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Introduction
A fundamental task in data exploration is to extract simplified low di-
mensional representations for faithfully visualizing data in two or three
dimensions. Common approaches to this task include kernel methods
for manifold learning and autoencoders, which have the following weak-
nesses:
• Kernel methods typically lack out-of-sample extensions and an in-

verse mapping from the latent representation to the ambient space.

• Autoencoders (AE) usually do not capture the global intrinsic ge-
ometry present in the data.

We integrate both approaches by incorporating a geometric regulariza-
tion term in the bottleneck of the autoencoder, resulting in the following
contributions:

Our contributions:

• Improve AE latent representation for visualizing
the true semantics of the data.
• Improve reconstruction error and disentanglement of
the latent variables.
• Provide manifold learning methods with an invertible
mapping and out-of-sample extension.

Geometric Regularization

Denote an embedding Ep = {e1, e2, . . . , en} produced by a mani-
fold learning method, where ei ∈ Rd is the embedding coordinates of
each observation i. The geometry regularized autoencoder (GRAE) is
trained using eq. (1).
We use PHATE [4] to learn E , but GRAE can be easily implemented
using other methods e.g. UMAP.

Figure 1: Overview of GRAE on the Faces dataset [6]. Geometric regularization is
applied to enforce similarity between GRAE and PHATE embeddings. The vanilla AE
embedding (top right) is added for reference.

arg min
f,f†

L(f, f †) = Lr(X, f †(f (X)) + λLg(f (X), E). (1)

Where f :M−→ R
d and f † : Rd −→M

• Autoencoders rely solely on the reconstruction loss Lr
•We introduce a geometric lossLg(f (X), E) = ∑n

i=1 ‖ei− f (xi)‖2

Qualitative Results
We experimentally compare GRAE with a standard AE, Embedding
with Autoencoder Regularization (EAER) [8], Diffusion Nets [3], Topo-
logical Autoencoders (TAE) [5], and UMAP [2] on six benchmark
datasets: 1) The “Swiss Roll” with a thin middle slice removed from
the training set and used for testing. 3) Three MNIST digits picked ran-
domly and rotated 360 times at one-degree intervals, for a total of 1080
images. 3) Teapot [7]. 4) UMIST Faces dataset [1]. 5) Object tracking
synthetic dataset. 6) Single-cell mass cytometry data showing iPSC re-
programming of mouse embryonic fibroblasts (hereinafter, "iPSC") as
introduced in [9].

Figure 2: Latent representations from all considered methods on the benchmark
datasets

Figure 3: A) λ relaxation schedule B) GRAE latent space visualizations with three
different λ schemes on two problems

• We first notice that GRAE recovers a sensible geometry for all
problems while other methods fail at basic tasks such as uncoiling
the Swiss Roll, disentangling the Rotated Digits, showing the coor-
dinate plane on Object Tracking or recovering a circular structure
on Teapot. Only GRAE and Diffusion Nets show the two expected
branches of the iPSC manifold. UMAP also shows good geometry
in general, but tears the overall structure of the manifold on the
Swiss Roll and iPSC problems despite their known continuous
nature.

• The λ schedule during training in Figure 3 helps to find a bet-
ter reconstruction after a good latent representation has been found.

Quantitative Results
Metrics

Dataset Model R2 MSE Rel. MSE

Swiss Roll

GRAE 0.9762 (1) 0.0034 (1) -83.8 % (1)
AE 0.5136 (3) 0.0210 (4) 0.0 % (4)

EAER-Margin 0.3746 (6) 0.0246 (5) 17.1 % (5)
TAE 0.4905 (4) 0.0196 (3) -6.7 % (3)

Diffusion Nets 0.4257 (5) 0.0546 (6) 160.0 % (6)
UMAP 0.8455 (2) 0.0042 (2) -80.0 % (2)

Rotated Digits

GRAE 0.9829 (2) 0.0027 (1) -69.3 % (1)
AE 0.3757 (3) 0.0088 (3) 0.0 % (3)

EAER-Margin 0.3181 (5) 0.0061 (2) -30.7 % (2)
TAE 0.3359 (4) 0.0101 (4) 14.8 % (4)

