
evidence that the effect of atomoxetine differed between same
and distinct comparisons (p � 0.67). Indeed, atomoxetine sig-

nificantly lowered angular dispersion for
both same-category (t(22) � 1.96, p �
0.031; Fig. 3a) and distinct-category com-
parisons (t(22) � 2.10, p � 0.024; Fig. 3a).
These effects were again specific for the
time period associated with stimulus pro-
cessing; neither effect was significant at
trial baseline (both p’s � 0.63).

Additional analyses revealed that, as in
Study 1, condition-averaged angular dis-
persion was lower during the hemody-
namic response peak than during trial
baseline (Mpeak � 1.406, Mbaseline � 1.414,
t(23) � 5.92, p 	 0.001), and same-
category comparisons were associated
with lower angular dispersion than
distinct-category comparisons (Msame �
1.404, Mdistinct � 1.408, t(23) � 7.98, p 	
0.001; Fig. 3a).

In Session 2, atomoxetine did not have
a significant effect on angular dispersion
collapsed across comparison type (p �
0.30), nor on either same-category or
distinct-category comparisons tested sep-
arately (same category: Mdrug � 0.1.410,
Mplac � 1.406, t(22) � 1.16, p � 0.26; dis-
tinct category: Mdrug � 1.413, Mplac �
1.411, t(22) � 0.87, p � 0.39; Fig. 3b).
Other results were similar as in Session 1
and in Study 1: atomoxetine did not affect
same-category and distinct-category an-
gular dispersion at trial baseline (both
p’s � 0.57). Condition-averaged angular
dispersion was lower during the hemody-
namic response peak than during trial
baseline (Mpeak � 1.410, Mbaseline � 1.416,

t(23) � 5.69, p 	 0.001), and same-category comparisons were
associated with lower angular dispersion than distinct-category
comparisons (Msame � 1.408, Mdistinct � 1.412, t(23) � 5.67, p 	
0.001; Fig. 3b).

Study 2: atomoxetine administration increased network gain
in Session 1 but not in Session 2, as indicated by whole-brain
functional connectivity
As noted above, pharmacological effects of catecholaminergic
drugs on brain and behavior are often dose, context, and group
specific (Berridge and Waterhouse, 2003; Cools and Robbins,
2004; Coull et al., 2004). Therefore, we asked whether the differ-
ence between sessions in angular dispersion effects might be as-
sociated with differential effects of atomoxetine on neural gain.
Accordingly, we tested whether atomoxetine increased the
strength and clustering of functional connectivity in both Ses-
sions 1 and 2.

A MANOVA with functional connectivity and clustering co-
efficient as dependent variables, treatment as a repeated-
measures factor, and treatment order as a between-subjects factor
revealed a significant interaction between treatment and treat-
ment order (Wilk’s � � 0.71, F(2,21) � 4.32, p � 0.027). The main
effect of treatment was not significant (Wilk’s � � 0.93, F(2,21) �
0.81, p � 0.46). Follow-up MANOVAs, separately for each ses-
sion, indicated that in Session 1 atomoxetine significantly in-
creased functional connectivity (Mdrug � 0.089 vs Mplac � 0.080)
and the clustering coefficient (Mdrug � 0.202 vs Mplac � 0.158), as

Figure 3. Results from both sessions of Study 2. Error bars reflect SEM. a– d, Measures of precision (a, b) and connectivity (c, d)
were affected by drug in Session 1 (a, c) but not in Session 2 (b, d). Error bars reflect SEM.
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indicated by a main effect of treatment
(Wilk’s � � 0.74, F(2,21) � 3.67, p � 0.043;
Fig. 3c). The mean variance across the
time series for all voxels was not signifi-
cantly different between atomoxetine and
placebo (t(22) � 0.80, p � 0.43), which
rules out the possibility that the difference
in functional connectivity was due to a
difference in variance. These results sug-
gest that the drug-related enhancement in
precision in Session 1 was accompanied
by an increase in catecholamine-mediated
network gain.

In contrast to Session 1, in Session 2
atomoxetine did not increase functional
connectivity and the clustering coefficient
(Wilk’s � � 0.98, F(2,21) � 0.24, p � 0.79;
Fig. 3d). Indeed, if anything, atomoxetine
slightly reduced both functional connec-
tivity (Mdrug � 0.092 vs Mplac � 0.908)
and the clustering coefficient (Mdrug �
0.187 vs Mplac � 0.198), although these
reductions were not significant. As in Ses-
sion 1, the mean variance across the time
series for all voxels was not significantly
affected by treatment (t(22) � 0.65, p �
0.53). As in the work of Eldar and col-
leagues (2013), functional connectivity
and clustering coefficient were correlated
across participants: the mean Pearson r,
averaged across the two sessions, was 0.78,
an acceptable level of multicollinearity.
These functional connectivity results sug-
gest that atomoxetine increased neural
gain in Session 1, but had no effect on gain in Session 2 (Eldar et
al., 2013). This pattern of results aligns with computational mod-
els and theoretical frameworks that posit a direct relationship
between neural gain and precision (Servan-Schreiber et al., 1990;
Knill and Pouget, 2004; Ma et al., 2006; Friston, 2009), and thus
provides an explanation for why atomoxetine decreased angular
dispersion only in Session 1.

