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Kernel Density Estimation
Kernel density estimation (KDE) is the problem of estimating a probability density function 
from a finite sample of data.
KDEs are of the form

is the sample size, ௜ is the indexed known data, is the kernel function, and is the 
bandwidth size that controls the degree of smoothing.

Kernel density functions are a nonparametric technique to estimate densities and thus do 
not require any assumptions on the data, such as the class of distribution. 
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Example of KDE in action: I simulated 300 data points from a
ଶ distribution with both and 

bandwidths.



Ensemble Estimation

Given an individual estimator ௟, we define a weighted ensemble
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where is a set of parameter values (with cardinality ) and 
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is a set of weights such that ௟௟∈௟ ̅ .

(These estimators are very general)



Previous work has shown that if:
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Where ௜ are constants that depends on the underlying density, ଵ ூ is an 
index set with cardinality , and ௜ are basis functions that only depend on .
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The optimal weight vector ଴ in the previous slide can be found by 
solving the (fortunately) convex optimization problem:
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The conditions that guarantee such a weight vector ଴ are satisfied in density 
functionals (such as information divergences) and entropy estimation.  KDEs 
do NOT meet those conditions.

The research task is to define KDEs ௟ with certain assumptions and prove 
that a weight vector ଴ exists (obtained by solving an optimization problem) 
such that we can improve the rate of convergence of the MSE. The original 
aim was to see if the parametric rate can be achieved.

The proof involves controlling both the bias and variance terms, because 
ଶ . 



In the case that ௟ ௩
ଵ

௡

ଵ

௡
the proof shows we can control the 

variance by relying on the weight vector:
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(some steps omitted)

For a KDE ௟, 
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The first term in the above is the problem, because and thus ିଵ . 
Therefore, we can not use the same technique above. Because the first term 
converges slower than ଵ

௡
.



Can we reach into the other entries of the covariance matrix of ௪ to 
control the variance?

For two KDEs 𝑓ଵ and 𝑓ଶ with a uniform kernel assumption on both with bandwidths ℎଵ > ℎଶ
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We are fairly certain that it is impossible to achieve the parametric rate of convergence with the above. As a 
sketch of the idea,
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The last equality in combination with the bias of KDE can get extremely close to the parametric rate of 
convergence but can not reach it.



Future Work
• Achieving a parametric rate of convergence with a KDE with this method is 

probably impossible. However, can we at least improve the convergence rate?

• It is likely that we can get the convergence of bias-cancelling KDEs (these are 
KDEs that require the assumption of the existence of higher order derivatives and 
further smoothness). This would be a very big deal even if we can’t achieve the 
original goal of the parametric rate of convergence.

• It is also likely that we can asymptotically approach the parametric rate of 
convergence (i.e., get arbitrarily close to the parametric rate).


