
Fig. 6. Percentage of landscape developed (PLAND) after simulation step six, for landscape configuration A (blue), B (orange), and C (grey). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Class-level metrics Number of Patches (NP), Total Edge Length (TE), Percentage of Landscape Occupied by Largest Patch (LPI), and Clumpiness Index
(CLUMPY) for different levels of peer-influence and the three landscape configurations A (blue), B (orange), and C (grey). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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4. Discussion

We introduced three main components in a hybrid ABM-CA mod-
eling approach: a heterogeneous landowner (seller) agent typology;
peer-influence based on spatial neighborhood; and the combination of a
CA approach with the parcel level as the basis for decision-making. To
avoid redundancy, we used existing modeling frameworks and con-
cepts, combining the FUTURES model (Meentemeyer et al., 2013) with
conceptual frameworks introduced by Valbuena et al. (2010) and
Janssen (2011). We conducted a simulation experiment, including a
sensitivity analysis, to demonstrate how the newly introduced model
features can improve understanding of the complex spatial relation-
ships between agents and landscapes, and how they shape development
patterns in peri-urban areas. Our analysis demonstrates how the para-
meterization and distribution of agents and corresponding willingness
to sell may influence model functionality and simulation outcomes. We
also showed that varying degrees of peer-influence affected the con-
tiguity of (simulated) urban development patterns.

4.1. New model components for land change studies

Many land-change models, especially when designed to operate on
the regional to global scale, use a CA approach with the grid cell as the
basic spatial unit of change. This approach has limited potential for
implementing human decision-making regarding development, which
typically does not happen at the grid level but at the parcel level due to
ownership and land-management patterns (Brown, Pijanowski, & Duh,
2000). Hence, recent approaches focus on integrating the parcel level as
the spatial unit of decision-making for land-change simulations (Sohl,
Dornbierer, Wika, Sayler, & Quenzer, 2017). We expand on approaches
for merging grid and parcel boundaries by combining the CA-based
FUTURES (Meentemeyer et al., 2013) framework with parcel-level
ownership information in the form of an ABM. This integrated approach
is augmented by the theoretical foundation of the agent-based decision-
making framework. We use the concepts introduced by Valbuena et al.
(2010) and Janssen (2011) to study how preferences and values of
parcel owners or managers may shape the development process in peri-
urban areas.

The resulting hybrid FUTURES-ABM also expands on the typology
of agents represented in agent-based studies of urbanization. Typically,
ABMs only include agents who are motivated by utility (i.e., financial)
maximization; this dismisses the effect of heterogeneous landowner
preference and motivations on spatial patterns of development. For
example, Filatova’s (2015) ABM of an urban housing market focused on

one type of seller agent owning already developed land and generated
important findings on spatial pricing dynamics; however, the expansion
of developed areas (or actual development of a parcel) was not mod-
eled. Work by Magliocca, McConnell, Walls, and Safirova (2012a,b)
also builds on microeconomic assumptions, including spatial patterns of
urban expansion in ABM simulations for testing theoretical agent in-
teraction and resulting landscape configurations. However, the under-
lying microeconomic assumptions of these models do not account for
differences in individual utility and the influence of peers on the selling
processes. We build on these studies by accounting for the social pro-
cesses involved in land transactions including a heterogeneous agent
typology allowing us to represent differences in agents’ demographic
values and the influence that neighbors (peer-influence) may have on
their willingness to sell.

4.2. Influence of new model components

Our simulated land-use maps show qualitatively realistic develop-
ment patterns. We attribute this to including both environmental and
social drivers of land transitions that better represent the complex
spatial interactions involved in land purchases at the urban fringe.
Frameworks conceptualizing social processes as stochastic or using
abstract homogenous behavioral theory oversimplify the important
socio-spatial variations that influence spatial pattern (An, 2012). In-
clusion of parcel boundaries as discrete decision units that can be
partially or fully developed given agent and developer preferences also
influenced the realism of simulation results. While non-urban parcels
are often completely utilized in urban development, regulation for
proportion of green space and complex tenure arrangement can result
in both impervious and pervious land covers on the same parcel. By
combining the patch-growing algorithm of the FUTURES model at the
cellular level, and agents with discrete control over the sale of parcels
(Fig. 1), we were able to simulate this variation in urban patches no-
ticeable in landscape outcomes at the urban fringe.

While the high number of incomplete simulation runs was unin-
tended and a surprising result, it informed our understanding of how
heterogeneous agent types and their interactions with neighbors affect
urban transitions. Increasing peer-influence and different combinations
of agent types with particularly suitable parcels resulted in fewer
landowners deciding to sell their land, preventing sale of that land to a
developer (Tables 2 and 3). We chose not to bypass this process via
adjustment of parameter values, because at later simulation steps spa-
tial sorting would result in typical concentric development patterns due
to limited numbers of developable cells. By limiting model runs to six

Table 4
Differences in conversions and selling characteristics for the landowner agent types under ZERO peer-influence intensity.

Total Converted Converted Rate Willingness to Sell Decision to Sell

Max Min Sd Avg Max Min Sd Avg Max Min Sd Avg Max Min Sd Avg

ExUrbanite 3933 1498 611 2770 2.57% 1.02% 0.40% 1.83% 0.45 0.33 0.025 0.38 6.67% 2.71% 1.11% 4.47%
Lifestyle 8941 4255 1194 6463 4.68% 3.73% 0.28% 4.14% 0.46 0.35 0.036 0.40 8.32% 7.33% 0.24% 7.94%
Utilitarian 14,792 10,084 1216 12,521 9.90% 6.72% 0.80% 11.43% 0.52 0.45 0.019 0.48 13.97% 7.80% 1.50% 10.10%
Economic Maximizer 24,827 17,815 1792 21,424 18.68% 13.59% 1.39% 15.98% 0.65 0.37 0.063 0.56 30.05% 22.56% 1.68% 26.63%

Table 5
Differences in conversions and selling characteristics for the landowner agent types under MEDIUM peer-influence intensity.