Study 2: treatment and session effects on salivary cortisol
To examine differences in arousal between the two sessions, we
examined salivary cortisol (at four different time points; see Ma-
terials and Methods), a reliable and commonly used index of
arousal/stress (Buchanan et al., 1999; Bosch et al., 2009). Cortisol
values were analyzed using an ANOVA with treatment and time
point (1– 4) as repeated-measures factors and treatment order as
between-subjects factor. In line with previous research (Cham-
berlain et al., 2007), this analysis showed a main effect of treat-
ment (F(1,21) � 8.82, p � 0.007) and an interaction between
treatment and time point (F(3,63) � 6.35, p � 0.003), indicating
that atomoxetine increased cortisol values relative to placebo,
especially at later time points. There was also a main effect of time
(F(3,63) � 7.48, p 	 0.001): cortisol levels decreased over the
course of each session, indicating that subjects habituated to
the test context. Finally, we found a significant treatment-by-
treatment order interaction (F(1,21) � 5.12, p � 0.034), which
reflected a main effect of session: cortisol levels were higher in
Session 2 than in Session 1 at all time points, but especially so at
baseline, although this comparison was only marginally signifi-
cant (t(23) � 1.99, p � 0.059).

These results suggest that participants’ arousal levels were
higher in Session 2, and that this effect was already present before
treatment. As noted above, this type of session effect is known to
interact with noradrenergic drugs. Although the notion of in-
creased arousal levels in Session 2 seems counterintuitive, the
debriefing process after Session 1 suggested a potential explana-
tion. During this debriefing, most participants expressed a belief
that they had not received the drug in the first session, a belief that
may have caused them to be more anxious during the second
session.

Study 2: exclusion of alternative interpretations; atomoxetine
and placebo did not differ in head movements, signal
intensity and task performance
To check for treatment effects on head movements in Study 2, we
ran a 6 � 2 mixed ANOVA on the mean of the absolute derivative
values with the head-movement parameters as the within-
subjects factor and treatment (drug vs placebo) as a between-
subjects factor. There was no effect of treatment [Mdrug � 0.022
(SD � 0.005), Mplac � 0.023 (SD � 0.006), F(1,22) � 0.03, p �
0.86] and no interaction of treatment with movement parameters
(p � 0.98).

A 2 � 3 � 2 mixed ANOVA with treatment (drug/placebo)
and stimulus category (houses, faces, scissors) as repeated-
measures factors and treatment order as a between-subjects fac-
tor revealed an effect of stimulus category, indicating that faces
(M � 73.2, SD � 6.6) were associated with shorter vector norms
than houses (M � 77.8, SD � 1.4) and scissors (M � 77.8, SD �
1.7; F(2,44) � 10.07, p 	 0.001). More importantly, there was no

Figure 4. Robustness of angular dispersion effect to voxel selection. Selecting only voxels within the ventral temporal cortex
that reliably discriminated between conditions (as per F tests) did not alter the observed effects. We plot the p value from each
statistical test (paired t tests on effects of pupil size in Study 1, independent-samples t test on the effects of treatment in Study 2)
as a function of the percentage of the most informative voxels from the full ventral temporal mask.
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effect of treatment [Mdrug � 76.2 (SD � 3.2), Mplac � 76.0 (SD �
1.7), F(1,22) � 0.07, p � 0.79], nor an interaction of stimulus
category with treatment (F(1,22) � 0.83, p � 0.44).

The drug and placebo groups did not differ in task perfor-
mance. Mean categorization accuracy was 97% (SD � 5%) on
drug and 98% (SD � 6%) on placebo (t(22) � 0.49, p � 0.63).
Mean response time was somewhat faster for the drug group (507
ms, SD � 129 ms) than for the placebo group (549 ms, SD � 129
ms), but the difference was not significant (t(22) � 0.81, p � 0.43).
Thus, there were no systematic performance differences that
could confound the drug-related gain effects on precision.