Diffusion Nets 0.2530 (6) 0.0300 (5) 240.9 % (5)
UMAP 0.9845 (1) 0.0653 (6) 642.0 % (6)

Teapot

GRAE 0.9989 (1) 0.0032 (2) -62.4 % (2)
AE 0.2079 (6) 0.0085 (4) 0.0 % (4)

EAER-Margin 0.2526 (4) 0.0027 (1) -68.2 % (1)
TAE 0.2287 (5) 0.0097 (5) 14.1 % (5)

Diffusion Nets 0.9933 (3) 0.0038 (3) -55.3 % (3)
UMAP 0.9981 (2) 0.0160 (6) 88.2 % (6)

UMIST Faces

GRAE 0.9371 (3) 0.0092 (1) -35.7 % (1)
AE 0.9040 (6) 0.0143 (5) 0.0 % (5)

EAER-Margin 0.9298 (5) 0.0108 (2) -24.5 % (2)
TAE 0.9426 (1) 0.0118 (3) -17.5 % (3)

Diffusion Nets 0.9407 (2) 0.0128 (4) -10.5 % (4)
UMAP 0.9348 (4) 0.0292 (6) 104.2 % (6)

Object Tracking

GRAE 0.9298 (2) 0.0410 (1) -6.6 % (1)
AE 0.3658 (6) 0.0439 (5) 0.0 % (5)

EAER-Margin 0.4124 (5) 0.0429 (2) -2.3 % (2)
TAE 0.4369 (4) 0.0434 (3) -1.1 % (3)

Diffusion Nets 0.7806 (3) 0.0435 (4) -0.9 % (4)
UMAP 0.9890 (1) 0.0855 (6) 94.8 % (6)

iPSC

GRAE 0.2620 (2) 0.7440 (2) 1.0 % (2)
AE 0.0919 (6) 0.7366 (1) 0.0 % (1)

EAER-Margin 0.1305 (4) 0.7721 (4) 4.8 % (4)
TAE 0.1296 (5) 0.7603 (3) 3.2 % (3)

Diffusion Nets 0.2571 (3) 1.1060 (6) 50.1 % (6)
UMAP 0.3609 (1) 0.7741 (5) 5.1 % (5)

Above we report a quantitive assessment of all considered methods.
We score models on two tasks: i) recovering ground truth factors in
a meaningful way in the latent space and ii) reconstructing samples
from the latent space back to the input space adequately.
Reconstruction quality is assessed using the MSE between the input
and the reconstruction. Disentanglement of the latent factors is as-
sessed by fitting a linear regression to predict said factors, using the
embedding coordinates as regressors.

• GRAE comes first on reconstruction quality in most of the
datasets. The addition of the soft contraint in eq. 1 actually can
help to find a better reconstruction, guiding the AE during training
to a better latent representation.
• The high correlation between the GRAE embedding coordinates
and the ground truth latent coordinates show disentanglement po-
tential.

Scalability of PHATE

Figure 4: Scalable GRAE. Overview of GRAE applied to 200,000 observations of
iPSC data. A) Multiple mini-batch embeddings, each of which share some common
observations. B) Combined embedding using the Procrustes method to align the
mini-batch embeddings in a consistent way. C) GRAE embedding using (B) as E
in the geometric loss. D) PHATE embedding computed over the whole data set.
E) GRAE embedding using (D) as E in the geometric regularization. Although both
approaches produce near similar embeddings, the mini-batch approach is scalable.
Thus, GRAE can tackle bigger datasets than PHATE

Impact of Geometric Regularization on
Reconstruction Quality

Figure 5: A) Distributions of errors of two rotated digits averaged over ten runs
for AE vs GRAE. Dashed lines represent the 1st and 3rd quartiles, and solid lines
represent the median. We notice that AE is more unstable than GRAE, having
a heavier tail, since it fails completely to reconstruct certain images, while GRAE
typically presents lighter tails. B) Typical embeddings produced for AE and GRAE.
Blue points represent a subsample of the training data (subsampling only done
for visualization purposes). Black points are the generated points on the latent
space via interpolation. Red colored points in the AE embedding represent the
20 interpolated points with the highest reconstruction error. We observe that bad
reconstruction typically occurs in sparse regions or crossing lines, i.e., in regions
with poorly learned geometry.
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