Total Converted Converted Rate Willingness to Sell Decision to Sell

Max Min Sd Avg Max Min Sd Avg Max Min Sd Avg Max Min Sd Avg

ExUrbanite 10,556 5882 1067 7317 7.06% 3.98% 0.66% 4.86% 0.48 0.37 0.024 0.42 7.95% 3.78% 0.89% 5.47%
Lifestyle 12,627 6934 1258 9980 7.02% 5.69% 0.45% 6.33% 0.49 0.38 0.025 0.44 6.35% 4.97% 0.28% 5.73%
Utilitarian 15,784 10,943 1454 13,488 10.87% 7.37% 0.89% 9.12% 0.57 0.44 0.029 0.49 19.76% 7.60% 2.32% 10.15%
Economic Maximizer 21,791 16,275 1513 19,224 16.93% 12.21% 1.23% 14.47% 0.63 0.48 0.052 0.55 21.98% 15.42% 1.45% 18.39%
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simulation steps, we were able to identify the short-term micro changes
that occur, and the potential processes driving changes that would
otherwise become invisible due to eventual saturation of urbanization
resulting from high development pressure. Hence, our model and ex-
perimental setup led to the identification of a subtle spatial process with
important effects on development patterns.

Our results also display the pronounced effect of peer-influence on
the spatial configuration of urbanization. Since the majority of the
agents in our system were not profit motivated, willingness decreased
when factoring in the generally low willingness to sell of neighbors, i.e.,
higher peer-influence of immediate spatial neighbors leads to lower
landscape scale willingness to sell. Hence, neighbors acting together
resulted in more contiguous developed areas (Fig. 7). From a con-
ceptual point of view, this allowed us to analyze and visualize the in-
clusion of spatial neighborhood willingness to sell and to capture its
moderating effect resulting in land sparing outcomes.

4.3. Model limitations

The introduction of new model functionality in the context of our
simulation experiment resulted in several surprising but informative
insights about the importance of landowner decision-making in the
urban fringe. However, the current design and parameterization of the
ABM sub-model may benefit from a better empirical foundation. As
with a majority of modeling studies, this emphasizes the importance of
empirical studies that can be used to drive model assumptions (Janssen
& Ostrom, 2006; Smajgl, Brown, Valbuena, & Huigen, 2011). Specifi-
cally, we identified three key points that would benefit from more de-
tailed process representation and parameterization: (1) agent type
parameterization and allocation, (2) model representation of peer-in-
fluence, and (3) factors included in the decision-making process.

4.3.1. Agent type parameterization and allocation
The survey used to parameterize our agent types focused on

woodland owners only (BenDor et al., 2014). However, we used the
survey findings to define the parameters of all landowners on parcels
including other land-cover types. Also, in the absence of empirical
evidence of the landowners’ spatial distribution in the study system, we
allocated landowner types randomly in the landscape. We addressed
the latter by including the effect of the random landowner distribution
in the landscape as one component of our sensitivity analysis. To ad-
dress the former, more empirical studies are needed to better under-
stand decision-making of heterogeneous landowner types.

4.3.2. Model representation of peer-influence
In our current model implementation, peer-influence is represented

as an averaging of WTS over the spatial neighborhood of the focal
parcel – a simplified representation due to the lack of empirical data on
social networks in the study area. While this component of the mod-
eling framework provides the algorithms to connect a focal parcel (and
its actor) to a flexible number of parcels (and the corresponding actors)
through their identifiers, it is a highly simplified representation of peer-
influence with limited explanatory power. An empirically based para-
meterization that goes beyond the immediate spatial neighborhood and
a dynamic model representation of network structure (e.g., Fischer
et al., 2013) are important next steps to improve the explanatory power
of our modeling framework.

4.3.3. Decision-making process
The current modeling framework does not include a process re-

presentation for the effect of land prices on WTS and actor decision-
making in general. While many studies exist that analyze the effect of
land prices on land-use change (e.g., Filatova et al., 2009; Ligmann-
Zielinska, 2009; Magliocca et al., 2011), our intention was to add
complementary components (i.e., additional values and beliefs) to
model implementations of the decision-making process. An important

next step would be to combine our work with process representations
for consideration of land prices in decision-making.

5. Conclusions

We developed the hybrid FUTURES-ABM framework for modeling
development processes in the urban fringe including landowner deci-
sion-making at the parcel level and peer-influence of a spatial neigh-
borhood on this decision-making process. We used existing modeling
approaches and conceptual frameworks, and designed FUTURES-ABM
in a generic manner to allow for transferability to other study regions.
The results of our simulation experiment for Cabarrus County, North
Carolina, displayed the emergence of spatial development patterns
caused by the complex spatial relationships between parcel-level deci-
sion-making, the heterogeneous seller agents, and peer-influence. Our
results also suggest that local patterns may deviate from ‘optimal’ en-
vironmental conditions due to variation in willingness to sell and the
effect of peer-influence. Empirical evidence suggests that trade-offs
between the production of land influences land sale, however land at-
tachment also contributes to individual utility resulting in maintenance
of patches of forest and farmland (BenDor et al., 2014; Mullendore
et al., 2015). Questions remain as to whether such remnant un-
developed land will stay non-urban given retirement and inheritance of
land over time (Butler and Leatherberry, 2004). By incorporating an
ABM into an established CA framework, we have been able to de-
monstrate how the peer-influence amongst landowners can shape fu-
ture urban growth patterns.
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