Studies 1 and 2: effects of alternative voxel selections
In assessing the precision of category representations, we used a
normalized mask of the ventral temporal cortex that included all
voxels, rather than specifying a variable subset of voxels for each
participant on the basis of the degree to which the voxels pre-
dicted category membership. However, our results were robust to
changes in this approach. We performed the angular dispersion
analysis on data taken from 20 different voxel selections, ranging
from the 5% most informative voxels, to 10%, up to the full mask.
Restricting the analysis to smaller portions of the most informa-
tive voxels resulted in much lower overall angular dispersion val-
ues (indicating higher precision). However, it did not change the
direction or significance of our effects (Fig. 4): precision was
enhanced for the high-gain condition in each study (large pupil,
Study 1; atomoxetine condition in Session 1, Study 2) for all
masks tested, except in the case of distinct-category comparisons
in Study 1, where masks of 	35% of the full mask yielded mar-
ginally significant p values.

Discussion
Neurophysiological recordings (Usher et al., 1999; Berridge and Wa-
terhouse, 2003; Aston-Jones and Cohen, 2005) and an influential
theory of catecholamine function (Servan-Schreiber et al., 1990;
Aston-Jones and Cohen, 2005) suggest that endogenous fluctuations
in neuromodulators, such as norepinephrine and dopamine, tune
neural gain in target brain areas to optimize cognition to varying
circumstances. Bayesian theories of brain function and computa-
tional models (Servan-Schreiber et al., 1990; Knill and Pouget, 2004;
Ma et al., 2006; Friston, 2009) suggest that one mechanism by which
gain optimizes neural processing is through enhanced precision of
representation. Confirming these ideas, our empirical results
provide the first direct evidence that the precision of widely distrib-
uted cortical representations is augmented by catecholamine-
mediated gain. The two studies showed a striking convergence of the
effects of pupil-linked and pharmacologically induced increases in
catecholamine-mediated gain, and hence suggest an important
mechanism by which catecholamines can influence signal-detection
performance and other behaviors (Servan-Schreiber et al., 1990;
Usher et al., 1999; Aston-Jones and Cohen, 2005; Friston et al.,
2012).

Our neural network simulations generated two predictions
about the effect of gain on angular dispersion. Confirming the
first prediction, we demonstrated that the precision of represen-
tation of exemplars within a given category is improved by
catecholamine-mediated increases in neural gain. This suggests
an important role for catecholaminergic gain modulation in per-
ceptual encoding. In line with our second prediction, we ob-
served that higher gain also increased representational overlap
between patterns from distinct object categories. This somewhat
counterintuitive finding suggests that distinct category represen-
tations in the ventral temporal cortex are overlapping (Haxby et

al., 2001), and that these overlapping portions, which are as-
sumed to code for features shared between categories, are repre-
sented more precisely under high gain. This can be thought of as
enhanced precision within a higher-order category to which all
stimuli in the experiment belong. Further work is needed to es-
tablish whether these findings generalize to representations in
other brain areas than the ventral lateral temporal cortex, where
catecholamines may have different effects (Hirata et al., 2006;
Castro-Alamancos and Gulati, 2014).

Our aim was to identify the effects of catecholamine-mediated
gain on a multivariate metric of representational similarity. Al-
though fMRI in human subjects lends itself well to the study of
multivariate, distributed object representations, this approach
also forced us to rely on noninvasive measures of neural gain. In
Study 1, we built on a growing literature linking pupil size to
neural gain (Aston-Jones and Cohen, 2005; Gilzenrat et al., 2010;
Nassar et al., 2012; Eldar et al., 2013; Cheadle et al., 2014; McGin-
ley et al., 2015). However, the exact relationship between pupil
size and neural gain requires further research. In Study 2, we used
functional connectivity measures that show promise as noninva-
sive measures of gain, but previous validation relied on pupillom-
etry and computational modeling (Eldar et al., 2013), other
indirect methods for studying gain. It is also worth noting that
gain modulation is unlikely to be the only mechanism by which
catecholamines influence perception (Hurley et al., 2004). Thus,
it remains a possibility that gain modulation was not the (only)
mechanism by which precision was enhanced in the current stud-
ies. Nevertheless, our results follow directly from the predictions
about the impact of increasing gain made by our own and previ-
ous neural network models (Servan-Schreiber et al., 1990; Usher
et al., 1999), as well as from Bayesian characterizations of gain
and precision (Knill and Pouget, 2004; Ma et al., 2006; Friston,
2009).

We tried to characterize the effects of neural gain, a com-
putational property of a neuron’s input– output function, on a
whole-brain fMRI metric. This forms a promising approach
by which low-level principles of neuromodulation may be
linked via computational modeling to system-level brain
function. The adaptive value of catecholamine-mediated gain
modulation has been clearly specified in the domain of deci-
sion making and action (Aston-Jones and Cohen, 2005). An
important goal for future research is to examine in detail the
adaptive nature of catecholamine-mediated modulation of
perceptual encoding.
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